WO2013153648A1 - Transparent resin laminate - Google Patents

Transparent resin laminate Download PDF

Info

Publication number
WO2013153648A1
WO2013153648A1 PCT/JP2012/059984 JP2012059984W WO2013153648A1 WO 2013153648 A1 WO2013153648 A1 WO 2013153648A1 JP 2012059984 W JP2012059984 W JP 2012059984W WO 2013153648 A1 WO2013153648 A1 WO 2013153648A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
hard coat
transparent resin
mass
Prior art date
Application number
PCT/JP2012/059984
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 斉藤
秀人 橋口
哲平 板本
Original Assignee
フクビ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクビ化学工業株式会社 filed Critical フクビ化学工業株式会社
Priority to CN201280072334.9A priority Critical patent/CN104220903B/en
Priority to PCT/JP2012/059984 priority patent/WO2013153648A1/en
Priority to JP2014509981A priority patent/JP5973555B2/en
Publication of WO2013153648A1 publication Critical patent/WO2013153648A1/en

Links

Images

Classifications

    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a transparent resin laminate having high antireflection performance and excellent scratch resistance, particularly surface hardness.
  • an antireflection film has been widely used on front panels of display devices such as CRTs, LCDs, and plasma displays in order to prevent reflection on the surface and make the screen easier to see.
  • a transparent resin laminate having antireflection ability in which a multilayer film is formed on a plastic substrate is also known, for example, on a plastic substrate having translucency, a high refractive index layer, an antireflection layer, a coating layer,
  • a transparent resin laminate having excellent wear resistance, scratch resistance, adhesion, and translucency, which are sequentially laminated, is known (Patent Document 1).
  • electronic devices such as mobile phones and digital cameras have been remarkably advanced, and a display such as a small liquid crystal or organic EL is provided as a display device.
  • the display is usually provided with a transparent resin laminate, and the transparent resin laminate is required to have various characteristics as described below.
  • the transparent resin laminate is required to have various characteristics as described below.
  • transparency and antireflection performance are high.
  • mechanical strength impact resistance, scratch resistance, and high hardness are required.
  • an antistatic ability is required to prevent adverse effects on the equipment due to dust adhesion and charging.
  • the properties of impact resistance, scratch resistance, and high hardness related to mechanical strength are not necessarily side by side, for example, those having high impact resistance and being hard to break may have surface hardness, There was a problem that the scratch resistance was insufficient and the film was easily damaged.
  • Patent Documents 2 and 3 development of an impact-resistant transparent resin laminate having high hardness and excellent scratch resistance has been made (Patent Documents 2 and 3).
  • the surface hardness of the grade that satisfies “4H and no scratch” can be achieved in the pencil hardness test.
  • mobile terminals such as mobile phones, smart (future) phones, tablets, etc. may be subjected to harsh usage environments such as dropping, stepping on, rubbing, etc., having higher surface hardness and anti-reflection ability Transparent resin laminates that are superior to the above have become necessary.
  • An object of the present invention is to solve the above-mentioned problems and to provide a transparent resin laminate having excellent scratch resistance and surface hardness in addition to high impact resistance and antireflection ability.
  • the present inventors have provided a multilayer hard coat layer between the resin substrate and the antireflection layer, and the substrate.
  • a specific silica sol in the hard coat monolayer located on the side it was found that the pencil hardness test expressed a surface hardness of “no scratch at 7H” and other characteristics could be satisfied, The present invention has been completed.
  • the hard coat layer (B) is composed of a hard coat layer I (B1) located on the transparent resin substrate side and a hard coat layer II (B2) located on the antireflection layer side,
  • the hard coat layer I (B1) has a layer thickness of 5 to 20 ⁇ m, and (a) a multifunctional urethane acrylate having 6 or more (meth) acryloyl groups in one molecule, and the multifunctional urethane acrylate 100 (B) a cured product of a curable composition comprising 40 to 200 parts by mass of a surface-treated silica sol with respect to parts by mass
  • the hard coat layer II (B2) has a layer thickness of 1 to 10 ⁇ m, (a) a multifunctional urethane acrylate having 6 or more (meth) acryl
  • the antireflection layer (C) is composed of two layers of the low refractive index layer (C1) and the middle refractive index layer (C2) located on the transparent resin substrate side, and the middle refractive index layer (C2)
  • the refractive index is 1.50 or more and less than 1.75, and the thickness is 50 to 200 nm.
  • the antireflection layer (C) is composed of the low refractive index layer (C1), the middle refractive index layer (C2 ) And a high refractive index layer (C3) provided between the low refractive index layer and the middle refractive index layer.
  • the high refractive index layer (C3) has a refractive index of 1 .60 or more and less than 2.00, the thickness is 50 to 200 nm, and the refractive index of the high refractive index layer (C3) is larger than the refractive index of the middle refractive index layer (C2).
  • a (meth) acryloyl group-modified silica sol or a vinyl group-modified silica sol is preferred.
  • the transparent resin laminate of the present invention is excellent in mechanical strength in addition to high antireflection performance, and in particular, the surface hardness can achieve “7H with no scratch”. Therefore, it can be suitably used as a front panel of not only a general display device but also a device requiring high hardness, such as a mobile phone, a smart (future) phone, and a tablet.
  • the transparent resin laminate of the present invention has a basic structure in which a transparent resin substrate (A), a hard coat layer (B), and an antireflection layer (C) are laminated in this order. Further, these layers (B and C) are characterized by being composed of the specified structure, physical properties and components.
  • the transparent resin substrate is not particularly limited as long as it is a transparent resin that has excellent impact strength and does not obstruct visual field. From the viewpoint of transparency and impact strength, a substrate made of aromatic polycarbonate resin or polymethyl methacrylate resin is preferred. A laminated substrate of an aromatic polycarbonate resin and a polymethyl methacrylate resin may be used. The thickness of the substrate is designed by appropriately selecting from the required transparency and impact strength, but is usually selected from the range of 0.2 to 2.0 mm.
  • Hard coat layer (B) A hard coat layer (B) is laminated on a transparent resin substrate, and the layer (B) includes a hard coat layer I (B1) and a hard coat layer II (B2).
  • the hard coat layer I (B1) and the hard coat layer II (B2) are such that the hard coat layer I (B1) is located on the substrate side, and an antireflection layer (C described later) is formed on the hard coat layer II (B2). ) are stacked.
  • the hard coat layer I (B1) is a layer mainly contributing to hardness, and its film thickness is 5 to 20 ⁇ m, preferably 10 to 20 ⁇ m. If it is less than 5 ⁇ m, the hardness is insufficient, and if it exceeds 20 ⁇ m, appearance defects and post-workability become difficult.
  • the layer comprises (a) a polyfunctional urethane acrylate having 6 or more (meth) acryloyl groups in one molecule (hereinafter also referred to as polyfunctional urethane acrylate) and 100 parts by mass of the polyfunctional urethane acrylate.
  • it is a layer obtained by curing (b) a curable composition comprising 40 to 200 parts by mass of a surface-treated silica sol (hereinafter also referred to as B1 composition).
  • the polyfunctional urethane acrylate is a polymerizable compound obtained by a polyaddition reaction between a diisocyanate compound and a (meth) acrylate compound having a plurality of hydroxyl groups, and particularly has 6 or more (meth) acryloyl groups. It is essential.
  • a dense layer having a high surface hardness can be formed.
  • a compound having less than 6 (meth) acryloyl groups has insufficient surface hardness and poor scratch resistance.
  • diisocyanate compound used as a raw material for the polyaddition reaction examples include aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane diisocyanate, and aliphatic diisocyanates such as 1,6-hexamethylene diisocyanate and 1,3-bis (isocyanatomethyl) cyclohexane.
  • aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane diisocyanate
  • aliphatic diisocyanates such as 1,6-hexamethylene diisocyanate and 1,3-bis (isocyanatomethyl) cyclohexane.
  • the Examples of the (meth) acrylate compound as one raw material include trimethylolpropane (meth) acrylate and pentaerythritol (meth) acrylate. These both raw materials can be used in a quantitative ratio such that the (meth) acryloyl group is 6-fold mol
  • the surface-treated silica sol is a component that imparts extremely high hardness to the transparent resin substrate of the present invention by combining with a polyfunctional urethane acrylate. Therefore, it is important to blend at a ratio of 40 to 200 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate.
  • the surface-treated silica sol the surface of silica particles known per se is treated with a silane coupling agent having an alkoxysilyl group at the terminal, such as 3-methacryloxypropyltriethoxysilane or 3-acryloxypropyltrimethoxysilane (methacrylate).
  • the surface treatment method is not particularly limited, and a conventionally known method is employed.
  • the silane coupling agent is dissolved in an organic solvent containing water, such as methyl alcohol, toluene, methyl isobutyl ketone, methyl isobutyl butyl ketone, to obtain a solution, and silica sol is added to the solution. Heat to about 150 ° C. and stir for about 5 to 30 hours to react.
  • the B1 composition is a composition that becomes the hard coat layer I by being cured, and is contained in a proportion of 40 to 200 parts by mass of the surface-treated silica sol with respect to 100 parts by mass of the polyfunctional urethane acrylate.
  • arbitrary additives can be added in the range which does not impair the objective for the purpose of viscosity adjustment or easy coating property.
  • the thermal polymerization initiator or the photopolymerization initiator is usually a catalytic amount, usually a solid in the composition. Based on the total amount, 0.01 to 20% by mass is added.
  • This polymerization initiator does not substantially affect the properties of the hard coat layer I obtained by curing the B1 composition.
  • the polymerization initiator 2,2′-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy, which acts by ultraviolet rays or electron beams, from the viewpoint of preventing deformation of the transparent resin substrate due to heat.
  • Photopolymerization initiators such as -cyclohexyl-phenyl-ketone, camphorquinone and benzyl are preferred.
  • ⁇ Formation of hard coat layer I> Each of the above essential components (a) and (b) and further optional components are dissolved in the following solvent to form a solution of the B1 composition. After applying this solution to the transparent resin substrate, the solvent is dried at 50 ° C. or higher. And then cured by ultraviolet irradiation to form the hard coat layer I.
  • the thickness of the layer is set in the range of 5 to 20 ⁇ m, preferably 10 to 20 ⁇ m.
  • Solvents used include alcohol solvents such as ethyl alcohol and (iso) propyl alcohol; aromatic solvents such as toluene and xylene; acetate solvents such as (iso) butyl acetate; methyl ethyl ketone (MEK) and methyl isobutyl ketone A ketone solvent such as (MIBK) is suitable. These solvents are removed by evaporation when the hard coat layer I is formed.
  • alcohol solvents such as ethyl alcohol and (iso) propyl alcohol
  • aromatic solvents such as toluene and xylene
  • acetate solvents such as (iso) butyl acetate
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone solvent
  • the above components constituting the B1 composition are usually mixed with a solvent in any order at room temperature and stirred to form a solution.
  • the coating method of this solution on the transparent resin substrate is not particularly limited, and dip coating method, roll coating method, die coating method, flow coating method, spraying method, etc. are adopted, but appearance quality and film thickness control are adopted. In view of the above, the dip coating method is preferable.
  • the hard coat layer II (B2) is a layer mainly contributing to adhesion with the antireflection layer laminated thereon, and has a film thickness of 1 to 10 ⁇ m. If it is less than 1 ⁇ m, the adhesion is insufficient, and if it exceeds 10 ⁇ m, it is difficult to maintain the appearance.
  • the layer has (c) an average particle diameter of 5 to 30 nm and a refractive index of 1.44 to 1.50 with respect to (a) the polyfunctional urethane acrylate and 100 parts by mass of the polyfunctional urethane acrylate.
  • a curable composition comprising 1 to 50 parts by weight of silica sol, (d) 1 to 30 parts by weight of a silane coupling compound or a hydrolyzate thereof, and (e) 0.1 to 3.0 parts by weight of a metal chelate compound It is a layer made of a cured product (hereinafter also referred to as B2 composition).
  • B2 composition a cured product
  • the silica sol contained in the hard coat layer II (B2) is a particle that contributes to the improvement of scratch resistance, and has an average particle size of 5 to 30 nm and a refractive index of 1.44 to 1.50. When the average particle size is out of the above range, the crack resistance is deteriorated.
  • the silica sol is a single particle, a non-hollow particle having a dense inside and no space inside, and has a density of usually 1.9 g / cm 3 or more. Since the silica sol is known per se and commercially available, a commercially available product satisfying the above average particle diameter and refractive index may be selected and used. Since the silica sol is usually provided in a state of being dispersed in a solvent, this solvent is inevitably mixed in the curable composition solution for forming the hard coat layer II and behaves in the same manner as other solvents. .
  • silane coupling compound or hydrolyzate thereof The silane coupling compound or its hydrolyzate itself hydrolyzes to form a dense siliceous film.
  • this silane coupling compound a well-known thing can be used without a restriction
  • the silane coupling compound is a decomposition product that has been previously hydrolyzed with a dilute acid or the like.
  • the method of hydrolyzing in advance is not particularly limited, and a method of hydrolyzing a part using an acid catalyst such as acetic acid is common.
  • the metal chelate compound is contained for the purpose of increasing the denseness and strength of the layer and further the hardness.
  • the metal chelate compound is a compound in which a chelating agent having a bidentate ligand as a representative example is coordinated to a metal such as titanium, zirconium, or aluminum.
  • Hexafluorophosphate chelate compounds Diethoxy mono (acetylacetonato) aluminum, monoethoxy bis (acetylacetonato) aluminum, di-i-propoxy mono (acetylacetonato) aluminum, monoethoxy bis (ethylacetoacetate) aluminum, diethoxy mono (Ethylacetoacetate) Aluminum chelate compounds such as aluminum can be mentioned.
  • the B2 composition is a curable composition containing the components (a), (c), (d) and (e) as essential components, and is blended at the following specific ratio.
  • the silica sol is blended in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate. If the amount is less than 1 part by mass, the scratch resistance does not appear, and if it exceeds 50 parts by mass, the film adhesion deteriorates.
  • the silane coupling compound or the hydrolyzate thereof is blended in an amount of 1 to 30 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate.
  • the metal chelate compound is blended in an amount of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate. Outside this range, the adhesion with the antireflection layer C formed on the hard coat film II becomes poor.
  • any additive component can be added in the same manner as the B1 composition. Usually, a polymerization initiator is added for the purpose of accelerating curing, and a solvent is used for the purpose of coating. The preparation method of B2 composition is also performed according to that of B1 composition.
  • the hard coat layer II is directly laminated on the hard coat layer I laminated on the transparent resin substrate to form a two-layer hard coat layer.
  • the hard coat layer II is formed in the same manner as the hard coat layer I in terms of the coating method and the curing method.
  • the thickness of the layer to be formed is set in the range of 1 to 10 ⁇ m.
  • the antireflection layer (C) is directly laminated on the hard coat layer laminated on the transparent resin substrate.
  • the antireflection layer (C) is composed of a low refractive index layer (C1) having a refractive index of less than 1.50 and a thickness of 50 to 200 nm.
  • the low refractive index layer is an antireflection layer that becomes the outermost layer (viewing side).
  • the low refractive index layer (C1) does not exhibit a sufficient antireflection function when the refractive index is 1.50 or more.
  • the low refractive index layer (C1) comprises (f) a silica sol having an average particle diameter of 5 to 150 nm and a refractive index of 1.44 or less, (d) a silane coupling compound or a hydrolyzate thereof, and (e) (F) silica sol is compounded in an amount of 10 to 50% by mass, and (d) the compounding ratio of the silane coupling compound or a hydrolyzate thereof and (e) the metal chelate compound is 60 to 50%. 99% by mass: a layer composed of a cured product of a curable composition (C1 composition) of 40 to 1% by mass.
  • the silica sol contained in the low refractive index layer (C1) is a particle for controlling the refractive index of the layer, and has an average particle diameter of 5 to 150 nm and a refractive index of 1.44 or less.
  • the average particle size is out of the above range, the reflection performance is lowered or the haze ratio is increased.
  • the refractive index exceeds 1.44 the reflection performance decreases.
  • silica sol particles having a hollow interior are suitable.
  • the silica sol is also usually provided in a state of being dispersed in a solvent, the solvent behaves in the same manner as in the case of the (c) silica sol.
  • the (d) silane coupling compound or a hydrolyzate thereof and the (e) metal chelate compound those described above can be used in the same manner.
  • the C1 composition is a curable composition containing the components (f), (d), and (e) as essential components, and is blended at the following specific ratio.
  • the compounding ratio of (d) the silane coupling compound or its hydrolyzate and (e) the metal chelate compound is 60 to 99% by mass: 40 to 1% by mass.
  • the low refractive index layer is laminated on the hard coat layer, specifically, the hard coat II layer laminated on the transparent resin substrate.
  • the low refractive index layer is formed in accordance with the formation of the hard coat layer by applying a solution of the C1 composition onto the hard coat II layer, which is a cured product, and then drying and heating and curing at 70 to 120 ° C. Do it.
  • the thickness of the layer is set in the range of 50 to 200 nm from the viewpoint of antireflection performance.
  • the antireflection layer is composed of two layers of a medium refractive index layer and a low refractive index layer, which will be described later, the medium refractive index layer is first formed on the hard coat II layer, and then on the layer. A low refractive index layer is formed. Furthermore, when the antireflective layer is composed of three layers of a medium refractive index layer, a high refractive index layer, and a low refractive index layer, the medium refractive index layer is first formed on the hard coat II layer, Next, a high refractive index layer is formed on the layer, and a low refractive index layer is formed thereon.
  • the transparent resin laminate of the present invention preferably has a two-layer structure in which an intermediate refractive index layer is laminated on the substrate surface side of the low refractive index layer in order to further enhance the antireflection effect.
  • the medium refractive index layer is preferably a layer having a refractive index of 1.50 or more and less than 1.75 and a thickness of 50 to 200 nm.
  • This medium refractive index layer is typically added to the above-mentioned (d) silane coupling compound or its hydrolyzate 20 to 80 parts by mass and (e) 0.1 to 2 parts by mass of a metal chelate compound, (G) Curing containing 20 to 80 parts by mass of metal oxide particles having a refractive index of 1.70 or more and 2.80 or less ⁇ with the total amount of (d), (e) and (g) being 100 parts by mass ⁇
  • the adhesive composition is cured to form.
  • the middle refractive index layer can contain a thermosetting resin as a binder.
  • thermosetting resins examples include phenol-formaldehyde resins, silane-modified phenol resins, furan-formaldehyde resins, xylene-formaldehyde resins, ketone-formaldehyde resins, urea formaldehyde resins, melamine-formaldehyde resins, alkyd resins, and unsaturated polyester resins.
  • the said thermosetting resin used as a binder has the advantage that it has tolerance with respect to the oxidation by photoactivity.
  • (G) Metal oxide particles are contained for the purpose of satisfying that the refractive index of the medium refractive index layer is 1.50 or more and less than 1.75. Typically, the average particle diameter is 10 to 100 nm. Metal oxide particles having a refractive index of 1.70 or more and 2.80 or less.
  • the middle refractive index layer is laminated on the hard coat layer, specifically, the hard coat II layer laminated on the transparent resin substrate.
  • the medium refractive index layer is formed in the same manner as the low refractive index layer, and the thickness of the layer is set in the range of 50 to 200 nm from the viewpoint of antireflection performance.
  • the transparent resin laminate of the present invention has a three-layer structure in which a high refractive index layer (C3) is laminated between a low refractive index layer (C1) and a middle refractive index layer (C2) in order to exhibit an extremely high antireflection effect.
  • a layer structure is particularly preferable.
  • the high refractive index layer is preferably a layer having a refractive index of 1.60 or more and less than 2.00 and a thickness of 50 to 200 nm.
  • it is essential that the refractive index of the high refractive index layer is higher than the refractive index of the medium refractive index layer.
  • This high refractive index layer is typically composed of the above-mentioned (d) silane coupling compound or its hydrolyzate 10 to 50 parts by mass, and (g) 50 to 90 parts by mass of metal oxide particles ⁇ (d) And the total amount of (g) is 100 parts by mass ⁇ is formed by curing.
  • the metal oxide particles are selected from the above metal oxide particles or a combination thereof so that the refractive index of the high refractive index layer is 1.60 or more and less than 2.00.
  • a thermosetting resin can be contained as a binder.
  • the high refractive index layer is laminated on the medium refractive index layer laminated on the hard coat layer, and then the low refractive index layer is laminated on the high refractive index layer to form a three-layer structure.
  • the high refractive index layer is formed in the same manner as the low refractive index layer, and the thickness of the layer is set in the range of 50 to 200 nm from the viewpoint of antireflection performance.
  • the transparent resin laminate of the present invention is not limited to the one having the above layer structure.
  • an overcoat layer can be provided for the purpose of protecting the antireflection layer.
  • examples of such an overcoat layer include organic polysiloxane materials and fluororesin coat layers that impart wear resistance and scratch resistance.
  • an adhesive layer made of an acrylic, rubber, or silicone adhesive can be provided on the back side of the transparent resin laminate.
  • a hard coat layer (B) and an antireflection layer (C) may be laminated on both the front and back surfaces of the transparent resin substrate.
  • the transmitted light means light transmitted through the transparent resin laminate, and the reflected light means light reflected on the surface of the laminate.
  • No flaws were observed when observed with either transmitted light or reflected light.
  • Several scratches were observed when observed with transmitted light, but not with reflected light.
  • Several scratches were confirmed when observed with either transmitted light or reflected light.
  • Ten or more scratches were confirmed when observed with either transmitted light or reflected light.
  • Example 1 On the PMMA side of a laminated resin substrate (PC layer thickness 0.93 mm, PMMA layer thickness 0.07 mm) of 1 mm thick aromatic polycarbonate resin (PC) and polymethyl methacrylate resin (PMMA), the following method is used. A hard coat layer and an antireflection layer were further formed thereon.
  • PC aromatic polycarbonate resin
  • PMMA polymethyl methacrylate resin
  • a laminated resin substrate was dip-coated using a hard coat layer I forming solution having the above composition, dried at 60 ° C. for 5 minutes, and UV cured to form a hard coat layer I having a thickness of 12 ⁇ m.
  • the substrate having the hard coat layer I was dip coated with the solution for forming the hard coat layer II having the above composition, dried at 60 ° C. for 5 minutes, and UV cured to form a hard coat layer II having a thickness of 3 ⁇ m.
  • the substrate having the hard coat layer was dip-coated with an antireflection layer forming solution and heat-treated at 80 ° C. for 20 minutes to form an antireflection layer (low refractive index layer) having a thickness of 100 nm.
  • Example 2 A transparent resin laminate was prepared in the same manner as in Example 1 except that the hard coat layer I forming solution, the hard coat layer II forming solution, and the antireflection layer forming solution shown in Table 1 were used. Measurements were performed in the same manner. The results are shown in Tables 1 and 2.
  • Comparative Examples 1-5 A transparent resin laminate was prepared in the same manner as in Example 1 except that the hard coat layer I forming solution, the hard coat layer II forming solution, and the antireflection layer forming solution shown in Table 2 were used. Measurements were performed in the same manner. The results are shown in Table 3.
  • Example 1 As a result of comparison between Example 1 and Comparative Example 1, if the hard coat layer I contains (A) surface-treated silica sol in an amount of less than 50 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate, the hardness performance deteriorates. I understand that. Further, from Comparative Example 2, when the thickness of the hard coat layer I is not 5 ⁇ m or more, the hardness performance is poor and the scratch resistance is extremely poor. Furthermore, from Comparative Example 3, when the silane coupling agent is not included in the hard coat layer II, both the hardness performance and the scratch resistance are insufficient. From Comparative Example 4, when no silica sol is contained in the hard coat layer II, the scratch resistance is insufficient. From Comparative Example 5, when the hard coat layer II is not present, the hardness performance is insufficient and the scratch resistance is extremely poor.
  • Examples 7-9 It consists of two or three layers by the following method using a solution for forming a low refractive index layer, a solution for forming a medium refractive index layer, and a solution for forming a high refractive index layer as necessary, as shown in Table 3.
  • a transparent resin laminate having an antireflection film was prepared and evaluated. The results are shown in Table 4.
  • the substrate having the hard coat layer was dip coated on the medium refractive index layer forming solution, and heat-treated at 90 ° C. for 30 minutes.
  • a medium refractive index layer having a thickness of 85 nm was formed.
  • the substrate was dip-coated with a solution for forming a low refractive index layer, and heat-treated at 80 ° C. for 20 minutes to form a low refractive index layer having a thickness of 100 nm.
  • the substrate before forming the low refractive index layer, that is, after forming the middle refractive index layer, the substrate was dip coated with the solution for forming the high refractive index layer, and then at 80 ° C. for 20 minutes. Then, heat treatment was performed to form a high refractive index layer having a thickness of 80 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a transparent resin laminate which, in addition to advanced anti-reflection functions, exhibits excellent mechanical properties such as scratch resistance and hardness and which, in particular, can attain a surface hardness which is 'scratch resistant to 7H'. A double hard-coat layer is disposed between a transparent resin substrate of PC and PMMA or the like and an anti-reflection layer constituted by a low refractive index layer which is formed on the substrate so as to have a refractive index of less than 1.50 and a thickness of between 50 nm and 200 nm. A hard-coat single layer, which is located on the substrate side, contains surface-treated silica sol so as to achieve high surface hardness.

Description

透明樹脂積層板Transparent resin laminate
 本発明は、反射防止能が高く、しかも、耐擦傷性、特に表面硬度に優れた透明樹脂積層板に関する。 The present invention relates to a transparent resin laminate having high antireflection performance and excellent scratch resistance, particularly surface hardness.
 従来から、CRT、LCD、プラズマデイスプレイなどの表示装置の前面パネルには、表面での反射を防止して画面を見やすくするために反射防止膜が広く使用されている。
 プラスチック基板上に、多層の膜を形成した反射防止能を有する透明樹脂積層板も公知であり、例えば、透光性を有するプラスチック基板上に、高屈折率層、反射防止層、コート層が、順に積層された、耐磨耗性、耐擦傷性、密着性及び透光性に優れた透明樹脂積層板が知られている(特許文献1)。
 昨今、携帯電話、デジタルカメラなどの電子機器の進歩は目覚ましく、その表示装置として、小型の液晶や有機ELなどのディスプレイが装備されている。該ディスプレイには、保護の目的から、通常透明樹脂積層板が装着され、該透明樹脂積層板には、以下に示す様々な特性が要求される。例えば、視認性を確保するために透明性、および反射防止能が高いことが必要である。機械的強度の観点から、耐衝撃性、耐擦傷性、高硬度が必要となる。更に、埃の付着や帯電による機器への悪影響を防止するための帯電防止能も必要とされている。
 上記諸特性の中で、機械的強度に係わる、耐衝撃性、耐擦傷性、高硬度の各特性は、必ずしも並立しえず、例えば、耐衝撃性が高く破損しにくいものは、表面硬度や耐擦傷性が不十分で傷付きやすいという問題があった。このような状況下において、高硬度で、耐擦傷性に優れる耐衝撃性の透明樹脂積層板の開発がなされてきた(特許文献2、3)。しかし、これら既存の技術では、鉛筆硬度試験で、「4Hでキズ無し」を満足する程度の表面硬度しか達成しえないのが現状である。一方、携帯電話、スマート(フューチャー)フォン、タブレットなどのモバイル端末機では、落下、踏み付け、擦りなど過酷な使用環境にさられる可能性があり、より高い表面硬度を有し、且つ、反射防止能に優れた透明樹脂積層板が必要となってきている。
Conventionally, an antireflection film has been widely used on front panels of display devices such as CRTs, LCDs, and plasma displays in order to prevent reflection on the surface and make the screen easier to see.
A transparent resin laminate having antireflection ability in which a multilayer film is formed on a plastic substrate is also known, for example, on a plastic substrate having translucency, a high refractive index layer, an antireflection layer, a coating layer, A transparent resin laminate having excellent wear resistance, scratch resistance, adhesion, and translucency, which are sequentially laminated, is known (Patent Document 1).
In recent years, electronic devices such as mobile phones and digital cameras have been remarkably advanced, and a display such as a small liquid crystal or organic EL is provided as a display device. For the purpose of protection, the display is usually provided with a transparent resin laminate, and the transparent resin laminate is required to have various characteristics as described below. For example, in order to ensure visibility, it is necessary that transparency and antireflection performance are high. From the viewpoint of mechanical strength, impact resistance, scratch resistance, and high hardness are required. Furthermore, an antistatic ability is required to prevent adverse effects on the equipment due to dust adhesion and charging.
Among the above properties, the properties of impact resistance, scratch resistance, and high hardness related to mechanical strength are not necessarily side by side, for example, those having high impact resistance and being hard to break may have surface hardness, There was a problem that the scratch resistance was insufficient and the film was easily damaged. Under such circumstances, development of an impact-resistant transparent resin laminate having high hardness and excellent scratch resistance has been made (Patent Documents 2 and 3). However, in these existing technologies, the surface hardness of the grade that satisfies “4H and no scratch” can be achieved in the pencil hardness test. On the other hand, mobile terminals such as mobile phones, smart (future) phones, tablets, etc. may be subjected to harsh usage environments such as dropping, stepping on, rubbing, etc., having higher surface hardness and anti-reflection ability Transparent resin laminates that are superior to the above have become necessary.
特開平9-288202号公報JP-A-9-288202 特開2006-35778JP 2006-35778 A 特開2007-216525JP2007-216525A
 本発明は上記課題を解決して、高度の耐衝撃性および反射防止能に加えて、耐擦傷性及び表面硬度に優れた透明樹脂積層板を提供することを目的とする。
 本願発明者らは、高度の反射防止能を維持したまま上記各物性を改良することを種々検討した結果、樹脂基板と反射防止層の間に、複層のハードコート層を設け、且つ、基板側に位置するハードコート単層中に特定のシリカゾルを含有させることにより、鉛筆硬度試験で「7Hでキズ無し」以上の表面硬度を発現し、且つ、他の特性も満足し得ることを見出し、本願発明を完成するに至った。
An object of the present invention is to solve the above-mentioned problems and to provide a transparent resin laminate having excellent scratch resistance and surface hardness in addition to high impact resistance and antireflection ability.
As a result of various investigations to improve the above-mentioned physical properties while maintaining a high degree of antireflection ability, the present inventors have provided a multilayer hard coat layer between the resin substrate and the antireflection layer, and the substrate. By including a specific silica sol in the hard coat monolayer located on the side, it was found that the pencil hardness test expressed a surface hardness of “no scratch at 7H” and other characteristics could be satisfied, The present invention has been completed.
発明を解決するための手段Means for Solving the Invention
 即ち、本発明により、透明樹脂基板(A)上にハードコート層(B)が積層され、更に該ハードコート層(B)上に反射防止層(C)が積層されてなる透明樹脂積層板において、
 ハードコート層(B)が、透明樹脂基板側に位置するハードコート層I(B1)と反射防止層側に位置するハードコート層II(B2)とからなり、
 ハードコート層I(B1)は層厚が5~20μmであって、(a)1分子中に6個以上の(メタ)アクリロイル基を有する多官能性ウレタンアクリレートと、該多官能性ウレタンアクリレート100質量部に対して、(b)表面処理シリカゾル40~200質量部を含んでなる硬化性組成物の硬化体からなり、
 ハードコート層II(B2)は層厚が1~10μmであって、(a)1分子中に6個以上の(メタ)アクリロイル基を有する多官能性ウレタンアクリレートと、該多官能性ウレタンアクリレート100質量部に対して、(c)平均粒径が5~30nmであって屈折率が1.44~1.50のシリカゾル1~50質量部、(d)シランカップリング化合物又はその加水分解物1~30質量部、および(e)金属キレート化合物0.1~3.0質量部を含んでなる硬化性組成物の硬化体からなり、
 反射防止層(C)は、屈折率が1.50未満であり、厚みが50~200nmである低屈折率層(C1)から構成され、
 該低屈折率層(C1)は、(f)平均粒径が5~150nmであって屈折率が1.44以下のシリカゾル、(d)シランカップリング化合物又はその加水分解物、および(e)金属キレート化合物を含んでなり、且つ、(f)シリカゾルが10~50質量%配合され、(d)シランカップリング化合物又はその加水分解物と(e)金属キレート化合物との配合比が、60~99質量%:40~1質量%である硬化性組成物の硬化体からなる
ことを特徴とする前記透明樹脂積層板が提供される。
That is, according to the present invention, in the transparent resin laminate in which the hard coat layer (B) is laminated on the transparent resin substrate (A) and the antireflection layer (C) is further laminated on the hard coat layer (B). ,
The hard coat layer (B) is composed of a hard coat layer I (B1) located on the transparent resin substrate side and a hard coat layer II (B2) located on the antireflection layer side,
The hard coat layer I (B1) has a layer thickness of 5 to 20 μm, and (a) a multifunctional urethane acrylate having 6 or more (meth) acryloyl groups in one molecule, and the multifunctional urethane acrylate 100 (B) a cured product of a curable composition comprising 40 to 200 parts by mass of a surface-treated silica sol with respect to parts by mass,
The hard coat layer II (B2) has a layer thickness of 1 to 10 μm, (a) a multifunctional urethane acrylate having 6 or more (meth) acryloyl groups in one molecule, and the multifunctional urethane acrylate 100 (C) 1 to 50 parts by mass of silica sol having an average particle diameter of 5 to 30 nm and a refractive index of 1.44 to 1.50, and (d) a silane coupling compound or a hydrolyzate 1 thereof with respect to parts by mass A cured product of a curable composition comprising from 30 to 30 parts by mass, and (e) 0.1 to 3.0 parts by mass of a metal chelate compound,
The antireflection layer (C) is composed of a low refractive index layer (C1) having a refractive index of less than 1.50 and a thickness of 50 to 200 nm,
The low refractive index layer (C1) comprises (f) a silica sol having an average particle diameter of 5 to 150 nm and a refractive index of 1.44 or less, (d) a silane coupling compound or a hydrolyzate thereof, and (e) (F) silica sol is compounded in an amount of 10 to 50% by mass, and (d) the compounding ratio of the silane coupling compound or a hydrolyzate thereof and (e) the metal chelate compound is 60 to 50%. 99% by mass: The transparent resin laminate is provided with a cured product of a curable composition of 40 to 1% by mass.
 上記透明樹脂積層板の発明において、
1)反射防止層(C)が、前記低屈折率層(C1)と透明樹脂基板側に位置する中屈折率層(C2)との二層から構成され、該中屈折率層(C2)は、その屈折率が1.50以上1.75未満であり、厚みが50~200nmであること
2)反射防止層(C)が、前記低屈折率層(C1)、前記中屈折率層(C2)、および該低屈折率層と該中屈折率層との間に設けられた高屈折率層(C3)の三層から構成され、該高屈折率層(C3)は、その屈折率が1.60以上2.00未満であり、厚みが50~200nmであり、高屈折率層(C3)の屈折率が中屈折率層(C2)の屈折率より大きいこと
3)表面処理シリカゾルが、(メタ)アクリロイル基修飾シリカゾルまたはビニル基修飾シリカゾルであることが好適である。
In the invention of the transparent resin laminate,
1) The antireflection layer (C) is composed of two layers of the low refractive index layer (C1) and the middle refractive index layer (C2) located on the transparent resin substrate side, and the middle refractive index layer (C2) The refractive index is 1.50 or more and less than 1.75, and the thickness is 50 to 200 nm. 2) The antireflection layer (C) is composed of the low refractive index layer (C1), the middle refractive index layer (C2 ) And a high refractive index layer (C3) provided between the low refractive index layer and the middle refractive index layer. The high refractive index layer (C3) has a refractive index of 1 .60 or more and less than 2.00, the thickness is 50 to 200 nm, and the refractive index of the high refractive index layer (C3) is larger than the refractive index of the middle refractive index layer (C2). A (meth) acryloyl group-modified silica sol or a vinyl group-modified silica sol is preferred.
 本発明の透明樹脂積層板は、高度の反射防止能に加えて機械的強度に優れ、特に表面硬度が「7Hでキズ無し」を達成し得る。従って、一般の表示装置のみならず、携帯電話、スマート(フューチャー)フォン、タブレットなどの高い硬度が要求される装置の前面パネルとして好適に使用できる。 The transparent resin laminate of the present invention is excellent in mechanical strength in addition to high antireflection performance, and in particular, the surface hardness can achieve “7H with no scratch”. Therefore, it can be suitably used as a front panel of not only a general display device but also a device requiring high hardness, such as a mobile phone, a smart (future) phone, and a tablet.
本発明の代表的な反射防止板の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the typical antireflection board of this invention.
 本発明の透明樹脂積層板は、透明樹脂基板(A)、ハードコート層(B)、および反射防止層(C)が、この順で積層された基本構造を有している。更に、これらの層(BおよびC)が、前記特定された構造、物性、成分から構成されることに特徴がある。 The transparent resin laminate of the present invention has a basic structure in which a transparent resin substrate (A), a hard coat layer (B), and an antireflection layer (C) are laminated in this order. Further, these layers (B and C) are characterized by being composed of the specified structure, physical properties and components.
〔透明樹脂基板〕
 透明樹脂基板としては、耐衝撃強度に優れ視野性の障害にならない透明樹脂であれば何ら制限はない。透明性及び耐衝撃強度の観点から、芳香族ポリカーボネート樹脂或いはポリメチルメタクリレート樹脂からなる基板が好ましい。芳香族ポリカーボネート樹脂とポリメチルメタクリレート樹脂との積層基板でもよい。当該基板の厚みは、要求される透明度や耐衝撃強度から適宜選択して設計されるが、通常、0.2~2.0mmの範囲から選択される。
[Transparent resin substrate]
The transparent resin substrate is not particularly limited as long as it is a transparent resin that has excellent impact strength and does not obstruct visual field. From the viewpoint of transparency and impact strength, a substrate made of aromatic polycarbonate resin or polymethyl methacrylate resin is preferred. A laminated substrate of an aromatic polycarbonate resin and a polymethyl methacrylate resin may be used. The thickness of the substrate is designed by appropriately selecting from the required transparency and impact strength, but is usually selected from the range of 0.2 to 2.0 mm.
〔ハードコート層(B)〕
 透明樹脂基板上にハードコート層(B)が積層され、該層(B)は、ハードコート層I(B1)とハードコート層II(B2)とからなる。ハードコート層I(B1)とハードコート層II(B2)とは、ハードコート層I(B1)が基板側に位置し、ハードコート層II(B2)の上に、後述する反射防止層(C)が積層される。
[Hard coat layer (B)]
A hard coat layer (B) is laminated on a transparent resin substrate, and the layer (B) includes a hard coat layer I (B1) and a hard coat layer II (B2). The hard coat layer I (B1) and the hard coat layer II (B2) are such that the hard coat layer I (B1) is located on the substrate side, and an antireflection layer (C described later) is formed on the hard coat layer II (B2). ) Are stacked.
〔ハードコート層I(B1)〕
 ハードコート層I(B1)は主として硬度に寄与する層であり、その膜厚は5~20μm、好ましくは10~20μmである。5μm未満では硬度が不十分であり、20μmを超えると外観不具合や後加工性が困難となる。
 該層は、(a)1分子中に6個以上の(メタ)アクリロイル基を有する多官能性ウレタンアクリレート(以下、多官能性ウレタンアクリレートともいう)と、該多官能性ウレタンアクリレート100質量部に対して、(b)表面処理シリカゾル40~200質量部を含んでなる硬化性組成物(以下、B1組成物ともいう)を硬化して得られる層である。
[Hard coat layer I (B1)]
The hard coat layer I (B1) is a layer mainly contributing to hardness, and its film thickness is 5 to 20 μm, preferably 10 to 20 μm. If it is less than 5 μm, the hardness is insufficient, and if it exceeds 20 μm, appearance defects and post-workability become difficult.
The layer comprises (a) a polyfunctional urethane acrylate having 6 or more (meth) acryloyl groups in one molecule (hereinafter also referred to as polyfunctional urethane acrylate) and 100 parts by mass of the polyfunctional urethane acrylate. On the other hand, it is a layer obtained by curing (b) a curable composition comprising 40 to 200 parts by mass of a surface-treated silica sol (hereinafter also referred to as B1 composition).
<(a)多官能性ウレタンアクリレート>
 多官能性ウレタンアクリレートは、ジイソシアネート化合物と水酸基を複数有している(メタ)アクリレート化合物との重付加反応によって得られる重合性化合物であり、特に、(メタ)アクリロイル基を6個以上有していることが必須である。当該多官能性ウレタンアクリレートを使用することにより、表面硬度が高い緻密な層を形成することが可能となる。(メタ)アクリロイル基を6個未満の化合物では、表面硬度が不十分で耐擦傷性に乏しいものとなる。
 重付加反応の原料となるジイソシアネート化合物としては、トリレンジイソシアネートやジフェニルメタンジイソシアネート等の芳香族ジイソシアネート、1,6-ヘキサメチレンジイソシアネートや1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂肪族ジイソシアネートが例示される。一方の原料となる(メタ)アクリレート化合物としては、トリメチロールプロバン(メタ)アクリレートやペンタエリスリトール(メタ)アクリレートが例示される。
 これら両原料を、(メタ)アクリロイル基が6倍モル以上となる量比で用いて、それ自他公知の方法で反応させて、前記多官能性ウレタンアクリレートとすることができる。
<(A) Multifunctional urethane acrylate>
The polyfunctional urethane acrylate is a polymerizable compound obtained by a polyaddition reaction between a diisocyanate compound and a (meth) acrylate compound having a plurality of hydroxyl groups, and particularly has 6 or more (meth) acryloyl groups. It is essential. By using the polyfunctional urethane acrylate, a dense layer having a high surface hardness can be formed. A compound having less than 6 (meth) acryloyl groups has insufficient surface hardness and poor scratch resistance.
Examples of the diisocyanate compound used as a raw material for the polyaddition reaction include aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane diisocyanate, and aliphatic diisocyanates such as 1,6-hexamethylene diisocyanate and 1,3-bis (isocyanatomethyl) cyclohexane. The Examples of the (meth) acrylate compound as one raw material include trimethylolpropane (meth) acrylate and pentaerythritol (meth) acrylate.
These both raw materials can be used in a quantitative ratio such that the (meth) acryloyl group is 6-fold mol or more, and reacted by a method known per se to obtain the polyfunctional urethane acrylate.
<(b)表面処理シリカゾル>
 表面処理シリカゾルは、多官能性ウレタンアクリレートと組み合わせることによって本発明の透明樹脂基板に極めて高い硬度を付与する成分である。り、前記該多官能性ウレタンアクリレート100質量部に対して、40~200質量部の割合で配合することが重要である。
 表面処理シリカゾルは、それ自体公知のシリカ粒子の表面を、3- メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどの末端にアルコキシシリル基を有するシランカップリング剤で処理した(メタ)アクリロイル基修飾シリカゾル、或いはビニルトリエトキシシラン、ビニルメチルジメトキシシランなどのビニル基を有するシランカップリング剤で処理したビニル基修飾シリカゾルである。
 表面処理の方法は特に限定されず、従来公知の方法が採用される。例えば、上記シランカップリング剤を、水を含有させた、メチルアルコール、トルエン、メチルイソブチルケトン、メチルイソブチルブチルケトンなどの有機溶媒に溶解させて溶液とし、該溶液中にシリカゾルを投入し、50~150℃程度に加温して5~30時間程度攪拌し、反応させる。
<(B) Surface-treated silica sol>
The surface-treated silica sol is a component that imparts extremely high hardness to the transparent resin substrate of the present invention by combining with a polyfunctional urethane acrylate. Therefore, it is important to blend at a ratio of 40 to 200 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate.
In the surface-treated silica sol, the surface of silica particles known per se is treated with a silane coupling agent having an alkoxysilyl group at the terminal, such as 3-methacryloxypropyltriethoxysilane or 3-acryloxypropyltrimethoxysilane (methacrylate). ) An acryloyl group-modified silica sol, or a vinyl group-modified silica sol treated with a silane coupling agent having a vinyl group such as vinyltriethoxysilane or vinylmethyldimethoxysilane.
The surface treatment method is not particularly limited, and a conventionally known method is employed. For example, the silane coupling agent is dissolved in an organic solvent containing water, such as methyl alcohol, toluene, methyl isobutyl ketone, methyl isobutyl butyl ketone, to obtain a solution, and silica sol is added to the solution. Heat to about 150 ° C. and stir for about 5 to 30 hours to react.
<B1組成物>
 B1組成物は硬化させることによりハードコート層Iになる組成物であり、前記多官能性ウレタンアクリレート100質量部に対して、表面処理シリカゾル40~200質量部の割合で含有される。B1組成物中には、粘度調整や易塗布性の目的で任意の添加剤を、その目的を損なわない範囲で添加することができる。特に、該組成物を透明樹脂基板上で硬化させてハードコート層I(B1)とするために、通常、熱重合開始剤または光重合開始剤重合開始剤が触媒量、通常組成物中の固形分全量を基準にして、0.01~20質量%添加される。この重合開始剤は、B1組成物を硬化して得られるハードコート層Iの諸特性には本質的影響を与えない。
 該重合開始剤としては、透明樹脂基板の熱による変形を防止する観点から、紫外線や電子線などで作用する、2,2’-ジメトキシ-1,2-ジフェニルエタン―1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、カンファーキノン、ベンジルなどの光重合開始剤が好適である。
<B1 composition>
The B1 composition is a composition that becomes the hard coat layer I by being cured, and is contained in a proportion of 40 to 200 parts by mass of the surface-treated silica sol with respect to 100 parts by mass of the polyfunctional urethane acrylate. In B1 composition, arbitrary additives can be added in the range which does not impair the objective for the purpose of viscosity adjustment or easy coating property. In particular, in order to cure the composition on a transparent resin substrate to obtain a hard coat layer I (B1), the thermal polymerization initiator or the photopolymerization initiator is usually a catalytic amount, usually a solid in the composition. Based on the total amount, 0.01 to 20% by mass is added. This polymerization initiator does not substantially affect the properties of the hard coat layer I obtained by curing the B1 composition.
As the polymerization initiator, 2,2′-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy, which acts by ultraviolet rays or electron beams, from the viewpoint of preventing deformation of the transparent resin substrate due to heat. Photopolymerization initiators such as -cyclohexyl-phenyl-ketone, camphorquinone and benzyl are preferred.
<ハードコート層Iの形成>
 上記(a)および(b)の各必須成分、更に任意成分を、下記溶媒に溶解してB1組成物の溶液とし、この溶液を前記透明樹脂基板に塗布した後、50℃以上で溶媒を乾燥させ、次いで紫外線照射により硬化させてハードコート層Iが形成される。該層の厚みは5~20μm、好ましくは10~20μmの範囲に設定される。
 使用される溶媒は、エチルアルコール、(イソ)プロピルアルコールなどのアルコール系溶媒;トルエン、キシレン等の芳香族系溶媒;酢酸(イソ)ブチルなどの酢酸エステル系溶媒;メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン系溶媒等が適している。これらの溶媒は、ハードコート層I形成の際に、蒸発除去される。
<Formation of hard coat layer I>
Each of the above essential components (a) and (b) and further optional components are dissolved in the following solvent to form a solution of the B1 composition. After applying this solution to the transparent resin substrate, the solvent is dried at 50 ° C. or higher. And then cured by ultraviolet irradiation to form the hard coat layer I. The thickness of the layer is set in the range of 5 to 20 μm, preferably 10 to 20 μm.
Solvents used include alcohol solvents such as ethyl alcohol and (iso) propyl alcohol; aromatic solvents such as toluene and xylene; acetate solvents such as (iso) butyl acetate; methyl ethyl ketone (MEK) and methyl isobutyl ketone A ketone solvent such as (MIBK) is suitable. These solvents are removed by evaporation when the hard coat layer I is formed.
 B1組成物を構成する上記各成分は、通常、室温付近で、溶媒と任意の順序で混合、攪拌されて溶液とされる。
 この溶液の透明樹脂基板上への塗工方法は特に制限されず、ディップコート法、ロールコート法、ダイコート法、フローコート法、スプレー法等の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。
The above components constituting the B1 composition are usually mixed with a solvent in any order at room temperature and stirred to form a solution.
The coating method of this solution on the transparent resin substrate is not particularly limited, and dip coating method, roll coating method, die coating method, flow coating method, spraying method, etc. are adopted, but appearance quality and film thickness control are adopted. In view of the above, the dip coating method is preferable.
〔ハードコート層II(B2)〕
 ハードコート層II(B2)は主としてその上に積層される反射防止層との密着性に寄与する層であり、その膜厚は1~10μmである。1μm未満では密着性が不十分であり、10μmを超えると外観を保つことが困難となる。
 該層は、(a)多官能性ウレタンアクリレートと、該多官能性ウレタンアクリレート100質量部に対して、(c)平均粒径が5~30nmであって屈折率が1.44~1.50のシリカゾル1~50質量部、(d)シランカップリング化合物又はその加水分解物1~30質量部、および(e)金属キレート化合物0.1~3.0質量部を含んでなる硬化性組成物(以下、B2組成物ともいう)の硬化体からなる層である。
 (a)多官能性ウレタンアクリレートとしては、ハードコート層Iの項で挙げられたものが同様に使用される。
[Hard coat layer II (B2)]
The hard coat layer II (B2) is a layer mainly contributing to adhesion with the antireflection layer laminated thereon, and has a film thickness of 1 to 10 μm. If it is less than 1 μm, the adhesion is insufficient, and if it exceeds 10 μm, it is difficult to maintain the appearance.
The layer has (c) an average particle diameter of 5 to 30 nm and a refractive index of 1.44 to 1.50 with respect to (a) the polyfunctional urethane acrylate and 100 parts by mass of the polyfunctional urethane acrylate. A curable composition comprising 1 to 50 parts by weight of silica sol, (d) 1 to 30 parts by weight of a silane coupling compound or a hydrolyzate thereof, and (e) 0.1 to 3.0 parts by weight of a metal chelate compound It is a layer made of a cured product (hereinafter also referred to as B2 composition).
(A) As polyfunctional urethane acrylate, what was mentioned by the term of the hard-coat layer I is used similarly.
<(c)シリカゾル>
 ハードコート層II(B2)に含有させるシリカゾルは、耐擦傷性の向上に寄与する粒子であり、平均粒径が5~30nmであって屈折率が1.44~1.50である。平均粒径が上記範囲を外れると、耐クラック性が悪くなる。
 上記シリカゾルは単粒子からなる、内部が密な、内部に空間を有しない非中空の粒子であり、密度は通常1.9g/cm以上である。当該シリカゾルはそれ自体公知で市販されているので、上記平均粒径と屈折率を満足する市販品を選択して使用すればよい。該シリカゾルは、通常、溶媒に分散された状態で供されるので、この溶媒は、ハードコート層II形成用の硬化性組成物溶液中に必然的に混入し、他の溶媒と同様に挙動する。
<(C) Silica sol>
The silica sol contained in the hard coat layer II (B2) is a particle that contributes to the improvement of scratch resistance, and has an average particle size of 5 to 30 nm and a refractive index of 1.44 to 1.50. When the average particle size is out of the above range, the crack resistance is deteriorated.
The silica sol is a single particle, a non-hollow particle having a dense inside and no space inside, and has a density of usually 1.9 g / cm 3 or more. Since the silica sol is known per se and commercially available, a commercially available product satisfying the above average particle diameter and refractive index may be selected and used. Since the silica sol is usually provided in a state of being dispersed in a solvent, this solvent is inevitably mixed in the curable composition solution for forming the hard coat layer II and behaves in the same manner as other solvents. .
<(d)シランカップリング化合物またはその加水分解物>
 シランカップリング化合物またはその加水分解物は、それ自体が加水分解して緻密な珪酸質の被膜を形成する。
 該シランカップリング化合物としては、公知のものを制限なく使用できる。例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、γ-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。
 該シランカップリング化合物は、その種類によっては、水や溶剤に対する溶解性を向上させる目的で、希薄な酸等で予め加水分解された分解物とすることが好適である。予め加水分解する方法は特に制限なく、酢酸などの酸触媒を用いてその一部を加水分解する方法が一般的である。
<(D) Silane coupling compound or hydrolyzate thereof>
The silane coupling compound or its hydrolyzate itself hydrolyzes to form a dense siliceous film.
As this silane coupling compound, a well-known thing can be used without a restriction | limiting. For example, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, γ-glycid Xylpropyltrimethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, γ-aminopropyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopro Examples include pyrtriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane.
Depending on the type of the silane coupling compound, for the purpose of improving the solubility in water or a solvent, it is preferable that the silane coupling compound is a decomposition product that has been previously hydrolyzed with a dilute acid or the like. The method of hydrolyzing in advance is not particularly limited, and a method of hydrolyzing a part using an acid catalyst such as acetic acid is common.
<(e)金属キレート化合物>
 金属キレート化合物は、層の緻密性や強度、更には硬度を高める目的で含有させる。該金属キレート化合物は、二座配位子を代表例とするキレート剤が、チタン、ジルコニウム、アルミニウムなどの金属に配位した化合物である。
 具体的には、トリエトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテイト)チタン、ジエトキシ・ビス(エチルアセトアセテイト)チタン、モノエトキシ・トリス(エチルアセトアセテイト)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテイト)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテイト)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテイト)チタン等のチタンキレート化合物;
 トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテイト)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテイト)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテイト)ジルコニウム、テトラキス(エチルアセトアセテイト)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテイト)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテイト)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテイト)ジルコニウム等のジルコニウムキレート化合物;
 ジエトキシ・モノ(アセチルアセトナート)アルミニウム、モノエトキシ・ビス(アセチルアセトナート)アルミニウム、ジ-i-プロポキシ・モノ(アセチルアセトナート)アルミニウム、モノエトキシ・ビス(エチルアセトアセテイト)アルミニウム、ジエトキシ・モノ(エチルアセトアセテイト)アルミニウム等のアルミニウムキレート化合物が挙げられる。
<(E) Metal chelate compound>
The metal chelate compound is contained for the purpose of increasing the denseness and strength of the layer and further the hardness. The metal chelate compound is a compound in which a chelating agent having a bidentate ligand as a representative example is coordinated to a metal such as titanium, zirconium, or aluminum.
Specifically, triethoxy mono (acetylacetonato) titanium, diethoxybis (acetylacetonato) titanium, monoethoxy tris (acetylacetonato) titanium, tetrakis (acetylacetonato) titanium, triethoxy mono (ethylacetonate) Acetate) titanium, diethoxy bis (ethylacetoacetate) titanium, monoethoxy tris (ethylacetoacetate) titanium, mono (acetylacetonate) tris (ethylacetoacetate) titanium, bis (acetylacetonate) bis Titanium chelate compounds such as (ethyl acetoacetate) titanium, tris (acetylacetonate) mono (ethyl acetoacetate) titanium;
Triethoxy mono (acetylacetonato) zirconium, diethoxybis (acetylacetonato) zirconium, monoethoxy tris (acetylacetonato) zirconium, tetrakis (acetylacetonato) zirconium, triethoxy mono (ethylacetonato) zirconium, Diethoxybis (ethylacetoacetate) zirconium, monoethoxytris (ethylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, mono (acetylacetonato) tris (ethylacetoacetate) zirconium, bis (acetyl) Acetonato) bis (ethylacetoacetate) zirconium, tris (acetylacetonate) mono (ethylacetoacetate) zirconium, etc. Hexafluorophosphate chelate compounds;
Diethoxy mono (acetylacetonato) aluminum, monoethoxy bis (acetylacetonato) aluminum, di-i-propoxy mono (acetylacetonato) aluminum, monoethoxy bis (ethylacetoacetate) aluminum, diethoxy mono (Ethylacetoacetate) Aluminum chelate compounds such as aluminum can be mentioned.
<B2組成物>
 B2組成物は、(a)、(c)、(d)および(e)成分を必須成分とする硬化性の組成物であり、下記特定比率で配合される。
 (c)シリカゾルは、多官能性ウレタンアクリレート100質量部に対して1~50質量部配合する。1質量部未満では耐擦傷性が発現しなく、50質量部を超えると膜密着性が悪くなる。
 (d)シランカップリング化合物又はその加水分解物は、多官能性ウレタンアクリレート100質量部に対して1~30質量部配合する。1質量部未満では膜密着性が悪く、50質量部を超えると耐擦傷性が悪くなる。
 (e)金属キレート化合物は、多官能性ウレタンアクリレート100質量部に対して0.1~3.0質量部配合する。この範囲を外れると、このハードコート膜II上に形成される反射防止層Cとの間の密着性が悪くなる。
 B2組成物は、B1組成物と同様に、任意の添加成分を添加することができる。通常、硬化を促進する目的で重合開始剤を添加し、塗布の目的で溶媒が使用される。B2組成物の調製方法も、B1組成物のそれに準じて行われる。
<B2 composition>
The B2 composition is a curable composition containing the components (a), (c), (d) and (e) as essential components, and is blended at the following specific ratio.
(C) The silica sol is blended in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate. If the amount is less than 1 part by mass, the scratch resistance does not appear, and if it exceeds 50 parts by mass, the film adhesion deteriorates.
(D) The silane coupling compound or the hydrolyzate thereof is blended in an amount of 1 to 30 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate. If it is less than 1 part by mass, the film adhesion is poor, and if it exceeds 50 parts by mass, the scratch resistance becomes poor.
(E) The metal chelate compound is blended in an amount of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate. Outside this range, the adhesion with the antireflection layer C formed on the hard coat film II becomes poor.
In the B2 composition, any additive component can be added in the same manner as the B1 composition. Usually, a polymerization initiator is added for the purpose of accelerating curing, and a solvent is used for the purpose of coating. The preparation method of B2 composition is also performed according to that of B1 composition.
<ハードコート層IIの形成>
 ハードコート層IIは、透明樹脂基板上に積層されたハードコート層Iの上に直接積層され、二層からなるハードコート層が形成される。該ハードコート層IIの形成は、ハードコート層Iの形成に準じ、コーティング法、硬化方法などは同様に行われる。形成される層の厚みは1~10μmの範囲に設定される。
<Formation of hard coat layer II>
The hard coat layer II is directly laminated on the hard coat layer I laminated on the transparent resin substrate to form a two-layer hard coat layer. The hard coat layer II is formed in the same manner as the hard coat layer I in terms of the coating method and the curing method. The thickness of the layer to be formed is set in the range of 1 to 10 μm.
〔反射防止層(C)〕
 本発明の透明樹脂積層板は、前記透明樹脂基板上に積層されたハードコート層の上に、直接反射防止層(C)が積層されている。該反射防止層(C)は、屈折率が1.50未満であり、厚みが50~200nmである低屈折率層(C1)から構成される。なお、後述するように、反射防止層(C)が、複数の反射防止層から成る場合には、当該低屈折率層は、最外層(視野側)となる反射防止層である。
 低屈折率層(C1)は、その屈折率が1.50以上であると十分な反射防止機能を発現しない。また、厚みが50~200nmの範囲を外れると、反射防止機能を発現しない。
 該低屈折率層(C1)は、(f)平均粒径が5~150nmであって屈折率が1.44以下のシリカゾル、(d)シランカップリング化合物又はその加水分解物、および(e)金属キレート化合物を含んでなり、且つ、(f)シリカゾルが10~50質量%配合され、(d)シランカップリング化合物又はその加水分解物と(e)金属キレート化合物との配合比が、60~99質量%:40~1質量%である硬化性組成物(C1組成物)の硬化体からなる層である。
[Antireflection layer (C)]
In the transparent resin laminate of the present invention, the antireflection layer (C) is directly laminated on the hard coat layer laminated on the transparent resin substrate. The antireflection layer (C) is composed of a low refractive index layer (C1) having a refractive index of less than 1.50 and a thickness of 50 to 200 nm. As will be described later, when the antireflection layer (C) is composed of a plurality of antireflection layers, the low refractive index layer is an antireflection layer that becomes the outermost layer (viewing side).
The low refractive index layer (C1) does not exhibit a sufficient antireflection function when the refractive index is 1.50 or more. Further, when the thickness is out of the range of 50 to 200 nm, the antireflection function is not exhibited.
The low refractive index layer (C1) comprises (f) a silica sol having an average particle diameter of 5 to 150 nm and a refractive index of 1.44 or less, (d) a silane coupling compound or a hydrolyzate thereof, and (e) (F) silica sol is compounded in an amount of 10 to 50% by mass, and (d) the compounding ratio of the silane coupling compound or a hydrolyzate thereof and (e) the metal chelate compound is 60 to 50%. 99% by mass: a layer composed of a cured product of a curable composition (C1 composition) of 40 to 1% by mass.
<(f)シリカゾル>
 低屈折率層(C1)に含有させるシリカゾルは、該層の屈折率を制御する粒子であり、平均粒径が5~150nmであって屈折率が1.44以下である。平均粒径が上記範囲を外れると、反射性能が低下したり、ヘイズ率が上昇する。屈折率が1.44を超えると、反射性能が低下する。
 上記シリカゾルは、市販品の中から、上記平均粒径と屈折率を満たすものを選択して使用すればよい。特に、反射防止効果の観点からは、内部が中空のシリカゾル粒子が好適である。該シリカゾルも、通常、溶媒に分散された状態で供されるので、この溶媒は、前記(c)シリカゾルの場合と同様に挙動する。
 (d)シランカップリング化合物又はその加水分解物および(e)金属キレート化合物は、前出のものが同様に使用できる。
<(F) Silica sol>
The silica sol contained in the low refractive index layer (C1) is a particle for controlling the refractive index of the layer, and has an average particle diameter of 5 to 150 nm and a refractive index of 1.44 or less. When the average particle size is out of the above range, the reflection performance is lowered or the haze ratio is increased. When the refractive index exceeds 1.44, the reflection performance decreases.
What is necessary is just to select and use the said silica sol from the commercial item what satisfy | fills the said average particle diameter and refractive index. In particular, from the viewpoint of the antireflection effect, silica sol particles having a hollow interior are suitable. Since the silica sol is also usually provided in a state of being dispersed in a solvent, the solvent behaves in the same manner as in the case of the (c) silica sol.
As the (d) silane coupling compound or a hydrolyzate thereof and the (e) metal chelate compound, those described above can be used in the same manner.
<C1組成物>
 C1組成物は、(f)、(d)および(e)成分を必須成分とする硬化性の組成物であり、下記特定比率で配合される。
 (f)シリカゾルは、層中に10~50質量%含まれている必要がある。10質量%未満では十分な反射防止効果が期待できない。50質量%を超えると耐擦傷性、密着性が低下する。
 (d)シランカップリング化合物又はその加水分解物と(e)金属キレート化合物との配合比は、60~99質量%:40~1質量%である。(e)金属キレート化合物の配合比が40質量%を超える場合は、膜が脆くなったり、キレート化合物が析出するので、好ましくない。1質量%未満ではその効果が発現しない。
 C2組成物は、B1やB2組成物と同様に、任意の添加成分を添加することができる。通常、塗布の目的で溶媒が使用される。C2組成物の調製方法も、B1やB2組成物のそれに準じて行われる。
<C1 composition>
The C1 composition is a curable composition containing the components (f), (d), and (e) as essential components, and is blended at the following specific ratio.
(F) Silica sol needs to be contained in the layer in an amount of 10 to 50% by mass. If it is less than 10% by mass, a sufficient antireflection effect cannot be expected. When it exceeds 50% by mass, the scratch resistance and adhesion are deteriorated.
The compounding ratio of (d) the silane coupling compound or its hydrolyzate and (e) the metal chelate compound is 60 to 99% by mass: 40 to 1% by mass. (E) When the compounding ratio of the metal chelate compound exceeds 40% by mass, the film becomes brittle or the chelate compound is precipitated, which is not preferable. If it is less than 1% by mass, the effect is not exhibited.
Arbitrary additional components can be added to the C2 composition in the same manner as the B1 and B2 compositions. Usually, a solvent is used for the purpose of coating. The method for preparing the C2 composition is also performed in accordance with that for the B1 or B2 composition.
<低屈折率層(C1)の形成>
 低屈折率層は、透明樹脂基板上に積層されたハードコート層、詳しくはハードコートII層の上に積層される。該低屈折率層の形成は、ハードコート層の形成に準じ、C1組成物の溶液を、硬化体であるハードコートII層上
に塗布した後乾燥し、次いで70~120℃で加熱、硬化させて行う。該層の厚みは、反射防止性能の観点から、50~200nmの範囲に設定される。
 尚、反射防止層が後出の中屈折率層と低屈折率層との二層からなる場合は、ハードコートII層上に、先ず中屈折率層用を形成し、次いで該層の上に低屈折率層が形成される。更に、反射防止層が後出の中屈折率層、高屈折率層、および低屈折率層との三層から成る場合は、ハードコートII層上に、先ず中屈折率層用を形成し、次いで該層の上に高屈折率層、更にその上に低屈折率層が形成される。
<Formation of low refractive index layer (C1)>
The low refractive index layer is laminated on the hard coat layer, specifically, the hard coat II layer laminated on the transparent resin substrate. The low refractive index layer is formed in accordance with the formation of the hard coat layer by applying a solution of the C1 composition onto the hard coat II layer, which is a cured product, and then drying and heating and curing at 70 to 120 ° C. Do it. The thickness of the layer is set in the range of 50 to 200 nm from the viewpoint of antireflection performance.
When the antireflection layer is composed of two layers of a medium refractive index layer and a low refractive index layer, which will be described later, the medium refractive index layer is first formed on the hard coat II layer, and then on the layer. A low refractive index layer is formed. Furthermore, when the antireflective layer is composed of three layers of a medium refractive index layer, a high refractive index layer, and a low refractive index layer, the medium refractive index layer is first formed on the hard coat II layer, Next, a high refractive index layer is formed on the layer, and a low refractive index layer is formed thereon.
〔中屈折率層(C2)〕
 本発明の透明樹脂積層板は、その反射防止効果をより高めるために、低屈折率層の基板面側に中屈折率層が積層された二層構造とすることが好ましい。
 該中屈折率層は、その屈折率が1.50以上1.75未満であり、厚みが50~200nmである層が好適である。
 この中屈折率層は、代表的には、前出の(d)シランカップリング化合物またはその加水分解物20~80質量部および(e)金属キレート化合物0.1~2質量部に加えて、(g)屈折率が1.70以上2.80以下の金属酸化物粒子20~80質量部{(d)、(e)および(g)の合計量を100質量部とする}を含有する硬化性組成物を硬化させて形成する。
 また、中屈折率層には、バインダーとして熱硬化性樹脂を含有させることができる。熱硬化性樹脂としては、例えば、フェノール-ホルムアルデヒド樹脂、シラン変性フェノール樹脂、フラン-ホルムアルデヒド樹脂、キシレン-ホルムアルデヒド樹脂、ケトン-ホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、メラミン-ホルムアルデヒド樹脂、アルキド樹脂、不飽和ポリエステル樹脂、(シラン変性)エポキシ樹脂、ビスマレイミド樹脂、トリアリルシアヌレート樹脂、アクリル樹脂、(シラン変性)アクリル樹脂、シリコーン樹脂、ウレタン樹脂等を挙げることができる。これらの樹脂は単独でも2種以上の組合せでも使用される。バインダーとして用いる上記熱硬化性樹脂は、光活性による酸化に対して耐性を有するという利点を有する。
[Medium refractive index layer (C2)]
The transparent resin laminate of the present invention preferably has a two-layer structure in which an intermediate refractive index layer is laminated on the substrate surface side of the low refractive index layer in order to further enhance the antireflection effect.
The medium refractive index layer is preferably a layer having a refractive index of 1.50 or more and less than 1.75 and a thickness of 50 to 200 nm.
This medium refractive index layer is typically added to the above-mentioned (d) silane coupling compound or its hydrolyzate 20 to 80 parts by mass and (e) 0.1 to 2 parts by mass of a metal chelate compound, (G) Curing containing 20 to 80 parts by mass of metal oxide particles having a refractive index of 1.70 or more and 2.80 or less {with the total amount of (d), (e) and (g) being 100 parts by mass} The adhesive composition is cured to form.
Further, the middle refractive index layer can contain a thermosetting resin as a binder. Examples of thermosetting resins include phenol-formaldehyde resins, silane-modified phenol resins, furan-formaldehyde resins, xylene-formaldehyde resins, ketone-formaldehyde resins, urea formaldehyde resins, melamine-formaldehyde resins, alkyd resins, and unsaturated polyester resins. (Silane modified) epoxy resin, bismaleimide resin, triallyl cyanurate resin, acrylic resin, (silane modified) acrylic resin, silicone resin, urethane resin and the like. These resins may be used alone or in combination of two or more. The said thermosetting resin used as a binder has the advantage that it has tolerance with respect to the oxidation by photoactivity.
<(g)金属酸化物粒子>
 (g)金属酸化物粒子は、中屈折率層の屈折率が1.50以上1.75未満になることを満たす目的で含有させる、代表的には、平均粒径が10~100nmであり、屈折率が1.70以上2.80以下の金属酸化物粒子である。
 金属酸化物粒子としては、酸化ジルコニウム粒子(屈折率=2.40);酸化ジルコニウムと酸化ケイ素等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合ジルコニウム金属酸化粒子;酸化チタニウム粒子(屈折率=2.71);酸化チタニウムと酸化ケイ素や酸化ジルコニウム等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合チタニウム金属酸化粒子;シリカ粒子(屈折率=1.55)などが使用される。これらの金属酸化物粒子から選択して、或いは適宜組み合わせて、上記所望の屈折率の層となるように調整する。このような粒子はそれ自体公知であり、市販されている。
<(G) Metal oxide particles>
(G) The metal oxide particles are contained for the purpose of satisfying that the refractive index of the medium refractive index layer is 1.50 or more and less than 1.75. Typically, the average particle diameter is 10 to 100 nm. Metal oxide particles having a refractive index of 1.70 or more and 2.80 or less.
As the metal oxide particles, zirconium oxide particles (refractive index = 2.40); composite zirconium metal oxide particles in which zirconium oxide and other oxides such as silicon oxide are combined at the molecular level to adjust the refractive index; Titanium oxide particles (refractive index = 2.71); composite titanium metal oxide particles whose refractive index is adjusted by combining titanium oxide with other oxides such as silicon oxide and zirconium oxide; silica particles (refractive Rate = 1.55) or the like is used. It selects from these metal oxide particles, or it combines suitably, and it adjusts so that it may become a layer of the said desired refractive index. Such particles are known per se and are commercially available.
<中屈折率層(C2)の形成>
 中屈折率層は、透明樹脂基板上に積層されたハードコート層、具体的にはハードコートII層の上に積層される。該中屈折率層の形成は、前記低屈折率層の形成と同様にして実施され、該層の厚みは、反射防止性能の観点から、50~200nmの範囲に設定される。
<Formation of Medium Refractive Index Layer (C2)>
The middle refractive index layer is laminated on the hard coat layer, specifically, the hard coat II layer laminated on the transparent resin substrate. The medium refractive index layer is formed in the same manner as the low refractive index layer, and the thickness of the layer is set in the range of 50 to 200 nm from the viewpoint of antireflection performance.
〔高屈折率層(C3)〕
 本発明の透明樹脂積層板は、極めて高い反射防止効果を発現させるために、低屈折率層(C1)と中屈折率層(C2)の間に高屈折率層(C3)が積層された三層構造とすることが、特に好ましい。
 該高屈折率層は、その屈折率が1.60以上2.00未満であり、厚みが50~200nmである層が好適である。なお、該高屈折率層の屈折率は、中屈折率層の屈折率より高いことを必須とする。
 この高屈折率層は、代表的には、前出の(d)シランカップリング化合物またはその加水分解物10~50質量部、および(g)金属酸化物粒子50~90質量部{(d)および(g)の合計量を100質量部とする}を含有する硬化性組成物を硬化させて形成する。(g)金属酸化物粒子は、高屈折率層の屈折率が1.60以上2.00未満になるように、前出の金属酸化物粒子から選択して、或いはこれらを組みわせて使用される。
 また、中屈折率層と同様に、バインダーとして熱硬化性樹脂を含有させることもできる。
[High refractive index layer (C3)]
The transparent resin laminate of the present invention has a three-layer structure in which a high refractive index layer (C3) is laminated between a low refractive index layer (C1) and a middle refractive index layer (C2) in order to exhibit an extremely high antireflection effect. A layer structure is particularly preferable.
The high refractive index layer is preferably a layer having a refractive index of 1.60 or more and less than 2.00 and a thickness of 50 to 200 nm. In addition, it is essential that the refractive index of the high refractive index layer is higher than the refractive index of the medium refractive index layer.
This high refractive index layer is typically composed of the above-mentioned (d) silane coupling compound or its hydrolyzate 10 to 50 parts by mass, and (g) 50 to 90 parts by mass of metal oxide particles {(d) And the total amount of (g) is 100 parts by mass} is formed by curing. (G) The metal oxide particles are selected from the above metal oxide particles or a combination thereof so that the refractive index of the high refractive index layer is 1.60 or more and less than 2.00. The
Further, similarly to the middle refractive index layer, a thermosetting resin can be contained as a binder.
<高屈折率層(C3)の形成>
 高屈折率層は、ハードコート層上に積層された前記中屈折率層の上に積層され、次いで当該高屈折率層の上に低屈折率層が積層され三層構造となる。該高屈折率層の形成は、前記低屈折率層の形成と同様にして実施され、該層の厚みは、反射防止性能の観点から、50~200nmの範囲に設定される。
<Formation of high refractive index layer (C3)>
The high refractive index layer is laminated on the medium refractive index layer laminated on the hard coat layer, and then the low refractive index layer is laminated on the high refractive index layer to form a three-layer structure. The high refractive index layer is formed in the same manner as the low refractive index layer, and the thickness of the layer is set in the range of 50 to 200 nm from the viewpoint of antireflection performance.
 本発明の透明樹脂積層板は、前記層構成のものに限定されない。例えば、反射防止層の保護の目的で、オーバーコート層を設けることができる。このようなオーバーコート層としては、耐磨耗性、耐擦傷性を付与する有機ポリシロキサン系材料やフッ素樹脂系のコート層を挙げることができる。
 更に、透明樹脂積層板の裏側には、アクリル系、ゴム系、シリコーン系の粘着剤からなる、粘着剤層を設けることができる。更にまた、本発明の透明樹脂積層板は、透明樹脂基板の表及び裏の両面に、ハードコート層(B)および反射防止層(C)を積層してもよい。
The transparent resin laminate of the present invention is not limited to the one having the above layer structure. For example, an overcoat layer can be provided for the purpose of protecting the antireflection layer. Examples of such an overcoat layer include organic polysiloxane materials and fluororesin coat layers that impart wear resistance and scratch resistance.
Furthermore, an adhesive layer made of an acrylic, rubber, or silicone adhesive can be provided on the back side of the transparent resin laminate. Furthermore, in the transparent resin laminate of the present invention, a hard coat layer (B) and an antireflection layer (C) may be laminated on both the front and back surfaces of the transparent resin substrate.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
 以下の実施例及び比較例で用いた各種成分と略号、並びに試験方法は、次の通りである。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited at all by these Examples. In addition, not all combinations of features described in the embodiments are essential to the solution means of the present invention.
Various components and abbreviations used in the following Examples and Comparative Examples, and test methods are as follows.
(a)多官能ウレタンアクリレート
 a-1;脂肪族有機イソシアネート系6官能アクリレート
 a-2;芳香族有機イソシアネート系6官能アクリレート
(b)表面処理シリカゾル
 b-1;アクリレート基修飾シリカゾル(3-アクリロキシプロピルトリメトキシシランで処理) 平均粒径:20nm、MIBK分散、固形部:30wt%
 b-2;ビニル基修飾シリカゾル(ビニルトリメトキシシランで処理) 平均粒径:20nm、MEK分散、固形部:30wt%
(c)シリカゾル
 c-1;平均粒径:10nm、屈折率:1.46、IPA分散、固形部:20wt%
 c-2;平均粒径:80nm、屈折率:1.46、IPA分散、固形部:30wt%
(d)シランカップリング剤化合物又はその加水分解物
 d-1;γ-グリシドキシプロピルトリメトキシシラン
 d-2;3-アクリロキシプロピルトリメトキシシラン
 d-3;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン
(e)金属キレート化合物
 e-1;ジルコニウムジブトキシビス(エチルアセトアセテート)
 e-2;アルキルアセトアセテートアルミニウムジイソプロピレート
 e-3;アルミニウムトリスアセチルアセトナート
 e-4;ジルコニウムテトラアセチルアセトネート
(f)シリカゾル
 f-1;平均粒径:50nm、中空シリカゾル、屈折率:1.30、IPA分散、固形部:20wt%
 f-2;平均粒径:80nm、シリカゾル、屈折率:1.46、IPA分散、固形部:20wt%
 f-3;平均粒径:10nm、シリカゾル、屈折率:1.46、IPA分散、固形部:20wt%
(g)金属酸化物粒子
 g-1;平均粒径:50nm、ジルコニアゾル、屈折率:2.40、PGM分散、固形部:55wt%
 g-2;平均粒径:20nm、チタニアゾル、屈折率:2.71、MIBK分散、固形部:20wt%
(h)その他
 h-1;IPA(イソプロピルアルコール)
 h-2;MIBK(メチルイソブチルケトン)
 h-3;トルエン
 h-4;光重合開始剤(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン)
 h-5;0.05N酢酸
 h-6;アルコキシ基含有シラン変性エポキシ樹脂
(A) polyfunctional urethane acrylate a-1; aliphatic organic isocyanate-based hexafunctional acrylate a-2; aromatic organic isocyanate-based hexafunctional acrylate (b) surface-treated silica sol b-1; acrylate group-modified silica sol (3-acryloxy) (Treated with propyltrimethoxysilane) Average particle size: 20nm, MIBK dispersion, solid part: 30wt%
b-2: Vinyl group-modified silica sol (treated with vinyltrimethoxysilane) Average particle diameter: 20 nm, MEK dispersion, solid part: 30 wt%
(C) Silica sol c-1; average particle diameter: 10 nm, refractive index: 1.46, IPA dispersion, solid part: 20 wt%
c-2; average particle diameter: 80 nm, refractive index: 1.46, IPA dispersion, solid part: 30 wt%
(D) Silane coupling agent compound or hydrolyzate thereof d-1; γ-glycidoxypropyltrimethoxysilane d-2; 3-acryloxypropyltrimethoxysilane d-3; 2- (3,4-epoxy (Cyclohexyl) ethyltrimethoxysilane (e) metal chelate compound e-1; zirconium dibutoxybis (ethylacetoacetate)
e-2; alkyl acetoacetate aluminum diisopropylate e-3; aluminum trisacetylacetonate e-4; zirconium tetraacetylacetonate (f) silica sol f-1; average particle size: 50 nm, hollow silica sol, refractive index: 1.30 , IPA dispersion, solid part: 20wt%
f-2; average particle diameter: 80 nm, silica sol, refractive index: 1.46, IPA dispersion, solid part: 20 wt%
f-3; average particle diameter: 10 nm, silica sol, refractive index: 1.46, IPA dispersion, solid part: 20 wt%
(G) Metal oxide particles g-1: Average particle diameter: 50 nm, zirconia sol, refractive index: 2.40, PGM dispersion, solid part: 55 wt%
g-2: Average particle diameter: 20 nm, titania sol, refractive index: 2.71, MIBK dispersion, solid part: 20 wt%
(H) Others h-1: IPA (isopropyl alcohol)
h-2; MIBK (methyl isobutyl ketone)
h-3; toluene h-4; photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl-ketone)
h-5; 0.05N acetic acid h-6; alkoxy group-containing silane-modified epoxy resin
〔反射性試験〕
 日本分光社製「V-550」試験機を用いて、走査速度1000nm/minの速度、波長380~780nmの範囲で、最下点(透明樹脂積層板表面)における反射率を測定した。数値が小さいほど反射防止能に優れることを示す。
〔耐擦傷性試験〕
 擦り試験器に試験片をセットし、スチールウール#0000(日本スチールウール社「BONSTER」)上で2kg/cm荷重で40mm間を100往復させ、キズの入り方とその本数を測定し、評価した。評価基準は以下のとおりであり、透過光は透明樹脂積層板を透過した光を意味し、反射光は当該積層板表面で反射した光を意味する。
「◎」:透過光、反射光の何れで観察しても、キズは確認されなかった。
「〇」:透過光で観察するとキズが数本確認されたが、反射光では確認されなかった。
「△」:透過光、反射光の何れで観察しても、キズが数本確認された。
「×」:透過光、反射光の何れで観察しても、十本以上のキズが確認された。
[硬度試験]
 吉光精密社製硬度計「C-2210」を用い、鉛筆(三菱鉛筆社製「Uni」)で硬度を測定した。硬度は、鉛筆硬度で表され、この硬度が高いほど耐擦傷性に優れることを示す。尚、鉛筆硬度7Hとは、7Hの鉛筆でキズが付かないが、8Hの鉛筆ではキズが確認される場合の硬度を言う。
[Reflective test]
Using a “V-550” testing machine manufactured by JASCO Corporation, the reflectance at the lowest point (transparent resin laminate surface) was measured at a scanning speed of 1000 nm / min and a wavelength in the range of 380 to 780 nm. It shows that it is excellent in antireflection ability, so that a numerical value is small.
[Abrasion resistance test]
Set a test piece on a rubbing tester, reciprocate 100 mm between 40 mm with 2 kg / cm 2 load on steel wool # 0000 (Nippon Steel Wool Co., Ltd. “BONSTER”), measure the number and number of scratches, and evaluate did. The evaluation criteria are as follows, the transmitted light means light transmitted through the transparent resin laminate, and the reflected light means light reflected on the surface of the laminate.
“◎”: No flaws were observed when observed with either transmitted light or reflected light.
“◯”: Several scratches were observed when observed with transmitted light, but not with reflected light.
“Δ”: Several scratches were confirmed when observed with either transmitted light or reflected light.
“×”: Ten or more scratches were confirmed when observed with either transmitted light or reflected light.
[Hardness test]
Using a hardness meter “C-2210” manufactured by Yoshimitsu Seimitsu Co., Ltd., the hardness was measured with a pencil (“Uni” manufactured by Mitsubishi Pencil Co., Ltd.). The hardness is represented by pencil hardness, and the higher the hardness, the better the scratch resistance. The pencil hardness 7H refers to the hardness when a scratch is confirmed with a 7H pencil, but with an 8H pencil.
 実施例1
 厚さ1mmの芳香族ポリカーボネート樹脂(PC)とポリメチルメタクリレート樹脂(PMMA)との積層樹脂基板(PC層の厚み0.93mm、PMMA層の厚み0.07mm)のPMMA側に、以下の方法でハードコート層、更にその上に反射防止層を形成した。
[ハードコート層I形成用溶液組成]
・a-1;300g
・b-1;450g
・h-1;235g
・h-4;15g
[ハードコート層II形成用溶液組成]
・a-1;175g
・c-1;300g
・d-1;20g
・e-3;1.5g
・h-1;198.1g
・h-2;274.6g
・h-3;17.5g
・h-4;8.8g
・h-5;4.5g
[反射防止層形成用溶液組成]
・f-1;45g
・d-1;13g
・e-3;3g
・h-1;935g
・h-5;4g
Example 1
On the PMMA side of a laminated resin substrate (PC layer thickness 0.93 mm, PMMA layer thickness 0.07 mm) of 1 mm thick aromatic polycarbonate resin (PC) and polymethyl methacrylate resin (PMMA), the following method is used. A hard coat layer and an antireflection layer were further formed thereon.
[Solution composition for forming hard coat layer I]
・ A-1; 300g
・ B-1: 450g
・ H-1; 235g
・ H-4; 15g
[Solution composition for forming hard coat layer II]
・ A-1; 175g
・ C-1; 300g
・ D-1; 20g
・ E-3; 1.5g
・ H-1; 198.1g
・ H-2; 274.6g
・ H-3; 17.5g
・ H-4; 8.8g
・ H-5; 4.5g
[Antireflection layer forming solution composition]
・ F-1; 45g
・ D-1; 13g
・ E-3; 3g
・ H-1; 935g
・ H-5; 4g
 先ず、上記組成のハードコート層I形成用溶液を用いて積層樹脂基板をディップコートし、60℃、5分間乾燥し、UV硬化して厚さ12μmのハードコート層Iを形成した。次いで、前記組成のハードコート層II形成用溶液で、上記ハードコート層Iを有する基板をディップコートし、60℃、5分間乾燥し、UV硬化して厚さ3μmのハードコート層IIを形成した。更に、該ハードコート層を有する基板を、反射防止層形成用溶液でディップコートし、80℃、20分間加熱処理し、厚さ100nmの反射防止層(低屈折率層)を形成した。その後フッ素系防汚剤をディップコートでオーバーコートした後、100℃、120分間加熱処理を行って膜を硬化させた。
 得られた透明趣旨積層板の反射率、硬度、並びに耐擦傷性を、前記試験方法に従って測定し評価した。結果を表1に示す。
 実施例2~6
 表1に示す、ハードコート層I形成用溶液、ハードコート層II形成用溶液、および反射防止層形成用溶液を用いた以外は、実施例1と同様にして、透明樹脂積層板を作製し、同様に測定を行った。結果を表1、2に示す。
First, a laminated resin substrate was dip-coated using a hard coat layer I forming solution having the above composition, dried at 60 ° C. for 5 minutes, and UV cured to form a hard coat layer I having a thickness of 12 μm. Next, the substrate having the hard coat layer I was dip coated with the solution for forming the hard coat layer II having the above composition, dried at 60 ° C. for 5 minutes, and UV cured to form a hard coat layer II having a thickness of 3 μm. . Further, the substrate having the hard coat layer was dip-coated with an antireflection layer forming solution and heat-treated at 80 ° C. for 20 minutes to form an antireflection layer (low refractive index layer) having a thickness of 100 nm. Thereafter, a fluorine-based antifouling agent was overcoated with dip coating, followed by heat treatment at 100 ° C. for 120 minutes to cure the film.
The reflectance, hardness, and scratch resistance of the resulting transparent laminate were measured and evaluated according to the above test methods. The results are shown in Table 1.
Examples 2 to 6
A transparent resin laminate was prepared in the same manner as in Example 1 except that the hard coat layer I forming solution, the hard coat layer II forming solution, and the antireflection layer forming solution shown in Table 1 were used. Measurements were performed in the same manner. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
比較例1~5
 表2に示す、ハードコート層I形成用溶液、ハードコート層II形成用溶液、および反射防止層形成用溶液を用いた以外は、実施例1と同様にして、透明樹脂積層板を作製し、同様に測定を行った。結果を表3に示す。
Comparative Examples 1-5
A transparent resin laminate was prepared in the same manner as in Example 1 except that the hard coat layer I forming solution, the hard coat layer II forming solution, and the antireflection layer forming solution shown in Table 2 were used. Measurements were performed in the same manner. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1と比較例1との比較により、ハードコート層I中に(A)表面処理シリカゾルが、多官能性ウレタンアクリレート100質量部に対して50質量部未満で含まれると硬度性能が悪くなることが理解できる。また、比較例2より、ハードコート層Iの膜厚が5μm以上でない場合は、硬度性能が悪い上に耐擦傷性が極めて悪い。更に、比較例3より、ハードコート層II中にシランカップリング剤が含まれない場合は、硬度性能、耐擦傷性共に不十分である。比較例4より、ハードコート層II中にシリカゾルが含まれない場合は、耐擦傷性が不十分である。比較例5より、ハードコート層IIが存在しない場合は、硬度性能が不十分である上に耐擦傷性が極めて悪い。 As a result of comparison between Example 1 and Comparative Example 1, if the hard coat layer I contains (A) surface-treated silica sol in an amount of less than 50 parts by mass with respect to 100 parts by mass of the polyfunctional urethane acrylate, the hardness performance deteriorates. I understand that. Further, from Comparative Example 2, when the thickness of the hard coat layer I is not 5 μm or more, the hardness performance is poor and the scratch resistance is extremely poor. Furthermore, from Comparative Example 3, when the silane coupling agent is not included in the hard coat layer II, both the hardness performance and the scratch resistance are insufficient. From Comparative Example 4, when no silica sol is contained in the hard coat layer II, the scratch resistance is insufficient. From Comparative Example 5, when the hard coat layer II is not present, the hardness performance is insufficient and the scratch resistance is extremely poor.
実施例7~9
 表3に示す組成の低屈折率層形成用溶液、中屈折率層形成用溶液、更には必要に応じて高屈折率層形成用溶液を用いて以下の方法で、二層或いは三層から成る反射防止膜を有する透明樹脂積層板を作製し評価した。結果を表4に示す。
 実施例1と同様にして、積層樹脂基板にハードコート層を形成した後、中屈折率層形成用溶液に上記ハードコート層を有する基板をディップコートし、90℃、30分間、加熱処理して、厚さ85nmの中屈折率層を形成した。次いで、低屈折率層形成用溶液に該基板をディップコートし、80℃、20分間、加熱処理して、厚さ100nmの低屈折率層を形成した。但し、実施例7,8においては、低屈折率層を形成する前に、即ち、中屈折率層を形成した後に、高屈折率層形成用溶液に基板をディップコートし、80℃、20分間、加熱処理して、厚さ80nmの高屈折率層を形成した。
Examples 7-9
It consists of two or three layers by the following method using a solution for forming a low refractive index layer, a solution for forming a medium refractive index layer, and a solution for forming a high refractive index layer as necessary, as shown in Table 3. A transparent resin laminate having an antireflection film was prepared and evaluated. The results are shown in Table 4.
In the same manner as in Example 1, after forming the hard coat layer on the laminated resin substrate, the substrate having the hard coat layer was dip coated on the medium refractive index layer forming solution, and heat-treated at 90 ° C. for 30 minutes. A medium refractive index layer having a thickness of 85 nm was formed. Next, the substrate was dip-coated with a solution for forming a low refractive index layer, and heat-treated at 80 ° C. for 20 minutes to form a low refractive index layer having a thickness of 100 nm. However, in Examples 7 and 8, before forming the low refractive index layer, that is, after forming the middle refractive index layer, the substrate was dip coated with the solution for forming the high refractive index layer, and then at 80 ° C. for 20 minutes. Then, heat treatment was performed to form a high refractive index layer having a thickness of 80 nm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (4)

  1.  透明樹脂基板(A)上にハードコート層(B)が積層され、更に該ハードコート層(B)上に反射防止層(C)が積層されてなる透明樹脂積層板において、
     ハードコート層(B)が、透明樹脂基板側に位置するハードコート層I(B1)と反射防止層側に位置するハードコート層II(B2)とからなり、
     ハードコート層I(B1)は層厚が5~20μmであって、(a)1分子中に6個以上の(メタ)アクリロイル基を有する多官能性ウレタンアクリレートと、該多官能性ウレタンアクリレート100質量部に対して、(b)表面処理シリカゾル40~200質量部を含んでなる硬化性組成物の硬化体からなり、
     ハードコート層II(B2)は層厚が1~10μmであって、(a)1分子中に6個以上の(メタ)アクリロイル基を有する多官能性ウレタンアクリレートと、該多官能性ウレタンアクリレート100質量部に対して、(c)平均粒径が5~30nmであって屈折率が1.44~1.50のシリカゾル1~50質量部、(d)シランカップリング化合物又はその加水分解物1~30質量部、および(e)金属キレート化合物0.1~3.0質量部を含んでなる硬化性組成物の硬化体からなり、
     反射防止層(C)は、屈折率が1.50未満であり、厚みが50~200nmである低屈折率層(C1)から構成され、
     該低屈折率層(C1)は、(f)平均粒径が5~150nmであって屈折率が1.44以下のシリカゾル、(d)シランカップリング化合物又はその加水分解物、および(e)金属キレート化合物を含んでなり、且つ、(f)シリカゾルが10~50質量%配合され、(d)シランカップリング化合物又はその加水分解物と(e)金属キレート化合物との配合比が、60~99質量%:40~1質量%である硬化性組成物の硬化体からなる
    ことを特徴とする前記透明樹脂積層板。
    In the transparent resin laminate in which the hard coat layer (B) is laminated on the transparent resin substrate (A) and the antireflection layer (C) is further laminated on the hard coat layer (B),
    The hard coat layer (B) is composed of a hard coat layer I (B1) located on the transparent resin substrate side and a hard coat layer II (B2) located on the antireflection layer side,
    The hard coat layer I (B1) has a layer thickness of 5 to 20 μm, and (a) a multifunctional urethane acrylate having 6 or more (meth) acryloyl groups in one molecule, and the multifunctional urethane acrylate 100 (B) a cured product of a curable composition comprising 40 to 200 parts by mass of a surface-treated silica sol with respect to parts by mass,
    The hard coat layer II (B2) has a layer thickness of 1 to 10 μm, (a) a multifunctional urethane acrylate having 6 or more (meth) acryloyl groups in one molecule, and the multifunctional urethane acrylate 100 (C) 1 to 50 parts by mass of silica sol having an average particle diameter of 5 to 30 nm and a refractive index of 1.44 to 1.50, and (d) a silane coupling compound or a hydrolyzate 1 thereof with respect to parts by mass A cured product of a curable composition comprising from 30 to 30 parts by mass, and (e) 0.1 to 3.0 parts by mass of a metal chelate compound,
    The antireflection layer (C) is composed of a low refractive index layer (C1) having a refractive index of less than 1.50 and a thickness of 50 to 200 nm,
    The low refractive index layer (C1) comprises (f) a silica sol having an average particle diameter of 5 to 150 nm and a refractive index of 1.44 or less, (d) a silane coupling compound or a hydrolyzate thereof, and (e) (F) silica sol is compounded in an amount of 10 to 50% by mass, and (d) the compounding ratio of the silane coupling compound or a hydrolyzate thereof and (e) the metal chelate compound is 60 to 50%. 99% by mass: The transparent resin laminate, comprising a cured product of a curable composition in an amount of 40 to 1% by mass.
  2.  反射防止層(C)が、前記低屈折率層(C1)と透明樹脂基板側に位置する中屈折率層(C2)との二層から構成され、該中屈折率層(C2)は、その屈折率が1.50以上1.75未満であり、厚みが50~200nmであることを特徴とする請求項1に記載の透明樹脂積層版。 The antireflection layer (C) is composed of two layers of the low refractive index layer (C1) and the middle refractive index layer (C2) located on the transparent resin substrate side, and the middle refractive index layer (C2) 2. The transparent resin laminated plate according to claim 1, having a refractive index of 1.50 or more and less than 1.75 and a thickness of 50 to 200 nm.
  3.  反射防止層(C)が、前記低屈折率層(C1)、前記中屈折率層(C2)、および該低屈折率層と該中屈折率層との間に設けられた高屈折率層(C3)の三層から構成され、該高屈折率層(C3)は、その屈折率が1.60以上2.00未満であり、厚みが50~200nmであり、高屈折率層(C3)の屈折率が中屈折率層(C2)の屈折率より大きいことを特徴とする請求項2に記載の透明樹脂積層版。 The antireflective layer (C) includes the low refractive index layer (C1), the middle refractive index layer (C2), and a high refractive index layer (between the low refractive index layer and the middle refractive index layer ( C3), the high refractive index layer (C3) has a refractive index of 1.60 or more and less than 2.00, a thickness of 50 to 200 nm, and the high refractive index layer (C3) The transparent resin laminate according to claim 2, wherein the refractive index is larger than the refractive index of the middle refractive index layer (C2).
  4.  表面処理シリカゾルが、(メタ)アクリロイル基修飾シリカゾルまたはビニル基修飾シリカゾルであることを特徴とする請求項1~3の何れか一項に記載の透明樹脂積層板。 The transparent resin laminate according to any one of claims 1 to 3, wherein the surface-treated silica sol is (meth) acryloyl group-modified silica sol or vinyl group-modified silica sol.
PCT/JP2012/059984 2012-04-12 2012-04-12 Transparent resin laminate WO2013153648A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280072334.9A CN104220903B (en) 2012-04-12 2012-04-12 Transparent resin plywood
PCT/JP2012/059984 WO2013153648A1 (en) 2012-04-12 2012-04-12 Transparent resin laminate
JP2014509981A JP5973555B2 (en) 2012-04-12 2012-04-12 Transparent resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059984 WO2013153648A1 (en) 2012-04-12 2012-04-12 Transparent resin laminate

Publications (1)

Publication Number Publication Date
WO2013153648A1 true WO2013153648A1 (en) 2013-10-17

Family

ID=49327254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059984 WO2013153648A1 (en) 2012-04-12 2012-04-12 Transparent resin laminate

Country Status (3)

Country Link
JP (1) JP5973555B2 (en)
CN (1) CN104220903B (en)
WO (1) WO2013153648A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081004A (en) * 2014-10-22 2016-05-16 Dic株式会社 Hard coat film and information display device
JP2016085451A (en) * 2014-10-22 2016-05-19 Dic株式会社 Hard coat film and information display device
JP2017132833A (en) * 2016-01-25 2017-08-03 アイカ工業株式会社 Ultraviolet-curable resin composition and hard coat film
JP2017196901A (en) * 2014-05-30 2017-11-02 リケンテクノス株式会社 Transparent resin laminate
WO2018084179A1 (en) * 2016-11-07 2018-05-11 フクビ化学工業株式会社 Anti-glare and anti-reflective transparent substrate and method for manufacturing same
WO2018117018A1 (en) * 2016-12-22 2018-06-28 フクビ化学工業株式会社 Transparent resin substrate
KR20180082433A (en) * 2015-11-06 2018-07-18 린텍 가부시키가이샤 Film for laminating a transparent conductive layer, a method for producing the same, and a transparent conductive film
US20210103073A1 (en) * 2018-04-19 2021-04-08 Fukuvi Chemical Industry Co., Ltd. Antireflection plate
WO2022153825A1 (en) * 2021-01-18 2022-07-21 フクビ化学工業株式会社 Antireflection substrate
WO2023058454A1 (en) * 2021-10-05 2023-04-13 フクビ化学工業株式会社 Antireflection laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI682010B (en) * 2015-03-31 2020-01-11 日商日揮觸媒化成股份有限公司 Coating liquid for forming film, method for manufacturing the same, and method for manufacturing base material with coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221602A (en) * 2001-01-26 2002-08-09 Fukuvi Chem Ind Co Ltd Antireflection film excellent in liquid resistance
JP2006257308A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Hollow silica particle dispersion
JP2008151996A (en) * 2006-12-18 2008-07-03 Toray Advanced Film Co Ltd Laminated plastic film for optical filter
JP2008165041A (en) * 2006-12-28 2008-07-17 Dainippon Printing Co Ltd Hard coat film and method for manufacturing the same
JP2010271400A (en) * 2009-05-19 2010-12-02 Dainippon Printing Co Ltd Optical sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325901A (en) * 1997-05-26 1998-12-08 Toppan Printing Co Ltd Antidazzle hard coating film or sheet and its production
JP4075147B2 (en) * 1998-08-04 2008-04-16 凸版印刷株式会社 Hard coat film or sheet, and hard coat film or sheet with functional inorganic thin film
JP4792732B2 (en) * 2004-11-18 2011-10-12 株式会社日立製作所 Antireflection film, optical component using antireflection film, and image display device using antireflection film
JP5509594B2 (en) * 2006-08-18 2014-06-04 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
JP5277539B2 (en) * 2006-09-29 2013-08-28 大日本印刷株式会社 Hard coat film and method for producing the same
JP2009075539A (en) * 2007-08-28 2009-04-09 Nissan Motor Co Ltd Anti-reflective structure and anti-reflective molded body
JP5476843B2 (en) * 2009-08-04 2014-04-23 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221602A (en) * 2001-01-26 2002-08-09 Fukuvi Chem Ind Co Ltd Antireflection film excellent in liquid resistance
JP2006257308A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Hollow silica particle dispersion
JP2008151996A (en) * 2006-12-18 2008-07-03 Toray Advanced Film Co Ltd Laminated plastic film for optical filter
JP2008165041A (en) * 2006-12-28 2008-07-17 Dainippon Printing Co Ltd Hard coat film and method for manufacturing the same
JP2010271400A (en) * 2009-05-19 2010-12-02 Dainippon Printing Co Ltd Optical sheet

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196901A (en) * 2014-05-30 2017-11-02 リケンテクノス株式会社 Transparent resin laminate
JP2016085451A (en) * 2014-10-22 2016-05-19 Dic株式会社 Hard coat film and information display device
JP2016081004A (en) * 2014-10-22 2016-05-16 Dic株式会社 Hard coat film and information display device
KR20180082433A (en) * 2015-11-06 2018-07-18 린텍 가부시키가이샤 Film for laminating a transparent conductive layer, a method for producing the same, and a transparent conductive film
KR102542685B1 (en) 2015-11-06 2023-06-12 린텍 가부시키가이샤 Film for lamination of transparent conductive layer, manufacturing method thereof, and transparent conductive film
JP2017132833A (en) * 2016-01-25 2017-08-03 アイカ工業株式会社 Ultraviolet-curable resin composition and hard coat film
KR102460223B1 (en) * 2016-11-07 2022-11-01 후구비카가구코오교우가부시끼가이샤 Transparent substrate having anti-glare and anti-reflection properties and method for manufacturing the same
CN109791222B (en) * 2016-11-07 2020-12-29 福美化学工业株式会社 Transparent substrate having anti-glare and anti-reflection properties and method for manufacturing same
CN109791222A (en) * 2016-11-07 2019-05-21 福美化学工业株式会社 Transparent substrate and its manufacturing method with anti-glare and anti-reflective
KR20190079611A (en) * 2016-11-07 2019-07-05 후구비카가구코오교우가부시끼가이샤 Transparent Substrate Having Antistatic Property and Antireflection Property and Method of Manufacturing the Same
WO2018084179A1 (en) * 2016-11-07 2018-05-11 フクビ化学工業株式会社 Anti-glare and anti-reflective transparent substrate and method for manufacturing same
JP2018077279A (en) * 2016-11-07 2018-05-17 フクビ化学工業株式会社 Transparent substrate having antiglare properties and antireflection properties and method for producing the same
EP3505979A4 (en) * 2016-11-07 2020-04-08 Fukuvi Chemical Industry Co., Ltd. Anti-glare and anti-reflective transparent substrate and method for manufacturing same
US11498315B2 (en) 2016-12-22 2022-11-15 Fukuvi Chemical Industry Co., Ltd. Transparent resin substrate
KR102438893B1 (en) 2016-12-22 2022-08-31 후구비카가구코오교우가부시끼가이샤 transparent resin substrate
JPWO2018117018A1 (en) * 2016-12-22 2019-10-24 フクビ化学工業株式会社 Transparent resin substrate
WO2018117018A1 (en) * 2016-12-22 2018-06-28 フクビ化学工業株式会社 Transparent resin substrate
KR20190100259A (en) * 2016-12-22 2019-08-28 후구비카가구코오교우가부시끼가이샤 Transparent resin substrate
US20210103073A1 (en) * 2018-04-19 2021-04-08 Fukuvi Chemical Industry Co., Ltd. Antireflection plate
US11796717B2 (en) * 2018-04-19 2023-10-24 Fukuvi Chemical Industry Co., Ltd. Antireflection plate
WO2022153825A1 (en) * 2021-01-18 2022-07-21 フクビ化学工業株式会社 Antireflection substrate
JP2022110332A (en) * 2021-01-18 2022-07-29 フクビ化学工業株式会社 Antireflection substrate
JP7389765B2 (en) 2021-01-18 2023-11-30 フクビ化学工業株式会社 Anti-reflection substrate
WO2023058454A1 (en) * 2021-10-05 2023-04-13 フクビ化学工業株式会社 Antireflection laminate

Also Published As

Publication number Publication date
JP5973555B2 (en) 2016-08-23
JPWO2013153648A1 (en) 2015-12-17
CN104220903B (en) 2016-02-17
CN104220903A (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5973555B2 (en) Transparent resin laminate
TWI531812B (en) Antireflection film and antireflection plate
US10345498B2 (en) Infrared cut filter, solid-state imaging device, and imaging/display apparatus
JP4463272B2 (en) Transparent laminate
EP3560707B1 (en) Transparent resin substrate
US20100271699A1 (en) Coating composition for antireflection and antireflection film prepared by using the same
KR101813749B1 (en) Transparent conductor, method for preparing the same, and optical display including the same
EP2209855A2 (en) Coating composition for antireflection, antireflection film and method for preparing the same
US20100265580A1 (en) Coating composition for antireflection, antireflection film and method for preparing the same
KR20080078801A (en) Anti-reflective optical film and method for manufacture thereof
KR100860917B1 (en) Laminate and Antireflection Film Comprising the Same
WO2019202942A1 (en) Antireflective plate
TW201516449A (en) Fingerprint-resistant anti-reflection film
JP2002120311A (en) Structure
TWI552869B (en) Transparent resin-laminated plate
WO2023058454A1 (en) Antireflection laminate
KR20120088955A (en) Composite film for electrostatic capacity type touch screen panel
KR101813752B1 (en) Transparent conductor and optical display apparatus comprising the same
JP2009069317A (en) Antireflection film
WO2022070883A1 (en) Optical member
JP2007034281A (en) Anti-reflection film and image display apparatus
JP2007108729A (en) Reflection preventive film and image display device
KR20240008995A (en) Anti-reflective film with gas barrier
KR20240115025A (en) Window cover film and uses thereof
JPWO2013018187A1 (en) Antireflection film and antireflection plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280072334.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874331

Country of ref document: EP

Kind code of ref document: A1