WO2022070883A1 - Optical member - Google Patents
Optical member Download PDFInfo
- Publication number
- WO2022070883A1 WO2022070883A1 PCT/JP2021/033696 JP2021033696W WO2022070883A1 WO 2022070883 A1 WO2022070883 A1 WO 2022070883A1 JP 2021033696 W JP2021033696 W JP 2021033696W WO 2022070883 A1 WO2022070883 A1 WO 2022070883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- refractive index
- optical member
- half mirror
- mass
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
Definitions
- the present invention relates to an optical member that functions as a half mirror. More specifically, the present invention relates to a half-mirror optical member arranged on the front surface of various displays and instrument panels of automobiles.
- the meter panel needs to be a member composed of a half mirror having two functions of translucency and reflectivity, which are contradictory to each other (Patent Document 2).
- Patent Document 2 By the way, in recent years, most of the information such as images and characters for reflecting the reflected image from the outside and putting the reflected image in the field of view, including the speed inside the instrument panel and other information supporting the operation of the automobile, is displayed on the liquid crystal display. It has become like that. It has been found that when a stereoscopic image is synthesized via the half mirror using this liquid crystal display, the conventional half mirror has a problem of lacking brightness and sharpness of the image.
- the present inventors differ in the amount and ratio of polarization of the liquid crystal display depending on the mode of the liquid crystal used, that is, TN liquid crystal, VA liquid crystal, IPS liquid crystal, and the like.
- the mode of the liquid crystal used that is, TN liquid crystal, VA liquid crystal, IPS liquid crystal, and the like.
- all of them are display devices mainly composed of polarized light. Therefore, they have found that a clear and bright stereoscopic image can be synthesized by focusing on the surface reflectance and light transmittance of the polarized light and developing a half mirror suitable for the surface reflectance, and have completed the present invention.
- the optical member is provided with a transparent substrate, a hard coat layer, and a half mirror layer in this order.
- the half mirror layer nine or more layers having a high refractive index having a refractive index of 1.75 to 1.82 and a low refractive index layer having a refractive index of 1.28 to 1.35 are alternately laminated to form a high refractive index. It is formed by laminating so that the rate layer is on the outermost surface, and the thickness of the high refractive index layer on the outermost surface is 80 to 90 nm.
- the average reflectance of P-polarized light with an incident angle of 45 ° at a wavelength of 380 to 780 nm is 30% to 40%
- the average reflectance of S-polarized light with an incident angle of 45 ° is 70% to 85%
- the incident angle is 45 °.
- the visual average reflectance of (P + S) / 2 polarization is 50% to 65%, and x: 0.30 to 0.32 and y: 0.32 to 0.34 in the XY chromaticity diagram.
- An optical member is provided.
- the optical member of the present invention is 1) The thickness of the first layer and the third layer from the hard coat layer side of the half mirror layer is 120 to 440 nm. 2) Curing of the high refractive index layer containing 120 to 470 parts by mass of metal oxide particles and 8 to 10 parts by mass of a metal chelate compound with respect to 100 parts by mass of a binder component composed of an alkoxysilane compound or a hydrolyzate thereof.
- the low refractive index layer contains 65 to 330 parts by mass of hollow silica particles and 8 to 10 parts by mass of a metal chelate compound with respect to 100 parts by mass of a binder component composed of an alkoxysilane compound or a hydrolyzate thereof.
- a hard coat layer and an antireflection layer are included in this order on a surface opposite to the surface on which the half mirror layer of the optical member is formed, and the antireflection layer has a high refractive index from the hard coat layer side.
- the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is less than 0.5%
- the visual average reflectance of S-polarized light having an incident angle of 45 ° is 4. It has antireflection ability that the visual average reflectance of (P + S) / 2 polarization with less than 5.5% and an incident angle of 45 ° is less than 2.5%. Is preferable.
- a cured body constituting each layer of a hard coat layer, a half mirror layer and an antireflection layer to be installed as needed is formed on a transparent substrate.
- a method for producing an optical member which comprises applying a curable composition and then curing the composition to sequentially form the optical member by a so-called wet coating method.
- the optical member of the present invention Since the optical member of the present invention is excellent in half mirror performance against polarization, it reflects the information in addition to the transmitted image of the information of the image and characters transmitted from the display device using the polarization to be clear and bright. You can make a reflection image. Since it has the above performance, it is possible to synthesize a clear stereoscopic image consisting of a transmitted image and a reflected image on an optical member and put it in the field of view. It can be suitably used as a front panel of an automobile instrument panel.
- FIG. It is a reflectance distribution map with respect to the P polarized wave of the optical member obtained in Example 1.
- FIG. It is a reflectance distribution diagram with respect to the (P + S) / 2 polarized wave of the optical member obtained in Example 1.
- FIG. It is a schematic diagram which shows the typical layer structure of the optical member of this invention. It is a schematic diagram which shows the usage mode of the optical member of this invention.
- a hard coat layer and a half mirror layer are formed as basic constituent layers on a transparent substrate.
- any layer can be provided as long as the various polarization reflection characteristics and color tone performance described later are not impaired.
- an antifouling layer, an antistatic layer, an antibacterial / antiviral layer, or the like can be provided between the transparent substrate and the hard coat layer on the primer layer and the half mirror layer.
- the base material In order for the optical member of the present invention to function as a half mirror, the base material needs to be a transparent base material.
- the transparent substrate is preferably formed of a transparent resin having excellent impact strength and permeability. Specifically, a transparent resin having a total light transmittance of preferably 85% or more, more preferably 90% or more, still more preferably 92% or more at a wavelength of 380 to 780 nm is preferable.
- the transparent base material used in the present invention is formed of at least one resin selected from the group consisting of acrylic resin, polycarbonate resin, polyethylene terephthalate resin and triacetyl cellulose resin from the viewpoint of transparency and impact resistance. Is preferable.
- a laminated transparent base material in which these resins are laminated may be used.
- a laminated transparent base material of a polycarbonate resin and a polymethylmethacrylate resin may be used.
- the thickness of the transparent substrate is appropriately selected and designed from the required translucency and impact resistance, but is usually in the range of 0.2 to 2.0 mm.
- a hard coat layer is provided on the transparent substrate for the purpose of improving the adhesion between the substrate and the half mirror layer and the strength of the optical member. Specifically, it is a layer having a thickness of 1 to 3 ⁇ m containing a resin component obtained by polymerizing and curing a (meth) acrylate-based polymerizable compound containing a urethane (meth) acrylate compound as a main component as a base material. If this thickness is too thin, it becomes difficult to secure the basic physical properties of the hard coat layer, for example, hardness and strength.
- the thickness of the hardcoat layer is preferably 1.2 to 2.5 ⁇ m, more preferably 1.5 to 2 ⁇ m.
- the hard coat layer is a resin component obtained by polymerizing and curing a (meth) acrylate-based polymerizable compound, specifically a mixture of a urethane (meth) acrylate compound and a normal (meth) acrylate compound, and a silane coupling. It is preferred to contain agents, silica particles and metal chelate compounds.
- the resin component has a function as a binder for forming the hard coat layer and serves as a base material.
- the resin component is a polymer of the (meth) acrylate-based polymerizable compound shown below.
- As the (meth) acrylate-based polymerizable compound a mixture of a tetrafunctional or higher functional urethane (meth) acrylate compound and a normal (meth) acrylate compound is preferably used.
- a urethane (meth) acrylate compound having four or more functionalities forms a relatively hard portion by curing, and a (meth) acrylate compound forms a flexible portion by curing. It is possible to form a film having both hardness.
- the urethane (meth) acrylate compound is obtained by further reacting a terminal isocyanate compound obtained by reacting a polyhydric isocyanate compound with a polyol compound having a plurality of hydroxyl groups with a hydroxyl group-containing (meth) acrylate.
- the (meth) acryloyl group in the urethane (meth) acrylate compound is a functional group, and for example, a urethane (meth) acrylate compound having four (meth) acryloyl groups is tetrafunctional.
- the tetrafunctional or higher functional urethane (meth) acrylate compound is a urethane compound having four or more (meth) acryloyl groups, and for example, pentaerythritol di (meth) acrylate is reacted with the terminal isocyanate compound.
- a compound in which two (meth) acryloyl groups are introduced at both ends of the isocyanate compound is used as a tetrafunctional urethane (meth) acrylate compound.
- hexafunctional urethane (meth) acrylate compound pentaerythritol tri (meth) acrylate is reacted with both-terminal isocyanates (for example, trihexadiethylenediisocyanate) to cause three (meth) acryloyl at each end of the molecular chain.
- isocyanates for example, trihexadiethylenediisocyanate
- (meth) acrylate compounds include monofunctional (meth) acrylate compounds such as methyl (meth) acrylate, ethyl (meth) acrylate, and n-butyl (meth) acrylate; 1,4 butanediol di (meth) acrylate, Bifunctional (meth) acrylate compounds such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate; pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Examples thereof include 3 to 4 functional (meth) acrylate compounds such as trimethylol
- the above-mentioned tetrafunctional or higher functional urethane (meth) acrylate compound and the (meth) acrylate compound are usually blended in a mass ratio of 30/70 to 50/50 [(meth) acrylate / urethane (meth) acrylate]. It is preferable that it is. If the amount of the (meth) acrylate compound used is too large, the hardness of the obtained hardcoat layer becomes small, the wear resistance is lowered, and the function as the hardcoat layer is lowered.
- a trifunctional or lower functional urethane (meth) acrylate compound is used to improve the flexibility of the hard coat layer. Further may be used.
- the hardcoat layer preferably contains a silane coupling agent.
- the silane coupling agent is used to stably disperse and hold the silica particles described later in the hard coat layer without falling off, and at the same time, to secure the adhesion with the half mirror layer formed on the silica particles. It is a component.
- silane coupling agent conventionally known ones can be used without any limitation. Specifically, vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, ⁇ - (meth) acryloxipropyltrimethoxysilane, ⁇ -glycidoxy Propyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ( ⁇ -Aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ - (N-sty
- the hydrolyzate is polycondensed at the same time as the hydrolysis to form a polymer connected in a network shape by a Si—O—Si bond. Therefore, by using such a silane coupling agent, the hard coat layer can be made dense.
- the content ratio of the silane coupling agent in the hard coat layer is preferably 1 to 30 parts by mass, more preferably 1 to 30 parts by mass, based on 100 parts by mass of the resin component formed from the above-mentioned (meth) acrylate-based polymerizable compound. It is set in the range of 10 to 20 parts by mass. If the content of the silane coupling agent is higher than necessary, the basic performance of the hardcoat layer, that is, hardness and scratch resistance, will be impaired. If this content is too small, the adhesion to the half mirror layer is impaired and peeling or the like is likely to occur.
- Solid silica particles are non-hollow particles that are dense inside and do not have cavities inside, and have a density of usually 1.9 g / cm 3 or more.
- the solid silica particles preferably have a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.5.
- the content of the solid silica particles is preferably 10 to 80 parts by mass, more preferably 30 to 60 parts by mass, per 100 parts by mass of the resin component formed from the above-mentioned (meth) acrylate-based polymerizable compound.
- the hardcoat layer preferably contains a metal chelate compound.
- the metal chelate compound is used for the purpose of introducing a crosslinked structure into the hardcoat layer to increase the denseness and strength of the hardcoat layer, as well as the hardness.
- a crosslinked structure is also formed in the resin component made of the (meth) acrylate-based polymerizable compound described above, but its denseness is not sufficient because flexibility is also required.
- Metal chelate compounds are used to compensate for the reduced tightness of the hardcourt layer without compromising its flexibility, in other words to adjust mechanical properties such as hardness that are affected by the tightness of the film. It is a thing.
- metal chelate compound since such a metal chelate compound is also contained in the half mirror layer, the use of the metal chelate compound increases the affinity between the hard coat layer and the half mirror layer, further enhances the adhesion, and molds. It is possible to effectively prevent time cracking and the like.
- a compound of titanium, zirconium, aluminum, tin, niobium, tantalum or lead containing a bidentate ligand is suitable.
- a bidentate ligand is a chelating agent having 2 coordination loci, that is, 2 atoms that can be coordinated to a metal, and generally has a 5- to 7-membered ring depending on O, N, and S atoms. Form to form a chelate compound.
- Typical metal chelate compounds include triethoxy mono (acetylacetonet) titanium, tri-n-propoxymono (acetylacetonate) titanium, diethoxybis (acetylacetonate) titanium, and monoethoxytris (acetylacetone).
- Titanium chelate compounds such as (ethylacetate) titanium, bis (acetylacetonate) bis (ethylacetoneacetate) titanium, tris (acetylacetonet) mono (ethylacetoneacetate) titanium; Triethoxy mono (acetylacetonate) zirconium, tri-n-propoxymono (acetylacetonate) zirconium, diethoxybis (acetylacetonate) zirconium, monoethoxytris (acetylacetonate) zirconium, tetrakis (acetylacetonate) ) Zirconium, Triethoxy mono (ethylacetate) titanium, bis (acetylacetonate) bis (ethylacetoneacetate) titanium, tris (acetylacetonet) mono (ethylacetoneacetate) titanium; Triethoxy mono (acetylacetonate) zirconium, tri-n-propoxymono (acetylaceton
- the above-mentioned metal chelate compound is used in an amount of preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass, per 100 parts by mass of the resin component formed from the (meth) acrylate-based polymerizable compound. Will be done.
- the metal chelate compound within this range, the adhesion between the metal chelate compound and the half mirror layer formed on the hard coat layer can be improved.
- a particularly suitable hard coat layer is a silane coupling agent or a silane coupling agent thereof with respect to 100 parts by mass of a resin component obtained by curing a tetrafunctional or higher functional urethane (meth) acrylate compound and a 1 to trifunctional (meth) acrylate compound. 1 to 30 parts by mass of the hydrolyzate, 10 to 80 parts by mass of solid silica particles having a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.50, and 0.1 to 30 parts by mass of the metal chelate compound. Formed from parts.
- a specific amount of each of the above components and an optional component such as a photopolymerization initiator are dissolved in the following solvent for the purpose of viscosity adjustment and easy coating to obtain a coating solution for forming a hard coat layer.
- the solution is applied onto a transparent substrate to form a coat film, and then the coat film is dried as necessary and then irradiated with ionizing radiation such as ultraviolet rays and electron beams to form the (meth) acrylate. It is formed by curing a system-polymerizable compound or an oligomer thereof.
- the photopolymerization initiator may be any one that generates radicals when irradiated with ultraviolet rays, and is known, for example, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones and the like. Photopolymerization initiator can be used.
- the amount of the photopolymerization initiator added is preferably 1 to 10 parts by mass, more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the urethane acrylate used.
- Solvents used in the coating solution are alcohol compounds such as methyl alcohol, ethyl alcohol and propyl alcohol; aromatic compounds such as toluene and xylene; ester compounds such as ethyl acetate, butyl acetate and isobutyl acetate; acetone and methyl ethyl ketone (MEK). , Methylisobutylketone (MIBK), ketone compounds such as diacetone alcohol, and the like are suitable.
- alcohol compounds such as methyl alcohol, ethyl alcohol and propyl alcohol
- aromatic compounds such as toluene and xylene
- ester compounds such as ethyl acetate, butyl acetate and isobutyl acetate
- MEK acetone and methyl ethyl ketone
- MIBK Methylisobutylketone
- MIBK Methylisobutylketone
- ketone compounds such as di
- solvents such as methylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and cellosolve compounds such as methyl cellosolve, ethyl cellosolve, and propylene glycol monomethyl ether can also be used.
- Each of the components constituting the coating solution for forming a hard coat layer is usually mixed and stirred arbitrarily at around room temperature to obtain a solution.
- a solvent as a dispersion medium is inevitably mixed in the solution. The solvent in the coating solution and the separately blended solvent are removed in the drying and curing steps.
- the method of applying the solution to the transparent substrate is not particularly limited, and methods such as a dip coating method, a roll coating method, a die coating method, a flow coating method, and a spray method are adopted, but from the viewpoint of appearance quality and film thickness control. Therefore, the dip coat method is suitable.
- HM layer> A half mirror layer is formed on the formed hard coat layer.
- the layer structure of the half mirror layer is characteristic.
- the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is 20% or more
- the visual average reflectance of S-polarized light having an incident angle of 45 ° is 20% or more. It has a polarization reflection characteristic that the visual average reflectance of (P + S) / 2 polarization with an incident angle of 45 ° or more is 35% or more, and x: 0.30 to 0.32, y in the XY chromaticity diagram. : The optical characteristic of 0.32 to 0.34 is exhibited.
- a high refractive index layer having a refractive index of 1.75 to 1.82 and a low refractive index layer having a refractive index of 1.28 to 1.35 are alternately laminated, and each layer is formed. It has a feature that the total number of layers is 9 or more and the outermost surface is a high refractive index layer. When each of the refractive indexes of the high refractive index layer and the low refractive index layer does not satisfy the above range, the transmission image or the reflection image is poorly reflected and the performance as a half mirror is inferior to that satisfying the above range. It is essential that the total number of layers constituting the half mirror layer is 9 or more in order to exhibit excellent polarization reflection characteristics.
- the upper limit is 17 layers from the viewpoint of the labor and cost of forming each layer and the saturation of the improvement of the polarization reflection characteristics.
- the outermost surface of the half mirror layer needs to be a high refractive index layer having a refractive index of 1.75 to 1.82.
- the outermost surface has a low refractive index layer having a refractive index of 1.28 to 1.35, sufficient mirror performance is not exhibited and the mirror does not function as a half mirror.
- the outermost surface is a high refractive index layer, so that the lowest layer (the layer in contact with the hard coat layer) is the high refractive index layer.
- the lowest layer is a low refractive index layer.
- a layer structure in which the total number of layers is an odd number, that is, the lowest layer is a high refractive index layer is preferable.
- the thickness of each of the high refractive index layer and the low refractive index layer is usually selected from the range of 70 to 440 nm, preferably 80 to 180 nm.
- the thickness of the outermost high-refractive index layer is 80 to 90 nm
- the thickness of the first and third layers from the hard coat layer of the half mirror layer is 120 to 440 nm, preferably 150 to 180 nm. When designed to be there, it is an optical member with excellent half-mirror performance.
- the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is 30% to 40%
- the visual average reflectance of S-polarized light having an incident angle of 45 ° is 70%. It has a polarization reflection characteristic in which the visual average reflectance of (P + S) / 2 polarization with an incident angle of 45 ° is 50% to 65%, and x: 0.30 to 0.32 in the XY chromaticity diagram. , Y: The optical characteristic of 0.32 to 0.34 is exhibited.
- the polarized wave has an average reflectance of 20% or more for P polarization, an average reflectance of 50% or more for S polarization, and an average reflectance of 35% or more for (P + S) / 2 polarization. It has excellent reflectance to light, and the reflected image formed by reflecting characters and images made of polarized light can be clearly seen. Further, since x: 0.30 to 0.32 and y: 0.32 to 0.34 in the XY chromaticity diagram, the optical member has substantially low saturation (colorless and transparent), and the reflected image. Coloring does not occur in the transmitted image, and the original colors such as characters and images created through the polarizing plate are reflected in the same color tone and can be visually recognized.
- the P-polarized visual sensation average reflectance, the S-polarized visual sensation average reflectance, and the (P + S) / 2-polarized visual sensation average reflectance are the following methods. It is a physical property value measured by.
- P-polarized visual average reflectance Using a "V-650" testing machine manufactured by JASCO Corporation, the reflectance is measured every 10 nm at a scanning speed of 1000 nm / min. The light used for the measurement is light having a wavelength of 380 to 780 nm, which is obtained by removing the vertical component through a polarizing element to obtain only parallel polarization.
- S-polarized visual average reflectance The light is measured with only vertical polarization after removing the parallel direction component through the polarizing element. Except for the direction in which the polarizing element was installed, the measurement was performed in the same manner as in the measurement of the visual average reflectance of the P-polarized light.
- P + S / 2 polarized visual average reflectance: The splitter is installed at 45 degrees, and the light is measured with half the amount of the vertical component and half the amount of the parallel component.
- X and y values in the XY chromaticity diagram The reflectance of each of the above-mentioned polarizations was measured using a "V-650" tester manufactured by JASCO Corporation, and the reflectance was calculated from the weighting factor shown in Table 4 of JIS Z 8722 to the tristimulus value in the XYZ display system.
- the x value is in the range of 0.30 to 0.32 and the y value is in the range of 0.32 to 0.34, it means that the chromaticity is close to colorless and transparent.
- the refractive index of the low refractive index layer is 1.28 to 1.35.
- the low refractive index layer is laminated on the hard coat layer or on the high refractive index layer to form a multilayer structure in which the high refractive index layer is alternately laminated.
- the low refractive index layer is preferably a cured product of a curable composition containing an alkoxysilane compound or a hydrolyzate thereof, silica particles and a metal chelate compound.
- Alkoxysilane compound The alkoxysilane compound or its hydrolyzate is polycondensed at the same time as hydrolysis to form a crosslinked body connected in a network by Si—O—Si bond, and becomes a base material of a low refractive index layer.
- the low refractive index layer can be made dense.
- the alkoxysilane compound is not limited as long as it is a silane compound capable of polycondensation at the same time as hydrolysis, and is not limited to tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and vinyltrimethoxy.
- alkoxysilane compounds such as ethyltrimethoxysilane.
- the method of pre-hydrolyzing is not particularly limited, and a method of hydrolyzing a part thereof using an acid catalyst such as acetic acid, or a method of adding an alkoxysilane compound in a coating solution for forming a low refractive index layer together with other components.
- a method in which an acid coexists and is partially hydrolyzed is adopted.
- an alkoxysilane compound represented by the following general formula or a hydrolyzate thereof is suitable.
- R is an alkylene group having 1 to 3 carbon atoms
- R 1 is a methyl group or an ethyl group
- a is 0 or 1
- Typical examples of the alkoxysilane compound of the general formula (1) include ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane.
- Silica particles are used to control the refractive index of the low index of refraction layer within a predetermined range.
- Hollow silica and solid silica exist as silica particles. It is preferable to use hollow silica particles in order for the low refractive index layer to exhibit a relatively low refractive index.
- Hollow silica is silica having a cavity inside, and a preferable average particle size is 10 to 150 nm. Since the hollow silica particles are hollow particles, their density is lower than that of other silica particles, and is usually 1.5 g / cm 3 or less.
- Such hollow silica particles are known in their own right, and are manufactured and commercially available, for example, by synthesizing silica in the presence of a template and a surfactant and finally firing to decompose and remove the surfactant. There is.
- a solvent such as water or alcohol and provided as a so-called sol
- the low refractive index layer is prepared to form the low refractive index layer.
- solvents are inevitably mixed in the forming coating solution. However, in the drying and curing process after coating, these solvents are volatilized and removed together with the solvent separately added to prepare the coating solution.
- solid silica is used as the solid silica.
- the solid silica described in the section of the hard coat layer is used without limitation.
- the content of silica particles in the coating solution for forming a low refractive index layer depends on the set refractive index of the low refractive index layer and the amount of other contained components, but is preferably 60 with respect to 100 parts by mass of the alkoxysilane compound. It is up to 400 parts by mass, more preferably 65 to 330 parts by mass.
- Metal chelate compound It is preferable to contain a metal chelate compound for the purpose of increasing the density and strength of the low refractive index layer and further increasing the hardness.
- the metal chelate compound the metal chelate compound described in the section of the hard coat layer can be used as it is without limitation.
- the content of the metal chelate compound in the coating solution for forming a low refractive index layer is preferably 5 to 15 parts by mass, more preferably 6 to 12 parts by mass, and more preferably 8 to 8 parts by mass with respect to 100 parts by mass of the alkoxysilane compound. It is 10 parts by mass.
- the low refractive index layer is laminated on the hard coat layer or the high refractive index layer, and a half mirror layer having a multi-layer structure alternately laminated with the high refractive index layer is formed.
- each of the above components is dissolved in a specific amount, and further, any component is dissolved in a solvent for the purpose of viscosity adjustment and easy coating to prepare a coating solution for forming a low refractive index layer, and after this solution is applied. It can be formed by drying, then heating and heat curing.
- the solvent used for the coating solution for forming a low refractive index layer the solvent described in the section of the coating solution for forming a hard coat layer is used without limitation.
- the same coating method is adopted, but the dip coating method is preferable from the viewpoint of appearance quality and film thickness control.
- the refractive index of the high refractive index layer is 1.75 to 1.82.
- the high refractive index layer is laminated on the hard coat layer or on the low refractive index layer to form a multilayer structure in which the low refractive index layer is alternately laminated.
- the high refractive index layer is preferably a cured product of a curable composition containing an alkoxysilane compound, a metal oxide particle and a metal chelate compound.
- alkoxysilane compound The alkoxysilane compound or its hydrolyzate can make the high refractive index layer dense as well as the low refractive index layer.
- the alkoxysilane compound the compounds listed in the section of the low refractive index layer can be used without limitation.
- the alkoxysilane compound represented by the general formula (1) is suitable for the same reason.
- Metal oxide particles It is preferable to use metal oxide particles in order to control the refractive index of the high refractive index layer within a predetermined range.
- Oxide particles, titanium oxide particles (refractive index 2.71), composite titanium metal oxide particles whose refractive index is adjusted by combining titanium oxide with other oxides such as silicon oxide and zirconium oxide at the molecular level. Etc. are used. These metal oxide particles are appropriately combined to prepare a layer having a desired refractive index.
- the average particle size of the metal oxide particles is preferably 1 to 100 nm, more preferably 1 to 70 nm.
- the refractive index of the metal oxide particles is preferably 1.70 to 2.80, more preferably 1.90 to 2.50.
- the content of the metal oxide particles in the coating solution for forming the high refractive index layer depends on the set refractive index of the high refractive index layer and the amount of other contained components, but is preferably based on 100 parts by mass of the binder component. It is 100 to 500 parts by mass, more preferably 120 to 470 parts by mass.
- Metal chelate compound It is preferable to contain a metal chelate compound for the purpose of increasing the density and strength of the high refractive index layer and further increasing the hardness.
- the metal chelate compound the metal chelate compound mentioned in the section of the hard coat layer can be used without limitation.
- the content of the metal chelate compound in the coating solution for forming a high refractive index layer is preferably 5 to 15 parts by mass, more preferably 6 to 12 parts by mass, and further preferably 8 to 8 parts by mass with respect to 100 parts by mass of the alkoxysilane compound. It is 10 parts by mass.
- the high refractive index layer is laminated on the hard coat layer or the low refractive index layer, and a half mirror layer having a multi-layered structure alternately laminated with the low refractive index layer is formed. As described above, the outermost surface of the half mirror layer needs to be a high refractive index layer.
- a specific amount of each of the above components and an optional component are dissolved in a solvent for the purpose of viscosity adjustment and easy coating to prepare a coating solution for forming a high-refractive index layer, and then this solution is applied. It can be formed by drying, then heating and heat curing.
- the solvent used for the coating solution for forming a high refractive index layer the solvent described in the section of the coating solution for forming a hard coat layer is used without limitation.
- the same coating method is adopted, but the dip coating method is preferable from the viewpoint of appearance quality and film thickness control.
- the optical member in which the hard coat layer and the antireflection layer are laminated in this order on the surface of the transparent substrate opposite to the surface on which the half mirror layer is provided (hereinafter, also referred to as the back surface) is the thickness of the transparent substrate and the incidental light. This is a preferred embodiment because the double image caused by the angle, that is, the reflection on the front surface and the reflection on the back surface of the half mirror layer can be reduced as much as possible.
- the antireflection layer is a layer provided with a high refractive index layer and a low refractive index layer in order on the hard coat layer, and as a result, the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is obtained. Less than 0.5%, the average visual reflectance of S-polarized light with an incident angle of 45 ° is less than 4.5%, and the average reflective reflectance of (P + S) / 2 polarized light with an incident angle of 45 ° is less than 2.5%. Yes, excellent antireflection ability against polarized waves is realized.
- the antireflection layer may be formed into three layers by providing a low refractive index layer between the hard coat layer and the high refractive index layer.
- Each of the above-mentioned visual average reflectances is the reflectance for each polarized wave when measured by irradiating each polarized light with the antireflection layer of the optical member of the present invention as a measuring surface.
- the hard coat layer is formed in the same manner as the hard coat layer on the half mirror layer side. The components of the layer, the coating solution, the forming method, etc. are as described in that section.
- the thickness of the hard coat layer is preferably 1 to 3 ⁇ m.
- the low-refractive index layer and the high-refractive index layer of the antireflection layer are formed in the same manner as those of the half mirror layer, and the components of each layer, the coating solution, the forming method and the like are as described in those sections.
- the refractive index of the low refractive index layer is preferably 1.28 to 1.35, and the thickness is preferably 100 to 120 nm.
- the refractive index of the high refractive index layer is preferably 1.75 to 1.82, and the thickness is preferably 80 to 170 nm.
- the antireflection layer may be formed separately from the formation of the half mirror layer, but when the first layer of the half mirror layer is a high refractive index layer, it is industrially performed as follows. It is efficient.
- a hard coat layer, a high refractive index layer, and a low refractive index layer are sequentially formed on both sides of a transparent substrate by a dip coating method, one side is protected with a protective film as an antireflection layer, and then a half mirror is placed on the opposite side. The formation of the layer is continued to obtain a predetermined half mirror layer.
- [P-polarized visual average reflectance of the antireflection layer surface] The same antireflection layer was formed on both surfaces, and the P-polarized visual average reflectance on one surface was measured in the same manner as described above.
- [S-polarized visual average reflectance of the antireflection layer surface] The same antireflection layer was formed on both surfaces, and the S-polarized visual average reflectance on one surface was measured in the same manner as described above.
- [(P + S) / 2 polarized visual average reflectance of the antireflection layer surface] The same antireflection layer was formed on both surfaces, and the (P + S) / 2 polarized visual average reflectance on one surface was measured in the same manner as described above.
- the refractive index of each layer was measured by the following method.
- the acrylic substrate was coated with a coating solution for forming each layer, and the peak or bottom value was measured using an ultraviolet-visible spectrophotometer "V-650" manufactured by JASCO Corporation.
- the refractive index of each layer was calculated using the value.
- [Clearness of reflected image and transmitted image (rear image)] A reflected image and a transmitted image were displayed, and the visual clarity was evaluated. " ⁇ ”: The image was clearly displayed. " ⁇ ”: Although the strength of the image is weak, an image that can be visually confirmed is displayed. "X”: The image was unclear.
- Example 1 A hard coat layer was formed on a polymethylmethacrylate resin (PMMA) having a thickness of 1 mm by the following method, and a half mirror layer was further formed on the hard coat layer.
- Binder (acrylate compound) 176.0 g (100 parts by mass) ⁇ 4 Functional urethane acrylate 100.0g ⁇ Pentaerythritol triacrylate 72.0 g -2-Acryloyloxyethyl hexahydrophthalic acid 4.0 g Solid silica (average particle size: 10 nm, refractive index: 1.48, solid content 20% by mass, Dispersion medium IPA) Solid content 69.0 g (39 parts by mass) ⁇ -glycidoxypropyltrimethoxysilylene 14.8 g (8.4 parts by mass) Aluminum Tris (Acetylacetonate) 1.2 g (0.7 parts by mass) 1-Hydroxy-cyclohexyl-phenyl
- both sides of the transparent substrate are dip-coated with the coating solution for forming a hard coat layer having the above composition, dried at 60 ° C. for 15 minutes, and then cured by irradiating with ultraviolet rays (500 mJ).
- a hard coat layer having a thickness of 1.50 ⁇ m was formed on both sides of the transparent substrate.
- both sides of the transparent substrate having the hard coat layer were dip-coated with the above-mentioned coating solution for forming a high refractive index layer (n2), heat-treated at 90 ° C. for 60 minutes, and had a high refractive index of 169.44 nm in thickness. Layers were formed on both sides.
- both sides were dip-coated with the coating solution for forming a low refractive index layer (n1) and heat-treated at 90 ° C. for 60 minutes to form a low refractive index layer having a thickness of 113.85 nm on both sides.
- n1 low refractive index layer
- one surface is protected by a PET film as an antireflection layer surface (back surface), and the other surface is used as a half mirror layer surface, and the formation of a high refractive index layer and a low refractive index layer is alternately repeated on the half mirror layer surface. Therefore, an optical member having a half-mirror layer having a total number of refractive index layers of 9 and an outermost surface having a high refractive index layer was produced.
- Table 3 shows the thickness and refractive index of each layer. From the results of Examples 1 to 5, the thickness of the high-refractive index layers of the first layer and the third layer is in the range of 120 to 440 nm, and the thickness of the outermost surface high-refractive index layer is in the range of 80 to 90 nm. Can be recognized.
- the half mirror layer is an even layer of 9 layers or more, a hard coat layer, a low refractive index layer, a high refractive index layer, and a low refractive index layer are formed in order on both sides of the transparent base material to form three layers.
- a method of forming an antireflection layer, then protecting one surface with a protective film, and then sequentially forming a half mirror layer on the other surface can also be adopted.
- FIG. 1 shows a reflectance distribution diagram of the optical member obtained in Example 1 with respect to a P-polarized wave.
- FIG. 2 shows a reflectance distribution diagram of the optical member obtained in Example 1 with respect to the (P + S) / 2 polarized wave.
- Examples 2-5 A half mirror layer is formed by using the coating solution for forming a low refractive index layer (n1) having the composition shown in Table 1 and the coating solution (n2) for forming a high refractive index layer having the composition shown in Table 2 in the combination shown in Table 3.
- An optical member was produced in the same manner as in Example 1 and each characteristic was measured. The results are shown in Table 3.
- Comparative Examples 1 to 10 A half mirror layer is formed by using the coating solution for forming a low refractive index layer (n1) having the composition shown in Table 1 and the coating solution (n2) for forming a high refractive index layer having the composition shown in Table 2 in the combination shown in Table 4. An optical member was produced in the same manner as in Example 1 and each characteristic was measured. The results are shown in Table 4.
- Comparative Example 1 is an example in which the refractive index of the low refractive index layer exceeds the upper limit value, the reflected image is unclear because the refractive index of the half mirror layer is low, and the reflective image is high in the antireflection layer. Reflected from both the half mirror layer and the antireflection layer, it becomes a double image and the whole image (stereoscopic image) is not clear. Moreover, it was colored. Comparative Example 2 is an example in which the refractive index of the high refractive index layer exceeds the upper limit value, and the transmission image is poor and the whole image is not clear.
- Comparative Example 3 is an example in which the refractive index of the low refractive index layer does not satisfy the lower limit, and the transmission image is poor and the whole image is not clear.
- Comparative Example 4 is an example in which the refractive index of the high-refractive index layer does not satisfy the lower limit, the reflected image is poorly reflected, the whole image is not clear, and the image is colored.
- Comparative Example 5 is an example in which the thickness of the high-refractive index layer on the outermost surface exceeds the upper limit value, and the reflected image is poorly reflected and the whole image is unclear.
- Comparative Example 6 is an example in which the thickness of the first layer of the half mirror layer is insufficient, the reflection image is slightly poor, and the same phenomenon as in Comparative Example 1 occurs, and the reflection image is mildly doubled. The statue was seen.
- Comparative Example 7 is an example in which the half mirror layer is five layers, and even if the outermost surface is a high refractive index layer, the reflection image is poor and the whole image is unclear.
- Comparative Example 8 is an example in which the half mirror layer is six layers, and the reflection image is very poor and the whole image is extremely unclear.
- Comparative Examples 9 and 10 are examples in which the refractive index of the low refractive index layer exceeds the upper limit value, and the reflected image is unclear and is a double image, and the whole image is not clear.
- FIG. 3 is a schematic view showing a typical layer structure of the optical member of the present invention.
- FIG. 4 is a schematic view showing a usage mode of the optical member of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Optical Filters (AREA)
Abstract
Provided is a half mirror-like optical member, the optical member comprising a transparent substrate, a hard coating layer, and a half mirror layer in this order, wherein: the half mirror layer is layered so that nine or more layers of a high-refractive-index layer having a refractive index of 1.75-1.82 and a low-refractive-index layer having a refractive index of 1.28-1.36 are alternately layered and the high-refractive-index layer is the frontmost surface; the thickness of the high-refractive-index layer on the frontmost surface is 80-90 mm; the thicknesses of a first layer and a third layer from the hard coating layer of the half mirror layer are 120-440 nm; and a sharp and bright three-dimensional image can be synthesized on the surface of the optical member by using a display device mainly using polarized light.
Description
本発明は、ハーフミラーとして機能する光学部材に関する。詳しくは、様々なディスプレイや自動車のインストルメントパネルなどの前面に配置されるハーフミラー性の光学部材に関する。
The present invention relates to an optical member that functions as a half mirror. More specifically, the present invention relates to a half-mirror optical member arranged on the front surface of various displays and instrument panels of automobiles.
従来から、自動車のインストルパネルの前面、即ちメーターパネル面に立体画像を合成して、運転者にさまざまな情報を知らしめる試みがなされている。具体的には、メーターパネルの後方(内部)にあるスピードメーターやタコメーター情報はメーターパネルを透過させて視野に入れ、同時にメーターパネルの前方(運転者側)の上または下に位置する表示装置から発信する画像や文字情報をメーターパネル上で反射させて反射像を視野に入れて、運転者にはあたかも立体的に見える画像等の情報を提供するものである(特許文献1)。
上記のように、当該メーターパネルは透過性と反射性の相反する二つの機能を有するハーフミラーからなる部材であることが必要である(特許文献2)。
ところで、昨今、メーターパネル内部の速度その他自動車の操作をサポートする情報をはじめ、外部から反射させて反射像を視野に入れるための画像や文字等の情報は、その多くが液晶ディスプレイで表示されるようになってきた。この液晶ディスプレイを用いて、前記ハーフミラーを介して立体画像を合成した場合、従来のハーフミラーでは、画像の明るさや鮮明性に欠ける問題が生じることが判明した。 Conventionally, attempts have been made to inform the driver of various information by synthesizing a stereoscopic image on the front surface of the instrument panel of an automobile, that is, the surface of the instrument panel. Specifically, the speedometer and tachometer information behind (inside) the instrument panel can be seen through the instrument panel, and at the same time, the display device located above or below the front (driver side) of the instrument panel. The image and text information transmitted from the camera are reflected on the instrument panel to bring the reflected image into the field of view, and the driver is provided with information such as an image that looks three-dimensional (Patent Document 1).
As described above, the meter panel needs to be a member composed of a half mirror having two functions of translucency and reflectivity, which are contradictory to each other (Patent Document 2).
By the way, in recent years, most of the information such as images and characters for reflecting the reflected image from the outside and putting the reflected image in the field of view, including the speed inside the instrument panel and other information supporting the operation of the automobile, is displayed on the liquid crystal display. It has become like that. It has been found that when a stereoscopic image is synthesized via the half mirror using this liquid crystal display, the conventional half mirror has a problem of lacking brightness and sharpness of the image.
上記のように、当該メーターパネルは透過性と反射性の相反する二つの機能を有するハーフミラーからなる部材であることが必要である(特許文献2)。
ところで、昨今、メーターパネル内部の速度その他自動車の操作をサポートする情報をはじめ、外部から反射させて反射像を視野に入れるための画像や文字等の情報は、その多くが液晶ディスプレイで表示されるようになってきた。この液晶ディスプレイを用いて、前記ハーフミラーを介して立体画像を合成した場合、従来のハーフミラーでは、画像の明るさや鮮明性に欠ける問題が生じることが判明した。 Conventionally, attempts have been made to inform the driver of various information by synthesizing a stereoscopic image on the front surface of the instrument panel of an automobile, that is, the surface of the instrument panel. Specifically, the speedometer and tachometer information behind (inside) the instrument panel can be seen through the instrument panel, and at the same time, the display device located above or below the front (driver side) of the instrument panel. The image and text information transmitted from the camera are reflected on the instrument panel to bring the reflected image into the field of view, and the driver is provided with information such as an image that looks three-dimensional (Patent Document 1).
As described above, the meter panel needs to be a member composed of a half mirror having two functions of translucency and reflectivity, which are contradictory to each other (Patent Document 2).
By the way, in recent years, most of the information such as images and characters for reflecting the reflected image from the outside and putting the reflected image in the field of view, including the speed inside the instrument panel and other information supporting the operation of the automobile, is displayed on the liquid crystal display. It has become like that. It has been found that when a stereoscopic image is synthesized via the half mirror using this liquid crystal display, the conventional half mirror has a problem of lacking brightness and sharpness of the image.
本発明者らは、液晶ディスプレイとハーフミラーの特性について鋭意研究する過程において、液晶ディスプレイは、使用する液晶のモード、即ちTN液晶、VA液晶、IPS液晶などによって偏光の量や割合に相違があるものの、いずれも偏光を主体とした表示装置である。従って、当該偏光の表面反射率や光透過率に着目してそれに好適なハーフミラーを開発することによって、鮮明且つ明るい立体画像を合成できることを見出し、本発明を完成させるに到った。
In the process of diligently studying the characteristics of a liquid crystal display and a half mirror, the present inventors differ in the amount and ratio of polarization of the liquid crystal display depending on the mode of the liquid crystal used, that is, TN liquid crystal, VA liquid crystal, IPS liquid crystal, and the like. However, all of them are display devices mainly composed of polarized light. Therefore, they have found that a clear and bright stereoscopic image can be synthesized by focusing on the surface reflectance and light transmittance of the polarized light and developing a half mirror suitable for the surface reflectance, and have completed the present invention.
即ち本発明によって、透明基材、ハードコート層、およびハーフミラー層を、この順で備えた光学部材であって、
ハーフミラー層は、屈折率が1.75~1.82である高屈折率層と屈折率が1.28~1.35である低屈折率層とが交互に9層以上積層され、高屈折率層が最表面となるよう積層されて形成されており、最表面の高屈折率層の厚みが80~90nmであり、
波長380~780nmにおける入射角45°のP偏光の視感平均反射率が30%~40%、入射角45°のS偏光の視感平均反射率が70%~85%、入射角45°の(P+S)/2偏光の視感平均反射率が50%~65%であり、XY色度図においてx:0.30~0.32、y:0.32~0.34であることを特徴とする光学部材が提供される。 That is, according to the present invention, the optical member is provided with a transparent substrate, a hard coat layer, and a half mirror layer in this order.
In the half mirror layer, nine or more layers having a high refractive index having a refractive index of 1.75 to 1.82 and a low refractive index layer having a refractive index of 1.28 to 1.35 are alternately laminated to form a high refractive index. It is formed by laminating so that the rate layer is on the outermost surface, and the thickness of the high refractive index layer on the outermost surface is 80 to 90 nm.
The average reflectance of P-polarized light with an incident angle of 45 ° at a wavelength of 380 to 780 nm is 30% to 40%, the average reflectance of S-polarized light with an incident angle of 45 ° is 70% to 85%, and the incident angle is 45 °. The visual average reflectance of (P + S) / 2 polarization is 50% to 65%, and x: 0.30 to 0.32 and y: 0.32 to 0.34 in the XY chromaticity diagram. An optical member is provided.
ハーフミラー層は、屈折率が1.75~1.82である高屈折率層と屈折率が1.28~1.35である低屈折率層とが交互に9層以上積層され、高屈折率層が最表面となるよう積層されて形成されており、最表面の高屈折率層の厚みが80~90nmであり、
波長380~780nmにおける入射角45°のP偏光の視感平均反射率が30%~40%、入射角45°のS偏光の視感平均反射率が70%~85%、入射角45°の(P+S)/2偏光の視感平均反射率が50%~65%であり、XY色度図においてx:0.30~0.32、y:0.32~0.34であることを特徴とする光学部材が提供される。 That is, according to the present invention, the optical member is provided with a transparent substrate, a hard coat layer, and a half mirror layer in this order.
In the half mirror layer, nine or more layers having a high refractive index having a refractive index of 1.75 to 1.82 and a low refractive index layer having a refractive index of 1.28 to 1.35 are alternately laminated to form a high refractive index. It is formed by laminating so that the rate layer is on the outermost surface, and the thickness of the high refractive index layer on the outermost surface is 80 to 90 nm.
The average reflectance of P-polarized light with an incident angle of 45 ° at a wavelength of 380 to 780 nm is 30% to 40%, the average reflectance of S-polarized light with an incident angle of 45 ° is 70% to 85%, and the incident angle is 45 °. The visual average reflectance of (P + S) / 2 polarization is 50% to 65%, and x: 0.30 to 0.32 and y: 0.32 to 0.34 in the XY chromaticity diagram. An optical member is provided.
上記本発明の光学部材は、
1)ハーフミラー層のハードコート層側から第1層目と第3層目の厚みが120~440nmであること、
2)高屈折率層が、アルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、金属酸化物粒子を120~470質量部、および金属キレート化合物を8~10質量部含む硬化性組成物の硬化体であること、
3)低屈折率層が、アルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、中空シリカ粒子を65~330質量部、および金属キレート化合物を8~10質量部含む硬化性組成物の硬化体であること、
4)光学部材のハーフミラー層が形成された面とは反対の面上に、ハードコート層、および反射防止層をこの順で含んでなり、反射防止層が、ハードコート層側から高屈折率層と低屈折率層とを備え、波長380~780nmにおける入射角45°のP偏光の視感平均反射率が0.5%未満、入射角45°のS偏光の視感平均反射率が4.5%未満、入射角45°の(P+S)/2偏光の視感平均反射率が2.5%未満である反射防止能を有すること、
が好適である。
更に、本発明においては、前記光学部材の製造方法であって、透明基材上に、ハードコート層、ハーフミラー層および必要に応じて設置する反射防止層の各層を構成する硬化体を生じせしめる硬化性組成物を塗布したのち硬化させて、順次形成する、所謂湿式コート法によって製造することを特徴とする前記光学部材の製造方法が提供される。 The optical member of the present invention is
1) The thickness of the first layer and the third layer from the hard coat layer side of the half mirror layer is 120 to 440 nm.
2) Curing of the high refractive index layer containing 120 to 470 parts by mass of metal oxide particles and 8 to 10 parts by mass of a metal chelate compound with respect to 100 parts by mass of a binder component composed of an alkoxysilane compound or a hydrolyzate thereof. Being a cured product of the sex composition,
3) The low refractive index layer contains 65 to 330 parts by mass of hollow silica particles and 8 to 10 parts by mass of a metal chelate compound with respect to 100 parts by mass of a binder component composed of an alkoxysilane compound or a hydrolyzate thereof. Being a cured product of the composition,
4) A hard coat layer and an antireflection layer are included in this order on a surface opposite to the surface on which the half mirror layer of the optical member is formed, and the antireflection layer has a high refractive index from the hard coat layer side. It is provided with a layer and a low refractive index layer, and the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is less than 0.5%, and the visual average reflectance of S-polarized light having an incident angle of 45 ° is 4. It has antireflection ability that the visual average reflectance of (P + S) / 2 polarization with less than 5.5% and an incident angle of 45 ° is less than 2.5%.
Is preferable.
Further, in the present invention, in the method for manufacturing the optical member, a cured body constituting each layer of a hard coat layer, a half mirror layer and an antireflection layer to be installed as needed is formed on a transparent substrate. Provided is a method for producing an optical member, which comprises applying a curable composition and then curing the composition to sequentially form the optical member by a so-called wet coating method.
1)ハーフミラー層のハードコート層側から第1層目と第3層目の厚みが120~440nmであること、
2)高屈折率層が、アルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、金属酸化物粒子を120~470質量部、および金属キレート化合物を8~10質量部含む硬化性組成物の硬化体であること、
3)低屈折率層が、アルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、中空シリカ粒子を65~330質量部、および金属キレート化合物を8~10質量部含む硬化性組成物の硬化体であること、
4)光学部材のハーフミラー層が形成された面とは反対の面上に、ハードコート層、および反射防止層をこの順で含んでなり、反射防止層が、ハードコート層側から高屈折率層と低屈折率層とを備え、波長380~780nmにおける入射角45°のP偏光の視感平均反射率が0.5%未満、入射角45°のS偏光の視感平均反射率が4.5%未満、入射角45°の(P+S)/2偏光の視感平均反射率が2.5%未満である反射防止能を有すること、
が好適である。
更に、本発明においては、前記光学部材の製造方法であって、透明基材上に、ハードコート層、ハーフミラー層および必要に応じて設置する反射防止層の各層を構成する硬化体を生じせしめる硬化性組成物を塗布したのち硬化させて、順次形成する、所謂湿式コート法によって製造することを特徴とする前記光学部材の製造方法が提供される。 The optical member of the present invention is
1) The thickness of the first layer and the third layer from the hard coat layer side of the half mirror layer is 120 to 440 nm.
2) Curing of the high refractive index layer containing 120 to 470 parts by mass of metal oxide particles and 8 to 10 parts by mass of a metal chelate compound with respect to 100 parts by mass of a binder component composed of an alkoxysilane compound or a hydrolyzate thereof. Being a cured product of the sex composition,
3) The low refractive index layer contains 65 to 330 parts by mass of hollow silica particles and 8 to 10 parts by mass of a metal chelate compound with respect to 100 parts by mass of a binder component composed of an alkoxysilane compound or a hydrolyzate thereof. Being a cured product of the composition,
4) A hard coat layer and an antireflection layer are included in this order on a surface opposite to the surface on which the half mirror layer of the optical member is formed, and the antireflection layer has a high refractive index from the hard coat layer side. It is provided with a layer and a low refractive index layer, and the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is less than 0.5%, and the visual average reflectance of S-polarized light having an incident angle of 45 ° is 4. It has antireflection ability that the visual average reflectance of (P + S) / 2 polarization with less than 5.5% and an incident angle of 45 ° is less than 2.5%.
Is preferable.
Further, in the present invention, in the method for manufacturing the optical member, a cured body constituting each layer of a hard coat layer, a half mirror layer and an antireflection layer to be installed as needed is formed on a transparent substrate. Provided is a method for producing an optical member, which comprises applying a curable composition and then curing the composition to sequentially form the optical member by a so-called wet coating method.
本発明の光学部材は、偏光に対するハーフミラー性能に優れているので、偏光を利用する表示装置から発信される画像や文字の情報の透過像に加えて、当該情報を反射させて鮮明に且つ明るい反射像を作ることができる。
上記性能を有するので、光学部材上に、透過像と反射像からなる鮮明な立体像を合成して視野に入れることができ、様々なディスプレイ装置の前面パネル、プロンプターや3D(擬似)ホログラム、特に自動車のインストルメントパネルの前面パネルとして好適に利用できる。 Since the optical member of the present invention is excellent in half mirror performance against polarization, it reflects the information in addition to the transmitted image of the information of the image and characters transmitted from the display device using the polarization to be clear and bright. You can make a reflection image.
Since it has the above performance, it is possible to synthesize a clear stereoscopic image consisting of a transmitted image and a reflected image on an optical member and put it in the field of view. It can be suitably used as a front panel of an automobile instrument panel.
上記性能を有するので、光学部材上に、透過像と反射像からなる鮮明な立体像を合成して視野に入れることができ、様々なディスプレイ装置の前面パネル、プロンプターや3D(擬似)ホログラム、特に自動車のインストルメントパネルの前面パネルとして好適に利用できる。 Since the optical member of the present invention is excellent in half mirror performance against polarization, it reflects the information in addition to the transmitted image of the information of the image and characters transmitted from the display device using the polarization to be clear and bright. You can make a reflection image.
Since it has the above performance, it is possible to synthesize a clear stereoscopic image consisting of a transmitted image and a reflected image on an optical member and put it in the field of view. It can be suitably used as a front panel of an automobile instrument panel.
<光学部材>
本発明の光学部材は、透明基材上に、ハードコート層並びにハーフミラー層が基本構成層として形成されている。
これらの構成層以外に、後述する諸偏光反射特性や色調性能を損なわない範囲で任意の層を設けることができる。例えば、透明基材とハードコート層との間にプライマー層、ハーフミラー層の上に防汚層、帯電防止層、あるいは抗菌・抗ウイルス層などを設けることができる。特に、ハーフミラー層を設けた透明基材の面とは反対の面に反射防止層を設けることは好ましい態様である。詳しくは後述する。 <Optical member>
In the optical member of the present invention, a hard coat layer and a half mirror layer are formed as basic constituent layers on a transparent substrate.
In addition to these constituent layers, any layer can be provided as long as the various polarization reflection characteristics and color tone performance described later are not impaired. For example, an antifouling layer, an antistatic layer, an antibacterial / antiviral layer, or the like can be provided between the transparent substrate and the hard coat layer on the primer layer and the half mirror layer. In particular, it is a preferred embodiment to provide the antireflection layer on the surface opposite to the surface of the transparent substrate on which the half mirror layer is provided. Details will be described later.
本発明の光学部材は、透明基材上に、ハードコート層並びにハーフミラー層が基本構成層として形成されている。
これらの構成層以外に、後述する諸偏光反射特性や色調性能を損なわない範囲で任意の層を設けることができる。例えば、透明基材とハードコート層との間にプライマー層、ハーフミラー層の上に防汚層、帯電防止層、あるいは抗菌・抗ウイルス層などを設けることができる。特に、ハーフミラー層を設けた透明基材の面とは反対の面に反射防止層を設けることは好ましい態様である。詳しくは後述する。 <Optical member>
In the optical member of the present invention, a hard coat layer and a half mirror layer are formed as basic constituent layers on a transparent substrate.
In addition to these constituent layers, any layer can be provided as long as the various polarization reflection characteristics and color tone performance described later are not impaired. For example, an antifouling layer, an antistatic layer, an antibacterial / antiviral layer, or the like can be provided between the transparent substrate and the hard coat layer on the primer layer and the half mirror layer. In particular, it is a preferred embodiment to provide the antireflection layer on the surface opposite to the surface of the transparent substrate on which the half mirror layer is provided. Details will be described later.
<透明基材>
本発明の光学部材がハーフミラーとして機能するために、基材は透明基材であることが必要である。
当該透明基材としては、耐衝撃強度および透過性に優れる透明樹脂で形成されていることが好ましい。具体的には、波長380~780nmでの全光線透過率は、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは92%以上である透明樹脂が好適である。
本発明に用いる透明基材としては、アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂およびトリアセチルセルロース樹脂からなる群より選ばれる少なくとも一種の樹脂により形成されていることが、透明性および耐衝撃強度の観点から好ましい。これらの樹脂を積層した積層透明基材でもよい。例えば、ポリカーボネート樹脂とポリメチルメタクリレート樹脂との積層透明基材でもよい。
透明基材の厚みは、要求される透光性や耐衝撃強度から適宜選択して設計されるが、通常、0.2~2.0mmの範囲である。 <Transparent substrate>
In order for the optical member of the present invention to function as a half mirror, the base material needs to be a transparent base material.
The transparent substrate is preferably formed of a transparent resin having excellent impact strength and permeability. Specifically, a transparent resin having a total light transmittance of preferably 85% or more, more preferably 90% or more, still more preferably 92% or more at a wavelength of 380 to 780 nm is preferable.
The transparent base material used in the present invention is formed of at least one resin selected from the group consisting of acrylic resin, polycarbonate resin, polyethylene terephthalate resin and triacetyl cellulose resin from the viewpoint of transparency and impact resistance. Is preferable. A laminated transparent base material in which these resins are laminated may be used. For example, a laminated transparent base material of a polycarbonate resin and a polymethylmethacrylate resin may be used.
The thickness of the transparent substrate is appropriately selected and designed from the required translucency and impact resistance, but is usually in the range of 0.2 to 2.0 mm.
本発明の光学部材がハーフミラーとして機能するために、基材は透明基材であることが必要である。
当該透明基材としては、耐衝撃強度および透過性に優れる透明樹脂で形成されていることが好ましい。具体的には、波長380~780nmでの全光線透過率は、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは92%以上である透明樹脂が好適である。
本発明に用いる透明基材としては、アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂およびトリアセチルセルロース樹脂からなる群より選ばれる少なくとも一種の樹脂により形成されていることが、透明性および耐衝撃強度の観点から好ましい。これらの樹脂を積層した積層透明基材でもよい。例えば、ポリカーボネート樹脂とポリメチルメタクリレート樹脂との積層透明基材でもよい。
透明基材の厚みは、要求される透光性や耐衝撃強度から適宜選択して設計されるが、通常、0.2~2.0mmの範囲である。 <Transparent substrate>
In order for the optical member of the present invention to function as a half mirror, the base material needs to be a transparent base material.
The transparent substrate is preferably formed of a transparent resin having excellent impact strength and permeability. Specifically, a transparent resin having a total light transmittance of preferably 85% or more, more preferably 90% or more, still more preferably 92% or more at a wavelength of 380 to 780 nm is preferable.
The transparent base material used in the present invention is formed of at least one resin selected from the group consisting of acrylic resin, polycarbonate resin, polyethylene terephthalate resin and triacetyl cellulose resin from the viewpoint of transparency and impact resistance. Is preferable. A laminated transparent base material in which these resins are laminated may be used. For example, a laminated transparent base material of a polycarbonate resin and a polymethylmethacrylate resin may be used.
The thickness of the transparent substrate is appropriately selected and designed from the required translucency and impact resistance, but is usually in the range of 0.2 to 2.0 mm.
<ハードコート層>
透明基材上に、当該基板とハーフミラー層との密着性、および光学部材の強度を向上させる目的でハードコート層が設けられる。
具体的には、ウレタン(メタ)アクリレート化合物を主成分とする(メタ)アクリレート系重合性化合物を重合・硬化させてなる樹脂成分を母材として含有する厚み1~3μmの層である。この厚みが薄すぎると、ハードコート層の基本的な物性、例えば、硬度や強度等を確保することが困難となる。過度に厚いと、透明基材との物性差、例えば柔軟性や伸び等の差が大きくなって、割れ等の成形不良を生じ易くなってしまう。ハードコート層の厚みは、好ましくは1.2~2.5μm、より好ましくは1.5~2μmである。
当該ハードコート層としては、(メタ)アクリレート系重合性化合物、具体的にはウレタン(メタ)アクリレート化合物と通常の(メタ)アクリレート化合物との混合物を重合・硬化させてなる樹脂成分、シランカップリング剤、シリカ粒子および金属キレート化合物を含有することが好適である。 <Hard coat layer>
A hard coat layer is provided on the transparent substrate for the purpose of improving the adhesion between the substrate and the half mirror layer and the strength of the optical member.
Specifically, it is a layer having a thickness of 1 to 3 μm containing a resin component obtained by polymerizing and curing a (meth) acrylate-based polymerizable compound containing a urethane (meth) acrylate compound as a main component as a base material. If this thickness is too thin, it becomes difficult to secure the basic physical properties of the hard coat layer, for example, hardness and strength. If it is excessively thick, the difference in physical properties from the transparent base material, for example, the difference in flexibility and elongation becomes large, and molding defects such as cracks are likely to occur. The thickness of the hardcoat layer is preferably 1.2 to 2.5 μm, more preferably 1.5 to 2 μm.
The hard coat layer is a resin component obtained by polymerizing and curing a (meth) acrylate-based polymerizable compound, specifically a mixture of a urethane (meth) acrylate compound and a normal (meth) acrylate compound, and a silane coupling. It is preferred to contain agents, silica particles and metal chelate compounds.
透明基材上に、当該基板とハーフミラー層との密着性、および光学部材の強度を向上させる目的でハードコート層が設けられる。
具体的には、ウレタン(メタ)アクリレート化合物を主成分とする(メタ)アクリレート系重合性化合物を重合・硬化させてなる樹脂成分を母材として含有する厚み1~3μmの層である。この厚みが薄すぎると、ハードコート層の基本的な物性、例えば、硬度や強度等を確保することが困難となる。過度に厚いと、透明基材との物性差、例えば柔軟性や伸び等の差が大きくなって、割れ等の成形不良を生じ易くなってしまう。ハードコート層の厚みは、好ましくは1.2~2.5μm、より好ましくは1.5~2μmである。
当該ハードコート層としては、(メタ)アクリレート系重合性化合物、具体的にはウレタン(メタ)アクリレート化合物と通常の(メタ)アクリレート化合物との混合物を重合・硬化させてなる樹脂成分、シランカップリング剤、シリカ粒子および金属キレート化合物を含有することが好適である。 <Hard coat layer>
A hard coat layer is provided on the transparent substrate for the purpose of improving the adhesion between the substrate and the half mirror layer and the strength of the optical member.
Specifically, it is a layer having a thickness of 1 to 3 μm containing a resin component obtained by polymerizing and curing a (meth) acrylate-based polymerizable compound containing a urethane (meth) acrylate compound as a main component as a base material. If this thickness is too thin, it becomes difficult to secure the basic physical properties of the hard coat layer, for example, hardness and strength. If it is excessively thick, the difference in physical properties from the transparent base material, for example, the difference in flexibility and elongation becomes large, and molding defects such as cracks are likely to occur. The thickness of the hardcoat layer is preferably 1.2 to 2.5 μm, more preferably 1.5 to 2 μm.
The hard coat layer is a resin component obtained by polymerizing and curing a (meth) acrylate-based polymerizable compound, specifically a mixture of a urethane (meth) acrylate compound and a normal (meth) acrylate compound, and a silane coupling. It is preferred to contain agents, silica particles and metal chelate compounds.
〔樹脂成分〕
樹脂成分は、ハードコート層を形成するためのバインダーとしての機能を有し且つ母材となる。当該樹脂成分は、以下に示す(メタ)アクリレート系重合性化合物の重合体である。
(メタ)アクリレート系重合性化合物としては、4官能以上のウレタン(メタ)アクリレート化合物と、通常の(メタ)アクリレート化合物との混合物が好適に用いられる。
4官能以上のウレタン(メタ)アクリレート化合物は硬化により比較的硬質な部分を形成し、(メタ)アクリレート化合物は硬化により柔軟な部分を形成するものであり、両者を併用することにより、柔軟性と硬度を両立した膜を形成することができる。
尚、ウレタン(メタ)アクリレート化合物は、多価イソシアネート化合物と複数の水酸基を有するポリオール化合物とを反応して得られる末端イソシアネート化合物に、さらに水酸基含有(メタ)アクリレートを反応させて得られるものであり、ウレタン(メタ)アクリレート化合物中の(メタ)アクリロイル基が官能基であり、例えば(メタ)アクリロイル基を4個有するウレタン(メタ)アクリレート化合物は4官能である。 [Resin component]
The resin component has a function as a binder for forming the hard coat layer and serves as a base material. The resin component is a polymer of the (meth) acrylate-based polymerizable compound shown below.
As the (meth) acrylate-based polymerizable compound, a mixture of a tetrafunctional or higher functional urethane (meth) acrylate compound and a normal (meth) acrylate compound is preferably used.
A urethane (meth) acrylate compound having four or more functionalities forms a relatively hard portion by curing, and a (meth) acrylate compound forms a flexible portion by curing. It is possible to form a film having both hardness.
The urethane (meth) acrylate compound is obtained by further reacting a terminal isocyanate compound obtained by reacting a polyhydric isocyanate compound with a polyol compound having a plurality of hydroxyl groups with a hydroxyl group-containing (meth) acrylate. The (meth) acryloyl group in the urethane (meth) acrylate compound is a functional group, and for example, a urethane (meth) acrylate compound having four (meth) acryloyl groups is tetrafunctional.
樹脂成分は、ハードコート層を形成するためのバインダーとしての機能を有し且つ母材となる。当該樹脂成分は、以下に示す(メタ)アクリレート系重合性化合物の重合体である。
(メタ)アクリレート系重合性化合物としては、4官能以上のウレタン(メタ)アクリレート化合物と、通常の(メタ)アクリレート化合物との混合物が好適に用いられる。
4官能以上のウレタン(メタ)アクリレート化合物は硬化により比較的硬質な部分を形成し、(メタ)アクリレート化合物は硬化により柔軟な部分を形成するものであり、両者を併用することにより、柔軟性と硬度を両立した膜を形成することができる。
尚、ウレタン(メタ)アクリレート化合物は、多価イソシアネート化合物と複数の水酸基を有するポリオール化合物とを反応して得られる末端イソシアネート化合物に、さらに水酸基含有(メタ)アクリレートを反応させて得られるものであり、ウレタン(メタ)アクリレート化合物中の(メタ)アクリロイル基が官能基であり、例えば(メタ)アクリロイル基を4個有するウレタン(メタ)アクリレート化合物は4官能である。 [Resin component]
The resin component has a function as a binder for forming the hard coat layer and serves as a base material. The resin component is a polymer of the (meth) acrylate-based polymerizable compound shown below.
As the (meth) acrylate-based polymerizable compound, a mixture of a tetrafunctional or higher functional urethane (meth) acrylate compound and a normal (meth) acrylate compound is preferably used.
A urethane (meth) acrylate compound having four or more functionalities forms a relatively hard portion by curing, and a (meth) acrylate compound forms a flexible portion by curing. It is possible to form a film having both hardness.
The urethane (meth) acrylate compound is obtained by further reacting a terminal isocyanate compound obtained by reacting a polyhydric isocyanate compound with a polyol compound having a plurality of hydroxyl groups with a hydroxyl group-containing (meth) acrylate. The (meth) acryloyl group in the urethane (meth) acrylate compound is a functional group, and for example, a urethane (meth) acrylate compound having four (meth) acryloyl groups is tetrafunctional.
従って、4官能以上のウレタン(メタ)アクリレート化合物とは、(メタ)アクリロイル基を4個以上有しているウレタン化合物であり、例えば、ペンタエリスリトールジ(メタ)アクリレートを、末端イソシアネート化合物と反応させ、イソシアネート化合物の両末端に、それぞれ2個の(メタ)アクリロイル基を導入したものが、4官能のウレタン(メタ)アクリレート化合物として使用される。
6官能のウレタン(メタ)アクリレート化合物としては、ペンタエリスリトールトリ(メタ)アクリレートに、両末端イソシアネート(例えばトリヘキサジエチレンジイソシアネート)を反応させることにより、分子鎖末端のそれぞれに3個の(メタ)アクリロイル基を有する化合物が得られる。 Therefore, the tetrafunctional or higher functional urethane (meth) acrylate compound is a urethane compound having four or more (meth) acryloyl groups, and for example, pentaerythritol di (meth) acrylate is reacted with the terminal isocyanate compound. , A compound in which two (meth) acryloyl groups are introduced at both ends of the isocyanate compound is used as a tetrafunctional urethane (meth) acrylate compound.
As the hexafunctional urethane (meth) acrylate compound, pentaerythritol tri (meth) acrylate is reacted with both-terminal isocyanates (for example, trihexadiethylenediisocyanate) to cause three (meth) acryloyl at each end of the molecular chain. A compound having a group is obtained.
6官能のウレタン(メタ)アクリレート化合物としては、ペンタエリスリトールトリ(メタ)アクリレートに、両末端イソシアネート(例えばトリヘキサジエチレンジイソシアネート)を反応させることにより、分子鎖末端のそれぞれに3個の(メタ)アクリロイル基を有する化合物が得られる。 Therefore, the tetrafunctional or higher functional urethane (meth) acrylate compound is a urethane compound having four or more (meth) acryloyl groups, and for example, pentaerythritol di (meth) acrylate is reacted with the terminal isocyanate compound. , A compound in which two (meth) acryloyl groups are introduced at both ends of the isocyanate compound is used as a tetrafunctional urethane (meth) acrylate compound.
As the hexafunctional urethane (meth) acrylate compound, pentaerythritol tri (meth) acrylate is reacted with both-terminal isocyanates (for example, trihexadiethylenediisocyanate) to cause three (meth) acryloyl at each end of the molecular chain. A compound having a group is obtained.
4官能以上のウレタン(メタ)アクリレート化合物に加えて、ハードコート層の耐クラック性や柔軟性や伸びを向上させる目的で、(メタ)アクリレート化合物を配合することが好ましい。
具体的(メタ)アクリレート化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート等の1官能(メタ)アクリレート化合物;1,4ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の3~4官能(メタ)アクリレート化合物;ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート等の5~6官能(メタ)アクリレート化合物などが挙げられる。特に1~3官能の(メタ)アクリレート化合物が、耐クラック性に優れる点で好適である。 In addition to the tetrafunctional or higher functional urethane (meth) acrylate compound, it is preferable to add the (meth) acrylate compound for the purpose of improving the crack resistance, flexibility and elongation of the hard coat layer.
Specific (meth) acrylate compounds include monofunctional (meth) acrylate compounds such as methyl (meth) acrylate, ethyl (meth) acrylate, and n-butyl (meth) acrylate; 1,4 butanediol di (meth) acrylate, Bifunctional (meth) acrylate compounds such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate; pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Examples thereof include 3 to 4 functional (meth) acrylate compounds such as trimethylolpropantri (meth) acrylate; and 5 to 6 functional (meth) acrylate compounds such as dipentaerythritol penta (meth) acrylate and dipentaerythritol hexaacrylate. In particular, a 1- to trifunctional (meth) acrylate compound is suitable because it has excellent crack resistance.
具体的(メタ)アクリレート化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート等の1官能(メタ)アクリレート化合物;1,4ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の3~4官能(メタ)アクリレート化合物;ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート等の5~6官能(メタ)アクリレート化合物などが挙げられる。特に1~3官能の(メタ)アクリレート化合物が、耐クラック性に優れる点で好適である。 In addition to the tetrafunctional or higher functional urethane (meth) acrylate compound, it is preferable to add the (meth) acrylate compound for the purpose of improving the crack resistance, flexibility and elongation of the hard coat layer.
Specific (meth) acrylate compounds include monofunctional (meth) acrylate compounds such as methyl (meth) acrylate, ethyl (meth) acrylate, and n-butyl (meth) acrylate; 1,4 butanediol di (meth) acrylate, Bifunctional (meth) acrylate compounds such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate; pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Examples thereof include 3 to 4 functional (meth) acrylate compounds such as trimethylolpropantri (meth) acrylate; and 5 to 6 functional (meth) acrylate compounds such as dipentaerythritol penta (meth) acrylate and dipentaerythritol hexaacrylate. In particular, a 1- to trifunctional (meth) acrylate compound is suitable because it has excellent crack resistance.
本発明において、前記の4官能以上のウレタン(メタ)アクリレート化合物と(メタ)アクリレート化合物とは、通常、30/70~50/50質量比[(メタ)アクリレート/ウレタン(メタ)アクリレート]で配合されていることが好ましい。(メタ)アクリレート化合物の使用量が多すぎると、得られるハードコート層の硬度が小さくなって耐摩耗性が低下し、ハードコート層としての機能が低下する。
In the present invention, the above-mentioned tetrafunctional or higher functional urethane (meth) acrylate compound and the (meth) acrylate compound are usually blended in a mass ratio of 30/70 to 50/50 [(meth) acrylate / urethane (meth) acrylate]. It is preferable that it is. If the amount of the (meth) acrylate compound used is too large, the hardness of the obtained hardcoat layer becomes small, the wear resistance is lowered, and the function as the hardcoat layer is lowered.
ハードコート層には、上記4官能以上のウレタン(メタ)アクリレート化合物および(メタ)アクリレート化合物に加えて、ハードコート層の柔軟性の改善のために、3官能以下のウレタン(メタ)アクリレート化合物を更に使用してもよい。
In the hard coat layer, in addition to the above-mentioned tetrafunctional or higher functional urethane (meth) acrylate compound and (meth) acrylate compound, a trifunctional or lower functional urethane (meth) acrylate compound is used to improve the flexibility of the hard coat layer. Further may be used.
〔シランカップリング剤〕
ハードコート層は、シランカップリング剤を含有することが好ましい。シランカップリング剤は、このハードコート層中に後述するシリカ粒子を脱落することなく安定に分散して保持すると同時に、その上に形成されるハーフミラー層との密着性を確保するために使用される成分である。 〔Silane coupling agent〕
The hardcoat layer preferably contains a silane coupling agent. The silane coupling agent is used to stably disperse and hold the silica particles described later in the hard coat layer without falling off, and at the same time, to secure the adhesion with the half mirror layer formed on the silica particles. It is a component.
ハードコート層は、シランカップリング剤を含有することが好ましい。シランカップリング剤は、このハードコート層中に後述するシリカ粒子を脱落することなく安定に分散して保持すると同時に、その上に形成されるハーフミラー層との密着性を確保するために使用される成分である。 〔Silane coupling agent〕
The hardcoat layer preferably contains a silane coupling agent. The silane coupling agent is used to stably disperse and hold the silica particles described later in the hard coat layer without falling off, and at the same time, to secure the adhesion with the half mirror layer formed on the silica particles. It is a component.
シランカップリング剤としては、従来公知のものが何ら制限なく使用できる。
具体的には、ビニルトリクロロシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-(N-スチリルメチル-β-アミノエチルアミノ)プロピルトリメトキシシラン塩酸塩、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン等を挙げることができる。
このようなシランカップリング剤は、その加水分解物が、加水分解と同時に重縮合し、Si-O-Si結合によりネットワーク状に連なった重合物を形成する。従って、このようなシランカップリング剤の使用により、ハードコート層を緻密なものとすることができる。 As the silane coupling agent, conventionally known ones can be used without any limitation.
Specifically, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, γ- (meth) acryloxipropyltrimethoxysilane, γ-glycidoxy Propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, N- ( β-Aminoethyl) -γ-aminopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ- (N-styrylmethyl-β-aminoethylamino) propyltrimethoxysilane hydrochloride, γ-chloropropyltrimethoxy Examples thereof include silane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane and the like.
In such a silane coupling agent, the hydrolyzate is polycondensed at the same time as the hydrolysis to form a polymer connected in a network shape by a Si—O—Si bond. Therefore, by using such a silane coupling agent, the hard coat layer can be made dense.
具体的には、ビニルトリクロロシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-(N-スチリルメチル-β-アミノエチルアミノ)プロピルトリメトキシシラン塩酸塩、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン等を挙げることができる。
このようなシランカップリング剤は、その加水分解物が、加水分解と同時に重縮合し、Si-O-Si結合によりネットワーク状に連なった重合物を形成する。従って、このようなシランカップリング剤の使用により、ハードコート層を緻密なものとすることができる。 As the silane coupling agent, conventionally known ones can be used without any limitation.
Specifically, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, γ- (meth) acryloxipropyltrimethoxysilane, γ-glycidoxy Propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, N- ( β-Aminoethyl) -γ-aminopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ- (N-styrylmethyl-β-aminoethylamino) propyltrimethoxysilane hydrochloride, γ-chloropropyltrimethoxy Examples thereof include silane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane and the like.
In such a silane coupling agent, the hydrolyzate is polycondensed at the same time as the hydrolysis to form a polymer connected in a network shape by a Si—O—Si bond. Therefore, by using such a silane coupling agent, the hard coat layer can be made dense.
本発明において、ハードコート層中のシランカップリング剤の含有割合は、前述した(メタ)アクリレート系重合性化合物から形成された樹脂成分100質量部当り、好ましくは1~30質量部、より好ましくは10~20質量部の範囲に設定される。シランカップリング剤の含有量が必要以上に多いと、ハードコート層の基本的性能、即ち硬度や耐擦傷性などが損なわれてしまう。この含有量が少なすぎると、ハーフミラー層との密着性が損なわれ剥がれ等を生じ易くなってしまう。
In the present invention, the content ratio of the silane coupling agent in the hard coat layer is preferably 1 to 30 parts by mass, more preferably 1 to 30 parts by mass, based on 100 parts by mass of the resin component formed from the above-mentioned (meth) acrylate-based polymerizable compound. It is set in the range of 10 to 20 parts by mass. If the content of the silane coupling agent is higher than necessary, the basic performance of the hardcoat layer, that is, hardness and scratch resistance, will be impaired. If this content is too small, the adhesion to the half mirror layer is impaired and peeling or the like is likely to occur.
〔中実シリカ粒子〕
ハードコート層は、中実シリカ粒子を含有することが好ましい。中実シリカ粒子は内部が密な、内部に空洞を有しない非中空の粒子であり、密度は通常1.9g/cm3以上である。当該中実シリカ粒子としては、粒径が5~500nmで屈折率が1.44~1.5の範囲にあるものが好ましい。中実シリカ粒子を含有させることにより、ハードコート層の全体にわたって硬度等の基本的な特性を均一に付与することができる。また、かかる中実シリカ粒子を含むことにより、後述するシリカ粒子或いは金属酸化物粒子を含有させたハーフミラー層との密着性を高め、ハードコート層やハーフミラー層の割れ等を効果的に防止することができる。
中実シリカ粒子の含有量は、前述した(メタ)アクリレート系重合性化合物から形成される樹脂成分100質量部当り、好ましくは10~80質量部、さらに好ましくは30~60質量部である。かかる中実シリカ粒子が、このような範囲でハードコート層中に含まれていることにより、ハードコート層の基本特性を維持しつつ、ハーフミラー層との密着性を高め、割れ等を有効に防止することができる。 [Solid silica particles]
The hardcourt layer preferably contains solid silica particles. Solid silica particles are non-hollow particles that are dense inside and do not have cavities inside, and have a density of usually 1.9 g / cm 3 or more. The solid silica particles preferably have a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.5. By containing the solid silica particles, basic properties such as hardness can be uniformly imparted over the entire hard coat layer. Further, by including such solid silica particles, the adhesion to the half mirror layer containing the silica particles or the metal oxide particles described later is enhanced, and the hard coat layer and the half mirror layer are effectively prevented from cracking. can do.
The content of the solid silica particles is preferably 10 to 80 parts by mass, more preferably 30 to 60 parts by mass, per 100 parts by mass of the resin component formed from the above-mentioned (meth) acrylate-based polymerizable compound. By including such solid silica particles in the hard coat layer in such a range, the basic characteristics of the hard coat layer are maintained, the adhesion to the half mirror layer is enhanced, and cracking and the like are effectively prevented. Can be prevented.
ハードコート層は、中実シリカ粒子を含有することが好ましい。中実シリカ粒子は内部が密な、内部に空洞を有しない非中空の粒子であり、密度は通常1.9g/cm3以上である。当該中実シリカ粒子としては、粒径が5~500nmで屈折率が1.44~1.5の範囲にあるものが好ましい。中実シリカ粒子を含有させることにより、ハードコート層の全体にわたって硬度等の基本的な特性を均一に付与することができる。また、かかる中実シリカ粒子を含むことにより、後述するシリカ粒子或いは金属酸化物粒子を含有させたハーフミラー層との密着性を高め、ハードコート層やハーフミラー層の割れ等を効果的に防止することができる。
中実シリカ粒子の含有量は、前述した(メタ)アクリレート系重合性化合物から形成される樹脂成分100質量部当り、好ましくは10~80質量部、さらに好ましくは30~60質量部である。かかる中実シリカ粒子が、このような範囲でハードコート層中に含まれていることにより、ハードコート層の基本特性を維持しつつ、ハーフミラー層との密着性を高め、割れ等を有効に防止することができる。 [Solid silica particles]
The hardcourt layer preferably contains solid silica particles. Solid silica particles are non-hollow particles that are dense inside and do not have cavities inside, and have a density of usually 1.9 g / cm 3 or more. The solid silica particles preferably have a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.5. By containing the solid silica particles, basic properties such as hardness can be uniformly imparted over the entire hard coat layer. Further, by including such solid silica particles, the adhesion to the half mirror layer containing the silica particles or the metal oxide particles described later is enhanced, and the hard coat layer and the half mirror layer are effectively prevented from cracking. can do.
The content of the solid silica particles is preferably 10 to 80 parts by mass, more preferably 30 to 60 parts by mass, per 100 parts by mass of the resin component formed from the above-mentioned (meth) acrylate-based polymerizable compound. By including such solid silica particles in the hard coat layer in such a range, the basic characteristics of the hard coat layer are maintained, the adhesion to the half mirror layer is enhanced, and cracking and the like are effectively prevented. Can be prevented.
〔金属キレート化合物〕
ハードコート層は、金属キレート化合物を含有することが好ましい。金属キレート化合物は、ハードコート層中に架橋構造を導入しハードコート層の緻密性や強度、更には硬度を高める目的で使用される。
前述した(メタ)アクリレート系重合性化合物による樹脂成分においても架橋構造は形成されているが、柔軟性も必要なためにその緻密性は十分ではない。金属キレート化合物は、ハードコート層の柔軟性を損なわずにその緻密性の低下を補うために、換言すると、膜の緻密性に影響される硬度等の機械的特性を調整するために使用されるものである。また、このような金属キレート化合物は、ハーフミラー層にも含まれているため、金属キレート化合物の使用により、ハードコート層とハーフミラー層との親和性が増して密着性がより高められ、成形時の割れ等を有効に防止することができる。 [Metal chelate compound]
The hardcoat layer preferably contains a metal chelate compound. The metal chelate compound is used for the purpose of introducing a crosslinked structure into the hardcoat layer to increase the denseness and strength of the hardcoat layer, as well as the hardness.
A crosslinked structure is also formed in the resin component made of the (meth) acrylate-based polymerizable compound described above, but its denseness is not sufficient because flexibility is also required. Metal chelate compounds are used to compensate for the reduced tightness of the hardcourt layer without compromising its flexibility, in other words to adjust mechanical properties such as hardness that are affected by the tightness of the film. It is a thing. Further, since such a metal chelate compound is also contained in the half mirror layer, the use of the metal chelate compound increases the affinity between the hard coat layer and the half mirror layer, further enhances the adhesion, and molds. It is possible to effectively prevent time cracking and the like.
ハードコート層は、金属キレート化合物を含有することが好ましい。金属キレート化合物は、ハードコート層中に架橋構造を導入しハードコート層の緻密性や強度、更には硬度を高める目的で使用される。
前述した(メタ)アクリレート系重合性化合物による樹脂成分においても架橋構造は形成されているが、柔軟性も必要なためにその緻密性は十分ではない。金属キレート化合物は、ハードコート層の柔軟性を損なわずにその緻密性の低下を補うために、換言すると、膜の緻密性に影響される硬度等の機械的特性を調整するために使用されるものである。また、このような金属キレート化合物は、ハーフミラー層にも含まれているため、金属キレート化合物の使用により、ハードコート層とハーフミラー層との親和性が増して密着性がより高められ、成形時の割れ等を有効に防止することができる。 [Metal chelate compound]
The hardcoat layer preferably contains a metal chelate compound. The metal chelate compound is used for the purpose of introducing a crosslinked structure into the hardcoat layer to increase the denseness and strength of the hardcoat layer, as well as the hardness.
A crosslinked structure is also formed in the resin component made of the (meth) acrylate-based polymerizable compound described above, but its denseness is not sufficient because flexibility is also required. Metal chelate compounds are used to compensate for the reduced tightness of the hardcourt layer without compromising its flexibility, in other words to adjust mechanical properties such as hardness that are affected by the tightness of the film. It is a thing. Further, since such a metal chelate compound is also contained in the half mirror layer, the use of the metal chelate compound increases the affinity between the hard coat layer and the half mirror layer, further enhances the adhesion, and molds. It is possible to effectively prevent time cracking and the like.
このような金属キレート化合物としては、二座配位子を含むチタン、ジルコニウム、アルミニウム、スズ、ニオブ、タンタル或いは鉛の化合物が好適である。
二座配位子とは、配位座数が2、すなわち金属に配位しうる原子数が2であるようなキレート剤であり、一般にO、N、S原子によって、5乃至7員環を形成して、キレート化合物を形成する。 As such a metal chelate compound, a compound of titanium, zirconium, aluminum, tin, niobium, tantalum or lead containing a bidentate ligand is suitable.
A bidentate ligand is a chelating agent having 2 coordination loci, that is, 2 atoms that can be coordinated to a metal, and generally has a 5- to 7-membered ring depending on O, N, and S atoms. Form to form a chelate compound.
二座配位子とは、配位座数が2、すなわち金属に配位しうる原子数が2であるようなキレート剤であり、一般にO、N、S原子によって、5乃至7員環を形成して、キレート化合物を形成する。 As such a metal chelate compound, a compound of titanium, zirconium, aluminum, tin, niobium, tantalum or lead containing a bidentate ligand is suitable.
A bidentate ligand is a chelating agent having 2 coordination loci, that is, 2 atoms that can be coordinated to a metal, and generally has a 5- to 7-membered ring depending on O, N, and S atoms. Form to form a chelate compound.
代表的な金属キレート化合物としては、トリエトキシ・モノ(アセチルアセトナート)チタン、トリ-n-プロポキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン等のチタンキレート化合物;
トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム等のジルコニウムキレート化合物;
ジエトキシ・モノ(アセチルアセトナート)アルミニウム、モノエトキシ・ビス(アセチルアセトナート)アルミニウム、ジ-i-プロポキシ・モノ(アセチルアセトナート)アルミニウム、モノ-i-プロポキシ・ビス(エチルアセトアセテート)アルミニウム、モノエトキシ・ビス(エチルアセトアセテート)アルミニウム、ジエトキシ・モノ(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、ビス(エチルアセトアセテート)モノ(アセチルアセトナート)アルミニウム等のアルミニウムキレート化合物が挙げられる。 Typical metal chelate compounds include triethoxy mono (acetylacetonet) titanium, tri-n-propoxymono (acetylacetonate) titanium, diethoxybis (acetylacetonate) titanium, and monoethoxytris (acetylacetone). Nart) Titanium, Tetrakiss (Acetylacetone) Titanium, Triethoxy Mono (Ethylacetone Acetate) Titanium, Diethoxy Bis (Ethylacetone Acetate) Titanium, Monoethoxy Tris (Ethylacetone Acetate) Titanium, Mono (Acetylacetone Acetate) Tris Titanium chelate compounds such as (ethylacetate) titanium, bis (acetylacetonate) bis (ethylacetoneacetate) titanium, tris (acetylacetonet) mono (ethylacetoneacetate) titanium;
Triethoxy mono (acetylacetonate) zirconium, tri-n-propoxymono (acetylacetonate) zirconium, diethoxybis (acetylacetonate) zirconium, monoethoxytris (acetylacetonate) zirconium, tetrakis (acetylacetonate) ) Zirconium, Triethoxy mono (ethylacetate) zirconium, diethoxybis (ethylacetacetate) zirconium, monoethoxytris (ethylacetacetate) zirconium, tetrakis (ethylacetacetate) zirconium, mono (acetylacetonate) tris ( Zirconium chelating compounds such as (ethylacetate acetate) zirconium, bis (acetylacetonate) bis (ethylacetacetate) zirconium, tris (acetylacetonate) mono (ethylacetoacetate) zirconium;
Diethoxy mono (acetylacetonate) aluminum, monoethoxybis (acetylacetonate) aluminum, di-i-propoxymono (acetylacetonate) aluminum, mono-i-propoxybis (ethylacetoacetate) aluminum, mono Examples thereof include aluminum chelate compounds such as ethoxy bis (ethyl acetoacetate) aluminum, diethoxy mono (ethyl acetoacetate) aluminum, tris (acetylacetonate) aluminum, and bis (ethylacetate acetate) mono (acetylacetonate) aluminum.
トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム等のジルコニウムキレート化合物;
ジエトキシ・モノ(アセチルアセトナート)アルミニウム、モノエトキシ・ビス(アセチルアセトナート)アルミニウム、ジ-i-プロポキシ・モノ(アセチルアセトナート)アルミニウム、モノ-i-プロポキシ・ビス(エチルアセトアセテート)アルミニウム、モノエトキシ・ビス(エチルアセトアセテート)アルミニウム、ジエトキシ・モノ(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、ビス(エチルアセトアセテート)モノ(アセチルアセトナート)アルミニウム等のアルミニウムキレート化合物が挙げられる。 Typical metal chelate compounds include triethoxy mono (acetylacetonet) titanium, tri-n-propoxymono (acetylacetonate) titanium, diethoxybis (acetylacetonate) titanium, and monoethoxytris (acetylacetone). Nart) Titanium, Tetrakiss (Acetylacetone) Titanium, Triethoxy Mono (Ethylacetone Acetate) Titanium, Diethoxy Bis (Ethylacetone Acetate) Titanium, Monoethoxy Tris (Ethylacetone Acetate) Titanium, Mono (Acetylacetone Acetate) Tris Titanium chelate compounds such as (ethylacetate) titanium, bis (acetylacetonate) bis (ethylacetoneacetate) titanium, tris (acetylacetonet) mono (ethylacetoneacetate) titanium;
Triethoxy mono (acetylacetonate) zirconium, tri-n-propoxymono (acetylacetonate) zirconium, diethoxybis (acetylacetonate) zirconium, monoethoxytris (acetylacetonate) zirconium, tetrakis (acetylacetonate) ) Zirconium, Triethoxy mono (ethylacetate) zirconium, diethoxybis (ethylacetacetate) zirconium, monoethoxytris (ethylacetacetate) zirconium, tetrakis (ethylacetacetate) zirconium, mono (acetylacetonate) tris ( Zirconium chelating compounds such as (ethylacetate acetate) zirconium, bis (acetylacetonate) bis (ethylacetacetate) zirconium, tris (acetylacetonate) mono (ethylacetoacetate) zirconium;
Diethoxy mono (acetylacetonate) aluminum, monoethoxybis (acetylacetonate) aluminum, di-i-propoxymono (acetylacetonate) aluminum, mono-i-propoxybis (ethylacetoacetate) aluminum, mono Examples thereof include aluminum chelate compounds such as ethoxy bis (ethyl acetoacetate) aluminum, diethoxy mono (ethyl acetoacetate) aluminum, tris (acetylacetonate) aluminum, and bis (ethylacetate acetate) mono (acetylacetonate) aluminum.
上述した金属キレート化合物は、(メタ)アクリレート系重合性化合物から形成される樹脂成分100質量部当り、好ましくは0.1~30質量部、より好ましくは0.5~15質量部の量で使用される。この範囲内で金属キレート化合物が使用されることにより、このハードコート層上に形成されるハーフミラー層との間の密着性を向上することができる。
The above-mentioned metal chelate compound is used in an amount of preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass, per 100 parts by mass of the resin component formed from the (meth) acrylate-based polymerizable compound. Will be done. By using the metal chelate compound within this range, the adhesion between the metal chelate compound and the half mirror layer formed on the hard coat layer can be improved.
特に好適なハードコート層は、4官能以上のウレタン(メタ)アクリレート化合物と1~3官能の(メタ)アクリレート化合物とを硬化させてなる樹脂成分100質量部に対して、シランカップリング剤またはその加水分解物1~30質量部、粒径が5~500nmで屈折率が1.44~1.50の範囲にある中実シリカ粒子10~80質量部、および金属キレート化合物0.1~30質量部から形成される。
A particularly suitable hard coat layer is a silane coupling agent or a silane coupling agent thereof with respect to 100 parts by mass of a resin component obtained by curing a tetrafunctional or higher functional urethane (meth) acrylate compound and a 1 to trifunctional (meth) acrylate compound. 1 to 30 parts by mass of the hydrolyzate, 10 to 80 parts by mass of solid silica particles having a particle size of 5 to 500 nm and a refractive index in the range of 1.44 to 1.50, and 0.1 to 30 parts by mass of the metal chelate compound. Formed from parts.
〔ハードコート層の形成〕
ハードコート層は、上記各成分を特定量、更には光重合開始剤などの任意成分を、粘度調整や易塗布性の目的で下記溶剤に溶解してハードコート層形成用コーティング溶液とし、該コーティング溶液を透明基材上に塗布してコート膜を形成し、次いで、該コート膜に対し、必要に応じて乾燥をおこなった後、紫外線、電子線といった電離放射線を照射して前記(メタ)アクリレート系重合性化合物またはそのオリゴマーを硬化させて形成される。
ハードコート層を形成するためのコーティング溶液を紫外線により硬化させる場合にあっては、コーティング溶液に光重合開始剤を添加することが好ましい。光重合開始剤としては、紫外線が照射された際にラジカルを発生するものであれば良く、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類等の公知の光重合開始剤を用いることができる。また、光重合開始剤の添加量は、使用するウレタンアクリレート100質量部に対して、好ましくは1~10質量部、より好ましくは1~7質量部である。
コーティング溶液に使用される溶剤は、メチルアルコール、エチルアルコール、プロピルアルコールなどのアルコール化合物;トルエン、キシレン等の芳香族化合物;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル化合物;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジアセトンアルコール等のケトン化合物等が適している。その他、メチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、更にはメチルセロソルブやエチルセロソルブ、プロピレングリコールモノメチルエーテル等のセロソルブ化合物などの溶剤も使用できる。
ハードコート層形成用コーティング溶液を構成する前記各成分は、通常、室温付近で任意に混合攪拌されて溶液とされる。なお、市販の中実シリカ粒子分散体(ゾル)を使用した時は、分散媒である溶媒が当該溶液中に必然的に混入することになる。コーティング溶液中の溶媒並びに別途配合される溶剤は、前記乾燥並びに硬化工程において除去される。
溶液の透明基材への塗工方法は特に制限されず、ディップコート法、ロールコート法、ダイコート法、フローコート法、スプレー法等の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。 [Formation of hard coat layer]
In the hard coat layer, a specific amount of each of the above components and an optional component such as a photopolymerization initiator are dissolved in the following solvent for the purpose of viscosity adjustment and easy coating to obtain a coating solution for forming a hard coat layer. The solution is applied onto a transparent substrate to form a coat film, and then the coat film is dried as necessary and then irradiated with ionizing radiation such as ultraviolet rays and electron beams to form the (meth) acrylate. It is formed by curing a system-polymerizable compound or an oligomer thereof.
When the coating solution for forming the hard coat layer is cured by ultraviolet rays, it is preferable to add a photopolymerization initiator to the coating solution. The photopolymerization initiator may be any one that generates radicals when irradiated with ultraviolet rays, and is known, for example, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones and the like. Photopolymerization initiator can be used. The amount of the photopolymerization initiator added is preferably 1 to 10 parts by mass, more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the urethane acrylate used.
Solvents used in the coating solution are alcohol compounds such as methyl alcohol, ethyl alcohol and propyl alcohol; aromatic compounds such as toluene and xylene; ester compounds such as ethyl acetate, butyl acetate and isobutyl acetate; acetone and methyl ethyl ketone (MEK). , Methylisobutylketone (MIBK), ketone compounds such as diacetone alcohol, and the like are suitable. In addition, solvents such as methylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and cellosolve compounds such as methyl cellosolve, ethyl cellosolve, and propylene glycol monomethyl ether can also be used.
Each of the components constituting the coating solution for forming a hard coat layer is usually mixed and stirred arbitrarily at around room temperature to obtain a solution. When a commercially available solid silica particle dispersion (sol) is used, a solvent as a dispersion medium is inevitably mixed in the solution. The solvent in the coating solution and the separately blended solvent are removed in the drying and curing steps.
The method of applying the solution to the transparent substrate is not particularly limited, and methods such as a dip coating method, a roll coating method, a die coating method, a flow coating method, and a spray method are adopted, but from the viewpoint of appearance quality and film thickness control. Therefore, the dip coat method is suitable.
ハードコート層は、上記各成分を特定量、更には光重合開始剤などの任意成分を、粘度調整や易塗布性の目的で下記溶剤に溶解してハードコート層形成用コーティング溶液とし、該コーティング溶液を透明基材上に塗布してコート膜を形成し、次いで、該コート膜に対し、必要に応じて乾燥をおこなった後、紫外線、電子線といった電離放射線を照射して前記(メタ)アクリレート系重合性化合物またはそのオリゴマーを硬化させて形成される。
ハードコート層を形成するためのコーティング溶液を紫外線により硬化させる場合にあっては、コーティング溶液に光重合開始剤を添加することが好ましい。光重合開始剤としては、紫外線が照射された際にラジカルを発生するものであれば良く、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類等の公知の光重合開始剤を用いることができる。また、光重合開始剤の添加量は、使用するウレタンアクリレート100質量部に対して、好ましくは1~10質量部、より好ましくは1~7質量部である。
コーティング溶液に使用される溶剤は、メチルアルコール、エチルアルコール、プロピルアルコールなどのアルコール化合物;トルエン、キシレン等の芳香族化合物;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル化合物;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジアセトンアルコール等のケトン化合物等が適している。その他、メチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、更にはメチルセロソルブやエチルセロソルブ、プロピレングリコールモノメチルエーテル等のセロソルブ化合物などの溶剤も使用できる。
ハードコート層形成用コーティング溶液を構成する前記各成分は、通常、室温付近で任意に混合攪拌されて溶液とされる。なお、市販の中実シリカ粒子分散体(ゾル)を使用した時は、分散媒である溶媒が当該溶液中に必然的に混入することになる。コーティング溶液中の溶媒並びに別途配合される溶剤は、前記乾燥並びに硬化工程において除去される。
溶液の透明基材への塗工方法は特に制限されず、ディップコート法、ロールコート法、ダイコート法、フローコート法、スプレー法等の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。 [Formation of hard coat layer]
In the hard coat layer, a specific amount of each of the above components and an optional component such as a photopolymerization initiator are dissolved in the following solvent for the purpose of viscosity adjustment and easy coating to obtain a coating solution for forming a hard coat layer. The solution is applied onto a transparent substrate to form a coat film, and then the coat film is dried as necessary and then irradiated with ionizing radiation such as ultraviolet rays and electron beams to form the (meth) acrylate. It is formed by curing a system-polymerizable compound or an oligomer thereof.
When the coating solution for forming the hard coat layer is cured by ultraviolet rays, it is preferable to add a photopolymerization initiator to the coating solution. The photopolymerization initiator may be any one that generates radicals when irradiated with ultraviolet rays, and is known, for example, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones and the like. Photopolymerization initiator can be used. The amount of the photopolymerization initiator added is preferably 1 to 10 parts by mass, more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the urethane acrylate used.
Solvents used in the coating solution are alcohol compounds such as methyl alcohol, ethyl alcohol and propyl alcohol; aromatic compounds such as toluene and xylene; ester compounds such as ethyl acetate, butyl acetate and isobutyl acetate; acetone and methyl ethyl ketone (MEK). , Methylisobutylketone (MIBK), ketone compounds such as diacetone alcohol, and the like are suitable. In addition, solvents such as methylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and cellosolve compounds such as methyl cellosolve, ethyl cellosolve, and propylene glycol monomethyl ether can also be used.
Each of the components constituting the coating solution for forming a hard coat layer is usually mixed and stirred arbitrarily at around room temperature to obtain a solution. When a commercially available solid silica particle dispersion (sol) is used, a solvent as a dispersion medium is inevitably mixed in the solution. The solvent in the coating solution and the separately blended solvent are removed in the drying and curing steps.
The method of applying the solution to the transparent substrate is not particularly limited, and methods such as a dip coating method, a roll coating method, a die coating method, a flow coating method, and a spray method are adopted, but from the viewpoint of appearance quality and film thickness control. Therefore, the dip coat method is suitable.
<ハーフミラー層:HM層>
前記形成されたハードコート層の上に、ハーフミラー層が形成される。本発明においては、当該ハーフミラー層の層構造に特徴がある。
下記本発明特有の層構造を採用することにより、波長380~780nmにおける入射角45°のP偏光の視感平均反射率が20%以上、入射角45°のS偏光の視感平均反射率が50%以上、入射角45°の(P+S)/2偏光の視感平均反射率が35%以上である偏光反射特性を有し、XY色度図においてx:0.30~0.32、y:0.32~0.34であるという光学特性が発現する。 <Half mirror layer: HM layer>
A half mirror layer is formed on the formed hard coat layer. In the present invention, the layer structure of the half mirror layer is characteristic.
By adopting the following layer structure peculiar to the present invention, the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is 20% or more, and the visual average reflectance of S-polarized light having an incident angle of 45 ° is 20% or more. It has a polarization reflection characteristic that the visual average reflectance of (P + S) / 2 polarization with an incident angle of 45 ° or more is 35% or more, and x: 0.30 to 0.32, y in the XY chromaticity diagram. : The optical characteristic of 0.32 to 0.34 is exhibited.
前記形成されたハードコート層の上に、ハーフミラー層が形成される。本発明においては、当該ハーフミラー層の層構造に特徴がある。
下記本発明特有の層構造を採用することにより、波長380~780nmにおける入射角45°のP偏光の視感平均反射率が20%以上、入射角45°のS偏光の視感平均反射率が50%以上、入射角45°の(P+S)/2偏光の視感平均反射率が35%以上である偏光反射特性を有し、XY色度図においてx:0.30~0.32、y:0.32~0.34であるという光学特性が発現する。 <Half mirror layer: HM layer>
A half mirror layer is formed on the formed hard coat layer. In the present invention, the layer structure of the half mirror layer is characteristic.
By adopting the following layer structure peculiar to the present invention, the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is 20% or more, and the visual average reflectance of S-polarized light having an incident angle of 45 ° is 20% or more. It has a polarization reflection characteristic that the visual average reflectance of (P + S) / 2 polarization with an incident angle of 45 ° or more is 35% or more, and x: 0.30 to 0.32, y in the XY chromaticity diagram. : The optical characteristic of 0.32 to 0.34 is exhibited.
本発明のハーフミラー層は、屈折率が1.75~1.82である高屈折率層と屈折率が1.28~1.35である低屈折率層とが交互に積層され、各層の合計層数が9層以上であり、且つ、最表面が高屈折率層となるように構成される特徴を有する。
高屈折率層及び低屈折率層の各屈折率が上記範囲を満たさない場合は、透過像或いは反射像の映りが悪くハーフミラーとしての性能は上記範囲を満たすものに比べて劣る。
ハーフミラー層を構成する各層の合計層数は、優れた偏光反射特性を発現するために9層以上であることが必須である。上限は、各層の形成操作の手間やコスト並びに偏光反射特性の向上が飽和する等の観点から17層である。合計層数が8層以下では、上記偏光反射特性の数値を満足せず偏光波に対するミラー性能が劣る。
ハーフミラー層の最表面は、屈折率が1.75~1.82である高屈折率層とする必要がある。最表面が、屈折率が1.28~1.35である低屈折率層がある場合は、十分なミラー性能が発現せずハーフミラーとして機能しない。
各層の合計層数が9層以上の奇数である場合は、最表面が高屈折率層であるため、最下層(ハードコート層と接する層)が高屈折率層となる。9層以上の偶数である場合は、最下層が低屈折率層となる。より優れたミラー性能を発現するためには、合計層数が奇数、即ち、最下層が高屈折率層となる層構造が好適である。
高屈折率層と低屈折率層の各厚みは、通常は70~440nm、好適には80~180nmの範囲から選択される。特に、最表面の高屈折率層の厚みが80~90nmであり、且つハーフミラー層のハードコート層から第1層目と第3層目の厚みが120~440nm、好適には150~180nmであるように設計された場合、ハーフミラー性能に優れた光学部材となる。 In the half mirror layer of the present invention, a high refractive index layer having a refractive index of 1.75 to 1.82 and a low refractive index layer having a refractive index of 1.28 to 1.35 are alternately laminated, and each layer is formed. It has a feature that the total number of layers is 9 or more and the outermost surface is a high refractive index layer.
When each of the refractive indexes of the high refractive index layer and the low refractive index layer does not satisfy the above range, the transmission image or the reflection image is poorly reflected and the performance as a half mirror is inferior to that satisfying the above range.
It is essential that the total number of layers constituting the half mirror layer is 9 or more in order to exhibit excellent polarization reflection characteristics. The upper limit is 17 layers from the viewpoint of the labor and cost of forming each layer and the saturation of the improvement of the polarization reflection characteristics. When the total number of layers is 8 or less, the numerical value of the polarization reflection characteristic is not satisfied and the mirror performance for the polarized wave is inferior.
The outermost surface of the half mirror layer needs to be a high refractive index layer having a refractive index of 1.75 to 1.82. When the outermost surface has a low refractive index layer having a refractive index of 1.28 to 1.35, sufficient mirror performance is not exhibited and the mirror does not function as a half mirror.
When the total number of layers of each layer is an odd number of 9 or more, the outermost surface is a high refractive index layer, so that the lowest layer (the layer in contact with the hard coat layer) is the high refractive index layer. In the case of an even number of 9 layers or more, the lowest layer is a low refractive index layer. In order to exhibit better mirror performance, a layer structure in which the total number of layers is an odd number, that is, the lowest layer is a high refractive index layer is preferable.
The thickness of each of the high refractive index layer and the low refractive index layer is usually selected from the range of 70 to 440 nm, preferably 80 to 180 nm. In particular, the thickness of the outermost high-refractive index layer is 80 to 90 nm, and the thickness of the first and third layers from the hard coat layer of the half mirror layer is 120 to 440 nm, preferably 150 to 180 nm. When designed to be there, it is an optical member with excellent half-mirror performance.
高屈折率層及び低屈折率層の各屈折率が上記範囲を満たさない場合は、透過像或いは反射像の映りが悪くハーフミラーとしての性能は上記範囲を満たすものに比べて劣る。
ハーフミラー層を構成する各層の合計層数は、優れた偏光反射特性を発現するために9層以上であることが必須である。上限は、各層の形成操作の手間やコスト並びに偏光反射特性の向上が飽和する等の観点から17層である。合計層数が8層以下では、上記偏光反射特性の数値を満足せず偏光波に対するミラー性能が劣る。
ハーフミラー層の最表面は、屈折率が1.75~1.82である高屈折率層とする必要がある。最表面が、屈折率が1.28~1.35である低屈折率層がある場合は、十分なミラー性能が発現せずハーフミラーとして機能しない。
各層の合計層数が9層以上の奇数である場合は、最表面が高屈折率層であるため、最下層(ハードコート層と接する層)が高屈折率層となる。9層以上の偶数である場合は、最下層が低屈折率層となる。より優れたミラー性能を発現するためには、合計層数が奇数、即ち、最下層が高屈折率層となる層構造が好適である。
高屈折率層と低屈折率層の各厚みは、通常は70~440nm、好適には80~180nmの範囲から選択される。特に、最表面の高屈折率層の厚みが80~90nmであり、且つハーフミラー層のハードコート層から第1層目と第3層目の厚みが120~440nm、好適には150~180nmであるように設計された場合、ハーフミラー性能に優れた光学部材となる。 In the half mirror layer of the present invention, a high refractive index layer having a refractive index of 1.75 to 1.82 and a low refractive index layer having a refractive index of 1.28 to 1.35 are alternately laminated, and each layer is formed. It has a feature that the total number of layers is 9 or more and the outermost surface is a high refractive index layer.
When each of the refractive indexes of the high refractive index layer and the low refractive index layer does not satisfy the above range, the transmission image or the reflection image is poorly reflected and the performance as a half mirror is inferior to that satisfying the above range.
It is essential that the total number of layers constituting the half mirror layer is 9 or more in order to exhibit excellent polarization reflection characteristics. The upper limit is 17 layers from the viewpoint of the labor and cost of forming each layer and the saturation of the improvement of the polarization reflection characteristics. When the total number of layers is 8 or less, the numerical value of the polarization reflection characteristic is not satisfied and the mirror performance for the polarized wave is inferior.
The outermost surface of the half mirror layer needs to be a high refractive index layer having a refractive index of 1.75 to 1.82. When the outermost surface has a low refractive index layer having a refractive index of 1.28 to 1.35, sufficient mirror performance is not exhibited and the mirror does not function as a half mirror.
When the total number of layers of each layer is an odd number of 9 or more, the outermost surface is a high refractive index layer, so that the lowest layer (the layer in contact with the hard coat layer) is the high refractive index layer. In the case of an even number of 9 layers or more, the lowest layer is a low refractive index layer. In order to exhibit better mirror performance, a layer structure in which the total number of layers is an odd number, that is, the lowest layer is a high refractive index layer is preferable.
The thickness of each of the high refractive index layer and the low refractive index layer is usually selected from the range of 70 to 440 nm, preferably 80 to 180 nm. In particular, the thickness of the outermost high-refractive index layer is 80 to 90 nm, and the thickness of the first and third layers from the hard coat layer of the half mirror layer is 120 to 440 nm, preferably 150 to 180 nm. When designed to be there, it is an optical member with excellent half-mirror performance.
前記特有の層構造の採用により、波長380~780nmにおける入射角45°のP偏光の視感平均反射率が30%~40%、入射角45°のS偏光の視感平均反射率が70%~85%、入射角45°の(P+S)/2偏光の視感平均反射率が50%~65%である偏光反射特性を有し、XY色度図においてx:0.30~0.32、y:0.32~0.34であるという光学特性が発現する。
P偏光の視感平均反射率が20%以上、S偏光の視感平均反射率が50%以上、および(P+S)/2偏光の視感平均反射率が35%以上であることにより、偏光波に対する反射性に優れ、偏光で作られている文字や画像等が反射されてできる反射像が鮮明に視認できる。
また、XY色度図においてx:0.30~0.32、y:0.32~0.34であることにより、光学部材が実質的に低彩度(無色透明)であって反射像・透過像に着色が起こらず、偏光板を通して作られている文字や画像等の本来の色がそのままの色調で反映され視認できる。 By adopting the above-mentioned unique layer structure, the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is 30% to 40%, and the visual average reflectance of S-polarized light having an incident angle of 45 ° is 70%. It has a polarization reflection characteristic in which the visual average reflectance of (P + S) / 2 polarization with an incident angle of 45 ° is 50% to 65%, and x: 0.30 to 0.32 in the XY chromaticity diagram. , Y: The optical characteristic of 0.32 to 0.34 is exhibited.
The polarized wave has an average reflectance of 20% or more for P polarization, an average reflectance of 50% or more for S polarization, and an average reflectance of 35% or more for (P + S) / 2 polarization. It has excellent reflectance to light, and the reflected image formed by reflecting characters and images made of polarized light can be clearly seen.
Further, since x: 0.30 to 0.32 and y: 0.32 to 0.34 in the XY chromaticity diagram, the optical member has substantially low saturation (colorless and transparent), and the reflected image. Coloring does not occur in the transmitted image, and the original colors such as characters and images created through the polarizing plate are reflected in the same color tone and can be visually recognized.
P偏光の視感平均反射率が20%以上、S偏光の視感平均反射率が50%以上、および(P+S)/2偏光の視感平均反射率が35%以上であることにより、偏光波に対する反射性に優れ、偏光で作られている文字や画像等が反射されてできる反射像が鮮明に視認できる。
また、XY色度図においてx:0.30~0.32、y:0.32~0.34であることにより、光学部材が実質的に低彩度(無色透明)であって反射像・透過像に着色が起こらず、偏光板を通して作られている文字や画像等の本来の色がそのままの色調で反映され視認できる。 By adopting the above-mentioned unique layer structure, the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is 30% to 40%, and the visual average reflectance of S-polarized light having an incident angle of 45 ° is 70%. It has a polarization reflection characteristic in which the visual average reflectance of (P + S) / 2 polarization with an incident angle of 45 ° is 50% to 65%, and x: 0.30 to 0.32 in the XY chromaticity diagram. , Y: The optical characteristic of 0.32 to 0.34 is exhibited.
The polarized wave has an average reflectance of 20% or more for P polarization, an average reflectance of 50% or more for S polarization, and an average reflectance of 35% or more for (P + S) / 2 polarization. It has excellent reflectance to light, and the reflected image formed by reflecting characters and images made of polarized light can be clearly seen.
Further, since x: 0.30 to 0.32 and y: 0.32 to 0.34 in the XY chromaticity diagram, the optical member has substantially low saturation (colorless and transparent), and the reflected image. Coloring does not occur in the transmitted image, and the original colors such as characters and images created through the polarizing plate are reflected in the same color tone and can be visually recognized.
なお、本発明において、P偏光視感平均反射率、S偏光視感平均反射率、(P+S)/2偏光視感平均反射率が、XY色度図におけるx値とy値は、以下の方法で測定される物性値である。
P偏光視感平均反射率:
日本分光社製「V-650」試験機を用いて、走査速度1000nm/minの速度で10nm毎の反射率を測定する。測定に使用した光は、波長380~780nmの光を、偏光子を通して垂直方向成分を取り除いて平行偏光のみにした光である。この反射率にJIS Z 8722に記載の重価係数を掛けて積分し、重価係数の積分値で割って視感平均反射率を出した。この数値が大きいほど反射性能に優れることを示す。
S偏光視感平均反射率:
偏光子を通し平行方向成分を取り除き、垂直偏光のみにした光について測定する。偏光子の設置方向以外は、上記P偏光の視感平均反射率の測定と同様にして測定し算出した。
(P+S)/2偏光視感平均反射率:
偏光子を45度に設置し、垂直方向成分が半分量、平行方向成分が半分量となった光について測定する。偏光子の設置方向以外は上記P偏光の視感平均反射率と同様に測定し算出した。
XY色度図におけるx値とy値:
日本分光社製「V-650」試験機を用いて、上記各偏光の反射率を測定し、この反射率にJIS Z 8722の表4に記載の重価係数からXYZ表示系における三刺激値(X,Y,Z)を算出し、x=X/(X+Y+Z),y=Y/(X+Y+Z)に変換して、色度座標(x、y)を算出した。
x値が0.30~0.32の範囲にあり、且つ、y値が0.32~0.34の範囲にあることは色度が無色透明に近いことを意味する。 In the present invention, the P-polarized visual sensation average reflectance, the S-polarized visual sensation average reflectance, and the (P + S) / 2-polarized visual sensation average reflectance are the following methods. It is a physical property value measured by.
P-polarized visual average reflectance:
Using a "V-650" testing machine manufactured by JASCO Corporation, the reflectance is measured every 10 nm at a scanning speed of 1000 nm / min. The light used for the measurement is light having a wavelength of 380 to 780 nm, which is obtained by removing the vertical component through a polarizing element to obtain only parallel polarization. This reflectance was multiplied by the weighting factor described in JIS Z 8722 and integrated, and divided by the integrated value of the weighting factor to obtain the visual average reflectance. The larger this value is, the better the reflection performance is.
S-polarized visual average reflectance:
The light is measured with only vertical polarization after removing the parallel direction component through the polarizing element. Except for the direction in which the polarizing element was installed, the measurement was performed in the same manner as in the measurement of the visual average reflectance of the P-polarized light.
(P + S) / 2 polarized visual average reflectance:
The splitter is installed at 45 degrees, and the light is measured with half the amount of the vertical component and half the amount of the parallel component. It was measured and calculated in the same manner as the visual average reflectance of the P-polarized light except for the direction in which the splitter was installed.
X and y values in the XY chromaticity diagram:
The reflectance of each of the above-mentioned polarizations was measured using a "V-650" tester manufactured by JASCO Corporation, and the reflectance was calculated from the weighting factor shown in Table 4 of JIS Z 8722 to the tristimulus value in the XYZ display system. X, Y, Z) was calculated and converted into x = X / (X + Y + Z) and y = Y / (X + Y + Z) to calculate the chromaticity coordinates (x, y).
When the x value is in the range of 0.30 to 0.32 and the y value is in the range of 0.32 to 0.34, it means that the chromaticity is close to colorless and transparent.
P偏光視感平均反射率:
日本分光社製「V-650」試験機を用いて、走査速度1000nm/minの速度で10nm毎の反射率を測定する。測定に使用した光は、波長380~780nmの光を、偏光子を通して垂直方向成分を取り除いて平行偏光のみにした光である。この反射率にJIS Z 8722に記載の重価係数を掛けて積分し、重価係数の積分値で割って視感平均反射率を出した。この数値が大きいほど反射性能に優れることを示す。
S偏光視感平均反射率:
偏光子を通し平行方向成分を取り除き、垂直偏光のみにした光について測定する。偏光子の設置方向以外は、上記P偏光の視感平均反射率の測定と同様にして測定し算出した。
(P+S)/2偏光視感平均反射率:
偏光子を45度に設置し、垂直方向成分が半分量、平行方向成分が半分量となった光について測定する。偏光子の設置方向以外は上記P偏光の視感平均反射率と同様に測定し算出した。
XY色度図におけるx値とy値:
日本分光社製「V-650」試験機を用いて、上記各偏光の反射率を測定し、この反射率にJIS Z 8722の表4に記載の重価係数からXYZ表示系における三刺激値(X,Y,Z)を算出し、x=X/(X+Y+Z),y=Y/(X+Y+Z)に変換して、色度座標(x、y)を算出した。
x値が0.30~0.32の範囲にあり、且つ、y値が0.32~0.34の範囲にあることは色度が無色透明に近いことを意味する。 In the present invention, the P-polarized visual sensation average reflectance, the S-polarized visual sensation average reflectance, and the (P + S) / 2-polarized visual sensation average reflectance are the following methods. It is a physical property value measured by.
P-polarized visual average reflectance:
Using a "V-650" testing machine manufactured by JASCO Corporation, the reflectance is measured every 10 nm at a scanning speed of 1000 nm / min. The light used for the measurement is light having a wavelength of 380 to 780 nm, which is obtained by removing the vertical component through a polarizing element to obtain only parallel polarization. This reflectance was multiplied by the weighting factor described in JIS Z 8722 and integrated, and divided by the integrated value of the weighting factor to obtain the visual average reflectance. The larger this value is, the better the reflection performance is.
S-polarized visual average reflectance:
The light is measured with only vertical polarization after removing the parallel direction component through the polarizing element. Except for the direction in which the polarizing element was installed, the measurement was performed in the same manner as in the measurement of the visual average reflectance of the P-polarized light.
(P + S) / 2 polarized visual average reflectance:
The splitter is installed at 45 degrees, and the light is measured with half the amount of the vertical component and half the amount of the parallel component. It was measured and calculated in the same manner as the visual average reflectance of the P-polarized light except for the direction in which the splitter was installed.
X and y values in the XY chromaticity diagram:
The reflectance of each of the above-mentioned polarizations was measured using a "V-650" tester manufactured by JASCO Corporation, and the reflectance was calculated from the weighting factor shown in Table 4 of JIS Z 8722 to the tristimulus value in the XYZ display system. X, Y, Z) was calculated and converted into x = X / (X + Y + Z) and y = Y / (X + Y + Z) to calculate the chromaticity coordinates (x, y).
When the x value is in the range of 0.30 to 0.32 and the y value is in the range of 0.32 to 0.34, it means that the chromaticity is close to colorless and transparent.
<低屈折率層>
低屈折率層の屈折率は、1.28~1.35である。当該低屈折率層は、ハードコート層の上に或いは高屈折率層の上に積層されて、高屈折率層と交互に積層された多層構造を形成する。
当該低屈折率層は、アルコキシシラン化合物またはその加水分解物、シリカ粒子および金属キレート化合物を含有する硬化性組成物の硬化体であることが好ましい。 <Low refractive index layer>
The refractive index of the low refractive index layer is 1.28 to 1.35. The low refractive index layer is laminated on the hard coat layer or on the high refractive index layer to form a multilayer structure in which the high refractive index layer is alternately laminated.
The low refractive index layer is preferably a cured product of a curable composition containing an alkoxysilane compound or a hydrolyzate thereof, silica particles and a metal chelate compound.
低屈折率層の屈折率は、1.28~1.35である。当該低屈折率層は、ハードコート層の上に或いは高屈折率層の上に積層されて、高屈折率層と交互に積層された多層構造を形成する。
当該低屈折率層は、アルコキシシラン化合物またはその加水分解物、シリカ粒子および金属キレート化合物を含有する硬化性組成物の硬化体であることが好ましい。 <Low refractive index layer>
The refractive index of the low refractive index layer is 1.28 to 1.35. The low refractive index layer is laminated on the hard coat layer or on the high refractive index layer to form a multilayer structure in which the high refractive index layer is alternately laminated.
The low refractive index layer is preferably a cured product of a curable composition containing an alkoxysilane compound or a hydrolyzate thereof, silica particles and a metal chelate compound.
[アルコキシシラン化合物]
アルコキシシラン化合物またはその加水分解物は、加水分解と同時に重縮合して、Si-O-Si結合によりネットワーク状に連なった架橋体を形成して低屈折率層の母材となる。アルコキシシラン化合物またはその加水分解物の使用により、低屈折率層を緻密なものとすることができる。
当該アルコキシシラン化合物としては、上記の通り、加水分解と同時に重縮合が可能なシラン化合物であれば制限されず、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのアルコキシシラン化合物が挙げられる。
上記該アルコキシシラン化合物は、その種類によっては、水や溶剤に対する溶解性を向上させる目的で、希薄な酸等で予め部分加水分解された分解物とすることが好適である。予め加水分解する方法は特に制限なく、酢酸などの酸触媒を用いてその一部を加水分解する方法、或いは、低屈折率層形成用コーティング溶液中に他の成分と併せて、アルコキシシラン化合物と酸を共存させて一部加水分解する方法が採用される。
光学部材の着色を防止して透明性を確保する観点から、下記一般式で表されるアルコキシシラン化合物またはその加水分解物が好適である。 [Alkoxysilane compound]
The alkoxysilane compound or its hydrolyzate is polycondensed at the same time as hydrolysis to form a crosslinked body connected in a network by Si—O—Si bond, and becomes a base material of a low refractive index layer. By using an alkoxysilane compound or a hydrolyzate thereof, the low refractive index layer can be made dense.
As described above, the alkoxysilane compound is not limited as long as it is a silane compound capable of polycondensation at the same time as hydrolysis, and is not limited to tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and vinyltrimethoxy. Silane, vinyltriethoxysilane, vinyltriacetoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ- (meth) acryloxipropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) Examples thereof include alkoxysilane compounds such as ethyltrimethoxysilane.
Depending on the type of the alkoxysilane compound, it is preferable to prepare a decomposition product which has been partially hydrolyzed in advance with a dilute acid or the like for the purpose of improving the solubility in water or a solvent. The method of pre-hydrolyzing is not particularly limited, and a method of hydrolyzing a part thereof using an acid catalyst such as acetic acid, or a method of adding an alkoxysilane compound in a coating solution for forming a low refractive index layer together with other components. A method in which an acid coexists and is partially hydrolyzed is adopted.
From the viewpoint of preventing coloring of the optical member and ensuring transparency, an alkoxysilane compound represented by the following general formula or a hydrolyzate thereof is suitable.
アルコキシシラン化合物またはその加水分解物は、加水分解と同時に重縮合して、Si-O-Si結合によりネットワーク状に連なった架橋体を形成して低屈折率層の母材となる。アルコキシシラン化合物またはその加水分解物の使用により、低屈折率層を緻密なものとすることができる。
当該アルコキシシラン化合物としては、上記の通り、加水分解と同時に重縮合が可能なシラン化合物であれば制限されず、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのアルコキシシラン化合物が挙げられる。
上記該アルコキシシラン化合物は、その種類によっては、水や溶剤に対する溶解性を向上させる目的で、希薄な酸等で予め部分加水分解された分解物とすることが好適である。予め加水分解する方法は特に制限なく、酢酸などの酸触媒を用いてその一部を加水分解する方法、或いは、低屈折率層形成用コーティング溶液中に他の成分と併せて、アルコキシシラン化合物と酸を共存させて一部加水分解する方法が採用される。
光学部材の着色を防止して透明性を確保する観点から、下記一般式で表されるアルコキシシラン化合物またはその加水分解物が好適である。 [Alkoxysilane compound]
The alkoxysilane compound or its hydrolyzate is polycondensed at the same time as hydrolysis to form a crosslinked body connected in a network by Si—O—Si bond, and becomes a base material of a low refractive index layer. By using an alkoxysilane compound or a hydrolyzate thereof, the low refractive index layer can be made dense.
As described above, the alkoxysilane compound is not limited as long as it is a silane compound capable of polycondensation at the same time as hydrolysis, and is not limited to tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and vinyltrimethoxy. Silane, vinyltriethoxysilane, vinyltriacetoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ- (meth) acryloxipropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) Examples thereof include alkoxysilane compounds such as ethyltrimethoxysilane.
Depending on the type of the alkoxysilane compound, it is preferable to prepare a decomposition product which has been partially hydrolyzed in advance with a dilute acid or the like for the purpose of improving the solubility in water or a solvent. The method of pre-hydrolyzing is not particularly limited, and a method of hydrolyzing a part thereof using an acid catalyst such as acetic acid, or a method of adding an alkoxysilane compound in a coating solution for forming a low refractive index layer together with other components. A method in which an acid coexists and is partially hydrolyzed is adopted.
From the viewpoint of preventing coloring of the optical member and ensuring transparency, an alkoxysilane compound represented by the following general formula or a hydrolyzate thereof is suitable.
上記一般式(1)のアルコキシシラン化合物として、代表的には、γ-グリシドキシプロピルトリメトキシシシラン、γ-グリシドキシプロピルメチルジエトキシシランが挙げられる。
Typical examples of the alkoxysilane compound of the general formula (1) include γ-glycidoxypropyltrimethoxysilane and γ-glycidoxypropylmethyldiethoxysilane.
[シリカ粒子]
低屈折率層の屈折率を所定の範囲に制御するためにシリカ粒子が使用される。シリカ粒子としては中空シリカと中実シリカが存在する。低屈折率層が比較的低い屈折率を発現するためには中空シリカ粒子を用いるのが好ましい。
中空シリカは内部に空洞を有するシリカであり、好ましい平均粒径は10~150nmである。当該中空シリカ粒子は内部が空洞の粒子であるため他のシリカ粒子に比べてその密度は低く、例えば、通常1.5g/cm3以下である。
このような中空シリカ粒子は、それ自体公知であり、例えば、テンプレートと界面活性剤の存在下にシリカを合成し最後に焼成を行って界面活性剤を分解除去することにより製造され、市販されている。なお、このような市販品においては、中空シリカ粒子は水やアルコールなどの溶媒に分散されて、いわゆるゾルとして供されているので、低屈折率層を形成させるために調製される低屈折率層形成用コーティング溶液中には、これらの溶媒が必然的混入する。しかし、コーティング後の乾燥および硬化過程で、コーティング溶液とするために別途配合される溶剤ともどもこれら溶媒は揮発、除去される。
低屈折率層の屈折率を比較的高めに設計する場合は、中実シリカが使用される。当該中実シリカとしては、ハードコート層の項で記載された中実シリカが制限なく使用される。
低屈折率層形成用コーティング溶液中のシリカ粒子の含有量は、低屈折率層の設定屈折率と他の含有成分の量に依存するが、アルコキシシラン化合物100質量部に対して、好ましくは60~400質量部、より好ましくは65~330質量部である。 [Silica particles]
Silica particles are used to control the refractive index of the low index of refraction layer within a predetermined range. Hollow silica and solid silica exist as silica particles. It is preferable to use hollow silica particles in order for the low refractive index layer to exhibit a relatively low refractive index.
Hollow silica is silica having a cavity inside, and a preferable average particle size is 10 to 150 nm. Since the hollow silica particles are hollow particles, their density is lower than that of other silica particles, and is usually 1.5 g / cm 3 or less.
Such hollow silica particles are known in their own right, and are manufactured and commercially available, for example, by synthesizing silica in the presence of a template and a surfactant and finally firing to decompose and remove the surfactant. There is. In such a commercially available product, since the hollow silica particles are dispersed in a solvent such as water or alcohol and provided as a so-called sol, the low refractive index layer is prepared to form the low refractive index layer. These solvents are inevitably mixed in the forming coating solution. However, in the drying and curing process after coating, these solvents are volatilized and removed together with the solvent separately added to prepare the coating solution.
If the index of refraction of the low index layer is designed to be relatively high, solid silica is used. As the solid silica, the solid silica described in the section of the hard coat layer is used without limitation.
The content of silica particles in the coating solution for forming a low refractive index layer depends on the set refractive index of the low refractive index layer and the amount of other contained components, but is preferably 60 with respect to 100 parts by mass of the alkoxysilane compound. It is up to 400 parts by mass, more preferably 65 to 330 parts by mass.
低屈折率層の屈折率を所定の範囲に制御するためにシリカ粒子が使用される。シリカ粒子としては中空シリカと中実シリカが存在する。低屈折率層が比較的低い屈折率を発現するためには中空シリカ粒子を用いるのが好ましい。
中空シリカは内部に空洞を有するシリカであり、好ましい平均粒径は10~150nmである。当該中空シリカ粒子は内部が空洞の粒子であるため他のシリカ粒子に比べてその密度は低く、例えば、通常1.5g/cm3以下である。
このような中空シリカ粒子は、それ自体公知であり、例えば、テンプレートと界面活性剤の存在下にシリカを合成し最後に焼成を行って界面活性剤を分解除去することにより製造され、市販されている。なお、このような市販品においては、中空シリカ粒子は水やアルコールなどの溶媒に分散されて、いわゆるゾルとして供されているので、低屈折率層を形成させるために調製される低屈折率層形成用コーティング溶液中には、これらの溶媒が必然的混入する。しかし、コーティング後の乾燥および硬化過程で、コーティング溶液とするために別途配合される溶剤ともどもこれら溶媒は揮発、除去される。
低屈折率層の屈折率を比較的高めに設計する場合は、中実シリカが使用される。当該中実シリカとしては、ハードコート層の項で記載された中実シリカが制限なく使用される。
低屈折率層形成用コーティング溶液中のシリカ粒子の含有量は、低屈折率層の設定屈折率と他の含有成分の量に依存するが、アルコキシシラン化合物100質量部に対して、好ましくは60~400質量部、より好ましくは65~330質量部である。 [Silica particles]
Silica particles are used to control the refractive index of the low index of refraction layer within a predetermined range. Hollow silica and solid silica exist as silica particles. It is preferable to use hollow silica particles in order for the low refractive index layer to exhibit a relatively low refractive index.
Hollow silica is silica having a cavity inside, and a preferable average particle size is 10 to 150 nm. Since the hollow silica particles are hollow particles, their density is lower than that of other silica particles, and is usually 1.5 g / cm 3 or less.
Such hollow silica particles are known in their own right, and are manufactured and commercially available, for example, by synthesizing silica in the presence of a template and a surfactant and finally firing to decompose and remove the surfactant. There is. In such a commercially available product, since the hollow silica particles are dispersed in a solvent such as water or alcohol and provided as a so-called sol, the low refractive index layer is prepared to form the low refractive index layer. These solvents are inevitably mixed in the forming coating solution. However, in the drying and curing process after coating, these solvents are volatilized and removed together with the solvent separately added to prepare the coating solution.
If the index of refraction of the low index layer is designed to be relatively high, solid silica is used. As the solid silica, the solid silica described in the section of the hard coat layer is used without limitation.
The content of silica particles in the coating solution for forming a low refractive index layer depends on the set refractive index of the low refractive index layer and the amount of other contained components, but is preferably 60 with respect to 100 parts by mass of the alkoxysilane compound. It is up to 400 parts by mass, more preferably 65 to 330 parts by mass.
[金属キレート化合物]
低屈折率層の緻密性や強度、更には硬度を高める目的で、金属キレート化合物を含有させることが好ましい。金属キレート化合物としては、ハードコート層の項で説明された金属キレート化合物が、制限なくそのまま使用できる。
低屈折率層形成用コーティング溶液中の金属キレート化合物の含有量は、アルコキシシラン化合物100質量部に対して、好ましくは5~15質量部、より好ましくは6~12質量部、より好ましくは8~10質量部である。 [Metal chelate compound]
It is preferable to contain a metal chelate compound for the purpose of increasing the density and strength of the low refractive index layer and further increasing the hardness. As the metal chelate compound, the metal chelate compound described in the section of the hard coat layer can be used as it is without limitation.
The content of the metal chelate compound in the coating solution for forming a low refractive index layer is preferably 5 to 15 parts by mass, more preferably 6 to 12 parts by mass, and more preferably 8 to 8 parts by mass with respect to 100 parts by mass of the alkoxysilane compound. It is 10 parts by mass.
低屈折率層の緻密性や強度、更には硬度を高める目的で、金属キレート化合物を含有させることが好ましい。金属キレート化合物としては、ハードコート層の項で説明された金属キレート化合物が、制限なくそのまま使用できる。
低屈折率層形成用コーティング溶液中の金属キレート化合物の含有量は、アルコキシシラン化合物100質量部に対して、好ましくは5~15質量部、より好ましくは6~12質量部、より好ましくは8~10質量部である。 [Metal chelate compound]
It is preferable to contain a metal chelate compound for the purpose of increasing the density and strength of the low refractive index layer and further increasing the hardness. As the metal chelate compound, the metal chelate compound described in the section of the hard coat layer can be used as it is without limitation.
The content of the metal chelate compound in the coating solution for forming a low refractive index layer is preferably 5 to 15 parts by mass, more preferably 6 to 12 parts by mass, and more preferably 8 to 8 parts by mass with respect to 100 parts by mass of the alkoxysilane compound. It is 10 parts by mass.
[低屈折率層の形成]
ハードコート層或いは高屈折率層の上に低屈折率層が積層されて、高屈折率層と交互に積層された多層構造のハーフミラー層が形成される。
当該低屈折率層は、上記各成分を特定量、更には任意成分を、粘度調整や易塗布性の目的で溶剤に溶解して低屈折率層形成用コーティング溶液とし、この溶液を塗布した後、乾燥し、次いで加熱し、熱硬化させて形成することができる。
低屈折率層形成用コーティング溶液に使用される溶剤は、ハードコート層形成用コーティング溶液の項で説明された溶剤が制限なく使用される。同じく、塗工方法も同様の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。 [Formation of low refractive index layer]
The low refractive index layer is laminated on the hard coat layer or the high refractive index layer, and a half mirror layer having a multi-layer structure alternately laminated with the high refractive index layer is formed.
In the low refractive index layer, each of the above components is dissolved in a specific amount, and further, any component is dissolved in a solvent for the purpose of viscosity adjustment and easy coating to prepare a coating solution for forming a low refractive index layer, and after this solution is applied. It can be formed by drying, then heating and heat curing.
As the solvent used for the coating solution for forming a low refractive index layer, the solvent described in the section of the coating solution for forming a hard coat layer is used without limitation. Similarly, the same coating method is adopted, but the dip coating method is preferable from the viewpoint of appearance quality and film thickness control.
ハードコート層或いは高屈折率層の上に低屈折率層が積層されて、高屈折率層と交互に積層された多層構造のハーフミラー層が形成される。
当該低屈折率層は、上記各成分を特定量、更には任意成分を、粘度調整や易塗布性の目的で溶剤に溶解して低屈折率層形成用コーティング溶液とし、この溶液を塗布した後、乾燥し、次いで加熱し、熱硬化させて形成することができる。
低屈折率層形成用コーティング溶液に使用される溶剤は、ハードコート層形成用コーティング溶液の項で説明された溶剤が制限なく使用される。同じく、塗工方法も同様の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。 [Formation of low refractive index layer]
The low refractive index layer is laminated on the hard coat layer or the high refractive index layer, and a half mirror layer having a multi-layer structure alternately laminated with the high refractive index layer is formed.
In the low refractive index layer, each of the above components is dissolved in a specific amount, and further, any component is dissolved in a solvent for the purpose of viscosity adjustment and easy coating to prepare a coating solution for forming a low refractive index layer, and after this solution is applied. It can be formed by drying, then heating and heat curing.
As the solvent used for the coating solution for forming a low refractive index layer, the solvent described in the section of the coating solution for forming a hard coat layer is used without limitation. Similarly, the same coating method is adopted, but the dip coating method is preferable from the viewpoint of appearance quality and film thickness control.
<高屈折率層>
高屈折率層の屈折率は、1.75~1.82である。当該高屈折率層は、ハードコート層の上に或いは低屈折率層の上に積層されて、低屈折率層と交互に積層された多層構造を形成する。
当該高屈折率層は、アルコキシシラン化合物、金属酸化物粒子および金属キレート化合物を含有する硬化性組成物の硬化体であることが好ましい。 <High refractive index layer>
The refractive index of the high refractive index layer is 1.75 to 1.82. The high refractive index layer is laminated on the hard coat layer or on the low refractive index layer to form a multilayer structure in which the low refractive index layer is alternately laminated.
The high refractive index layer is preferably a cured product of a curable composition containing an alkoxysilane compound, a metal oxide particle and a metal chelate compound.
高屈折率層の屈折率は、1.75~1.82である。当該高屈折率層は、ハードコート層の上に或いは低屈折率層の上に積層されて、低屈折率層と交互に積層された多層構造を形成する。
当該高屈折率層は、アルコキシシラン化合物、金属酸化物粒子および金属キレート化合物を含有する硬化性組成物の硬化体であることが好ましい。 <High refractive index layer>
The refractive index of the high refractive index layer is 1.75 to 1.82. The high refractive index layer is laminated on the hard coat layer or on the low refractive index layer to form a multilayer structure in which the low refractive index layer is alternately laminated.
The high refractive index layer is preferably a cured product of a curable composition containing an alkoxysilane compound, a metal oxide particle and a metal chelate compound.
[アルコキシシラン化合物]
アルコキシシラン化合物またはその加水分解物は、低屈折率層と同様に、高屈折率層を緻密なものとすることができる。
当該アルコキシシラン化合物としては、低屈折率層の項で挙げられた化合物を制限なく使用できる。高屈折率層においても、同様の理由で、前記一般式(1)で表されるアルコキシシラン化合物が好適である。 [Alkoxysilane compound]
The alkoxysilane compound or its hydrolyzate can make the high refractive index layer dense as well as the low refractive index layer.
As the alkoxysilane compound, the compounds listed in the section of the low refractive index layer can be used without limitation. Also in the high refractive index layer, the alkoxysilane compound represented by the general formula (1) is suitable for the same reason.
アルコキシシラン化合物またはその加水分解物は、低屈折率層と同様に、高屈折率層を緻密なものとすることができる。
当該アルコキシシラン化合物としては、低屈折率層の項で挙げられた化合物を制限なく使用できる。高屈折率層においても、同様の理由で、前記一般式(1)で表されるアルコキシシラン化合物が好適である。 [Alkoxysilane compound]
The alkoxysilane compound or its hydrolyzate can make the high refractive index layer dense as well as the low refractive index layer.
As the alkoxysilane compound, the compounds listed in the section of the low refractive index layer can be used without limitation. Also in the high refractive index layer, the alkoxysilane compound represented by the general formula (1) is suitable for the same reason.
[金属酸化物粒子]
高屈折率層の屈折率を所定の範囲に制御するために、金属酸化物粒子を使用することが好ましい。
具体的な金属酸化物粒子としては、酸化ジルコニウム粒子(屈折率=2.40)、酸化ジルコニウムと酸化ケイ素等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合ジルコニウム金属酸化物粒子、酸化チタニウム粒子(屈折率=2.71)、酸化チタニウムと酸化ケイ素や酸化ジルコニウム等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合チタニウム金属酸化物粒子などが使用される。これらの金属酸化物粒子を適宜組み合わせて、所望の屈折率の層に調整する。このような粒子はそれ自体公知であり、市販されている。
金属酸化物粒子の平均粒径は、好ましくは1~100nm、より好ましくは1~70nmである。金属酸化物粒子の屈折率は、好ましくは1.70~2.80、より好ましくは1.90~2.50である。
高屈折率層形成用コーティング溶液中の金属酸化物粒子の含有量は、高屈折率層の設定屈折率と他の含有成分の量に依存するが、バインダー成分100質量部に対して、好ましくは100~500質量部であり、より好ましくは120~470質量部である [Metal oxide particles]
It is preferable to use metal oxide particles in order to control the refractive index of the high refractive index layer within a predetermined range.
Specific metal oxide particles include zirconium oxide particles (refractive index = 2.40), and composite zirconium metal in which zirconium oxide and other oxides such as silicon oxide are composited at the molecular level to adjust the refractive index. Oxide particles, titanium oxide particles (refractive index = 2.71), composite titanium metal oxide particles whose refractive index is adjusted by combining titanium oxide with other oxides such as silicon oxide and zirconium oxide at the molecular level. Etc. are used. These metal oxide particles are appropriately combined to prepare a layer having a desired refractive index. Such particles are known in their own right and are commercially available.
The average particle size of the metal oxide particles is preferably 1 to 100 nm, more preferably 1 to 70 nm. The refractive index of the metal oxide particles is preferably 1.70 to 2.80, more preferably 1.90 to 2.50.
The content of the metal oxide particles in the coating solution for forming the high refractive index layer depends on the set refractive index of the high refractive index layer and the amount of other contained components, but is preferably based on 100 parts by mass of the binder component. It is 100 to 500 parts by mass, more preferably 120 to 470 parts by mass.
高屈折率層の屈折率を所定の範囲に制御するために、金属酸化物粒子を使用することが好ましい。
具体的な金属酸化物粒子としては、酸化ジルコニウム粒子(屈折率=2.40)、酸化ジルコニウムと酸化ケイ素等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合ジルコニウム金属酸化物粒子、酸化チタニウム粒子(屈折率=2.71)、酸化チタニウムと酸化ケイ素や酸化ジルコニウム等の他の酸化物とを分子レベルで複合化させて屈折率を調整した複合チタニウム金属酸化物粒子などが使用される。これらの金属酸化物粒子を適宜組み合わせて、所望の屈折率の層に調整する。このような粒子はそれ自体公知であり、市販されている。
金属酸化物粒子の平均粒径は、好ましくは1~100nm、より好ましくは1~70nmである。金属酸化物粒子の屈折率は、好ましくは1.70~2.80、より好ましくは1.90~2.50である。
高屈折率層形成用コーティング溶液中の金属酸化物粒子の含有量は、高屈折率層の設定屈折率と他の含有成分の量に依存するが、バインダー成分100質量部に対して、好ましくは100~500質量部であり、より好ましくは120~470質量部である [Metal oxide particles]
It is preferable to use metal oxide particles in order to control the refractive index of the high refractive index layer within a predetermined range.
Specific metal oxide particles include zirconium oxide particles (refractive index = 2.40), and composite zirconium metal in which zirconium oxide and other oxides such as silicon oxide are composited at the molecular level to adjust the refractive index. Oxide particles, titanium oxide particles (refractive index = 2.71), composite titanium metal oxide particles whose refractive index is adjusted by combining titanium oxide with other oxides such as silicon oxide and zirconium oxide at the molecular level. Etc. are used. These metal oxide particles are appropriately combined to prepare a layer having a desired refractive index. Such particles are known in their own right and are commercially available.
The average particle size of the metal oxide particles is preferably 1 to 100 nm, more preferably 1 to 70 nm. The refractive index of the metal oxide particles is preferably 1.70 to 2.80, more preferably 1.90 to 2.50.
The content of the metal oxide particles in the coating solution for forming the high refractive index layer depends on the set refractive index of the high refractive index layer and the amount of other contained components, but is preferably based on 100 parts by mass of the binder component. It is 100 to 500 parts by mass, more preferably 120 to 470 parts by mass.
[金属キレート化合物]
高屈折率層の緻密性や強度、更には硬度を高める目的で、金属キレート化合物を含有させることが好ましい。金属キレート化合物としては、ハードコート層の項で挙げられた金属キレート化合物を制限なく使用できる。
高屈折率層形成用コーティング溶液中の金属キレート化合物の含有量は、アルコキシシラン化合物100質量部に対して、好ましくは5~15質量部、より好ましくは6~12質量部、さらに好ましくは8~10質量部である。 [Metal chelate compound]
It is preferable to contain a metal chelate compound for the purpose of increasing the density and strength of the high refractive index layer and further increasing the hardness. As the metal chelate compound, the metal chelate compound mentioned in the section of the hard coat layer can be used without limitation.
The content of the metal chelate compound in the coating solution for forming a high refractive index layer is preferably 5 to 15 parts by mass, more preferably 6 to 12 parts by mass, and further preferably 8 to 8 parts by mass with respect to 100 parts by mass of the alkoxysilane compound. It is 10 parts by mass.
高屈折率層の緻密性や強度、更には硬度を高める目的で、金属キレート化合物を含有させることが好ましい。金属キレート化合物としては、ハードコート層の項で挙げられた金属キレート化合物を制限なく使用できる。
高屈折率層形成用コーティング溶液中の金属キレート化合物の含有量は、アルコキシシラン化合物100質量部に対して、好ましくは5~15質量部、より好ましくは6~12質量部、さらに好ましくは8~10質量部である。 [Metal chelate compound]
It is preferable to contain a metal chelate compound for the purpose of increasing the density and strength of the high refractive index layer and further increasing the hardness. As the metal chelate compound, the metal chelate compound mentioned in the section of the hard coat layer can be used without limitation.
The content of the metal chelate compound in the coating solution for forming a high refractive index layer is preferably 5 to 15 parts by mass, more preferably 6 to 12 parts by mass, and further preferably 8 to 8 parts by mass with respect to 100 parts by mass of the alkoxysilane compound. It is 10 parts by mass.
[高屈折率層の形成]
ハードコート層或いは低屈折率層の上に高屈折率層が積層されて、低屈折率層と交互に積層された多層構造のハーフミラー層が形成される。前記した通り、ハーフミラー層の最表面は高屈折率層であることが必要である。
当該高屈折率層は、上記各成分を特定量、更には任意成分を、粘度調整や易塗布性の目的で溶剤に溶解して高屈折率層形成用コーティング溶液とし、この溶液を塗布した後、乾燥し、次いで加熱し、熱硬化させて形成することができる。
高屈折率層形成用コーティング溶液に使用される溶剤は、ハードコート層形成用コーティング溶液の項で説明された溶剤が制限なく使用される。同じく、塗工方法も同様の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。 [Formation of high refractive index layer]
The high refractive index layer is laminated on the hard coat layer or the low refractive index layer, and a half mirror layer having a multi-layered structure alternately laminated with the low refractive index layer is formed. As described above, the outermost surface of the half mirror layer needs to be a high refractive index layer.
In the high-refractive index layer, a specific amount of each of the above components and an optional component are dissolved in a solvent for the purpose of viscosity adjustment and easy coating to prepare a coating solution for forming a high-refractive index layer, and then this solution is applied. It can be formed by drying, then heating and heat curing.
As the solvent used for the coating solution for forming a high refractive index layer, the solvent described in the section of the coating solution for forming a hard coat layer is used without limitation. Similarly, the same coating method is adopted, but the dip coating method is preferable from the viewpoint of appearance quality and film thickness control.
ハードコート層或いは低屈折率層の上に高屈折率層が積層されて、低屈折率層と交互に積層された多層構造のハーフミラー層が形成される。前記した通り、ハーフミラー層の最表面は高屈折率層であることが必要である。
当該高屈折率層は、上記各成分を特定量、更には任意成分を、粘度調整や易塗布性の目的で溶剤に溶解して高屈折率層形成用コーティング溶液とし、この溶液を塗布した後、乾燥し、次いで加熱し、熱硬化させて形成することができる。
高屈折率層形成用コーティング溶液に使用される溶剤は、ハードコート層形成用コーティング溶液の項で説明された溶剤が制限なく使用される。同じく、塗工方法も同様の方法が採用されるが、外観品位や膜厚制御の観点からディップコート法が好適である。 [Formation of high refractive index layer]
The high refractive index layer is laminated on the hard coat layer or the low refractive index layer, and a half mirror layer having a multi-layered structure alternately laminated with the low refractive index layer is formed. As described above, the outermost surface of the half mirror layer needs to be a high refractive index layer.
In the high-refractive index layer, a specific amount of each of the above components and an optional component are dissolved in a solvent for the purpose of viscosity adjustment and easy coating to prepare a coating solution for forming a high-refractive index layer, and then this solution is applied. It can be formed by drying, then heating and heat curing.
As the solvent used for the coating solution for forming a high refractive index layer, the solvent described in the section of the coating solution for forming a hard coat layer is used without limitation. Similarly, the same coating method is adopted, but the dip coating method is preferable from the viewpoint of appearance quality and film thickness control.
<反射防止層:AR層>
透明基材の前記ハーフミラー層を設けた面と反対側の面(以下、裏面ともいう)に、ハードコート層および反射防止層をこの順で積層した光学部材は、透明基材の厚みと入射角に起因して、即ちハーフミラー層の表面での反射と裏面での反射によって生じる二重画像を極力低減できるため、好適な態様である。
上記反射防止層は、ハードコート層上に順に高屈折率層と低屈折率層とを備える層であり、この結果、波長380~780nmにおける入射角45°のP偏光の視感平均反射率が0.5%未満、入射角45°のS偏光の視感平均反射率が4.5%未満、入射角45°の(P+S)/2偏光の視感平均反射率が2.5%未満であり、偏光波に対する優れた反射防止能が実現する。なお、反射防止層は、上記ハードコート層と高屈折率層の間に低屈折率層を設けて三層としても良い。
上記各視感平均反射率は、本発明の光学部材の反射防止層を測定面として各偏光を照射して測定した時の、各偏光波に対する反射率である。
ハードコート層は、ハーフミラー層側のハードコート層と同様にして形成される。層の成分、コーティング溶液、形成方法等はその項の説明に準じる。当該ハードコート層の厚みは、1~3μmが好ましい。
反射防止層の低屈折率層および高屈折率層は、ハーフミラー層のそれらと同様にして形成され、各層の成分、コーティング溶液、形成方法等はそれらの項の説明に準じる。低屈折率層の屈折率は1.28~1.35が好ましく、厚みは100~120nmが好ましい。高屈折率層の屈折率は1.75~1.82が好ましく、厚みは80~170nmが好ましい。
反射防止層の形成は、前記ハーフミラー層の形成と別途独立して行ってもよいが、ハーフミラー層の第一層が高屈折率層である場合は、次のようにして行うのが工業的に効率的である。即ち、透明基材の両面にディップコート法でハードコート層、高屈折率層、低屈折率層を順に形成した後、片面を反射防止層として保護フィルムで保護した後、反対面上にハーフミラー層の形成を続行し所定のハーフミラー層とする。 <Anti-reflection layer: AR layer>
The optical member in which the hard coat layer and the antireflection layer are laminated in this order on the surface of the transparent substrate opposite to the surface on which the half mirror layer is provided (hereinafter, also referred to as the back surface) is the thickness of the transparent substrate and the incidental light. This is a preferred embodiment because the double image caused by the angle, that is, the reflection on the front surface and the reflection on the back surface of the half mirror layer can be reduced as much as possible.
The antireflection layer is a layer provided with a high refractive index layer and a low refractive index layer in order on the hard coat layer, and as a result, the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is obtained. Less than 0.5%, the average visual reflectance of S-polarized light with an incident angle of 45 ° is less than 4.5%, and the average reflective reflectance of (P + S) / 2 polarized light with an incident angle of 45 ° is less than 2.5%. Yes, excellent antireflection ability against polarized waves is realized. The antireflection layer may be formed into three layers by providing a low refractive index layer between the hard coat layer and the high refractive index layer.
Each of the above-mentioned visual average reflectances is the reflectance for each polarized wave when measured by irradiating each polarized light with the antireflection layer of the optical member of the present invention as a measuring surface.
The hard coat layer is formed in the same manner as the hard coat layer on the half mirror layer side. The components of the layer, the coating solution, the forming method, etc. are as described in that section. The thickness of the hard coat layer is preferably 1 to 3 μm.
The low-refractive index layer and the high-refractive index layer of the antireflection layer are formed in the same manner as those of the half mirror layer, and the components of each layer, the coating solution, the forming method and the like are as described in those sections. The refractive index of the low refractive index layer is preferably 1.28 to 1.35, and the thickness is preferably 100 to 120 nm. The refractive index of the high refractive index layer is preferably 1.75 to 1.82, and the thickness is preferably 80 to 170 nm.
The antireflection layer may be formed separately from the formation of the half mirror layer, but when the first layer of the half mirror layer is a high refractive index layer, it is industrially performed as follows. It is efficient. That is, a hard coat layer, a high refractive index layer, and a low refractive index layer are sequentially formed on both sides of a transparent substrate by a dip coating method, one side is protected with a protective film as an antireflection layer, and then a half mirror is placed on the opposite side. The formation of the layer is continued to obtain a predetermined half mirror layer.
透明基材の前記ハーフミラー層を設けた面と反対側の面(以下、裏面ともいう)に、ハードコート層および反射防止層をこの順で積層した光学部材は、透明基材の厚みと入射角に起因して、即ちハーフミラー層の表面での反射と裏面での反射によって生じる二重画像を極力低減できるため、好適な態様である。
上記反射防止層は、ハードコート層上に順に高屈折率層と低屈折率層とを備える層であり、この結果、波長380~780nmにおける入射角45°のP偏光の視感平均反射率が0.5%未満、入射角45°のS偏光の視感平均反射率が4.5%未満、入射角45°の(P+S)/2偏光の視感平均反射率が2.5%未満であり、偏光波に対する優れた反射防止能が実現する。なお、反射防止層は、上記ハードコート層と高屈折率層の間に低屈折率層を設けて三層としても良い。
上記各視感平均反射率は、本発明の光学部材の反射防止層を測定面として各偏光を照射して測定した時の、各偏光波に対する反射率である。
ハードコート層は、ハーフミラー層側のハードコート層と同様にして形成される。層の成分、コーティング溶液、形成方法等はその項の説明に準じる。当該ハードコート層の厚みは、1~3μmが好ましい。
反射防止層の低屈折率層および高屈折率層は、ハーフミラー層のそれらと同様にして形成され、各層の成分、コーティング溶液、形成方法等はそれらの項の説明に準じる。低屈折率層の屈折率は1.28~1.35が好ましく、厚みは100~120nmが好ましい。高屈折率層の屈折率は1.75~1.82が好ましく、厚みは80~170nmが好ましい。
反射防止層の形成は、前記ハーフミラー層の形成と別途独立して行ってもよいが、ハーフミラー層の第一層が高屈折率層である場合は、次のようにして行うのが工業的に効率的である。即ち、透明基材の両面にディップコート法でハードコート層、高屈折率層、低屈折率層を順に形成した後、片面を反射防止層として保護フィルムで保護した後、反対面上にハーフミラー層の形成を続行し所定のハーフミラー層とする。 <Anti-reflection layer: AR layer>
The optical member in which the hard coat layer and the antireflection layer are laminated in this order on the surface of the transparent substrate opposite to the surface on which the half mirror layer is provided (hereinafter, also referred to as the back surface) is the thickness of the transparent substrate and the incidental light. This is a preferred embodiment because the double image caused by the angle, that is, the reflection on the front surface and the reflection on the back surface of the half mirror layer can be reduced as much as possible.
The antireflection layer is a layer provided with a high refractive index layer and a low refractive index layer in order on the hard coat layer, and as a result, the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is obtained. Less than 0.5%, the average visual reflectance of S-polarized light with an incident angle of 45 ° is less than 4.5%, and the average reflective reflectance of (P + S) / 2 polarized light with an incident angle of 45 ° is less than 2.5%. Yes, excellent antireflection ability against polarized waves is realized. The antireflection layer may be formed into three layers by providing a low refractive index layer between the hard coat layer and the high refractive index layer.
Each of the above-mentioned visual average reflectances is the reflectance for each polarized wave when measured by irradiating each polarized light with the antireflection layer of the optical member of the present invention as a measuring surface.
The hard coat layer is formed in the same manner as the hard coat layer on the half mirror layer side. The components of the layer, the coating solution, the forming method, etc. are as described in that section. The thickness of the hard coat layer is preferably 1 to 3 μm.
The low-refractive index layer and the high-refractive index layer of the antireflection layer are formed in the same manner as those of the half mirror layer, and the components of each layer, the coating solution, the forming method and the like are as described in those sections. The refractive index of the low refractive index layer is preferably 1.28 to 1.35, and the thickness is preferably 100 to 120 nm. The refractive index of the high refractive index layer is preferably 1.75 to 1.82, and the thickness is preferably 80 to 170 nm.
The antireflection layer may be formed separately from the formation of the half mirror layer, but when the first layer of the half mirror layer is a high refractive index layer, it is industrially performed as follows. It is efficient. That is, a hard coat layer, a high refractive index layer, and a low refractive index layer are sequentially formed on both sides of a transparent substrate by a dip coating method, one side is protected with a protective film as an antireflection layer, and then a half mirror is placed on the opposite side. The formation of the layer is continued to obtain a predetermined half mirror layer.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
以下の実施例及び比較例で用いた各種成分と略号、並びに試験方法は、次の通りである。
[P偏光視感平均反射率]
前記の通り。
[S偏光視感平均反射率]
前記の通り。
[(P+S)/2偏光視感平均反射率]
前記の通り。
[XY色度図におけるx値とy値]
前記の通り。
[反射防止層面のP偏光視感平均反射率]
両面に同一の反射防止層を形成し、一方の面のP偏光視感平均反射率を前記と同様にして測定した。
[反射防止層面のS偏光視感平均反射率]
両面に同一の反射防止層を形成し、一方の面のS偏光視感平均反射率を前記と同様にして測定した。
[反射防止層面の(P+S)/2偏光視感平均反射率]
両面に同一の反射防止層を形成し、一方の面の(P+S)/2偏光視感平均反射率を前記と同様にして測定した。
[屈折率]
各層の屈折率は以下の方法で測定した。アクリル基材に各層の形成用コーティング溶液をコーティングし、日本分光(株)製 紫外可視分光光度計「V-650」を使用し、ピークまたはボトムの値を測定した。その値を用いて各層の屈折率を算出した。
[反射像及び透過像(後方像)の鮮明性]
反射像および透過像を表示させ、目視による鮮明性を評価した。
「〇」:像が鮮明に表示された。
「△」:像の強さは弱めではあるが、目視で確認できる像が表示された。
「×」:像が不鮮明であった。
[全体像(立体像)の鮮明性]
反射像と透過像を表示させ、目視による表示空間全体の鮮明性を評価した。
「〇」:反射像および透過像ともにバランスよく表示され、かつ像は鮮明であった。
「△」:透過像が強めに表示され、反射像が弱めに表示された。
「×」:反射像または透過像が強く表示され、もう一方の像が不鮮明であった。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Also, not all combinations of features described in the examples are essential to the solution of the present invention.
The various components and abbreviations used in the following Examples and Comparative Examples, as well as the test methods are as follows.
[P-polarized visual average reflectance]
As mentioned above.
[S-polarized visual average reflectance]
As mentioned above.
[(P + S) / 2-polarized visual average reflectance]
As mentioned above.
[X value and y value in XY chromaticity diagram]
As mentioned above.
[P-polarized visual average reflectance of the antireflection layer surface]
The same antireflection layer was formed on both surfaces, and the P-polarized visual average reflectance on one surface was measured in the same manner as described above.
[S-polarized visual average reflectance of the antireflection layer surface]
The same antireflection layer was formed on both surfaces, and the S-polarized visual average reflectance on one surface was measured in the same manner as described above.
[(P + S) / 2 polarized visual average reflectance of the antireflection layer surface]
The same antireflection layer was formed on both surfaces, and the (P + S) / 2 polarized visual average reflectance on one surface was measured in the same manner as described above.
[Refractive index]
The refractive index of each layer was measured by the following method. The acrylic substrate was coated with a coating solution for forming each layer, and the peak or bottom value was measured using an ultraviolet-visible spectrophotometer "V-650" manufactured by JASCO Corporation. The refractive index of each layer was calculated using the value.
[Clearness of reflected image and transmitted image (rear image)]
A reflected image and a transmitted image were displayed, and the visual clarity was evaluated.
"○": The image was clearly displayed.
"△": Although the strength of the image is weak, an image that can be visually confirmed is displayed.
"X": The image was unclear.
[Clarity of the whole image (stereoscopic image)]
A reflected image and a transmitted image were displayed, and the sharpness of the entire display space was evaluated visually.
"○": Both the reflected image and the transmitted image were displayed in a well-balanced manner, and the image was clear.
"△": The transmitted image was displayed strongly, and the reflected image was displayed weakly.
"X": The reflected image or the transmitted image was strongly displayed, and the other image was unclear.
以下の実施例及び比較例で用いた各種成分と略号、並びに試験方法は、次の通りである。
[P偏光視感平均反射率]
前記の通り。
[S偏光視感平均反射率]
前記の通り。
[(P+S)/2偏光視感平均反射率]
前記の通り。
[XY色度図におけるx値とy値]
前記の通り。
[反射防止層面のP偏光視感平均反射率]
両面に同一の反射防止層を形成し、一方の面のP偏光視感平均反射率を前記と同様にして測定した。
[反射防止層面のS偏光視感平均反射率]
両面に同一の反射防止層を形成し、一方の面のS偏光視感平均反射率を前記と同様にして測定した。
[反射防止層面の(P+S)/2偏光視感平均反射率]
両面に同一の反射防止層を形成し、一方の面の(P+S)/2偏光視感平均反射率を前記と同様にして測定した。
[屈折率]
各層の屈折率は以下の方法で測定した。アクリル基材に各層の形成用コーティング溶液をコーティングし、日本分光(株)製 紫外可視分光光度計「V-650」を使用し、ピークまたはボトムの値を測定した。その値を用いて各層の屈折率を算出した。
[反射像及び透過像(後方像)の鮮明性]
反射像および透過像を表示させ、目視による鮮明性を評価した。
「〇」:像が鮮明に表示された。
「△」:像の強さは弱めではあるが、目視で確認できる像が表示された。
「×」:像が不鮮明であった。
[全体像(立体像)の鮮明性]
反射像と透過像を表示させ、目視による表示空間全体の鮮明性を評価した。
「〇」:反射像および透過像ともにバランスよく表示され、かつ像は鮮明であった。
「△」:透過像が強めに表示され、反射像が弱めに表示された。
「×」:反射像または透過像が強く表示され、もう一方の像が不鮮明であった。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Also, not all combinations of features described in the examples are essential to the solution of the present invention.
The various components and abbreviations used in the following Examples and Comparative Examples, as well as the test methods are as follows.
[P-polarized visual average reflectance]
As mentioned above.
[S-polarized visual average reflectance]
As mentioned above.
[(P + S) / 2-polarized visual average reflectance]
As mentioned above.
[X value and y value in XY chromaticity diagram]
As mentioned above.
[P-polarized visual average reflectance of the antireflection layer surface]
The same antireflection layer was formed on both surfaces, and the P-polarized visual average reflectance on one surface was measured in the same manner as described above.
[S-polarized visual average reflectance of the antireflection layer surface]
The same antireflection layer was formed on both surfaces, and the S-polarized visual average reflectance on one surface was measured in the same manner as described above.
[(P + S) / 2 polarized visual average reflectance of the antireflection layer surface]
The same antireflection layer was formed on both surfaces, and the (P + S) / 2 polarized visual average reflectance on one surface was measured in the same manner as described above.
[Refractive index]
The refractive index of each layer was measured by the following method. The acrylic substrate was coated with a coating solution for forming each layer, and the peak or bottom value was measured using an ultraviolet-visible spectrophotometer "V-650" manufactured by JASCO Corporation. The refractive index of each layer was calculated using the value.
[Clearness of reflected image and transmitted image (rear image)]
A reflected image and a transmitted image were displayed, and the visual clarity was evaluated.
"○": The image was clearly displayed.
"△": Although the strength of the image is weak, an image that can be visually confirmed is displayed.
"X": The image was unclear.
[Clarity of the whole image (stereoscopic image)]
A reflected image and a transmitted image were displayed, and the sharpness of the entire display space was evaluated visually.
"○": Both the reflected image and the transmitted image were displayed in a well-balanced manner, and the image was clear.
"△": The transmitted image was displayed strongly, and the reflected image was displayed weakly.
"X": The reflected image or the transmitted image was strongly displayed, and the other image was unclear.
実施例1
厚さ1mmのポリメチルメタクリレート樹脂(PMMA)に、以下の方法でハードコート層、更にその上にハーフミラー層を形成した。
[ハードコート層形成用コーティング溶液]
バインダー(アクリレート系化合物) 176.0g(100質量部)
・4官能ウレタンアクリレート 100.0g
・ペンタエリスリトールトリアクリレート 72.0g
・2-アクリロイロキシエチルヘキサヒドロフタル酸 4.0g
中実シリカ(平均粒径:10nm、屈折率:1.48、固形分20質量%、
分散媒IPA) 固形分69.0g(39質量部)
γ-グリシドキシプロピルトリメトキシシシラン
14.8g(8.4質量部)
アルミニウムトリス(アセチルアセトナート) 1.2g(0.7質量部)
1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(光重合開始剤)
7.3g(4.1質量部)
0.05N塩酸 3.4g
2-[2-ヒドロキシ-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール(紫外線吸収剤) 11.3g
有機溶剤 717.0g
・イソプロピルアルコール(IPA) 386.0g
*中実シリカの分散媒を含む
・酢酸sec-ブチルエステル 257.3g
・ジアセトンアルコール 73.7g
[高屈折率層形成用コーティング溶液:n2]
γ-グリシドキシプロピルトリメトキシシシラン
14.5g(100質量部)
ジルコニア(平均粒径:50nm、屈折率:2.40、固形分15質量%、
分散媒ブタノールとエタノールの混合物)
固形分17.9g(124質量部)
アルミニウムトリス(アセチルアセトナート) 1.2g(8.2質量部)
0.05N塩酸 3.3g
有機溶剤 963.1g
・エタコール7(登録商標;エタノールとイソプロパノールの混合物)
861.8g
・ジルコニアの前記分散媒 101.3g
[低屈折率層形成用コーティング溶液:n1]
γ-グリシドキシプロピルトリメトキシシシラン
6.6g(100質量部)
中空シリカ(平均粒径:60nm、屈折率:1.25、固形分20質量%、
分散媒IPA) 固形分12.6g(192質量部)
アルミニウムトリス(アセチルアセトナート) 0.5g(8.2質量部)
0.05N塩酸 1.5g
有機溶剤 978.8g
・ノルマルプロピルアルコール(NPA) 195.8g
・イソプロピルアルコール(IPA) 391.5g
*中空シリカの分散媒を含む
・酢酸sec-ブチルエステル 391.5g Example 1
A hard coat layer was formed on a polymethylmethacrylate resin (PMMA) having a thickness of 1 mm by the following method, and a half mirror layer was further formed on the hard coat layer.
[Coating solution for forming a hard coat layer]
Binder (acrylate compound) 176.0 g (100 parts by mass)
・ 4 Functional urethane acrylate 100.0g
・ Pentaerythritol triacrylate 72.0 g
-2-Acryloyloxyethyl hexahydrophthalic acid 4.0 g
Solid silica (average particle size: 10 nm, refractive index: 1.48,solid content 20% by mass,
Dispersion medium IPA) Solid content 69.0 g (39 parts by mass)
γ-glycidoxypropyltrimethoxysilylene
14.8 g (8.4 parts by mass)
Aluminum Tris (Acetylacetonate) 1.2 g (0.7 parts by mass)
1-Hydroxy-cyclohexyl-phenyl-ketone (photopolymerization initiator)
7.3 g (4.1 parts by mass)
0.05N Hydrochloric Acid 3.4g
2- [2-Hydroxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole (ultraviolet absorber) 11.3 g
Organic solvent 717.0 g
-Isopropyl alcohol (IPA) 386.0 g
* Containing a dispersion medium of solid silica ・ Acetic acid sec-butyl ester 257.3 g
・ Diacetone alcohol 73.7g
[Coating solution for forming a high refractive index layer: n2]
γ-glycidoxypropyltrimethoxysilylene
14.5 g (100 parts by mass)
Zirconia (average particle size: 50 nm, refractive index: 2.40,solid content 15% by mass,
Dispersion medium Butanol and ethanol mixture)
Solid content 17.9 g (124 parts by mass)
Aluminum Tris (Acetylacetonet) 1.2 g (8.2 parts by mass)
0.05N Hydrochloric Acid 3.3g
Organic solvent 963.1g
Etacol 7 (registered trademark; mixture of ethanol and isopropanol)
861.8g
101.3 g of the dispersion medium of zirconia
[Coating solution for forming a low refractive index layer: n1]
γ-glycidoxypropyltrimethoxysilylene
6.6 g (100 parts by mass)
Hollow silica (average particle size: 60 nm, refractive index: 1.25,solid content 20% by mass,
Dispersion medium IPA) Solid content 12.6 g (192 parts by mass)
Aluminum Tris (Acetylacetonate) 0.5 g (8.2 parts by mass)
0.05N Hydrochloric Acid 1.5g
Organic solvent 978.8 g
・ Normal propyl alcohol (NPA) 195.8g
-Isopropyl alcohol (IPA) 391.5 g
* Includes a dispersion medium for hollow silica ・ Acetic acid sec-butyl ester 391.5 g
厚さ1mmのポリメチルメタクリレート樹脂(PMMA)に、以下の方法でハードコート層、更にその上にハーフミラー層を形成した。
[ハードコート層形成用コーティング溶液]
バインダー(アクリレート系化合物) 176.0g(100質量部)
・4官能ウレタンアクリレート 100.0g
・ペンタエリスリトールトリアクリレート 72.0g
・2-アクリロイロキシエチルヘキサヒドロフタル酸 4.0g
中実シリカ(平均粒径:10nm、屈折率:1.48、固形分20質量%、
分散媒IPA) 固形分69.0g(39質量部)
γ-グリシドキシプロピルトリメトキシシシラン
14.8g(8.4質量部)
アルミニウムトリス(アセチルアセトナート) 1.2g(0.7質量部)
1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(光重合開始剤)
7.3g(4.1質量部)
0.05N塩酸 3.4g
2-[2-ヒドロキシ-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール(紫外線吸収剤) 11.3g
有機溶剤 717.0g
・イソプロピルアルコール(IPA) 386.0g
*中実シリカの分散媒を含む
・酢酸sec-ブチルエステル 257.3g
・ジアセトンアルコール 73.7g
[高屈折率層形成用コーティング溶液:n2]
γ-グリシドキシプロピルトリメトキシシシラン
14.5g(100質量部)
ジルコニア(平均粒径:50nm、屈折率:2.40、固形分15質量%、
分散媒ブタノールとエタノールの混合物)
固形分17.9g(124質量部)
アルミニウムトリス(アセチルアセトナート) 1.2g(8.2質量部)
0.05N塩酸 3.3g
有機溶剤 963.1g
・エタコール7(登録商標;エタノールとイソプロパノールの混合物)
861.8g
・ジルコニアの前記分散媒 101.3g
[低屈折率層形成用コーティング溶液:n1]
γ-グリシドキシプロピルトリメトキシシシラン
6.6g(100質量部)
中空シリカ(平均粒径:60nm、屈折率:1.25、固形分20質量%、
分散媒IPA) 固形分12.6g(192質量部)
アルミニウムトリス(アセチルアセトナート) 0.5g(8.2質量部)
0.05N塩酸 1.5g
有機溶剤 978.8g
・ノルマルプロピルアルコール(NPA) 195.8g
・イソプロピルアルコール(IPA) 391.5g
*中空シリカの分散媒を含む
・酢酸sec-ブチルエステル 391.5g Example 1
A hard coat layer was formed on a polymethylmethacrylate resin (PMMA) having a thickness of 1 mm by the following method, and a half mirror layer was further formed on the hard coat layer.
[Coating solution for forming a hard coat layer]
Binder (acrylate compound) 176.0 g (100 parts by mass)
・ 4 Functional urethane acrylate 100.0g
・ Pentaerythritol triacrylate 72.0 g
-2-Acryloyloxyethyl hexahydrophthalic acid 4.0 g
Solid silica (average particle size: 10 nm, refractive index: 1.48,
Dispersion medium IPA) Solid content 69.0 g (39 parts by mass)
γ-glycidoxypropyltrimethoxysilylene
14.8 g (8.4 parts by mass)
Aluminum Tris (Acetylacetonate) 1.2 g (0.7 parts by mass)
1-Hydroxy-cyclohexyl-phenyl-ketone (photopolymerization initiator)
7.3 g (4.1 parts by mass)
0.05N Hydrochloric Acid 3.4g
2- [2-Hydroxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole (ultraviolet absorber) 11.3 g
Organic solvent 717.0 g
-Isopropyl alcohol (IPA) 386.0 g
* Containing a dispersion medium of solid silica ・ Acetic acid sec-butyl ester 257.3 g
・ Diacetone alcohol 73.7g
[Coating solution for forming a high refractive index layer: n2]
γ-glycidoxypropyltrimethoxysilylene
14.5 g (100 parts by mass)
Zirconia (average particle size: 50 nm, refractive index: 2.40,
Dispersion medium Butanol and ethanol mixture)
Solid content 17.9 g (124 parts by mass)
Aluminum Tris (Acetylacetonet) 1.2 g (8.2 parts by mass)
0.05N Hydrochloric Acid 3.3g
Organic solvent 963.1g
Etacol 7 (registered trademark; mixture of ethanol and isopropanol)
861.8g
101.3 g of the dispersion medium of zirconia
[Coating solution for forming a low refractive index layer: n1]
γ-glycidoxypropyltrimethoxysilylene
6.6 g (100 parts by mass)
Hollow silica (average particle size: 60 nm, refractive index: 1.25,
Dispersion medium IPA) Solid content 12.6 g (192 parts by mass)
Aluminum Tris (Acetylacetonate) 0.5 g (8.2 parts by mass)
0.05N Hydrochloric Acid 1.5g
Organic solvent 978.8 g
・ Normal propyl alcohol (NPA) 195.8g
-Isopropyl alcohol (IPA) 391.5 g
* Includes a dispersion medium for hollow silica ・ Acetic acid sec-butyl ester 391.5 g
先ず、上記組成のハードコート層形成用コーティング溶液を用いて透明基材(PMMA、厚み1mm)の両面をディップコートし、60℃、15分間乾燥したのち、紫外線(500mJ)を照射して硬化させ、透明基材上に厚み1.50μmのハードコート層を両面に形成した。
次いで、当該ハードコート層を有する透明基材の両面を、上記高屈折率層形成用コーティング溶液(n2)でディップコートし、90℃、60分間加熱処理し、厚さ169.44nmの高屈折率層を両面に形成した。更に、上記低屈折率層形成用コーティング溶液(n1)で両面をディップコートし、90℃、60分間加熱処理し、厚さ113.85nmの低屈折率層を両面に形成した。
その後、一方の面を反射防止層面(裏面)としてPETフィルムで保護し、他方の面をハーフミラー層面として、当該ハーフミラー層面上に更に高屈折率層と低屈折率層の形成を交互に繰り返して、屈折率層の合計数が9層で最表面が高屈折率層であるハーフミラー層が形成された光学部材を作製した。各層の厚みと屈折率を表3に示す。
実施例1~5の結果から、第1層と第3層の高屈折率層の厚みは120~440nmの範囲にあり、最表面の高屈折率層の厚みは80~90nmの範囲にあることが認識できる。
なお、ハーフミラー層が9層以上の偶数層である場合は、透明基材の両面に、ハードコート層、低屈折率層、高屈折率層、低屈折率層を順に形成して三層の反射防止層とし、次いで一方の面を保護フィルムで保護した後、他方の面にハーフミラー層を順次形成する方法も採用できる。
得られた光学部材のP偏光視感平均反射率、S偏光視感平均反射率、(P+S)/2偏光視感平均反射率、XY色度図におけるx値とy値、屈折率、裏面のP偏光の視感平均反射率、裏面のS偏光の視感平均反射率、裏面の(P+S)/2偏光の裏面の視感平均反射率並びに反射像、透過像、全体像の鮮明性を、前記試験方法に従って測定し評価した。結果を表3に示す。
図1に実施例1で得られた光学部材のP偏光波に対する反射率分布図を示す。
図2に実施例1で得られた光学部材の(P+S)/2偏光波に対する反射率分布図を示す。 First, both sides of the transparent substrate (PMMA, thickness 1 mm) are dip-coated with the coating solution for forming a hard coat layer having the above composition, dried at 60 ° C. for 15 minutes, and then cured by irradiating with ultraviolet rays (500 mJ). A hard coat layer having a thickness of 1.50 μm was formed on both sides of the transparent substrate.
Next, both sides of the transparent substrate having the hard coat layer were dip-coated with the above-mentioned coating solution for forming a high refractive index layer (n2), heat-treated at 90 ° C. for 60 minutes, and had a high refractive index of 169.44 nm in thickness. Layers were formed on both sides. Further, both sides were dip-coated with the coating solution for forming a low refractive index layer (n1) and heat-treated at 90 ° C. for 60 minutes to form a low refractive index layer having a thickness of 113.85 nm on both sides.
After that, one surface is protected by a PET film as an antireflection layer surface (back surface), and the other surface is used as a half mirror layer surface, and the formation of a high refractive index layer and a low refractive index layer is alternately repeated on the half mirror layer surface. Therefore, an optical member having a half-mirror layer having a total number of refractive index layers of 9 and an outermost surface having a high refractive index layer was produced. Table 3 shows the thickness and refractive index of each layer.
From the results of Examples 1 to 5, the thickness of the high-refractive index layers of the first layer and the third layer is in the range of 120 to 440 nm, and the thickness of the outermost surface high-refractive index layer is in the range of 80 to 90 nm. Can be recognized.
When the half mirror layer is an even layer of 9 layers or more, a hard coat layer, a low refractive index layer, a high refractive index layer, and a low refractive index layer are formed in order on both sides of the transparent base material to form three layers. A method of forming an antireflection layer, then protecting one surface with a protective film, and then sequentially forming a half mirror layer on the other surface can also be adopted.
P-polarized visual average reflectance, S-polarized visual average reflectance, (P + S) / 2 polarized visual average reflectance, x-value and y-value in the XY chromaticity diagram, refractive index, back surface of the obtained optical member The visual average reflectance of P-polarized light, the visual average reflectance of S-polarized light on the back surface, the visual average reflectance of the back surface of (P + S) / 2 polarized light on the back surface, and the sharpness of the reflected image, transmitted image, and overall image. It was measured and evaluated according to the above test method. The results are shown in Table 3.
FIG. 1 shows a reflectance distribution diagram of the optical member obtained in Example 1 with respect to a P-polarized wave.
FIG. 2 shows a reflectance distribution diagram of the optical member obtained in Example 1 with respect to the (P + S) / 2 polarized wave.
次いで、当該ハードコート層を有する透明基材の両面を、上記高屈折率層形成用コーティング溶液(n2)でディップコートし、90℃、60分間加熱処理し、厚さ169.44nmの高屈折率層を両面に形成した。更に、上記低屈折率層形成用コーティング溶液(n1)で両面をディップコートし、90℃、60分間加熱処理し、厚さ113.85nmの低屈折率層を両面に形成した。
その後、一方の面を反射防止層面(裏面)としてPETフィルムで保護し、他方の面をハーフミラー層面として、当該ハーフミラー層面上に更に高屈折率層と低屈折率層の形成を交互に繰り返して、屈折率層の合計数が9層で最表面が高屈折率層であるハーフミラー層が形成された光学部材を作製した。各層の厚みと屈折率を表3に示す。
実施例1~5の結果から、第1層と第3層の高屈折率層の厚みは120~440nmの範囲にあり、最表面の高屈折率層の厚みは80~90nmの範囲にあることが認識できる。
なお、ハーフミラー層が9層以上の偶数層である場合は、透明基材の両面に、ハードコート層、低屈折率層、高屈折率層、低屈折率層を順に形成して三層の反射防止層とし、次いで一方の面を保護フィルムで保護した後、他方の面にハーフミラー層を順次形成する方法も採用できる。
得られた光学部材のP偏光視感平均反射率、S偏光視感平均反射率、(P+S)/2偏光視感平均反射率、XY色度図におけるx値とy値、屈折率、裏面のP偏光の視感平均反射率、裏面のS偏光の視感平均反射率、裏面の(P+S)/2偏光の裏面の視感平均反射率並びに反射像、透過像、全体像の鮮明性を、前記試験方法に従って測定し評価した。結果を表3に示す。
図1に実施例1で得られた光学部材のP偏光波に対する反射率分布図を示す。
図2に実施例1で得られた光学部材の(P+S)/2偏光波に対する反射率分布図を示す。 First, both sides of the transparent substrate (PMMA, thickness 1 mm) are dip-coated with the coating solution for forming a hard coat layer having the above composition, dried at 60 ° C. for 15 minutes, and then cured by irradiating with ultraviolet rays (500 mJ). A hard coat layer having a thickness of 1.50 μm was formed on both sides of the transparent substrate.
Next, both sides of the transparent substrate having the hard coat layer were dip-coated with the above-mentioned coating solution for forming a high refractive index layer (n2), heat-treated at 90 ° C. for 60 minutes, and had a high refractive index of 169.44 nm in thickness. Layers were formed on both sides. Further, both sides were dip-coated with the coating solution for forming a low refractive index layer (n1) and heat-treated at 90 ° C. for 60 minutes to form a low refractive index layer having a thickness of 113.85 nm on both sides.
After that, one surface is protected by a PET film as an antireflection layer surface (back surface), and the other surface is used as a half mirror layer surface, and the formation of a high refractive index layer and a low refractive index layer is alternately repeated on the half mirror layer surface. Therefore, an optical member having a half-mirror layer having a total number of refractive index layers of 9 and an outermost surface having a high refractive index layer was produced. Table 3 shows the thickness and refractive index of each layer.
From the results of Examples 1 to 5, the thickness of the high-refractive index layers of the first layer and the third layer is in the range of 120 to 440 nm, and the thickness of the outermost surface high-refractive index layer is in the range of 80 to 90 nm. Can be recognized.
When the half mirror layer is an even layer of 9 layers or more, a hard coat layer, a low refractive index layer, a high refractive index layer, and a low refractive index layer are formed in order on both sides of the transparent base material to form three layers. A method of forming an antireflection layer, then protecting one surface with a protective film, and then sequentially forming a half mirror layer on the other surface can also be adopted.
P-polarized visual average reflectance, S-polarized visual average reflectance, (P + S) / 2 polarized visual average reflectance, x-value and y-value in the XY chromaticity diagram, refractive index, back surface of the obtained optical member The visual average reflectance of P-polarized light, the visual average reflectance of S-polarized light on the back surface, the visual average reflectance of the back surface of (P + S) / 2 polarized light on the back surface, and the sharpness of the reflected image, transmitted image, and overall image. It was measured and evaluated according to the above test method. The results are shown in Table 3.
FIG. 1 shows a reflectance distribution diagram of the optical member obtained in Example 1 with respect to a P-polarized wave.
FIG. 2 shows a reflectance distribution diagram of the optical member obtained in Example 1 with respect to the (P + S) / 2 polarized wave.
実施例2~5
表1に示す組成の低屈折率層形成用コーティング溶液(n1)と表2に示す組成の高屈折率層形成用コーティング溶液(n2)を、表3に示す組み合わせで用いてハーフミラー層を形成した以外は、実施例1と同様にして光学部材を作製し各特性の測定を行った。結果を表3に示す。 Examples 2-5
A half mirror layer is formed by using the coating solution for forming a low refractive index layer (n1) having the composition shown in Table 1 and the coating solution (n2) for forming a high refractive index layer having the composition shown in Table 2 in the combination shown in Table 3. An optical member was produced in the same manner as in Example 1 and each characteristic was measured. The results are shown in Table 3.
表1に示す組成の低屈折率層形成用コーティング溶液(n1)と表2に示す組成の高屈折率層形成用コーティング溶液(n2)を、表3に示す組み合わせで用いてハーフミラー層を形成した以外は、実施例1と同様にして光学部材を作製し各特性の測定を行った。結果を表3に示す。 Examples 2-5
A half mirror layer is formed by using the coating solution for forming a low refractive index layer (n1) having the composition shown in Table 1 and the coating solution (n2) for forming a high refractive index layer having the composition shown in Table 2 in the combination shown in Table 3. An optical member was produced in the same manner as in Example 1 and each characteristic was measured. The results are shown in Table 3.
比較例1~10
表1に示す組成の低屈折率層形成用コーティング溶液(n1)と表2に示す組成の高屈折率層形成用コーティング溶液(n2)を、表4に示す組み合わせで用いてハーフミラー層を形成した以外は、実施例1と同様にして光学部材を作製し各特性の測定を行った。結果を表4に示す。 Comparative Examples 1 to 10
A half mirror layer is formed by using the coating solution for forming a low refractive index layer (n1) having the composition shown in Table 1 and the coating solution (n2) for forming a high refractive index layer having the composition shown in Table 2 in the combination shown in Table 4. An optical member was produced in the same manner as in Example 1 and each characteristic was measured. The results are shown in Table 4.
表1に示す組成の低屈折率層形成用コーティング溶液(n1)と表2に示す組成の高屈折率層形成用コーティング溶液(n2)を、表4に示す組み合わせで用いてハーフミラー層を形成した以外は、実施例1と同様にして光学部材を作製し各特性の測定を行った。結果を表4に示す。 Comparative Examples 1 to 10
A half mirror layer is formed by using the coating solution for forming a low refractive index layer (n1) having the composition shown in Table 1 and the coating solution (n2) for forming a high refractive index layer having the composition shown in Table 2 in the combination shown in Table 4. An optical member was produced in the same manner as in Example 1 and each characteristic was measured. The results are shown in Table 4.
比較例1は低屈折率層の屈折率が上限値を超えている例であり、ハーフミラー層の反射率が低いため反射像が不鮮明で、且つ、反射防止層の反射率が高く反射像がハーフミラー層と反射防止層の両層から反射して二重像となり全体像(立体像)が明確でない。しかも着色していた。比較例2は高屈折率層の屈折率が上限値を超えている例であり、透過像の映りが悪く全体像が明確でなかった。比較例3は低屈折率層の屈折率が下限値を満たしていない例であり、透過像の映りが悪く全体像が明確でなかった。比較例4は高屈折率層の屈折率が下限値を満たしていない例であり、反射像の映りが悪く全体像が明確でなく、しかも着色があった。比較例5は最表面の高屈折率層の厚みが上限値を超えている例であり、反射像の映りが悪く全体像が不鮮明であった。比較例6はハーフミラー層の第一層目の厚みが不足している例であり、反射像の映りがやや悪く、且つ、比較例1と同じような現象が起こり反射像で軽度の二重像が見られた。比較例7はハーフミラー層を五層とした例であり、最表面が高屈折率層であっても反射像の映りが悪く全体像が不鮮明であった。比較例8はハーフミラー層を六層とした例であり、反射像の映りが大変悪く全体像が極めて不鮮明であった。比較例9、10は低屈折率層の屈折率が上限値を超えている例であり、反射像が不鮮明で且つ二重像になっており全体像が明確でなかった。
図3は本発明の光学部材の代表的な層構成を示す模式図である。
図4は本発明の光学部材の使用態様を示す模式図である。 Comparative Example 1 is an example in which the refractive index of the low refractive index layer exceeds the upper limit value, the reflected image is unclear because the refractive index of the half mirror layer is low, and the reflective image is high in the antireflection layer. Reflected from both the half mirror layer and the antireflection layer, it becomes a double image and the whole image (stereoscopic image) is not clear. Moreover, it was colored. Comparative Example 2 is an example in which the refractive index of the high refractive index layer exceeds the upper limit value, and the transmission image is poor and the whole image is not clear. Comparative Example 3 is an example in which the refractive index of the low refractive index layer does not satisfy the lower limit, and the transmission image is poor and the whole image is not clear. Comparative Example 4 is an example in which the refractive index of the high-refractive index layer does not satisfy the lower limit, the reflected image is poorly reflected, the whole image is not clear, and the image is colored. Comparative Example 5 is an example in which the thickness of the high-refractive index layer on the outermost surface exceeds the upper limit value, and the reflected image is poorly reflected and the whole image is unclear. Comparative Example 6 is an example in which the thickness of the first layer of the half mirror layer is insufficient, the reflection image is slightly poor, and the same phenomenon as in Comparative Example 1 occurs, and the reflection image is mildly doubled. The statue was seen. Comparative Example 7 is an example in which the half mirror layer is five layers, and even if the outermost surface is a high refractive index layer, the reflection image is poor and the whole image is unclear. Comparative Example 8 is an example in which the half mirror layer is six layers, and the reflection image is very poor and the whole image is extremely unclear. Comparative Examples 9 and 10 are examples in which the refractive index of the low refractive index layer exceeds the upper limit value, and the reflected image is unclear and is a double image, and the whole image is not clear.
FIG. 3 is a schematic view showing a typical layer structure of the optical member of the present invention.
FIG. 4 is a schematic view showing a usage mode of the optical member of the present invention.
図3は本発明の光学部材の代表的な層構成を示す模式図である。
図4は本発明の光学部材の使用態様を示す模式図である。 Comparative Example 1 is an example in which the refractive index of the low refractive index layer exceeds the upper limit value, the reflected image is unclear because the refractive index of the half mirror layer is low, and the reflective image is high in the antireflection layer. Reflected from both the half mirror layer and the antireflection layer, it becomes a double image and the whole image (stereoscopic image) is not clear. Moreover, it was colored. Comparative Example 2 is an example in which the refractive index of the high refractive index layer exceeds the upper limit value, and the transmission image is poor and the whole image is not clear. Comparative Example 3 is an example in which the refractive index of the low refractive index layer does not satisfy the lower limit, and the transmission image is poor and the whole image is not clear. Comparative Example 4 is an example in which the refractive index of the high-refractive index layer does not satisfy the lower limit, the reflected image is poorly reflected, the whole image is not clear, and the image is colored. Comparative Example 5 is an example in which the thickness of the high-refractive index layer on the outermost surface exceeds the upper limit value, and the reflected image is poorly reflected and the whole image is unclear. Comparative Example 6 is an example in which the thickness of the first layer of the half mirror layer is insufficient, the reflection image is slightly poor, and the same phenomenon as in Comparative Example 1 occurs, and the reflection image is mildly doubled. The statue was seen. Comparative Example 7 is an example in which the half mirror layer is five layers, and even if the outermost surface is a high refractive index layer, the reflection image is poor and the whole image is unclear. Comparative Example 8 is an example in which the half mirror layer is six layers, and the reflection image is very poor and the whole image is extremely unclear. Comparative Examples 9 and 10 are examples in which the refractive index of the low refractive index layer exceeds the upper limit value, and the reflected image is unclear and is a double image, and the whole image is not clear.
FIG. 3 is a schematic view showing a typical layer structure of the optical member of the present invention.
FIG. 4 is a schematic view showing a usage mode of the optical member of the present invention.
Claims (6)
- 透明基材、ハードコート層、およびハーフミラー層を、この順で備えた光学部材であって、
ハーフミラー層は、屈折率が1.75~1.82である高屈折率層と屈折率が1.28~1.35である低屈折率層とが交互に9層以上積層され、高屈折率層が最表面となるよう積層されて形成されており、最表面の高屈折率層の厚みが80~90nmであり、
波長380~780nmにおける入射角45°のP偏光の視感平均反射率が30%~40%、入射角45°のS偏光の視感平均反射率が70%~85%、入射角45°の(P+S)/2偏光の視感平均反射率が50%~65%であり、XY色度図においてx:0.30~0.32、y:0.32~0.34であることを特徴とする光学部材。 An optical member provided with a transparent substrate, a hard coat layer, and a half mirror layer in this order.
In the half mirror layer, nine or more layers having a high refractive index having a refractive index of 1.75 to 1.82 and a low refractive index layer having a refractive index of 1.28 to 1.35 are alternately laminated to form a high refractive index. It is formed by laminating so that the rate layer is on the outermost surface, and the thickness of the high refractive index layer on the outermost surface is 80 to 90 nm.
The average reflectance of P-polarized light with an incident angle of 45 ° at a wavelength of 380 to 780 nm is 30% to 40%, the average reflectance of S-polarized light with an incident angle of 45 ° is 70% to 85%, and the incident angle is 45 °. The visual average reflectance of (P + S) / 2 polarization is 50% to 65%, and x: 0.30 to 0.32 and y: 0.32 to 0.34 in the XY chromaticity diagram. Optical member. - ハーフミラー層のハードコート層側から第1層目と第3層目の厚みが、120~440nmである請求項1に記載の光学部材。 The optical member according to claim 1, wherein the thickness of the first layer and the third layer from the hard coat layer side of the half mirror layer is 120 to 440 nm.
- 高屈折率層が、アルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、金属酸化物粒子を120~470質量部、および金属キレート化合物を8~10質量部含む硬化性組成物の硬化体である請求項1に記載の光学部材。 The high refractive index layer has a curable composition containing 120 to 470 parts by mass of metal oxide particles and 8 to 10 parts by mass of a metal chelate compound with respect to 100 parts by mass of a binder component composed of an alkoxysilane compound or a hydrolyzate thereof. The optical member according to claim 1, which is a cured product of an object.
- 低屈折率層が、アルコキシシラン化合物またはその加水分解物からなるバインダー成分100質量部に対して、中空シリカ粒子を65~330質量部、および金属キレート化合物を8~10質量部含む硬化性組成物の硬化体である請求項1に記載の光学部材。 A curable composition in which the low refractive index layer contains 65 to 330 parts by mass of hollow silica particles and 8 to 10 parts by mass of a metal chelate compound with respect to 100 parts by mass of a binder component composed of an alkoxysilane compound or a hydrolyzate thereof. The optical member according to claim 1, which is a cured product of the above.
- 光学部材のハーフミラー層が形成された面とは反対の面上に、ハードコート層、および反射防止層をこの順で含んでなり、
反射防止層が、ハードコート層側から高屈折率層と低屈折率層とを備え、波長380~780nmにおける入射角45°のP偏光の視感平均反射率が0.5%未満、入射角45°のS偏光の視感平均反射率が4.5%未満、入射角45°の(P+S)/2偏光の視感平均反射率が2.5%未満である反射防止能を有する請求項1に記載の光学部材。 A hardcourt layer and an antireflection layer are included in this order on the surface opposite to the surface on which the half mirror layer of the optical member is formed.
The antireflection layer includes a high refractive index layer and a low refractive index layer from the hard coat layer side, and the visual average reflectance of P-polarized light having an incident angle of 45 ° at a wavelength of 380 to 780 nm is less than 0.5%, and the incident angle. A claim having antireflection ability such that the visual average reflectance of 45 ° S-polarized light is less than 4.5% and the visual average reflectance of (P + S) / 2 polarized light having an incident angle of 45 ° is less than 2.5%. The optical member according to 1. - 請求項1~5の何れか一項に記載の光学部材の製造方法であって、透明基材上に、ハードコート層、ハーフミラー層および必要に応じて設置する反射防止層の各層を構成する硬化体を生じせしめる硬化性組成物を塗布したのち硬化させて、順次形成することを特徴とする前記光学部材の製造方法。 The method for manufacturing an optical member according to any one of claims 1 to 5, wherein each layer of a hard coat layer, a half mirror layer, and an antireflection layer to be installed as needed is configured on a transparent substrate. A method for producing an optical member, which comprises applying a curable composition that gives rise to a cured product, and then curing the composition to sequentially form the optical member.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-164100 | 2020-09-29 | ||
JP2020164100A JP2022056210A (en) | 2020-09-29 | 2020-09-29 | Optical member |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022070883A1 true WO2022070883A1 (en) | 2022-04-07 |
Family
ID=80951411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/033696 WO2022070883A1 (en) | 2020-09-29 | 2021-09-14 | Optical member |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022056210A (en) |
WO (1) | WO2022070883A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6356604A (en) * | 1986-08-27 | 1988-03-11 | Minolta Camera Co Ltd | Half-mirror |
JP2019015884A (en) * | 2017-07-07 | 2019-01-31 | フクビ化学工業株式会社 | Half mirror and mirror display |
WO2020145251A1 (en) * | 2019-01-10 | 2020-07-16 | 住友ベークライト株式会社 | Anisotropic diffuser, backlight unit, liquid crystal display device, and electronic device |
-
2020
- 2020-09-29 JP JP2020164100A patent/JP2022056210A/en active Pending
-
2021
- 2021-09-14 WO PCT/JP2021/033696 patent/WO2022070883A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6356604A (en) * | 1986-08-27 | 1988-03-11 | Minolta Camera Co Ltd | Half-mirror |
JP2019015884A (en) * | 2017-07-07 | 2019-01-31 | フクビ化学工業株式会社 | Half mirror and mirror display |
WO2020145251A1 (en) * | 2019-01-10 | 2020-07-16 | 住友ベークライト株式会社 | Anisotropic diffuser, backlight unit, liquid crystal display device, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP2022056210A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4918101B2 (en) | Optical article comprising a two-layered scratch and abrasion resistant coating and method of producing the same | |
EP3560707B1 (en) | Transparent resin substrate | |
TWI760385B (en) | Transparent substrate having antiglare property and antireflective property, and manufacturing method thereof | |
EP2209860B1 (en) | Coating composition for antireflection and antireflection film prepared by using the same | |
TWI531812B (en) | Antireflection film and antireflection plate | |
JP5973555B2 (en) | Transparent resin laminate | |
WO2006077995A1 (en) | Transparent film and method for manufacturing the same, polarized plate and image display device | |
KR20050012148A (en) | Antireflection membrane, antireflection film, polarizing film, display device and product treated with hard coat | |
JP2009198863A (en) | Antireflection film and image display apparatus | |
CN101372537A (en) | Composition for hard coating layer, hard coating film using the composition and anti-reflection film including the hard coating film | |
JP2008242314A (en) | Optical film, polarizing plate and image display apparatus | |
WO2019202942A1 (en) | Antireflective plate | |
JP2007148383A (en) | Antireflection film and image display apparatus | |
WO2022070883A1 (en) | Optical member | |
WO2021210371A1 (en) | Anti-reflection laminate | |
JP2002243907A (en) | Antireflection film and image display | |
JP7389765B2 (en) | Anti-reflection substrate | |
JP2006272588A (en) | Reflection preventing film and image display | |
WO2023058454A1 (en) | Antireflection laminate | |
WO2023063221A1 (en) | Optical member | |
JPH09226062A (en) | Reflection preventing film | |
JP2006201650A (en) | Reflection preventive film and image display device | |
JP2007034281A (en) | Anti-reflection film and image display apparatus | |
JP2001059902A (en) | Reflection preventing laminated body and its manufacture | |
JP2021004963A (en) | Antireflection film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21875185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21875185 Country of ref document: EP Kind code of ref document: A1 |