WO2012042911A1 - 歯科用ミルブランク - Google Patents
歯科用ミルブランク Download PDFInfo
- Publication number
- WO2012042911A1 WO2012042911A1 PCT/JP2011/005560 JP2011005560W WO2012042911A1 WO 2012042911 A1 WO2012042911 A1 WO 2012042911A1 JP 2011005560 W JP2011005560 W JP 2011005560W WO 2012042911 A1 WO2012042911 A1 WO 2012042911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- group
- acid
- filler
- bis
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/887—Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0022—Blanks or green, unfinished dental restoration parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/15—Compositions characterised by their physical properties
- A61K6/17—Particle size
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/831—Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
- A61K6/836—Glass
Definitions
- the present invention relates to a dental mill blank suitably used for producing dental prostheses such as inlays and crowns by cutting with a CAD / CAM system.
- Patent Document 1 describes a mill blank for producing a dental prosthesis including a polymer resin and a filler.
- fillers fillers obtained by pulverizing materials obtained by the sol-gel method, commercially available amorphous barium glass fillers, fillers obtained by pulverizing quartz using a mill, and ultrafine inorganic fillers (average particle diameter of 40 nm) Consideration is being made.
- Patent Document 2 describes a mill blank for producing a dental prosthesis including an acrylic resin polymer and an ultrafine inorganic filler having an average particle size of 0.01 to 0.04 ⁇ m.
- the mill blank When a pulverized filler or an amorphous barium glass filler as described in Patent Document 1 is used for a mill blank, the mill blank has high mechanical strength but has a sliding durability. When used in the oral cavity for a long time, the luster is easily lost and the level is not aesthetically satisfactory.
- Patent Documents 1 and 2 When an ultrafine inorganic filler as described in Patent Documents 1 and 2 is used for a mill blank, the mill blank has high lubricity durability and excellent aesthetics. Since the material particles are small and the compounding amount cannot be increased, sufficient mechanical strength cannot be obtained. Patent Document 2 also describes that the mechanical strength is increased by using an amorphous glass powder in combination, but the sliding durability is lost and it is not aesthetically satisfactory.
- the present invention has been made to solve the above-mentioned problems of the prior art, and the object is to have excellent mechanical strength and maintain the same gloss as natural teeth for a long time in the oral cavity. It is an object of the present invention to provide a dental mill blank having a sliding durability that can be used.
- the present invention is a dental mill blank comprising a cured product of a curable composition containing a polymerizable monomer (A) and a spherical inorganic filler (B) having an average primary particle size of 0.1 ⁇ m or more and less than 1 ⁇ m. .
- the spherical inorganic filler (B) is an oxidation of at least one metal selected from the group consisting of silica particles, Group 2, Group 4, Group 12, and Group 13 of the periodic table. Or composite oxide containing at least one metal atom selected from the group consisting of Group 2, Group 4, Group 12 and Group 13 of the periodic table, a silicon atom, and an oxygen atom Particles are preferred.
- the polymerizable monomer (A) is preferably a (meth) acrylic acid ester.
- the curable composition preferably contains 65 to 900 parts by weight of the spherical inorganic filler (B) with respect to 100 parts by weight of the polymerizable monomer (A).
- the curable composition further comprises an inorganic ultrafine particle aggregate filler (C), which is an aggregate of inorganic ultrafine particles having an average primary particle diameter of 2 to 50 nm.
- an inorganic ultrafine particle aggregate filler (C) which is an aggregate of inorganic ultrafine particles having an average primary particle diameter of 2 to 50 nm.
- the refractive index after polymerization of the polymerizable monomer (A) is 1.52 to 1.58, the refractive index of the spherical inorganic filler (B) is 1.52 to 1.58, and
- the refractive index of the inorganic ultrafine particle aggregate filler (C) is 1.43 to 1.50,
- the blending amount of the inorganic ultrafine particle aggregate filler (C) in the curable composition is 0.1 to 10% by weight.
- the dental mill blank of the present invention can be obtained by polymerizing and curing a curable composition containing a polymerizable monomer (A) and a spherical inorganic filler (B) as constituent elements.
- the “dental mill blank” refers to a solid block of a material capable of processing a dental prosthesis by cutting, carving, or cutting.
- the polymerizable monomer (A) used in the present invention a known polymerizable monomer used for a dental curable composition or the like is used without any limitation. Generally, a radical polymerizable monomer is used. Are preferably used. Specific examples of the radical polymerizable monomer in the polymerizable monomer (A) include ⁇ -cyanoacrylic acid, (meth) acrylic acid, ⁇ -halogenated acrylic acid, crotonic acid, cinnamic acid, sorbic acid, maleic acid.
- esters such as acid and itaconic acid, (meth) acrylamide, (meth) acrylamide derivatives, vinyl esters, vinyl ethers, mono-N-vinyl derivatives, styrene derivatives, and the like.
- (meth) acrylic acid esters and (meth) acrylamide derivatives are preferable, and (meth) acrylic acid esters are more preferable.
- the expression “(meth) acryl” is used to include both methacryl and acryl.
- (II) Bifunctional (meth) acrylates Ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol Di (meth) acrylate, 1,10-decandiol di (meth) acrylate, bisphenol A diglycidyl (meth) acrylate (2,2-bis [4- [3- (meth) acryloyloxy-2-hydroxypropoxy] phenyl] Propane (commonly known as BisGMA)), 2,2-bis [4- (meth) acryloyloxyethoxyphenyl] propane, 2,2-bis [4- (meth) acryloyloxypolyethoxyphenyl] propane, 1,2-bis [ 3- (Meth) acryloylio Shi-2-hydroxypropoxy] ethane, penta
- Any of the polymerizable monomers can be used alone or in admixture of two or more.
- the spherical inorganic filler (B) used in the present invention is not limited to known spherical inorganic fillers used for dental curable compositions and the like as long as the average primary particle diameter is 0.1 ⁇ m or more and less than 1 ⁇ m. Used without.
- the spherical shape of the filler includes a substantially spherical shape and does not necessarily need to be a perfect sphere. Generally, a photograph of a particle is taken using a scanning electron microscope, 30 particles observed in the unit field of view of the photograph are arbitrarily selected, and the particle diameter in the direction perpendicular to the maximum diameter is set for each particle.
- the average value (average uniformity) is preferably 0.6 or more, more preferably 0.8 or more, and 0.9 or more when the degree of uniformity gradually reduced by diameter is obtained. Is particularly preferred.
- amorphous silica, quartz, cristobalite, tridymite examples thereof include amorphous silica, quartz, cristobalite, tridymite; alumina, titanium dioxide, strontium oxide, barium oxide, zinc oxide, zirconium oxide, hafnium oxide; silica zirconia, silica titania, silica titania barium oxide, silica
- examples thereof include particles of alumina, silica titania sodium oxide, silica titania potassium oxide, silica zirconia sodium oxide, silica zirconia potassium oxide, siridium oxide, silica strontium oxide, and the like.
- the spherical inorganic filler (B) contains silica particles, Group 4 metal oxide particles, Group 4 metal atoms, silicon atoms, and oxygen atoms. Since it is a composite oxide particle, a dental mill blank having X-ray contrast properties and excellent wear resistance is obtained, it is more preferably silica zirconia particles. Hydroxyapatite can also be used as the spherical inorganic filler.
- the average primary particle diameter of the spherical inorganic filler (B) is 0.1 ⁇ m or more and less than 1 ⁇ m. If the average primary particle size is less than 0.1 ⁇ m, sufficient mechanical strength of the dental mill blank cannot be obtained. On the other hand, if the average primary particle diameter is 1 ⁇ m or more, sufficient lubrication durability of the dental mill blank cannot be obtained.
- the average primary particle size is preferably from 0.1 to 0.5 ⁇ m, more preferably from 0.1 to 0.3 ⁇ m.
- the average particle diameter of the spherical inorganic filler (B) can be obtained by a laser diffraction scattering method. Specifically, for example, it can be measured with a laser diffraction particle size distribution measuring apparatus (SALD-2100: manufactured by Shimadzu Corporation) using a 0.2% aqueous sodium hexametaphosphate solution as a dispersion medium.
- SALD-2100 laser diffraction particle size distribution measuring apparatus
- the spherical inorganic filler (B) may be used singly or in appropriate combination of two or more types having different compositions and types.
- the spherical inorganic filler (B) is used in combination with the polymerizable monomer (A), the affinity between the spherical inorganic filler (B) and the polymerizable monomer (A) is improved,
- surface treatment with a surface treatment agent may be performed in advance. desirable.
- Such surface treatment agents include organometallic compounds such as organosilicon compounds, organotitanium compounds, organozirconium compounds, organoaluminum compounds, and phosphoric acid groups, pyrophosphoric acid groups, thiophosphoric acid groups, phosphonic acid groups, sulfonic acid groups, carboxylic acid groups, An acidic group-containing organic compound having at least one acidic group such as an acid group can be used.
- organometallic compounds such as organosilicon compounds, organotitanium compounds, organozirconium compounds, organoaluminum compounds, and phosphoric acid groups, pyrophosphoric acid groups, thiophosphoric acid groups, phosphonic acid groups, sulfonic acid groups, carboxylic acid groups,
- An acidic group-containing organic compound having at least one acidic group such as an acid group can be used.
- a surface treatment layer a well-known method can be used without a restriction
- organosilicon compound examples include compounds represented by R 1 n SiX 4-n (wherein R 1 is a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, and X is 1 carbon atom) Represents an alkoxy group of ⁇ 4, a hydroxyl group, a halogen atom or a hydrogen atom, and n is an integer of 0 to 3, provided that when there are a plurality of R 1 and X, each may be the same or different.
- organic titanium compound examples include tetramethyl titanate, tetraisopropyl titanate, tetra n-butyl titanate, butyl titanate dimer, and tetra (2-ethylhexyl) titanate.
- organic zirconium compound examples include zirconium isopropoxide, zirconium n-butoxide, zirconium acetylacetonate, zirconyl acetate and the like.
- organic aluminum compound examples include aluminum acetylacetonate and aluminum organic acid salt chelate compound.
- Examples of the acidic group-containing organic compound containing a phosphate group include 2-ethylhexyl acid phosphate, stearyl acid phosphate, 2- (meth) acryloyloxyethyl dihydrogen phosphate, 3- (meth) acryloyloxypropyl dihydrogen phosphate, 4- (meth) acryloyloxybutyl dihydrogen phosphate, 5- (meth) acryloyloxypentyl dihydrogen phosphate, 6- (meth) acryloyloxyhexyl dihydrogen phosphate, 7- (meth) acryloyloxyheptyl dihydrogen Phosphate, 8- (meth) acryloyloxyoctyl dihydrogen phosphate, 9- (meth) acryloyloxynonyl dihydrogen phosphate, 10- (Meth) acryloyloxydecyl dihydrogen phosphate, 11- (meth) acryloy
- Examples of the acid group-containing organic compound containing a pyrophosphate group include bisoctyl pyrophosphate, bis [4- (meth) acryloyloxybutyl pyrophosphate], bis [6- (meth) acryloyloxyhexyl) pyrophosphate, bis [ 8- (meth) acryloyloxyoctyl], bis [10- (meth) acryloyloxydecyl] pyrophosphate, and acid chlorides, alkali metal salts, and ammonium salts thereof.
- Examples of the acidic group-containing organic compound containing a thiophosphate group include ethyl dihydrogenthiophosphate, 2- (meth) acryloyloxyethyl dihydrogenthiophosphate, 3- (meth) acryloyloxypropyl dihydrogenthiophosphate, 4 -(Meth) acryloyloxybutyl dihydrogenthiophosphate, 5- (meth) acryloyloxypentyl dihydrogenthiophosphate, 6- (meth) acryloyloxyhexyl dihydrogenthiophosphate, 7- (meth) acryloyloxyheptyldi Hydrogenthiophosphate, 8- (meth) acryloyloxyoctyl dihydrogenthiophosphate, 9- (meth) acryloyloxynonyl dihydrogenthiophosphate, 1 -(Meth) acryloyloxydecyl dihydrogen thiophosphate, 11- (meth
- Examples of the acidic group-containing organic compound containing a phosphonic acid group include hexyl-3-phosphonopropionate, 2- (meth) acryloyloxyethylphenylphosphonate, 5- (meth) acryloyloxypentyl-3-phosphonopropioate.
- 6- (meth) acryloyloxyhexyl-3-phosphonopropionate 10- (meth) acryloyloxydecyl-3-phosphonopropionate, 6- (meth) acryloyloxyhexyl-3-phosphonoacetate
- 10- (meth) acryloyloxydecyl-3-phosphonoacetate examples thereof include 10- (meth) acryloyloxydecyl-3-phosphonoacetate, and acid chlorides, alkali metal salts, and ammonium salts thereof.
- Examples of the acidic group-containing organic compound containing a sulfonic acid group include benzenesulfonic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, styrenesulfonic acid, and 2-sulfoethyl (meth) acrylate.
- Examples of the acidic group-containing organic compound containing a carboxylic acid group include a compound having one carboxyl group in the molecule and a compound having a plurality of carboxyl groups in the molecule.
- Compounds having one carboxyl group in the molecule include octanoic acid, decanoic acid, (meth) acrylic acid, N- (meth) acryloylglycine, N- (meth) acryloylaspartic acid, O- (meth) acryloyl tyrosine N- (meth) acryloyl tyrosine, N- (meth) acryloylphenylalanine, N- (meth) acryloyl-p-aminobenzoic acid, N- (meth) acryloyl-o-aminobenzoic acid, p-vinylbenzoic acid, 2 -(Meth) acryloyloxybenzoic acid, 3- (meth) acryloyloxybenzoic acid, 4- (meth) acryloyloxybenzoic acid, N- (meth) acryloyl-5-aminosalicylic acid, N- (meth) acryloyl-4
- Examples of the compound having a plurality of carboxyl groups in the molecule include malonic acid, glutaric acid, 6- (meth) acryloyloxyhexane-1,1-dicarboxylic acid, 9- (meth) acryloyloxynonane-1,1-dicarboxylic acid.
- One type of surface treatment agent may be used alone, or a plurality of types may be used in combination. Further, in order to improve the chemical bond between the spherical inorganic filler (B) and the polymerizable monomer (A) and improve the mechanical strength of the cured product, it is copolymerized with the polymerizable monomer (A). It is more preferable to use an acidic group-containing organic compound having a functional group to be obtained.
- the content of the spherical inorganic filler (B) in the curable composition is preferably 65 to 900 parts by weight, more preferably 100 to 700 parts by weight, with respect to 100 parts by weight of the polymerizable monomer (A). More preferred is ⁇ 500 parts by weight. If the content of the spherical inorganic filler (B) is less than 65 parts by weight, the mechanical strength and lubrication durability of the resulting dental mill blank may be insufficient. On the other hand, if it exceeds 900 parts by weight, it may be difficult to mix the polymerizable monomer (A) and the spherical inorganic filler (B).
- inorganic ultrafine particles having an average primary particle size of 2 to 50 nm are included in the curable composition. It is preferable to blend the inorganic ultrafine particle aggregate filler (C) which is an aggregate of the above.
- inorganic ultrafine particles known inorganic ultrafine particles used for dental curable compositions and the like can be used without any limitation as long as the average primary particle diameter is 2 to 50 nm.
- inorganic oxide particles such as silica, alumina, titania, and zirconia, or composite oxide particles made of these, particles such as calcium phosphate, hydroxyapatite, yttrium fluoride, and ytterbium fluoride can be used.
- particles such as silica, alumina, titania and the like produced by a flame pyrolysis method are manufactured by Nippon Aerosil Co., Ltd., trade names: Aerosil, Aerocide AluC, Aerocide TiO 2 P25, Aerocide TiO 2 P25S, VP Zirconium Oxide. 3-YSZ, VP Zirconium Oxide 3-YSZ PH.
- the shape of the inorganic ultrafine particles is not particularly limited, and can be appropriately selected and used.
- the average primary particle diameter of the inorganic ultrafine particles is 2 to 50 nm.
- the average primary particle size of the inorganic ultrafine particles is the particle size of particles (200 or more) observed within a unit field of view of a photograph taken by a transmission electron microscope (Hitachi, H-800NA type). Can be obtained by measuring using image analysis type particle size distribution measurement software (Macview (Mounttech Co., Ltd.)). At this time, the particle diameter of the particles is obtained as an arithmetic average value of the longest length and the shortest length of the particles, and the average primary particle diameter is calculated from the number of particles and the particle diameter.
- the inorganic ultrafine particles are aggregates, the transparency, turbidity, and total light transmittance, which are optical properties necessary for improving the color tone compatibility with the natural teeth of the dental mill blank, can be increased.
- the inorganic ultrafine particle filler (C) is used in a dental mill blank in combination with the polymerizable monomer (A) in the same manner as the spherical inorganic filler (B), the inorganic ultrafine particle filler is filled. Curing by improving the affinity between the material (C) and the polymerizable monomer (A) or increasing the chemical bond between the inorganic ultrafine particle aggregate filler (C) and the polymerizable monomer (A) In order to improve the mechanical strength of the object, it is desirable to perform surface treatment with a surface treatment agent in advance. As such a surface treating agent, the organic metal compounds exemplified for the spherical inorganic filler (B) and the acidic group-containing organic compound can be used in the same manner.
- the refractive index after polymerization of the polymerizable monomer (A) is 1.52 to 1.58, and the spherical inorganic filler
- the refractive index of (B) is 1.52 to 1.58, and the refractive index of the inorganic ultrafine particle aggregate filler (C) is preferably 1.43 to 1.50.
- the refractive index after polymerization of the polymerizable monomer (A) is more preferably 1.53 to 1.56, and the refractive index of the spherical inorganic filler (B) is more preferably 1.53 to 1.56.
- the refractive index of the inorganic ultrafine particle filler (C) is more preferably 1.44 to 1.47.
- the refractive index after polymerization of the polymerizable monomer (A) means the refractive index of the polymer of the polymerizable monomer (A).
- the refractive index of the polymer is generally slightly higher than that of the polymerizable monomer.
- one type of polymerizable monomer may be selected, or several types of polymerizable monomers having different refractive indexes may be mixed at an appropriate blending ratio.
- the spherical inorganic filler (B) and the inorganic ultrafine particle aggregate filler (C) having the above refractive index are known.
- the blending amount of the inorganic ultrafine particle aggregate filler (C) is preferably 0.1 to 10% by weight, more preferably 1 to 7% by weight in the curable composition.
- the curable composition further includes a filler other than the spherical inorganic filler (B) and the inorganic ultrafine particle aggregate filler (C) as long as the mechanical strength and lubricity durability of the cured product are not impaired.
- a filler include an amorphous inorganic filler, an organic-inorganic composite filler, and an organic filler having a primary particle diameter exceeding 50 nm. These may be used alone or in combination. It may be used.
- amorphous inorganic filler known amorphous inorganic particles used for dental curable compositions and the like are used without any limitation as long as the primary particle diameter exceeds 50 nm.
- various glasses mainly containing silica and containing oxides such as heavy metals, boron and aluminum as necessary.
- glass powder having a general composition such as fused silica, quartz, soda lime silica glass, E glass, C glass, borosilicate glass (pyrex (registered trademark) glass); barium glass (GM27884, 8235, manufactured by Schott, Ray-SorbE2000, Ray-SorbE3000, Specialty Glass, Strontium borosilicate glass (Ray-SorbE4000, SpecialtyGlass), Lanthanum glass ceramics (GM31684, Schott), Fluoroalumino G-Glass 0 Dental glass powders such as G018-117 (manufactured by Schott)], various ceramics, composite oxides such as silica-titania, silica-zirconia, and diatoms , Kaolin, clay minerals (montmorillonite, etc.), activated clay, synthetic zeolite, mica, calcium fluoride, ytterbium fluoride, yttrium fluoride, calcium phosphate, barium
- the amorphous inorganic filler is used in a dental mill blank in combination with the polymerizable monomer (A), the affinity between the amorphous inorganic filler and the polymerizable monomer (A) is improved.
- surface treatment with a surface treatment agent is performed in advance. It is desirable to keep it.
- the organic metal compounds exemplified for the spherical inorganic filler (B) and the acidic group-containing organic compound can be used in the same manner.
- the organic-inorganic composite filler known organic-inorganic composite particles used for dental curable compositions and the like are used without any limitation.
- the organic-inorganic composite filler is prepared by adding a polymerizable monomer to the spherical inorganic filler (B) and / or the amorphous filler and / or the inorganic ultrafine particle aggregate filler (C). It is obtained by adding in advance, making it into a paste, polymerizing and pulverizing.
- TMPT filler trimethylolpropane methacrylate and silica filler mixed and polymerized and then pulverized
- the shape and particle diameter of the organic-inorganic composite filler are not particularly limited, and can be appropriately selected and used.
- the organic-inorganic composite filler is used in a dental mill blank in combination with the polymerizable monomer (A) in the same manner as the spherical inorganic filler (B), it is polymerizable with the organic-inorganic composite filler.
- a surface treating agent the organic metal compounds exemplified for the spherical inorganic filler (B) and the acidic group-containing organic compound can be used in the same manner.
- organic filler known organic particles used for dental curable compositions and the like are used without any limitation.
- the material for the organic filler include polymethyl methacrylate, polyethyl methacrylate, methyl methacrylate-ethyl methacrylate copolymer, cross-linked polymethyl methacrylate, cross-linked polyethyl methacrylate, polyamide, polychlorinated Examples thereof include vinyl, polystyrene, chloroprene rubber, nitrile rubber, ethylene-vinyl acetate copolymer, styrene-butadiene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-styrene-butadiene copolymer, and these may be used alone or It can be used as a mixture of two or more.
- the shape and particle diameter of the organic filler are not particularly limited, and can be appropriately selected and used.
- the dental mill blank of the present invention is produced by polymerizing and curing a curable composition containing a polymerizable monomer (A) and a spherical inorganic filler (B). Therefore, the curable composition may contain a polymerization initiator in order to facilitate polymerization and curing.
- the polymerization initiator can be selected from polymerization initiators used in the general industry, and among them, polymerization initiators used for dental use are preferably used. Especially, the polymerization initiator of heat polymerization, photopolymerization, and chemical polymerization is used individually or in combination of 2 or more types as appropriate.
- heat polymerization initiator examples include organic peroxides and azo compounds.
- organic peroxides used as the heat polymerization initiator include ketone peroxide, hydroperoxide, diacyl peroxide, dialkyl peroxide, peroxyketal, peroxyester, peroxydicarbonate, and the like. .
- hydroperoxide used as the heat polymerization initiator examples include 2,5-dimethylhexane-2,5-dihydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, and 1, Examples include 1,3,3-tetramethylbutyl hydroperoxide.
- diacyl peroxide used as the heat polymerization initiator examples include acetyl peroxide, isobutyryl peroxide, benzoyl peroxide, decanoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, and 2,4-dichlorobenzoyl. Examples thereof include peroxide and lauroyl peroxide.
- dialkyl peroxide used as the heat polymerization initiator examples include di-t-butyl peroxide, dicumyl peroxide, t-butyl cumyl peroxide, 2,5-dimethyl-2,5-di (t-butyl peroxide).
- Examples of the peroxyketal used as the heat polymerization initiator include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) octane, 4,4-bis (t-butylperoxy) valeric acid-n-butyl ester, etc. Can be mentioned.
- peroxyester used as the heat polymerization initiator examples include ⁇ -cumyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 2,2,4-trimethylpentyl.
- Peroxy-2-ethylhexanoate t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, di-t-butylperoxyisophthalate, di-t- Examples include butyl peroxyhexahydroterephthalate, t-butylperoxy-3,3,5-trimethylhexanoate, t-butylperoxyacetate, t-butylperoxybenzoate, and t-butylperoxymaleic acid. It is done.
- peroxydicarbonate used as the heat polymerization initiator examples include di-3-methoxyperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and diisopropyl. Examples thereof include peroxydicarbonate, di-n-propyl peroxydicarbonate, di-2-ethoxyethyl peroxydicarbonate and diallyl peroxydicarbonate.
- diacyl peroxide is preferably used, and among them, benzoyl peroxide is more preferably used from the comprehensive balance of safety, storage stability, and radical generating ability.
- azo compounds used as the heat polymerization initiator examples include 2,2-azobisisobutyronitrile, 2,2-azobis-2,4-dimethylvaleronitrile, 4,4-azobis-4-cyanovaleric.
- examples include acid, 1,1-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2-azobisisobutyrate, 2,2-azobis- (2-aminopropane) dihydrochloride and the like.
- Photopolymerization initiators include (bis) acylphosphine oxides, water-soluble acylphosphine oxides, thioxanthones or quaternary ammonium salts of thioxanthones, ketals, ⁇ -diketones, coumarins, anthraquinones, benzoin alkyls Examples thereof include ethers and ⁇ -aminoketones.
- acylphosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6 -Dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, benzoyldi- (2,6-dimethylphenyl) phosphonate, and salts thereof.
- bisacylphosphine oxides include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,6-dichloro).
- Benzoyl) -4-propylphenylphosphine oxide bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) ) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6-trimethylbenzoyl) phenylphosphine oxide, ( 2 5,6-trimethylbenzoyl) -2,4,4-trimethylpentyl phosphine oxide, and their salts.
- the water-soluble acylphosphine oxides used as the photopolymerization initiator preferably have an alkali metal ion, alkaline earth metal ion, pyridinium ion or ammonium ion in the acylphosphine oxide molecule.
- water-soluble acyl phosphine oxides can be synthesized by the method disclosed in European Patent No. 0009348 or JP-A-57-197289.
- water-soluble acylphosphine oxides include monomethylacetylphosphonate / sodium, monomethyl (1-oxopropyl) phosphonate / sodium, monomethylbenzoylphosphonate / sodium, monomethyl (1-oxobutyl) phosphonate / sodium, monomethyl (2- (Methyl-1-oxopropyl) phosphonate sodium, acetylphosphonate sodium, monomethylacetylphosphonate sodium, acetylmethylphosphonate sodium, methyl 4- (hydroxymethoxyphosphinyl) -4-oxobutanoate sodium salt, methyl -4-oxophosphonobutanoate monosodium salt, acetyl phenyl phosphinate sodium salt, (1-oxopropyl) pen Ruphosphinate sodium, methyl-4- (hydroxypentylphosphinyl) -4-oxobutanoate sodium salt, acetylpent
- acylphosphine oxides and water-soluble acylphosphine oxides 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylmethoxyphenylphosphine oxide, bis (2,4,6 -Trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoylphenylphosphine oxide sodium salt are preferred.
- Examples of the thioxanthones or quaternary ammonium salts of thioxanthones used as the photopolymerization initiator include thioxanthone, 2-chlorothioxanthen-9-one, 2-hydroxy-3- (9-oxy-9H- Thioxanthen-4-yloxy) -N, N, N-trimethyl-propaneaminium chloride, 2-hydroxy-3- (1-methyl-9-oxy-9H-thioxanthen-4-yloxy) -N, N, N-trimethyl-propanaminium chloride, 2-hydroxy-3- (9-oxo-9H-thioxanthen-2-yloxy) -N, N, N-trimethyl-propanaminium chloride, 2-hydroxy-3- ( 3,4-Dimethyl-9-oxo-9H-thioxanthen-2-yloxy) -N, N, N-tri Tyl-1-propaneaminium chloride, 2-hydroxy-3- (3,4-dimethyl-9H-
- thioxanthones or quaternary ammonium salts of thioxanthones a particularly preferred thioxanthone is 2-chlorothioxanthen-9-one, and a particularly preferred quaternary ammonium salt of thioxanthones is 2- Hydroxy-3- (3,4-dimethyl-9H-thioxanthen-2-yloxy) -N, N, N-trimethyl-1-propaneaminium chloride.
- ketals used as the photopolymerization initiator include benzyl dimethyl ketal and benzyl diethyl ketal.
- Examples of the ⁇ -diketone used as the photopolymerization initiator include diacetyl, dibenzyl, camphorquinone, 2,3-pentadione, 2,3-octadione, 9,10-phenanthrenequinone, 4,4′- Examples thereof include oxybenzyl and acenaphthenequinone. Of these, camphorquinone is preferred.
- Examples of coumarins used as the photopolymerization initiator include 3,3′-carbonylbis (7-diethylamino) coumarin, 3- (4-methoxybenzoyl) coumarin, 3-chenoylcoumarin, and 3-benzoyl-5.
- 3,3′-carbonylbis (7-diethylaminocoumarin) and 3,3′-carbonylbis (7-dibutylaminocoumarin) are preferable.
- anthraquinones used as the photopolymerization initiator include anthraquinone, 1-chloroanthraquinone, 2-chloroanthraquinone, 1-bromoanthraquinone, 1,2-benzanthraquinone, 1-methylanthraquinone, 2-ethylanthraquinone, 1 -Hydroxy anthraquinone and the like.
- photopolymerization initiators at least one selected from the group consisting of (bis) acylphosphine oxides, ⁇ -diketones, and coumarins that are widely used in dental curable compositions is used. Is preferred.
- An organic peroxide is preferably used as the chemical polymerization initiator.
- the organic peroxide used for said chemical polymerization initiator is not specifically limited, A well-known thing can be used. Specifically, the organic peroxide illustrated with the said heat polymerization initiator is mentioned.
- diacyl peroxide is preferably used, and among them, benzoyl peroxide is more preferably used from the comprehensive balance of safety, storage stability, and radical generating ability.
- polymerizable monomer (A) 100 The polymerization initiator is preferably contained in an amount of 0.001 to 30 parts by weight with respect to parts by weight.
- the blending amount of the polymerization initiator is 0.001 part by weight or more, there is no possibility that the polymerization proceeds sufficiently to cause a decrease in mechanical strength, more preferably 0.05 part by weight or more, and further preferably 0. .10 parts by weight or more.
- the amount of the polymerization initiator is 30 parts by weight or less, sufficient mechanical strength can be obtained even when the polymerization performance of the polymerization initiator itself is low, and there is no risk of causing precipitation from the composition. More preferably, it is 20 parts by weight or less, and further preferably 15 parts by weight or less.
- the curable composition used for producing the dental mill blank of the present invention may contain a polymerization accelerator in order to facilitate polymerization and curing.
- the polymerization accelerator can be selected from polymerization accelerators used in the general industry, and among them, polymerization accelerators used for dental use are preferably used. Moreover, a polymerization accelerator is used individually or in combination of 2 or more types as appropriate.
- Polymerization accelerators include amines, sulfinic acid and its salts, borate compounds, barbituric acid derivatives, triazine compounds, copper compounds, tin compounds, vanadium compounds, halogen compounds, aldehydes, thiol compounds, sulfites, and bisulfites. And thiourea compounds.
- Amines used as polymerization accelerators are classified into aliphatic amines and aromatic amines.
- the aliphatic amine include primary aliphatic amines such as n-butylamine, n-hexylamine and n-octylamine; secondary aliphatic amines such as diisopropylamine, dibutylamine and N-methylethanolamine; N-methyldiethanolamine, N-ethyldiethanolamine, Nn-butyldiethanolamine, N-lauryldiethanolamine, 2- (dimethylamino) ethyl methacrylate, N-methyldiethanolamine dimethacrylate, N-ethyldiethanolamine dimethacrylate, triethanolamine monomethacrylate , Tertiary fats such as triethanolamine dimethacrylate, triethanolamine trimethacrylate, triethanolamine, trimethylamine, triethylamine, tributylamine Amine and the like.
- aromatic amine examples include N, N-bis (2-hydroxyethyl) -3,5-dimethylaniline, N, N-di (2-hydroxyethyl) -p-toluidine, and N, N-bis. (2-hydroxyethyl) -3,4-dimethylaniline, N, N-bis (2-hydroxyethyl) -4-ethylaniline, N, N-bis (2-hydroxyethyl) -4-isopropylaniline, N, N-bis (2-hydroxyethyl) -4-t-butylaniline, N, N-bis (2-hydroxyethyl) -3,5-di-isopropylaniline, N, N-bis (2-hydroxyethyl)- 3,5-di-t-butylaniline, N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethyl-m-toluidine, N, N-diethyl
- At least one selected from the group consisting of dimethylaminobenzoic acid n-butoxyethyl ester and 4-N, N-dimethylaminobenzophenone is preferably used.
- Examples of sulfinic acid and salts thereof used as a polymerization accelerator include p-toluenesulfinic acid, sodium p-toluenesulfinate, potassium p-toluenesulfinate, lithium p-toluenesulfinate, calcium p-toluenesulfinate, Benzenesulfinic acid, sodium benzenesulfinate, potassium benzenesulfinate, lithium benzenesulfinate, calcium benzenesulfinate, 2,4,6-trimethylbenzenesulfinic acid, sodium 2,4,6-trimethylbenzenesulfinate, 2,4 , 6-Trimethylbenzenesulfinate potassium, 2,4,6-trimethylbenzenesulfinate lithium, 2,4,6-trimethylbenzenesulfinate calcium, 2,4,6-triethylbenzene Rufinic acid, sodium 2,4,6-triethylbenzenesulfinate, potassium 2,
- the borate compound used as the polymerization accelerator is preferably an aryl borate compound.
- aryl borate compounds include trialkylphenyl boron, trialkyl (p-chlorophenyl) boron, trialkyl (p-fluoro) as borate compounds having one aryl group in one molecule.
- borate compounds having two aryl groups in one molecule include dialkyldiphenyl boron, dialkyldi (p-chlorophenyl) boron, dialkyldi (p-fluorophenyl) boron, and dialkyldi (3,5-bistrifluoromethyl) phenyl.
- dialkyldi [3,5-bis (1,1,1,3,3,3-hexafluoro-2-methoxy-2-propyl) phenyl] boron, dialkyldi (p-nitrophenyl) boron, dialkyldi (m-nitro Phenyl) boron, dialkyldi (p-butylphenyl) boron, dialkyldi (m-butylphenyl) boron, dialkyldi (p-butyloxyphenyl) boron, dialkyldi (m-butyloxyphenyl) boron, dialkyldi (p-octyloxyphenyl) Boron and Sodium salt, lithium salt, potassium salt of alkyldi (m-octyloxyphenyl) boron (the alkyl group is at least one selected from the group consisting of n-butyl group, n-octyl group, n-dodecyl
- borate compounds having three aryl groups in one molecule include monoalkyltriphenyl boron, monoalkyltri (p-chlorophenyl) boron, monoalkyltri (p-fluorophenyl) boron, monoalkyltri (3 , 5-Bistrifluoromethyl) phenyl boron, monoalkyltri [3,5-bis (1,1,1,3,3,3-hexafluoro-2-methoxy-2-propyl) phenyl] boron, monoalkyltri ( p-nitrophenyl) boron, monoalkyltri (m-nitrophenyl) boron, monoalkyltri (p-butylphenyl) boron, monoalkyltri (m-butylphenyl) boron, monoalkyltri (p-butyloxyphenyl) Boron, monoalkyltri (m-butyloxyphenyl) boron, monoa Kirtri (p-o
- borate compounds having four aryl groups in one molecule include tetraphenyl boron, tetrakis (p-chlorophenyl) boron, tetrakis (p-fluorophenyl) boron, tetrakis (3,5-bistrifluoromethyl) phenyl boron.
- aryl borate compounds it is more preferable to use a borate compound having 3 or 4 aryl groups in one molecule from the viewpoint of storage stability.
- These aryl borate compounds may be used alone or in combination of two or more.
- Barbituric acid derivatives used as polymerization accelerators include barbituric acid, 1,3-dimethylbarbituric acid, 1,3-diphenylbarbituric acid, 1,5-dimethylbarbituric acid, 5-butylbarbituric acid 5-ethylbarbituric acid, 5-isopropylbarbituric acid, 5-cyclohexylbarbituric acid, 1,3,5-trimethylbarbituric acid, 1,3-dimethyl-5-ethylbarbituric acid, 1,3- Dimethyl-n-butylbarbituric acid, 1,3-dimethyl-5-isobutylbarbituric acid, 1,3-dimethylbarbituric acid, 1,3-dimethylbarbituric acid, 1,3-dimethyl-5-cyclopentylbarbituric acid, 1,3-dimethyl- 5-cyclohexyl barbituric acid, 1,3-dimethyl-5-phenylbarbituric acid, 1-cyclohexy
- Suitable barbituric acid derivatives include 5-butyl barbituric acid, 1,3,5-trimethylbarbituric acid, 1-cyclohexyl-5-ethylbarbituric acid, 1-benzyl-5-phenylbarbituric acid, and The sodium salt of these barbituric acids is mentioned.
- Examples of the triazine compound used as a polymerization accelerator include 2,4,6-tris (trichloromethyl) -s-triazine, 2,4,6-tris (tribromomethyl) -s-triazine, 2-methyl- 4,6-bis (trichloromethyl) -s-triazine, 2-methyl-4,6-bis (tribromomethyl) -s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-methylthiophenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- ( p-chlorophenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2,4-dichlorophenyl) -4,6-bis (trichlor
- 2,4,6-tris (trichloromethyl) -s-triazine is preferable from the viewpoint of polymerization activity, and 2-phenyl-4, 6-bis (trichloromethyl) -s-triazine, 2- (p-chlorophenyl) -4,6-bis (trichloromethyl) -s-triazine, and 2- (4-biphenylyl) -4,6-bis (trichloro Methyl) -s-triazine.
- the copper compound used as the polymerization accelerator for example, acetylacetone copper, cupric acetate, copper oleate, cupric chloride, cupric bromide and the like are preferably used.
- tin compounds used as polymerization accelerators include di-n-butyltin dimaleate, di-n-octyltin dimaleate, di-n-octyltin dilaurate, and di-n-butyltin dilaurate.
- Particularly suitable tin compounds are di-n-octyltin dilaurate and di-n-butyltin dilaurate.
- the vanadium compound used as the polymerization accelerator is preferably IV and / or V vanadium compounds.
- the IV-valent and / or V-valent vanadium compounds include divanadium tetroxide (IV), vanadium acetylacetonate (IV), vanadyl oxalate (IV), vanadyl sulfate (IV), oxobis (1- Japanese Patent Application Laid-Open Publication No. 2003-1990 (Phenyl-1,3-butanedioate) vanadium (IV), bis (maltolate) oxovanadium (IV), vanadium pentoxide (V), sodium metavanadate (V), ammonium metavanadate (V), etc. And compounds described in Japanese Patent No. -96122.
- halogen compound used as the polymerization accelerator for example, dilauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride, benzyltrimethylammonium chloride, tetramethylammonium chloride, benzyldimethylcetylammonium chloride, dilauryldimethylammonium bromide and the like are suitable. Used.
- aldehydes used as polymerization accelerators include terephthalaldehyde and benzaldehyde derivatives.
- the benzaldehyde derivative include dimethylaminobenzaldehyde, p-methyloxybenzaldehyde, p-ethyloxybenzaldehyde, pn-octyloxybenzaldehyde and the like.
- pn-octyloxybenzaldehyde is preferably used from the viewpoint of curability.
- Examples of the thiol compound used as a polymerization accelerator include 3-mercaptopropyltrimethoxysilane, 2-mercaptobenzoxazole, decanethiol, and thiobenzoic acid.
- Examples of the sulfite used as the polymerization accelerator include sodium sulfite, potassium sulfite, calcium sulfite, and ammonium sulfite.
- Examples of the bisulfite used as the polymerization accelerator include sodium bisulfite and potassium bisulfite.
- Examples of the thiourea compound used as the polymerization accelerator include 1- (2-pyridyl) -2-thiourea, thiourea, methylthiourea, ethylthiourea, N, N′-dimethylthiourea, N, N′-diethylthiourea, N, N'-di-n-propylthiourea, N, N'-dicyclohexylthiourea, trimethylthiourea, triethylthiourea, tri-n-propylthiourea, tricyclohexylthiourea, tetramethylthiourea, tetraethylthiourea, tetra -N-propylthiourea, tetracyclohexylthiourea and the like.
- the compounding quantity of the polymerization accelerator used for the curable composition for producing a dental mill blank is not specifically limited, From a viewpoint of sclerosis
- the blending amount of the polymerization accelerator is 0.001 part by weight or more, there is no fear that the polymerization sufficiently proceeds to cause a decrease in mechanical strength, more preferably 0.05 part by weight or more, and further preferably 0. .1 part by weight or more.
- the amount of the polymerization accelerator is 30 parts by weight or less, sufficient mechanical strength can be obtained even when the polymerization performance of the polymerization initiator itself is low, and there is no risk of causing precipitation from the composition. More preferably, it is 20 parts by weight or less.
- the curable composition is further added with a pH adjuster, an ultraviolet absorber, an antioxidant, a polymerization inhibitor, a colorant, an antibacterial agent, an X-ray contrast agent, a thickener, a fluorescent agent, and the like. It is also possible.
- a fluoride ion sustained release filler such as fluoroaluminosilicate glass, calcium fluoride, sodium fluoride, sodium monofluorophosphate can be added.
- a surfactant having antibacterial activity such as cetylpyridinium chloride or photocatalytic titanium oxide can be added.
- the dental mill blank of the present invention is, for example, filled with a curable composition containing the above-described constituents in a mold, polymerized and cured by heat polymerization and / or photopolymerization and / or chemical polymerization, and formed into a block body shape. It can be obtained by molding into. Further, by applying pressure during polymerization and curing, the polymerization rate can be increased and the mechanical strength can be further increased. Furthermore, by performing heat treatment after polymerization and curing, stress strain generated in the block body can be relieved, and damage to the dental prosthesis that occurs during dental prosthetic cutting or clinical use can be suppressed.
- the polymerizable monomer A was defoamed and then photopolymerized, and the obtained cured product was molded into a 5 mm ⁇ 10 mm ⁇ 20 mm rectangular parallelepiped, and the refractive index was measured according to the following method.
- the refractive index after polymerization of the polymerizable monomer A was 1.55.
- the refractive index was measured by an immersion method using an Abbe refractometer, using sodium D-line as a light source, and dissolving diiodomethane, 1-bromonaphthalene, methyl salicylate, dimethylformamide, 1-pentanol, etc. dissolved in sulfur.
- Examples 1 to 9 and Comparative Examples 1 to 5 Polymerizable monomer A, spherical fillers B-1, B-2, B-3, inorganic ultrafine particle aggregates C-1, C-2, pulverized mold filler D, ultrafine inorganic filler E and pulverized mold Filler F and pulverized mold filler G were mixed at a blending ratio shown in Table 1 to obtain a curable composition.
- the curable composition was filled into a block mold having a size of 20 mm ⁇ 30 mm ⁇ 10 mm and polymerized and cured by heating and pressing at 100 ° C. and a pressure of 10 MPa for 10 minutes using a press machine.
- Examples 1 to 9 and Comparative Examples A cured product having a block shape of 1 to 3 was obtained.
- Test Example 1 (Measurement of bending strength) A test piece (2 mm ⁇ 2 mm ⁇ 30 mm) was prepared from the manufactured dental mill blank using a diamond cutter. The test piece is immersed in water at 37 ° C. for 24 hours, using a universal testing machine (manufactured by Instron), setting the crosshead speed to 1 mm / min, and using a three-point bending test method with a fulcrum distance of 20 mm. The bending strength was measured. The bending strength is preferably 80 MPa or more.
- Test Example 2 [Evaluation of sliding durability] A resin plate (thickness 2 mm, length 30 mm, width 20 mm) was produced from the manufactured dental mill blank using a diamond cutter. The surface of the resin plate was polished with No. 1500 water-resistant abrasive paper, and this polished surface was buffed at 3000 rpm for 20 seconds using a technical polishing box (KAWL, EWL80) to prepare a test piece. Porseny Haydn (manufactured by Tokyo Teeth Co., Ltd.) was used as the abrasive.
- KAWL technical polishing box
- the gloss (G1) of the test piece before the abrasion test was shown as a ratio when a gloss meter (VG-107 manufactured by Nippon Denshoku Co., Ltd.) was used and the mirror was 100%. The measurement angle was 60 degrees.
- the toothbrush abrasion tester manufactured by Daiei Kagaku Seiki Co., Ltd.
- the glossiness (G2) of the surface of the test piece after the wear test was shown by the same method as before the wear test.
- the sliding durability was expressed as (G2) ⁇ 100 / (G1)% from the glossiness of the surface of the test piece before and after the abrasion test. Lubrication durability of 70% or more is preferred.
- Test Example 4 Measurement of total light transmittance and turbidity
- a test piece (diameter 30 mm ⁇ thickness 0.25 mm) was prepared using a diamond cutter.
- the total light transmittance and turbidity of the test piece were measured using a haze meter (NDH-5000 manufactured by Nippon Denshoku Industries Co., Ltd.).
- the dental mill blank of the present invention is cut using a CAD / CAM system in the field of dentistry. Preferably used.
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Dentistry (AREA)
- Dental Preparations (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
Abstract
Description
前記重合性単量体(A)の重合後の屈折率が1.52~1.58であり、前記球状無機充填材(B)の屈折率が1.52~1.58であり、かつ前記無機超微粒子凝集体充填材(C)の屈折率が1.43~1.50であり、
前記無機超微粒子凝集体充填材(C)の前記硬化性組成物中の配合量が0.1~10重量%である。
メチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ラウリル(メタ)アクリレート、2-(N,N-ジメチルアミノ)エチル(メタ)アクリレート、2,3-ジブロモプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、エリトリトールモノ(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-(ジヒドロキシエチル)(メタ)アクリルアミド、(メタ)アクリロイルオキシドデシルピリジニウムブロマイド、(メタ)アクリロイルオキシドデシルピリジニウムクロライド、(メタ)アクリロイルオキシヘキサデシルピリジニウムクロライド、(メタ)アクリロイルオキシデシルアンモニウムクロライド、2-(メタ)アクリロイルオキシエチルジハイドロジェンホスフェート、10-(メタ)アクリロイルオキシデシルジハイドロジェンホスフェート、2-(メタ)アクリロイルオキシエチルフェニルハイドロジェンホスフェート、11-(メタ)アクリロイルオキシ-1,1-ウンデカンジカルボン酸、4-(メタ)アクリロイルオキシエトキシカルボニルフタル酸、10-メルカプトデシル(メタ)アクリレートなどが挙げられる。
エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジル(メタ)アクリレート(2,2-ビス[4-〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕フェニル]プロパン(通称BisGMA))、2,2-ビス〔4-(メタ)アクリロイルオキシエトキシフェニル〕プロパン、2,2-ビス〔4-(メタ)アクリロイルオキシポリエトキシフェニル〕プロパン、1,2-ビス〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕エタン、ペンタエリトリトールジ(メタ)アクリレート、[2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)]ジメタクリレート(通称UDMA)などが挙げられる。
トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、N,N’-(2,2,4-トリメチルヘキサメチレン)ビス〔2-(アミノカルボキシ)プロパン-1,3-ジオール〕テトラメタクリレート、1,7-ジアクリロイルオキシ-2,2,6,6-テトラアクリロイルオキシメチル-4-オキシヘプタンなどが挙げられる。
2,2-ビス〔4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)フェニル〕プロパン20重量部、2,2-ビス〔4-メタクリロイルオキシポリエトキシフェニル〕プロパン50重量部、及びトリエチレングリコールジメタクリレート30重量部に、重合開始剤として、ベンゾイルパーオキサイド1重量部を溶解させて、重合性単量体Aを調製した。該重合性単量体Aを脱泡後光重合させ、得られた硬化物を、5mm×10mm×20mmの直方体に成形したものについて、以下の方法に従い屈折率を測定した。該重合性単量体Aの重合後の屈折率は、1.55であった。
屈折率は、アッベ屈折計を用い、ナトリウムのD線を光源として、イオウの溶解したジヨードメタン、1-ブロモナフタレン、サリチル酸メチル、ジメチルホルムアミド、1-ペンタノール等を液体として液浸法で測定した。
市販シリカジルコニア球状充填材(Sukgyung社製、平均一次粒子径203nm)100gをエタノール500mLに分散し、γ-メタクリロキシプロピルトリメトキシシラン6gと水3gを加えて、室温で2時間撹拌した後、溶媒を減圧留去し、さらに90℃で3時間乾燥することによって表面処理して、球状充填材B-1を得た。上記の方法で測定した屈折率は、1.55であった。
市販シリカ(堺化学工業社製、平均一次粒子径100nm)100gに対して、γ-メタクリロキシプロピルトリメトキシシラン10gと水5gを用いて、製造例2と同様の方法により表面処理して、球状充填材B-2を得た。上記の方法で測定した屈折率は、1.45であった。
市販シリカ(堺化学工業社製、平均一次粒子径700nm)100gに対して、γ-メタクリロキシプロピルトリメトキシシラン4gと水2gを用いて、製造例2と同様の方法により表面処理して、球状充填材B-3を得た。上記の方法で測定した屈折率は、1.45であった。
市販シリカゾル(日産化学社製、平均一次粒子径10nm)を、スプレードライヤー(ビュッヒ社製B290型)を用いて噴霧乾燥し、凝集粉末を得た。この凝集粉末は、平均粒子径5μmの球状粒子であった。この凝集粉末を950℃で1時間焼成した後、粉末100gに対して、γ-メタクリロキシプロピルトリメトキシシラン20gと水10gを用いて製造例2と同様の方法により表面処理して、無機超微粒子凝集体C-1を得た。上記の方法で測定した屈折率は、1.45であった。
市販シリカゾル(日産化学社製、平均一次粒子径10nm)に水を加えて、5倍希釈した希釈ゾルを調整した。この希釈ゾルを、スプレードライヤー(ビュッヒ社製B290型)を用いて噴霧乾燥し、凝集粉末を得た。この凝集粉末は、平均粒子径1μmの球状粒子であった。この凝集粉末を950℃で1時間焼成した後、粉末100gに対して、γ-メタクリロキシプロピルトリメトキシシラン20gと水10gを用いて製造例2と同様の方法により表面処理して、無機超微粒子凝集体C-2を得た。上記の方法で測定した屈折率は、1.45であった。
市販Baガラス(SCHOTT社製、平均一次粒子径2μm)100gに対して、γ-メタクリロキシプロピルトリメトキシシラン3gと水1.5gを用いて、製造例2と同様の方法により表面処理して、粉砕型充填材Dを得た。上記の方法で測定した屈折率は、1.55であった。
市販微粒子シリカ(日本アエロジル社製、平均一次粒子径16nm)100gに対して、γ-メタクリロキシプロピルトリメトキシシラン30gと水15gを用いて、製造例2と同様の方法により表面処理して、超微粒子無機質充填材Eを得た。上記の方法で測定した屈折率は、1.45であった。
市販のBaガラス(SCHOTT社製、平均一次粒子径0.7μm)100gに対して、γ-メタクリロキシプロピルトリメトキシシラン4gと水2.0gを用いて、製造例2と同様の方法により表面処理して、粉砕型充填材Fを得た。上記の方法で測定した屈折率は、1.55であった。
市販の石英粉(MARUWA QUARTZ社製)をボールミルで24時間粉砕し、平均一次粒子径を2.0μmとした。これを、ナノジェットマイザー(NJ-100型 アイシンテクノロジー社製)で、粉砕圧力条件を原料供給圧:1.3MPa/粉砕圧:1.3MPa、処理条件を1Kg/hrとし、5回処理することにより、平均一次粒子径が0.7μmの石英粉を得た。平均一次粒子径が0.7μmの石英粉100gに対して、γ-メタクリロキシプロピルトリメトキシシラン4gと水2.0gを用いて、製造例2と同様の方法により表面処理して、粉砕型充填材Gを得た。上記の方法で測定した屈折率は、1.45であった。
重合性単量体Aと球状充填材B-1、B-2、B-3と無機超微粒子凝集体C-1、C-2と粉砕型充填材Dと超微粒子無機質充填材Eと粉砕型充填材Fと粉砕型充填材Gを表1記載の配合比で混合し、硬化性組成物を得た。硬化性組成物を20mm×30mm×10mmのブロック状金型に充填し、プレス機を用いて、100℃、圧力10MPaで10分間加熱加圧することによって重合硬化させ、実施例1~9及び比較例1~3のブロック体形状の硬化物を得た。
製造した歯科用ミルブランクから、ダイヤモンドカッターを用いて、試験片(2mm×2mm×30mm)を作製した。試験片は、37℃の水中に24時間浸漬し、万能試験機(インストロン社製)を用いて、クロスヘッドスピードを1mm/minに設定して、支点間距離20mmで3点曲げ試験法により曲げ強さを測定した。曲げ強さは、80MPa以上が、好適とされる。
製造した歯科用ミルブランクから、ダイヤモンドカッターを用いて、レジン板(厚さ2mm、縦30mm、横20mm)を作製した。レジン板表面を1500番耐水研磨紙で研磨し、この研磨面を技工用ポリッシングボックス(KAVO社製、EWL80)を用いて3000rpmで20秒間バフ研磨して試験片を作製した。研磨材にポーセニーハイドン(東京歯材社製)を用いた。摩耗試験前の試験片の光沢度(G1)を光沢度計(日本電色(株)製VG-107)を用い、鏡を100%としたときの割合で示した。測定の角度は、60度とした。同試験片を歯ブラシ摩耗試験機(大栄科学精器(株)製)により、市販の歯磨材/蒸留水=60/40重量部の懸濁液、及び市販の歯ブラシを用いて、荷重250g下、40000サイクルの摩耗試験を行った。摩耗試験後の試験片表面の光沢度(G2)を摩耗試験前と同様の方法で示した。摩耗試験前後の試験片表面の光沢度から、滑沢耐久性を(G2)×100/(G1)%として表した。滑沢耐久性70%以上が、好適とされる。
製造した歯科用ミルブランクから、ダイヤモンドカッターを用いて、円盤状試験片(20mmφ×1.0mm)を作製した。分光測色計(ミノルタ社製、CM-3610d)を用いて、C光源測色視野2度で、試験片の背後に標準白板を置いて色度を測定した場合の明度(Lw)と、同じ試験片の背後に標準黒板を置いて色度を測定した場合の明度(Lb)を測定し、両者の差(ΔL=Lw-Lb)を算出して、透明度の指標とした。ΔLの値が大きいほど試験片の透明度が高いことを意味する。
製造した歯科用ミルブランクから、ダイヤモンドカッターを用いて、試験片(直径30mm×厚さ0.25mm)を作製した。ヘイズメーター(日本電色工業社製NDH-5000)を用いて、試験片の全光線透過率及び濁度を測定した。濁度は、濁度=拡散透過率/全光線透過率×100(%)にて求められる。全光線透過率が高く、濁度の値が高いほど試験片の光拡散性が高いことを意味する。
Claims (5)
- 重合性単量体(A)、及び平均一次粒子径が0.1μm以上1μm未満の球状無機充填材(B)を含む硬化性組成物の硬化物からなる歯科用ミルブランク。
- 前記球状無機充填材(B)が、シリカ粒子、周期律表第2族、同4族、同12族、及び同13族からなる群より選ばれる少なくとも1種の金属の酸化物粒子、又は、周期律表第2族、同4族、同12族、及び同13族からなる群より選ばれる少なくとも1種の金属原子と、ケイ素原子と、酸素原子とを含む複合酸化物粒子である請求項1に記載の歯科用ミルブランク。
- 前記重合性単量体(A)が、(メタ)アクリル酸エステルである請求項1に記載の歯科用ミルブランク。
- 前記硬化性組成物が、前記重合性単量体(A)100重量部に対して、前記球状無機充填材(B)を65~900重量部含む請求項1に記載の歯科用ミルブランク。
- 前記硬化性組成物が、平均一次粒子径が2~50nmの無機超微粒子の凝集体である無機超微粒子凝集体充填材(C)をさらに含み、
前記重合性単量体(A)の重合後の屈折率が1.52~1.58であり、前記球状無機充填材(B)の屈折率が1.52~1.58であり、かつ前記無機超微粒子凝集体充填材(C)の屈折率が1.43~1.50であり、
前記無機超微粒子凝集体充填材(C)の前記硬化性組成物中の配合量が0.1~10重量%である請求項1に記載の歯科用ミルブランク。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/820,764 US9089482B2 (en) | 2010-09-30 | 2011-09-30 | Dental mill blank |
JP2012536229A JP5613772B2 (ja) | 2010-09-30 | 2011-09-30 | 歯科用ミルブランク |
EP11828476.9A EP2623065B1 (en) | 2010-09-30 | 2011-09-30 | Dental mill blank |
CN201180046757.9A CN103118626B (zh) | 2010-09-30 | 2011-09-30 | 牙科用研磨坯料 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-221378 | 2010-09-30 | ||
JP2010221378 | 2010-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012042911A1 true WO2012042911A1 (ja) | 2012-04-05 |
Family
ID=45892398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/005560 WO2012042911A1 (ja) | 2010-09-30 | 2011-09-30 | 歯科用ミルブランク |
Country Status (5)
Country | Link |
---|---|
US (1) | US9089482B2 (ja) |
EP (1) | EP2623065B1 (ja) |
JP (1) | JP5613772B2 (ja) |
CN (1) | CN103118626B (ja) |
WO (1) | WO2012042911A1 (ja) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014021343A1 (ja) | 2012-07-31 | 2014-02-06 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクの製造方法 |
JP2014147629A (ja) * | 2013-02-04 | 2014-08-21 | Yamahachi Shizai Kogyo Kk | 人工歯及び有床義歯及び人工歯の製造方法 |
WO2014156138A1 (ja) | 2013-03-26 | 2014-10-02 | クラレノリタケデンタル株式会社 | 歯科用硬化性組成物 |
JP2015196687A (ja) * | 2014-03-31 | 2015-11-09 | 株式会社松風 | 機能性複合微粒子を含む高靭性歯科用硬化性組成物 |
JP2015196686A (ja) * | 2014-03-31 | 2015-11-09 | 株式会社松風 | 高靭性歯質接着性シランカップリング剤およびそれを含む歯科用組成物 |
JP2017048121A (ja) * | 2015-08-31 | 2017-03-09 | 三井化学株式会社 | 歯科用組成物、歯科用ミルブランク、歯科部材及びその製造方法、義歯床及びその製造方法、並びに、有床義歯及びその製造方法 |
JP2017113224A (ja) * | 2015-12-24 | 2017-06-29 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクの製造方法 |
WO2018074380A1 (ja) | 2016-10-21 | 2018-04-26 | クラレノリタケデンタル株式会社 | 光学的立体造形用組成物 |
WO2018117053A1 (ja) | 2016-12-19 | 2018-06-28 | クラレノリタケデンタル株式会社 | 表面処理着色無機粒子の製造方法 |
WO2018194031A1 (ja) * | 2017-04-18 | 2018-10-25 | 株式会社トクヤマデンタル | 歯科用硬化性組成物及びその製造方法 |
WO2018194032A1 (ja) * | 2017-04-18 | 2018-10-25 | 株式会社トクヤマデンタル | 硬化性組成物 |
WO2019026809A1 (ja) | 2017-07-31 | 2019-02-07 | クラレノリタケデンタル株式会社 | 蛍光剤を含むジルコニア焼結体 |
WO2019026810A1 (ja) | 2017-07-31 | 2019-02-07 | クラレノリタケデンタル株式会社 | ジルコニア粒子および蛍光剤を含む粉末の製造方法 |
WO2019026811A1 (ja) | 2017-07-31 | 2019-02-07 | クラレノリタケデンタル株式会社 | ジルコニア粒子を含む粉末の製造方法 |
WO2019065777A1 (ja) | 2017-09-26 | 2019-04-04 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクおよびその製造方法 |
WO2019074015A1 (ja) | 2017-10-10 | 2019-04-18 | クラレノリタケデンタル株式会社 | 光造形用樹脂組成物 |
WO2019131756A1 (ja) | 2017-12-26 | 2019-07-04 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクおよびその製造方法 |
JP2019116430A (ja) * | 2017-12-26 | 2019-07-18 | クラレノリタケデンタル株式会社 | 歯科用ミルブランク |
JP2019116431A (ja) * | 2017-12-26 | 2019-07-18 | クラレノリタケデンタル株式会社 | 耐水性ミルブランク |
US10639131B2 (en) | 2015-10-26 | 2020-05-05 | Tokuyama Dental Corporation | Resin block and process for producing the same |
WO2020111079A1 (ja) | 2018-11-27 | 2020-06-04 | クラレノリタケデンタル株式会社 | 歯科用組成物 |
WO2020166667A1 (ja) | 2019-02-14 | 2020-08-20 | クラレノリタケデンタル株式会社 | 歯科用ミルブランク |
WO2020179877A1 (ja) | 2019-03-06 | 2020-09-10 | クラレノリタケデンタル株式会社 | 短時間で焼成可能なジルコニア成形体および仮焼体 |
WO2020179876A1 (ja) | 2019-03-06 | 2020-09-10 | クラレノリタケデンタル株式会社 | 高い直線光透過率を有するジルコニア焼結体 |
WO2020218446A1 (ja) | 2019-04-24 | 2020-10-29 | クラレノリタケデンタル株式会社 | 歯科修復用硬化性組成物 |
WO2020235418A1 (ja) * | 2019-05-22 | 2020-11-26 | 株式会社トクヤマデンタル | 歯科切削加工用ブランク及びその製造方法 |
WO2020262565A1 (ja) | 2019-06-28 | 2020-12-30 | 株式会社クラレ | 硬化性組成物及びそれからなる光造形用樹脂組成物 |
WO2020262564A1 (ja) | 2019-06-28 | 2020-12-30 | 株式会社クラレ | 硬化性組成物及びそれからなる光造形用樹脂組成物 |
WO2021054458A1 (ja) * | 2019-09-18 | 2021-03-25 | クラレノリタケデンタル株式会社 | 光造形用組成物 |
JP2021088530A (ja) * | 2019-12-04 | 2021-06-10 | 株式会社トクヤマデンタル | 歯科保存修復用キット |
WO2021132707A1 (ja) * | 2019-12-27 | 2021-07-01 | クラレノリタケデンタル株式会社 | 歯科用ペースト状組成物およびその製造方法 |
US11078303B2 (en) | 2016-12-01 | 2021-08-03 | Tokuyama Dental Corporation | Curable composition |
WO2021177462A1 (ja) | 2020-03-06 | 2021-09-10 | クラレノリタケデンタル株式会社 | 光造形用樹脂組成物 |
US11273104B2 (en) | 2017-03-06 | 2022-03-15 | Tokuyama Dental Corporation | Photocurable composition and dental restoration filling material |
WO2022145479A1 (ja) | 2020-12-28 | 2022-07-07 | クラレノリタケデンタル株式会社 | 歯科修復用硬化性組成物 |
WO2022220301A1 (ja) | 2021-04-16 | 2022-10-20 | クラレノリタケデンタル株式会社 | ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体並びにこれらの製造方法 |
US12138325B2 (en) | 2018-11-27 | 2024-11-12 | Kuraray Noritake Dental Inc. | Dental composition |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201120375D0 (en) * | 2011-11-25 | 2012-01-11 | Invibio Ltd | Prosthodontic device |
EP3052050B1 (en) | 2013-10-04 | 2021-07-28 | 3M Innovative Properties Company | Dental mill blank |
CN105960217B (zh) * | 2014-02-05 | 2018-06-29 | 三井化学株式会社 | 义齿基托用材料、义齿基托及其制造方法、以及义齿板及其制造方法 |
DE102014110154A1 (de) * | 2014-07-18 | 2016-01-21 | Heraeus Kulzer Gmbh | Dentalprothese zur Bestimmung von Abrasionsfacetten |
US11591431B2 (en) | 2014-10-14 | 2023-02-28 | Pr03Dure Medical Gmbh | Milling blank for the production of medical-technical molded parts |
DE102014114895A1 (de) * | 2014-10-14 | 2016-04-14 | Dentona Ag | Fräsrohling zur Herstellung von medizintechnischen Formteile |
DE102015122861A1 (de) * | 2015-12-28 | 2017-06-29 | Degudent Gmbh | Verfahren zur Herstellung eines Rohlings, Rohling sowie eine dentale Restauration |
DE102017103084A1 (de) | 2017-02-15 | 2018-08-16 | Voco Gmbh | Dentaler Kompositblock zur Herstellung permanenter indirekter Restaurationen im CAD/CAM Verfahren |
WO2018154911A1 (ja) * | 2017-02-27 | 2018-08-30 | 株式会社ジーシー | 歯科用硬化性組成物 |
WO2020031444A1 (ja) | 2018-08-08 | 2020-02-13 | 株式会社ジーシー | 歯科用硬化性組成物 |
CN109620442A (zh) * | 2018-12-20 | 2019-04-16 | 四川华柚医疗器械有限公司 | 一种新型义齿及其制作方法 |
CN110040965B (zh) * | 2019-03-29 | 2021-07-30 | 太原理工大学 | 一种可切削陶瓷材料及其制备方法 |
US20220313403A1 (en) * | 2021-04-01 | 2022-10-06 | Ransom & Randolph LLC | Dental stone powder and fiber reinforced dental stone comprising the same |
DE102022116932A1 (de) | 2022-07-07 | 2024-01-18 | Voco Gmbh | Herstellung von dentalen Fräsrohlingen |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57197289A (en) | 1981-04-09 | 1982-12-03 | Basf Ag | Acylphosphine compound and use |
JPS58110414A (ja) * | 1981-12-23 | 1983-07-01 | Tokuyama Soda Co Ltd | 無機酸化物及びその製造方法 |
EP0009348B1 (en) | 1978-09-22 | 1983-07-20 | Fbc Limited | Pesticidally active salts and compositions containing them and processes for their manufacture and use |
JPH093109A (ja) | 1995-04-19 | 1997-01-07 | Tokuyama Corp | 可視光線重合開始剤および可視光線重合性組成物 |
JPH10245525A (ja) | 1997-03-03 | 1998-09-14 | Tokuyama Corp | 接着性組成物 |
JPH10323353A (ja) | 1997-05-26 | 1998-12-08 | G C:Kk | 歯科用レジン材料及びその作製方法 |
JP2000159621A (ja) | 1998-12-02 | 2000-06-13 | Kuraray Co Ltd | 歯科用光重合性組成物 |
JP2003096122A (ja) | 2001-09-21 | 2003-04-03 | Tokuyama Corp | ラジカル重合触媒 |
JP2003529386A (ja) | 1999-01-08 | 2003-10-07 | スリーエム イノベイティブ プロパティズ カンパニー | 歯科用ミルブランク |
WO2009133913A1 (ja) * | 2008-04-28 | 2009-11-05 | クラレメディカル株式会社 | 歯科用組成物及びコンポジットレジン |
WO2009154301A1 (ja) * | 2008-06-18 | 2009-12-23 | 株式会社アドバンス | 歯科補綴物加工用ブロック及びその製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4029230C2 (de) * | 1990-09-14 | 1995-03-23 | Ivoclar Ag | Polymerisierbarer Dentalwerkstoff |
US5744511A (en) | 1995-04-19 | 1998-04-28 | Tokuyama Corporation | Visible ray polymerization initiator and visible ray polymerizable composition |
JP3917204B2 (ja) * | 1995-12-21 | 2007-05-23 | 株式会社クラレ | 歯科用複合修復材料の選択方法 |
JP4741781B2 (ja) | 2000-07-19 | 2011-08-10 | 株式会社トクヤマ | 光硬化性歯科用修復材料及びその製造方法 |
JP4993053B2 (ja) * | 2001-02-27 | 2012-08-08 | 株式会社トクヤマ | 歯科用硬化性組成物 |
EP1226807B1 (en) | 2000-08-22 | 2008-08-13 | Tokuyama Corporation | Dental curable composition |
WO2003027153A1 (fr) | 2001-09-21 | 2003-04-03 | Tokuyama Corporation | Catalyseurs de polymerisation radicalaire et ensemble adhesif d'usage dentaire |
JP2005310756A (ja) * | 2004-03-26 | 2005-11-04 | Koito Mfg Co Ltd | 光源モジュールおよび車両用前照灯 |
US8440739B2 (en) | 2008-04-28 | 2013-05-14 | Kuraray Noritake Dental Inc. | Dental composition and composite resin |
WO2011074222A1 (ja) | 2009-12-18 | 2011-06-23 | クラレメディカル株式会社 | 歯科用硬化性組成物及びそれを用いたコンポジットレジン |
EP2586399A4 (en) * | 2010-06-25 | 2015-09-30 | Panasonic Healthcare Holdings Co Ltd | MOLDED BODY FOR DENTAL CUTTING WORK, AND METHOD OF MANUFACTURING THE SAME |
-
2011
- 2011-09-30 WO PCT/JP2011/005560 patent/WO2012042911A1/ja active Application Filing
- 2011-09-30 US US13/820,764 patent/US9089482B2/en active Active
- 2011-09-30 CN CN201180046757.9A patent/CN103118626B/zh active Active
- 2011-09-30 EP EP11828476.9A patent/EP2623065B1/en active Active
- 2011-09-30 JP JP2012536229A patent/JP5613772B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0009348B1 (en) | 1978-09-22 | 1983-07-20 | Fbc Limited | Pesticidally active salts and compositions containing them and processes for their manufacture and use |
JPS57197289A (en) | 1981-04-09 | 1982-12-03 | Basf Ag | Acylphosphine compound and use |
JPS58110414A (ja) * | 1981-12-23 | 1983-07-01 | Tokuyama Soda Co Ltd | 無機酸化物及びその製造方法 |
JPH093109A (ja) | 1995-04-19 | 1997-01-07 | Tokuyama Corp | 可視光線重合開始剤および可視光線重合性組成物 |
JPH10245525A (ja) | 1997-03-03 | 1998-09-14 | Tokuyama Corp | 接着性組成物 |
JPH10323353A (ja) | 1997-05-26 | 1998-12-08 | G C:Kk | 歯科用レジン材料及びその作製方法 |
JP2000159621A (ja) | 1998-12-02 | 2000-06-13 | Kuraray Co Ltd | 歯科用光重合性組成物 |
JP2003529386A (ja) | 1999-01-08 | 2003-10-07 | スリーエム イノベイティブ プロパティズ カンパニー | 歯科用ミルブランク |
JP2003096122A (ja) | 2001-09-21 | 2003-04-03 | Tokuyama Corp | ラジカル重合触媒 |
WO2009133913A1 (ja) * | 2008-04-28 | 2009-11-05 | クラレメディカル株式会社 | 歯科用組成物及びコンポジットレジン |
WO2009154301A1 (ja) * | 2008-06-18 | 2009-12-23 | 株式会社アドバンス | 歯科補綴物加工用ブロック及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2623065A4 |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104507413A (zh) * | 2012-07-31 | 2015-04-08 | 可乐丽则武齿科株式会社 | 牙科用研磨坯料的制造方法 |
CN104507413B (zh) * | 2012-07-31 | 2016-04-27 | 可乐丽则武齿科株式会社 | 牙科用研磨坯料及其制造方法 |
WO2014021343A1 (ja) | 2012-07-31 | 2014-02-06 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクの製造方法 |
US10172695B2 (en) | 2012-07-31 | 2019-01-08 | Kuraray Noritake Dental Inc. | Method for manufacturing dental mill blank |
JP2014147629A (ja) * | 2013-02-04 | 2014-08-21 | Yamahachi Shizai Kogyo Kk | 人工歯及び有床義歯及び人工歯の製造方法 |
WO2014156138A1 (ja) | 2013-03-26 | 2014-10-02 | クラレノリタケデンタル株式会社 | 歯科用硬化性組成物 |
US10231905B2 (en) | 2013-03-26 | 2019-03-19 | Kuraray Noritake Dental Inc. | Dental curable composition |
JP2015196687A (ja) * | 2014-03-31 | 2015-11-09 | 株式会社松風 | 機能性複合微粒子を含む高靭性歯科用硬化性組成物 |
JP2015196686A (ja) * | 2014-03-31 | 2015-11-09 | 株式会社松風 | 高靭性歯質接着性シランカップリング剤およびそれを含む歯科用組成物 |
JP2017048121A (ja) * | 2015-08-31 | 2017-03-09 | 三井化学株式会社 | 歯科用組成物、歯科用ミルブランク、歯科部材及びその製造方法、義歯床及びその製造方法、並びに、有床義歯及びその製造方法 |
US10639131B2 (en) | 2015-10-26 | 2020-05-05 | Tokuyama Dental Corporation | Resin block and process for producing the same |
JP2017113224A (ja) * | 2015-12-24 | 2017-06-29 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクの製造方法 |
US10786435B2 (en) | 2016-10-21 | 2020-09-29 | Kuraray Noritake Dental Inc. | Composition for optical three-dimensional modeling |
WO2018074380A1 (ja) | 2016-10-21 | 2018-04-26 | クラレノリタケデンタル株式会社 | 光学的立体造形用組成物 |
US11078303B2 (en) | 2016-12-01 | 2021-08-03 | Tokuyama Dental Corporation | Curable composition |
WO2018117053A1 (ja) | 2016-12-19 | 2018-06-28 | クラレノリタケデンタル株式会社 | 表面処理着色無機粒子の製造方法 |
US11453785B2 (en) | 2016-12-19 | 2022-09-27 | Kuraray Noritake Dental Inc. | Method for producing surface-treated colored inorganic particles |
US11273104B2 (en) | 2017-03-06 | 2022-03-15 | Tokuyama Dental Corporation | Photocurable composition and dental restoration filling material |
KR102479776B1 (ko) | 2017-04-18 | 2022-12-21 | 가부시키가이샤 도쿠야마 덴탈 | 경화성 조성물 |
JP7114090B2 (ja) | 2017-04-18 | 2022-08-08 | 株式会社トクヤマデンタル | 硬化性組成物 |
JP7111371B2 (ja) | 2017-04-18 | 2022-08-02 | 株式会社トクヤマデンタル | 歯科用硬化性組成物及びその製造方法 |
KR102493076B1 (ko) | 2017-04-18 | 2023-01-31 | 가부시키가이샤 도쿠야마 덴탈 | 치과용 경화성 조성물 및 그 제조 방법 |
WO2018194032A1 (ja) * | 2017-04-18 | 2018-10-25 | 株式会社トクヤマデンタル | 硬化性組成物 |
KR20190132998A (ko) * | 2017-04-18 | 2019-11-29 | 가부시키가이샤 도쿠야마 덴탈 | 경화성 조성물 |
KR20190137079A (ko) * | 2017-04-18 | 2019-12-10 | 가부시키가이샤 도쿠야마 덴탈 | 치과용 경화성 조성물 및 그 제조 방법 |
JPWO2018194031A1 (ja) * | 2017-04-18 | 2020-02-27 | 株式会社トクヤマデンタル | 歯科用硬化性組成物及びその製造方法 |
JPWO2018194032A1 (ja) * | 2017-04-18 | 2020-02-27 | 株式会社トクヤマデンタル | 硬化性組成物 |
WO2018194031A1 (ja) * | 2017-04-18 | 2018-10-25 | 株式会社トクヤマデンタル | 歯科用硬化性組成物及びその製造方法 |
US11065183B2 (en) | 2017-04-18 | 2021-07-20 | Tokuyama Dental Corporation | Curable composition |
US11058608B2 (en) | 2017-04-18 | 2021-07-13 | Tokuyama Dental Corporation | Curable composition for dental use, and method for producing same |
WO2019026811A1 (ja) | 2017-07-31 | 2019-02-07 | クラレノリタケデンタル株式会社 | ジルコニア粒子を含む粉末の製造方法 |
US11401461B2 (en) | 2017-07-31 | 2022-08-02 | Kuraray Noritake Dental Inc. | Zirconia sintered body containing fluorescent agent |
US11802237B2 (en) | 2017-07-31 | 2023-10-31 | Kuraray Noritake Dental Inc. | Method for producing powder containing zirconia particles and fluorescent agent |
WO2019026809A1 (ja) | 2017-07-31 | 2019-02-07 | クラレノリタケデンタル株式会社 | 蛍光剤を含むジルコニア焼結体 |
WO2019026810A1 (ja) | 2017-07-31 | 2019-02-07 | クラレノリタケデンタル株式会社 | ジルコニア粒子および蛍光剤を含む粉末の製造方法 |
US11479510B2 (en) | 2017-07-31 | 2022-10-25 | Kuraray Noritake Dental Inc. | Method for producing zirconia particle-containing powder |
WO2019065777A1 (ja) | 2017-09-26 | 2019-04-04 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクおよびその製造方法 |
US11485813B2 (en) | 2017-10-10 | 2022-11-01 | Kuraray Noritake Dental Inc. | Resin composition for stereolithography |
WO2019074015A1 (ja) | 2017-10-10 | 2019-04-18 | クラレノリタケデンタル株式会社 | 光造形用樹脂組成物 |
JP7061826B2 (ja) | 2017-12-26 | 2022-05-02 | クラレノリタケデンタル株式会社 | 歯科用ミルブランク |
JP2019116430A (ja) * | 2017-12-26 | 2019-07-18 | クラレノリタケデンタル株式会社 | 歯科用ミルブランク |
US11707346B2 (en) | 2017-12-26 | 2023-07-25 | Kuraray Noritake Dental Inc. | Dental mill blank and method for producing same |
WO2019131756A1 (ja) | 2017-12-26 | 2019-07-04 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクおよびその製造方法 |
JP2019116431A (ja) * | 2017-12-26 | 2019-07-18 | クラレノリタケデンタル株式会社 | 耐水性ミルブランク |
JP7093628B2 (ja) | 2017-12-26 | 2022-06-30 | クラレノリタケデンタル株式会社 | 耐水性ミルブランク |
JP7315474B2 (ja) | 2017-12-26 | 2023-07-26 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクおよびその製造方法 |
JPWO2019131756A1 (ja) * | 2017-12-26 | 2021-01-14 | クラレノリタケデンタル株式会社 | 歯科用ミルブランクおよびその製造方法 |
US12138325B2 (en) | 2018-11-27 | 2024-11-12 | Kuraray Noritake Dental Inc. | Dental composition |
WO2020111079A1 (ja) | 2018-11-27 | 2020-06-04 | クラレノリタケデンタル株式会社 | 歯科用組成物 |
WO2020166667A1 (ja) | 2019-02-14 | 2020-08-20 | クラレノリタケデンタル株式会社 | 歯科用ミルブランク |
WO2020179877A1 (ja) | 2019-03-06 | 2020-09-10 | クラレノリタケデンタル株式会社 | 短時間で焼成可能なジルコニア成形体および仮焼体 |
US12116320B2 (en) | 2019-03-06 | 2024-10-15 | Kuraray Noritake Dental Inc. | Zirconia sintered body having high linear light transmittance |
WO2020179876A1 (ja) | 2019-03-06 | 2020-09-10 | クラレノリタケデンタル株式会社 | 高い直線光透過率を有するジルコニア焼結体 |
WO2020218446A1 (ja) | 2019-04-24 | 2020-10-29 | クラレノリタケデンタル株式会社 | 歯科修復用硬化性組成物 |
US12102494B2 (en) | 2019-05-22 | 2024-10-01 | Tokuyama Dental Corporation | Blank for dental cutting and method for producing same |
WO2020235418A1 (ja) * | 2019-05-22 | 2020-11-26 | 株式会社トクヤマデンタル | 歯科切削加工用ブランク及びその製造方法 |
CN113840590B (zh) * | 2019-05-22 | 2023-04-18 | 株式会社德山齿科 | 牙科切削加工用坯料及其制造方法 |
JP7440932B2 (ja) | 2019-05-22 | 2024-02-29 | 株式会社トクヤマデンタル | 歯科切削加工用ブランク及びその製造方法 |
CN113840590A (zh) * | 2019-05-22 | 2021-12-24 | 株式会社德山齿科 | 牙科切削加工用坯料及其制造方法 |
WO2020262564A1 (ja) | 2019-06-28 | 2020-12-30 | 株式会社クラレ | 硬化性組成物及びそれからなる光造形用樹脂組成物 |
WO2020262565A1 (ja) | 2019-06-28 | 2020-12-30 | 株式会社クラレ | 硬化性組成物及びそれからなる光造形用樹脂組成物 |
WO2021054458A1 (ja) * | 2019-09-18 | 2021-03-25 | クラレノリタケデンタル株式会社 | 光造形用組成物 |
JP2021088530A (ja) * | 2019-12-04 | 2021-06-10 | 株式会社トクヤマデンタル | 歯科保存修復用キット |
JP7321456B2 (ja) | 2019-12-04 | 2023-08-07 | 株式会社トクヤマデンタル | 歯科保存修復用キット |
WO2021132707A1 (ja) * | 2019-12-27 | 2021-07-01 | クラレノリタケデンタル株式会社 | 歯科用ペースト状組成物およびその製造方法 |
WO2021177462A1 (ja) | 2020-03-06 | 2021-09-10 | クラレノリタケデンタル株式会社 | 光造形用樹脂組成物 |
WO2022145479A1 (ja) | 2020-12-28 | 2022-07-07 | クラレノリタケデンタル株式会社 | 歯科修復用硬化性組成物 |
WO2022220301A1 (ja) | 2021-04-16 | 2022-10-20 | クラレノリタケデンタル株式会社 | ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体並びにこれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103118626B (zh) | 2015-08-05 |
EP2623065B1 (en) | 2016-11-16 |
EP2623065A4 (en) | 2014-04-02 |
EP2623065A1 (en) | 2013-08-07 |
JP5613772B2 (ja) | 2014-10-29 |
US20130172441A1 (en) | 2013-07-04 |
US9089482B2 (en) | 2015-07-28 |
JPWO2012042911A1 (ja) | 2014-02-06 |
CN103118626A (zh) | 2013-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5613772B2 (ja) | 歯科用ミルブランク | |
JP6170922B2 (ja) | 歯科用ミルブランクの製造方法 | |
EP2380551B1 (en) | Curable composition for dental use, and composite resin comprising same | |
JP7315474B2 (ja) | 歯科用ミルブランクおよびその製造方法 | |
JP6929014B2 (ja) | 歯科用ミルブランクの製造方法 | |
WO2009133913A1 (ja) | 歯科用組成物及びコンポジットレジン | |
JP5730061B2 (ja) | 重合収縮力を低減した接着性の歯科用修復材料 | |
JP2022119841A (ja) | 歯科用ミルブランクおよびその製造方法 | |
JP2013071921A (ja) | 歯科用硬化性組成物 | |
JP6846167B2 (ja) | 歯科用ミルブランクアセンブリ | |
JP5943672B2 (ja) | 歯科用複合化無機充填材 | |
JP5498819B2 (ja) | ナノ粒子蛍光体 | |
JP2019098073A (ja) | 歯科用ミルブランクの製造方法 | |
JP5611083B2 (ja) | 歯科用硬化性組成物及び歯科用修復材料 | |
JP2016153382A (ja) | 歯科用硬化性組成物 | |
JP5843519B2 (ja) | 重合収縮応力が小さい歯科用硬化性組成物および歯科用充填修復材 | |
JP2019098074A (ja) | 歯科用ミルブランクの製造方法 | |
JP7125260B2 (ja) | 歯科用ミルブランク製造用の無機充填材複合体 | |
JP2011079785A (ja) | 歯科用組成物およびそれを用いたコンポジットレジン | |
WO2020166667A1 (ja) | 歯科用ミルブランク | |
JP2020068871A (ja) | クラウンコア一体型歯科用ミルブランク |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180046757.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11828476 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012536229 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2011828476 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011828476 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13820764 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |