WO2012002268A1 - Display device and production method for same - Google Patents

Display device and production method for same Download PDF

Info

Publication number
WO2012002268A1
WO2012002268A1 PCT/JP2011/064522 JP2011064522W WO2012002268A1 WO 2012002268 A1 WO2012002268 A1 WO 2012002268A1 JP 2011064522 W JP2011064522 W JP 2011064522W WO 2012002268 A1 WO2012002268 A1 WO 2012002268A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
electrode
partition
partition wall
support substrate
Prior art date
Application number
PCT/JP2011/064522
Other languages
French (fr)
Japanese (ja)
Inventor
優 梶谷
元彦 村上
栗原 直
雅之 三木
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012002268A1 publication Critical patent/WO2012002268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape

Definitions

  • the present invention relates to a display device and a manufacturing method thereof.
  • an organic electroluminescence element hereinafter sometimes referred to as an organic EL element
  • a color display device three types of organic EL elements are provided on a supporting substrate as a light source of a pixel. That is, (1) a red organic EL element that emits red light, (2) a green organic EL element that emits green light, and (3) a blue organic EL element that emits blue light are provided on a support substrate, respectively. It is done. On the support substrate, a partition wall for defining a predetermined section is usually provided. The three types of organic EL elements are arranged in alignment with the partitions defined by the partition walls (that is, regions surrounded by the partition walls).
  • Each organic EL element is formed by sequentially laminating a first electrode, an organic electroluminescence layer (hereinafter sometimes referred to as an organic EL layer) and a second electrode in a region surrounded by a partition wall.
  • the above-described organic EL layer can be formed by, for example, a coating method.
  • a method for forming the organic EL layer will be described with reference to FIG.
  • ink 17 is supplied to a region 15 surrounded by the partition wall 13 in the support substrate 12 on which the first electrode 16 and the partition wall 13 are formed.
  • the ink 17 includes a material for forming the organic EL layer 18 and a solvent.
  • the supplied ink 17 is accommodated in a region 15 surrounded by the partition wall 13 (see FIG. 5B).
  • the organic EL layer 18 is formed when the solvent of the ink 17 evaporates (refer FIG. 5C).
  • the partition wall 13 When the partition wall 13 is lyophilic with respect to the ink 17, the ink supplied to the area surrounded by the partition wall 13 may flow along the surface of the partition wall 13 and overflow to the adjacent area. Therefore, on the support substrate 12, a partition wall 13 that normally exhibits a certain degree of liquid repellency with respect to the ink 17 is provided.
  • the partition wall 13 when the partition wall 13 is liquid repellent, the ink supplied to the region surrounded by the partition wall 13 evaporates while being repelled by the partition wall 13 to form a thin organic EL layer.
  • the portion of the organic EL layer 18 in contact with the partition wall 13, that is, the peripheral portion of the organic EL layer 18 may be thinner than the thickness of the central portion.
  • the electrical resistance of the peripheral part of the organic EL layer is lower than that of the central part.
  • the peripheral edge of the organic EL layer 18 is thinner than the intended thickness, the peripheral edge of the organic EL layer 18 may not emit light as intended.
  • FIG. 6A The schematic configuration is shown in FIG.
  • the inversely tapered partition wall 13 is formed so as to become wider as it is separated from the support substrate 12. Therefore, the region defined by the side surface of the partition wall 13 and the surface of the first electrode 16 is configured to be tapered toward a portion where the partition wall 13 and the first electrode 16 are in contact (see FIG. 6A).
  • the second electrode is provided as a common electrode for a plurality of organic EL elements. That is, the second electrode is formed continuously over the plurality of organic EL elements, and is also formed on the partition wall 13 interposed between adjacent organic EL elements.
  • the second electrode common to the plurality of organic EL elements is formed on the substrate provided with the reverse tapered partition wall 13 by, for example, vacuum deposition, the second electrode 19 is cut at the end of the partition wall 13. (See FIG. 6C). Therefore, the second electrode 19 that continues over a plurality of organic EL elements cannot be formed, and an element that cannot be driven to emit light may be formed without supplying power to the predetermined organic EL element.
  • an object of the present invention is to provide a display device in which a second electrode connected to a plurality of organic EL elements is formed in a display device provided with an inversely tapered partition.
  • the present invention provides the following display device and manufacturing method thereof. [1] a support substrate; A partition that defines a predetermined section on the support substrate; A plurality of organic electroluminescence elements respectively provided in the compartments defined by the partition walls, wherein each organic electroluminescence element includes a first electrode, an organic electroluminescence layer, and a second electrode in this order from the support substrate side.
  • the partition has a shape that becomes wider as it is separated from the support substrate,
  • the second electrode is formed over the partition interposed between adjacent organic electroluminescent elements, is continuous over the plurality of organic electroluminescent elements, and the film thickness of the second electrode is:
  • a display device which is thicker than a distance between a top surface of the partition wall and an interface between the second electrode and the organic electroluminescence layer in a thickness direction of a support substrate.
  • the luminescence element is a method of manufacturing a display device including a first electrode, an organic electroluminescence layer, and a plurality of organic electroluminescence elements configured by laminating a second electrode in this order from the support substrate side, Preparing the support substrate on which the first electrode is formed; Forming the partition having a shape that becomes wider as it is separated from the support substrate; Forming the organic electroluminescence layer in each of the compartments defined by the partition; Forming the second electrode extending across the plurality of organic electroluminescence elements across the partition interposed between adjacent organic electroluminescence elements, the top surface of the partition; and the first Forming the second electrode having a thickness greater than the distance between the two electrodes and the interface of the organic electroluminescence layer in the thickness direction of the support substrate; A method for manufacturing a display device, comprising: [4]
  • the step of forming the organic electroluminescence layer supplies ink containing a material for forming the organic electroluminescence layer to each of the compartments defined by the partition walls, and solidifies the ink.
  • the ink including the photosensitive resin includes a liquid repellent material.
  • a display device in which a second electrode connected to a plurality of organic EL elements is formed in a display device including an inversely tapered partition.
  • FIG. 1 is a diagram schematically showing an enlarged part of a display device according to an embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing an enlarged part of a display device according to an embodiment of the present invention.
  • FIG. 3A is a view for explaining a method for manufacturing a display device according to an embodiment of the present invention.
  • FIG. 3B is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention.
  • FIG. 3C is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention.
  • FIG. 3D is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention.
  • FIG. 4A is a view for explaining a method for manufacturing a display device according to an embodiment of the present invention.
  • FIG. 4B is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention.
  • FIG. 4C is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention.
  • FIG. 4D is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention.
  • FIG. 5A is a diagram for explaining a method of manufacturing a display device using a coating method.
  • FIG. 5B is a diagram for explaining a method of manufacturing a display device using a coating method.
  • FIG. 5C is a diagram for explaining a method for manufacturing a display device using a coating method.
  • FIG. 6A is a diagram for explaining a method of manufacturing a display device including a reverse-tapered partition.
  • FIG. 6B is a diagram for explaining a method of manufacturing a display device including a reverse-tapered partition.
  • FIG. 6C is a diagram for explaining a method of manufacturing a display device including a reverse-tapered partition wall.
  • the display device includes a support substrate, a partition wall defining a partition set in advance on the support substrate, and a plurality of organic EL elements provided in each partition defined by the partition wall.
  • the EL element includes a plurality of organic EL elements in which a first electrode, an organic EL layer, and a second electrode are stacked in this order from the support substrate side, and the partition wall is separated from the support substrate. Accordingly, the second electrode has a shape that becomes wider, and is formed across a partition wall interposed between adjacent organic EL elements, and extends across the plurality of organic EL elements.
  • the thickness of the two electrodes is characterized by being thicker than the distance between the top surface of the partition and the interface between the second electrode and the organic EL layer in the thickness direction of the support substrate.
  • Display devices mainly include active matrix drive type devices and passive matrix drive type devices. Although the present invention can be applied to both types of display devices, in this embodiment, a display device applied to an active matrix drive type display device will be described as an example.
  • FIG. 1 is a diagram schematically showing an enlarged part of the display device 1 of the present embodiment.
  • FIG. 2 is a plan view schematically showing an enlarged part of the display device 1 of the present embodiment.
  • the display device 1 mainly includes a support substrate 2, partition walls 3 that define preset sections on the support substrate 2, and a plurality of organic EL elements 4 that are respectively provided in sections defined by the partition walls 3. It is comprised including.
  • the partition wall 3 is formed on the support substrate 2 in a lattice shape or a stripe shape, for example.
  • FIG. 2 shows a display device 1 provided with a grid-like partition wall 3 as one embodiment. In the figure, the area where the partition walls 3 are provided is hatched.
  • a plurality of recesses 5 defined by the partition walls 3 and the support substrate 2 are set on the support substrate 2.
  • the concave portion 5 corresponds to a section defined by the partition wall 3.
  • the partition wall 3 of this embodiment is provided in a lattice shape. Therefore, when viewed from one side in the thickness direction Z of the support substrate 2 (hereinafter sometimes referred to as “in plan view”), the plurality of recesses 5 are arranged in a matrix. That is, the recesses 5 are provided with a predetermined interval in the row direction X and aligned in the column direction Y with a predetermined interval.
  • the shape of each recess 5 in plan view is not particularly limited.
  • the recess 5 may be formed in a shape such as a substantially rectangular shape, a substantially oval shape, or an oval shape in plan view.
  • a substantially rectangular recess 5 is provided in plan view.
  • the row direction X and the column direction Y mean directions perpendicular to the thickness direction Z of the support substrate and perpendicular to each other.
  • the partition when a stripe-shaped partition is provided, the partition is configured by, for example, a plurality of partition members extending in the row direction X being arranged at a predetermined interval in the column direction Y.
  • a stripe-shaped recess is defined by the stripe-shaped partition wall and the support substrate.
  • the partition wall has a shape that becomes wider as it is separated from the support substrate.
  • the partition walls extending in the column direction Y are cut along a plane perpendicular to the extending direction (column direction Y)
  • the cross-sectional shape has a shape that becomes wider as the distance from the support substrate increases.
  • FIG. 1 shows an isosceles trapezoidal partition wall.
  • the upper base and the lower base on the support substrate side are compared, the upper base is wider than the lower base.
  • the cross section of the partition actually formed does not necessarily have a trapezoidal shape, and the straight part and corners of the trapezoidal shape may be rounded.
  • the angle ⁇ formed by the side surface 3b of the partition wall 3 and the surface of the support substrate, that is, the inclination angle ⁇ of the partition wall side surface 3b is about 10 ° to 85 °, and preferably 50 ° to 70 °.
  • the partition wall 3 having an inclination angle ⁇ of 0 to 90 ° on the partition wall side surface 3b is called a so-called reverse tapered partition wall, and the partition wall 3 having an inclination angle ⁇ on the partition wall side surface 3b of 90 ° to 180 ° is so-called forward. It is called a tapered partition. That is, in this embodiment, the inversely tapered partition wall 3 is provided.
  • the side wall 3b of the partition wall 3 is more lyophilic than the top surface 3a.
  • the top surface 3 a of the partition wall 3 means a surface that is present at a position farthest from the support substrate 2 in the surface of the partition wall 3.
  • the side surface of the partition 3 means the surface which exists in the position which faces the adjacent partition among the surfaces of the partition 3.
  • the degree of liquid repellency or lyophilicity of the partition wall 3 with respect to the ink can be expressed by the contact angle between the ink supplied to the recess 5 and the partition wall 3.
  • the top surface 3a of the partition wall 3 preferably has a contact angle with anisole of 30 ° or more.
  • the side surface 3b is more lyophilic than the top surface 3a of the partition wall 3.
  • the contact angle between the anisole and the side surface 3b of the partition wall 3 is greater than the contact angle between the anisole and the top surface 3a of the partition wall 3.
  • the side surface 3b of the partition wall 3 is lyophilic, the ink supplied to the region surrounded by the partition wall 3 can be prevented from being repelled by the side surface 3b of the partition wall 3, and the partition wall 3 and the first electrode can be prevented.
  • the ink can be easily filled up to the portion where the ink 7 contacts. This can prevent the peripheral portion of the organic EL layer from becoming thinner than the central portion.
  • the organic EL element 4 is provided in a section defined by the partition 3 (that is, the recess 5).
  • each organic EL element 4 is provided in each recess 5. That is, the organic EL elements 4 are arranged in a matrix like the concave portions 5 and are arranged on the support substrate 2 with a predetermined interval in the row direction X and with a predetermined interval in the column direction Y. Is provided.
  • the organic EL elements 4 are arranged at predetermined intervals in the row direction X in the respective recesses extending in the row direction X.
  • three types of organic EL elements 4 are provided. That is, (1) a red organic EL element 4R that emits red light, (2) a green organic EL element 4G that emits green light, and (3) a blue organic EL element 4B that emits blue light are provided. These three types of organic EL elements 4R, 4G, and 4B are arranged in alignment, for example, by repeatedly arranging the following rows (I), (II), and (III) in this order in the column direction Y. (See FIG. 2). (I) Rows in which the red organic EL elements 4R are arranged at predetermined intervals in the row direction X. (II) Rows in which the green organic EL elements 4G are arranged at predetermined intervals in the row direction X. (III) A row in which the blue organic EL elements 4B are arranged at predetermined intervals in the row direction X.
  • an organic EL element that emits white light may be further provided.
  • a monochrome display device may be realized by providing only one type of organic EL element.
  • the organic EL element 4 is configured by laminating a first electrode, an organic EL layer, and a second electrode in this order from the support substrate side.
  • one or a plurality of layers provided between the first electrode 6 and the second electrode 10 are each referred to as an organic EL layer.
  • the organic EL element 4 includes at least one light emitting layer as an organic EL layer.
  • the organic EL element may further include an organic EL layer different from the light emitting layer, if necessary, in addition to the single light emitting layer.
  • a hole injection layer, a hole transport layer, an electron block layer, an electron transport layer, and an electron injection layer may be provided between the first electrode 6 and the second electrode 10 as an organic EL layer. Good.
  • Two or more light emitting layers may be provided between the first electrode 6 and the second electrode 10.
  • the organic EL element 4 includes a first electrode 6 and a second electrode 10 as a pair of electrodes including an anode and a cathode.
  • One of the first electrode 6 and the second electrode 10 is provided as an anode, and the other electrode is provided as a cathode.
  • the first electrode 6 functioning as an anode
  • the first organic EL layer 7 functioning as a hole injection layer
  • the second organic EL layer 9 functioning as a light emitting layer
  • the second functioning as a cathode.
  • the organic EL element 4 configured by laminating the electrodes 10 on the support substrate 2 in this order will be described.
  • the red organic EL element 4R includes a red light emitting layer 9R that emits red light.
  • the green organic EL element 4G includes a green light emitting layer 9G that emits green light.
  • the blue organic EL element 4B includes a blue light emitting layer 9B that emits blue light.
  • the first electrode 6 is provided for each organic EL element 4. That is, the same number of first electrodes 6 as the organic EL elements 4 are provided on the support substrate 2.
  • the first electrodes 6 are provided corresponding to the arrangement of the organic EL elements 4 and are arranged in a matrix like the organic EL elements 4.
  • the partition 3 of this embodiment is mainly formed in a grid pattern in a region excluding the first electrode 6, it is further formed so as to cover the peripheral edge of the first electrode 6 (see FIG. 1).
  • the first organic EL layer 7 functioning as a hole injection layer is provided on the first electrode 6 in the recess 5.
  • the first organic EL layer 7 is provided with a different material or film thickness depending on the type of the organic EL element, if necessary.
  • the second organic EL layer 9 functioning as a light emitting layer is provided on the first organic EL layer 7 in the recess 5.
  • the light emitting layer is provided according to the type of the organic EL element. That is, the red light emitting layer 9R is provided in the recess 5 where the red organic EL element 4R is provided.
  • the green light emitting layer 9G is provided in the recess 5 in which the green organic EL element 4G is provided.
  • the blue light emitting layer 9B is provided in the recess 5 where the blue organic EL element 4B is provided.
  • the second electrode 10 is formed on the entire display area where the organic EL element 4 is provided. That is, the second electrode 10 is formed not only on the second organic EL layer 9 but also on the partition 3 and continuously formed over a plurality of organic EL elements.
  • the second electrode 10 is formed in the thickness direction Z of the support substrate between the top surface 3 a of the partition wall 3 and the interface between the second electrode 10 and the organic EL layer (second organic EL layer in this embodiment) 9.
  • the film thickness L2 is thicker than the interval L1.
  • the difference (L2 ⁇ L1) may be a value larger than 0 ⁇ m.
  • the difference (L2 ⁇ L1) is preferably 0.2 ⁇ m or more.
  • the upper limit value of the difference (L2 ⁇ L1) is not particularly set, but if the film thickness is too thick, the time required to form the second electrode 10 becomes longer, and therefore the difference (L2 ⁇ L1) is 1 ⁇ m or less. Is preferred.
  • the partition 3 is provided in contact with the support substrate 2 so as to cover the peripheral edge of the first electrode 6.
  • an insulating film may be further provided between the partition wall 3 and the support substrate 2.
  • the insulating film is formed in a lattice shape like the partition wall, and is formed so as to cover the periphery of the first electrode 6.
  • Such an insulating film is preferably formed of a material that is more lyophilic than the partition 3.
  • the first electrode 6 is formed on the support substrate 2 (see FIG. 3A).
  • the support substrate 2 on which the first electrode 6 is formed may be prepared by obtaining from the market a support substrate on which the first electrode 6 is formed.
  • a substrate on which circuits for individually driving a plurality of organic EL elements are formed in advance may be used as the support substrate 2.
  • a substrate on which a TFT (Thin Film Transistor) and a capacitor are formed in advance may be used as the support substrate.
  • a plurality of first electrodes 6 are formed in a matrix on the support substrate 2.
  • the first electrode 6 may be formed, for example, by forming a conductive thin film on one surface of the support substrate 2 and patterning it in a matrix by a photolithography method. Further, for example, a mask having an opening formed in a predetermined portion is disposed on the support substrate 2, and a conductive material is selectively deposited on the predetermined portion on the support substrate 2 through the mask, thereby the first electrode 6. The pattern may be formed. The material of the first electrode 6 will be described later.
  • Step of forming partition walls In this step, a partition wall having a shape that becomes wider as the distance from the support substrate increases. This step may be carried out by applying a film containing an ink containing a photosensitive resin onto the support substrate, exposing a predetermined portion, and further developing.
  • an ink containing a photosensitive resin is applied and formed on the support substrate (see FIG. 3B).
  • the partition wall 3 is formed such that the side surface 3b is more lyophilic than the top surface 3a.
  • Such a partition may be formed, for example, by applying an ink containing a liquid repellent material on the support substrate 2. That is, the ink containing the photosensitive resin may further contain a liquid repellent material.
  • Examples of the ink application method include spin coating and slit coating.
  • the ink containing the photosensitive resin After the ink containing the photosensitive resin is applied and formed on the support substrate, it is usually pre-baked. For example, pre-baking is performed by heating the substrate at a temperature of 80 ° C. to 110 ° C. for 60 seconds to 180 seconds to remove the solvent in the ink (see FIG. 3B). When the ink contains a liquid repellent material, the liquid repellent material is aggregated on the surface 8 a of the partition forming film 8 formed in this way.
  • the photosensitive resin includes a positive type resin and a negative type resin, and any resin may be used in this step.
  • a positive photosensitive resin light is irradiated to the remaining part of the partition forming film 8 except the part where the partition 3 is to be formed.
  • a negative photosensitive resin light is irradiated to a part of the partition forming film 8 where the partition 3 is to be formed.
  • a negative photosensitive resin is used in this step, a case where a negative photosensitive resin is used will be described with reference to FIG. 3C. As shown in FIG.
  • a photomask 21 is arranged on the substrate on which the partition wall forming film 8 is formed, and light is irradiated through the photomask 21, whereby the partition wall forming film 8 mainly includes the partition wall. 3 is irradiated with light.
  • the light applied to the partition wall forming film 8 is schematically indicated by an arrow symbol.
  • the exposed barrier rib forming film 8 is developed. Thereby, the partition 3 is patterned (see FIG. 3D).
  • post-bake is performed as necessary. For example, post-baking is performed by heating the substrate at a temperature of 200 ° C. to 230 ° C. for 15 to 60 minutes to cure the partition walls 3.
  • the partition wall when the partition wall is formed using the ink containing the liquid repellent material, the liquid repellent material aggregates on the surface 8a of the partition wall forming film 8, and therefore, compared to the top surface 3a, The partition wall 3 whose side surface 3b is lyophilic is obtained.
  • the so-called reverse-tapered partition wall 3 having the inclination angle ⁇ of the partition wall side surface 3b ranging from 0 ° to 90 ° is formed.
  • the inclination angle ⁇ of the partition wall side surface 3b can be changed by adjusting the following factors, for example. Can be made.
  • the inclination angle ⁇ of the side wall 3b is mainly determined by the type of photosensitive resin used. Therefore, a photosensitive resin to be an inversely tapered partition is selected from a plurality of types of photosensitive resins, and the partition may be formed using this.
  • the inclination angle ⁇ of the partition wall side surface 3b can also be adjusted by adjusting the development time. In general, in the case of a negative photosensitive resin, the inclination angle ⁇ of the partition wall side surface 3b tends to be smaller as the development time is longer.
  • the inclination angle ⁇ of the partition wall side surface 3b can also be adjusted by adjusting the exposure amount.
  • the inclination angle ⁇ of the partition wall side surface 3b tends to increase as the exposure amount decreases.
  • the inclination angle ⁇ of the partition wall side surface 3b can also be adjusted by adjusting the distance between the photomask and the substrate.
  • the inclination angle ⁇ of the partition wall side surface 3b tends to increase as the distance between the photomask and the substrate decreases.
  • Examples of the photosensitive resin used for forming the partition include a negative type and a positive type.
  • the irradiated portion remains insoluble in the developer.
  • Ink containing a photosensitive resin generally contains a binder resin, a crosslinking agent, a photoreaction initiator, a solvent, and other additives.
  • the binder resin is polymerized in advance. Examples thereof include a non-polymerizable binder resin that does not have self-polymerizability and a polymerizable binder resin into which a substituent having polymerizability is introduced.
  • the binder resin has a weight average molecular weight in the range of 5,000 to 400,000 determined by gel permeation chromatography (GPC) using polystyrene as a standard.
  • GPC gel permeation chromatography
  • the binder resin include phenol resin, novolac resin, melamine resin, acrylic resin, epoxy resin, and polyester resin.
  • the binder resin either a homopolymer or a copolymer obtained by combining two or more monomers may be used.
  • the binder resin is usually 5% to 90% in mass fraction with respect to the total solid content of the ink containing the photosensitive resin.
  • the crosslinking agent is a compound that can be polymerized by an active radical, an acid, or the like generated from the photopolymerization initiator by light irradiation, and examples thereof include a compound having a polymerizable carbon-carbon unsaturated bond.
  • the cross-linking material may be a monofunctional compound having one polymerizable carbon-carbon unsaturated bond in the molecule, or a bifunctional or trifunctional compound having two or more polymerizable carbon-carbon unsaturated bonds.
  • the above polyfunctional compounds may be used.
  • the crosslinking agent is usually 0.1 parts by mass or more and 70 parts by mass or less when the total amount of the binder resin and the crosslinking agent is 100 parts by mass.
  • a photoinitiator is 1 mass part or more and 30 mass parts or less normally, when the total amount of binder resin and a crosslinking agent is 100 mass parts.
  • the irradiated portion is solubilized in the developer.
  • the positive photosensitive resin is generally constituted by combining a resin and a compound that becomes hydrophilic by a photoreaction.
  • the positive photosensitive resin a combination of a resin having chemical resistance and adhesion such as novolac resin, polyhydroxystyrene, acrylic resin, methacrylic resin, polyimide, and a photodegradable compound may be used. .
  • liquid repellent material examples include fluorine-containing compounds, silicone-containing compounds, and combinations thereof.
  • it is a fluorine-containing compound that exhibits excellent liquid repellency even with respect to organic solvents.
  • the fluorine-containing compound examples include compounds having a linear or branched fluoroalkyl group and / or fluoropolyether group having 1 to 8 carbon atoms.
  • the fluorine-containing compound is preferably a polymer having a crosslinkable group, and more preferably a polymer having a fluoroalkyl group and / or fluoropolyether group having 4 to 6 carbon atoms and having a crosslinkable group.
  • the fluorine-containing compound preferably has a soluble function in the developer.
  • the fluorine-containing compound is not limited to a polymer and may be a low molecular compound as long as it can impart liquid repellency to the partition wall surface after the partition wall is formed.
  • the crosslinkable group imparts a crosslinkable function to the fluorine-containing compound, and examples thereof include an ethylenically unsaturated bond group, an epoxy group, and a hydroxyl group.
  • the type of the crosslinkable group is not limited to the above as long as it has a function of crosslinking with the photosensitive resin used for forming the partition wall.
  • liquid repellent material examples include Megafax RS-101, RS-102, RS-105, RS-401, RS-402, RS-501, RS-502, RS-718 (above, manufactured by DIC) ), Optool DAC, Optoace HP series (manufactured by Daikin Industries, Ltd.), perfluoro (meth) acrylate, perfluorodi (meth) acrylate, and the like.
  • One of these liquid repellent materials may be used alone, or two or more of them may be used in combination.
  • the liquid repellent material is usually 0.1 to 3 parts by mass with respect to the total solid content of the ink containing the photosensitive resin.
  • the ink containing a photosensitive resin comprises a photosensitive resin, a liquid repellent material, and a solvent.
  • the ink containing the photosensitive resin may further contain a binder resin, a crosslinking agent, a photoreaction initiator, and other additives.
  • Examples of the developer used for development include an aqueous potassium chloride solution and an aqueous tetramethylammonium hydroxide (TMAH) solution.
  • TMAH tetramethylammonium hydroxide
  • the shape of the partition 3 and the arrangement thereof are appropriately set according to the specifications of the display device such as the number of pixels and the resolution, the ease of manufacturing, and the like.
  • the width of the partition wall 3 in the row direction X or the column direction Y is about 5 ⁇ m to 50 ⁇ m
  • the height of the partition wall 3 is about 0.5 ⁇ m to 5 ⁇ m
  • the partition walls 3 adjacent to each other in the row direction X or the column direction Y That is, the width of the recess 5 in the row direction X or the column direction Y is about 10 ⁇ m to 200 ⁇ m.
  • the width of the first electrode 6 in the row direction X or the column direction Y is about 10 ⁇ m to 200 ⁇ m, respectively.
  • an organic EL layer is formed in each of the sections defined by the partition walls.
  • at least one organic EL layer among the one or more organic EL layers is formed by a coating method.
  • the first organic EL layer 7 and the second organic EL layer 9 are formed by a coating method.
  • the ink 22 containing the material for forming the first organic EL layer 7 is supplied to the region (recessed portion 5) surrounded by the partition walls 3 (see FIG. 4A).
  • the ink is appropriately supplied by an optimum method in consideration of conditions such as the shape of the partition wall 3, the simplicity of the film forming process, and the film forming property.
  • the ink may be supplied by, for example, an inkjet printing method, a nozzle coating method, a relief printing method, an intaglio printing method, or the like.
  • the first organic EL layer 7 is formed by solidifying the supplied ink 22 (see FIG. 4B).
  • the ink may be solidified by, for example, natural drying, heat drying, or vacuum drying.
  • the ink contains a material that polymerizes by applying energy
  • the material constituting the organic EL layer is polymerized by heating the thin film or irradiating the thin film with light. Also good.
  • another organic EL layer (hereinafter also referred to as a second organic EL layer) is formed on the organic EL layer (hereinafter also referred to as a first organic EL layer).
  • the first organic EL layer can be hardly solubilized with respect to the ink used for further forming the above.
  • a second organic EL layer 9 that functions as a light emitting layer is formed.
  • the second organic EL layer 9 may be formed in the same manner as the first organic EL layer 7. That is, three types of inks, ink containing a material for forming the red light emitting layer 9R, ink containing a material for forming the green light emitting layer 9G, and ink containing a material for forming the blue light emitting layer 9B,
  • the light emitting layers 9R, 9G, and 9B may be formed by supplying each of the regions surrounded by the partition walls 3 and solidifying them.
  • Step of forming the second electrode Next, the second electrode 10 is formed.
  • the second electrode 10 having a thickness greater than the distance between the top surface of the partition and the interface between the second electrode 10 and the organic EL layer in the thickness direction of the support substrate is formed (see FIG. 4D).
  • the second electrode 10 formed on the partition 3 is inevitably connected to the second electrode 10 formed on the first organic EL layer 9. Is done.
  • the second electrode is formed across the plurality of organic EL elements across the partition 3 interposed between adjacent organic EL elements.
  • the thick second electrode 10 it is possible to prevent the second electrode 10 from being cut at the end of the partition 3, even if the inversely tapered partition 3 is provided.
  • the second electrode 10 that extends over all the organic EL elements 4 can be formed.
  • the ink 22 supplied to the region (recessed portion 5) surrounded by the partition 3 is sucked into the portion where the first electrode 16 and the partition 13 are in contact by capillary action. Filled. While the ink solvent evaporates while maintaining this state, an organic EL layer having a sufficient thickness is also formed at a portion where the first electrode and the partition wall are in contact with each other. Thereby, an organic EL layer having a uniform film thickness can be obtained.
  • the top surface 3a of the partition wall 3 is liquid repellent, the ink 22 supplied to the region (recessed portion 5) surrounded by the partition wall 3 is repelled by the top surface 3a of the partition wall 3 (see FIG. 4A). For this reason, it is possible to prevent the ink 22 from flowing over the top surface 3a of the partition wall 3 and overflowing to the adjacent region, and the ink can be contained in the region (recessed portion 5) surrounded by the partition wall 3.
  • the side surface 3b of the partition wall 3 is lyophilic, the ink supplied to the region surrounded by the partition wall 3 can be prevented from being repelled by the side surface 3b of the partition wall 3, and the partition wall 3 and the first electrode can be prevented.
  • the ink can be more easily filled up to the portion where the contact is made. Thereby, an organic EL layer having a more uniform film thickness can be obtained.
  • the partition wall in order to impart liquid repellency to the top surface 3a of the partition wall 3, the partition wall is formed using ink containing a liquid repellent material.
  • the top surface 3a of the partition wall 3 is repelled by other methods. Liquidity may be imparted.
  • a method of performing plasma treatment in an atmosphere containing fluoride can be cited. In this method, since the plasma atmosphere is introduced, the process becomes complicated and the manufacturing cost may increase. Further, the first electrode 6 may be contaminated by the plasma treatment, and this plasma treatment may cause a decrease in yield.
  • the partition walls in which the partition walls are formed using ink containing a liquid-repellent material, the partition walls can be formed without performing plasma treatment, which improves yield and reduces manufacturing costs. Can do.
  • the organic EL element has at least one light emitting layer as an organic EL layer.
  • the organic EL element may have, for example, a hole injection layer, a hole transport layer, an electron block layer, a hole block layer, an electron transport layer, and an electron injection layer as the organic EL layer.
  • anode / light emitting layer / cathode b) anode / hole injection layer / light emitting layer / cathode c) anode / hole injection layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode f) anode / hole transport layer / light emitting layer / cathode g) anode / hole transport layer / light emitting layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer / light emitting layer /
  • the organic EL element in which the first electrode that functions as the anode is disposed closer to the support substrate has been described.
  • the first electrode that functions as the cathode is closer to the support substrate.
  • the present invention can also be applied to an organic EL element arranged on the side.
  • ⁇ Support substrate> a substrate that is not chemically changed in the process of manufacturing the organic EL element is suitably used.
  • the material for the support substrate include glass, plastic, polymer film, silicon plate, and laminates thereof.
  • an electrode exhibiting optical transparency is used for the anode.
  • the electrode exhibiting light transmittance for example, a thin film made of a material such as metal oxide, metal sulfide, and metal can be used, and an electrode having high electrical conductivity and light transmittance is preferably used.
  • a thin film made of indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, or the like is used.
  • ITO Indium Tin Oxide
  • IZO a thin film made of tin oxide
  • the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • a material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity.
  • the cathode material is preferably a material having a high reflectance with respect to visible light in order to reflect light emitted from the light emitting layer to the anode side by the cathode.
  • Examples of such cathode materials include metals, alloys, graphite, and graphite intercalation compounds.
  • the metal include alkali metals, alkaline earth metals, transition metals, and metals of Group 13 of the periodic table.
  • Examples of the alloy include an alloy of two or more of the metals; and one or more of the metals, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin.
  • the cathode may be a transparent electrode, and examples of the material thereof include conductive metals such as indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Oxides; conductive organic substances such as polyaniline or derivatives thereof, polythiophene or derivatives thereof, and the like.
  • the cathode may have a stacked structure in which two or more layers are stacked.
  • the electron injection layer may be used as a cathode.
  • Examples of the method for producing the cathode include a vacuum deposition method and an ion plating method.
  • the film thickness of the anode or cathode may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. It is. As described above, of the anode and the cathode, the electrode corresponding to the second electrode is more than the distance in the thickness direction of the support substrate between the top surface of the partition and the interface between the second electrode and the organic EL layer. It is formed so that the film thickness becomes thick.
  • the hole injection material constituting the hole injection layer examples include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide; phenylamine compounds; starburst amine compounds; phthalocyanine compounds; amorphous carbon Polyaniline; and polythiophene derivatives.
  • Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material.
  • a hole injection layer may be formed by coating a film containing a hole injection material by a predetermined coating method and solidifying the solution.
  • the thickness of the hole injection layer may be appropriately set in consideration of the required characteristics and the simplicity of the process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. is there.
  • Hole transport layer examples of the hole transport material constituting the hole transport layer include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amines in side chains or main chains, pyrazoline derivatives, arylamine derivatives, stilbene derivatives. , Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, and poly (2,5-thienylene vinylene) Or the derivative
  • the thickness of the hole transport layer may be set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. It is.
  • the light emitting layer usually contains an organic substance that mainly emits fluorescence and / or phosphorescence.
  • the light emitting layer may further include a dopant that assists the organic matter.
  • the dopant is added, for example, in order to improve the luminous efficiency and change the emission wavelength.
  • the organic substance which comprises a light emitting layer may be a low molecular compound or a high molecular compound, and when forming a light emitting layer by the apply
  • the number average molecular weight in terms of polystyrene of the polymer compound may be, for example, about 10 3 to 10 8 .
  • the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, and coumarin derivatives.
  • Metal complex materials examples include central metals such as rare earth metals (eg, Tb, Eu, Dy), Al, Zn, Be, Ir, Pt, oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structures, and the like. And a metal complex having the above ligand.
  • metal complexes include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes. , Porphyrin zinc complex, phenanthroline europium complex, and the like.
  • Polymer material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and the above-mentioned dye materials and metal complex light emitting materials. And the like.
  • the thickness of the light emitting layer is usually about 2 nm to 200 nm.
  • Electrode transport material constituting the electron transport layer
  • known materials can be used, such as oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyano Anthraquinodimethane or derivative thereof, fluorenone derivative, diphenyldicyanoethylene or derivative thereof, diphenoquinone derivative, or metal complex of 8-hydroxyquinoline or derivative thereof, polyquinoline or derivative thereof, polyquinoxaline or derivative thereof, polyfluorene or derivative thereof, etc. Is mentioned.
  • the film thickness of the electron transport layer may be appropriately set in consideration of required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. It is.
  • the electron injecting material constituting the electron injecting layer may be appropriately selected according to the type of the light emitting layer.
  • alkali metal alkaline earth metal; alloy containing one or more of the metals; oxide of the metal , Halides and carbonates; and mixtures of the aforementioned substances.
  • the alkali metal and its oxide, halide, and carbonate include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride, Examples thereof include rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, and lithium carbonate.
  • alkaline earth metals and oxides, halides and carbonates thereof include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, fluoride.
  • Examples include barium, strontium oxide, strontium fluoride, and magnesium carbonate.
  • the electron injection layer may have a stacked structure in which two or more layers are stacked, and specific examples include LiF / Ca.
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • each organic EL layer examples include a coating method such as a nozzle printing method, an inkjet printing method, a relief printing method, and an intaglio printing method; a vacuum deposition method; a sputtering method; and a CVD method.
  • a coating method such as a nozzle printing method, an inkjet printing method, a relief printing method, and an intaglio printing method
  • a vacuum deposition method such as a nozzle printing method, an inkjet printing method, a relief printing method, and an intaglio printing method
  • a vacuum deposition method such as a nozzle printing method, an inkjet printing method, a relief printing method, and an intaglio printing method
  • a vacuum deposition method such as a sputtering method
  • a CVD method a chemical vapor deposition method
  • an organic EL layer is formed by coating and forming an ink containing an organic EL material to be each organic EL layer and solidifying the ink.
  • the solvent of the ink used in the coating method include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketones such as acetone and methyl ethyl ketone. System solvents; ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate; and water.
  • Example 1 First, a TFT substrate on which a first electrode (anode) made of an ITO thin film was previously patterned was prepared (see FIG. 3 (1)).
  • the negative photosensitive resin solution (ZPN2464 manufactured by ZEON Corporation) is mixed with the liquid repellent 2 (Daikin's liquid repellent Opt-Ace (registered commercial method) HP series) to prepare a photosensitive resin solution containing the liquid repellent material. did.
  • the solid content concentration ratio of the liquid repellent to the photosensitive resin was 0.2% (weight).
  • a photosensitive resin solution containing a liquid repellent material is applied and formed on the surface of the prepared TFT substrate by a spin coater, and further prebaked by heating on a hot plate at 110 ° C. for 90 seconds to remove the solvent. It evaporated (refer FIG. 3 (2)).
  • a hole injection layer was formed as a first organic EL layer.
  • the surface of the substrate was washed with ozone water (concentration: 10 ppm, treatment time: 15 minutes) using an ozone water production apparatus (FA-1000ZW12-5C manufactured by Loki Techno Co., Ltd.). By this cleaning, the contact angle between the surface of the first electrode (ITO thin film) and pure water was reduced to 5 ° or less, and sufficient wettability could be imparted to the surface of the first electrode (ITO thin film).
  • an ink (poly (ethylenedioxythiophene) (PEDOT) / polystyrene sulfonic acid (PSS) aqueous dispersion with a solid content concentration of 1.5% by weight (AI 4083 manufactured by Bayer) using an inkjet apparatus (Litlex 142P manufactured by ULVAC). ) was applied to each recess (see FIG. 4A). Since the ink was repelled by the top surface of the partition wall having a large contact angle with the ink, the ink was prevented from overflowing to the adjacent region through this top surface and was accommodated in the recess.
  • PEDOT poly (ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • the ink accommodated in the concave portion was filled so as to be sucked into a portion where the first electrode and the partition wall were in contact with each other by capillary action, and spread uniformly in the concave portion.
  • the substrate was baked at 200 ° C. to form a hole injection layer (film thickness of 50 nm) with a uniform film thickness (see FIG. 4B).
  • the polymer light emitting material 1 that emits red light was mixed with an organic solvent so that the concentration thereof was 0.8 wt% to prepare red ink.
  • the polymer light-emitting material 2 that emits green light was mixed with an organic solvent so that its concentration was 0.8 wt% to prepare a green ink.
  • the polymer light-emitting material 2 that emits blue light was mixed with an organic solvent so that the concentration thereof was 0.8 wt% to prepare a blue ink.
  • Each of these red, green and blue inks was applied in a predetermined recess using an inkjet device (Litrex142P manufactured by ULVAC).
  • the ink accommodated in the concave portion was filled so as to be sucked into a tapered portion where the first electrode and the partition wall were in contact with each other by capillary action, and spread uniformly in the concave portion.
  • the substrate was baked at 130 ° C. to form a light-emitting layer (film thickness 60 nm) having a uniform thickness (see FIG. 4 (3)).
  • a light emitting layer may be formed using a material made by Summation.
  • a Ca layer (20 nm) and an Al layer (1.2 ⁇ m) were sequentially laminated on the light emitting layer by a vacuum deposition method to form a second electrode (cathode). Then, the sealing substrate was bonded together, the organic EL element was sealed, and the display apparatus was produced.
  • Comparative Example 1 A display device was produced in the same manner as in Example 1 except that the thickness of the Al layer was changed.
  • Comparative Example 1 as described in Patent Document 1, an Al layer having a thickness of 150 nm was stacked by a vacuum deposition method. Since the formed second electrode (cathode) was cut at the end of the partition wall, the second electrode continuous across the plurality of organic EL elements was not formed. Therefore, it was not possible to drive each organic EL element to emit light.
  • Example 1 A display device was produced in the same manner as in Example 1 except that the liquid repellent material was not added to the solution used for forming the partition walls. That is, instead of using the photosensitive resin solution containing the liquid repellent material, only the negative photosensitive resin solution (ZPN2464 manufactured by Nippon Zeon Co., Ltd.) was used to form the partition walls.
  • ZPN2464 manufactured by Nippon Zeon Co., Ltd.
  • ink was supplied to the recess using an inkjet device (Litlex142P manufactured by ULVAC) in the same manner as in Example 1, the ink spreads on the top surface of the partition wall and continued to the top surface of the partition wall with the ink supplied to the adjacent region. That was confirmed in part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a display device provided with inversely tapered partition walls and wherein a second electrode that extends across a plurality of organic EL elements is formed. The display device includes: a supporting substrate; partition walls which define pre-set sections on the supporting substrate; and a plurality of organic EL elements provided in each of the sections defined by the partition walls, with each organic EL element formed by laminating, in order from the supporting substrate side, a first electrode, an organic EL layer, and the second electrode. The partition walls are shaped to widen as the walls extend away from the supporting substrate. The second electrode is formed straddled across partition walls interposed between adjacent organic EL elements and extends across the plurality of organic EL elements. The film thickness of the second electrode is thicker than the interval, in the thickness direction of the supporting substrate, between the top surface of the partition walls and the interface between the second electrode and the organic EL layer.

Description

表示装置およびその製造方法Display device and manufacturing method thereof
 本発明は表示装置およびその製造方法に関する。 The present invention relates to a display device and a manufacturing method thereof.
 表示装置にはその構成や原理を異にする種々の装置がある。そのひとつとして現在、画素の光源に有機エレクトロルミネッセンス素子(以下、有機EL素子という場合がある)を利用した表示装置が実用化されつつある。 There are various types of display devices with different configurations and principles. As one of them, a display device using an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element) as a light source of a pixel is being put into practical use.
 たとえばカラー表示装置では画素の光源として3種類の有機EL素子が支持基板上に設けられる。すなわち(1)赤色の光を出射する赤色有機EL素子、(2)緑色の光を出射する緑色有機EL素子、(3)青色の光を出射する青色有機EL素子が、それぞれ支持基板上に設けられる。支持基板上には通常、所定の区画を画成するための隔壁が設けられている。上記3種類の有機EL素子は、上記隔壁によって画成される区画(すなわち隔壁に囲まれた領域)にそれぞれ整列して配置されている。 For example, in a color display device, three types of organic EL elements are provided on a supporting substrate as a light source of a pixel. That is, (1) a red organic EL element that emits red light, (2) a green organic EL element that emits green light, and (3) a blue organic EL element that emits blue light are provided on a support substrate, respectively. It is done. On the support substrate, a partition wall for defining a predetermined section is usually provided. The three types of organic EL elements are arranged in alignment with the partitions defined by the partition walls (that is, regions surrounded by the partition walls).
 各有機EL素子は隔壁に囲まれた領域に第1電極、有機エレクトロルミネッセンス層(以下、有機EL層という場合がある)および第2電極を順次積層することにより形成される。 Each organic EL element is formed by sequentially laminating a first electrode, an organic electroluminescence layer (hereinafter sometimes referred to as an organic EL layer) and a second electrode in a region surrounded by a partition wall.
 上述の有機EL層はたとえば塗布法によって形成することができる。図5を参照して有機EL層の形成方法について説明する。図5Aに示すように、第1電極16および隔壁13がそのうえに形成された支持基板12において、隔壁13に囲まれた領域15にインキ17を供給する。なおインキ17は有機EL層18を形成するための材料と、溶媒とからなる。供給されたインキ17は隔壁13に囲まれた領域15に収容される(図5B参照)。そしてインキ17の溶媒が蒸発することによって有機EL層18が形成される(図5C参照)。 The above-described organic EL layer can be formed by, for example, a coating method. A method for forming the organic EL layer will be described with reference to FIG. As shown in FIG. 5A, ink 17 is supplied to a region 15 surrounded by the partition wall 13 in the support substrate 12 on which the first electrode 16 and the partition wall 13 are formed. The ink 17 includes a material for forming the organic EL layer 18 and a solvent. The supplied ink 17 is accommodated in a region 15 surrounded by the partition wall 13 (see FIG. 5B). And the organic EL layer 18 is formed when the solvent of the ink 17 evaporates (refer FIG. 5C).
 なお隔壁13がインキ17に対して親液性を示す場合、隔壁13に囲まれた領域に供給されたインキが、隔壁13表面を伝わって隣の領域にまで溢れ出ることがある。そのため支持基板12上には、通常、インキ17に対してある程度撥液性を示す隔壁13が設けられている。 When the partition wall 13 is lyophilic with respect to the ink 17, the ink supplied to the area surrounded by the partition wall 13 may flow along the surface of the partition wall 13 and overflow to the adjacent area. Therefore, on the support substrate 12, a partition wall 13 that normally exhibits a certain degree of liquid repellency with respect to the ink 17 is provided.
 しかしながら隔壁13が撥液性である場合、隔壁13に囲まれた領域に供給されたインキは隔壁13に弾かれつつ蒸発し薄膜化するため、不均一な膜厚の有機EL層が形成されることがある。たとえば、有機EL層18の隔壁13に接する部位、すなわち有機EL層18の周縁部が、中央部の膜厚に比べて薄くなることがある。そのような場合、有機EL層の周縁部の電気抵抗が中央部に比べて低くなる。その結果、有機EL素子に電圧を印加した際に、周縁部に電流が集中して流れ、中央部が周縁部に比べて暗くなることがある。また逆に、有機EL層18の周縁部が意図した厚さよりも薄いため、有機EL層18の周縁部が意図したとおりには発光しないこともある。 However, when the partition wall 13 is liquid repellent, the ink supplied to the region surrounded by the partition wall 13 evaporates while being repelled by the partition wall 13 to form a thin organic EL layer. Sometimes. For example, the portion of the organic EL layer 18 in contact with the partition wall 13, that is, the peripheral portion of the organic EL layer 18 may be thinner than the thickness of the central portion. In such a case, the electrical resistance of the peripheral part of the organic EL layer is lower than that of the central part. As a result, when a voltage is applied to the organic EL element, current may flow in a concentrated manner at the peripheral portion, and the central portion may be darker than the peripheral portion. Conversely, since the peripheral edge of the organic EL layer 18 is thinner than the intended thickness, the peripheral edge of the organic EL layer 18 may not emit light as intended.
 このような問題を解決するために、いわゆる逆テーパ形状の隔壁を設けた表示装置がある。その概略構成を図6に示す。逆テーパ形状の隔壁13は、支持基板12から離間するにしたがって幅広になるように形成されている。そのため隔壁13の側面と第1電極16の表面とにより規定される領域は、隔壁13と第1電極16とが接する部位に向かって先細状に構成されている(図6A参照)。このような隔壁13に囲まれた領域15にインキが供給されると、たとえ撥液性である隔壁13が設けられていたとしても、隔壁13の側面に接触したインキは、毛細管現象によって、第1電極16と隔壁13とが接する部位に吸い込まれるように充填される。この状態を維持したままインキの溶媒が蒸発することによって、第1電極と隔壁とが接する部位にも十分な厚さの有機EL層が形成される。このように、いわゆる逆テーパ形状の隔壁を設けることによって、有機EL層の周縁部が中央部の膜厚に比べて薄くなるという問題を防ぐことができる(図6B参照)(たとえば特許文献1参照)。 In order to solve such a problem, there is a display device provided with a so-called reverse tapered partition. The schematic configuration is shown in FIG. The inversely tapered partition wall 13 is formed so as to become wider as it is separated from the support substrate 12. Therefore, the region defined by the side surface of the partition wall 13 and the surface of the first electrode 16 is configured to be tapered toward a portion where the partition wall 13 and the first electrode 16 are in contact (see FIG. 6A). When ink is supplied to the region 15 surrounded by the partition wall 13, even if the liquid-repellent partition wall 13 is provided, the ink that contacts the side surface of the partition wall 13 is caused by capillary action. It fills so that it may be suck | inhaled in the site | part which 1 electrode 16 and the partition 13 contact | connect. While the ink solvent evaporates while maintaining this state, an organic EL layer having a sufficient thickness is also formed at a portion where the first electrode and the partition wall are in contact with each other. Thus, by providing a so-called reverse taper-shaped partition wall, it is possible to prevent a problem that the peripheral edge portion of the organic EL layer becomes thinner than the thickness of the central portion (see FIG. 6B) (see, for example, Patent Document 1). ).
特開2007-227289号公報JP 2007-227289 A
 表示装置において第2電極はたとえば複数の有機EL素子に共通の電極として設けられる。すなわち第2電極は複数の有機EL素子に亘って連なって形成され、隣り合う有機EL素子の間に介在する隔壁13上にも形成される。しかしながら逆テーパ形状の隔壁13が設けられた基板において、複数の有機EL素子に共通の第2電極をたとえば真空蒸着法によって形成する場合、隔壁13の端部で第2電極19が切断されることがある(図6C参照)。そのため複数の有機EL素子に亘って連なる第2電極19を形成することができず、所定の有機EL素子に電力が供給されずに、発光駆動することのできない素子が形成されることがある。 In the display device, for example, the second electrode is provided as a common electrode for a plurality of organic EL elements. That is, the second electrode is formed continuously over the plurality of organic EL elements, and is also formed on the partition wall 13 interposed between adjacent organic EL elements. However, when the second electrode common to the plurality of organic EL elements is formed on the substrate provided with the reverse tapered partition wall 13 by, for example, vacuum deposition, the second electrode 19 is cut at the end of the partition wall 13. (See FIG. 6C). Therefore, the second electrode 19 that continues over a plurality of organic EL elements cannot be formed, and an element that cannot be driven to emit light may be formed without supplying power to the predetermined organic EL element.
 したがって本発明の目的は、逆テーパ形状の隔壁が備えられる表示装置において、複数の有機EL素子に亘って連なる第2電極が形成された表示装置を提供することにある。 Therefore, an object of the present invention is to provide a display device in which a second electrode connected to a plurality of organic EL elements is formed in a display device provided with an inversely tapered partition.
 本発明は、以下の表示装置およびその製造方法を提供する。
〔1〕 支持基板と、
 前記支持基板上において予め設定される区画を画成する隔壁と、
 前記隔壁によって画成される前記区画にそれぞれ設けられる複数の有機エレクトロルミネッセンス素子であって、各有機エレクトロルミネッセンス素子は、第1電極、有機エレクトロルミネッセンス層、第2電極が、支持基板側からこの順で積層されて構成される、複数の有機エレクトロルミネッセンス素子と
を含み、
 前記隔壁は、前記支持基板から離間するにしたがって幅広になるような形状を有し、
 前記第2電極は、隣り合う有機エレクトロルミネッセンス素子の間に介在する前記隔壁上にまたがって形成され、前記複数の有機エレクトロルミネッセンス素子に亘って連なっており、且つ前記第2電極の膜厚は、前記隔壁の頂面と、前記第2電極および前記有機エレクトロルミネッセンス層の界面との、支持基板の厚み方向における間隔よりも厚い、表示装置。
〔2〕 前記隔壁は、その頂面に比べて、その側面が親液性である、上記〔1〕記載の表示装置。
〔3〕 支持基板と、前記支持基板上において予め設定される区画を画成する隔壁と、前記隔壁によって画成される前記区画にそれぞれ設けられる複数の有機エレクトロルミネッセンス素子であって、各有機エレクトロルミネッセンス素子は、第1電極、有機エレクトロルミネッセンス層、第2電極が支持基板側からこの順で積層されて構成される複数の有機エレクトロルミネッセンス素子とを含む表示装置の製造方法であって、
 その上に前記第1電極が形成された前記支持基板を用意する工程と、
 前記支持基板から離間するにしたがって幅広になる形状の前記隔壁を形成する工程と、
 前記隔壁によって画成される前記区画のそれぞれに、前記有機エレクトロルミネッセンス層を形成する工程と、
 隣り合う有機エレクトロルミネッセンス素子の間に介在する前記隔壁上にまたがって、前記複数の有機エレクトロルミネッセンス素子に亘って連なる前記第2電極を形成する工程であって、前記隔壁の頂面と、前記第2電極および前記有機エレクトロルミネッセンス層の界面との、支持基板の厚み方向における間隔よりも厚い膜厚の前記第2電極を形成する工程と、
 を含む、表示装置の製造方法。
〔4〕 前記隔壁を形成する工程が、感光性樹脂を含むインキを前記支持基板上に塗布して隔壁形成用膜を形成し、前記隔壁形成用膜の所定の部位を露光し、さらに現像してなる、上記〔3〕記載の表示装置の製造方法。
〔5〕 前記有機エレクトロルミネッセンス層を形成する工程が、前記隔壁によって画成される前記区画のそれぞれに、有機エレクトロルミネッセンス層を形成するための材料を含むインキを供給し、該インキを固化してなる、上記〔3〕記載の表示装置の製造方法。
〔6〕 前記隔壁を形成する工程では、その頂面に比べて、その側面が親液性である隔壁を形成する、上記〔3〕記載の表示装置の製造方法。
〔7〕 前記感光性樹脂を含むインキは、撥液性の材料を含む、上記〔4〕記載の表示装置の製造方法。
The present invention provides the following display device and manufacturing method thereof.
[1] a support substrate;
A partition that defines a predetermined section on the support substrate;
A plurality of organic electroluminescence elements respectively provided in the compartments defined by the partition walls, wherein each organic electroluminescence element includes a first electrode, an organic electroluminescence layer, and a second electrode in this order from the support substrate side. Including a plurality of organic electroluminescence elements configured by being laminated with,
The partition has a shape that becomes wider as it is separated from the support substrate,
The second electrode is formed over the partition interposed between adjacent organic electroluminescent elements, is continuous over the plurality of organic electroluminescent elements, and the film thickness of the second electrode is: A display device, which is thicker than a distance between a top surface of the partition wall and an interface between the second electrode and the organic electroluminescence layer in a thickness direction of a support substrate.
[2] The display device according to [1], wherein the partition has a lyophilic side surface compared to the top surface.
[3] A support substrate, a partition wall defining a partition set in advance on the support substrate, and a plurality of organic electroluminescence elements respectively provided in the partition defined by the partition wall, The luminescence element is a method of manufacturing a display device including a first electrode, an organic electroluminescence layer, and a plurality of organic electroluminescence elements configured by laminating a second electrode in this order from the support substrate side,
Preparing the support substrate on which the first electrode is formed;
Forming the partition having a shape that becomes wider as it is separated from the support substrate;
Forming the organic electroluminescence layer in each of the compartments defined by the partition;
Forming the second electrode extending across the plurality of organic electroluminescence elements across the partition interposed between adjacent organic electroluminescence elements, the top surface of the partition; and the first Forming the second electrode having a thickness greater than the distance between the two electrodes and the interface of the organic electroluminescence layer in the thickness direction of the support substrate;
A method for manufacturing a display device, comprising:
[4] In the step of forming the partition wall, an ink containing a photosensitive resin is applied onto the support substrate to form a partition wall forming film, and a predetermined portion of the partition wall forming film is exposed and further developed. The method for manufacturing a display device according to the above [3].
[5] The step of forming the organic electroluminescence layer supplies ink containing a material for forming the organic electroluminescence layer to each of the compartments defined by the partition walls, and solidifies the ink. The method for manufacturing a display device according to the above [3].
[6] The method for manufacturing a display device according to [3], wherein in the step of forming the partition wall, a partition wall whose side surface is more lyophilic than the top surface thereof is formed.
[7] The method for manufacturing a display device according to [4], wherein the ink including the photosensitive resin includes a liquid repellent material.
 本発明によれば、逆テーパ形状の隔壁が備えられる表示装置において、複数の有機EL素子に亘って連なる第2電極が形成された表示装置を実現することができる。 According to the present invention, it is possible to realize a display device in which a second electrode connected to a plurality of organic EL elements is formed in a display device including an inversely tapered partition.
図1は、本発明の一実施形態に係る表示装置の一部を拡大して模式的に示す図である。FIG. 1 is a diagram schematically showing an enlarged part of a display device according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る表示装置の一部を拡大して模式的に示す平面図である。FIG. 2 is a plan view schematically showing an enlarged part of a display device according to an embodiment of the present invention. 図3Aは、本発明の一実施形態に係る表示装置の製造方法を説明するための図である。FIG. 3A is a view for explaining a method for manufacturing a display device according to an embodiment of the present invention. 図3Bは、本発明の一実施形態に係る表示装置の製造方法を説明するための図である。FIG. 3B is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention. 図3Cは、本発明の一実施形態に係る表示装置の製造方法を説明するための図である。FIG. 3C is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention. 図3Dは、本発明の一実施形態に係る表示装置の製造方法を説明するための図である。FIG. 3D is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention. 図4Aは、本発明の一実施形態に係る表示装置の製造方法を説明するための図である。FIG. 4A is a view for explaining a method for manufacturing a display device according to an embodiment of the present invention. 図4Bは、本発明の一実施形態に係る表示装置の製造方法を説明するための図である。FIG. 4B is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention. 図4Cは、本発明の一実施形態に係る表示装置の製造方法を説明するための図である。FIG. 4C is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention. 図4Dは、本発明の一実施形態に係る表示装置の製造方法を説明するための図である。FIG. 4D is a view for explaining the method for manufacturing the display device according to the embodiment of the present invention. 図5Aは、塗布法を用いた表示装置の製造方法を説明するための図である。FIG. 5A is a diagram for explaining a method of manufacturing a display device using a coating method. 図5Bは、塗布法を用いた表示装置の製造方法を説明するための図である。FIG. 5B is a diagram for explaining a method of manufacturing a display device using a coating method. 図5Cは、塗布法を用いた表示装置の製造方法を説明するための図である。FIG. 5C is a diagram for explaining a method for manufacturing a display device using a coating method. 図6Aは、逆テーパ形状の隔壁を備えた表示装置の製造方法を説明するための図である。FIG. 6A is a diagram for explaining a method of manufacturing a display device including a reverse-tapered partition. 図6Bは、逆テーパ形状の隔壁を備えた表示装置の製造方法を説明するための図である。FIG. 6B is a diagram for explaining a method of manufacturing a display device including a reverse-tapered partition. 図6Cは、逆テーパ形状の隔壁を備えた表示装置の製造方法を説明するための図である。FIG. 6C is a diagram for explaining a method of manufacturing a display device including a reverse-tapered partition wall.
 1  表示装置
 2  支持基板
 3  隔壁
 3a  隔壁の頂面
 3b  隔壁の側面
 4  有機EL素子
 5  凹部
 6  第1電極
 7  第1の有機EL層(正孔注入層)
 8  隔壁形成用膜
 9  第2の有機EL層(発光層)
 10  第2電極
 12  支持基板
 13  隔壁
 15  隔壁に囲まれた領域
 16  第1電極
 17  インキ
 18  有機EL層
 19  第2電極
 21  フォトマスク
 22  インキ
DESCRIPTION OF SYMBOLS 1 Display apparatus 2 Support substrate 3 Partition 3a Top surface of partition 3b Side surface of partition 4 Organic EL element 5 Recess 6 First electrode 7 First organic EL layer (hole injection layer)
8 Partition formation film 9 Second organic EL layer (light emitting layer)
DESCRIPTION OF SYMBOLS 10 2nd electrode 12 Support substrate 13 Partition 15 Area | region surrounded by partition 16 1st electrode 17 Ink 18 Organic EL layer 19 2nd electrode 21 Photomask 22 Ink
 以下、本発明の実施形態について、図面を参照しつつさらに詳説する。なお、理解の容易のため、図面における各部材の縮尺は実際とは異なる場合がある。また、本発明は以下の記述によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。表示装置においては電極のリード線等の部材も存在するが、本発明の説明にあたっては直接的に要しないため記載を省略している。層構造等の説明の便宜上、以下に示す例においては支持基板を下に配置した図と共に説明がなされるが、本発明の有機EL素子およびこれを搭載した表示装置は、必ずしもこの上下左右の向きに配置されて、製造または使用等がなされる形態に限定されるわけではなく、適宜調整してよい。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. For ease of understanding, the scale of each member in the drawings may be different from the actual scale. Further, the present invention is not limited by the following description, and can be appropriately changed without departing from the gist of the present invention. In the display device, there are members such as lead wires of electrodes, but the description thereof is omitted because it is not necessary to explain the present invention. For convenience of explanation of the layer structure and the like, in the example shown below, the explanation will be made together with the figure in which the support substrate is disposed below. It is not necessarily limited to the form in which it is arranged and manufactured or used, and may be adjusted as appropriate.
 本発明の表示装置は、支持基板と、該支持基板上において予め設定される区画を画成する隔壁と、隔壁によって画成される区画にそれぞれ設けられる複数の有機EL素子であって、各有機EL素子は、第1電極、有機EL層、第2電極が、支持基板側からこの順で積層されて構成される、複数の有機EL素子とを含み、前記隔壁は、支持基板から離間するにしたがって幅広になるような形状を有し、前記第2電極は、隣り合う有機EL素子の間に介在する隔壁上にまたがって形成され、前記複数の有機EL素子に亘って連なっており、前記第2電極の膜厚は、前記隔壁の頂面と、前記第2電極および前記有機EL層の界面との、支持基板の厚み方向における間隔よりも厚いことを特徴とする。 The display device according to the present invention includes a support substrate, a partition wall defining a partition set in advance on the support substrate, and a plurality of organic EL elements provided in each partition defined by the partition wall. The EL element includes a plurality of organic EL elements in which a first electrode, an organic EL layer, and a second electrode are stacked in this order from the support substrate side, and the partition wall is separated from the support substrate. Accordingly, the second electrode has a shape that becomes wider, and is formed across a partition wall interposed between adjacent organic EL elements, and extends across the plurality of organic EL elements. The thickness of the two electrodes is characterized by being thicker than the distance between the top surface of the partition and the interface between the second electrode and the organic EL layer in the thickness direction of the support substrate.
 表示装置には、主にアクティブマトリクス駆動型の装置と、パッシブマトリクス駆動型の装置とがある。本発明は両方の型の表示装置に適用可能であるが、本実施形態では一例としてアクティブマトリクス駆動型の表示装置に適用される表示装置について説明する。 Display devices mainly include active matrix drive type devices and passive matrix drive type devices. Although the present invention can be applied to both types of display devices, in this embodiment, a display device applied to an active matrix drive type display device will be described as an example.
 <表示装置の構成>
 まず表示装置の構成について説明する。図1は本実施形態の表示装置1の一部を拡大して模式的に示す図である。図2は本実施形態の表示装置1の一部を拡大して模式的に示す平面図である。表示装置1は主に、支持基板2と、この支持基板2上において予め設定される区画を画成する隔壁3と、隔壁3によって画成される区画にそれぞれ設けられる複数の有機EL素子4とを含んで構成される。
<Configuration of display device>
First, the configuration of the display device will be described. FIG. 1 is a diagram schematically showing an enlarged part of the display device 1 of the present embodiment. FIG. 2 is a plan view schematically showing an enlarged part of the display device 1 of the present embodiment. The display device 1 mainly includes a support substrate 2, partition walls 3 that define preset sections on the support substrate 2, and a plurality of organic EL elements 4 that are respectively provided in sections defined by the partition walls 3. It is comprised including.
 隔壁3は支持基板2上においてたとえば格子状またはストライプ状に形成される。なお図2では実施の一形態として格子状の隔壁3が設けられた表示装置1を示している。同図中、隔壁3が設けられた領域にはハッチングを施している。 The partition wall 3 is formed on the support substrate 2 in a lattice shape or a stripe shape, for example. FIG. 2 shows a display device 1 provided with a grid-like partition wall 3 as one embodiment. In the figure, the area where the partition walls 3 are provided is hatched.
 支持基板2上には、隔壁3と支持基板2とによって規定される複数の凹部5が設定される。この凹部5が、隔壁3によって画成される区画に相当する。 A plurality of recesses 5 defined by the partition walls 3 and the support substrate 2 are set on the support substrate 2. The concave portion 5 corresponds to a section defined by the partition wall 3.
 本実施形態の隔壁3は格子状に設けられる。そのため支持基板2の厚み方向Zの一方から見て(以下、「平面視で」ということがある。)、複数の凹部5がマトリクス状に配置されている。すなわち凹部5は行方向Xに所定の間隔をあけるとともに、列方向Yにも所定の間隔をあけて整列して設けられている。各凹部5の平面視における形状はとくに限定されない。たとえば凹部5は、平面視で略矩形状、略楕円状および小判形状などの形状に形成されてよい。本実施形態では平面視で略矩形状の凹部5が設けられている。なお本明細書において上記の行方向Xおよび列方向Yは、支持基板の厚み方向Zに垂直な方向であって、かつ互いに垂直な方向を意味する。 The partition wall 3 of this embodiment is provided in a lattice shape. Therefore, when viewed from one side in the thickness direction Z of the support substrate 2 (hereinafter sometimes referred to as “in plan view”), the plurality of recesses 5 are arranged in a matrix. That is, the recesses 5 are provided with a predetermined interval in the row direction X and aligned in the column direction Y with a predetermined interval. The shape of each recess 5 in plan view is not particularly limited. For example, the recess 5 may be formed in a shape such as a substantially rectangular shape, a substantially oval shape, or an oval shape in plan view. In the present embodiment, a substantially rectangular recess 5 is provided in plan view. In the present specification, the row direction X and the column direction Y mean directions perpendicular to the thickness direction Z of the support substrate and perpendicular to each other.
 なお他の実施形態としてストライプ状の隔壁が設けられる場合、隔壁は、たとえば行方向Xに延在する複数本の隔壁部材が、列方向Yに所定の間隔をあけて配置されて構成される。この実施形態ではストライプ状の隔壁と支持基板とによって、ストライプ状の凹部が規定される。 In still another embodiment, when a stripe-shaped partition is provided, the partition is configured by, for example, a plurality of partition members extending in the row direction X being arranged at a predetermined interval in the column direction Y. In this embodiment, a stripe-shaped recess is defined by the stripe-shaped partition wall and the support substrate.
 隔壁は支持基板から離間するにしたがって幅広になるような形状を有する。たとえば列方向Yに延在する隔壁を、その延在方向(列方向Y)に垂直な平面で切断したときの断面形状は、支持基板から離間するにしたがって幅広になるような形状を有する。図1では等脚台形形状の隔壁が示されており、上底と、支持基板側の下底とを比べると、上底の方が下底よりも幅広である。なお実際に形成される隔壁の断面は必ずしも台形形状とはならず、台形形状の直線部分および角が丸みを帯びていてもよい。 The partition wall has a shape that becomes wider as it is separated from the support substrate. For example, when the partition walls extending in the column direction Y are cut along a plane perpendicular to the extending direction (column direction Y), the cross-sectional shape has a shape that becomes wider as the distance from the support substrate increases. FIG. 1 shows an isosceles trapezoidal partition wall. When the upper base and the lower base on the support substrate side are compared, the upper base is wider than the lower base. In addition, the cross section of the partition actually formed does not necessarily have a trapezoidal shape, and the straight part and corners of the trapezoidal shape may be rounded.
 隔壁3の側面3bと支持基板の表面との成す角度θ、すなわち隔壁側面3bの傾斜角θは10°~85°程度であり、50°~70°が好ましい。なおこの隔壁側面3bの傾斜角θが0°~90°までの隔壁3はいわゆる逆テーパ形状の隔壁と呼称され、隔壁側面3bの傾斜角θが90°~180°までの隔壁3はいわゆる順テーパ形状の隔壁と呼称される。すなわち本実施形態では逆テーパ形状の隔壁3が設けられる。 The angle θ formed by the side surface 3b of the partition wall 3 and the surface of the support substrate, that is, the inclination angle θ of the partition wall side surface 3b is about 10 ° to 85 °, and preferably 50 ° to 70 °. The partition wall 3 having an inclination angle θ of 0 to 90 ° on the partition wall side surface 3b is called a so-called reverse tapered partition wall, and the partition wall 3 having an inclination angle θ on the partition wall side surface 3b of 90 ° to 180 ° is so-called forward. It is called a tapered partition. That is, in this embodiment, the inversely tapered partition wall 3 is provided.
 隔壁3は、その頂面3aに比べて、その側面3bが親液性であることが好ましい。なお隔壁3の頂面3aとは、隔壁3の表面のうちで、支持基板2から最も離間した位置に存在する面を意味する。また隔壁3の側面とは、隔壁3の表面のうちで、隣り合う隔壁に臨む位置に存在する面を意味する。またインキに対する隔壁3の撥液性または親液性の程度は、凹部5に供給されるインキと隔壁3との接触角で表すことができる。たとえば隔壁3の頂面3aは、アニソールとの接触角が30°以上であることが好ましい。また隔壁3の頂面3aに比べて、側面3bが親液性であるとは、たとえばアニソールと隔壁3の側面3bとの接触角が、アニソールと隔壁3の頂面3aとの接触角よりも小さいことを意味する。隔壁3の頂面3aが撥液性であることで、隔壁3に囲まれた領域(凹部5)に供給されたインキが、隔壁3の頂面3aを伝わって隣の領域に溢れ出ることを防ぐことができる。また隔壁3の側面3bが親液性であることで、隔壁3に囲まれた領域に供給されたインキが、隔壁3の側面3bに弾かれることを防ぐことができ、隔壁3と第1電極7とが接する部位にまでインキを容易に充填することができる。これによって有機EL層の周縁部が中央部に比べて薄膜化することを防ぐことができる。 It is preferable that the side wall 3b of the partition wall 3 is more lyophilic than the top surface 3a. The top surface 3 a of the partition wall 3 means a surface that is present at a position farthest from the support substrate 2 in the surface of the partition wall 3. Moreover, the side surface of the partition 3 means the surface which exists in the position which faces the adjacent partition among the surfaces of the partition 3. FIG. The degree of liquid repellency or lyophilicity of the partition wall 3 with respect to the ink can be expressed by the contact angle between the ink supplied to the recess 5 and the partition wall 3. For example, the top surface 3a of the partition wall 3 preferably has a contact angle with anisole of 30 ° or more. Further, the side surface 3b is more lyophilic than the top surface 3a of the partition wall 3. For example, the contact angle between the anisole and the side surface 3b of the partition wall 3 is greater than the contact angle between the anisole and the top surface 3a of the partition wall 3. Mean small. Since the top surface 3a of the partition wall 3 is liquid repellent, the ink supplied to the region (recessed portion 5) surrounded by the partition wall 3 flows along the top surface 3a of the partition wall 3 and overflows to the adjacent region. Can be prevented. Further, since the side surface 3b of the partition wall 3 is lyophilic, the ink supplied to the region surrounded by the partition wall 3 can be prevented from being repelled by the side surface 3b of the partition wall 3, and the partition wall 3 and the first electrode can be prevented. The ink can be easily filled up to the portion where the ink 7 contacts. This can prevent the peripheral portion of the organic EL layer from becoming thinner than the central portion.
 有機EL素子4は隔壁3によって画成される区画(すなわち凹部5)に設けられる。本実施形態のように格子状の隔壁3が設けられる場合、各有機EL素子4は各凹部5に設けられる。すなわち有機EL素子4は、各凹部5と同様にマトリクス状に配置され、支持基板2上において、行方向Xに所定の間隔をあけるとともに、列方向Yにも所定の間隔をあけて整列して設けられている。 The organic EL element 4 is provided in a section defined by the partition 3 (that is, the recess 5). When the grid-like partition 3 is provided as in the present embodiment, each organic EL element 4 is provided in each recess 5. That is, the organic EL elements 4 are arranged in a matrix like the concave portions 5 and are arranged on the support substrate 2 with a predetermined interval in the row direction X and with a predetermined interval in the column direction Y. Is provided.
 なお他の実施形態としてストライプ状の隔壁が設けられる場合、有機EL素子4は行方向Xに延在する各凹部において、行方向Xにそれぞれ所定の間隔をあけて配置される。 As another embodiment, when stripe-shaped partition walls are provided, the organic EL elements 4 are arranged at predetermined intervals in the row direction X in the respective recesses extending in the row direction X.
 本実施形態では3種類の有機EL素子4が設けられる。すなわち(1)赤色の光を出射する赤色有機EL素子4R、(2)緑色の光を出射する緑色有機EL素子4G、および(3)青色の光を出射する青色有機EL素子4Bが設けられる。これら3種類の有機EL素子4R,4G,4Bは、たとえば以下の(I)(II)(III)の行を、列方向Yにこの順で繰り返し配置することによって、それぞれ整列して配置される(図2参照)。
(I)赤色有機EL素子4Rが行方向Xにそれぞれ所定の間隔をあけて配置される行。
(II)緑色有機EL素子4Gが行方向Xにそれぞれ所定の間隔をあけて配置される行。
(III)青色有機EL素子4Bが行方向Xにそれぞれ所定の間隔をあけて配置される行。
In the present embodiment, three types of organic EL elements 4 are provided. That is, (1) a red organic EL element 4R that emits red light, (2) a green organic EL element 4G that emits green light, and (3) a blue organic EL element 4B that emits blue light are provided. These three types of organic EL elements 4R, 4G, and 4B are arranged in alignment, for example, by repeatedly arranging the following rows (I), (II), and (III) in this order in the column direction Y. (See FIG. 2).
(I) Rows in which the red organic EL elements 4R are arranged at predetermined intervals in the row direction X.
(II) Rows in which the green organic EL elements 4G are arranged at predetermined intervals in the row direction X.
(III) A row in which the blue organic EL elements 4B are arranged at predetermined intervals in the row direction X.
 なお他の実施の形態として、上記3種類の有機EL素子に加えて、たとえば白色の光を出射する有機EL素子がさらに設けられてもよい。また1種類のみの有機EL素子を設けることによって、モノクロ表示装置を実現してもよい。 As another embodiment, in addition to the above three types of organic EL elements, for example, an organic EL element that emits white light may be further provided. In addition, a monochrome display device may be realized by providing only one type of organic EL element.
 有機EL素子4は、第1電極、有機EL層、第2電極が、支持基板側からこの順で積層されて構成される。本明細書では第1電極6と第2電極10との間に設けられる1または複数の層をそれぞれ有機EL層という。有機EL素子4は有機EL層として少なくとも1層の発光層を備える。なお有機EL素子は、1層の発光層に加えて、必要に応じて発光層とは異なる有機EL層をさらに備えてもよい。第1電極6と第2電極10との間には、有機EL層として、たとえば、正孔注入層、正孔輸送層、電子ブロック層、電子輸送層、および電子注入層などが設けられてもよい。また第1電極6と第2電極10との間には2層以上の発光層が設けられてもよい。 The organic EL element 4 is configured by laminating a first electrode, an organic EL layer, and a second electrode in this order from the support substrate side. In the present specification, one or a plurality of layers provided between the first electrode 6 and the second electrode 10 are each referred to as an organic EL layer. The organic EL element 4 includes at least one light emitting layer as an organic EL layer. The organic EL element may further include an organic EL layer different from the light emitting layer, if necessary, in addition to the single light emitting layer. For example, a hole injection layer, a hole transport layer, an electron block layer, an electron transport layer, and an electron injection layer may be provided between the first electrode 6 and the second electrode 10 as an organic EL layer. Good. Two or more light emitting layers may be provided between the first electrode 6 and the second electrode 10.
 有機EL素子4は、陽極および陰極からなる一対の電極として、第1電極6と第2電極10とを備える。第1電極6および第2電極10のうちの一方の電極は陽極として設けられ、他方の電極は陰極として設けられる。 The organic EL element 4 includes a first electrode 6 and a second electrode 10 as a pair of electrodes including an anode and a cathode. One of the first electrode 6 and the second electrode 10 is provided as an anode, and the other electrode is provided as a cathode.
 本実施形態では一例として、陽極として機能する第1電極6、正孔注入層として機能する第1の有機EL層7、発光層として機能する第2の有機EL層9、陰極として機能する第2電極10がこの順で支持基板2上に積層されて構成される有機EL素子4について説明する。 In this embodiment, as an example, the first electrode 6 functioning as an anode, the first organic EL layer 7 functioning as a hole injection layer, the second organic EL layer 9 functioning as a light emitting layer, and the second functioning as a cathode. The organic EL element 4 configured by laminating the electrodes 10 on the support substrate 2 in this order will be described.
 本実施形態では3種類の有機EL素子が設けられるが、これらは第2の有機EL層(本実施形態では発光層)9の構成がそれぞれ異なる。赤色有機EL素子4Rは赤色の光を放射する赤色発光層9Rを備える。緑色有機EL素子4Gは緑色の光を放射する緑色発光層9Gを備える。青色有機EL素子4Bは青色の光を放射する青色発光層9Bを備える。 In this embodiment, three types of organic EL elements are provided, but these have different configurations of the second organic EL layer (light emitting layer in the present embodiment) 9. The red organic EL element 4R includes a red light emitting layer 9R that emits red light. The green organic EL element 4G includes a green light emitting layer 9G that emits green light. The blue organic EL element 4B includes a blue light emitting layer 9B that emits blue light.
 本実施形態では第1電極6は有機EL素子4ごとに設けられる。すなわち有機EL素子4と同数の第1電極6が支持基板2上に設けられる。第1電極6は有機EL素子4の配置に対応して設けられ、有機EL素子4と同様にマトリクス状に配置される。なお本実施形態の隔壁3は、主に第1電極6を除く領域に格子状に形成されるが、さらに第1電極6の周縁部を覆うように形成されている(図1参照)。 In the present embodiment, the first electrode 6 is provided for each organic EL element 4. That is, the same number of first electrodes 6 as the organic EL elements 4 are provided on the support substrate 2. The first electrodes 6 are provided corresponding to the arrangement of the organic EL elements 4 and are arranged in a matrix like the organic EL elements 4. In addition, although the partition 3 of this embodiment is mainly formed in a grid pattern in a region excluding the first electrode 6, it is further formed so as to cover the peripheral edge of the first electrode 6 (see FIG. 1).
 正孔注入層として機能する第1の有機EL層7は、凹部5において第1電極6上に設けられる。この第1の有機EL層7は、必要に応じて、有機EL素子の種類ごとにその材料または膜厚を異ならせて設けられる。なお第1の有機EL層7の形成工程の簡易さの観点から、同じ材料、同じ膜厚で全ての第1の有機EL層7を形成してもよい。 The first organic EL layer 7 functioning as a hole injection layer is provided on the first electrode 6 in the recess 5. The first organic EL layer 7 is provided with a different material or film thickness depending on the type of the organic EL element, if necessary. In addition, from a viewpoint of the simplicity of the formation process of the 1st organic EL layer 7, you may form all the 1st organic EL layers 7 with the same material and the same film thickness.
 発光層として機能する第2の有機EL層9は、凹部5において第1の有機EL層7上に設けられる。上述したように発光層は有機EL素子の種類に応じて設けられる。すなわち赤色発光層9Rは赤色有機EL素子4Rが設けられる凹部5に設けられる。緑色発光層9Gは緑色有機EL素子4Gが設けられる凹部5に設けられる。青色発光層9Bは青色有機EL素子4Bが設けられる凹部5に設けられる。 The second organic EL layer 9 functioning as a light emitting layer is provided on the first organic EL layer 7 in the recess 5. As described above, the light emitting layer is provided according to the type of the organic EL element. That is, the red light emitting layer 9R is provided in the recess 5 where the red organic EL element 4R is provided. The green light emitting layer 9G is provided in the recess 5 in which the green organic EL element 4G is provided. The blue light emitting layer 9B is provided in the recess 5 where the blue organic EL element 4B is provided.
 第2電極10は有機EL素子4が設けられる表示領域の全面に形成される。すなわち第2電極10は、第2の有機EL層9上だけでなく、隔壁3上にも形成され、複数の有機EL素子に亘って連続して形成されている。 The second electrode 10 is formed on the entire display area where the organic EL element 4 is provided. That is, the second electrode 10 is formed not only on the second organic EL layer 9 but also on the partition 3 and continuously formed over a plurality of organic EL elements.
 前記第2電極10は、隔壁3の頂面3aと、前記第2電極10および前記有機EL層(本実施形態では第2の有機EL層)9の界面との、支持基板の厚み方向Zにおける間隔L1よりも、その膜厚L2が厚い。このように第2電極10を厚く形成することによって、必然的に、隔壁3上に形成された第2電極10と、第1の有機EL層9上に形成された第2電極10とが物理的に接続されることになる。差分(L2-L1)は、0μmよりも大きい値であればよい。第2電極10の電気抵抗を小さくするためには、差分(L2-L1)は、0.2μm以上であることが好ましい。なお差分(L2-L1)の上限値はとくに設定されないが、膜厚が厚すぎると第2電極10を形成するために要する時間が長くなるため、差分(L2-L1)は1μm以下であることが好ましい。 The second electrode 10 is formed in the thickness direction Z of the support substrate between the top surface 3 a of the partition wall 3 and the interface between the second electrode 10 and the organic EL layer (second organic EL layer in this embodiment) 9. The film thickness L2 is thicker than the interval L1. By forming the second electrode 10 thick in this way, the second electrode 10 formed on the partition 3 and the second electrode 10 formed on the first organic EL layer 9 are inevitably physically formed. Will be connected. The difference (L2−L1) may be a value larger than 0 μm. In order to reduce the electrical resistance of the second electrode 10, the difference (L2−L1) is preferably 0.2 μm or more. The upper limit value of the difference (L2−L1) is not particularly set, but if the film thickness is too thick, the time required to form the second electrode 10 becomes longer, and therefore the difference (L2−L1) is 1 μm or less. Is preferred.
 以上の実施形態では隔壁3は、第1電極6の周縁部を覆って、支持基板2に接して設けられている。他の実施形態として、隔壁3と支持基板2との間に、さらに絶縁膜を設けてもよい。絶縁膜はたとえば隔壁と同様に格子状に形成され、第1電極6の周縁部を覆って形成される。このような絶縁膜は好ましくは隔壁3よりも親液性である材料によって形成される。 In the above embodiment, the partition 3 is provided in contact with the support substrate 2 so as to cover the peripheral edge of the first electrode 6. As another embodiment, an insulating film may be further provided between the partition wall 3 and the support substrate 2. For example, the insulating film is formed in a lattice shape like the partition wall, and is formed so as to cover the periphery of the first electrode 6. Such an insulating film is preferably formed of a material that is more lyophilic than the partition 3.
 以下、図3および図4を参照しつつ表示装置の製造方法について説明する。 Hereinafter, a method for manufacturing a display device will be described with reference to FIGS.
 (支持基板を用意する工程)
 本工程では支持基板2上に第1電極6を形成する(図3A参照)。なお本工程では第1電極6がそのうえに形成された支持基板を市場から入手することによって、第1電極6が形成された支持基板2を用意してもよい。
(Process for preparing support substrate)
In this step, the first electrode 6 is formed on the support substrate 2 (see FIG. 3A). In this step, the support substrate 2 on which the first electrode 6 is formed may be prepared by obtaining from the market a support substrate on which the first electrode 6 is formed.
 アクティブマトリクス型の表示装置の場合、複数の有機EL素子を個別に駆動するための回路が予め形成された基板を支持基板2として用いてよい。たとえばTFT(Thin Film Transistor)およびキャパシタなどが予め形成された基板を支持基板として用いてよい。 In the case of an active matrix display device, a substrate on which circuits for individually driving a plurality of organic EL elements are formed in advance may be used as the support substrate 2. For example, a substrate on which a TFT (Thin Film Transistor) and a capacitor are formed in advance may be used as the support substrate.
 まず支持基板2上に複数の第1電極6をマトリクス状に形成する。第1電極6は、たとえば支持基板2上の一面に導電性薄膜を形成し、これをフォトリソグラフィー法によってマトリクス状にパターニングすることによって形成してよい。またたとえば所定の部位に開口が形成されたマスクを支持基板2上に配置し、このマスクを介して支持基板2上の所定の部位に導電性材料を選択的に堆積することにより第1電極6をパターン形成してもよい。第1電極6の材料については後述する。 First, a plurality of first electrodes 6 are formed in a matrix on the support substrate 2. The first electrode 6 may be formed, for example, by forming a conductive thin film on one surface of the support substrate 2 and patterning it in a matrix by a photolithography method. Further, for example, a mask having an opening formed in a predetermined portion is disposed on the support substrate 2, and a conductive material is selectively deposited on the predetermined portion on the support substrate 2 through the mask, thereby the first electrode 6. The pattern may be formed. The material of the first electrode 6 will be described later.
 (隔壁を形成する工程)
 本工程では、支持基板から離間するにしたがって幅広になる形状の隔壁を形成する。本工程は、感光性樹脂を含むインキを前記支持基板上に塗布成膜した後に所定の部位を露光し、さらに現像することにより実施してよい。
(Step of forming partition walls)
In this step, a partition wall having a shape that becomes wider as the distance from the support substrate increases. This step may be carried out by applying a film containing an ink containing a photosensitive resin onto the support substrate, exposing a predetermined portion, and further developing.
 まず感光性樹脂を含むインキを前記支持基板上に塗布成膜する(図3B参照)。本実施形態では、好ましい形態として、その頂面3aに比べて、その側面3bが親液性である隔壁3を形成する。このような隔壁は、たとえば、撥液性の材料を含むインキを支持基板2上に塗布成膜して形成してよい。すなわち感光性樹脂を含むインキは、撥液性の材料をさらに含んでよい。 First, an ink containing a photosensitive resin is applied and formed on the support substrate (see FIG. 3B). In the present embodiment, as a preferred embodiment, the partition wall 3 is formed such that the side surface 3b is more lyophilic than the top surface 3a. Such a partition may be formed, for example, by applying an ink containing a liquid repellent material on the support substrate 2. That is, the ink containing the photosensitive resin may further contain a liquid repellent material.
 インキの塗布方法としては、たとえばスピンコート法やスリットコート法などが挙げられる。 Examples of the ink application method include spin coating and slit coating.
 感光性樹脂を含むインキを前記支持基板上に塗布成膜した後、通常はプリベークを行う。たとえば80℃~110℃の温度で、60秒~180秒間、基板を加熱することによってプリベークを行い、インキ中の溶媒を除去する(図3B参照)。インキが撥液性の材料を含む場合、このようにして形成された隔壁形成用膜8の表面8aには撥液性の材料が凝集している。 After the ink containing the photosensitive resin is applied and formed on the support substrate, it is usually pre-baked. For example, pre-baking is performed by heating the substrate at a temperature of 80 ° C. to 110 ° C. for 60 seconds to 180 seconds to remove the solvent in the ink (see FIG. 3B). When the ink contains a liquid repellent material, the liquid repellent material is aggregated on the surface 8 a of the partition forming film 8 formed in this way.
 つぎに支持基板上に所定のパターンの光を遮光するフォトマスク21を配置し、このフォトマスク21を介して、隔壁形成用膜8を露光する。感光性樹脂には、ポジ型およびネガ型の樹脂があるが、本工程ではいずれの樹脂を用いてもよい。ポジ型の感光性樹脂を使用した場合には、隔壁形成用膜8のうち主に隔壁3が形成されるべき部位を除く残余の部位に光を照射する。またネガ型の感光性樹脂を使用した場合には、隔壁形成用膜8のうち主に隔壁3が形成されるべき部位に光を照射する。本工程ではネガ型の感光性樹脂を使用した場合について、図3Cを参照して説明する。図3Cに示すように、隔壁形成用膜8の形成された基板上にフォトマスク21を配置し、このフォトマスク21を介して光を照射することによって、隔壁形成用膜8のうち主に隔壁3が形成されるべき部位に光を照射する。なお図3Cでは隔壁形成用膜8に照射する光を模式的に矢印記号で示している。 Next, a photomask 21 that shields light of a predetermined pattern is arranged on the support substrate, and the partition wall forming film 8 is exposed through the photomask 21. The photosensitive resin includes a positive type resin and a negative type resin, and any resin may be used in this step. In the case where a positive photosensitive resin is used, light is irradiated to the remaining part of the partition forming film 8 except the part where the partition 3 is to be formed. In the case where a negative photosensitive resin is used, light is irradiated to a part of the partition forming film 8 where the partition 3 is to be formed. In this step, a case where a negative photosensitive resin is used will be described with reference to FIG. 3C. As shown in FIG. 3C, a photomask 21 is arranged on the substrate on which the partition wall forming film 8 is formed, and light is irradiated through the photomask 21, whereby the partition wall forming film 8 mainly includes the partition wall. 3 is irradiated with light. In FIG. 3C, the light applied to the partition wall forming film 8 is schematically indicated by an arrow symbol.
 つぎに露光された隔壁形成用膜8を現像する。これによって隔壁3がパターン形成される(図3D参照)。現像後、必要に応じてポストベークを行う。たとえば200℃~230℃の温度で、15分~60分間、基板を加熱することによってポストベークを行い、隔壁3を硬化する。 Next, the exposed barrier rib forming film 8 is developed. Thereby, the partition 3 is patterned (see FIG. 3D). After development, post-bake is performed as necessary. For example, post-baking is performed by heating the substrate at a temperature of 200 ° C. to 230 ° C. for 15 to 60 minutes to cure the partition walls 3.
 上述したように、撥液性の材料を含むインキを使用して隔壁を形成した場合、撥液性の材料が隔壁形成用膜8の表面8aに凝集するため、その頂面3aに比べて、その側面3bが親液性である隔壁3が得られる。 As described above, when the partition wall is formed using the ink containing the liquid repellent material, the liquid repellent material aggregates on the surface 8a of the partition wall forming film 8, and therefore, compared to the top surface 3a, The partition wall 3 whose side surface 3b is lyophilic is obtained.
 本実施形態では隔壁側面3bの傾斜角θが0°~90°までのいわゆる逆テーパの隔壁3を形成するが、隔壁側面3bの傾斜角θは、たとえば次の要素を調整することによって、変化させることができる。 In the present embodiment, the so-called reverse-tapered partition wall 3 having the inclination angle θ of the partition wall side surface 3b ranging from 0 ° to 90 ° is formed. However, the inclination angle θ of the partition wall side surface 3b can be changed by adjusting the following factors, for example. Can be made.
 隔壁側面3bの傾斜角θは、主に、使用する感光性樹脂の種類によって定まる。そこで複数の種類の感光性樹脂のなかから逆テーパ形状の隔壁となる感光性樹脂を選択し、これを使用して隔壁を形成すればよい。また現像時間を調整することによっても隔壁側面3bの傾斜角θを調整することができる。一般にネガ型の感光性樹脂の場合、現像時間を長くするほど、隔壁側面3bの傾斜角θが小さくなる傾向にある。また露光量を調整することによっても隔壁側面3bの傾斜角θを調整することができる。一般にネガ型の感光性樹脂の場合、露光量を小さくするほど、隔壁側面3bの傾斜角θが大きくなる傾向にある。またフォトマスクと基板との距離を調整することによっても隔壁側面3bの傾斜角θを調整することができる。一般にネガ型の感光性樹脂の場合、フォトマスクと基板との距離を小さくするほど、隔壁側面3bの傾斜角θが大きくなる傾向にある。 The inclination angle θ of the side wall 3b is mainly determined by the type of photosensitive resin used. Therefore, a photosensitive resin to be an inversely tapered partition is selected from a plurality of types of photosensitive resins, and the partition may be formed using this. The inclination angle θ of the partition wall side surface 3b can also be adjusted by adjusting the development time. In general, in the case of a negative photosensitive resin, the inclination angle θ of the partition wall side surface 3b tends to be smaller as the development time is longer. The inclination angle θ of the partition wall side surface 3b can also be adjusted by adjusting the exposure amount. In general, in the case of a negative photosensitive resin, the inclination angle θ of the partition wall side surface 3b tends to increase as the exposure amount decreases. The inclination angle θ of the partition wall side surface 3b can also be adjusted by adjusting the distance between the photomask and the substrate. In general, in the case of a negative photosensitive resin, the inclination angle θ of the partition wall side surface 3b tends to increase as the distance between the photomask and the substrate decreases.
 隔壁の形成に使用される感光性樹脂としては、たとえばネガ型とポジ型がある。
 ネガ型感光性樹脂は、光の照射部分が、現像液に対して不溶化し残存するものである。
Examples of the photosensitive resin used for forming the partition include a negative type and a positive type.
In the negative photosensitive resin, the irradiated portion remains insoluble in the developer.
 感光性樹脂を含むインキには、一般にバインダー樹脂、架橋剤、光反応開始剤、溶媒、およびその他の添加剤が配合される。
 バインダー樹脂は、予め重合されたものである。その例としては、自ら重合性を有しない非重合性バインダー樹脂、重合性を有する置換基が導入された重合性バインダー樹脂が挙げられる。バインダー樹脂は、ポリスチレンを標準としてゲルパーミエーションクロマトグラフィー(GPC)で求められる重量平均分子量が5,000~400,000の範囲にある。
 バインダー樹脂としては、たとえばフェノール樹脂、ノボラック樹脂、メラミン樹脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂などが挙げられる。バインダー樹脂としては、単独重合体および2種以上の単量体を組み合わせた共重合体のいずれを使用してもよい。バインダー樹脂は、上記感光性樹脂を含むインキの全固形分に対して、質量分率で通常5%~90%である。
Ink containing a photosensitive resin generally contains a binder resin, a crosslinking agent, a photoreaction initiator, a solvent, and other additives.
The binder resin is polymerized in advance. Examples thereof include a non-polymerizable binder resin that does not have self-polymerizability and a polymerizable binder resin into which a substituent having polymerizability is introduced. The binder resin has a weight average molecular weight in the range of 5,000 to 400,000 determined by gel permeation chromatography (GPC) using polystyrene as a standard.
Examples of the binder resin include phenol resin, novolac resin, melamine resin, acrylic resin, epoxy resin, and polyester resin. As the binder resin, either a homopolymer or a copolymer obtained by combining two or more monomers may be used. The binder resin is usually 5% to 90% in mass fraction with respect to the total solid content of the ink containing the photosensitive resin.
 架橋剤は、光の照射によって光重合開始剤から発生する活性ラジカル、酸などによって重合し得る化合物であり、たとえば、重合性の炭素-炭素不飽和結合を有する化合物が挙げられる。架橋材は、分子内に重合性の炭素-炭素不飽和結合を1個有する単官能の化合物であってもよいし、重合性の炭素-炭素不飽和結合を2個以上有する2官能または3官能以上の多官能の化合物であってもよい。上記感光性樹脂を含むインキにおいて、架橋剤は、バインダー樹脂と架橋剤との合計量を100質量部とすると、通常0.1質量部以上70質量部以下である。また上記感光性樹脂を含むインキにおいて光反応開始剤は、バインダー樹脂と架橋剤との合計量を100質量部とすると、通常1質量部以上30質量部以下である。 The crosslinking agent is a compound that can be polymerized by an active radical, an acid, or the like generated from the photopolymerization initiator by light irradiation, and examples thereof include a compound having a polymerizable carbon-carbon unsaturated bond. The cross-linking material may be a monofunctional compound having one polymerizable carbon-carbon unsaturated bond in the molecule, or a bifunctional or trifunctional compound having two or more polymerizable carbon-carbon unsaturated bonds. The above polyfunctional compounds may be used. In the ink containing the photosensitive resin, the crosslinking agent is usually 0.1 parts by mass or more and 70 parts by mass or less when the total amount of the binder resin and the crosslinking agent is 100 parts by mass. Moreover, in the ink containing the said photosensitive resin, a photoinitiator is 1 mass part or more and 30 mass parts or less normally, when the total amount of binder resin and a crosslinking agent is 100 mass parts.
 一方、ポジ型感光性樹脂は、光の照射部分が現像液に対して、可溶化するものである。ポジ型感光性樹脂は、一般的には、樹脂と、光反応で親水化する化合物とを複合化することで構成される。 On the other hand, in the positive type photosensitive resin, the irradiated portion is solubilized in the developer. The positive photosensitive resin is generally constituted by combining a resin and a compound that becomes hydrophilic by a photoreaction.
 ポジ型感光性樹脂としては、ノボラック樹脂、ポリヒドロキシスチレン、アクリル樹脂、メタアクリル樹脂、ポリイミドなどの耐薬品性と密着性を有する樹脂と、光分解性化合物とを組み合わせたものを使用してよい。 As the positive photosensitive resin, a combination of a resin having chemical resistance and adhesion such as novolac resin, polyhydroxystyrene, acrylic resin, methacrylic resin, polyimide, and a photodegradable compound may be used. .
 また本工程で使用してもよい撥液性の材料としては、たとえばフッ素含有化合物、シリコーン含有化合物、及びそれらの組み合わせが挙げられる。好ましくは、有機溶剤に対しても優れた撥液性を示すフッ素含有化合物である。 Also, examples of the liquid repellent material that may be used in this step include fluorine-containing compounds, silicone-containing compounds, and combinations thereof. Preferably, it is a fluorine-containing compound that exhibits excellent liquid repellency even with respect to organic solvents.
 フッ素含有化合物としては、たとえば炭素数1~8の直鎖状もしくは分岐状のフルオロアルキル基及び/又はフルオロポリエーテル基を有する化合物が挙げられる。フッ素含有化合物としては、架橋性基を有するポリマーが好ましく、更に好ましくは、炭素数4~6のフルオロアルキル基及び/又はフルオロポリエーテル基を有し、かつ架橋性基を有するポリマーである。またはフッ素含有化合物は現像液に対して可溶性機能を有していることが好ましい。フッ素含有化合物は、隔壁形成後に隔壁表面に撥液性を付与し得るものであればよく、ポリマーに限られず、低分子化合物であってもよい。 Examples of the fluorine-containing compound include compounds having a linear or branched fluoroalkyl group and / or fluoropolyether group having 1 to 8 carbon atoms. The fluorine-containing compound is preferably a polymer having a crosslinkable group, and more preferably a polymer having a fluoroalkyl group and / or fluoropolyether group having 4 to 6 carbon atoms and having a crosslinkable group. Alternatively, the fluorine-containing compound preferably has a soluble function in the developer. The fluorine-containing compound is not limited to a polymer and may be a low molecular compound as long as it can impart liquid repellency to the partition wall surface after the partition wall is formed.
 架橋性基は、フッ素含有化合物に架橋性の機能を付与するものであり、エチレン性不飽和結合基や、エポキシ基、水酸基などが例示される。隔壁の形成に使用される感光性樹脂と架橋する機能を有していれば、架橋性基の種類は上記に限定するものではない。 The crosslinkable group imparts a crosslinkable function to the fluorine-containing compound, and examples thereof include an ethylenically unsaturated bond group, an epoxy group, and a hydroxyl group. The type of the crosslinkable group is not limited to the above as long as it has a function of crosslinking with the photosensitive resin used for forming the partition wall.
 撥液性の材料の具体例としては、メガファックRS-101、RS-102、RS-105、RS-401、RS-402、RS-501、RS-502、RS-718(以上、DIC社製)、オプツールDAC、オプトエース HPシリーズ(以上ダイキン工業社製)、パーフルオロ(メタ)アクリレート、パーフルオロジ(メタ)アクリレートなどが挙げられる。
 上記の撥液性の材料は、1種を単独で用いてもよく、また2種類以上を組み合わせて用いてもよい。撥液性の材料は、上記感光性樹脂を含むインキの全固形分に対して、質量分率で通常0.1質量部以上3質量部以下である。
Specific examples of the liquid repellent material include Megafax RS-101, RS-102, RS-105, RS-401, RS-402, RS-501, RS-502, RS-718 (above, manufactured by DIC) ), Optool DAC, Optoace HP series (manufactured by Daikin Industries, Ltd.), perfluoro (meth) acrylate, perfluorodi (meth) acrylate, and the like.
One of these liquid repellent materials may be used alone, or two or more of them may be used in combination. The liquid repellent material is usually 0.1 to 3 parts by mass with respect to the total solid content of the ink containing the photosensitive resin.
 一実施形態では、感光性樹脂を含むインキは、感光性樹脂、撥液性の材料、および溶媒を含んでなる。上記の通り、感光性樹脂を含むインキは、バインダー樹脂、架橋剤、光反応開始剤、およびその他の添加剤をさらに含んでもよい。 In one embodiment, the ink containing a photosensitive resin comprises a photosensitive resin, a liquid repellent material, and a solvent. As described above, the ink containing the photosensitive resin may further contain a binder resin, a crosslinking agent, a photoreaction initiator, and other additives.
 現像に使用される現像液としては、たとえば塩化カリウム水溶液、水酸化テトラメチルアンモニウム(TMAH)水溶液などが挙げられる。 Examples of the developer used for development include an aqueous potassium chloride solution and an aqueous tetramethylammonium hydroxide (TMAH) solution.
 隔壁3の形状およびその配置は、画素数および解像度などの表示装置の仕様や製造の容易さなどに応じて適宜設定される。たとえば隔壁3の行方向Xまたは列方向Yの幅は、5μm~50μm程度であり、隔壁3の高さは0.5μm~5μm程度であり、行方向Xまたは列方向Yに隣り合う隔壁3間の間隔、すなわち凹部5の行方向Xまたは列方向Yの幅は、10μm~200μm程度である。また第1電極6の行方向Xまたは列方向Yの幅はそれぞれ10μm~200μm程度である。 The shape of the partition 3 and the arrangement thereof are appropriately set according to the specifications of the display device such as the number of pixels and the resolution, the ease of manufacturing, and the like. For example, the width of the partition wall 3 in the row direction X or the column direction Y is about 5 μm to 50 μm, the height of the partition wall 3 is about 0.5 μm to 5 μm, and the partition walls 3 adjacent to each other in the row direction X or the column direction Y , That is, the width of the recess 5 in the row direction X or the column direction Y is about 10 μm to 200 μm. The width of the first electrode 6 in the row direction X or the column direction Y is about 10 μm to 200 μm, respectively.
 (有機EL層を形成する工程)
 本工程では、隔壁によって画成される区画のそれぞれに有機EL層を形成する。本工程では1層以上の有機EL層のうち、少なくとも1層の有機EL層を塗布法によって形成する。以下に示す実施形態では、第1の有機EL層7および第2の有機EL層9を塗布法によって形成する。
(Process of forming organic EL layer)
In this step, an organic EL layer is formed in each of the sections defined by the partition walls. In this step, at least one organic EL layer among the one or more organic EL layers is formed by a coating method. In the embodiment described below, the first organic EL layer 7 and the second organic EL layer 9 are formed by a coating method.
 まず第1の有機EL層7を形成するための材料を含むインキ22を隔壁3に囲まれた領域(凹部5)に供給する(図4A参照)。インキは、隔壁3の形状、成膜工程の簡易さ、および成膜性などの条件を勘案して適宜最適な方法によって供給される。インキはたとえばインクジェットプリント法、ノズルコート法、凸版印刷法、凹版印刷法などによって供給してよい。 First, the ink 22 containing the material for forming the first organic EL layer 7 is supplied to the region (recessed portion 5) surrounded by the partition walls 3 (see FIG. 4A). The ink is appropriately supplied by an optimum method in consideration of conditions such as the shape of the partition wall 3, the simplicity of the film forming process, and the film forming property. The ink may be supplied by, for example, an inkjet printing method, a nozzle coating method, a relief printing method, an intaglio printing method, or the like.
 つぎに供給されたインキ22を固化することによって第1の有機EL層7が形成される(図4B参照)。インキの固化は、たとえば自然乾燥、加熱乾燥、真空乾燥によって行ってよい。またインキが、エネルギーを加えることによって重合する材料を含む場合、インキを供給した後に、薄膜を加熱したり、薄膜に光を照射したりすることによって、有機EL層を構成する材料を重合してもよい。このように有機EL層を構成する材料を重合することによって、この有機EL層(以下、第1の有機EL層ともいう)上に他の有機EL層(以下、第2の有機EL層ともいう)をさらに形成する際に使用されるインキに対して、第1の有機EL層を難溶化することができる。 Next, the first organic EL layer 7 is formed by solidifying the supplied ink 22 (see FIG. 4B). The ink may be solidified by, for example, natural drying, heat drying, or vacuum drying. Also, when the ink contains a material that polymerizes by applying energy, after supplying the ink, the material constituting the organic EL layer is polymerized by heating the thin film or irradiating the thin film with light. Also good. By polymerizing the material constituting the organic EL layer in this manner, another organic EL layer (hereinafter also referred to as a second organic EL layer) is formed on the organic EL layer (hereinafter also referred to as a first organic EL layer). The first organic EL layer can be hardly solubilized with respect to the ink used for further forming the above.
 つぎに発光層として機能する第2の有機EL層9を形成する。第2の有機EL層9は第1の有機EL層7と同様に形成してよい。すなわち赤色発光層9Rを形成するための材料を含むインキ、緑色発光層9Gを形成するための材料を含むインキ、および青色発光層9Bを形成するための材料を含むインキの3種類のインキを、隔壁3に囲まれた領域にそれぞれ供給し、それらを固化することによって発光層9R,9G,9Bを形成してよい。 Next, a second organic EL layer 9 that functions as a light emitting layer is formed. The second organic EL layer 9 may be formed in the same manner as the first organic EL layer 7. That is, three types of inks, ink containing a material for forming the red light emitting layer 9R, ink containing a material for forming the green light emitting layer 9G, and ink containing a material for forming the blue light emitting layer 9B, The light emitting layers 9R, 9G, and 9B may be formed by supplying each of the regions surrounded by the partition walls 3 and solidifying them.
 (第2電極を形成する工程)
 つぎに第2電極10を形成する。本工程では隔壁の頂面と、第2電極10および有機EL層の界面との、支持基板の厚み方向における間隔よりも、その膜厚が厚い第2電極10を形成する(図4D参照)。このように厚い第2電極10を形成することによって、必然的に、隔壁3上に形成された第2電極10と、第1の有機EL層9上に形成された第2電極10とが接続される。その結果、隣り合う有機EL素子の間に介在する隔壁3上にまたがって、複数の有機EL素子に亘って連なる第2電極が形成される。
(Step of forming the second electrode)
Next, the second electrode 10 is formed. In this step, the second electrode 10 having a thickness greater than the distance between the top surface of the partition and the interface between the second electrode 10 and the organic EL layer in the thickness direction of the support substrate is formed (see FIG. 4D). By forming the thick second electrode 10 in this way, the second electrode 10 formed on the partition 3 is inevitably connected to the second electrode 10 formed on the first organic EL layer 9. Is done. As a result, the second electrode is formed across the plurality of organic EL elements across the partition 3 interposed between adjacent organic EL elements.
 以上説明したように、厚い第2電極10を形成することによって、たとえ逆テーパ形状の隔壁3を設けたとしても、隔壁3の端部で第2電極10が切断することを防ぐことができ、全ての有機EL素子4に亘って連なる第2電極10を形成することができる。 As described above, by forming the thick second electrode 10, it is possible to prevent the second electrode 10 from being cut at the end of the partition 3, even if the inversely tapered partition 3 is provided. The second electrode 10 that extends over all the organic EL elements 4 can be formed.
 また逆テーパ形状の隔壁が設けられるため、隔壁3に囲まれた領域(凹部5)に供給されたインキ22は、毛細管現象によって、第1電極16と隔壁13とが接する部位に吸い込まれるように充填される。この状態を維持したままインキの溶媒が蒸発することによって、第1電極と隔壁とが接する部位にも十分な厚さの有機EL層が形成される。これによって均一な膜厚の有機EL層を得ることができる。 Further, since the inversely tapered partition is provided, the ink 22 supplied to the region (recessed portion 5) surrounded by the partition 3 is sucked into the portion where the first electrode 16 and the partition 13 are in contact by capillary action. Filled. While the ink solvent evaporates while maintaining this state, an organic EL layer having a sufficient thickness is also formed at a portion where the first electrode and the partition wall are in contact with each other. Thereby, an organic EL layer having a uniform film thickness can be obtained.
 また隔壁3の頂面3aは撥液性であるので、隔壁3に囲まれた領域(凹部5)に供給されたインキ22は隔壁3の頂面3aで弾かれる(図4A参照)。そのためインキ22が隔壁3の頂面3aを伝わって隣の領域に溢れ出ることを防ぐことができ、隔壁3に囲まれた領域(凹部5)内にインキを収容させることができる。また隔壁3の側面3bが親液性であることで、隔壁3に囲まれた領域に供給されたインキが、隔壁3の側面3bに弾かれることを防ぐことができ、隔壁3と第1電極とが接する部位にまでインキをより容易に充填することができる。これによってより均一な膜厚の有機EL層を得ることができる。 Further, since the top surface 3a of the partition wall 3 is liquid repellent, the ink 22 supplied to the region (recessed portion 5) surrounded by the partition wall 3 is repelled by the top surface 3a of the partition wall 3 (see FIG. 4A). For this reason, it is possible to prevent the ink 22 from flowing over the top surface 3a of the partition wall 3 and overflowing to the adjacent region, and the ink can be contained in the region (recessed portion 5) surrounded by the partition wall 3. Further, since the side surface 3b of the partition wall 3 is lyophilic, the ink supplied to the region surrounded by the partition wall 3 can be prevented from being repelled by the side surface 3b of the partition wall 3, and the partition wall 3 and the first electrode can be prevented. The ink can be more easily filled up to the portion where the contact is made. Thereby, an organic EL layer having a more uniform film thickness can be obtained.
 なお本実施形態では隔壁3の頂面3aに撥液性を付与するために、撥液性の材料を含むインキを用いて隔壁を形成したが、他の方法により隔壁3の頂面3aに撥液性を付与してもよい。他の方法としては、たとえば、フッ化物を含有する雰囲気においてプラズマ処理を行う方法が挙げられる。なおこの方法ではプラズマ雰囲気を導入するために工程が複雑化し、製造コストの増加をもたらすこともある。また第1電極6がプラズマ処理によって汚染されることがあり、このプラズマ処理が歩留まりの低下をもたらすこともある。これに対して撥液性の材料を含むインキを用いて隔壁を形成する本実施形態では、プラズマ処理を行うことなく隔壁を形成することができ、歩留まりを向上するとともに、製造コストを低減することができる。 In this embodiment, in order to impart liquid repellency to the top surface 3a of the partition wall 3, the partition wall is formed using ink containing a liquid repellent material. However, the top surface 3a of the partition wall 3 is repelled by other methods. Liquidity may be imparted. As another method, for example, a method of performing plasma treatment in an atmosphere containing fluoride can be cited. In this method, since the plasma atmosphere is introduced, the process becomes complicated and the manufacturing cost may increase. Further, the first electrode 6 may be contaminated by the plasma treatment, and this plasma treatment may cause a decrease in yield. In contrast, in the present embodiment in which the partition walls are formed using ink containing a liquid-repellent material, the partition walls can be formed without performing plasma treatment, which improves yield and reduces manufacturing costs. Can do.
 <有機EL素子の構成>
 以下では有機EL素子の構成についてさらに詳しく説明する。有機EL素子は、有機EL層として少なくとも1層の発光層を有する。上述したように有機EL素子は、有機EL層として、たとえば正孔注入層、正孔輸送層、電子ブロック層、正孔ブロック層、電子輸送層、および電子注入層などを有していてよい。
<Configuration of organic EL element>
Below, the structure of an organic EL element is demonstrated in detail. The organic EL element has at least one light emitting layer as an organic EL layer. As described above, the organic EL element may have, for example, a hole injection layer, a hole transport layer, an electron block layer, a hole block layer, an electron transport layer, and an electron injection layer as the organic EL layer.
 本実施の形態の有機EL素子のとりうる層構成の一例を以下に示す。
a)陽極/発光層/陰極
b)陽極/正孔注入層/発光層/陰極
c)陽極/正孔注入層/発光層/電子注入層/陰極
d)陽極/正孔注入層/発光層/電子輸送層/陰極
e)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
f)陽極/正孔輸送層/発光層/陰極
g)陽極/正孔輸送層/発光層/電子注入層/陰極
h)陽極/正孔輸送層/発光層/電子輸送層/陰極
i)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
j)陽極/正孔注入層/正孔輸送層/発光層/陰極
k)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
l)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
m)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
n)陽極/発光層/電子注入層/陰極
o)陽極/発光層/電子輸送層/陰極
p)陽極/発光層/電子輸送層/電子注入層/陰極
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。
以下同じ。)
An example of a layer structure that can be taken by the organic EL element of the present embodiment is shown below.
a) anode / light emitting layer / cathode b) anode / hole injection layer / light emitting layer / cathode c) anode / hole injection layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode f) anode / hole transport layer / light emitting layer / cathode g) anode / hole transport layer / light emitting layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode j) anode / hole Injection layer / hole transport layer / light emitting layer / cathode k) anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode l) anode / hole injection layer / hole transport layer / light emitting layer / Electron transport layer / cathode m) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode n) anode / light emitting layer / electron injection layer / cathode o) anode / Photo layer / electron transport layer / cathode p) anode / light emitting layer / electron transport layer / electron injection layer / cathode (here, the symbol “/” indicates that the layers sandwiching the symbol “/” are stacked adjacent to each other) Indicates.
same as below. )
 なお上述の実施形態では陽極として機能する第1電極が、支持基板により近い側に配置される形態の有機EL素子について説明したが、本発明は陰極として機能する第1電極が、支持基板により近い側に配置される形態の有機EL素子にも適用することができる。 In the above-described embodiment, the organic EL element in which the first electrode that functions as the anode is disposed closer to the support substrate has been described. However, in the present invention, the first electrode that functions as the cathode is closer to the support substrate. The present invention can also be applied to an organic EL element arranged on the side.
 <支持基板>
 支持基板には、有機EL素子を製造する工程において化学的に変化しないものが好適に用いられる。支持基板の材料としては、たとえばガラス、プラスチック、高分子フィルム、およびシリコン板、並びにこれらの積層体などが挙げられる。
<Support substrate>
As the support substrate, a substrate that is not chemically changed in the process of manufacturing the organic EL element is suitably used. Examples of the material for the support substrate include glass, plastic, polymer film, silicon plate, and laminates thereof.
 <陽極>
 発光層から放射される光が陽極を通って外界に出射する構成の有機EL素子の場合、陽極には光透過性を示す電極が用いられる。光透過性を示す電極としては、たとえば金属酸化物、金属硫化物および金属などの材料からなる薄膜を用いることができ、電気伝導度および光透過率の高いものが好適に用いられる。具体的には酸化インジウム、酸化亜鉛、酸化スズ、ITO、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅などから成る薄膜が用いられ、これらの中でもITO、IZO、または酸化スズから成る薄膜が好適に用いられる。陽極の作製方法としては、たとえば真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
<Anode>
In the case of an organic EL element having a configuration in which light emitted from the light emitting layer is emitted to the outside through the anode, an electrode exhibiting optical transparency is used for the anode. As the electrode exhibiting light transmittance, for example, a thin film made of a material such as metal oxide, metal sulfide, and metal can be used, and an electrode having high electrical conductivity and light transmittance is preferably used. Specifically, a thin film made of indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, or the like is used. Among these, ITO, IZO Or a thin film made of tin oxide is preferably used. Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Further, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
 <陰極>
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易で、電気伝導度の高い材料が好ましい。また陽極側から光を取出す構成の有機EL素子では、発光層から放射される光を陰極によって陽極側に反射するために、陰極の材料としては可視光に対する反射率の高い材料が好ましい。かかる陰極材料としては、たとえば金属、合金、グラファイトおよびグラファイト層間化合物が挙げられる。前記金属としては、たとえばアルカリ金属、アルカリ土類金属、遷移金属および周期表13族金属が挙げられ、具体例としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどが挙げられる。前記合金としては、たとえば前記金属のうちの2種以上の金属の合金;ならびに前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、および錫からなる群から選ばれる1種以上の金属との合金が挙げられ、具体例としてはマグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金などが挙げられる。また陰極は、透明電極であってもよく、その材料としては、たとえば酸化インジウム、酸化亜鉛、酸化スズ、インジウム・スズ・オキサイド(ITO)、およびインジウム・亜鉛・オキサイド(IZO)などの導電性金属酸化物;ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの導電性有機物が挙げられる。なお陰極は、2層以上を積層した積層構造を有していてもよい。また電子注入層が陰極として用いられることもある。
<Cathode>
A material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity. Further, in the organic EL element configured to extract light from the anode side, the cathode material is preferably a material having a high reflectance with respect to visible light in order to reflect light emitted from the light emitting layer to the anode side by the cathode. Examples of such cathode materials include metals, alloys, graphite, and graphite intercalation compounds. Examples of the metal include alkali metals, alkaline earth metals, transition metals, and metals of Group 13 of the periodic table. Specific examples include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, Aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like can be given. Examples of the alloy include an alloy of two or more of the metals; and one or more of the metals, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin. Examples thereof include alloys with one or more metals selected from the group consisting of magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium. Alloy, lithium-indium alloy, calcium-aluminum alloy and the like. The cathode may be a transparent electrode, and examples of the material thereof include conductive metals such as indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Oxides; conductive organic substances such as polyaniline or derivatives thereof, polythiophene or derivatives thereof, and the like. The cathode may have a stacked structure in which two or more layers are stacked. The electron injection layer may be used as a cathode.
 陰極の作製方法としては、たとえば真空蒸着法、イオンプレーティング法などが挙げられる。 Examples of the method for producing the cathode include a vacuum deposition method and an ion plating method.
 陽極または陰極の膜厚は、求められる特性や成膜工程の簡易さなどを考慮して適宜設定すればよく、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。なお上述したように、陽極および陰極のうち第2電極に相当する電極は、隔壁の頂面と、第2電極および前記有機EL層の界面との、支持基板の厚み方向における間隔よりも、その膜厚が厚くなるように形成される。 The film thickness of the anode or cathode may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm. It is. As described above, of the anode and the cathode, the electrode corresponding to the second electrode is more than the distance in the thickness direction of the support substrate between the top surface of the partition and the interface between the second electrode and the organic EL layer. It is formed so that the film thickness becomes thick.
 <正孔注入層>
 正孔注入層を構成する正孔注入材料としては、たとえば酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物;フェニルアミン系化合物;スターバースト型アミン系化合物;フタロシアニン系化合物;アモルファスカーボン;ポリアニリン;およびポリチオフェン誘導体などが挙げられる。
<Hole injection layer>
Examples of the hole injection material constituting the hole injection layer include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide; phenylamine compounds; starburst amine compounds; phthalocyanine compounds; amorphous carbon Polyaniline; and polythiophene derivatives.
 正孔注入層の成膜方法としては、たとえば正孔注入材料を含む溶液からの成膜が挙げられる。たとえば正孔注入材料を含む溶液を所定の塗布法によって塗布成膜し、さらにこれを固化することによって正孔注入層を形成してよい。 Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material. For example, a hole injection layer may be formed by coating a film containing a hole injection material by a predetermined coating method and solidifying the solution.
 正孔注入層の膜厚は、求められる特性および工程の簡易さなどを考慮して適宜設定すればよく、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The thickness of the hole injection layer may be appropriately set in consideration of the required characteristics and the simplicity of the process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. is there.
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料としては、たとえばポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、およびポリ(2,5-チエニレンビニレン)若しくはその誘導体などが挙げられる。
<Hole transport layer>
Examples of the hole transport material constituting the hole transport layer include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amines in side chains or main chains, pyrazoline derivatives, arylamine derivatives, stilbene derivatives. , Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, and poly (2,5-thienylene vinylene) Or the derivative | guide_body etc. are mentioned.
 正孔輸送層の膜厚は、求められる特性および成膜工程の簡易さなどを考慮して設定すればよく、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The thickness of the hole transport layer may be set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. It is.
 <発光層>
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物を含む。発光層はさらに、該有機物を補助するドーパントを含んでもよい。ドーパントは、たとえば発光効率の向上や、発光波長を変化させるために加えられる。なお発光層を構成する有機物は、低分子化合物でも高分子化合物でもよく、塗布法によって発光層を形成する場合には、高分子化合物であることが好ましい。該高分子化合物のポリスチレン換算の数平均分子量はたとえば10~10程度であってよい。発光層を構成する発光材料としては、たとえば以下の色素系材料、金属錯体系材料、高分子系材料、およびドーパント材料が挙げられる。
<Light emitting layer>
The light emitting layer usually contains an organic substance that mainly emits fluorescence and / or phosphorescence. The light emitting layer may further include a dopant that assists the organic matter. The dopant is added, for example, in order to improve the luminous efficiency and change the emission wavelength. In addition, the organic substance which comprises a light emitting layer may be a low molecular compound or a high molecular compound, and when forming a light emitting layer by the apply | coating method, it is preferable that it is a high molecular compound. The number average molecular weight in terms of polystyrene of the polymer compound may be, for example, about 10 3 to 10 8 . Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
 (色素系材料)
 色素系材料としては、たとえば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、およびクマリン誘導体などが挙げられる。
(Dye material)
Examples of dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, and coumarin derivatives.
 (金属錯体系材料)
 金属錯体系材料としては、たとえば希土類金属(たとえばTb、Eu、Dy)、Al、Zn、Be、Ir、Ptなどの中心金属と、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などの配位子とを有する金属錯体が挙げられる。かかる金属錯体としては、たとえばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などが挙げられる。
(Metal complex materials)
Examples of metal complex materials include central metals such as rare earth metals (eg, Tb, Eu, Dy), Al, Zn, Be, Ir, Pt, oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structures, and the like. And a metal complex having the above ligand. Examples of such metal complexes include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes. , Porphyrin zinc complex, phenanthroline europium complex, and the like.
 (高分子系材料)
 高分子系材料としては、たとえばポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどが挙げられる。
(Polymer material)
Examples of polymer materials include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and the above-mentioned dye materials and metal complex light emitting materials. And the like.
 発光層の厚さは、通常、約2nm~200nmである。 The thickness of the light emitting layer is usually about 2 nm to 200 nm.
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、公知のものが使用でき、たとえばオキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などが挙げられる。
<Electron transport layer>
As the electron transport material constituting the electron transport layer, known materials can be used, such as oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyano Anthraquinodimethane or derivative thereof, fluorenone derivative, diphenyldicyanoethylene or derivative thereof, diphenoquinone derivative, or metal complex of 8-hydroxyquinoline or derivative thereof, polyquinoline or derivative thereof, polyquinoxaline or derivative thereof, polyfluorene or derivative thereof, etc. Is mentioned.
 電子輸送層の膜厚は、求められる特性や成膜工程の簡易さなどを考慮して適宜設定すればよく、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the electron transport layer may be appropriately set in consideration of required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. It is.
 <電子注入層>
 電子注入層を構成する電子注入材料は、発光層の種類に応じて適宜選択すればよく、たとえばアルカリ金属;アルカリ土類金属;前記金属のうちの1種以上を含む合金;前記金属の酸化物、ハロゲン化物および炭酸塩;ならびに前記物質の混合物などが挙げられる。前記アルカリ金属ならびにその酸化物、ハロゲン化物、および炭酸塩の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどが挙げられる。また、前記アルカリ土類金属ならびにその酸化物、ハロゲン化物、および炭酸塩の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどが挙げられる。電子注入層は、2層以上を積層した積層構造を有していてもよく、具体的にはLiF/Caなどが挙げられる。
<Electron injection layer>
The electron injecting material constituting the electron injecting layer may be appropriately selected according to the type of the light emitting layer. For example, alkali metal; alkaline earth metal; alloy containing one or more of the metals; oxide of the metal , Halides and carbonates; and mixtures of the aforementioned substances. Examples of the alkali metal and its oxide, halide, and carbonate include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride, Examples thereof include rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, and lithium carbonate. Examples of the alkaline earth metals and oxides, halides and carbonates thereof include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, fluoride. Examples include barium, strontium oxide, strontium fluoride, and magnesium carbonate. The electron injection layer may have a stacked structure in which two or more layers are stacked, and specific examples include LiF / Ca.
 電子注入層の膜厚としては、1nm~1μm程度が好ましい。 The thickness of the electron injection layer is preferably about 1 nm to 1 μm.
 各有機EL層の形成方法としては、たとえばノズルプリンティング法、インクジェットプリンティング法、凸版印刷法、凹版印刷法などの塗布法;真空蒸着法;スパッタリング法;CVD法などが挙げられる。上記の通り、本発明の表示装置の製造方法においては、1層以上の有機EL層のうち少なくとも1層の有機EL層を塗布法により形成する。 Examples of the method for forming each organic EL layer include a coating method such as a nozzle printing method, an inkjet printing method, a relief printing method, and an intaglio printing method; a vacuum deposition method; a sputtering method; and a CVD method. As described above, in the method for manufacturing a display device of the present invention, at least one organic EL layer is formed by a coating method among one or more organic EL layers.
 なお塗布法では、各有機EL層となる有機EL材料を含むインキを塗布成膜し、さらにこれを固化することによって有機EL層を形成する。塗布法に使用されるインキの溶媒としては、たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒;テトラヒドロフランなどのエーテル系溶媒;トルエン、キシレンなどの芳香族炭化水素系溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒;および水などが挙げられる。 In the coating method, an organic EL layer is formed by coating and forming an ink containing an organic EL material to be each organic EL layer and solidifying the ink. Examples of the solvent of the ink used in the coating method include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketones such as acetone and methyl ethyl ketone. System solvents; ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate; and water.
 (実施例1)
 まずITO薄膜からなる第1電極(陽極)が予めパターン形成されたTFT基板を用意した(図3(1)参照)。
Example 1
First, a TFT substrate on which a first electrode (anode) made of an ITO thin film was previously patterned was prepared (see FIG. 3 (1)).
 つぎにネガ型の感光性樹脂溶液(日本ゼオン株式会社製ZPN2464)に撥液剤2(ダイキン製 撥液剤オプトエース(登録商法)HPシリーズ)を混合し、撥液材入りの感光性樹脂溶液を調製した。感光性樹脂に対する撥液剤の固形分濃度比は0.2%(重量)とした。つぎに、用意したTFT基板の表面上に撥液材入りの感光性樹脂溶液をスピンコータにより塗布成膜し、さらに、ホットプレート上において110℃で90秒間加熱することによってプリベーク処理を行い、溶媒を蒸発させた(図3(2)参照)。 Next, the negative photosensitive resin solution (ZPN2464 manufactured by ZEON Corporation) is mixed with the liquid repellent 2 (Daikin's liquid repellent Opt-Ace (registered commercial method) HP series) to prepare a photosensitive resin solution containing the liquid repellent material. did. The solid content concentration ratio of the liquid repellent to the photosensitive resin was 0.2% (weight). Next, a photosensitive resin solution containing a liquid repellent material is applied and formed on the surface of the prepared TFT substrate by a spin coater, and further prebaked by heating on a hot plate at 110 ° C. for 90 seconds to remove the solvent. It evaporated (refer FIG. 3 (2)).
 つぎにプロキシミティ露光機を用いて露光量100mJ/cmで露光し(図3(3)参照)、その後、現像液(株式会社トクヤマ製SD-1(TMAH2.38wt%))を用いて100秒間現像した。さらにポストベークとして230℃で30分間加熱し、樹脂を硬化させ、逆テーパ形状の隔壁を形成した(図3(4)参照)。隔壁の膜厚は1.0μmとした。隔壁側面3bの傾斜角θは65°であった。隔壁頂面と純水との接触角は75°、隔壁頂面とアニソールとの接触角は39°であった。また第1電極(ITO薄膜)表面と、純水との接触角は25°であった。 Next, it exposes with the exposure amount of 100 mJ / cm < 2 > using a proximity exposure machine (refer FIG. 3 (3)), and is 100 using a developing solution (SD-1 (TMAH2.38 wt%) made by Tokuyama Corporation) after that. Developed for seconds. Furthermore, it heated at 230 degreeC as post-baking for 30 minutes, the resin was hardened, and the reverse-tapered partition was formed (refer FIG. 3 (4)). The partition wall thickness was 1.0 μm. The inclination angle θ of the partition wall side surface 3b was 65 °. The contact angle between the partition wall top surface and pure water was 75 °, and the contact angle between the partition wall top surface and anisole was 39 °. The contact angle between the surface of the first electrode (ITO thin film) and pure water was 25 °.
 つぎに第1の有機EL層として正孔注入層を形成した。まずオゾン水製造装置(ロキテクノ社製 FA-1000ZW12-5C)を用いて、基板表面をオゾン水(濃度:10ppm、処理時間:15分)で洗浄した。この洗浄によって、第1電極(ITO薄膜)表面と純水との接触角が5°以下にまで低下し、第1電極(ITO薄膜)表面に十分な濡れ性を付与することができた。つぎにインクジェット装置(ULVAC社製 Litlex142P)を用いてインキ(固形分濃度1.5重量%のポリ(エチレンジオキシチオフェン)(PEDOT)/ポリスチレンスルホン酸(PSS)水分散液(バイエル社製 AI4083))を、各凹部に塗布した(図4(1)参照)。インキは、該インキとの接触角の大きい隔壁の頂面によって弾かれるため、この頂面を伝わって隣の領域に溢れ出ることが防がれ、凹部内に収容された。他方、凹部に収容されたインキは、毛細管現象によって第1電極と隔壁とが接する部位に吸い込まれるように充填され、凹部内に均一に広がった。この基板を200℃で焼成することにより、均一な膜厚の正孔注入層(膜厚50nm)を形成した(図4(2)参照)。 Next, a hole injection layer was formed as a first organic EL layer. First, the surface of the substrate was washed with ozone water (concentration: 10 ppm, treatment time: 15 minutes) using an ozone water production apparatus (FA-1000ZW12-5C manufactured by Loki Techno Co., Ltd.). By this cleaning, the contact angle between the surface of the first electrode (ITO thin film) and pure water was reduced to 5 ° or less, and sufficient wettability could be imparted to the surface of the first electrode (ITO thin film). Next, an ink (poly (ethylenedioxythiophene) (PEDOT) / polystyrene sulfonic acid (PSS) aqueous dispersion with a solid content concentration of 1.5% by weight (AI 4083 manufactured by Bayer) using an inkjet apparatus (Litlex 142P manufactured by ULVAC). ) Was applied to each recess (see FIG. 4A). Since the ink was repelled by the top surface of the partition wall having a large contact angle with the ink, the ink was prevented from overflowing to the adjacent region through this top surface and was accommodated in the recess. On the other hand, the ink accommodated in the concave portion was filled so as to be sucked into a portion where the first electrode and the partition wall were in contact with each other by capillary action, and spread uniformly in the concave portion. The substrate was baked at 200 ° C. to form a hole injection layer (film thickness of 50 nm) with a uniform film thickness (see FIG. 4B).
 つぎに3種類の発光層を形成した。まず赤色の光を放射する高分子発光材料1を、その濃度が0.8wt%となるように有機溶媒に混合して、赤インキを調製した。同様に、緑色の光を放射する高分子発光材料2を、その濃度が0.8wt%となるように有機溶媒に混合して、緑インキを調製した。そして青色の光を放射する高分子発光材料2を、その濃度が0.8wt%となるように有機溶媒に混合して、青インキを調製した。これら赤、緑および青インキをそれぞれインクジェット装置(ULVAC社製 Litrex142P)を用いて所定の凹部内に塗布した。インキは、インキとの接触角の大きい隔壁の頂面によって弾かれるため、この頂面を伝わって隣の領域に溢れ出ることが防がれ、凹部内に収容された。他方、凹部に収容されたインキは、毛細管現象によって第1電極と隔壁とが接する先細状の部位に吸い込まれるように充填され、凹部内に均一に広がった。この基板を130℃で焼成することにより、均一な膜厚の発光層(膜厚60nm)を形成した(図4(3)参照)。なお高分子発光材料として、たとえばサメイション製のものを使用して発光層を形成してもよい。 Next, three types of light emitting layers were formed. First, the polymer light emitting material 1 that emits red light was mixed with an organic solvent so that the concentration thereof was 0.8 wt% to prepare red ink. Similarly, the polymer light-emitting material 2 that emits green light was mixed with an organic solvent so that its concentration was 0.8 wt% to prepare a green ink. Then, the polymer light-emitting material 2 that emits blue light was mixed with an organic solvent so that the concentration thereof was 0.8 wt% to prepare a blue ink. Each of these red, green and blue inks was applied in a predetermined recess using an inkjet device (Litrex142P manufactured by ULVAC). Since the ink is repelled by the top surface of the partition wall having a large contact angle with the ink, the ink is prevented from overflowing to the adjacent region through this top surface and is accommodated in the recess. On the other hand, the ink accommodated in the concave portion was filled so as to be sucked into a tapered portion where the first electrode and the partition wall were in contact with each other by capillary action, and spread uniformly in the concave portion. The substrate was baked at 130 ° C. to form a light-emitting layer (film thickness 60 nm) having a uniform thickness (see FIG. 4 (3)). As the polymer light emitting material, for example, a light emitting layer may be formed using a material made by Summation.
 つぎに、上記発光層の上に、Ca層(20nm)、Al層(1.2μm)を真空蒸着法によって順次積層し、第2電極(陰極)を形成した。その後、封止基板を貼り合せて、有機EL素子を封止し、表示装置を作製した。 Next, a Ca layer (20 nm) and an Al layer (1.2 μm) were sequentially laminated on the light emitting layer by a vacuum deposition method to form a second electrode (cathode). Then, the sealing substrate was bonded together, the organic EL element was sealed, and the display apparatus was produced.
 膜厚が1.2μmのAl層を形成することで、全ての有機EL素子に亘って連なる第2電極(陰極)を形成することができた。作製した表示装置は、有機EL素子が設けられた全発光領域内において均一に発光することが確認された。また有機EL素子ごとの発光についても、有機EL素子内において均一に発光することが確認された。 By forming an Al layer having a film thickness of 1.2 μm, it was possible to form a second electrode (cathode) continuous over all organic EL elements. It was confirmed that the produced display device emitted light uniformly in the entire light emitting region provided with the organic EL element. Further, it was confirmed that light was emitted uniformly for each organic EL element in the organic EL element.
 (比較例1)
 Al層の膜厚を変えた以外は、実施例1と同様に表示装置を作製した。本比較例1では、特許文献1の記載と同様に、膜厚150nmのAl層を真空蒸着法によって積層した。形成された第2電極(陰極)は隔壁の端部で切断されているため、複数の有機EL素子に亘って連なる第2電極は形成されなかった。そのため各有機EL素子を発光駆動することができなかった。
(Comparative Example 1)
A display device was produced in the same manner as in Example 1 except that the thickness of the Al layer was changed. In Comparative Example 1, as described in Patent Document 1, an Al layer having a thickness of 150 nm was stacked by a vacuum deposition method. Since the formed second electrode (cathode) was cut at the end of the partition wall, the second electrode continuous across the plurality of organic EL elements was not formed. Therefore, it was not possible to drive each organic EL element to emit light.
 (参考例1)
 隔壁を形成する際に使用する溶液に、撥液性の材料を添加しなかった以外は、実施例1と同様にして表示装置を作製した。すなわち、撥液材入りの感光性樹脂溶液の使用に替えて、ネガ型の感光性樹脂溶液(日本ゼオン株式会社製ZPN2464)のみを使用して、隔壁を形成した。実施例1と同様にインクジェット装置(ULVAC社製 Litlex142P)を用いてインキを凹部に供給したところ、隔壁の頂面にインキが濡れ拡がり、隣の領域に供給されたインキと隔壁の頂面において連なることが一部で確認された。
(Reference Example 1)
A display device was produced in the same manner as in Example 1 except that the liquid repellent material was not added to the solution used for forming the partition walls. That is, instead of using the photosensitive resin solution containing the liquid repellent material, only the negative photosensitive resin solution (ZPN2464 manufactured by Nippon Zeon Co., Ltd.) was used to form the partition walls. When ink was supplied to the recess using an inkjet device (Litlex142P manufactured by ULVAC) in the same manner as in Example 1, the ink spreads on the top surface of the partition wall and continued to the top surface of the partition wall with the ink supplied to the adjacent region. That was confirmed in part.

Claims (7)

  1.  支持基板と、
     前記支持基板上において予め設定される区画を画成する隔壁と、
     前記隔壁によって画成される前記区画にそれぞれ設けられる複数の有機エレクトロルミネッセンス素子であって、各有機エレクトロルミネッセンス素子は、第1電極、有機エレクトロルミネッセンス層、第2電極が、支持基板側からこの順で積層されて構成される、複数の有機エレクトロルミネッセンス素子と
     を含み、
     前記隔壁は、前記支持基板から離間するにしたがって幅広になるような形状を有し、
     前記第2電極は、隣り合う有機エレクトロルミネッセンス素子の間に介在する前記隔壁上にまたがって形成され、前記複数の有機エレクトロルミネッセンス素子に亘って連なっており、且つ前記第2電極の膜厚は、前記隔壁の頂面と、前記第2電極および前記有機エレクトロルミネッセンス層の界面との、支持基板の厚み方向における間隔よりも厚い、表示装置。
    A support substrate;
    A partition that defines a predetermined section on the support substrate;
    A plurality of organic electroluminescence elements respectively provided in the compartments defined by the partition walls, wherein each organic electroluminescence element includes a first electrode, an organic electroluminescence layer, and a second electrode in this order from the support substrate side. A plurality of organic electroluminescent elements, which are laminated by
    The partition has a shape that becomes wider as it is separated from the support substrate,
    The second electrode is formed over the partition interposed between adjacent organic electroluminescent elements, is continuous over the plurality of organic electroluminescent elements, and the film thickness of the second electrode is: A display device, which is thicker than a distance between a top surface of the partition wall and an interface between the second electrode and the organic electroluminescence layer in a thickness direction of a support substrate.
  2.  前記隔壁は、その頂面に比べて、その側面が親液性である、請求項1記載の表示装置。 The display device according to claim 1, wherein the side wall of the partition wall is lyophilic compared to the top surface.
  3.  支持基板と、前記支持基板上において予め設定される区画を画成する隔壁と、前記隔壁によって画成される前記区画にそれぞれ設けられる複数の有機エレクトロルミネッセンス素子であって、各有機エレクトロルミネッセンス素子は、第1電極、有機エレクトロルミネッセンス層、第2電極が支持基板側からこの順で積層されて構成される複数の有機エレクトロルミネッセンス素子とを含む表示装置の製造方法であって、
     その上に前記第1電極が形成された前記支持基板を用意する工程と、
     前記支持基板から離間するにしたがって幅広になる形状の前記隔壁を形成する工程と、
     前記隔壁によって画成される前記区画のそれぞれに、前記有機エレクトロルミネッセンス層を形成する工程と、
     隣り合う有機エレクトロルミネッセンス素子の間に介在する前記隔壁上にまたがって、前記複数の有機エレクトロルミネッセンス素子に亘って連なる前記第2電極を形成する工程であって、前記隔壁の頂面と、前記第2電極および前記有機エレクトロルミネッセンス層の界面との、支持基板の厚み方向における間隔よりも厚い膜厚の前記第2電極を形成する工程と、
     を含む、表示装置の製造方法。
    A support substrate, a partition wall defining a partition set in advance on the support substrate, and a plurality of organic electroluminescence elements respectively provided in the partition defined by the partition wall, each organic electroluminescence element being A method of manufacturing a display device including a plurality of organic electroluminescence elements configured by laminating a first electrode, an organic electroluminescence layer, and a second electrode in this order from the support substrate side,
    Preparing the support substrate on which the first electrode is formed;
    Forming the partition having a shape that becomes wider as it is separated from the support substrate;
    Forming the organic electroluminescence layer in each of the compartments defined by the partition;
    Forming the second electrode extending across the plurality of organic electroluminescence elements across the partition interposed between adjacent organic electroluminescence elements, the top surface of the partition; and the first Forming the second electrode having a thickness greater than the distance between the two electrodes and the interface of the organic electroluminescence layer in the thickness direction of the support substrate;
    A method for manufacturing a display device, comprising:
  4.  前記隔壁を形成する工程が、感光性樹脂を含むインキを前記支持基板上に塗布して隔壁形成用膜を形成し、前記隔壁形成用膜の所定の部位を露光し、さらに現像してなる、請求項3記載の表示装置の製造方法。 The step of forming the partition wall is formed by applying an ink containing a photosensitive resin on the support substrate to form a partition wall forming film, exposing a predetermined portion of the partition wall forming film, and further developing. The manufacturing method of the display apparatus of Claim 3.
  5.  前記有機エレクトロルミネッセンス層を形成する工程が、前記隔壁によって画成される前記区画のそれぞれに、有機エレクトロルミネッセンス層を形成するための材料を含むインキを供給し、該インキを固化してなる、請求項3記載の表示装置の製造方法。 The step of forming the organic electroluminescence layer is obtained by supplying ink containing a material for forming the organic electroluminescence layer to each of the compartments defined by the partition walls, and solidifying the ink. Item 4. A method for manufacturing a display device according to Item 3.
  6.  前記隔壁を形成する工程では、その頂面に比べて、その側面が親液性である隔壁を形成する、請求項3記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 3, wherein in the step of forming the partition wall, a partition wall whose side surface is lyophilic compared to the top surface thereof is formed.
  7.  前記感光性樹脂を含むインキは、撥液性の材料を含む、請求項4記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 4, wherein the ink containing the photosensitive resin contains a liquid repellent material.
PCT/JP2011/064522 2010-06-29 2011-06-24 Display device and production method for same WO2012002268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010147343A JP2012014856A (en) 2010-06-29 2010-06-29 Display device
JP2010-147343 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012002268A1 true WO2012002268A1 (en) 2012-01-05

Family

ID=45401985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064522 WO2012002268A1 (en) 2010-06-29 2011-06-24 Display device and production method for same

Country Status (3)

Country Link
JP (1) JP2012014856A (en)
TW (1) TW201222722A (en)
WO (1) WO2012002268A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321980A (en) * 2014-06-17 2016-02-10 佳能株式会社 Organic light emitting device and method of manufacturing the device
CN105552101A (en) * 2014-10-22 2016-05-04 三星显示有限公司 Organic light-emitting display apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155856B2 (en) * 2013-06-03 2017-07-05 住友化学株式会社 Display device
KR102049974B1 (en) * 2013-09-23 2019-11-28 엘지디스플레이 주식회사 Organic Light Emitting Display Device
KR101511476B1 (en) * 2014-02-28 2015-04-10 스미또모 가가꾸 가부시키가이샤 Photosensitive resin composition
JP2019197694A (en) * 2018-05-11 2019-11-14 株式会社ジャパンディスプレイ Display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303671A (en) * 2003-03-31 2004-10-28 Seiko Epson Corp Manufacturing method of electro-optical device, electro-optical device, and electronic equipment
JP2007227289A (en) * 2006-02-27 2007-09-06 Seiko Epson Corp Electrooptic device, method of manufacturing same and electronic device
JP2009123696A (en) * 2007-10-26 2009-06-04 Mitsubishi Chemicals Corp Organic electroluminescent element, image display device, and manufacturing method for organic electroluminescent element
JP2009170115A (en) * 2008-01-10 2009-07-30 Panasonic Corp Display device and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303671A (en) * 2003-03-31 2004-10-28 Seiko Epson Corp Manufacturing method of electro-optical device, electro-optical device, and electronic equipment
JP2007227289A (en) * 2006-02-27 2007-09-06 Seiko Epson Corp Electrooptic device, method of manufacturing same and electronic device
JP2009123696A (en) * 2007-10-26 2009-06-04 Mitsubishi Chemicals Corp Organic electroluminescent element, image display device, and manufacturing method for organic electroluminescent element
JP2009170115A (en) * 2008-01-10 2009-07-30 Panasonic Corp Display device and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321980A (en) * 2014-06-17 2016-02-10 佳能株式会社 Organic light emitting device and method of manufacturing the device
CN105552101A (en) * 2014-10-22 2016-05-04 三星显示有限公司 Organic light-emitting display apparatus
CN105552101B (en) * 2014-10-22 2020-12-22 三星显示有限公司 Organic light emitting display device

Also Published As

Publication number Publication date
TW201222722A (en) 2012-06-01
JP2012014856A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5573616B2 (en) Display device
JP5192828B2 (en) Organic electroluminescence display element and manufacturing method thereof
WO2010061966A1 (en) Light emission device and method for manufacturing same
WO2012002268A1 (en) Display device and production method for same
WO2010035643A1 (en) Substrate for pattern coating and organic el element
JP5418487B2 (en) Display device
WO2013168546A1 (en) Process for producing display device
WO2011024753A1 (en) Organic electroluminescent element
WO2011122445A1 (en) Light emitting device
WO2009122870A1 (en) Method for manufacturing organic electroluminescence element, organic electroluminescence element and display device
WO2011118654A1 (en) Method for manufacturing light-emitting device
JP2010147180A (en) Method of manufacturing organic electroluminescence element
JP5672789B2 (en) Method for manufacturing light emitting device
JP2010129345A (en) Method of manufacturing organic electroluminescent device
JP5155085B2 (en) Organic electroluminescence device and method for manufacturing the same
JP6155856B2 (en) Display device
JP2010160945A (en) Method for manufacturing organic electroluminescence device
JP4893839B2 (en) Method for manufacturing light emitting device
JP2010160946A (en) Method for manufacturing organic electroluminescence device
WO2009122874A1 (en) Method for manufacturing organic electroluminescence element, organic electroluminescence element and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800733

Country of ref document: EP

Kind code of ref document: A1