WO2011105018A1 - Solid-state imaging device and camera system - Google Patents

Solid-state imaging device and camera system Download PDF

Info

Publication number
WO2011105018A1
WO2011105018A1 PCT/JP2011/000757 JP2011000757W WO2011105018A1 WO 2011105018 A1 WO2011105018 A1 WO 2011105018A1 JP 2011000757 W JP2011000757 W JP 2011000757W WO 2011105018 A1 WO2011105018 A1 WO 2011105018A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
potential
transistor
line
Prior art date
Application number
PCT/JP2011/000757
Other languages
French (fr)
Japanese (ja)
Inventor
豊 阿部
洋 藤中
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011105018A1 publication Critical patent/WO2011105018A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present invention relates to a solid-state imaging device and a camera system.
  • MOS image sensors have attracted attention as solid-state imaging devices that can replace CCD image sensors. This has many advantages such as the fact that MOS-type image sensors can be manufactured by the CMOS process, existing facilities can be used, stable supply is possible, and high-speed reading is possible, so that high speed and high resolution can be achieved. This is because.
  • Patent Document 1 discloses a configuration and driving method of a general MOS type solid-state imaging device.
  • FIG. 13 is a diagram illustrating an overall configuration of a general solid-state imaging device.
  • a plurality of unit cells 100 are arranged.
  • the unit cells 100 are arranged in 2 rows ⁇ 2 columns.
  • the present invention is not limited to this, and an arbitrary number of unit cells 100 are arranged in the row direction and the column direction. Can be done.
  • a photodiode 101 as a photoelectric conversion element (pixel), a transfer transistor 102, an FD (floating diffusion) unit 106, a reset transistor 103, a readout transistor 104, and a selection transistor 105 are arranged. .
  • the plurality of unit cells 100 include a column signal line 111, a first current source 112 serving as a load for the read transistor 104, a CDS (Correlated Double Sampling) circuit 113, a horizontal selection transistor 114, a horizontal signal line 121, and a horizontal selection circuit 123. And an amplifier circuit 124 are connected.
  • a CDS Correlated Double Sampling
  • the column signal line 111 is connected to the ground via the first current source 112.
  • the column signal line 111 forms a source follower circuit together with the read transistor 104 and the first current source 112 when the unit cell 100 is selected (when reading a signal).
  • the output of the read transistor 104 is output to the CDS circuit 113.
  • the light incident on the solid-state imaging device is converted into signal charges by the photodiode 101.
  • the signal charge generated in the photodiode 101 is transferred by the transfer transistor 102 in response to the transfer pulse ⁇ TX, and is temporarily stored in the FD unit 106.
  • the signal charge of the unit cell 100 selected by the selection transistor 105 in accordance with the selection pulse ⁇ SEL is converted into a voltage and output to the CDS circuit 113 via the column signal line 111.
  • the horizontal selection transistor 123 selectively turns on the horizontal selection transistor 114 to select the column signal line 111 that outputs the signal voltage to the horizontal signal line 121, and the signal voltage is output to the outside through the amplifier circuit 124. .
  • the charge accumulated in the FD unit 106 is removed (reset) by the reset transistor 103 in response to the reset pulse ⁇ RS.
  • the FD unit 106 is supplied with a reset potential supplied from the voltage source 126 connected via the pixel power line 125. Reset to. Further, the vertical selection circuit 122 performs driving by supplying driving pulses corresponding to the transfer transistor 102, the selection transistor 105, and the reset transistor 103.
  • FIG. 14 is a timing chart showing the operation timing of the solid-state imaging device of FIG.
  • the horizontal axis represents time, and the vertical axis represents the potential of each signal.
  • the reset pulse ⁇ RS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row.
  • the transfer pulse ⁇ TX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row.
  • the selection pulse ⁇ SEL represents a pulse signal for commonly controlling the selection transistors 105 in a predetermined row.
  • the potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 100
  • the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 100.
  • the operation timing will be described by taking a predetermined unit cell 100 as an example, but other unit cells 100 can be operated in the same manner.
  • the potential of the selection pulse ⁇ SEL is set to “L” level, and the potential of the reset pulse ⁇ RS is set to “H” level.
  • the transfer pulse ⁇ TX is at the “L” level, and the photodiode 101 and the FD unit 106 are electrically disconnected.
  • the selection transistor 105 is in an off state, and the output of the reading transistor 104 is not read out to the column signal line 111.
  • the reset transistor 103 is in an on state, and the potential of the FD unit 106 is set to a reset level.
  • the potential of the selection pulse ⁇ SEL changes to “H” level
  • the potential of the reset pulse ⁇ RS changes to “L” level.
  • the reset transistor 103 is turned off and the selection transistor 105 is turned on.
  • the read transistor 104 starts an operation of outputting the reset level to the column signal line 111.
  • the potential of the transfer pulse ⁇ TX changes to “H” level, and the transfer transistor 102 is turned on.
  • the signal charge (electrons) of the photodiode 101 is transferred to the FD unit 106.
  • the potential of the gate of the reading transistor 104 decreases in proportion to the amount of light incident on the pixel, and accordingly, the potential of the column signal line 111 decreases.
  • the potential of the transfer pulse ⁇ TX changes to “L” level, the transfer transistor 102 is turned off, and the transfer of signal charges (electrons) of the photodiode 101 is completed.
  • the potential of the selection pulse ⁇ SEL changes to “L” level
  • the potential of the reset pulse ⁇ RS changes to “H” level
  • the selection transistor 105 is turned off, and the potential of the FD portion 106 is reset again. Set to level.
  • a potential corresponding to the difference from the potential of the column signal line 111 is output.
  • the output from the CDS circuit 113 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, amplified by the amplifier circuit 124, and output. .
  • the solid-state imaging device may cause deterioration of output linearity when the amount of light irradiation is small, which leads to image quality deterioration due to fixed pattern noise. The reason will be described below.
  • V fd is the potential of the FD portion 106
  • V l is the potential of the column signal line 111
  • V th is the threshold voltage of the read transistor 104
  • is the transconductance coefficient of the read transistor 104.
  • the current flowing between the source and the drain of the reading transistor 104 is determined to be a constant value by the constant current source (first current source 112). If the current value of the constant current source is I bias , the FD unit 106 is The potential V l1rst of the column signal line 111 when reset is
  • N is the number of electrons generated in the photodiode 101
  • q is the amount of charge per electron
  • C is the capacitance of the FD unit 106.
  • the expressions (3) and (5) are values when the reading transistor 104 operates in the saturation region. Assuming that the read transistor 104 operates in the linear region instead of the saturation region, the current I ds flowing between the source and drain of the read transistor 104 is
  • ⁇ Whether the transistor operates in the saturation region or in the linear region depends on the gate voltage, drain voltage and threshold voltage of the transistor
  • Expression (1) From Expression (1), Expression (4), Expression (9), and Expression (10), if the read transistor 104 is operating in the saturation region when the FD portion 106 is reset, electrons generated in the photodiode 101 are transferred. After that, the read transistor 104 operates in the saturation region. This is because the electrons have a negative charge, and the potential of the FD portion 106 after the electrons generated in the photodiode 101 are transferred is lower than the potential when the FD portion 106 is reset. However, if the readout transistor 104 is operating in the linear region when the FD portion 106 is reset, the readout transistor 104 after transferring electrons operates in the linear region when the amount of electrons generated in the photodiode 101 is small. However, when it is large, it operates in the saturation region.
  • the potential of the column signal line 111 after resetting the FD unit 106 in the CDS circuit 113 and the potential of the column signal line 111 after transferring electrons generated in the photodiode 101 are calculated.
  • the difference is output from the CDS circuit 113. Therefore, the output potential V o1 from the CDS circuit 113 when the read transistor 104 is operating in the saturation region when the FD unit 106 is reset is obtained from the equations (3) and (5).
  • V bias is an arbitrary reference potential.
  • the readout transistor 104 Since the 1 / f noise has a great influence on the S / N of the solid-state imaging device, the readout transistor 104 has a thin gate oxide film thickness or a buried channel type in order to reduce the 1 / f noise. However, due to this influence, the threshold voltage V th is lowered and often becomes 0 V or less. Even when the power supply voltage is lowered to reduce power consumption, the substrate bias effect of the read transistor 104 is reduced, so that the threshold voltage Vth is lowered. In the actual transistor, the drain-source current also depends on the drain-source voltage in the region where the gate potential is close to the value obtained by adding the drain potential and the threshold voltage V th even when the equation (9) is satisfied. To come.
  • the reset potential of the FD unit 106 and the drain potential of the readout transistor 104 are the same potential as in the solid-state imaging device of FIG. It can be said that linearity is deteriorated and fixed pattern noise is increased.
  • the present invention has been made in view of such problems, and provides a solid-state imaging device and a camera system capable of suppressing degradation of output linearity and increase of fixed pattern noise even when the amount of light irradiation is small. For the purpose.
  • a solid-state imaging device corresponding to a plurality of unit cells arranged in an array and a column of the unit cells, and the units of the corresponding column A column signal line commonly connected to the cell; a current source connected to the column signal line; and a power supply unit for supplying a power supply potential to the unit cell, wherein the unit cell includes a photodiode, FD (floating diffusion) part for temporarily holding the signal charge generated in the photodiode, and between the photodiode and the FD part, to transfer the charge from the photodiode to the FD part A transfer transistor connected to the FD portion, a reset transistor for resetting the potential of the FD portion, and a gate connected to the FD portion, A read transistor for reading a signal voltage corresponding to the potential of the FD section, and a selection transistor provided between the read transistor and the column signal line, for outputting a signal voltage from the unit cell to the column signal line And the power supply
  • the reset potential of the FD portion can be made lower than the drain potential of the read transistor so that the read transistor operates in the saturation region even when the number of electrons stored in the photodiode is small.
  • the power supply unit further includes a power supply for supplying a power supply potential to the pixel power supply line, a switch provided between the power supply and the power supply line, the pixel power supply line, and the power supply. May be provided with a resistor provided in parallel with the switch.
  • the resistance can be generated in a very small area, so that the chip size can be reduced.
  • the solid-state imaging device is provided corresponding to a plurality of unit cells arranged in an array and a column of the unit cells, and is commonly connected to the unit cells of the corresponding column.
  • the unit cell is generated by a photodiode and the photodiode.
  • An FD (floating diffusion) portion for temporarily holding the signal charge, and a transfer transistor provided between the photodiode and the FD portion for transferring the charge from the photodiode to the FD portion,
  • a reset transistor connected to the FD unit for resetting the potential of the FD unit, and a gate connected to the FD unit, in accordance with the potential of the FD unit.
  • a read transistor for reading a signal voltage, and the power supply unit includes a pixel power line commonly connected to the reset transistor and the read transistor, and at least three power supply potentials are supplied to one unit cell.
  • the power supply unit supplies a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell to the column signal line via the pixel power supply line. It is characterized by being supplied.
  • the unit cell has a three-transistor configuration that does not have a selection transistor, it is possible to suppress degradation of linearity and increase in fixed pattern noise when the amount of light irradiation is small.
  • the power supply unit further includes a power supply for supplying a power supply potential to the pixel power supply line, a switch provided between the power supply and the power supply line, the pixel power supply line, and the power supply. May be provided with a resistor provided in parallel with the switch.
  • the chip size can be reduced.
  • a camera system includes the solid-state imaging device.
  • the operation region of the read transistor can be a saturation region, and the number of charges stored in the photodiode is small. Also, deterioration of linearity and increase of fixed pattern noise are suppressed.
  • the read transistor when the FD portion is reset regardless of the threshold voltage of the read transistor in a solid-state imaging device that realizes a high S / N, without increasing the number of constituent elements, the read transistor when the FD portion is reset regardless of the threshold voltage of the read transistor.
  • the operation region can be a saturation region, and without increasing the chip size, the deterioration of linearity and the increase of fixed pattern noise are suppressed even when the number of electrons stored in the photodiode is small.
  • FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to a first embodiment of the present invention.
  • FIG. 2 is an operation timing chart of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an overall configuration of a solid-state imaging device according to a modification of the first embodiment of the present invention.
  • FIG. 4 is an operation timing chart of the solid-state imaging device according to the modification of the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an overall configuration of a solid-state imaging apparatus according to the second embodiment of the present invention.
  • FIG. 6 is an operation timing chart of the solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to a first embodiment of the present invention.
  • FIG. 2 is an operation timing chart of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating
  • FIG. 7 is a diagram illustrating an overall configuration of a solid-state imaging apparatus according to the third embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an overall configuration of a solid-state imaging device according to a comparative example of the third embodiment of the present invention.
  • FIG. 9 is an operation timing chart of the solid-state imaging device of the comparative example of the third embodiment of the present invention.
  • FIG. 10 is a timing chart showing the analog-digital conversion operation.
  • FIG. 11 is an operation timing chart of the solid-state imaging device according to the third embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an overall configuration of an imaging apparatus according to the fourth embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an overall configuration of a general solid-state imaging device.
  • FIG. 14 is an operation timing chart of a general solid-state imaging device.
  • FIG. 15 is a diagram showing the relationship between the output potential of the CDS circuit and the number of electrons generated in the photodiode.
  • FIG. 16 is a diagram showing the relationship between the output potential of the CDS circuit and the number of electrons generated in the photodiode.
  • FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to a first embodiment of the present invention.
  • the same components as those in FIG. 13 are given the same reference numerals.
  • the solid-state imaging device of this embodiment includes a plurality of unit cells 100 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, Horizontal signal line 121, vertical selection circuit 122, horizontal selection circuit 123, amplifier circuit 124, pixel power supply line 125, first power supply switching transistor 131, first voltage source 132, and second power supply A switching transistor 133 and a second voltage source 134 are provided.
  • a photodiode 101 as a photoelectric conversion element (pixel) and signal charges (electrons) generated by the photodiode 101 are transferred, and the signal charges generated by the photodiode 101 are temporarily held.
  • the FD unit 106 is connected between the photodiode 101 and the FD unit 106, and is connected to the transfer transistor 102 and the FD unit 106 for transferring electrons from the photodiode 101 to the FD unit 106.
  • the column signal line 111 is provided corresponding to the column of the unit cells 100, and is commonly connected to the unit cells 100 of the corresponding column.
  • the first current source 112 is connected to the column signal line 111.
  • the CDS circuit 113 is connected to the column signal line 111.
  • the CDS circuit 113 is provided for each column signal line 111, and the potential difference at any two different timings in the corresponding column signal line 111, that is, the potential at the time of reset operation (the column signal line when the FD unit 106 is at the reset potential).
  • the signal corresponding to the difference between the output potential to 111 and the potential at the time of signal output operation (the output potential to the column signal line 111 when the signal charge is transferred to the FD portion 106) is output.
  • the horizontal selection transistor 114 is connected to the CDS circuit 113.
  • the horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
  • the vertical selection circuit 122 controls the transistor of the unit cell 100.
  • the horizontal selection circuit 123 controls the horizontal selection transistor 114.
  • the amplification circuit 124 is connected to the horizontal signal line 121.
  • the pixel power supply line 125 is connected in common to the reset transistor 103 and the readout transistor 104 of the unit cell 100 and supplies a power supply potential to the unit cell 100.
  • the pixel power supply line 125 has a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell 100 to the column signal line 111 (during signal output operation) when the FD unit 106 is reset (during the reset operation). Supply.
  • the power supply unit configured by the pixel power line 125, the first power switching transistor 131, the first voltage source 132, the second power switching transistor 133, and the second voltage source 134 is in a reset operation.
  • a power supply potential (a power supply potential different from the ground potential) lower than the power supply potential (a power supply potential different from the ground potential) during the signal output operation is supplied to the unit cell 100 via the pixel power supply line 125.
  • the second power switching transistor 133 is a switch provided between the second voltage source 134 and the pixel power line 125, and is connected to the pixel power line 125 and the second voltage source 134.
  • the first power switching transistor 131 is a switch provided between the first voltage source 132 and the pixel power line 125 and is connected to the pixel power line 125 and the first voltage source 132.
  • the first voltage source 132 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
  • the second power switching transistor 133 is a switch provided between the second voltage source 134 and the pixel power line 125, and is connected to the pixel power line 125 and the second voltage source 134.
  • the second voltage source 134 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
  • the first voltage source 132 and the second voltage source 134 are power sources having different power source potentials.
  • the power source potential supplied from the second voltage source 134 to the pixel power source line 125 is determined by the first voltage source 132. It is set lower than the power supply potential supplied to the line 125.
  • the solid-state imaging device shown in FIG. 1 has a configuration having an amplifier circuit (column amplifier) for each column, a configuration having an AD conversion circuit for each column, and performing external output with digital signals, and performing external output with analog signals. Any of the configurations can be used.
  • the 1 includes a pixel, a transfer transistor, an FD unit, a reset transistor, an amplifying transistor, and a selection transistor, a so-called 1-pixel 1-cell structure, and a plurality of pixels in one unit cell. Furthermore, any one of the FD portion, the reset transistor, the amplification transistor, and the selection transistor, or a structure in which all of them are shared in one unit cell, that is, a so-called multi-pixel 1-cell structure can be used. That is, in the unit cell 100 of FIG. 1, one reset transistor, one readout transistor, and one selection transistor are provided corresponding to one pixel, but a plurality of adjacent pixels share the reset transistor, readout transistor, and selection transistor. The number of transistors per pixel can be substantially reduced.
  • the solid-state imaging device of FIG. 1 has a structure in which pixels are formed on the surface of a semiconductor substrate, that is, on the same side as the surface on which the gate terminal and wiring of the transistor are formed, and A so-called back-illuminated image sensor (back-illuminated solid-state imaging device) structure formed on the back surface side with respect to the surface on which the gate terminal and the wiring are formed can also be used.
  • a so-called back-illuminated image sensor (back-illuminated solid-state imaging device) structure formed on the back surface side with respect to the surface on which the gate terminal and the wiring are formed can also be used.
  • FIG. 2 is an operation timing chart of the solid-state imaging device shown in FIG.
  • the horizontal axis represents time, and the vertical axis represents the potential of each signal.
  • the reset pulse ⁇ RS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row.
  • the transfer pulse ⁇ TX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row.
  • the selection pulse ⁇ SEL represents a pulse signal for commonly controlling the selection transistors 105 in a predetermined row.
  • the potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 100, and the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 100.
  • the power supply pulse ⁇ VDCEL1 represents a pulse signal that controls the first power supply switching transistor 131.
  • a power pulse ⁇ VDCEL2 represents a pulse signal that connects the second power switching transistor 133.
  • the potentials V ddpx , V ddrd, and V ddrs respectively represent the potential of the pixel power supply line 125, the first power supply potential, and the second power supply potential.
  • the potentials V fdrst2 and V fdsig2 are the potential of the FD unit 106 when reset and the potential of the FD unit 106 when electrons generated in the photodiode 101 are transferred, respectively.
  • the electrical signal transferred to the FD unit 106 is read to the column signal line 111 as a voltage signal by a source follower circuit including the read transistor 104 and the first current source 112. Then, the potential V l of the column signal line 111 when the potential V fd of the FD portion 106 is reset to the potential V ddpx of the pixel power supply line 125 and the electrons accumulated according to the amount of light irradiation are transferred to the FD portion 106. A potential corresponding to the difference from the potential V 1 of the column signal line at this time is output from the CDS circuit 113.
  • the output from the CDS circuit 113 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, amplified by the amplifier circuit 124, and output. .
  • the solid-state imaging device has a pixel power supply line 125 for reading out the potential V ddpx of the pixel power supply line 125 when the FD unit 106 is reset and a signal of the FD unit 106.
  • the potential V ddpx of the pixel power supply line 125 when the FD unit 106 is reset is lowered by switching the potential V ddpx of the pixel FD unit 106. Accordingly, the reset potential of the FD portion 106 can be made lower than the drain potential of the read transistor 104 so that the read transistor 104 operates in the saturation region even when the number of accumulated electrons of the photodiode 101 is small.
  • the read transistor 104 By setting the second power supply potential V DDRs and the first power supply potential V DDRD that satisfies, even if the number of stored electrons of the photodiode 101 is small, the read transistor 104 is operated in the saturation region, the linearity of the degradation In addition, an increase in fixed pattern noise can be suppressed.
  • FIG. 3 is a diagram showing an overall configuration of a solid-state imaging device according to a modification of the first embodiment of the present invention.
  • the same components as those in FIG. 3 are identical to FIG. 3, the same components as those in FIG. 3, the same components as those in FIG. 3, the same components as those in FIG. 3, the same components as those in FIG. 3, the same components as those in FIG. 3, the same components as those in FIG. 3, the same components as those in FIG.
  • the solid-state imaging device of the present modification includes a plurality of unit cells 100 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, Horizontal signal line 121, vertical selection circuit 122, horizontal selection circuit 123, amplifier circuit 124, pixel power supply line 125, first power supply switching transistor 131, first voltage source 132, and second power supply A switching transistor 133, a second current source 141, and a transistor 142 are provided.
  • the unit cell 100 includes a photodiode 101, an FD unit 106 to which signal charges (electrons) generated in the photodiode 101 are transferred, and temporarily hold the signal charges generated in the photodiode 101, and a photodiode.
  • a transfer transistor 102 provided between the photodiode 101 and the FD unit 106 for transferring electrons from the photodiode 101 to the FD unit 106 and a reset transistor connected to the FD unit 106 for resetting the potential of the FD unit 106 103 and a gate are connected to the FD unit 106, and are provided between the read transistor 104 and the column signal line 111 for reading out a voltage signal corresponding to the potential of the FD unit 106. The output is selected and the column signal line 11 from the unit cell 100 is selected. And a selection transistor 105 for outputting a voltage signal to.
  • the column signal line 111 is provided corresponding to the column of the unit cells 100, and is commonly connected to the selection transistor 105 of the corresponding column.
  • the first current source 112 is connected to the column signal line 111.
  • the CDS circuit 113 is connected to the column signal line 111.
  • the CDS circuit 113 is provided for each column signal line 111 and outputs a signal corresponding to a potential difference at any two different timings in the corresponding column signal line 111.
  • the horizontal selection transistor 114 is connected to the CDS circuit 113.
  • the horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
  • the vertical selection circuit 122 controls the transistor of the unit cell 100.
  • the horizontal selection circuit 123 controls the horizontal selection transistor 114.
  • the amplification circuit 124 is connected to the horizontal signal line 121.
  • the pixel power line 125 is connected in common to the reset transistor 103 and the read transistor 104 of the unit cell 100 and supplies a power source potential to the unit cell 100.
  • the pixel power supply line 125 supplies a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell 100 to the column signal line 111 when the FD unit 106 is reset.
  • a power supply unit configured by the pixel power line 125, the first power switching transistor 131, the first voltage source 132, the second power switching transistor 133, the second current source 141, and the transistor 142 is:
  • a power supply potential (power supply potential different from the ground potential) lower than the power supply potential (power supply potential different from the ground potential) during the signal output operation during the reset operation is supplied to the unit cell 100 through the pixel power supply line 125.
  • the first power switching transistor 131 is a switch provided between the first voltage source 132 and the pixel power line 125 and is connected to the pixel power line 125 and the first voltage source 132.
  • the first voltage source 132 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
  • the second power supply switching transistor 133 is connected to the pixel power supply line 125.
  • the source potential of the second potential supply transistor 142 is connected to the second power supply switching transistor 133.
  • the transistor 142 has a gate and a drain connected to the first voltage source 132 and is paired with the second current source 141 to form a source follower circuit.
  • FIG. 4 is an operation timing chart of the solid-state imaging device shown in FIG.
  • the horizontal axis represents time, and the vertical axis represents the potential of each signal.
  • the reset pulse ⁇ RS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row.
  • the transfer pulse ⁇ TX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row.
  • the selection pulse ⁇ SEL represents a pulse signal for commonly controlling the selection transistors 105 in a predetermined row.
  • the potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 100, and the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 100.
  • the power supply pulse ⁇ VDCEL1 represents a pulse signal that controls the first power supply switching transistor 131.
  • the power supply pulse ⁇ VDCEL2 represents a pulse signal that controls the second power supply switching transistor 133.
  • the potentials V ddpx , V ddrd, and V ddrs2 represent the potential of the pixel power supply line 125, the first power supply potential, and the source potential of the transistor 142, respectively.
  • the selection pulse ⁇ SEL, the reset pulse ⁇ RS, the transfer pulse ⁇ TX, and the power supply pulses ⁇ VDCEL1 and ⁇ VDCEL2 are the same signals as those in the operation timing chart shown in FIG. 2, but the second power supply potential V ddrs in FIG.
  • the source potential V ddrs2 When the current value of the second current source 141 is I vdcel , the threshold voltage of the transistor 142 is V th2 , and the transconductance coefficient of the transistor 142 is ⁇ 2 , the source potential V ddrs2 of the transistor 142 is
  • the reading transistor 104 can be operated in the saturation region, and deterioration of linearity and increase of fixed pattern noise can be suppressed.
  • a method of generating a first power supply potential V DDRD different potentials V Ddrs2 by using the voltage source for supplying a first power supply potential V DDRD is considered a number other than the circuit shown in FIG. 3, both the first The same effects as those of the embodiment can be obtained, and this modification does not specify the method.
  • FIG. 5 is a diagram illustrating an overall configuration of a solid-state imaging apparatus according to the second embodiment of the present invention.
  • the same components as those in FIG. Hereinafter, the difference from the first embodiment will be mainly described, and the other parts are the same as those of the first embodiment.
  • the solid-state imaging device of this embodiment includes a plurality of unit cells 100 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, A horizontal signal line 121, a vertical selection circuit 122, a horizontal selection circuit 123, an amplification circuit 124, a pixel power supply line 125, a voltage switching transistor 151, a voltage source 152, and a voltage drop resistor 153 are provided.
  • the unit cell 100 includes a photodiode 101, an FD unit 106 to which signal charges (electrons) generated in the photodiode 101 are transferred, and temporarily hold the signal charges generated in the photodiode 101, and a photodiode.
  • a transfer transistor 102 provided between the photodiode 101 and the FD unit 106 for transferring electrons from the photodiode 101 to the FD unit 106 and a reset transistor connected to the FD unit 106 for resetting the potential of the FD unit 106 103 and a gate are connected to the FD unit 106, and are provided between the read transistor 104 and the column signal line 111 for reading out a voltage signal corresponding to the potential of the FD unit 106. The output is selected and the column signal line 11 from the unit cell 100 is selected. And a selection transistor 105 for outputting a voltage signal to.
  • the column signal line 111 is provided corresponding to the column of the unit cells 100 and is commonly connected to the selection transistor 105 of the corresponding column.
  • the first current source 112 is connected to the column signal line 111.
  • the CDS circuit 113 is connected to the column signal line 111.
  • the CDS circuit 113 is provided for each column signal line 111 and outputs a signal corresponding to a potential difference at any two different timings in the corresponding column signal line 111.
  • the horizontal selection transistor 114 is connected to the CDS circuit 113.
  • the horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
  • the vertical selection circuit 122 controls the transistor of the unit cell 100.
  • the horizontal selection circuit 123 controls the horizontal selection transistor 114.
  • the amplification circuit 124 is connected to the horizontal signal line 121.
  • the pixel power line 125 is connected in common to the reset transistor 103 and the read transistor 104 of the unit cell 100 and supplies a power source potential to the unit cell 100.
  • the pixel power supply line 125 supplies a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell 100 to the column signal line 111 when the FD unit 106 is reset.
  • the power supply unit configured by the pixel power supply line 125, the voltage switching transistor 151, the voltage source 152, and the voltage drop resistor 153 has a power supply potential during the signal output operation during the reset operation (a power supply potential different from the ground potential).
  • a lower power supply potential (a power supply potential different from the ground potential) is supplied to the unit cell 100 through the pixel power supply line 125.
  • the voltage switching transistor 151 is a switch provided between the voltage source 152 and the pixel power line 125, and is connected to the pixel power line 125 and the voltage source 152.
  • the voltage source 152 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
  • the voltage drop resistor 153 is inserted between the pixel power line 125 and the voltage source 152 so as to be in parallel with the voltage switching transistor 151.
  • FIG. 6 is an operation timing chart of the solid-state imaging device shown in FIG.
  • the horizontal axis represents time, and the vertical axis represents the potential of each signal.
  • the reset pulse ⁇ RS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row.
  • the transfer pulse ⁇ TX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row.
  • the selection pulse ⁇ SEL represents a pulse signal for commonly controlling the selection transistors 105 in a predetermined row.
  • the potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 100, and the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 100.
  • the power supply pulse ⁇ VDCEL3 represents a pulse signal for controlling the voltage switching transistor 151.
  • the potentials V ddpx , V ddrd, and V ddrs 3 are the potential of the pixel power supply line 125, the potential supplied by the voltage source 152, and the potential of the pixel power supply line 125 when the power supply pulse ⁇ VDCEL 3 is at “H” level.
  • the potentials V fdrst3 and V fdsig3 are the potential of the FD unit 106 when reset and the potential of the FD unit 106 when electrons generated in the photodiode 101 are transferred, respectively.
  • the reset pulse ⁇ RS becomes “H” level
  • all the reset transistors 103 connected to the reset pulse ⁇ RS are turned on, and the FD portion 106 in the corresponding row is reset to the potential of the pixel power supply line 125.
  • the power supply pulse ⁇ VDCEL3 is at “H” level
  • the amount of current flowing through the pixel power line 125 is a value obtained by multiplying the amount of current of the first current source 112 by the total number of first current sources 112 arranged in a plurality. Assuming that the current amount of the first current source 112 is I bias and the total number of the first current sources 112 is K, the current amount I total flowing through the pixel power supply line 125 is
  • V ddrs3 is represented by the voltage drop due to the resistor.
  • the potential of the FD portion 106 is read out to the column signal line 111 by a source follower circuit including the reading transistor 104 and the first current source 112, and the FD portion 106 is reset to the potential of the pixel power supply line 125.
  • a potential corresponding to the difference between the potential of the column signal line 111 and the potential of the column signal line 111 when electrons generated in the photodiode 101 are transferred to the FD unit 106 according to the amount of light irradiation is output from the CDS circuit 113. Is done.
  • the output from the CDS circuit 113 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, amplified by the amplifier circuit 124, and output. .
  • the solid-state imaging device includes a voltage drop resistor 153 inserted in parallel with the voltage switching transistor 151 and turns off the voltage switching transistor 151 only when the FD unit 106 is reset.
  • the potential of the pixel power line 125 when the FD unit 106 is reset is lowered.
  • the reset potential of the FD portion 106 can be made lower than the drain potential of the read transistor 104 so that the read transistor 104 operates in the saturation region even when the number of electrons generated in the photodiode 101 is small.
  • the resistance value of the voltage drop resistor 153, the current value of the first current source 112, the number of the first current sources 112, and the threshold voltage of the reading transistor 104 as parameters satisfying Even when the number is small, it is possible to operate the read transistor 104 in the saturation region and suppress deterioration in linearity and increase in fixed pattern noise.
  • the voltage drop resistor 153 can be generated in a very small area, so that even when the number of stored electrons is small, it is possible to reduce the chip size while suppressing deterioration of linearity and increase of fixed pattern noise. It becomes.
  • the voltage drop resistor 153 can be generated in various ways, such as a resistance by a polycrystalline silicon wiring, a resistance by a metal wiring, a resistance by a transistor, and a diffusion resistance.
  • the resistor 153 can obtain the same effect in any case, and its method is not specified.
  • FIG. 7 is a diagram illustrating an overall configuration of a solid-state imaging apparatus according to the third embodiment of the present invention.
  • the same components as those in FIG. Hereinafter, the difference from the first embodiment will be mainly described, and the other parts are the same as those of the first embodiment.
  • the solid-state imaging device of this embodiment includes a plurality of unit cells 200 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, Comparator 115, counter 116, horizontal signal line 121, vertical selection circuit 122, horizontal selection circuit 123, amplification circuit 124, pixel power supply line 125, switch unit 160, voltage source 162, voltage switching transistor 163, a RAMP wave generation circuit 300, and a clock generator 400.
  • the unit cell 200 includes a photodiode 101, an FD unit 106 to which signal charges (electrons) generated in the photodiode 101 are transferred, and temporarily hold the signal charges generated in the photodiode 101.
  • a transfer transistor 102 provided between the photodiode 101 and the FD unit 106 for transferring electrons from the photodiode 101 to the FD unit 106; a reset transistor 103 connected to the FD unit 106 for resetting the FD unit 106; ,
  • the gate is connected to the FD portion 106, and the read transistor 104 for reading a voltage signal corresponding to the potential of the FD portion 106 is included.
  • the column signal line 111 is provided corresponding to the column of the unit cells 200 and is commonly connected to the read transistor 104 of the corresponding column.
  • the first current source 112 is connected to the column signal line 111.
  • the CDS circuit 113 is connected to the column signal line 111.
  • the CDS circuit 113 is provided for each column signal line 111 and outputs a signal corresponding to a potential difference at any two different timings in the corresponding column signal line 111.
  • the comparator 115 is connected to the CDS circuit 113 and the RAMP wave generation circuit 300, and compares the magnitude of the output potential of the CDS circuit 113 and the output potential of the RAMP wave generation circuit 300.
  • the counter 116 is connected to the comparator 115 and the clock generator 400.
  • the comparator 115 and the counter 116 are provided for each column signal line 111, that is, for each CDS circuit 113, and constitute an AD conversion circuit that performs analog-digital conversion on the output signal of the corresponding CDS circuit 113.
  • the horizontal selection transistor 114 is connected to the counter 116.
  • the horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
  • the vertical selection circuit 122 controls the transistor of the unit cell 200.
  • the horizontal selection circuit 123 controls the horizontal selection transistor 114.
  • the amplification circuit 126 is connected to the horizontal signal line 121.
  • the pixel power line 125 is commonly connected to the reset transistor 103 and the read transistor 104 of the unit cell 200.
  • the pixel power supply line 125 supplies a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell 200 to the column signal line 111 when the FD unit 106 is reset.
  • the pixel power supply line 125 supplies three power supply potentials to one unit cell 200.
  • the power supply unit configured by the pixel power supply line 125, the switch unit 160, the voltage source 162, and the voltage switching transistor 163 supplies three power supply potentials to one unit cell 200, and performs a signal output operation during a reset operation.
  • a power supply potential (a power supply potential different from the ground potential) lower than the current power supply potential (a power supply potential different from the ground potential) is supplied to the unit cell 200 through the pixel power supply line 125.
  • the voltage source 162 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
  • a plurality of switch units 160 are provided corresponding to the rows, and the pixel power supply line 125 and the voltage source 162 are short-circuited or disconnected.
  • the switch unit 160 includes a first voltage source connection transistor 161 and a second voltage source connection transistor 164 controlled by different signal lines.
  • the first voltage source connection transistor 161 and the second voltage source connection transistor 164 are switches provided between the voltage source 162 and the pixel power supply line 125.
  • the voltage switching transistor 163 is inserted between the pixel power line 125 and the ground.
  • the second voltage source connection transistor 164 is not provided in the configuration of FIG. 7 and only the first voltage source connection transistor 160 is configured. Is presented as a comparative example, and the solid-state imaging device of FIG. 7 is compared with the solid-state imaging device of the comparative example.
  • FIG. 8 is a diagram illustrating an overall configuration of a solid-state imaging device of a comparative example.
  • the same components as those in FIG. 7 are given the same reference numerals.
  • the solid-state imaging device of this comparative example includes a plurality of unit cells 200 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, Comparator 115, counter 116, horizontal signal line 121, vertical selection circuit 122, horizontal selection circuit 123, amplification circuit 124, pixel power supply line 125, switch unit 160, voltage source 162, voltage switching transistor 163, a RAMP wave generation circuit 300, and a clock generator 400.
  • the unit cell 200 includes a photodiode 101, an FD unit 106 to which signal charges (electrons) generated in the photodiode 101 are transferred, and temporarily hold the signal charges generated in the photodiode 101.
  • a transfer transistor 102 for transferring electrons from the 101 to the FD unit 106, a reset transistor 103 for resetting the FD unit 106, and a read transistor 104 for reading a voltage signal of the FD unit 106 are included.
  • the column signal line 111 is provided corresponding to the column of the unit cells 200 and is commonly connected to the read transistor 104 of the corresponding column.
  • the first current source 112 is connected to the column signal line 111.
  • the CDS circuit 113 is connected to the column signal line 111.
  • the comparator 115 is connected to the CDS circuit 113 and the RAMP wave generation circuit 300, and compares the magnitude of the output of the CDS circuit 113 and the output potential of the RAMP wave generation circuit 300.
  • the counter 116 is connected to the comparator 115 and the clock generator 400.
  • the horizontal selection transistor 114 is connected to the counter 116.
  • the horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
  • the vertical selection circuit 122 controls the transistor of the unit cell 200.
  • the horizontal selection circuit 123 controls the horizontal selection transistor 114.
  • the amplification circuit 126 is connected to the horizontal signal line 121.
  • the pixel power line 125 is commonly connected to the reset transistor 103 and the read transistor 104 of the unit cell 200.
  • the voltage source 162 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
  • a plurality of switch units 160 are provided corresponding to the rows, and the pixel power supply line 125 and the voltage source 162 are short-circuited or disconnected.
  • the switch unit 160 includes only the first voltage source connection transistor 161.
  • the transistor 163 is inserted between the pixel power line 125 and the ground.
  • the solid-state imaging device having the configuration of FIG. 8 is widely used as a 1-cell 3-transistor MOS type image sensor excluding a selection transistor in order to increase the aperture ratio of the pixel portion for the purpose of improving the sensitivity of the pixel portion.
  • FIG. 9 is an operation timing chart of the solid-state imaging device of FIG.
  • the horizontal axis represents time, and the vertical axis represents the potential of each signal.
  • the reset pulse ⁇ RS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row.
  • the transfer pulse ⁇ TX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row.
  • the potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 200
  • the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 200.
  • the power supply pulse ⁇ VDCEL4 represents a pulse signal for controlling the first voltage source connection transistor 161 and the transistor 163.
  • the potentials V ddpx , V ddrd, and V gnd are the potential of the pixel power supply line 125, the potential supplied by the voltage source 161, and the ground potential, respectively.
  • the potential of the FD portion 106 is read out to the column signal line 111 by a source follower circuit including the reading transistor 104 and the first current source 112, and the FD portion 106 is reset to the potential of the pixel power supply line 125.
  • a potential corresponding to the difference between the potential of the column signal line 111 and the potential of the column signal line 111 when electrons accumulated according to the light irradiation amount are transferred to the FD unit 106 is output from the CDS circuit 113.
  • the output from the CDS circuit 113 in each column is converted into a digital signal by the comparator 115 and the counter 116.
  • the horizontal axis represents time
  • the vertical axis represents the potential of each signal
  • the potential V CDS represents the output potential of the CDS circuit 113
  • the potential V ramp represents the output signal of the RAMP wave generation circuit 300
  • the clock V clk represents the clock generator 400.
  • the output pulse signal, count value Dout represents an output digital value from the counter 116.
  • the potential V ramp rises linearly, at time t 10 is the potential V ramp becomes the potential V CDS the same potential.
  • the output of the clock V clk is started, the output of the comparator 115 is at the “L” level, but when the potential V ramp and the potential V CDS become the same potential, the output changes from the “L” level to the “H” level.
  • the counter 116 stops counting.
  • the count value D out of the counter 116 outputs are clock number outputted from the output start of the clock V clk to the comparator 115 is inverted, the count value in response to the output potential of the CDS circuit 113 is high D out also increases. That is, the count value Dout is a value obtained by digitally converting the output potential of the CDS circuit 113.
  • the output from the counter 116 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, and is buffered and output by the amplification circuit 126.
  • the reset pulse ⁇ RS and the power supply pulse ⁇ VDCEL4 are set to the “H” level to set the FD portion 106 to the ground potential V gnd so that all the read transistors 104 in a given row are turned off. Then, an arbitrary row is in a non-selected state.
  • the reset potential of the FD portion 106 is equal to the drain voltage of the read transistor 104, and there is a possibility that the read transistor 104 operates in the linear region. Therefore, when the number of stored electrons is small, an increase in fixed pattern noise and deterioration of output linearity can occur.
  • the solid-state imaging device of the present embodiment shown in FIG. 7 divides the voltage source connection transistor of the switch unit 160 into a first voltage source connection transistor 161 and a second voltage source connection transistor 164. , And are controlled by power supply pulses ⁇ VDCEL4 and VDCEL5, respectively.
  • FIG. 11 shows an operation timing chart of the solid-state imaging device of the present embodiment.
  • the horizontal axis represents time, and the vertical axis represents the potential of each signal.
  • the reset pulse ⁇ RS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row.
  • the transfer pulse ⁇ TX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row.
  • the potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 200, and the potential V l represents the potential of the column signal line 111 of the column including an arbitrary unit cell 200.
  • the power pulse ⁇ VDCEL4 represents a pulse signal for controlling the first voltage source connection transistor 161 and the transistor 163, and the power pulse ⁇ VDCEL5 represents a pulse signal for controlling the second voltage source connection transistor 164.
  • V ddpx , V ddrd2 , V gnd, and V ddrs4 are the potential of the pixel power line 125, the potential of the pixel power line 125, the ground potential, and the power pulse ⁇ VDCEL 4 when the power pulses ⁇ VDCEL 4 and ⁇ VDCEL 5 are both “L” level. Is the potential of the pixel power supply line 125 when the power supply pulse ⁇ VDCEL5 is at the “H” level.
  • the potentials V fdrst4 and V fdsig4 are the potential of the FD unit 106 when reset and the potential of the FD unit 106 when electrons generated in the photodiode 101 are transferred, respectively.
  • the potential of the FD portion 106 is read out to the column signal line 111 by a source follower circuit including the reading transistor 104 and the first current source 112, and the FD portion 106 is reset to the potential of the pixel power supply line 125.
  • a potential corresponding to the difference between the potential of the column signal line 111 and the potential of the column signal line 111 when electrons generated in the photodiode 101 are transferred to the FD unit 106 according to the amount of light irradiation is output from the CDS circuit 113. Is done.
  • the output from the CDS circuit 113 in each column is converted into a digital signal by, for example, an analog-digital conversion method shown in FIG.
  • the output from the counter 116 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, amplified by the amplification circuit 126, and output.
  • the solid-state imaging device divides the voltage source connection transistor and sets the resistance between the voltage source 162 and the pixel power supply line 125 only when the FD unit 106 is reset. By increasing the value, the potential of the pixel power supply line 125 when the FD unit 106 is reset is lowered. Accordingly, the reset potential of the FD portion 106 can be made lower than the drain potential of the read transistor 104 so that the read transistor 104 operates in the saturation region even when the number of electrons generated in the photodiode 101 is small. It was. Specifically, from Equation (16), Equation (26) and Equation (27),
  • the on-resistance values of the first voltage source connection transistor 161 and the second voltage source connection transistor 164, the drain-source current and threshold voltage of the read transistor 104, and the first current source 112 By setting the number, even when the number of electrons generated in the photodiode 101 is small, the read transistor 104 can be operated in a saturation region, and deterioration of linearity and increase in fixed pattern noise can be suppressed.
  • the solid-state imaging device of the present embodiment is obtained by dividing the voltage source connection switch from the solid-state imaging device of FIG. 8, and can suppress degradation of linearity and increase of fixed pattern noise without increasing the chip size. It becomes.
  • FIG. 12 is a diagram illustrating an overall configuration of an imaging apparatus (camera system) according to a fourth embodiment of the present invention.
  • the imaging apparatus of the present embodiment is roughly composed of a solid-state imaging apparatus 201, an optical system 240, a DSP (Digital Signal Processor) 250, an image display device 280 such as a liquid crystal screen, and an image memory 290.
  • a DSP Digital Signal Processor
  • the optical system 240 includes a lens 241 that collects light from a subject and forms an image on the pixel array of the solid-state imaging device 201.
  • the solid-state imaging device 201 is the solid-state imaging device described in the first to third embodiments of the present invention.
  • the solid-state imaging device 201 selects an imaging region 210 in which unit cells including a photosensitive element such as a photodiode and a MOS transistor are arranged in a two-dimensional array, and unit cells of the imaging region 210 are selected in units of rows.
  • a vertical selection circuit 220 that controls reset and signal readout, and a timing control unit 230 that supplies a drive pulse to the vertical selection circuit 220 are provided.
  • the solid-state imaging device 201 is provided in each column, and an A / D conversion circuit that performs A / D conversion on the pixel signal read from the imaging region 210, and a column digital memory that holds the A / D converted pixel signal. And a horizontal scanning unit that drives reading of the digital pixel signal that is selected and held in each column of the column digital memory.
  • the DSP 250 includes a camera system control unit 260 and an image processing circuit 270.
  • the image processing circuit 270 receives the digital pixel signal output from the solid-state imaging device 201 and performs processing such as gamma correction, color interpolation processing, spatial interpolation processing, and auto white balance necessary for camera signal processing. Further, the image processing circuit 270 performs conversion into a compression format such as JPEG, recording in the image memory 290, and display signal processing to the image display device 280.
  • processing such as gamma correction, color interpolation processing, spatial interpolation processing, and auto white balance necessary for camera signal processing. Further, the image processing circuit 270 performs conversion into a compression format such as JPEG, recording in the image memory 290, and display signal processing to the image display device 280.
  • the camera system control unit 260 controls the optical system 240, the solid-state imaging device 201, and the image processing circuit 270 according to various settings designated by a user I / F (not shown), and integrates the entire operation of the imaging device.
  • a user I / F receives, for example, a zoom magnification change and a real-time instruction such as a release button, and the camera system control unit 260 changes the zoom magnification of the lens 241, travel of the curtain shutter, and reset scanning of the solid-state imaging device 201. Control.
  • the present invention is not limited to this embodiment.
  • the present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention. Moreover, you may combine each component in several embodiment arbitrarily in the range which does not deviate from the meaning of invention.
  • the solid-state imaging device of the third embodiment when one voltage source is connected to the pixel power supply line via two voltage source connection transistors connected in parallel, and two power supply voltages are supplied to the pixel power supply line. did.
  • two power source switching transistors are provided corresponding to two voltage sources that supply different power source potentials, and the voltage source is connected to the pixel power source line via the corresponding power source switching transistor.
  • Two power supply voltages may be supplied to the pixel power supply line by connection.
  • one voltage source is connected to the pixel power supply line via the voltage switching transistor, and further a voltage drop resistor is connected in parallel to the voltage switching transistor.
  • a power supply voltage may be supplied.
  • the power supply unit supplies three power supply potentials to one unit cell.
  • the reset potential of the FD portion can be made lower than the drain potential of the read transistor so that the read transistor operates in the saturation region even when the number of accumulated electrons in the photodiode is small
  • the power supply potential is limited to three power supply potentials. Instead, at least three power supply potentials, that is, four or more power supply potentials may be supplied to the unit cell.
  • the present invention can be used for a solid-state imaging device, and in particular, for a MOS type solid-state imaging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Disclosed are a solid-state imaging device and camera system that can prevent deterioration in output linearity and prevent an increase in fixed pattern noise even in low-light conditions, and which are provided with a unit cell (100), a column signal line (111), a first current source (112), and a power supply unit. The power supply unit has a pixel power source line (125) that is connected to a reset transistor (103) and a read transistor (104). When a floating diffusion (FD) part (106) is reset, an electric potential is supplied via the pixel power source line (125), said electric potential being lower than the electric potential when a signal voltage is outputted from the unit cell (100) to the column signal line (111).

Description

固体撮像装置及びカメラシステムSolid-state imaging device and camera system
 本発明は、固体撮像装置及びカメラシステムに関するものである。 The present invention relates to a solid-state imaging device and a camera system.
 近年、CCD型イメージセンサに代わる固体撮像装置としてMOS型イメージセンサが注目されている。これは、MOS型イメージセンサがCMOSプロセスで製造できるため既存の設備を利用でき、安定供給が可能であること、及び高速読み出し可能なため高速化・高解像度化できることなど、多くの利点を有しているためである。 In recent years, MOS image sensors have attracted attention as solid-state imaging devices that can replace CCD image sensors. This has many advantages such as the fact that MOS-type image sensors can be manufactured by the CMOS process, existing facilities can be used, stable supply is possible, and high-speed reading is possible, so that high speed and high resolution can be achieved. This is because.
 一般的なMOS型の固体撮像装置の構成及び駆動方法について、例えば特許文献1に開示されている。 For example, Patent Document 1 discloses a configuration and driving method of a general MOS type solid-state imaging device.
特開2008-067344号公報JP 2008-067344 A
 一般的な固体撮像装置について、図13及び図14を用いて説明する。図13は、一般的な固体撮像装置の全体構成を示す図である。 A general solid-state imaging device will be described with reference to FIGS. FIG. 13 is a diagram illustrating an overall configuration of a general solid-state imaging device.
 この固体撮像装置には、単位セル100が複数配列されている。なお、図13では図の簡略化のために、単位セル100が2行×2列で配列されているが、これに限定されず、任意の数の単位セル100が行方向及び列方向に配置されうる。 In this solid-state imaging device, a plurality of unit cells 100 are arranged. In FIG. 13, for simplification of the drawing, the unit cells 100 are arranged in 2 rows × 2 columns. However, the present invention is not limited to this, and an arbitrary number of unit cells 100 are arranged in the row direction and the column direction. Can be done.
 複数の単位セル100には、それぞれ光電変換素子(画素)としてのフォトダイオード101、転送トランジスタ102、FD(フローティングディフュージョン)部106、リセットトランジスタ103、読み出しトランジスタ104、及び選択トランジスタ105が配置されている。 In each of the plurality of unit cells 100, a photodiode 101 as a photoelectric conversion element (pixel), a transfer transistor 102, an FD (floating diffusion) unit 106, a reset transistor 103, a readout transistor 104, and a selection transistor 105 are arranged. .
 複数の単位セル100には、列信号線111、読み出しトランジスタ104の負荷となる第1の電流源112、CDS(Correlated Double Sampling)回路113、水平選択トランジスタ114、水平信号線121、水平選択回路123及び増幅回路124が接続されている。 The plurality of unit cells 100 include a column signal line 111, a first current source 112 serving as a load for the read transistor 104, a CDS (Correlated Double Sampling) circuit 113, a horizontal selection transistor 114, a horizontal signal line 121, and a horizontal selection circuit 123. And an amplifier circuit 124 are connected.
 列信号線111は、第1の電流源112を介してグランドに接続される。列信号線111は、単位セル100の選択時(信号読み出し時)には、読み出しトランジスタ104及び第1の電流源112と共にソースフォロア回路を構成する。読み出しトランジスタ104の出力は、CDS回路113に出力される。 The column signal line 111 is connected to the ground via the first current source 112. The column signal line 111 forms a source follower circuit together with the read transistor 104 and the first current source 112 when the unit cell 100 is selected (when reading a signal). The output of the read transistor 104 is output to the CDS circuit 113.
 固体撮像装置に入射した光は、フォトダイオード101で信号電荷に変換される。フォトダイオード101で発生した信号電荷は、転送パルスφTXに応じて転送トランジスタ102により転送され、FD部106に一時的に蓄積される。選択パルスφSELに応じて選択トランジスタ105で選択された単位セル100の信号電荷は電圧に変換され、列信号線111を経てCDS回路113に出力される。さらに、水平選択回路123によって水平選択トランジスタ114を選択的に導通して、水平信号線121に信号電圧を出力させる列信号線111が選択され、信号電圧は増幅回路124を経て外部に出力される。FD部106に蓄積された電荷の除去(リセット)は、リセットパルスφRSに応じてリセットトランジスタ103で行われ、FD部106は画素電源線125を介して接続された電圧源126が供給するリセット電位にリセットされる。また、垂直選択回路122は、転送トランジスタ102、選択トランジスタ105、及びリセットトランジスタ103に対応する駆動パルスを供給して駆動を行う。 The light incident on the solid-state imaging device is converted into signal charges by the photodiode 101. The signal charge generated in the photodiode 101 is transferred by the transfer transistor 102 in response to the transfer pulse φTX, and is temporarily stored in the FD unit 106. The signal charge of the unit cell 100 selected by the selection transistor 105 in accordance with the selection pulse φSEL is converted into a voltage and output to the CDS circuit 113 via the column signal line 111. Further, the horizontal selection transistor 123 selectively turns on the horizontal selection transistor 114 to select the column signal line 111 that outputs the signal voltage to the horizontal signal line 121, and the signal voltage is output to the outside through the amplifier circuit 124. . The charge accumulated in the FD unit 106 is removed (reset) by the reset transistor 103 in response to the reset pulse φRS. The FD unit 106 is supplied with a reset potential supplied from the voltage source 126 connected via the pixel power line 125. Reset to. Further, the vertical selection circuit 122 performs driving by supplying driving pulses corresponding to the transfer transistor 102, the selection transistor 105, and the reset transistor 103.
 次に固体撮像装置の動作について説明する。図14は、図13の固体撮像装置の動作タイミングを示すタイミングチャートである。図14において、横軸は時間、縦軸は各信号の電位を表す。リセットパルスφRSは、所定の行のリセットトランジスタ103を共通に制御するパルス信号を表している。転送パルスφTXは、所定の行の転送トランジスタ102を共通に制御するパルス信号を表している。選択パルスφSELは、所定の行の選択トランジスタ105を共通に制御するパルス信号を表している。電位Vfdは所定の単位セル100のFD部106の電位、電位Vlは所定の単位セル100と接続された列信号線111の電位を表している。以下、所定の単位セル100を例にして動作タイミングを説明するが、他の単位セル100についても同様に動作させることができる。 Next, the operation of the solid-state imaging device will be described. FIG. 14 is a timing chart showing the operation timing of the solid-state imaging device of FIG. In FIG. 14, the horizontal axis represents time, and the vertical axis represents the potential of each signal. The reset pulse φRS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row. The transfer pulse φTX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row. The selection pulse φSEL represents a pulse signal for commonly controlling the selection transistors 105 in a predetermined row. The potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 100, and the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 100. Hereinafter, the operation timing will be described by taking a predetermined unit cell 100 as an example, but other unit cells 100 can be operated in the same manner.
 時刻t0では、選択パルスφSELの電位は“L”レベルに設定され、リセットパルスφRSの電位は“H”レベルに設定される。このとき、転送パルスφTXは“L”レベルであり、フォトダイオード101とFD部106とは電気的に遮断されている。この状態では、選択トランジスタ105はオフ状態であり、読み出しトランジスタ104の出力は、列信号線111には読み出されない。また、リセットトランジスタ103はオン状態であり、FD部106の電位は、リセットレベルに設定される。 At time t 0 , the potential of the selection pulse φSEL is set to “L” level, and the potential of the reset pulse φRS is set to “H” level. At this time, the transfer pulse φTX is at the “L” level, and the photodiode 101 and the FD unit 106 are electrically disconnected. In this state, the selection transistor 105 is in an off state, and the output of the reading transistor 104 is not read out to the column signal line 111. Further, the reset transistor 103 is in an on state, and the potential of the FD unit 106 is set to a reset level.
 時刻t1では、選択パルスφSELの電位が“H”レベルに変化し、リセットパルスφRSの電位が“L”レベルに変化する。この状態では、リセットトランジスタ103はオフ状態となり、選択トランジスタ105はオン状態となる。その結果、読み出しトランジスタ104は、リセットレベルを列信号線111に出力する動作を開始する。 At time t 1 , the potential of the selection pulse φSEL changes to “H” level, and the potential of the reset pulse φRS changes to “L” level. In this state, the reset transistor 103 is turned off and the selection transistor 105 is turned on. As a result, the read transistor 104 starts an operation of outputting the reset level to the column signal line 111.
 時刻t2では、転送パルスφTXの電位が“H”レベルに変化し、転送トランジスタ102がオン状態となる。その結果、フォトダイオード101の信号電荷(電子)がFD部106に転送される。読み出しトランジスタ104のゲートの電位は、画素に入射する光の量に比例して低下し、これに伴って列信号線111の電位が低下する。 At time t 2 , the potential of the transfer pulse φTX changes to “H” level, and the transfer transistor 102 is turned on. As a result, the signal charge (electrons) of the photodiode 101 is transferred to the FD unit 106. The potential of the gate of the reading transistor 104 decreases in proportion to the amount of light incident on the pixel, and accordingly, the potential of the column signal line 111 decreases.
 時刻t3では、転送パルスφTXの電位が“L”レベルに変化し、転送トランジスタ102がオフ状態となり、フォトダイオード101の信号電荷(電子)の転送を終了する。 At time t 3 , the potential of the transfer pulse φTX changes to “L” level, the transfer transistor 102 is turned off, and the transfer of signal charges (electrons) of the photodiode 101 is completed.
 時刻t4では、選択パルスφSELの電位が“L”レベルに変化し、リセットパルスφRSの電位が“H”レベルに変化して、選択トランジスタ105はオフ状態となり、FD部106の電位が再びリセットレベルに設定される。 At time t 4 , the potential of the selection pulse φSEL changes to “L” level, the potential of the reset pulse φRS changes to “H” level, the selection transistor 105 is turned off, and the potential of the FD portion 106 is reset again. Set to level.
 CDS回路113からは、FD部106を画素電源線125の電位にリセットした時の列信号線111の電位と、光照射量に応じた電子がフォトダイオード101からFD部106に転送された時の列信号線111の電位との差分に応じた電位が出力される。 From the CDS circuit 113, the potential of the column signal line 111 when the FD unit 106 is reset to the potential of the pixel power supply line 125 and electrons corresponding to the amount of light irradiation are transferred from the photodiode 101 to the FD unit 106. A potential corresponding to the difference from the potential of the column signal line 111 is output.
 各列のCDS回路113からの出力は、水平選択回路123によって制御されている水平選択トランジスタ114を介して列毎に順次水平信号線121に読み出され、増幅回路124で増幅されて出力される。 The output from the CDS circuit 113 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, amplified by the amplifier circuit 124, and output. .
 以上の動作を、単位セル100の行ごとに順次行うことで、XY方向にアレイ状に配列された各画素の信号が出力され、2次元の画像データが生成される。 By sequentially performing the above operations for each row of the unit cells 100, signals of each pixel arranged in an array in the XY directions are output, and two-dimensional image data is generated.
 しかしながら、上記固体撮像装置は、光照射量が少ない時に出力リニアリティの劣化を引き起こすことがあり、これが固定パターンノイズによる画質劣化に繋がる。その理由を以下に説明する。 However, the solid-state imaging device may cause deterioration of output linearity when the amount of light irradiation is small, which leads to image quality deterioration due to fixed pattern noise. The reason will be described below.
 画素電源線125の電位をVddとすると、FD部106をリセットした時のFD部106の電位VfdrstWhen the potential of the pixel power supply line 125 is V dd , the potential V fdrst of the FD unit 106 when the FD unit 106 is reset is
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
である。 It is.
 読み出しトランジスタ104が飽和領域で動作していると、読み出しトランジスタ104のドレイン・ソース間を流れる電流量IdsWhen the read transistor 104 operates in the saturation region, the amount of current I ds flowing between the drain and source of the read transistor 104 is
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
で示される。ここで、VfdはFD部106の電位、Vlは列信号線111の電位、Vthは読み出しトランジスタ104のしきい値電圧、βは読み出しトランジスタ104のトランスコンダクタンス係数である。 Indicated by Here, V fd is the potential of the FD portion 106, V l is the potential of the column signal line 111, V th is the threshold voltage of the read transistor 104, and β is the transconductance coefficient of the read transistor 104.
 読み出しトランジスタ104のソース・ドレイン間を流れる電流は、定電流源(第1の電流源112)で一定の値に決められており、定電流源の電流値をIbiasとすると、FD部106をリセットした時の列信号線111の電位Vl1rstは、 The current flowing between the source and the drain of the reading transistor 104 is determined to be a constant value by the constant current source (first current source 112). If the current value of the constant current source is I bias , the FD unit 106 is The potential V l1rst of the column signal line 111 when reset is
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
であらわされる。 It is expressed.
 次に、フォトダイオード101で発生した電子をFD部106に転送すると、FD部106の電位は電子の数に応じて変化する。この時のFD部106の電位VfdsigNext, when electrons generated in the photodiode 101 are transferred to the FD unit 106, the potential of the FD unit 106 changes according to the number of electrons. The potential V fdsig of the FD unit 106 at this time is
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
であらわされる。ここで、Nはフォトダイオード101で発生した電子の数、qは電子一つあたりの電荷量、CはFD部106の容量である。この時の列信号線111の電位Vl1sigは、 It is expressed. Here, N is the number of electrons generated in the photodiode 101, q is the amount of charge per electron, and C is the capacitance of the FD unit 106. The potential V l1sig of the column signal line 111 at this time is
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
となる。 It becomes.
 ここで、式(3)及び式(5)は、読み出しトランジスタ104が飽和領域で動作しているとした時の値である。読み出しトランジスタ104が飽和領域ではなくリニア領域で動作しているとすると、読み出しトランジスタ104のソース・ドレイン間を流れる電流IdsHere, the expressions (3) and (5) are values when the reading transistor 104 operates in the saturation region. Assuming that the read transistor 104 operates in the linear region instead of the saturation region, the current I ds flowing between the source and drain of the read transistor 104 is
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
で示される。これより、読み出しトランジスタ104がリニア領域にある時の、FD部106をリセットした時の列信号線111の電位Vl2rst及びフォトダイオード101で発生した電子をFD部106に転送した時の列信号線111の電位Vl2sigを求めると、 Indicated by As a result, when the read transistor 104 is in the linear region, the column signal line when the potential V l2rst of the column signal line 111 and the electrons generated in the photodiode 101 are transferred to the FD unit 106 when the FD unit 106 is reset. When the potential V l2sig of 111 is obtained,
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
及び as well as
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
となる。 It becomes.
 トランジスタが飽和領域で動作するかリニア領域で動作するかは、トランジスタのゲート電圧、ドレイン電圧及びしきい値電圧によって決まり、 ∙ Whether the transistor operates in the saturation region or in the linear region depends on the gate voltage, drain voltage and threshold voltage of the transistor,
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
を満たす時はリニア領域、 When satisfying the linear region,
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
を満たす時は飽和領域で動作する。 When it satisfies, it operates in the saturation region.
 式(1)、式(4)、式(9)及び式(10)より、FD部106をリセットした時に読み出しトランジスタ104が飽和領域で動作していれば、フォトダイオード101で発生した電子を転送した後も読み出しトランジスタ104は飽和領域で動作する。電子はマイナスの電荷を持っており、フォトダイオード101で発生した電子が転送された後のFD部106の電位は、FD部106をリセットした時の電位から低くなるためである。しかしながら、FD部106をリセットした時に読み出しトランジスタ104がリニア領域で動作していれば、電子を転送した後の読み出しトランジスタ104は、フォトダイオード101で発生する電子の量が少ない時はリニア領域で動作し、多い時は飽和領域で動作することになる。 From Expression (1), Expression (4), Expression (9), and Expression (10), if the read transistor 104 is operating in the saturation region when the FD portion 106 is reset, electrons generated in the photodiode 101 are transferred. After that, the read transistor 104 operates in the saturation region. This is because the electrons have a negative charge, and the potential of the FD portion 106 after the electrons generated in the photodiode 101 are transferred is lower than the potential when the FD portion 106 is reset. However, if the readout transistor 104 is operating in the linear region when the FD portion 106 is reset, the readout transistor 104 after transferring electrons operates in the linear region when the amount of electrons generated in the photodiode 101 is small. However, when it is large, it operates in the saturation region.
 一般的な固体撮像装置は、CDS回路113にて、FD部106をリセットした後の列信号線111の電位と、フォトダイオード101で発生した電子を転送した後の列信号線111の電位との差分をCDS回路113から出力する。従って、FD部106をリセットした時に読み出しトランジスタ104が飽和領域で動作している時のCDS回路113からの出力電位Vo1は、式(3)及び式(5)より In a general solid-state imaging device, the potential of the column signal line 111 after resetting the FD unit 106 in the CDS circuit 113 and the potential of the column signal line 111 after transferring electrons generated in the photodiode 101 are calculated. The difference is output from the CDS circuit 113. Therefore, the output potential V o1 from the CDS circuit 113 when the read transistor 104 is operating in the saturation region when the FD unit 106 is reset is obtained from the equations (3) and (5).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
となる。ここで、Vbiasは任意の基準電位である。 It becomes. Here, V bias is an arbitrary reference potential.
 また、FD部106をリセットした時に読み出しトランジスタ104がリニア領域で動作していれば、その時のCDS回路113からの出力電圧Vo2は、式(3)、式(7)、式(8)、式(9)及び式(10)より、 Further, if the read transistor 104 is operating in the linear region when the FD unit 106 is reset, the output voltage V o2 from the CDS circuit 113 at that time is expressed by the equations (3), (7), (8), From Equation (9) and Equation (10),
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
となる。 It becomes.
 ここで、式(11)を基に、FD部106をリセットした時に読み出しトランジスタ104が飽和領域で動作する場合の、フォトダイオード101での発生電子数に対するCDS回路113の出力電位Vo1をグラフ化したものを図15に示す。また、式(12)を基に、FD部106をリセットした時に読み出しトランジスタ104がリニア領域で動作する場合の、フォトダイオード101での発生電子数に対するCDS回路113の出力電位Vo2をグラフ化したものを図16に示す。 Here, based on Expression (11), the output potential V o1 of the CDS circuit 113 with respect to the number of electrons generated in the photodiode 101 when the reading transistor 104 operates in the saturation region when the FD unit 106 is reset is graphed. The result is shown in FIG. Further, based on Expression (12), the output potential V o2 of the CDS circuit 113 with respect to the number of electrons generated in the photodiode 101 when the read transistor 104 operates in the linear region when the FD unit 106 is reset is graphed. This is shown in FIG.
 図16より、FD部106をリセットした時に読み出しトランジスタ104がリニア領域で動作する場合、読み出しトランジスタ104が飽和領域で動作するくらいまで発生電子数が多くならないと、発生電子数に対してCDS回路113の出力電位の増加が非線形となり、固体撮像装置の出力リニアリティが劣化することが分かる。また、リニア領域におけるトランジスタの特性は、一般的にトランジスタ毎のばらつきが大きいため、単位セル100ごとに出力がばらつく固定パターンノイズも増加してしまう。 As shown in FIG. 16, when the read transistor 104 operates in the linear region when the FD unit 106 is reset, the number of generated electrons does not increase until the read transistor 104 operates in the saturation region. It can be seen that the increase in the output potential becomes nonlinear and the output linearity of the solid-state imaging device deteriorates. In addition, since the transistor characteristics in the linear region generally vary widely from transistor to transistor, fixed pattern noise that varies in output from unit cell 100 also increases.
 読み出しトランジスタ104は、その1/fノイズが固体撮像装置のS/Nに大きな影響を与えることから、1/fノイズ低減のために、ゲート酸化膜厚を薄くしたり、埋め込みチャネル型にしたりするが、この影響でしきい値電圧Vthが低くなり、0V以下になることも多い。また、低消費電力化のために電源電圧を下げる場合でも、読み出しトランジスタ104の基板バイアス効果が小さくなるため、しきい値電圧Vthは低くなる。また、実際のトランジスタは、式(9)を満たす場合でもゲート電位がドレイン電位としきい値電圧Vthとを足した値に近い領域ではドレイン・ソース間電流は、ドレイン・ソース間電圧にも依存するようになる。 Since the 1 / f noise has a great influence on the S / N of the solid-state imaging device, the readout transistor 104 has a thin gate oxide film thickness or a buried channel type in order to reduce the 1 / f noise. However, due to this influence, the threshold voltage V th is lowered and often becomes 0 V or less. Even when the power supply voltage is lowered to reduce power consumption, the substrate bias effect of the read transistor 104 is reduced, so that the threshold voltage Vth is lowered. In the actual transistor, the drain-source current also depends on the drain-source voltage in the region where the gate potential is close to the value obtained by adding the drain potential and the threshold voltage V th even when the equation (9) is satisfied. To come.
 以上より、図13の固体撮像装置のように、FD部106のリセット電位と読み出しトランジスタ104のドレイン電位とが同電位であることは、読み出しトランジスタ104をリニア領域で動作させ、固体撮像装置の出力リニアリティの劣化及び固定パターンノイズの増加を引き起こすことがあると言える。 As described above, the reset potential of the FD unit 106 and the drain potential of the readout transistor 104 are the same potential as in the solid-state imaging device of FIG. It can be said that linearity is deteriorated and fixed pattern noise is increased.
 そこで、本発明は、かかる問題点に鑑みてなされたものであり、光照射量が少ない場合でも出力リニアリティの劣化及び固定パターンノイズの増加を抑えることが可能な固体撮像装置及びカメラシステムを提供することを目的とする。 Therefore, the present invention has been made in view of such problems, and provides a solid-state imaging device and a camera system capable of suppressing degradation of output linearity and increase of fixed pattern noise even when the amount of light irradiation is small. For the purpose.
 上記目的を達成するために、本発明の一態様に係る固体撮像装置は、アレイ状に配列された複数の単位セルと、前記単位セルの列に対応して設けられ、対応する列の前記単位セルに共通に接続された列信号線と、前記列信号線に接続された電流源と、前記単位セルに電源電位を供給するための電源供給部とを備え、前記単位セルは、フォトダイオードと、前記フォトダイオードで発生した信号電荷を一時的に保持するためのFD(フローティングディフュージョン)部と、前記フォトダイオードと前記FD部との間に設けられ、前記フォトダイオードから前記FD部に電荷を転送するための転送トランジスタと、前記FD部と接続され、前記FD部の電位をリセットするためのリセットトランジスタと、ゲートが前記FD部に接続され、前記FD部の電位に応じた信号電圧を読み出すための読み出しトランジスタと、前記読み出しトランジスタと前記列信号線との間に設けられ、前記単位セルから前記列信号線に信号電圧を出力するための選択トランジスタとを有し、前記電源供給部は、前記リセットトランジスタ及び前記読み出しトランジスタに共通に接続された画素電源線を有し、前記FD部をリセットする時に、前記単位セルから前記列信号線に前記信号電圧を出力する時の電源電位よりも低い電源電位を、前記画素電源線を介して供給することを特徴とする。 To achieve the above object, a solid-state imaging device according to an aspect of the present invention is provided corresponding to a plurality of unit cells arranged in an array and a column of the unit cells, and the units of the corresponding column A column signal line commonly connected to the cell; a current source connected to the column signal line; and a power supply unit for supplying a power supply potential to the unit cell, wherein the unit cell includes a photodiode, FD (floating diffusion) part for temporarily holding the signal charge generated in the photodiode, and between the photodiode and the FD part, to transfer the charge from the photodiode to the FD part A transfer transistor connected to the FD portion, a reset transistor for resetting the potential of the FD portion, and a gate connected to the FD portion, A read transistor for reading a signal voltage corresponding to the potential of the FD section, and a selection transistor provided between the read transistor and the column signal line, for outputting a signal voltage from the unit cell to the column signal line And the power supply unit includes a pixel power line commonly connected to the reset transistor and the readout transistor, and the signal from the unit cell to the column signal line when the FD unit is reset. A power supply potential lower than a power supply potential at the time of outputting a voltage is supplied through the pixel power supply line.
 本態様によれば、フォトダイオードの蓄積電子数が少ない場合においても読み出しトランジスタが飽和領域で動作するように、FD部のリセット電位を読み出しトランジスタのドレイン電位よりも低くすることが出来る。その結果、光照射量が少ない場合でも、読み出しトランジスタを飽和領域で動作させ、リニアリティの劣化及び固定パターンノイズの増加を抑えることが可能となる。 According to this aspect, the reset potential of the FD portion can be made lower than the drain potential of the read transistor so that the read transistor operates in the saturation region even when the number of electrons stored in the photodiode is small. As a result, even when the amount of light irradiation is small, it is possible to operate the read transistor in the saturation region and suppress deterioration in linearity and increase in fixed pattern noise.
 ここで、前記電源供給部は、さらに、前記画素電源線に電源電位を供給するための電源と、前記電源と前記電源線との間に設けられたスイッチと、前記画素電源線と前記電源との間に、前記スイッチと並列になるように設けられた抵抗とを備えてもよい。 Here, the power supply unit further includes a power supply for supplying a power supply potential to the pixel power supply line, a switch provided between the power supply and the power supply line, the pixel power supply line, and the power supply. May be provided with a resistor provided in parallel with the switch.
 一般的にMOSプロセスにおいて抵抗は非常に小さな面積で生成可能であるため、チップサイズの小型化が可能となる。 Generally, in the MOS process, the resistance can be generated in a very small area, so that the chip size can be reduced.
 また、本発明の一態様に係る固体撮像装置は、アレイ状に配列された複数の単位セルと、前記単位セルの列に対応して設けられ、対応する列の前記単位セルに共通に接続された列信号線と、前記列信号線に接続された電流源と、前記単位セルに電源電位を供給するための電源供給部とを備え、前記単位セルは、フォトダイオードと、前記フォトダイオードで発生した信号電荷を一時的に保持するためのFD(フローティングディフュージョン)部と、前記フォトダイオードと前記FD部との間に設けられ、前記フォトダイオードから前記FD部に電荷を転送するための転送トランジスタと、前記FD部と接続され、前記FD部の電位をリセットするためのリセットトランジスタと、ゲートが前記FD部に接続され、前記FD部の電位に応じた信号電圧を読み出すための読み出しトランジスタとを有し、前記電源供給部は、前記リセットトランジスタ及び前記読み出しトランジスタに共通に接続された画素電源線を有し、少なくとも3つの電源電位を1つの前記単位セルに供給し、前記電源供給部は、前記FD部をリセットする時に、前記単位セルから前記列信号線に前記信号電圧を出力する時の電源電位よりも低い電源電位を、前記画素電源線を介して供給することを特徴とする。 The solid-state imaging device according to one embodiment of the present invention is provided corresponding to a plurality of unit cells arranged in an array and a column of the unit cells, and is commonly connected to the unit cells of the corresponding column. A column signal line, a current source connected to the column signal line, and a power supply unit for supplying a power supply potential to the unit cell. The unit cell is generated by a photodiode and the photodiode. An FD (floating diffusion) portion for temporarily holding the signal charge, and a transfer transistor provided between the photodiode and the FD portion for transferring the charge from the photodiode to the FD portion, A reset transistor connected to the FD unit for resetting the potential of the FD unit, and a gate connected to the FD unit, in accordance with the potential of the FD unit. A read transistor for reading a signal voltage, and the power supply unit includes a pixel power line commonly connected to the reset transistor and the read transistor, and at least three power supply potentials are supplied to one unit cell. When the FD unit is reset, the power supply unit supplies a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell to the column signal line via the pixel power supply line. It is characterized by being supplied.
 本態様によれば、単位セルが選択トランジスタを有しない3トランジスタの構成を持つ場合において、光照射量が少ない場合のリニアリティの劣化及び固定パターンノイズの増加を抑えることが可能となる。 According to this aspect, when the unit cell has a three-transistor configuration that does not have a selection transistor, it is possible to suppress degradation of linearity and increase in fixed pattern noise when the amount of light irradiation is small.
 ここで、前記電源供給部は、さらに、前記画素電源線に電源電位を供給するための電源と、前記電源と前記電源線との間に設けられたスイッチと、前記画素電源線と前記電源との間に、前記スイッチと並列になるように設けられた抵抗とを備えてもよい。 Here, the power supply unit further includes a power supply for supplying a power supply potential to the pixel power supply line, a switch provided between the power supply and the power supply line, the pixel power supply line, and the power supply. May be provided with a resistor provided in parallel with the switch.
 本態様によれば、チップサイズの小型化が可能となる。 れ ば According to this aspect, the chip size can be reduced.
 また、本発明の一態様に係るカメラシステムは、上記固体撮像装置を備えることを特徴とする。 Further, a camera system according to an aspect of the present invention includes the solid-state imaging device.
 本態様によれば、光照射量が少ない場合のリニアリティの劣化及び固定パターンノイズの増加を抑えることが可能となる。 According to this aspect, it is possible to suppress degradation of linearity and increase of fixed pattern noise when the amount of light irradiation is small.
 本発明の第1側面によると、読み出しトランジスタのしきい値電圧によらずFD部をリセットした時の読み出しトランジスタの動作領域を飽和領域にすることができ、フォトダイオードの蓄積電荷数が少ない場合においてもリニアリティの劣化及び固定パターンノイズの増加が抑制される。 According to the first aspect of the present invention, when the FD portion is reset regardless of the threshold voltage of the read transistor, the operation region of the read transistor can be a saturation region, and the number of charges stored in the photodiode is small. Also, deterioration of linearity and increase of fixed pattern noise are suppressed.
 本発明の第2側面によると、高S/Nを実現する固体撮像装置において、構成する素子を増加させることなく、読み出しトランジスタのしきい値電圧によらずFD部をリセットした時の読み出しトランジスタの動作領域を飽和領域にすることができ、チップサイズを増加させることなく、フォトダイオードの蓄積電子数が少ない場合においてもリニアリティの劣化及び固定パターンノイズの増加が抑制される。 According to the second aspect of the present invention, in a solid-state imaging device that realizes a high S / N, without increasing the number of constituent elements, the read transistor when the FD portion is reset regardless of the threshold voltage of the read transistor. The operation region can be a saturation region, and without increasing the chip size, the deterioration of linearity and the increase of fixed pattern noise are suppressed even when the number of electrons stored in the photodiode is small.
図1は、本発明における第1の実施形態の固体撮像装置の全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to a first embodiment of the present invention. 図2は、本発明における第1の実施形態の固体撮像装置の動作タイミングチャートである。FIG. 2 is an operation timing chart of the solid-state imaging device according to the first embodiment of the present invention. 図3は、本発明における第1の実施形態の変形例の固体撮像装置の全体構成を示す図である。FIG. 3 is a diagram illustrating an overall configuration of a solid-state imaging device according to a modification of the first embodiment of the present invention. 図4は、本発明における第1の実施形態の変形例の固体撮像装置の動作タイミングチャートである。FIG. 4 is an operation timing chart of the solid-state imaging device according to the modification of the first embodiment of the present invention. 図5は、本発明における第2の実施形態の固体撮像装置の全体構成を示す図である。FIG. 5 is a diagram illustrating an overall configuration of a solid-state imaging apparatus according to the second embodiment of the present invention. 図6は、本発明における第2の実施形態の固体撮像装置の動作タイミングチャートである。FIG. 6 is an operation timing chart of the solid-state imaging device according to the second embodiment of the present invention. 図7は、本発明における第3の実施形態の固体撮像装置の全体構成を示す図である。FIG. 7 is a diagram illustrating an overall configuration of a solid-state imaging apparatus according to the third embodiment of the present invention. 図8は、本発明における第3の実施形態の比較例の固体撮像装置の全体構成を示す図である。FIG. 8 is a diagram illustrating an overall configuration of a solid-state imaging device according to a comparative example of the third embodiment of the present invention. 図9は、本発明における第3の実施形態の比較例の固体撮像装置の動作タイミングチャートである。FIG. 9 is an operation timing chart of the solid-state imaging device of the comparative example of the third embodiment of the present invention. 図10は、アナログ-デジタル変換動作を示すタイミングチャートである。FIG. 10 is a timing chart showing the analog-digital conversion operation. 図11は、本発明における第3の実施形態の固体撮像装置の動作タイミングチャートである。FIG. 11 is an operation timing chart of the solid-state imaging device according to the third embodiment of the present invention. 図12は、本発明における第4の実施形態の撮像装置の全体構成を示す図である。FIG. 12 is a diagram illustrating an overall configuration of an imaging apparatus according to the fourth embodiment of the present invention. 図13は、一般的な固体撮像装置の全体構成を示す図である。FIG. 13 is a diagram illustrating an overall configuration of a general solid-state imaging device. 図14は、一般的な固体撮像装置の動作タイミングチャートである。FIG. 14 is an operation timing chart of a general solid-state imaging device. 図15は、CDS回路の出力電位とフォトダイオードで発生した電子数との関係を示す図である。FIG. 15 is a diagram showing the relationship between the output potential of the CDS circuit and the number of electrons generated in the photodiode. 図16は、CDS回路の出力電位とフォトダイオードで発生した電子数との関係を示す図である。FIG. 16 is a diagram showing the relationship between the output potential of the CDS circuit and the number of electrons generated in the photodiode.
 以下、本発明の実施の形態における固体撮像装置及びカメラシステムについて、図面を参照しながら説明する。 Hereinafter, a solid-state imaging device and a camera system according to embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明における第1の実施形態の固体撮像装置の全体構成を示す図である。図1中、図13と同様の構成要素については、同じ符号を付与している。
(First embodiment)
FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to a first embodiment of the present invention. In FIG. 1, the same components as those in FIG. 13 are given the same reference numerals.
 本実施形態の固体撮像装置は、XY方向にアレイ状に配列された複数の単位セル100と、列信号線111と、第1の電流源112と、CDS回路113と、水平選択トランジスタ114と、水平信号線121と、垂直選択回路122と、水平選択回路123と、増幅回路124と、画素電源線125と、第1の電源切り替えトランジスタ131と、第1の電圧源132と、第2の電源切り替えトランジスタ133と、第2の電圧源134とを備える。 The solid-state imaging device of this embodiment includes a plurality of unit cells 100 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, Horizontal signal line 121, vertical selection circuit 122, horizontal selection circuit 123, amplifier circuit 124, pixel power supply line 125, first power supply switching transistor 131, first voltage source 132, and second power supply A switching transistor 133 and a second voltage source 134 are provided.
 単位セル100は、光電変換素子(画素)としてのフォトダイオード101と、フォトダイオード101で発生した信号電荷(電子)が転送され、フォトダイオード101で発生した信号電荷を一時的に保持しておくためのFD部106と、フォトダイオード101とFD部106との間に設けられ、フォトダイオード101からFD部106に電子を転送するための転送トランジスタ102と、FD部106と接続され、FD部106の電位をリセット(初期化)するためのリセットトランジスタ103と、ゲートがFD部106に接続され、FD部106の電位に応じた電圧信号を読み出すための読み出しトランジスタ(増幅トランジスタ)104と、読み出しトランジスタ104と列信号線111との間に設けられ、読み出しトランジスタ104の出力を選択し、単位セル100から列信号線111に電圧信号を出力するための選択トランジスタ105とを有する。 In the unit cell 100, a photodiode 101 as a photoelectric conversion element (pixel) and signal charges (electrons) generated by the photodiode 101 are transferred, and the signal charges generated by the photodiode 101 are temporarily held. The FD unit 106 is connected between the photodiode 101 and the FD unit 106, and is connected to the transfer transistor 102 and the FD unit 106 for transferring electrons from the photodiode 101 to the FD unit 106. A reset transistor 103 for resetting (initializing) the potential, a read transistor (amplification transistor) 104 for reading a voltage signal corresponding to the potential of the FD unit 106, a gate connected to the FD unit 106, and a read transistor 104 And the column signal line 111, and a read transistor It selects the output of the static 104, and a selection transistor 105 for outputting a voltage signal to the column signal line 111 from the unit cell 100.
 列信号線111は、単位セル100の列に対応して設けられ、対応する列の単位セル100に共通に接続される。 The column signal line 111 is provided corresponding to the column of the unit cells 100, and is commonly connected to the unit cells 100 of the corresponding column.
 第1の電流源112は、列信号線111に接続されている。 The first current source 112 is connected to the column signal line 111.
 CDS回路113は、列信号線111に接続されている。CDS回路113は、列信号線111毎に設けられ、対応する列信号線111における任意の異なる二つのタイミングにおける電位差、つまりリセット動作時の電位(FD部106がリセット電位にある時の列信号線111への出力電位)と信号出力動作時の電位(FD部106に信号電荷が転送されている時の列信号線111への出力電位)との差に応じた信号を出力する。 The CDS circuit 113 is connected to the column signal line 111. The CDS circuit 113 is provided for each column signal line 111, and the potential difference at any two different timings in the corresponding column signal line 111, that is, the potential at the time of reset operation (the column signal line when the FD unit 106 is at the reset potential). The signal corresponding to the difference between the output potential to 111 and the potential at the time of signal output operation (the output potential to the column signal line 111 when the signal charge is transferred to the FD portion 106) is output.
 水平選択トランジスタ114は、CDS回路113に接続されている。 The horizontal selection transistor 114 is connected to the CDS circuit 113.
 水平信号線121は、各列の水平選択トランジスタ114に共通に接続されている。 The horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
 垂直選択回路122は、単位セル100のトランジスタを制御する。 The vertical selection circuit 122 controls the transistor of the unit cell 100.
 水平選択回路123は、水平選択トランジスタ114を制御する。 The horizontal selection circuit 123 controls the horizontal selection transistor 114.
 増幅回路124は、水平信号線121に接続されている。 The amplification circuit 124 is connected to the horizontal signal line 121.
 画素電源線125は、単位セル100のリセットトランジスタ103及び読み出しトランジスタ104に共通に接続され、単位セル100に電源電位を供給する。画素電源線125は、FD部106をリセットする時(リセット動作時)に、単位セル100から列信号線111に信号電圧を出力する時(信号出力動作時)の電源電位よりも低い電源電位を供給する。言い換えると、画素電源線125、第1の電源切り替えトランジスタ131、第1の電圧源132、第2の電源切り替えトランジスタ133、及び第2の電圧源134により構成される電源供給部は、リセット動作時に信号出力動作時の電源電位(グランド電位と異なる電源電位)よりも低い電源電位(グランド電位と異なる電源電位)を、画素電源線125を介して単位セル100に供給する。 The pixel power supply line 125 is connected in common to the reset transistor 103 and the readout transistor 104 of the unit cell 100 and supplies a power supply potential to the unit cell 100. The pixel power supply line 125 has a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell 100 to the column signal line 111 (during signal output operation) when the FD unit 106 is reset (during the reset operation). Supply. In other words, the power supply unit configured by the pixel power line 125, the first power switching transistor 131, the first voltage source 132, the second power switching transistor 133, and the second voltage source 134 is in a reset operation. A power supply potential (a power supply potential different from the ground potential) lower than the power supply potential (a power supply potential different from the ground potential) during the signal output operation is supplied to the unit cell 100 via the pixel power supply line 125.
 第2の電源切り替えトランジスタ133は、第2の電圧源134と画素電源線125との間に設けられたスイッチであり、画素電源線125及び第2の電圧源134に接続されている。 The second power switching transistor 133 is a switch provided between the second voltage source 134 and the pixel power line 125, and is connected to the pixel power line 125 and the second voltage source 134.
 第1の電源切り替えトランジスタ131は、第1の電圧源132と画素電源線125との間に設けられたスイッチであり、画素電源線125及び第1の電圧源132に接続されている。 The first power switching transistor 131 is a switch provided between the first voltage source 132 and the pixel power line 125 and is connected to the pixel power line 125 and the first voltage source 132.
 第1の電圧源132は、画素電源線125にグランド電位と異なる電源電位を供給する。 The first voltage source 132 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
 第2の電源切り替えトランジスタ133は、第2の電圧源134と画素電源線125との間に設けられたスイッチであり、画素電源線125及び第2の電圧源134に接続されている。 The second power switching transistor 133 is a switch provided between the second voltage source 134 and the pixel power line 125, and is connected to the pixel power line 125 and the second voltage source 134.
 第2の電圧源134は、画素電源線125にグランド電位と異なる電源電位を供給する。第1の電圧源132及び第2の電圧源134は、異なる電源電位の電源であり、第2の電圧源134が画素電源線125に供給する電源電位は、第1の電圧源132が画素電源線125に供給する電源電位よりも低く設定されている。 The second voltage source 134 supplies a power supply potential different from the ground potential to the pixel power supply line 125. The first voltage source 132 and the second voltage source 134 are power sources having different power source potentials. The power source potential supplied from the second voltage source 134 to the pixel power source line 125 is determined by the first voltage source 132. It is set lower than the power supply potential supplied to the line 125.
 なお、図1の固体撮像装置は、CDS回路113毎に対応して設けられ、対応するCDS回路113の出力信号をA/D変換(アナログ-デジタル変換)する列A/D変換回路を備えている場合もある。すなわち、図1の固体撮像装置は、列毎に増幅回路(カラムアンプ)を持つ構成、列毎にAD変換回路を持ち、デジタル信号で外部出力を行う構成、及びアナログ信号のまま外部出力を行う構成のいずれかを用いることが出来る。 1 includes a column A / D conversion circuit that is provided corresponding to each CDS circuit 113 and that performs A / D conversion (analog-digital conversion) on the output signal of the corresponding CDS circuit 113. There may be. That is, the solid-state imaging device shown in FIG. 1 has a configuration having an amplifier circuit (column amplifier) for each column, a configuration having an AD conversion circuit for each column, and performing external output with digital signals, and performing external output with analog signals. Any of the configurations can be used.
 また、図1の単位セル100は、画素、転送トランジスタ、FD部、リセットトランジスタ、増幅トランジスタ及び選択トランジスタを有する構造、いわゆる1画素1セル構造とともに、複数の画素を1つの単位セル内に含み、さらに、FD部、リセットトランジスタ、増幅トランジスタ及び選択トランジスタのいずれか、あるいは、すべてを1つの単位セル内で共有する構造、いわゆる多画素1セル構造を用いることが出来る。すなわち、図1の単位セル100では、一つの画素に対応してリセットトランジスタ、読み出しトランジスタ及び選択トランジスタがひとつずつ設けられているが、隣接する複数の画素でリセットトランジスタ、読み出しトランジスタ及び選択トランジスタが共有化され、実質的に1画素あたりのトランジスタ数を少なくすることが出来る。 1 includes a pixel, a transfer transistor, an FD unit, a reset transistor, an amplifying transistor, and a selection transistor, a so-called 1-pixel 1-cell structure, and a plurality of pixels in one unit cell. Furthermore, any one of the FD portion, the reset transistor, the amplification transistor, and the selection transistor, or a structure in which all of them are shared in one unit cell, that is, a so-called multi-pixel 1-cell structure can be used. That is, in the unit cell 100 of FIG. 1, one reset transistor, one readout transistor, and one selection transistor are provided corresponding to one pixel, but a plurality of adjacent pixels share the reset transistor, readout transistor, and selection transistor. The number of transistors per pixel can be substantially reduced.
 また、図1の固体撮像装置は、画素が半導体基板の表面、すなわち、トランジスタのゲート端子及び配線が形成された面と同じ面側に形成される構造とともに、画素が半導体基板の裏面、すなわちトランジスタのゲート端子及び配線が形成された面に対して裏面側に形成される、いわゆる、裏面照射型イメージセンサ(裏面照射型固体撮像装置)の構造を用いることも出来る。 In addition, the solid-state imaging device of FIG. 1 has a structure in which pixels are formed on the surface of a semiconductor substrate, that is, on the same side as the surface on which the gate terminal and wiring of the transistor are formed, and A so-called back-illuminated image sensor (back-illuminated solid-state imaging device) structure formed on the back surface side with respect to the surface on which the gate terminal and the wiring are formed can also be used.
 図2は、図1に示す固体撮像装置の動作タイミングチャートである。 FIG. 2 is an operation timing chart of the solid-state imaging device shown in FIG.
 図2において、横軸は時間、縦軸は各信号の電位を表す。リセットパルスφRSは、所定の行のリセットトランジスタ103を共通に制御するパルス信号を表している。転送パルスφTXは、所定の行の転送トランジスタ102を共通に制御するパルス信号を表している。選択パルスφSELは、所定の行の選択トランジスタ105を共通に制御するパルス信号を表している。電位Vfdは所定の単位セル100のFD部106の電位、電位Vlは所定の単位セル100と接続された列信号線111の電位を表している。電源パルスφVDCEL1は、第1の電源切り替えトランジスタ131を制御するパルス信号を表している。電源パルスφVDCEL2は、第2の電源切り替えトランジスタ133を接続するパルス信号を表している。電位Vddpx、Vddrd及びVddrsはそれぞれ、画素電源線125の電位、第1の電源電位、及び第2の電源電位を表している。電位Vfdrst2及びVfdsig2はそれぞれ、リセットされた時のFD部106の電位、及びフォトダイオード101で発生した電子が転送された時のFD部106の電位である。 In FIG. 2, the horizontal axis represents time, and the vertical axis represents the potential of each signal. The reset pulse φRS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row. The transfer pulse φTX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row. The selection pulse φSEL represents a pulse signal for commonly controlling the selection transistors 105 in a predetermined row. The potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 100, and the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 100. The power supply pulse φVDCEL1 represents a pulse signal that controls the first power supply switching transistor 131. A power pulse φVDCEL2 represents a pulse signal that connects the second power switching transistor 133. The potentials V ddpx , V ddrd, and V ddrs respectively represent the potential of the pixel power supply line 125, the first power supply potential, and the second power supply potential. The potentials V fdrst2 and V fdsig2 are the potential of the FD unit 106 when reset and the potential of the FD unit 106 when electrons generated in the photodiode 101 are transferred, respectively.
 まず、選択パルスφSELが“H”レベルになると、選択パルスφSELと接続された選択トランジスタ105が全てオンする。 First, when the selection pulse φSEL becomes “H” level, all the selection transistors 105 connected to the selection pulse φSEL are turned on.
 次にリセットパルスφRSが“H”レベルになることで、リセットパルスφRSが接続されたリセットトランジスタ103が全てオンし、該当する行のFD部106の電位Vfdは画素電源線125の電位Vddpxにリセットされるが、この時、電源パルスφVDCEL1及びφVDCEL2をそれぞれ“H”レベル、“L”レベルとしているので、画素電源線125の電位Vddpxは第2の電源電位Vddrsであり、FD部の電位Vfdrst2は、 Next, when the reset pulse φRS becomes “H” level, all the reset transistors 103 connected to the reset pulse φRS are turned on, and the potential V fd of the FD portion 106 in the corresponding row is equal to the potential V ddpx of the pixel power supply line 125. At this time, since the power supply pulses φVDCEL1 and φVDCEL2 are set to the “H” level and the “L” level, respectively, the potential Vddpx of the pixel power supply line 125 is the second power supply potential Vddrs , and the FD portion The potential V fdrst2 of
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
となる。 It becomes.
 次にリセットパルスφRSを“L”レベルにした後に、φVDCEL1を“L”レベル、φVDCEL2を“H”レベルへと切り替え、画素電源線125の電位Vddpxは第1の電源電位Vddrdとなる。 Next, after the reset pulse φRS is set to the “L” level, φVDCEL1 is switched to the “L” level and φVDCEL2 is switched to the “H” level, and the potential Vddpx of the pixel power supply line 125 becomes the first power supply potential Vddrd .
 次に転送パルスφTXが“H”レベルになると、転送パルスφTXに接続された転送トランジスタ102が全てオンし、該当する行のフォトダイオード101で発生した電子がFD部106に転送される。転送された電子の数をN、電子一つあたりの電荷量をq、FD部106の容量をCとすると、FD部106の電位Vfdsig2Next, when the transfer pulse φTX becomes “H” level, all the transfer transistors 102 connected to the transfer pulse φTX are turned on, and electrons generated in the photodiodes 101 in the corresponding row are transferred to the FD unit 106. When the number of transferred electrons is N, the charge amount per electron is q, and the capacitance of the FD unit 106 is C, the potential V fdsig2 of the FD unit 106 is
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
で表される。 It is represented by
 FD部106に転送された電気信号は、読み出しトランジスタ104と第1の電流源112とで構成されるソースフォロア回路で電圧信号として列信号線111に読み出される。そして、FD部106の電位Vfdを画素電源線125の電位Vddpxにリセットした時の列信号線111の電位Vlと、光照射量に応じて蓄積された電子がFD部106に転送された時の列信号線の電位Vlとの差分に応じた電位がCDS回路113から出力される。 The electrical signal transferred to the FD unit 106 is read to the column signal line 111 as a voltage signal by a source follower circuit including the read transistor 104 and the first current source 112. Then, the potential V l of the column signal line 111 when the potential V fd of the FD portion 106 is reset to the potential V ddpx of the pixel power supply line 125 and the electrons accumulated according to the amount of light irradiation are transferred to the FD portion 106. A potential corresponding to the difference from the potential V 1 of the column signal line at this time is output from the CDS circuit 113.
 各列のCDS回路113からの出力は、水平選択回路123によって制御されている水平選択トランジスタ114を介して列毎に順次水平信号線121に読み出され、増幅回路124で増幅されて出力される。 The output from the CDS circuit 113 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, amplified by the amplifier circuit 124, and output. .
 一般的な固体撮像装置に対し、第1の実施形態の固体撮像装置は、FD部106をリセットする時の画素電源線125の電位VddpxとFD部106の信号を読み出す時の画素電源線125の電位Vddpxとを切り替えられるようにすることで、FD部106をリセットする時の画素電源線125の電位Vddpxを低くしている。それにより、フォトダイオード101の蓄積電子数が少ない場合においても読み出しトランジスタ104が飽和領域で動作するように、FD部106のリセット電位を読み出しトランジスタ104のドレイン電位よりも低くすることが出来る。 In contrast to a general solid-state imaging device, the solid-state imaging device according to the first embodiment has a pixel power supply line 125 for reading out the potential V ddpx of the pixel power supply line 125 when the FD unit 106 is reset and a signal of the FD unit 106. The potential V ddpx of the pixel power supply line 125 when the FD unit 106 is reset is lowered by switching the potential V ddpx of the pixel FD unit 106. Accordingly, the reset potential of the FD portion 106 can be made lower than the drain potential of the read transistor 104 so that the read transistor 104 operates in the saturation region even when the number of accumulated electrons of the photodiode 101 is small.
 具体的には、式(9)、式(10)及び式(14)より、 Specifically, from Equation (9), Equation (10) and Equation (14),
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
を満たすような第2の電源電位Vddrs及び第1の電源電位Vddrdに設定することで、フォトダイオード101の蓄積電子数が少ない場合でも、読み出しトランジスタ104を飽和領域で動作させ、リニアリティの劣化及び固定パターンノイズの増加を抑えることが可能となる。 By setting the second power supply potential V DDRs and the first power supply potential V DDRD that satisfies, even if the number of stored electrons of the photodiode 101 is small, the read transistor 104 is operated in the saturation region, the linearity of the degradation In addition, an increase in fixed pattern noise can be suppressed.
 (第1の実施形態の変形例)
 ここで、図1に示す構成では2つの電圧源を用いて、画素電源線125に供給する電位を切り替えているが、第1の電源電位Vddrdを供給する電圧源のみを用いて画素電源線125に供給する電位を切り替えることも可能である。その構成の固体撮像装置を、本発明における第1の実施形態の変形例として図3に示す。
(Modification of the first embodiment)
Here, in the configuration shown in FIG. 1, the potential supplied to the pixel power supply line 125 is switched using two voltage sources. However, the pixel power supply line using only the voltage source supplying the first power supply potential V ddrd is used. It is also possible to switch the potential supplied to 125. A solid-state imaging device having such a configuration is shown in FIG. 3 as a modification of the first embodiment of the present invention.
 図3は、本発明における第1の実施形態の変形例の固体撮像装置の全体構成を示す図である。図3中、図1と同様の構成要素については、同じ符号を付与している。 FIG. 3 is a diagram showing an overall configuration of a solid-state imaging device according to a modification of the first embodiment of the present invention. In FIG. 3, the same components as those in FIG.
 本変形例の固体撮像装置は、XY方向にアレイ状に配列された複数の単位セル100と、列信号線111と、第1の電流源112と、CDS回路113と、水平選択トランジスタ114と、水平信号線121と、垂直選択回路122と、水平選択回路123と、増幅回路124と、画素電源線125と、第1の電源切り替えトランジスタ131と、第1の電圧源132と、第2の電源切り替えトランジスタ133と、第2の電流源141と、トランジスタ142とを備える。 The solid-state imaging device of the present modification includes a plurality of unit cells 100 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, Horizontal signal line 121, vertical selection circuit 122, horizontal selection circuit 123, amplifier circuit 124, pixel power supply line 125, first power supply switching transistor 131, first voltage source 132, and second power supply A switching transistor 133, a second current source 141, and a transistor 142 are provided.
 単位セル100は、フォトダイオード101と、フォトダイオード101で発生した信号電荷(電子)が転送され、フォトダイオード101で発生した信号電荷を一時的に保持しておくためのFD部106と、フォトダイオード101とFD部106との間に設けられ、フォトダイオード101からFD部106に電子を転送するための転送トランジスタ102と、FD部106と接続され、FD部106の電位をリセットするためのリセットトランジスタ103と、ゲートがFD部106に接続され、FD部106の電位に応じた電圧信号を読み出すための読み出しトランジスタ104と、読み出しトランジスタ104と列信号線111との間に設けられ、読み出しトランジスタ104の出力を選択し、単位セル100から列信号線111に電圧信号を出力するための選択トランジスタ105とを有する。 The unit cell 100 includes a photodiode 101, an FD unit 106 to which signal charges (electrons) generated in the photodiode 101 are transferred, and temporarily hold the signal charges generated in the photodiode 101, and a photodiode. A transfer transistor 102 provided between the photodiode 101 and the FD unit 106 for transferring electrons from the photodiode 101 to the FD unit 106 and a reset transistor connected to the FD unit 106 for resetting the potential of the FD unit 106 103 and a gate are connected to the FD unit 106, and are provided between the read transistor 104 and the column signal line 111 for reading out a voltage signal corresponding to the potential of the FD unit 106. The output is selected and the column signal line 11 from the unit cell 100 is selected. And a selection transistor 105 for outputting a voltage signal to.
 列信号線111は、単位セル100の列に対応して設けられ、対応する列の選択トランジスタ105に共通に接続される。 The column signal line 111 is provided corresponding to the column of the unit cells 100, and is commonly connected to the selection transistor 105 of the corresponding column.
 第1の電流源112は、列信号線111に接続されている。 The first current source 112 is connected to the column signal line 111.
 CDS回路113は、列信号線111に接続されている。CDS回路113は、列信号線111毎に設けられ、対応する列信号線111における任意の異なる二つのタイミングにおける電位差に応じた信号を出力する。 The CDS circuit 113 is connected to the column signal line 111. The CDS circuit 113 is provided for each column signal line 111 and outputs a signal corresponding to a potential difference at any two different timings in the corresponding column signal line 111.
 水平選択トランジスタ114は、CDS回路113に接続されている。 The horizontal selection transistor 114 is connected to the CDS circuit 113.
 水平信号線121は、各列の水平選択トランジスタ114に共通に接続されている。 The horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
 垂直選択回路122は、単位セル100のトランジスタを制御する。 The vertical selection circuit 122 controls the transistor of the unit cell 100.
 水平選択回路123は、水平選択トランジスタ114を制御する。 The horizontal selection circuit 123 controls the horizontal selection transistor 114.
 増幅回路124は、水平信号線121に接続されている。 The amplification circuit 124 is connected to the horizontal signal line 121.
 画素電源線125は、単位セル100のリセットトランジスタ103及び読み出しトランジスタ104に共通に接続され、単位セル100に電源電位を供給する。画素電源線125は、FD部106をリセットする時に、単位セル100から列信号線111に信号電圧を出力する時の電源電位よりも低い電源電位を供給する。言い換えると、画素電源線125、第1の電源切り替えトランジスタ131、第1の電圧源132、第2の電源切り替えトランジスタ133、第2の電流源141、及びトランジスタ142により構成される電源供給部は、リセット動作時に信号出力動作時の電源電位(グランド電位と異なる電源電位)よりも低い電源電位(グランド電位と異なる電源電位)を、画素電源線125を介して単位セル100に供給する。 The pixel power line 125 is connected in common to the reset transistor 103 and the read transistor 104 of the unit cell 100 and supplies a power source potential to the unit cell 100. The pixel power supply line 125 supplies a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell 100 to the column signal line 111 when the FD unit 106 is reset. In other words, a power supply unit configured by the pixel power line 125, the first power switching transistor 131, the first voltage source 132, the second power switching transistor 133, the second current source 141, and the transistor 142 is: A power supply potential (power supply potential different from the ground potential) lower than the power supply potential (power supply potential different from the ground potential) during the signal output operation during the reset operation is supplied to the unit cell 100 through the pixel power supply line 125.
 第1の電源切り替えトランジスタ131は、第1の電圧源132と画素電源線125との間に設けられたスイッチであり、画素電源線125及び第1の電圧源132に接続されている。 The first power switching transistor 131 is a switch provided between the first voltage source 132 and the pixel power line 125 and is connected to the pixel power line 125 and the first voltage source 132.
 第1の電圧源132は、画素電源線125にグランド電位と異なる電源電位を供給する。 The first voltage source 132 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
 第2の電源切り替えトランジスタ133は、画素電源線125に接続される。第2電位供給トランジスタ142のソース電位は第2の電源切り替えトランジスタ133に接続されている。 The second power supply switching transistor 133 is connected to the pixel power supply line 125. The source potential of the second potential supply transistor 142 is connected to the second power supply switching transistor 133.
 トランジスタ142は、ゲート及びドレインに第1の電圧源132が接続され、第2の電流源141と対になってソースフォロア回路を成している。 The transistor 142 has a gate and a drain connected to the first voltage source 132 and is paired with the second current source 141 to form a source follower circuit.
 図4は、図3に示す固体撮像装置の動作タイミングチャートである。 FIG. 4 is an operation timing chart of the solid-state imaging device shown in FIG.
 図4において、横軸は時間、縦軸は各信号の電位を表す。リセットパルスφRSは、所定の行のリセットトランジスタ103を共通に制御するパルス信号を表している。転送パルスφTXは、所定の行の転送トランジスタ102を共通に制御するパルス信号を表している。選択パルスφSELは、所定の行の選択トランジスタ105を共通に制御するパルス信号を表している。電位Vfdは所定の単位セル100のFD部106の電位、電位Vlは所定の単位セル100と接続された列信号線111の電位を表している。電源パルスφVDCEL1は、第1の電源切り替えトランジスタ131を制御するパルス信号を表している。電源パルスφVDCEL2は、第2の電源切り替えトランジスタ133を制御するパルス信号を表している。電位Vddpx、Vddrd及びVddrs2はそれぞれ、画素電源線125の電位、第1の電源電位、トランジスタ142のソース電位を表している。 In FIG. 4, the horizontal axis represents time, and the vertical axis represents the potential of each signal. The reset pulse φRS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row. The transfer pulse φTX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row. The selection pulse φSEL represents a pulse signal for commonly controlling the selection transistors 105 in a predetermined row. The potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 100, and the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 100. The power supply pulse φVDCEL1 represents a pulse signal that controls the first power supply switching transistor 131. The power supply pulse φVDCEL2 represents a pulse signal that controls the second power supply switching transistor 133. The potentials V ddpx , V ddrd, and V ddrs2 represent the potential of the pixel power supply line 125, the first power supply potential, and the source potential of the transistor 142, respectively.
 選択パルスφSEL、リセットパルスφRS、転送パルスφTX、並びに電源パルスφVDCEL1及びφVDCEL2は、それぞれ図2に示す動作タイミングチャートと同じ信号であるが、図2中の第2の電源電位Vddrsがトランジスタ142のソース電位Vddrs2である。第2の電流源141の電流値をIvdcel、トランジスタ142のしきい値電圧をVth2、トランジスタ142のトランスコンダクタンス係数をβ2とすると、トランジスタ142のソース電位Vddrs2は、 The selection pulse φSEL, the reset pulse φRS, the transfer pulse φTX, and the power supply pulses φVDCEL1 and φVDCEL2 are the same signals as those in the operation timing chart shown in FIG. 2, but the second power supply potential V ddrs in FIG. The source potential V ddrs2 . When the current value of the second current source 141 is I vdcel , the threshold voltage of the transistor 142 is V th2 , and the transconductance coefficient of the transistor 142 is β 2 , the source potential V ddrs2 of the transistor 142 is
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
である。従って、式(16)及び式(17)より、 It is. Therefore, from Equation (16) and Equation (17),
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
を満たすパラメータに設定することで、フォトダイオード101での発生電子数が少ない場合でも、読み出しトランジスタ104を飽和領域で動作させ、リニアリティの劣化や固定パターンノイズの増加を抑えることが可能となる。 By setting the parameter to satisfy the condition, even when the number of electrons generated in the photodiode 101 is small, the reading transistor 104 can be operated in the saturation region, and deterioration of linearity and increase of fixed pattern noise can be suppressed.
 以上の通り、第1の電源電位Vddrdを供給する電圧源のみを用いて画素電源線125に供給する電位を切り替える構成においても、リニアリティの劣化及び固定パターンノイズの増加を抑えることが可能である。 As described above, even in a configuration in which the potential supplied to the pixel power supply line 125 is switched using only the voltage source that supplies the first power supply potential V ddrd , it is possible to suppress deterioration in linearity and increase in fixed pattern noise. .
 なお、第1の電源電位Vddrdを供給する電圧源を用いて第1の電源電位Vddrdと異なる電位Vddrs2を生成する方法は図3に示す回路以外にも多数考えられ、いずれも第1の実施形態と同様の効果を得ることができ、本変形例はその方法を特定するものではない。 A method of generating a first power supply potential V DDRD different potentials V Ddrs2 by using the voltage source for supplying a first power supply potential V DDRD is considered a number other than the circuit shown in FIG. 3, both the first The same effects as those of the embodiment can be obtained, and this modification does not specify the method.
 (第2の実施形態)
 図5は、本発明における第2の実施形態の固体撮像装置の全体構成を示す図である。図5中、図1と同様の構成要素については、同じ符号を付与している。以下、第1の実施形態との違いを中心に説明し、それ以外の部分は第1の実施形態と同じである。
(Second Embodiment)
FIG. 5 is a diagram illustrating an overall configuration of a solid-state imaging apparatus according to the second embodiment of the present invention. In FIG. 5, the same components as those in FIG. Hereinafter, the difference from the first embodiment will be mainly described, and the other parts are the same as those of the first embodiment.
 本実施形態の固体撮像装置は、XY方向にアレイ状に配列された複数の単位セル100と、列信号線111と、第1の電流源112と、CDS回路113と、水平選択トランジスタ114と、水平信号線121と、垂直選択回路122と、水平選択回路123と、増幅回路124と、画素電源線125と、電圧切り替えトランジスタ151と、電圧源152と、電圧降下用抵抗153とを備える。 The solid-state imaging device of this embodiment includes a plurality of unit cells 100 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, A horizontal signal line 121, a vertical selection circuit 122, a horizontal selection circuit 123, an amplification circuit 124, a pixel power supply line 125, a voltage switching transistor 151, a voltage source 152, and a voltage drop resistor 153 are provided.
 単位セル100は、フォトダイオード101と、フォトダイオード101で発生した信号電荷(電子)が転送され、フォトダイオード101で発生した信号電荷を一時的に保持しておくためのFD部106と、フォトダイオード101とFD部106との間に設けられ、フォトダイオード101からFD部106に電子を転送するための転送トランジスタ102と、FD部106と接続され、FD部106の電位をリセットするためのリセットトランジスタ103と、ゲートがFD部106に接続され、FD部106の電位に応じた電圧信号を読み出すための読み出しトランジスタ104と、読み出しトランジスタ104と列信号線111との間に設けられ、読み出しトランジスタ104の出力を選択し、単位セル100から列信号線111に電圧信号を出力するための選択トランジスタ105とを有する。 The unit cell 100 includes a photodiode 101, an FD unit 106 to which signal charges (electrons) generated in the photodiode 101 are transferred, and temporarily hold the signal charges generated in the photodiode 101, and a photodiode. A transfer transistor 102 provided between the photodiode 101 and the FD unit 106 for transferring electrons from the photodiode 101 to the FD unit 106 and a reset transistor connected to the FD unit 106 for resetting the potential of the FD unit 106 103 and a gate are connected to the FD unit 106, and are provided between the read transistor 104 and the column signal line 111 for reading out a voltage signal corresponding to the potential of the FD unit 106. The output is selected and the column signal line 11 from the unit cell 100 is selected. And a selection transistor 105 for outputting a voltage signal to.
 列信号線111は、単位セル100の列に対応して設けられ、対応する列の選択トランジスタ105に共通に接続されている。 The column signal line 111 is provided corresponding to the column of the unit cells 100 and is commonly connected to the selection transistor 105 of the corresponding column.
 第1の電流源112は、列信号線111に接続されている。 The first current source 112 is connected to the column signal line 111.
 CDS回路113は、列信号線111に接続されている。CDS回路113は、列信号線111毎に設けられ、対応する列信号線111における任意の異なる二つのタイミングにおける電位差に応じた信号を出力する。 The CDS circuit 113 is connected to the column signal line 111. The CDS circuit 113 is provided for each column signal line 111 and outputs a signal corresponding to a potential difference at any two different timings in the corresponding column signal line 111.
 水平選択トランジスタ114は、CDS回路113に接続されている。 The horizontal selection transistor 114 is connected to the CDS circuit 113.
 水平信号線121は、各列の水平選択トランジスタ114に共通に接続されている。 The horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
 垂直選択回路122は、単位セル100のトランジスタを制御する。 The vertical selection circuit 122 controls the transistor of the unit cell 100.
 水平選択回路123は、水平選択トランジスタ114を制御する。 The horizontal selection circuit 123 controls the horizontal selection transistor 114.
 増幅回路124は、水平信号線121に接続されている。 The amplification circuit 124 is connected to the horizontal signal line 121.
 画素電源線125は、単位セル100のリセットトランジスタ103及び読み出しトランジスタ104に共通に接続され、単位セル100に電源電位を供給する。画素電源線125は、FD部106をリセットする時に、単位セル100から列信号線111に信号電圧を出力する時の電源電位よりも低い電源電位を供給する。言い換えると、画素電源線125、電圧切り替えトランジスタ151、電圧源152、及び電圧降下用抵抗153により構成される電源供給部は、リセット動作時に信号出力動作時の電源電位(グランド電位と異なる電源電位)よりも低い電源電位(グランド電位と異なる電源電位)を、画素電源線125を介して単位セル100に供給する。 The pixel power line 125 is connected in common to the reset transistor 103 and the read transistor 104 of the unit cell 100 and supplies a power source potential to the unit cell 100. The pixel power supply line 125 supplies a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell 100 to the column signal line 111 when the FD unit 106 is reset. In other words, the power supply unit configured by the pixel power supply line 125, the voltage switching transistor 151, the voltage source 152, and the voltage drop resistor 153 has a power supply potential during the signal output operation during the reset operation (a power supply potential different from the ground potential). A lower power supply potential (a power supply potential different from the ground potential) is supplied to the unit cell 100 through the pixel power supply line 125.
 電圧切り替えトランジスタ151は、電圧源152と画素電源線125との間に設けられたスイッチであり、画素電源線125及び電圧源152に接続されている。 The voltage switching transistor 151 is a switch provided between the voltage source 152 and the pixel power line 125, and is connected to the pixel power line 125 and the voltage source 152.
 電圧源152は、画素電源線125にグランド電位と異なる電源電位を供給する。 The voltage source 152 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
 電圧降下用抵抗153は、画素電源線125と電圧源152との間に、電圧切り替えトランジスタ151と並列になるよう挿入されている。 The voltage drop resistor 153 is inserted between the pixel power line 125 and the voltage source 152 so as to be in parallel with the voltage switching transistor 151.
 図6は、図5に示す固体撮像装置の動作タイミングチャートである。 FIG. 6 is an operation timing chart of the solid-state imaging device shown in FIG.
 図6において、横軸は時間、縦軸は各信号の電位を表す。リセットパルスφRSは、所定の行のリセットトランジスタ103を共通に制御するパルス信号を表している。転送パルスφTXは、所定の行の転送トランジスタ102を共通に制御するパルス信号を表している。選択パルスφSELは、所定の行の選択トランジスタ105を共通に制御するパルス信号を表している。電位Vfdは所定の単位セル100のFD部106の電位、電位Vlは所定の単位セル100と接続された列信号線111の電位を表している。電源パルスφVDCEL3は、電圧切り替えトランジスタ151を制御するパルス信号を表している。電位Vddpx、Vddrd及びVddrs3はそれぞれ、画素電源線125の電位、電圧源152が供給する電位、及び電源パルスφVDCEL3が“H”レベルの時の画素電源線125の電位である。電位Vfdrst3及びVfdsig3はそれぞれ、リセットされた時のFD部106の電位、及びフォトダイオード101で発生した電子が転送された時のFD部106の電位である。 In FIG. 6, the horizontal axis represents time, and the vertical axis represents the potential of each signal. The reset pulse φRS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row. The transfer pulse φTX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row. The selection pulse φSEL represents a pulse signal for commonly controlling the selection transistors 105 in a predetermined row. The potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 100, and the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 100. The power supply pulse φVDCEL3 represents a pulse signal for controlling the voltage switching transistor 151. The potentials V ddpx , V ddrd, and V ddrs 3 are the potential of the pixel power supply line 125, the potential supplied by the voltage source 152, and the potential of the pixel power supply line 125 when the power supply pulse φVDCEL 3 is at “H” level. The potentials V fdrst3 and V fdsig3 are the potential of the FD unit 106 when reset and the potential of the FD unit 106 when electrons generated in the photodiode 101 are transferred, respectively.
 まず、選択パルスφSELが“H”レベルになると、選択パルスφSELが接続された選択トランジスタ105が全てオンする。 First, when the selection pulse φSEL becomes “H” level, all the selection transistors 105 connected to the selection pulse φSEL are turned on.
 次にリセットパルスφRSが“H”レベルになることで、リセットパルスφRSが接続されたリセットトランジスタ103が全てオンし、該当する行のFD部106は画素電源線125の電位にリセットされる。この時、電源パルスφVDCEL3が“H”レベルであるため、電圧源152から画素電源線125へ流れ込む電流は電圧降下用抵抗153を通る。画素電源線125を流れる電流量は、第1の電流源112の電流量に、複数配列されている第1の電流源112の総数を乗じた値である。第1の電流源112の電流量をIbias、第1の電流源112の総数をKとすると、画素電源線125を流れる電流量Itotalは、 Next, when the reset pulse φRS becomes “H” level, all the reset transistors 103 connected to the reset pulse φRS are turned on, and the FD portion 106 in the corresponding row is reset to the potential of the pixel power supply line 125. At this time, since the power supply pulse φVDCEL3 is at “H” level, the current flowing from the voltage source 152 to the pixel power supply line 125 passes through the voltage drop resistor 153. The amount of current flowing through the pixel power line 125 is a value obtained by multiplying the amount of current of the first current source 112 by the total number of first current sources 112 arranged in a plurality. Assuming that the current amount of the first current source 112 is I bias and the total number of the first current sources 112 is K, the current amount I total flowing through the pixel power supply line 125 is
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
で表される。電圧降下用抵抗153の抵抗値をRとすると、抵抗による電圧降下でVddrs3It is represented by When the resistance value of the voltage drop resistor 153 is R, V ddrs3 is represented by the voltage drop due to the resistor.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
となる。従って、FD部106をリセットした時のFD部106の電位Vfdrst3It becomes. Therefore, the potential V fdrst3 of the FD unit 106 when the FD unit 106 is reset is
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
となる。 It becomes.
 次に転送パルスφTXが“H”レベルになると、転送パルスφTXが供給される転送トランジスタ102が全てオンし、該当する行のフォトダイオード101で発生した電子がFD部106に転送される。フォトダイオード101で発生した電子の数をN、電子一つあたりの電荷量をq、FD部106の容量をCとすると、FD部106の電位Vfdsig3Next, when the transfer pulse φTX becomes “H” level, all the transfer transistors 102 to which the transfer pulse φTX is supplied are turned on, and electrons generated in the photodiodes 101 in the corresponding row are transferred to the FD unit 106. When the number of electrons generated in the photodiode 101 is N, the charge amount per electron is q, and the capacitance of the FD portion 106 is C, the potential V fdsig3 of the FD portion 106 is
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
で表される。 It is represented by
 FD部106の電位は、読み出しトランジスタ104と第1の電流源112とで構成されるソースフォロア回路で列信号線111に読み出され、FD部106を画素電源線125の電位にリセットした時の列信号線111の電位と、光照射量に応じてフォトダイオード101で発生した電子がFD部106に転送された時の列信号線111の電位との差分に応じた電位がCDS回路113から出力される。 The potential of the FD portion 106 is read out to the column signal line 111 by a source follower circuit including the reading transistor 104 and the first current source 112, and the FD portion 106 is reset to the potential of the pixel power supply line 125. A potential corresponding to the difference between the potential of the column signal line 111 and the potential of the column signal line 111 when electrons generated in the photodiode 101 are transferred to the FD unit 106 according to the amount of light irradiation is output from the CDS circuit 113. Is done.
 各列のCDS回路113からの出力は、水平選択回路123によって制御されている水平選択トランジスタ114を介して列毎に順次水平信号線121に読み出され、増幅回路124で増幅されて出力される。 The output from the CDS circuit 113 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, amplified by the amplifier circuit 124, and output. .
 一般的な固体撮像装置に対し、第2の実施形態の固体撮像装置は、電圧切り替えトランジスタ151と並列に電圧降下用抵抗153を挿入し、FD部106をリセットする時のみ電圧切り替えトランジスタ151をオフすることで、FD部106をリセットする時の画素電源線125の電位を低くしている。それにより、フォトダイオード101での発生電子数が少ない場合においても読み出しトランジスタ104が飽和領域で動作するように、FD部106のリセット電位を読み出しトランジスタ104のドレイン電位よりも低くすることが可能となる。具体的には式(16)及び式(21)より、 In contrast to a general solid-state imaging device, the solid-state imaging device according to the second embodiment includes a voltage drop resistor 153 inserted in parallel with the voltage switching transistor 151 and turns off the voltage switching transistor 151 only when the FD unit 106 is reset. As a result, the potential of the pixel power line 125 when the FD unit 106 is reset is lowered. Accordingly, the reset potential of the FD portion 106 can be made lower than the drain potential of the read transistor 104 so that the read transistor 104 operates in the saturation region even when the number of electrons generated in the photodiode 101 is small. . Specifically, from Equation (16) and Equation (21),
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
を満たすパラメータに、電圧降下用抵抗153の抵抗値、第1の電流源112の電流値、第1の電流源112の数、及び読み出しトランジスタ104のしきい値電圧を設定することで、蓄積電子数が少ない場合でも、読み出しトランジスタ104を飽和領域で動作させ、リニアリティの劣化及び固定パターンノイズの増加を抑えることが可能となる。 By setting the resistance value of the voltage drop resistor 153, the current value of the first current source 112, the number of the first current sources 112, and the threshold voltage of the reading transistor 104 as parameters satisfying Even when the number is small, it is possible to operate the read transistor 104 in the saturation region and suppress deterioration in linearity and increase in fixed pattern noise.
 一般的にMOSプロセスにおいて電圧降下用抵抗153は非常に小さな面積で生成可能であるため、蓄積電子数が少ない場合でもリニアリティの劣化及び固定パターンノイズの増加を抑えつつ、チップサイズの小型化が可能となる。 In general, in the MOS process, the voltage drop resistor 153 can be generated in a very small area, so that even when the number of stored electrons is small, it is possible to reduce the chip size while suppressing deterioration of linearity and increase of fixed pattern noise. It becomes.
 なお、MOSプロセスにおいて、電圧降下用抵抗153は、多結晶シリコン配線による抵抗、メタル配線による抵抗、トランジスタによる抵抗、及び拡散抵抗など様々な生成方法が考えられるが、本実施の形態における電圧降下用抵抗153はいずれの場合でも同様の効果が得ることができ、その方法は特定しない。 In the MOS process, the voltage drop resistor 153 can be generated in various ways, such as a resistance by a polycrystalline silicon wiring, a resistance by a metal wiring, a resistance by a transistor, and a diffusion resistance. The resistor 153 can obtain the same effect in any case, and its method is not specified.
 (第3の実施形態)
 図7は、本発明における第3の実施形態の固体撮像装置の全体構成を示す図である。図7中、図1と同様の構成要素については、同じ符号を付与している。以下、第1の実施形態との違いを中心に説明し、それ以外の部分は第1の実施形態と同じである。
(Third embodiment)
FIG. 7 is a diagram illustrating an overall configuration of a solid-state imaging apparatus according to the third embodiment of the present invention. In FIG. 7, the same components as those in FIG. Hereinafter, the difference from the first embodiment will be mainly described, and the other parts are the same as those of the first embodiment.
 本実施形態の固体撮像装置は、XY方向にアレイ状に配列された複数の単位セル200と、列信号線111と、第1の電流源112と、CDS回路113と、水平選択トランジスタ114と、コンパレータ115と、カウンタ116と、水平信号線121と、垂直選択回路122と、水平選択回路123と、増幅回路124と、画素電源線125と、スイッチ部160と、電圧源162と、電圧切り替えトランジスタ163と、RAMP波発生回路300と、クロックジェネレータ400とを備える。 The solid-state imaging device of this embodiment includes a plurality of unit cells 200 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, Comparator 115, counter 116, horizontal signal line 121, vertical selection circuit 122, horizontal selection circuit 123, amplification circuit 124, pixel power supply line 125, switch unit 160, voltage source 162, voltage switching transistor 163, a RAMP wave generation circuit 300, and a clock generator 400.
 単位セル200は、フォトダイオード101と、フォトダイオード101で発生した信号電荷(電子)が転送され、フォトダイオード101で発生した信号電荷を一時的に保持しておくためのFD部106と、フォトダイオード101とFD部106との間に設けられ、フォトダイオード101からFD部106に電子を転送するための転送トランジスタ102と、FD部106と接続され、FD部106をリセットするためのリセットトランジスタ103と、ゲートがFD部106に接続され、FD部106の電位に応じた電圧信号を読み出すための読み出しトランジスタ104とを有する。 The unit cell 200 includes a photodiode 101, an FD unit 106 to which signal charges (electrons) generated in the photodiode 101 are transferred, and temporarily hold the signal charges generated in the photodiode 101. A transfer transistor 102 provided between the photodiode 101 and the FD unit 106 for transferring electrons from the photodiode 101 to the FD unit 106; a reset transistor 103 connected to the FD unit 106 for resetting the FD unit 106; , The gate is connected to the FD portion 106, and the read transistor 104 for reading a voltage signal corresponding to the potential of the FD portion 106 is included.
 列信号線111は、単位セル200の列に対応して設けられ、対応する列の読み出しトランジスタ104に共通に接続されている。 The column signal line 111 is provided corresponding to the column of the unit cells 200 and is commonly connected to the read transistor 104 of the corresponding column.
 第1の電流源112は、列信号線111に接続されている。 The first current source 112 is connected to the column signal line 111.
 CDS回路113は、列信号線111に接続されている。CDS回路113は、列信号線111毎に設けられ、対応する列信号線111における任意の異なる二つのタイミングにおける電位差に応じた信号を出力する。 The CDS circuit 113 is connected to the column signal line 111. The CDS circuit 113 is provided for each column signal line 111 and outputs a signal corresponding to a potential difference at any two different timings in the corresponding column signal line 111.
 コンパレータ115は、CDS回路113とRAMP波発生回路300とに接続され、CDS回路113の出力電位とRAMP波発生回路300の出力電位との大小を比較する。 The comparator 115 is connected to the CDS circuit 113 and the RAMP wave generation circuit 300, and compares the magnitude of the output potential of the CDS circuit 113 and the output potential of the RAMP wave generation circuit 300.
 カウンタ116は、コンパレータ115とクロックジェネレータ400とに接続されている。 The counter 116 is connected to the comparator 115 and the clock generator 400.
 コンパレータ115及びカウンタ116は、列信号線111毎つまりCDS回路113毎に設けられ、対応するCDS回路113の出力信号をアナログ-デジタル変換するAD変換回路を構成する。 The comparator 115 and the counter 116 are provided for each column signal line 111, that is, for each CDS circuit 113, and constitute an AD conversion circuit that performs analog-digital conversion on the output signal of the corresponding CDS circuit 113.
 水平選択トランジスタ114は、カウンタ116に接続されている。 The horizontal selection transistor 114 is connected to the counter 116.
 水平信号線121は、各列の水平選択トランジスタ114に共通に接続されている。 The horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
 垂直選択回路122は、単位セル200のトランジスタを制御する。 The vertical selection circuit 122 controls the transistor of the unit cell 200.
 水平選択回路123は、水平選択トランジスタ114を制御する。 The horizontal selection circuit 123 controls the horizontal selection transistor 114.
 増幅回路126は、水平信号線121に接続されている。 The amplification circuit 126 is connected to the horizontal signal line 121.
 画素電源線125は、単位セル200のリセットトランジスタ103及び読み出しトランジスタ104に共通に接続されている。画素電源線125は、FD部106をリセットする時に、単位セル200から列信号線111に信号電圧を出力する時の電源電位よりも低い電源電位を供給する。画素電源線125は、3つの電源電位を1つの単位セル200に供給する。言い換えると、画素電源線125、スイッチ部160、電圧源162、及び電圧切り替えトランジスタ163により構成される電源供給部は、3つの電源電位を1つの単位セル200に供給し、リセット動作時に信号出力動作時の電源電位(グランド電位と異なる電源電位)よりも低い電源電位(グランド電位と異なる電源電位)を、画素電源線125を介して単位セル200に供給する。 The pixel power line 125 is commonly connected to the reset transistor 103 and the read transistor 104 of the unit cell 200. The pixel power supply line 125 supplies a power supply potential lower than the power supply potential when the signal voltage is output from the unit cell 200 to the column signal line 111 when the FD unit 106 is reset. The pixel power supply line 125 supplies three power supply potentials to one unit cell 200. In other words, the power supply unit configured by the pixel power supply line 125, the switch unit 160, the voltage source 162, and the voltage switching transistor 163 supplies three power supply potentials to one unit cell 200, and performs a signal output operation during a reset operation. A power supply potential (a power supply potential different from the ground potential) lower than the current power supply potential (a power supply potential different from the ground potential) is supplied to the unit cell 200 through the pixel power supply line 125.
 電圧源162は、画素電源線125にグランド電位と異なる電源電位を供給する。 The voltage source 162 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
 スイッチ部160は、行に対応して複数個設けられ、画素電源線125と電圧源162とをショートしたり切り離したりする。スイッチ部160は、異なる信号線により制御される第1の電圧源接続トランジスタ161及び第2の電圧源接続トランジスタ164から成る。 A plurality of switch units 160 are provided corresponding to the rows, and the pixel power supply line 125 and the voltage source 162 are short-circuited or disconnected. The switch unit 160 includes a first voltage source connection transistor 161 and a second voltage source connection transistor 164 controlled by different signal lines.
 第1の電圧源接続トランジスタ161及び第2の電圧源接続トランジスタ164は、電圧源162と画素電源線125との間に設けられたスイッチである。 The first voltage source connection transistor 161 and the second voltage source connection transistor 164 are switches provided between the voltage source 162 and the pixel power supply line 125.
 電圧切り替えトランジスタ163は、画素電源線125とグランドとの間に挿入されている。 The voltage switching transistor 163 is inserted between the pixel power line 125 and the ground.
 ここで、本実施形態の固体撮像装置の効果を説明するため、図7の構成に対し第2の電圧源接続トランジスタ164がなく、第1の電圧源接続トランジスタ160のみで構成された固体撮像装置を比較例として提示し、図7の固体撮像装置と比較例の固体撮像装置とを比較する。 Here, in order to explain the effect of the solid-state imaging device of the present embodiment, the second voltage source connection transistor 164 is not provided in the configuration of FIG. 7 and only the first voltage source connection transistor 160 is configured. Is presented as a comparative example, and the solid-state imaging device of FIG. 7 is compared with the solid-state imaging device of the comparative example.
 図8は、比較例の固体撮像装置の全体構成を示す図である。図8中、図7と同様の構成要素については、同じ符号を付与している。 FIG. 8 is a diagram illustrating an overall configuration of a solid-state imaging device of a comparative example. In FIG. 8, the same components as those in FIG. 7 are given the same reference numerals.
 本比較例の固体撮像装置は、XY方向にアレイ状に配列された複数の単位セル200と、列信号線111と、第1の電流源112と、CDS回路113と、水平選択トランジスタ114と、コンパレータ115と、カウンタ116と、水平信号線121と、垂直選択回路122と、水平選択回路123と、増幅回路124と、画素電源線125と、スイッチ部160と、電圧源162と、電圧切り替えトランジスタ163と、RAMP波発生回路300と、クロックジェネレータ400とを備える。 The solid-state imaging device of this comparative example includes a plurality of unit cells 200 arranged in an array in the XY direction, a column signal line 111, a first current source 112, a CDS circuit 113, a horizontal selection transistor 114, Comparator 115, counter 116, horizontal signal line 121, vertical selection circuit 122, horizontal selection circuit 123, amplification circuit 124, pixel power supply line 125, switch unit 160, voltage source 162, voltage switching transistor 163, a RAMP wave generation circuit 300, and a clock generator 400.
 単位セル200は、フォトダイオード101と、フォトダイオード101で発生した信号電荷(電子)が転送され、フォトダイオード101で発生した信号電荷を一時的に保持しておくためのFD部106と、フォトダイオード101からFD部106に電子を転送させるための転送トランジスタ102と、FD部106をリセットするためのリセットトランジスタ103と、FD部106の電圧信号を読み出すための読み出しトランジスタ104とを有する。 The unit cell 200 includes a photodiode 101, an FD unit 106 to which signal charges (electrons) generated in the photodiode 101 are transferred, and temporarily hold the signal charges generated in the photodiode 101. A transfer transistor 102 for transferring electrons from the 101 to the FD unit 106, a reset transistor 103 for resetting the FD unit 106, and a read transistor 104 for reading a voltage signal of the FD unit 106 are included.
 列信号線111は、単位セル200の列に対応して設けられ、対応する列の読み出しトランジスタ104に共通に接続されている。 The column signal line 111 is provided corresponding to the column of the unit cells 200 and is commonly connected to the read transistor 104 of the corresponding column.
 第1の電流源112は、列信号線111に接続されている。 The first current source 112 is connected to the column signal line 111.
 CDS回路113は、列信号線111に接続されている。 The CDS circuit 113 is connected to the column signal line 111.
 コンパレータ115は、CDS回路113とRAMP波発生回路300に接続され、CDS回路113の出力とRAMP波発生回路300の出力電位との大小を比較する。 The comparator 115 is connected to the CDS circuit 113 and the RAMP wave generation circuit 300, and compares the magnitude of the output of the CDS circuit 113 and the output potential of the RAMP wave generation circuit 300.
 カウンタ116は、コンパレータ115とクロックジェネレータ400とに接続されている。 The counter 116 is connected to the comparator 115 and the clock generator 400.
 水平選択トランジスタ114は、カウンタ116に接続されている。 The horizontal selection transistor 114 is connected to the counter 116.
 水平信号線121は、各列の水平選択トランジスタ114に共通に接続されている。 The horizontal signal line 121 is commonly connected to the horizontal selection transistors 114 in each column.
 垂直選択回路122は、単位セル200のトランジスタを制御する。 The vertical selection circuit 122 controls the transistor of the unit cell 200.
 水平選択回路123は、水平選択トランジスタ114を制御する。 The horizontal selection circuit 123 controls the horizontal selection transistor 114.
 増幅回路126は、水平信号線121に接続されている。 The amplification circuit 126 is connected to the horizontal signal line 121.
 画素電源線125は、単位セル200のリセットトランジスタ103及び読み出しトランジスタ104に共通に接続されている。 The pixel power line 125 is commonly connected to the reset transistor 103 and the read transistor 104 of the unit cell 200.
 電圧源162は、画素電源線125にグランド電位と異なる電源電位を供給する。 The voltage source 162 supplies a power supply potential different from the ground potential to the pixel power supply line 125.
 スイッチ部160は、行に対応して複数個設けられ、画素電源線125と電圧源162とをショートしたり切り離したりする。スイッチ部160は、第1の電圧源接続トランジスタ161のみで構成されている。 A plurality of switch units 160 are provided corresponding to the rows, and the pixel power supply line 125 and the voltage source 162 are short-circuited or disconnected. The switch unit 160 includes only the first voltage source connection transistor 161.
 トランジスタ163は、画素電源線125とグランドの間に挿入されている。 The transistor 163 is inserted between the pixel power line 125 and the ground.
 図8の構成の固体撮像装置は、画素部の感度向上を目的に、画素部の開口率を上げるために選択トランジスタを除した1セル3トランジスタ構成のMOS型イメージセンサとして広く用いられている。 The solid-state imaging device having the configuration of FIG. 8 is widely used as a 1-cell 3-transistor MOS type image sensor excluding a selection transistor in order to increase the aperture ratio of the pixel portion for the purpose of improving the sensitivity of the pixel portion.
 図9は、図8の固体撮像装置の動作タイミングチャートである。 FIG. 9 is an operation timing chart of the solid-state imaging device of FIG.
 図9において、横軸は時間、縦軸は各信号の電位を表す。リセットパルスφRSは、所定の行のリセットトランジスタ103を共通に制御するパルス信号を表している。転送パルスφTXは、所定の行の転送トランジスタ102を共通に制御するパルス信号を表している。電位Vfdは所定の単位セル200のFD部106の電位、電位Vlは所定の単位セル200と接続された列信号線111の電位を表している。電源パルスφVDCEL4は、第1の電圧源接続トランジスタ161及びトランジスタ163を制御するパルス信号を表している。電位Vddpx、Vddrd及びVgndはそれぞれ、画素電源線125の電位、電圧源161が供給する電位及び、グランド電位である。 In FIG. 9, the horizontal axis represents time, and the vertical axis represents the potential of each signal. The reset pulse φRS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row. The transfer pulse φTX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row. The potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 200, and the potential V l represents the potential of the column signal line 111 connected to the predetermined unit cell 200. The power supply pulse φVDCEL4 represents a pulse signal for controlling the first voltage source connection transistor 161 and the transistor 163. The potentials V ddpx , V ddrd, and V gnd are the potential of the pixel power supply line 125, the potential supplied by the voltage source 161, and the ground potential, respectively.
 まず、リセットパルスφRSが“H”レベルになることで、リセットパルスφRSが供給されるリセットトランジスタ103が全てオンし、該当する行のFD部106は画素電源線125の電位Vddpxにリセットされる。 First, when the reset pulse φRS becomes “H” level, all the reset transistors 103 to which the reset pulse φRS is supplied are turned on, and the FD portion 106 in the corresponding row is reset to the potential V ddpx of the pixel power supply line 125. .
 次に転送パルスφTXが“H”レベルになると、転送パルスφTXが供給される転送トランジスタ102が全てオンし、該当する行のフォトダイオード101で発生した電子がFD部106に転送される。 Next, when the transfer pulse φTX becomes “H” level, all the transfer transistors 102 to which the transfer pulse φTX is supplied are turned on, and electrons generated in the photodiodes 101 in the corresponding row are transferred to the FD unit 106.
 FD部106の電位は、読み出しトランジスタ104と第1の電流源112とで構成されるソースフォロア回路で列信号線111に読み出され、FD部106を画素電源線125の電位にリセットした時の列信号線111の電位と、光照射量に応じて蓄積された電子がFD部106に転送された時の列信号線111の電位との差分に応じた電位がCDS回路113から出力される。 The potential of the FD portion 106 is read out to the column signal line 111 by a source follower circuit including the reading transistor 104 and the first current source 112, and the FD portion 106 is reset to the potential of the pixel power supply line 125. A potential corresponding to the difference between the potential of the column signal line 111 and the potential of the column signal line 111 when electrons accumulated according to the light irradiation amount are transferred to the FD unit 106 is output from the CDS circuit 113.
 各列のCDS回路113からの出力は、コンパレータ115及びカウンタ116にてデジタル信号に変換される。 The output from the CDS circuit 113 in each column is converted into a digital signal by the comparator 115 and the counter 116.
 ここで、アナログ-デジタル変換動作タイミングの1例を図10に示す。 Here, one example of the analog-digital conversion operation timing is shown in FIG.
 図10において、横軸は時間、縦軸は各信号の電位、また、電位VCDSはCDS回路113の出力電位、電位VrampはRAMP波発生回路300の出力信号、クロックVclkはクロックジェネレータ400の出力パルス信号、カウント値Doutはカウンタ116からの出力デジタル値を表す。 10, the horizontal axis represents time, the vertical axis represents the potential of each signal, the potential V CDS represents the output potential of the CDS circuit 113, the potential V ramp represents the output signal of the RAMP wave generation circuit 300, and the clock V clk represents the clock generator 400. The output pulse signal, count value Dout , represents an output digital value from the counter 116.
 クロックVclkに同期して、電位Vrampは線形に上昇し、時刻t10で電位Vrampが電位VCDSと同電位となる。クロックVclkの出力開始時には、コンパレータ115の出力は“L”レベルであるが、電位Vrampと電位VCDSとが同電位になると、“L”レベルから“H”レベルへと変化する。コンパレータ115の出力が“H”レベルになるとカウンタ116はカウントを停止する。 In synchronization with the clock V clk, the potential V ramp rises linearly, at time t 10 is the potential V ramp becomes the potential V CDS the same potential. When the output of the clock V clk is started, the output of the comparator 115 is at the “L” level, but when the potential V ramp and the potential V CDS become the same potential, the output changes from the “L” level to the “H” level. When the output of the comparator 115 becomes “H” level, the counter 116 stops counting.
 この時、カウンタ116が出力するカウント値DoutはクロックVclkの出力開始からコンパレータ115が反転するまでに出力されたクロック数であり、CDS回路113の出力電位が高くなるのに応じてカウント値Doutも大きくなる。すなわち、カウント値Doutは、CDS回路113の出力電位をデジタル変換した値である。 At this time, the count value D out of the counter 116 outputs are clock number outputted from the output start of the clock V clk to the comparator 115 is inverted, the count value in response to the output potential of the CDS circuit 113 is high D out also increases. That is, the count value Dout is a value obtained by digitally converting the output potential of the CDS circuit 113.
 各列のカウンタ116からの出力は、水平選択回路123によって制御されている水平選択トランジスタ114を介して列毎に順次水平信号線121に読み出され、増幅回路126でバッファされて出力される。 The output from the counter 116 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, and is buffered and output by the amplification circuit 126.
 FD部106の電位読み出しが完了した後、リセットパルスφRSと電源パルスφVDCEL4を“H”レベルにしてFD部106をグランド電位Vgndにすることで、ある任意の行の全ての読み出しトランジスタ104がオフし、ある任意の行は非選択状態となる。 After the potential reading of the FD portion 106 is completed, the reset pulse φRS and the power supply pulse φVDCEL4 are set to the “H” level to set the FD portion 106 to the ground potential V gnd so that all the read transistors 104 in a given row are turned off. Then, an arbitrary row is in a non-selected state.
 この動作を、行ごとに順次行うことで、XY方向に配列された各画素の信号が出力され、2次元の画像データが生成される。 順次 By performing this operation sequentially for each row, a signal of each pixel arranged in the XY direction is output, and two-dimensional image data is generated.
 ここで、図8のMOS型イメージセンサにおける読み出しトランジスタ104の動作領域について考察してみると、FD部106のリセット電位が読み出しトランジスタ104のドレイン電圧と等しく、リニア領域で動作する可能性がある。従って、蓄積電子数が少ない時に、固定パターンノイズの増加や、出力リニアリティの劣化が起こりえる。 Here, considering the operation region of the read transistor 104 in the MOS image sensor of FIG. 8, the reset potential of the FD portion 106 is equal to the drain voltage of the read transistor 104, and there is a possibility that the read transistor 104 operates in the linear region. Therefore, when the number of stored electrons is small, an increase in fixed pattern noise and deterioration of output linearity can occur.
 これに対して、図7に示された本実施形態の固体撮像装置は、スイッチ部160の電圧源接続トランジスタを第1の電圧源接続トランジスタ161と第2の電圧源接続トランジスタ164とに分割し、それぞれ電源パルスφVDCEL4及びVDCEL5で制御する。 On the other hand, the solid-state imaging device of the present embodiment shown in FIG. 7 divides the voltage source connection transistor of the switch unit 160 into a first voltage source connection transistor 161 and a second voltage source connection transistor 164. , And are controlled by power supply pulses φVDCEL4 and VDCEL5, respectively.
 図11に、本実施形態の固体撮像装置の動作タイミングチャートを示す。 FIG. 11 shows an operation timing chart of the solid-state imaging device of the present embodiment.
 図11において、横軸は時間、縦軸は各信号の電位を表す。リセットパルスφRSは、所定の行のリセットトランジスタ103を共通に制御するパルス信号を表している。転送パルスφTXは、所定の行の転送トランジスタ102を共通に制御するパルス信号を表している。電位Vfdは所定の単位セル200のFD部106の電位、電位Vlはある任意の単位セル200を含む列の列信号線111の電位を表している。電源パルスφVDCEL4は、第1の電圧源接続トランジスタ161及びトランジスタ163を制御するパルス信号、電源パルスφVDCEL5は、第2の電圧源接続トランジスタ164を制御するパルス信号を表している。電位Vddpx、Vddrd2、Vgnd及びVddrs4はそれぞれ、画素電源線125の電位、電源パルスφVDCEL4及びφVDCEL5がともに“L”レベルの時の画素電源線125の電位、グランド電位及び、電源パルスφVDCEL4が“L”レベルで、電源パルスφVDCEL5が“H”レベルの時の画素電源線125の電位である。電位Vfdrst4及びVfdsig4はそれぞれ、リセットされた時のFD部106の電位、及びフォトダイオード101で発生した電子が転送された時のFD部106の電位である。 In FIG. 11, the horizontal axis represents time, and the vertical axis represents the potential of each signal. The reset pulse φRS represents a pulse signal for commonly controlling the reset transistors 103 in a predetermined row. The transfer pulse φTX represents a pulse signal for commonly controlling the transfer transistors 102 in a predetermined row. The potential V fd represents the potential of the FD unit 106 of the predetermined unit cell 200, and the potential V l represents the potential of the column signal line 111 of the column including an arbitrary unit cell 200. The power pulse φVDCEL4 represents a pulse signal for controlling the first voltage source connection transistor 161 and the transistor 163, and the power pulse φVDCEL5 represents a pulse signal for controlling the second voltage source connection transistor 164. The potentials V ddpx , V ddrd2 , V gnd, and V ddrs4 are the potential of the pixel power line 125, the potential of the pixel power line 125, the ground potential, and the power pulse φVDCEL 4 when the power pulses φVDCEL 4 and φVDCEL 5 are both “L” level. Is the potential of the pixel power supply line 125 when the power supply pulse φVDCEL5 is at the “H” level. The potentials V fdrst4 and V fdsig4 are the potential of the FD unit 106 when reset and the potential of the FD unit 106 when electrons generated in the photodiode 101 are transferred, respectively.
 まず、リセットパルスφRSが“H”レベルになることで、リセットパルスφRSが接続されたリセットトランジスタ103が全てオンし、該当する行のFD部106は画素電源線125の電位にリセットされるが、この時、電源パルスφVDCEL5が“H”レベルとなっているため、画素電源線125を流れる電流は第1の電圧源接続トランジスタ161のみに流れる。第1の電圧源接続トランジスタ161のon抵抗値をRon1とし、第1の電流源112の電流量をIbias、第1の電流源112の総数をKとすると、電位Vddrs4は、 First, when the reset pulse φRS becomes “H” level, all the reset transistors 103 connected to the reset pulse φRS are turned on, and the FD portion 106 of the corresponding row is reset to the potential of the pixel power supply line 125. At this time, since the power supply pulse φVDCEL5 is at the “H” level, the current flowing through the pixel power supply line 125 flows only through the first voltage source connection transistor 161. When the on-resistance value of the first voltage source connection transistor 161 is R on1 , the current amount of the first current source 112 is I bias , and the total number of the first current sources 112 is K, the potential V ddrs4 is
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
となる。従って、FD部106をリセットした時のFD部106の電位Vfdrst4It becomes. Therefore, the potential V fdrst4 of the FD unit 106 when the FD unit 106 is reset is
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
である。 It is.
 次にφTXが“H”レベルになると、転送パルスφTXが供給される転送トランジスタ102が全てオンし、該当する行のフォトダイオード101で発生した電子がFD部106に転送される。蓄積された電子の数をN、電子一つあたりの電荷量をq、FD部106の容量をCとすると、FD部106の電位Vfdsig4Next, when φTX becomes “H” level, all the transfer transistors 102 to which the transfer pulse φTX is supplied are turned on, and electrons generated in the photodiodes 101 in the corresponding row are transferred to the FD unit 106. When the number of accumulated electrons is N, the charge amount per electron is q, and the capacitance of the FD unit 106 is C, the potential V fdsig4 of the FD unit 106 is
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
で表される。 It is represented by
 ここで読み出しトランジスタ104のドレイン電圧を求めると、FD部106のリセットが終わった後、電源パルスφVDCEL5は“L”レベルになるので、画素電源線125を流れる電流は、第1の電圧源接続トランジスタ161と第2の電圧源接続トランジスタ164との両方を流れる。従って、第2の電圧源接続トランジスタ164のon抵抗値をRon2とすると、電位Vddrd2Here, when the drain voltage of the reading transistor 104 is obtained, the power supply pulse φVDCEL5 becomes “L” level after the reset of the FD unit 106 is finished, so that the current flowing through the pixel power supply line 125 is the first voltage source connection transistor. 161 and the second voltage source connection transistor 164 flow. Therefore, when the on resistance value of the second voltage source connected transistors 164 and R on2, potential V Ddrd2 is
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
である。 It is.
 FD部106の電位は、読み出しトランジスタ104と第1の電流源112とで構成されるソースフォロア回路で列信号線111に読み出され、FD部106を画素電源線125の電位にリセットした時の列信号線111の電位と、光照射量に応じてフォトダイオード101で発生した電子がFD部106に転送された時の列信号線111の電位との差分に応じた電位がCDS回路113から出力される。 The potential of the FD portion 106 is read out to the column signal line 111 by a source follower circuit including the reading transistor 104 and the first current source 112, and the FD portion 106 is reset to the potential of the pixel power supply line 125. A potential corresponding to the difference between the potential of the column signal line 111 and the potential of the column signal line 111 when electrons generated in the photodiode 101 are transferred to the FD unit 106 according to the amount of light irradiation is output from the CDS circuit 113. Is done.
 各列のCDS回路113からの出力は、例えば、図10に示したアナログ-デジタル変換方法によりデジタル信号に変換される。 The output from the CDS circuit 113 in each column is converted into a digital signal by, for example, an analog-digital conversion method shown in FIG.
 各列のカウンタ116からの出力は、水平選択回路123によって制御されている水平選択トランジスタ114を介して列毎に順次水平信号線121に読み出され、増幅回路126で増幅されて出力される。 The output from the counter 116 of each column is sequentially read out to the horizontal signal line 121 for each column via the horizontal selection transistor 114 controlled by the horizontal selection circuit 123, amplified by the amplification circuit 126, and output.
 図8のような固体撮像装置に対し、本実施形態の固体撮像装置は、電圧源接続トランジスタを分割し、FD部106をリセットする時のみ電圧源162と画素電源線125との間の抵抗を高くすることで、FD部106をリセットする時の画素電源線125の電位を低くしている。それにより、フォトダイオード101での発生電子数が少ない場合においても読み出しトランジスタ104が飽和領域で動作するように、FD部106のリセット電位を読み出しトランジスタ104のドレイン電位よりも低くすることが可能となった。具体的には式(16)、式(26)及び式(27)より、 In contrast to the solid-state imaging device as shown in FIG. 8, the solid-state imaging device according to the present embodiment divides the voltage source connection transistor and sets the resistance between the voltage source 162 and the pixel power supply line 125 only when the FD unit 106 is reset. By increasing the value, the potential of the pixel power supply line 125 when the FD unit 106 is reset is lowered. Accordingly, the reset potential of the FD portion 106 can be made lower than the drain potential of the read transistor 104 so that the read transistor 104 operates in the saturation region even when the number of electrons generated in the photodiode 101 is small. It was. Specifically, from Equation (16), Equation (26) and Equation (27),
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
を満たすパラメータに、第1の電圧源接続トランジスタ161及び第2の電圧源接続トランジスタ164のon抵抗値、読み出しトランジスタ104のドレイン・ソース間電流及びしきい値電圧、並びに第1の電流源112の数を設定することで、フォトダイオード101での発生電子数が少ない場合でも、読み出しトランジスタ104を飽和領域で動作させ、リニアリティの劣化及び固定パターンノイズの増加を抑えることが可能となる。 The on-resistance values of the first voltage source connection transistor 161 and the second voltage source connection transistor 164, the drain-source current and threshold voltage of the read transistor 104, and the first current source 112 By setting the number, even when the number of electrons generated in the photodiode 101 is small, the read transistor 104 can be operated in a saturation region, and deterioration of linearity and increase in fixed pattern noise can be suppressed.
 本実施形態の固体撮像装置は、図8の固体撮像装置から電圧源接続スイッチを分割しているだけであり、チップサイズを増加させることなくリニアリティの劣化及び固定パターンノイズの増加を抑えることも可能となる。 The solid-state imaging device of the present embodiment is obtained by dividing the voltage source connection switch from the solid-state imaging device of FIG. 8, and can suppress degradation of linearity and increase of fixed pattern noise without increasing the chip size. It becomes.
 (第4の実施形態)
 図12は、本発明における第4の実施形態の撮像装置(カメラシステム)の全体構成を示す図である。
(Fourth embodiment)
FIG. 12 is a diagram illustrating an overall configuration of an imaging apparatus (camera system) according to a fourth embodiment of the present invention.
 本実施形態の撮像装置は、大きく分けて固体撮像装置201、光学系240、DSP(Digital Signal Processor)250、液晶画面等の画像表示デバイス280及び画像メモリ290から構成されている。 The imaging apparatus of the present embodiment is roughly composed of a solid-state imaging apparatus 201, an optical system 240, a DSP (Digital Signal Processor) 250, an image display device 280 such as a liquid crystal screen, and an image memory 290.
 光学系240は、被写体からの光を集光して固体撮像装置201の画素配列上に画像イメージを形成するレンズ241を備えている。 The optical system 240 includes a lens 241 that collects light from a subject and forms an image on the pixel array of the solid-state imaging device 201.
 固体撮像装置201は、本発明の第1~3の実施形態で説明した固体撮像装置である。固体撮像装置201は、フォトダイオード等の光感応素子及びMOSトランジスタ等を含む単位セルを2次元配列上に並べた撮像領域210と、撮像領域210の単位セルを行単位で選択し、単位セルのリセット及び信号読み出しを制御する垂直選択回路220と、垂直選択回路220に駆動パルスを供給するタイミング制御部230とを備えている。 The solid-state imaging device 201 is the solid-state imaging device described in the first to third embodiments of the present invention. The solid-state imaging device 201 selects an imaging region 210 in which unit cells including a photosensitive element such as a photodiode and a MOS transistor are arranged in a two-dimensional array, and unit cells of the imaging region 210 are selected in units of rows. A vertical selection circuit 220 that controls reset and signal readout, and a timing control unit 230 that supplies a drive pulse to the vertical selection circuit 220 are provided.
 なお、固体撮像装置201は、各列に設けられ、撮像領域210から読み出された画素信号をA/D変換するA/D変換回路、A/D変換された画素信号を保持するカラムデジタルメモリ、及びカラムデジタルメモリの各列を選択して保持されているデジタル画素信号の読み出しを駆動する水平走査部を備えていてもよい。 The solid-state imaging device 201 is provided in each column, and an A / D conversion circuit that performs A / D conversion on the pixel signal read from the imaging region 210, and a column digital memory that holds the A / D converted pixel signal. And a horizontal scanning unit that drives reading of the digital pixel signal that is selected and held in each column of the column digital memory.
 DSP250は、カメラシステム制御部260及び画像処理回路270を備えている。 The DSP 250 includes a camera system control unit 260 and an image processing circuit 270.
 画像処理回路270は、固体撮像装置201から出力されたデジタル画素信号を受けて、カメラ信号処理として必要な、ガンマ補正、色補間処理、空間補間処理、及びオートホワイトバランス等の処理を行う。また、画像処理回路270は、JPEG等の圧縮フォーマットへの変換、画像メモリ290への記録、及び画像表示デバイス280への表示用信号処理等を行う。 The image processing circuit 270 receives the digital pixel signal output from the solid-state imaging device 201 and performs processing such as gamma correction, color interpolation processing, spatial interpolation processing, and auto white balance necessary for camera signal processing. Further, the image processing circuit 270 performs conversion into a compression format such as JPEG, recording in the image memory 290, and display signal processing to the image display device 280.
 カメラシステム制御部260は、ユーザI/F(図示せず)で指定された各種の設定に従って、光学系240、固体撮像装置201及び画像処理回路270の制御を行い、撮像装置の全体動作を統合するマイクロコンピュータ等である。ユーザI/Fは、例えば、ズーム倍率の変更及びレリーズボタンなどのリアルタイム指示を入力として受け、カメラシステム制御部260は、レンズ241のズーム倍率変更、幕シャッタの走行及び固体撮像装置201のリセット走査の制御を行う。 The camera system control unit 260 controls the optical system 240, the solid-state imaging device 201, and the image processing circuit 270 according to various settings designated by a user I / F (not shown), and integrates the entire operation of the imaging device. Such as a microcomputer. The user I / F receives, for example, a zoom magnification change and a real-time instruction such as a release button, and the camera system control unit 260 changes the zoom magnification of the lens 241, travel of the curtain shutter, and reset scanning of the solid-state imaging device 201. Control.
 以上、本発明の固体撮像装置について、実施形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。また、発明の趣旨を逸脱しない範囲で、複数の実施の形態における各構成要素を任意に組み合わせてもよい。 As mentioned above, although the solid-state imaging device of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment. The present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention. Moreover, you may combine each component in several embodiment arbitrarily in the range which does not deviate from the meaning of invention.
 例えば、第3の実施形態の固体撮像装置において、並列に接続された2つの電圧源接続トランジスタを介して画素電源線に1つの電圧源を接続し、画素電源線に2つの電源電圧を供給するとした。しかし、図1の構成のように、異なる電源電位を供給する2つの電圧源と共にそれらに対応する形で2つの電源切り替えトランジスタを設け、対応する電源切り替えトランジスタを介して画素電源線に電圧源を接続し、画素電源線に2つの電源電圧を供給してもよい。同様に、図5の構成のように、電圧切り替えトランジスタを介して画素電源線に1つの電圧源を接続し、更に電圧切り替えトランジスタに並列に電圧降下用抵抗を接続し、画素電源線に2つの電源電圧を供給してもよい。 For example, in the solid-state imaging device of the third embodiment, when one voltage source is connected to the pixel power supply line via two voltage source connection transistors connected in parallel, and two power supply voltages are supplied to the pixel power supply line. did. However, as in the configuration of FIG. 1, two power source switching transistors are provided corresponding to two voltage sources that supply different power source potentials, and the voltage source is connected to the pixel power source line via the corresponding power source switching transistor. Two power supply voltages may be supplied to the pixel power supply line by connection. Similarly, as in the configuration of FIG. 5, one voltage source is connected to the pixel power supply line via the voltage switching transistor, and further a voltage drop resistor is connected in parallel to the voltage switching transistor. A power supply voltage may be supplied.
 また、上記実施形態の固体撮像装置において、電源供給部は、3つの電源電位を1つの単位セルに供給するとした。しかし、フォトダイオードの蓄積電子数が少ない場合においても読み出しトランジスタが飽和領域で動作するように、FD部のリセット電位を読み出しトランジスタのドレイン電位よりも低くすることが出来れば、3つの電源電位に限られず、少なくとも3つの電源電位つまり4以上の電源電位が単位セルに供給されてもよい。 In the solid-state imaging device of the above embodiment, the power supply unit supplies three power supply potentials to one unit cell. However, if the reset potential of the FD portion can be made lower than the drain potential of the read transistor so that the read transistor operates in the saturation region even when the number of accumulated electrons in the photodiode is small, the power supply potential is limited to three power supply potentials. Instead, at least three power supply potentials, that is, four or more power supply potentials may be supplied to the unit cell.
 本発明は、固体撮像装置に利用でき、特にMOS型の固体撮像装置等に利用することができる。 The present invention can be used for a solid-state imaging device, and in particular, for a MOS type solid-state imaging device.
  100、200  単位セル
  101  フォトダイオード
  102  転送トランジスタ
  103  リセットトランジスタ
  104  読み出しトランジスタ
  105  選択トランジスタ
  106  FD部
  111  列信号線
  112  第1の電流源
  113  CDS回路
  114  水平選択トランジスタ
  115  コンパレータ
  116  カウンタ
  121  水平信号線
  122、220  垂直選択回路
  123  水平選択回路
  124、126  増幅回路
  125  画素電源線
  131  第1の電源切り替えトランジスタ
  132  第1の電圧源
  133  第2の電源切り替えトランジスタ
  134  第2の電圧源
  141  第2の電流源
  142  トランジスタ
  151  電圧切り替えトランジスタ
  152、162  電圧源
  153  電圧降下用抵抗
  160  スイッチ部
  161  第1の電圧源接続トランジスタ
  163  電圧切り替えトランジスタ
  164  第2の電圧源接続トランジスタ
  201  固体撮像装置
  210  撮像領域
  230  タイミング制御部
  240  光学系
  241  レンズ
  250  DSP
  260  カメラシステム制御部
  270  画像処理回路
  280  画像表示デバイス
  290  画像メモリ
  300  RAMP波発生回路
  400  クロックジェネレータ
100, 200 Unit cell 101 Photodiode 102 Transfer transistor 103 Reset transistor 104 Read transistor 105 Select transistor 106 FD section 111 Column signal line 112 First current source 113 CDS circuit 114 Horizontal select transistor 115 Comparator 116 Counter 121 Horizontal signal line 122 220 vertical selection circuit 123 horizontal selection circuit 124, 126 amplifier circuit 125 pixel power supply line 131 first power supply switching transistor 132 first voltage source 133 second power supply switching transistor 134 second voltage source 141 second current source 142 Transistor 151 Voltage switching transistor 152, 162 Voltage source 153 Voltage drop resistor 160 Switch unit 161 First voltage source connection transistor 163 Voltage switching transistor 164 Second voltage source connection transistor 201 Solid-state imaging device 210 Imaging region 230 Timing control unit 240 Optical system 241 Lens 250 DSP
260 Camera System Control Unit 270 Image Processing Circuit 280 Image Display Device 290 Image Memory 300 RAMP Wave Generation Circuit 400 Clock Generator

Claims (11)

  1.  アレイ状に配列された複数の単位セルと、
     前記単位セルの列に対応して設けられ、対応する列の前記単位セルに共通に接続された列信号線と、
     前記列信号線に接続された電流源と、
     前記単位セルに電源電位を供給するための電源供給部とを備え、
     前記単位セルは、
     フォトダイオードと、
     前記フォトダイオードで発生した信号電荷を一時的に保持するためのFD(フローティングディフュージョン)部と、
     前記フォトダイオードと前記FD部との間に設けられ、前記フォトダイオードから前記FD部に電荷を転送するための転送トランジスタと、
     前記FD部と接続され、前記FD部の電位をリセットするためのリセットトランジスタと、
     ゲートが前記FD部に接続され、前記FD部の電位に応じた信号電圧を読み出すための読み出しトランジスタと、
     前記読み出しトランジスタと前記列信号線との間に設けられ、前記単位セルから前記列信号線に信号電圧を出力するための選択トランジスタとを有し、
     前記電源供給部は、前記リセットトランジスタ及び前記読み出しトランジスタに共通に接続された画素電源線を有し、前記FD部をリセットする時に、前記単位セルから前記列信号線に前記信号電圧を出力する時の電源電位よりも低い電源電位を、前記画素電源線を介して供給する
     固体撮像装置。
    A plurality of unit cells arranged in an array; and
    Column signal lines provided corresponding to the columns of the unit cells and connected in common to the unit cells of the corresponding columns;
    A current source connected to the column signal line;
    A power supply unit for supplying a power supply potential to the unit cell,
    The unit cell is
    A photodiode;
    An FD (floating diffusion) section for temporarily holding signal charges generated in the photodiode;
    A transfer transistor provided between the photodiode and the FD unit, for transferring charges from the photodiode to the FD unit;
    A reset transistor connected to the FD unit for resetting the potential of the FD unit;
    A read transistor having a gate connected to the FD unit and reading a signal voltage corresponding to the potential of the FD unit;
    A selection transistor that is provided between the read transistor and the column signal line and outputs a signal voltage from the unit cell to the column signal line;
    The power supply unit includes a pixel power supply line commonly connected to the reset transistor and the readout transistor, and outputs the signal voltage from the unit cell to the column signal line when resetting the FD unit. A solid-state imaging device that supplies a power source potential lower than the power source potential via the pixel power source line.
  2.  前記固体撮像装置は、さらに、
     前記列信号線における任意の異なる二つのタイミングにおける電位差に応じた信号を出力するCDS回路を、前記列信号線毎に備える
     請求項1に記載の固体撮像装置。
    The solid-state imaging device further includes:
    The solid-state imaging device according to claim 1, wherein a CDS circuit that outputs a signal corresponding to a potential difference at any two different timings in the column signal line is provided for each column signal line.
  3.  前記電源供給部は、さらに、
     前記画素電源線に電源電位を供給するための異なる電源電位の第1の電源及び第2の電源と、
     前記第1の電源と前記電源線との間に設けられた第1のスイッチと、
     前記第2の電源と前記電源線との間に設けられた第2のスイッチとを備える
     請求項1又は2に記載の固体撮像装置。
    The power supply unit further includes:
    A first power source and a second power source having different power source potentials for supplying a power source potential to the pixel power source line;
    A first switch provided between the first power source and the power line;
    The solid-state imaging device according to claim 1, further comprising: a second switch provided between the second power supply and the power supply line.
  4.  前記電源供給部は、さらに、
     前記画素電源線に電源電位を供給するための電源と、
     前記電源と前記電源線との間に設けられたスイッチと、
     前記画素電源線と前記電源との間に、前記スイッチと並列になるように設けられた抵抗とを備える
     請求項1又は2に記載の固体撮像装置。
    The power supply unit further includes:
    A power supply for supplying a power supply potential to the pixel power supply line;
    A switch provided between the power source and the power line;
    The solid-state imaging device according to claim 1, further comprising: a resistor provided in parallel with the switch between the pixel power supply line and the power supply.
  5.  前記固体撮像装置は、さらに、
     前記CDS回路の出力信号をアナログ-デジタル変換するためのAD変換回路を、前記CDS回路毎に備える
     請求項2に記載の固体撮像装置。
    The solid-state imaging device further includes:
    The solid-state imaging device according to claim 2, wherein an AD conversion circuit for analog-digital conversion of an output signal of the CDS circuit is provided for each CDS circuit.
  6.  アレイ状に配列された複数の単位セルと、
     前記単位セルの列に対応して設けられ、対応する列の前記単位セルに共通に接続された列信号線と、
     前記列信号線に接続された電流源と、
     前記単位セルに電源電位を供給するための電源供給部とを備え、
     前記単位セルは、
     フォトダイオードと、
     前記フォトダイオードで発生した信号電荷を一時的に保持するためのFD(フローティングディフュージョン)部と、
     前記フォトダイオードと前記FD部との間に設けられ、前記フォトダイオードから前記FD部に電荷を転送するための転送トランジスタと、
     前記FD部と接続され、前記FD部の電位をリセットするためのリセットトランジスタと、
     ゲートが前記FD部に接続され、前記FD部の電位に応じた信号電圧を読み出すための読み出しトランジスタとを有し、
     前記電源供給部は、前記リセットトランジスタ及び前記読み出しトランジスタに共通に接続された画素電源線を有し、少なくとも3つの電源電位を1つの前記単位セルに供給し、
     前記電源供給部は、前記FD部をリセットする時に、前記単位セルから前記列信号線に前記信号電圧を出力する時の電源電位よりも低い電源電位を、前記画素電源線を介して供給する
     固体撮像装置。
    A plurality of unit cells arranged in an array; and
    Column signal lines provided corresponding to the columns of the unit cells and connected in common to the unit cells of the corresponding columns;
    A current source connected to the column signal line;
    A power supply unit for supplying a power supply potential to the unit cell,
    The unit cell is
    A photodiode;
    An FD (floating diffusion) section for temporarily holding signal charges generated in the photodiode;
    A transfer transistor provided between the photodiode and the FD unit, for transferring charges from the photodiode to the FD unit;
    A reset transistor connected to the FD unit for resetting the potential of the FD unit;
    A gate connected to the FD unit, and a read transistor for reading a signal voltage corresponding to the potential of the FD unit,
    The power supply unit includes a pixel power supply line commonly connected to the reset transistor and the readout transistor, and supplies at least three power supply potentials to one unit cell.
    The power supply unit supplies, via the pixel power line, a power supply potential lower than a power supply potential when the signal voltage is output from the unit cell to the column signal line when the FD unit is reset. Imaging device.
  7.  前記固体撮像装置は、さらに、
     前記列信号線における任意の異なる二つのタイミングにおける電位差に応じた信号を出力するCDS回路を、前記列信号線毎に備える
     請求項6に記載の固体撮像装置。
    The solid-state imaging device further includes:
    The solid-state imaging device according to claim 6, wherein a CDS circuit that outputs a signal corresponding to a potential difference at any two different timings in the column signal line is provided for each column signal line.
  8.  前記電源供給部は、さらに、
     前記画素電源線に電源電位を供給するための異なる電源電位の第1の電源及び第2の電源と、
     前記第1の電源と前記電源線との間に設けられた第1のスイッチと、
     前記第2の電源と前記電源線との間に設けられた第2のスイッチとを備える
     請求項6又は7に記載の固体撮像装置。
    The power supply unit further includes:
    A first power source and a second power source having different power source potentials for supplying a power source potential to the pixel power source line;
    A first switch provided between the first power source and the power line;
    The solid-state imaging device according to claim 6, further comprising a second switch provided between the second power supply and the power supply line.
  9.  前記電源供給部は、さらに、
     前記画素電源線に電源電位を供給するための電源と、
     前記電源と前記電源線との間に設けられたスイッチと、
     前記画素電源線と前記電源との間に、前記スイッチと並列になるように設けられた抵抗とを備える
     請求項6又は7に記載の固体撮像装置。
    The power supply unit further includes:
    A power supply for supplying a power supply potential to the pixel power supply line;
    A switch provided between the power source and the power line;
    The solid-state imaging device according to claim 6, further comprising a resistor provided in parallel with the switch between the pixel power supply line and the power supply.
  10.  前記固体撮像装置は、さらに、
     前記CDS回路の出力信号をアナログ-デジタル変換するためのAD変換回路を、前記CDS回路毎に備える
     請求項7に記載の固体撮像装置。
    The solid-state imaging device further includes:
    The solid-state imaging device according to claim 7, wherein an AD conversion circuit for analog-digital conversion of an output signal of the CDS circuit is provided for each CDS circuit.
  11.  請求項1~10のいずれか1項に記載の固体撮像装置を備える
     カメラシステム。
    A camera system comprising the solid-state imaging device according to any one of claims 1 to 10.
PCT/JP2011/000757 2010-02-25 2011-02-10 Solid-state imaging device and camera system WO2011105018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010040897A JP2011176761A (en) 2010-02-25 2010-02-25 Solid-state imaging apparatus and camera system
JP2010-040897 2010-02-25

Publications (1)

Publication Number Publication Date
WO2011105018A1 true WO2011105018A1 (en) 2011-09-01

Family

ID=44506453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000757 WO2011105018A1 (en) 2010-02-25 2011-02-10 Solid-state imaging device and camera system

Country Status (2)

Country Link
JP (1) JP2011176761A (en)
WO (1) WO2011105018A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137997B2 (en) * 2012-10-31 2017-05-31 ルネサスエレクトロニクス株式会社 Solid-state imaging device
CN106341627B (en) * 2015-07-07 2020-08-11 松下知识产权经营株式会社 Image pickup apparatus
JP6859553B2 (en) * 2017-01-12 2021-04-14 ブリルニクス インク Solid-state image sensor, solid-state image sensor drive method, and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067484A (en) * 2005-08-29 2007-03-15 Olympus Corp Solid-state imaging apparatus
JP2009267971A (en) * 2008-04-28 2009-11-12 Canon Inc Image sensor, imaging system, and image sensor control method
JP2010045591A (en) * 2008-08-12 2010-02-25 Canon Inc Solid-state imaging apparatus and driving method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067484A (en) * 2005-08-29 2007-03-15 Olympus Corp Solid-state imaging apparatus
JP2009267971A (en) * 2008-04-28 2009-11-12 Canon Inc Image sensor, imaging system, and image sensor control method
JP2010045591A (en) * 2008-08-12 2010-02-25 Canon Inc Solid-state imaging apparatus and driving method thereof

Also Published As

Publication number Publication date
JP2011176761A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
US10567691B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US9124837B2 (en) Solid-state image pickup device and driving method thereof, and electronic apparatus
US10044947B2 (en) Electronic apparatus and driving method therefor
TWI425830B (en) A solid-state imaging element and a driving method thereof, and a camera system
US7176462B2 (en) Semiconductor device, and control method and device for driving unit component of semiconductor device
JP4821921B2 (en) Solid-state imaging device and electronic apparatus
US8289425B2 (en) Solid-state image pickup device with an improved output amplifier circuitry
JP4691930B2 (en) PHYSICAL INFORMATION ACQUISITION METHOD, PHYSICAL INFORMATION ACQUISITION DEVICE, PHYSICAL QUANTITY DISTRIBUTION SENSING SEMICONDUCTOR DEVICE, PROGRAM, AND IMAGING MODULE
CN105917644B (en) Solid-state imaging element and imaging device
US20060102827A1 (en) Solid-state imaging device
KR20140136445A (en) Solid state imaging element, driving method of solid state imaging element, and electronic apparatus
JP2008263546A (en) Solid-state imaging apparatus, method for driving the solid-state imaging apparatus and imaging system using them
TWI511557B (en) Solid-state imaging device and driving method thereof, and electronic apparatus using the same
JP2006093517A (en) Solid state imaging device
WO2011083541A1 (en) Solid-state image capture device and image capture device
US10735676B2 (en) Solid-state imaging device, method for driving solid-state imaging device and electronic apparatus for extending a dynamic range
WO2015170533A1 (en) Solid-state image pickup device, driving method for solid-state image pickup device, and electronic apparatus
WO2011105018A1 (en) Solid-state imaging device and camera system
JP2013197697A (en) Solid-state image pickup device and electronic apparatus
JP2006314025A (en) Imaging apparatus and power supply method for the same
JP2011091474A (en) Solid-state imaging apparatus and imaging apparatus
JP4345145B2 (en) Solid-state imaging device
JP2013187233A (en) Solid-state imaging device, driving method thereof and electronic apparatus
JP2012120106A (en) Solid-state imaging device and imaging apparatus
JP6863355B2 (en) Image sensor and image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11746991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11746991

Country of ref document: EP

Kind code of ref document: A1