WO2011088754A1 - 一种具有高熔体强度的丙烯均聚物及其制备方法 - Google Patents

一种具有高熔体强度的丙烯均聚物及其制备方法 Download PDF

Info

Publication number
WO2011088754A1
WO2011088754A1 PCT/CN2011/000107 CN2011000107W WO2011088754A1 WO 2011088754 A1 WO2011088754 A1 WO 2011088754A1 CN 2011000107 W CN2011000107 W CN 2011000107W WO 2011088754 A1 WO2011088754 A1 WO 2011088754A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
component
stage
ratio
equal
Prior art date
Application number
PCT/CN2011/000107
Other languages
English (en)
French (fr)
Inventor
宋文波
郭梅芳
张师军
魏文骏
黄红红
于鲁强
刘涛
胡慧杰
徐焕
于佩潜
张晓萌
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010100009756A external-priority patent/CN102134291B/zh
Priority claimed from CN2010100009741A external-priority patent/CN102134290B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to BR112012018282A priority Critical patent/BR112012018282B1/pt
Priority to SG2012054078A priority patent/SG182655A1/en
Priority to KR1020127021847A priority patent/KR101798500B1/ko
Priority to CN201180010274.3A priority patent/CN102884093B/zh
Priority to EP11734336.8A priority patent/EP2527376B1/en
Priority to US13/574,435 priority patent/US9068030B2/en
Publication of WO2011088754A1 publication Critical patent/WO2011088754A1/zh
Priority to ZA2012/06323A priority patent/ZA201206323B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/16Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of silicon, germanium, tin, lead, titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio

Definitions

  • the present invention relates to a multi-step propylene homopolymerization process for preparing polypropylene having a high melt strength.
  • the present invention also relates to a propylene polymer, and more particularly to a propylene homopolymer having a high melt strength, which is particularly suitable for the preparation of foamed articles, thermoformed articles, biaxially oriented films, blown films and Blow molding products.
  • the tailoring of the propylene homopolymer structure has made it widely used in the fields of injection molding, extrusion, casting, biaxial stretching and the like.
  • ordinary polypropylene molecular chains have a linear structure, unlike amorphous polymers (such as polystyrene PS), which have rubber-elastic regions in a wide temperature range. Therefore, polypropylene cannot be used at a wide temperature. Thermoforming is carried out within the range. At the same time, the softening point of polypropylene is close to the melting point. When the temperature is higher than the melting point, the melt strength and the viscosity of the melt drop sharply, resulting in uneven wall thickness during hot forming. Extrusion, coating and pressure delay are prone to occur.
  • HMSPP high melt strength polypropylene
  • the main factors affecting the melt strength of polypropylene are the structure of the polymer molecule, including the size of the molecular weight, the molecular weight distribution and whether the molecular chain contains long chain branches and the length and distribution of long chain branches.
  • the larger the molecular weight of the propylene polymer the greater the melt strength; however, the larger the molecular weight, the more disadvantageous the post-forming properties of polypropylene. Therefore, it is necessary to make polypropylene have a broad molecular weight distribution in consideration of the practical application of the material.
  • the polymer product should contain both a small amount of "high molecular weight polymer fraction", a certain amount of "higher molecular weight polymer fraction” and a larger amount of "low molecular weight polymer fraction”.
  • the disclosed methods for increasing the melt strength of polypropylene generally include: increasing the molecular weight of polypropylene by polymerization process, improving its distribution or introducing a branched structure, or adopting other amorphous or low crystallization during polymer processing. The resin and the elastomer are blended.
  • the modulation polymerization process is a commonly used method, usually by preparing a broad molecular weight distribution polypropylene through a plurality of reactors or in-situ polymerization using a metallocene catalyst to obtain a long-chain branched polypropylene, thereby increasing the melt strength of the final polymer.
  • the use of a plurality of reactors in series to prepare a broad molecular weight distribution polypropylene is most commonly used, which is usually selected in different amounts of hydrogen, different comonomers, that is, in different reactors that are advantageous for the production of polymers of different molecular weights.
  • Polypropylene having a broad molecular weight distribution (MWD) is obtained by series polymerization, for example: one of the reactors facilitates the production of higher molecular weight polymers, while the other reactor facilitates the production of lower molecular weight polymers.
  • a process for preparing a propylene polymer having a high melt strength and a broad molecular weight distribution, which is selected in a series of loop-gas phase polymerization reactors, is selected to have a lower hydrogen sensitivity, for example, in US Pat. No. 6,875,826 and US Pat. No. 7,365,136.
  • the Ziegler-Natta catalyst the most characteristic of the Ziegler-Natta catalyst is the need to use a cyclopentanyl-containing siloxane such as dicyclopentyldimethoxysilane as an external electron donor for multi-stage
  • the propylene (either reactor) is homopolymerized or copolymerized.
  • the first stage produces a "high molecular weight fraction" of polypropylene (MFR ⁇ 0.1 g/10 min), which weighs 10-35% by weight, and produces a "low molecular weight fraction" in the second stage.
  • Polypropylene polypropylene
  • the type of external electron donor generally has a significant effect on the stereoregularity and molecular weight distribution of the polymer.
  • the molecular weight and isotacticity of the high molecular weight fraction which determines the mechanical properties of the polymer are preferably as high as possible, especially in a certain amount.
  • the "very high molecular weight fraction"; and the lower the molecular weight of the "low molecular weight fraction” which determines the extrusion performance (processability) of the polymer the better, and the higher the content.
  • an external electron donor having a lower hydrogen sensitivity when used in a catalyst system, although the molecular weight of the polymer can be made higher in the first stage of producing a higher molecular weight fraction, it is more in production. In the second stage of the low molecular weight fraction, due to the insensitivity to hydrogen modulation, an extremely high hydrogen content is required to meet the actual requirements. However, if an external electron donor having a higher hydrogen modulating sensitivity is used in the catalyst system, although the second stage of producing the lower molecular weight fraction has a smaller amount of hydrogen, it is in the first stage of producing a higher molecular weight fraction. At this time, the molecular weight cannot be made sufficiently large to affect the mechanical properties of the final product.
  • a two-stage method is also used to obtain a polypropylene resin composition having a high melt tension; wherein the first stage is to prepare a high molecular weight polypropylene under hydrogen-free conditions, and the second The low molecular weight polypropylene is prepared in the presence of hydrogen, and the same external electron donor such as dicyclopentyldimethoxysilane is used in the whole process; the prepared polypropylene may contain a molecular weight of more than 1.5 ⁇ 10 6 . Molecular weight component.
  • it also fails to solve the problems associated with the aforementioned patents.
  • polypropylene is produced by the method described in these patents, when the small molecule is prepared in the first stage, the external electron donor which is highly sensitive to hydrogen modulation will also function in the second stage, so that the super molecule cannot be prepared in the second stage. . Also, high melt strength propylene homopolymers having superior mechanical properties and processability are not available in these patents.
  • the melt flow rate MFR requirement is about 2-3 g/10 min. Due to the limitations of the above polymerization process, the "very high molecular weight polymer” in the polymer Fraction ", “high molecular weight polymer fraction” and “low The molecular weight polymer fraction "The distribution of these three fractions is not ideal. Therefore, it has a certain influence on the properties of the final polymer.
  • the present invention provides a process for preparing a high melt strength propylene homopolymer by direct polymerization.
  • the inventors have found through trial and error that, in the different propylene polymerization stages of series operation, according to the requirements of different molecular weight fractions, by controlling the type and proportion of the external electron donor components in different reaction stages in the Ziegler-Natta catalyst system, it is preferred.
  • a propylene polymer having a broad molecular weight distribution and containing a "very high molecular weight fraction" having excellent mechanical properties, particularly high melt strength can be prepared.
  • the propylene polymerization process of the present invention comprises carrying out two or more stages of propylene homopolymerization in two or more reactors operated in series, wherein:
  • the first stage in the presence of a Ziegler-Natta catalyst, a homopolymerization of propylene is carried out at a polymerization temperature of 50 to 100 ° C, and the MFR of the obtained polymer is controlled to be 0.01 to 0.3 g/10 min, and the Ziegler-Natta catalyst is used.
  • the first external electron donor component is included;
  • the second stage on the basis of the first stage reaction product, in the presence of hydrogen, the second external electron donor component is added to continue the homopolymerization of propylene; the final polymer
  • the MFR is controlled to be 0.2 10 g/lOmin; wherein the first external electron donor is less sensitive to hydrogen modulation than the second external electron donor.
  • the Ziegler-Natta catalyst consists of the following components: (1) a solid catalyst component mainly composed of magnesium, titanium, a halogen and an internal electron donor, (2) an organic An aluminum component, (3) a first external electron donor component; wherein a ratio between component (1) and component (2) is 1:10 to 500 (weight ratio) in terms of titanium to aluminum; (2) The ratio between the component (3) and the component (3) is 10 to 150:1 (weight ratio); in the second phase, the ratio between the organoaluminum component and the second external electron donor component is 1 ⁇ 50: 1 (weight ratio).
  • the amount of the first external electron donor component is adjusted to a ratio of 1:15 to 100 (weight ratio) to the organoaluminum;
  • the second external electron donor component is added to the ratio of the organoaluminum component added in the first stage to a ratio of 1:2-20 (weight ratio) to the organoaluminum.
  • the amount of hydrogen added in the first and second stages is controlled by the requirements of the final MFR.
  • the hydrogen content is less than or equal to 300 ppmV.
  • the first external electron donor component is represented by the formula R' n Si (OR 2 ) 4 .n, wherein R 1 is the same or different and is a C 3 -C 6 branched or cyclic aliphatic group.
  • R 2 is a -C 3 linear aliphatic group such as methyl, ethyl or propyl; n is 1 or 2.
  • the second external electron donor component is represented by the formula R 3 n Si (OR 4 ) 4 .
  • n is 0 or 1 or 2
  • R 3 and R 4 are the same or different CVC 3 linear chain An aliphatic group; or as represented by the formula R 5 R 6 Si (OR 7 ) 2 wherein R 7 is a linear aliphatic group, ⁇ is a linear aliphatic group of ⁇ - ⁇ , R ⁇ 3 ⁇ 4C 3 -C 6 branched or cyclic aliphatic groups.
  • the yield ratio of the first stage to the second stage is 30: 70-70: 30, preferably 40: 60-60: 40.
  • the catalyst for propylene polymerization includes, but is not limited to, a Ziegler-Natta catalyst.
  • the Ziegler-Natta catalyst used has been widely disclosed, preferably a catalyst having a high stereoselectivity, and the high stereoselective Ziegler-Natta catalyst described herein means that a propylene homopolymer having an isotactic index greater than 95% can be prepared.
  • Such a catalyst usually contains (1) a solid catalyst component, preferably a titanium-containing solid catalyst active component; (2) an organoaluminum compound cocatalyst component; and (3) an external electron donor component.
  • Such active solid catalyst-containing component (1) that can be used are disclosed in Chinese patents CN85100997, CN98126383.6, CN98111780.5, CN98126385.2, CN93102795.0, CN00109216.2 CN99125566.6, CN99125567.4 , CN02100900.7.
  • the catalyst may be used as it is, or may be added after pre-complexation and/or pre-polymerization.
  • the catalysts described in the Chinese patents CN85100997, CN93102795.0, CN98111780.5 and CN02100900.7 are particularly advantageous for use in the high melt strength polypropylene preparation process of the present invention.
  • the cocatalyst component (2) of the present invention is an organoaluminum compound, preferably an alkylaluminum compound, more preferably a trialkylaluminum such as triethylaluminum, triisobutylaluminum, tri-n-butylaluminum or the like, wherein titanium is contained.
  • the ratio of the solid catalyst component to the organoaluminum compound cocatalyst component is from 10 to 500:1 in terms of Al/Ti weight ratio.
  • External electron donors having different characteristics are added to different reactors according to the requirements for different molecular weight fractions.
  • the present invention requires To prepare a high molecular weight fraction of propylene polymer, in order to have a higher molecular weight of the fraction, an external electron donor having a lower hydrogen modulating sensitivity such as R'nSi(OR 2 ) 4 - n is selected.
  • R 1 is the same or different and is a C 3 -C 6 branched or cyclic aliphatic group, preferably R 1 is cyclopentyl, isopropyl or cyclohexyl; R 2 is CC 3 straight A chain aliphatic group such as methyl, ethyl or propyl; n is 1 or 2, preferably 2.
  • Specific compounds such as: dicyclopentyldimethoxysilane, diisopropyldimethoxysilane, dicyclohexyldimethoxysilane, diisobutyldimethoxysilane, and the like.
  • the first external electron donor is dicyclopentyldimethoxysilane and/or diisopropyldimethoxysilane.
  • the MFR value of the polymer obtained in the first stage is controlled to be 0.01-0.3 g/10 min. According to actual needs, it is generally selected that no molecular weight regulator is added in the first reactor or a very small amount (300 ppmV or less) of hydrogen is added as a molecular weight regulator. In order to obtain a high molecular weight fraction.
  • a second external electron donor component and a molecular weight regulator (hydrogen) are added for the second-stage polymerization, and the MFR value of the final polymer is controlled to be 1 - 10 g/ 1 Omin.
  • the second external electron donor component has the formula R 3 n Si (OR 4 ) 4 . n , where n is 0 or 1 or 2.
  • R 3 and R 4 in the formula are the same or different ( ⁇ -(: 3 linear aliphatic group, such as methyl, ethyl or propyl. Specifically, but not limited to tetramethoxysilane, four Ethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, etc.
  • Second external electron donor group The formula is either R 5 R 6 Si (OR 7 ) 2 , wherein ⁇ is a linear aliphatic group, and R 5 is a CC 3 linear aliphatic group, such as methyl or ethyl.
  • propyl, 16 is ( 3 & branched or cyclic aliphatic groups; specific compounds such as methylcyclohexyldimethoxysilane.
  • the second external electron donor is preferably tetraethoxysilane and/or methylcyclohexyldimethoxysilane.
  • the different stages of polymerization described in the polymerization process of the present invention can be carried out separately in different reactors.
  • a specific embodiment is: the first stage of the polymerization is carried out in the first reactor and the second stage of the polymerization is carried out in the second reactor.
  • a solid catalyst component containing magnesium, titanium, a halogen and an internal electron donor as a main component (2) an organoaluminum component, and (3) a first external
  • the electron donor component is subjected to homopolymerization of propylene under substantially hydrogen-free conditions, and the obtained polymerization product is introduced into the first
  • a second external electron donor component is added, and further homopolymerization of propylene is carried out in the presence of a certain amount of hydrogen.
  • the three catalyst components may be added directly to the first reactor, or may be added to the first reactor after pre-complexation and/or pre-polymerization as is well known in the industry.
  • the reactor in which the pre-complexation reaction is carried out may be in various forms for the purpose of obtaining sufficient and effective mixing of the components of the catalyst, which may be a continuous stirred tank reactor, a loop reactor, or a section of a tube containing a static mixer.
  • the road can even be a pipeline in which the material is in a turbulent state.
  • the temperature of the pre-complexation can be controlled between -10 and 60 ° C, and the preferred temperature is 0 to 30 ° C.
  • the time for pre-complexation is controlled from 0.1 to 180 min, and the preferred time is from 5 to 30 min.
  • a prepolymerization treatment can be carried out with or without a pre-complexed catalyst.
  • the prepolymerization can be carried out continuously under liquid phase bulk conditions or intermittently in an inert solvent.
  • the prepolymerization reactor may be a continuous stirred tank, a loop reactor, or the like.
  • the prepolymerization temperature can be controlled between -10 and 60 ° C, and the preferred temperature is 0 to 40 ° C.
  • the multiple of the prepolymerization is controlled to be 0.5 to 1000 times, and the preferred multiple is 1.0 to 500 times.
  • the polymerization can be carried out in the liquid phase of propylene, or in the gas phase, or by a combination of liquid and gas.
  • the polymerization temperature is 0 to 150 ° C, preferably 40 to 100 ° C; the polymerization pressure should be higher than the saturated vapor pressure of propylene at the corresponding polymerization temperature.
  • the polymerization temperature is 0 to 150 ° C, preferably 40 to 100 ° C; the polymerization pressure may be normal pressure or higher, and the preferred pressure is 1.0 to 3.0 MPa (gauge pressure, the same applies hereinafter).
  • the polymerization may be carried out continuously or intermittently.
  • the continuous polymerization may be two or more liquid phase reactors or gas phase reactors connected in series, the liquid phase reactor may be a loop reactor or a stirred tank reactor, and the gas phase reactor may be a horizontal stirred bed reactor or a standing reactor.
  • a stirred bed reactor or a fluidized bed reactor, etc., and the above liquid phase reactor and gas phase reactor may be arbitrarily combined.
  • the propylene homopolymerization of the present invention is preferably carried out in two or more series of loop reactors.
  • the obtained polymer of the present invention can be subjected to extrusion granulation using equipment, and additives such as an antioxidant, a light stabilizer, a heat stabilizer, a coloring agent, and a filler are usually added in the granulation.
  • the present invention in the preparation method of the polymer of the present invention, by adjusting the amount of the external electron donor, the type, and the hydrogen addition amount at different stages of the two reactors connected in series or intermittent operation, A special catalyst is required, and no additional multifunctional comon monomer is added; the present invention can obtain a higher molecular weight component than a conventional method of adjusting the molecular weight distribution of the polymer only by different hydrogenation concentrations, and a smaller amount of hydrogen can be used. . Thus, higher performance products can be produced in a more economical manner.
  • the polymerization method of the present invention can not only obtain a propylene polymer having a broad molecular weight distribution, but also has the highest characteristic of "high molecular weight fraction", and the content of "low molecular weight fraction" can be guaranteed to be larger than a certain amount.
  • the melt strength of the obtained propylene polymer is remarkably improved, and the processability of the polymer is also ensured.
  • the most specific method for preparing a propylene homopolymer having high melt strength according to the present invention is characterized in that, in two loop reactors connected in series, a two-stage propylene homopolymerization reaction is carried out, wherein the first stage: In the presence of a Ziegler-Natta catalyst, at a polymerization temperature of 50 to 100 ° C, a homopolymerization of propylene is carried out at a hydrogen content of 300 ppm or less, and the MFR of the obtained polymer is controlled to be 0.01 to 0.3 g/10 min.
  • the Ziegler-Natta catalyst is composed of the following components: (1) a solid catalyst component mainly composed of magnesium, titanium, a halogen and an internal electron donor, and (2) an organoaluminum component, ( 3) dicyclopentyldimethoxysilane; wherein the ratio between component (1) and component (2) is 1:10 to 500 (weight ratio) in terms of titanium to aluminum; component (2) The ratio to the component (3) is 10 to 150:1 (weight ratio); the second stage: on the basis of the first stage reaction product, in the presence of hydrogen, tetraethoxysilane is added to continue the homopolymerization of propylene Reaction; the organoaluminum component added in the first stage Determination, fill the tetraethoxysilane, reacted with an organic aluminum ratio of 1 to 50 (weight ratio); final polymer MFR of controlling 0.2-10 g / 10min.
  • the present invention also provides a propylene homopolymer having a high melt strength, which has the following characteristics:
  • M z+1 / M n is greater than or equal to 70.
  • polymers are not composed of a single molecular weight compound, and even a "pure" polymer consists of a mixture of homopolymers of the same chemical composition, molecular weight, and structure.
  • the property that such a polymer has a non-uniform molecular weight i.e., a molecular weight of a different size or a heterogeneous one
  • a polydispersity of a molecular weight is called a polydispersity of a molecular weight.
  • the molecular weights of the polymers measured are average molecular weights.
  • the average molecular weight of the polymers is the same, but the dispersibility is not necessarily the same.
  • a molecular weight distribution of a polymer is measured using a gel permeation chromatograph, and a number average molecular weight, a weight average molecular weight, a Z average molecular weight or a Z+1 average molecular weight can be obtained from a molecular weight distribution curve.
  • the weight of the high molecular weight fraction on the average of these molecular weights is different, and tends to increase sequentially, that is, M n ⁇ M w ⁇ M z ⁇ M z+1 .
  • people use M w / M n molecular weight distribution expressed, M n portion near the low molecular weight polymers, i.e., affect the low molecular weight fraction of M n greater;!
  • the molecular weight distribution M w /M n of the propylene polymer is generally controlled within 6-20.
  • the fraction having a molecular weight of more than 5,000,000 is greater than or equal to 1.0 wt%, more preferably greater than or equal to 1.5 wt%.
  • M z+1 / M n is preferably greater than or equal to 80.
  • the fraction having a molecular weight of less than 50,000 is greater than or equal to 15.0% by weight, less than or equal to 40% by weight; more preferably greater than or equal to 17.5% by weight, less than or equal to 30%.
  • the propylene homopolymer has an MFR of 1.6-6 g/10 min at 230 ° C and a load of 2.16 kg ; more preferably, the MFR is 2.5-6 g/10 min.
  • a polymer having a dispersion index PI of from 6.0 to 20.0 can be obtained, preferably from 9.0 to 16.0.
  • the melting point (Tm) of the propylene homopolymer of the present invention is greater than or equal to 163 °C, and the peak temperature (Tpeak-atref) of the ATREF temperature rising and rinsing curve is greater than or equal to 122 °C.
  • the xylene soluble content is less than or equal to 4% by weight.
  • the load VtFR at a load of 2.16 kg is 0.2-10 g/10 min, preferably 1.6-6 g/10 min ;
  • the content of the molecular weight greater than 5 million fractions is greater than or equal to 0.8 wt%, preferably greater than or equal to 1.0 wt%;
  • M z+1 / M n is greater than or equal to 70, preferably greater than or equal to 80.
  • the propylene homopolymer has the following characteristics -
  • M z+1 / M n is greater than or equal to 80;
  • a molecular weight of less than 50,000 parts is greater than or equal to 17.5 wt%, less than or equal to 30%;
  • the dispersion index of the polymer PI is 9.0-16.0.
  • the polymer of the present invention has a higher melt strength than the prior art, and is more than 0.8 Newtons, and even more than 2.2 Newtons; it is mainly used for preparing foamed articles, biaxially oriented films, thermoformed articles, and blow molded articles. Detailed ways
  • Melt strength Rheoten melt strength meter manufactured by Geottfert Maschinenstoff Pmefmaschinen, Germany.
  • the instrument comprises a pair of rollers rotating in opposite directions, the polymer is melt-plasticized by a single-screw extruder, and then extruded through a 90° turning circular hole die.
  • the uniaxial stretching is carried out between the two rolls by an equal acceleration acceleration method, and the tensile force can be measured by the measuring force element, and the maximum force value measured from the start of the stretching to the melt fracture is the so-called melt strength.
  • Melt flow rate was measured according to ISO 1133, 230 ° C, 2.16 kg load.
  • ARES Advanced Rheometer Expansion System
  • Molecular weight distribution (MJM m M + J / M n ): The molecular weight and molecular weight distribution of the sample were determined by a combination of PL-GPC 220 gel permeation chromatograph from Polymer Laboratories, UK and IR5 detector from Polymer Char, Spain.
  • the column is 3 series Plgel ⁇ MIXED-B column, solvent and mobile phase are 1, 2, 4-trichlorobenzene (containing 0.3g/1000ml antioxidant 2, 6-dibutyl-p-cresol), column temperature 150 ° C, flow rate 1.0 ml / min.
  • the tensile strength of the resin is measured in accordance with ASTM D638-00.
  • Intrinsic viscosity Measured according to ASTM D 5225-1998 using the Y501C intrinsic viscosity analyzer from VISCOTEK, USA. The solvent was decahydronaphthalene and the test temperature was 135 °C.
  • the polymerization was carried out on a set of polypropylene pilot plants. Its main equipment includes a prepolymerization reactor, a first loop reactor and a second loop reactor.
  • the polymerization method and steps are as follows: (1) Prepolymerization:
  • Example 1 of CN93102795 The process described in Example 1 of CN93102795 is obtained with a Ti content of 2.4 wt%, a Mg content of 18.0 wt%, and a di-n-butyl phthalate content of 13 wt%.
  • the main catalyst, the cocatalyst (triethylaluminum), the first external electron donor (dicyclopentyldimethoxysilane, DCPMS) were continuously contacted at 10 ° C for 20 min, and then continuously added to the prepolymerization reactor.
  • the prepolymerization reactor was carried out, and the prepolymerization was carried out in a liquid phase of propylene liquid at a temperature of 15 ° C and a residence time of about 4 min.
  • the prepolymerization ratio of the catalyst was about 120 to 150 times.
  • the flow rate of triethylaluminum fed to the prepolymerization reactor was 6.33 g/hr
  • the flow rate of dicyclopentyldimethoxysilane was 0.33 g/hr
  • the flow rate of the main catalyst was about 0.01 g/hr.
  • the catalyst After prepolymerization, the catalyst enters two loop reactors in series, and homopolymerization of propylene is completed in the loop reactor.
  • the polymerization temperature of the two-ring tube was 70 ° C, and the reaction pressure was 4.0 MPa.
  • the process conditions of the loop reactor are controlled such that the yield ratio of the first and second loops is about 45:55.
  • the hydrogen concentration detected by on-line chromatography is ⁇ 10 ppmV
  • a certain amount of hydrogen is added to the second loop reactor feed
  • the hydrogen concentration detected by on-line chromatography is 4500 ppmV.
  • the ratio of cyclopentyldimethoxysilane (Al/Si-I) to the catalyst prepolymer was 19.0 (weight ratio).
  • TEOS tetraethoxysilane
  • the activity of the catalyst in the reactor is removed by wet nitrogen, and the polymer is dried by heating to obtain a polymer powder.
  • the powder obtained by the polymerization was added with 0.1 wt% of IRGAFOS 168 additive, 0.2 wt% of IRGANOX 1010 additive, and 0.05 wt% of calcium stearate, and granulated by a twin-screw extruder.
  • the pellets were tested for performance in accordance with current ASTM standards.
  • Example 2
  • Example 3 As in Example 1, only a small amount of hydrogen was added to the make-up propylene feed of the first loop reactor, and the hydrogen concentration detected by on-line chromatography was 230 ppmV. The amount of hydrogen fed to the propylene feed to the second loop reactor was adjusted to 8500 ppmV. By adjusting the amount of external electron donor feed, Al/Si-I was adjusted to 45 (weight ratio) and Al/Si- ⁇ was adjusted to 4.2 (weight ratio). The amount of cocatalyst added to triethylaluminum was unchanged.
  • Example 3 Example 3:
  • Example 5 In the same manner as in Example 3, only the hydrogen feed amount in the supplementary propylene feed of the second loop reactor was adjusted to 12,000 ppmV. - Example 5:
  • Example 2 In the same manner as in Example 2, only the tetraethoxysilane in the second loop reactor was changed to methylcyclohexyldimethoxysilane (CHMMS) in an amount of 1.51 g/hr, Al/Si-II. The ratio was 4.2 (weight ratio); and, the Al/Si-I of the first loop reactor was adjusted to 60.
  • CHMMS methylcyclohexyldimethoxysilane
  • Al/Si-II weight ratio
  • T38f Polypropylene produced by Hunan Changsheng Petrochemical Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Figure imgf000003_0001
一种具有高熔体强度的丙烯均聚物及其制备方法 技术领域
本发明涉及一种制备具有高熔体强度聚丙烯的多步丙烯均聚方 法。 本发明还涉及一种丙烯聚合物, 更具体地说, 涉及一种具有高熔 体强度的丙烯均聚物, 特别适用于制备发泡制品、 热成形制品、 双向 拉伸薄膜、 吹塑薄膜及吹塑制品。 技术背景
丙烯均聚物结构的剪裁性使其在注塑、 挤出、 流延、双向拉伸等 加工领域中获得了广泛的应用。 但普通的聚丙烯分子链为线性结构, 不像非晶的聚合物(如聚苯乙烯 PS )那样在较宽的温度范围内存在类 似橡胶弹性的区域, 因此, 聚丙烯不能在较宽的温度范围内进行热成 型。 同时, 聚丙烯的软化点与熔点接近, 当温度高于熔点后, 其熔体 强度和熔体的粘度急剧下降, 导致热成型时制品壁厚不均, 挤出、 涂 布、 压延时容易出现边缘卷曲、 收縮, 挤出发泡时泡孔塌陷等问题, 这限制了其在热成型、 发泡和吹塑等领域的应用。 因此, 研制具有高 熔体强度和良好的延展性的聚丙烯, 一直是人们感兴趣的课题。所谓 的高熔体强度聚丙烯 (HMSPP) 就是指熔体在拉伸情况下, 断裂时 可承受更高的力。一般地, 现有的熔体流动速率 MFR为 2g/10min左右 的丙烯均聚物, 其较高的熔体强度可达到 0.8-1N (牛顿)。
影响聚丙烯熔体强度的主要因素是聚合物分子的结构,包括分子 量的大小,分子量分布和分子链上是否含有长支链以及长支链的长度 和分布等等。 通常, 丙烯聚合物的分子量越大, 其熔体强度越大; 但 分子量越大, 对于聚丙烯的后加工成型性能越不利。 因此, 对于考虑 到材料的实际应用,使聚丙烯具有较宽的分子量分布是需要的,另外, 使聚合物中含有 "很高分子量级分"也是非常重要的, 这样可以明显 地提高聚丙烯的熔体强度。 为了获得最佳的丙烯聚合物的性能, 理想 的聚合物产物应同时含有少量的 "很高分子量聚合物级分"、 一定量 的 "较高分子量聚合物级分"和较大量的 "低分子量聚合物级分 "。' 己公开的提高聚丙烯熔体强度的方法一般包括:通过聚合工艺技 术提高聚丙烯分子量、 改善其分布或引入支链结构的办法, 或采取在 聚合物加工成型时与其他非晶或低结晶树脂、弹性体进行共混。其中 调变聚合工艺技术是较为常用的方法,通常是通过多个反应器制备宽 分子量分布聚丙烯或采用茂金属催化剂原位聚合得到长支链聚丙烯, 从而提高最终聚合物的熔体强度。其中, 采用多个串联的反应器制备 宽分子量分布聚丙烯是最为常用的, 其通常是在选择不同的氢气量、 不同的共聚单体,即在有利于生产不同分子量聚合物的不同反应器中 通过串联聚合得到宽分子量分布 (MWD) 的聚丙烯, 例如: 其中一 种反应器有利于生产较高分子量的聚合物,而另一种反应器则有利于 生产较低分子量的聚合物。
例如美国专利 US6875826和 US7365136中公开了一种制备具有高 熔体强度和宽分子量分布的丙烯聚合物的方法, 其在串联的环管-气 相聚合反应器中, 选择一种具有较低氢调敏感性的 Ziegler-Natta催化 剂, 该 Ziegler-Natta催化剂的最大特点就是需要采用一种含有环垸基 的硅氧垸例如二环戊基二甲氧基硅垸作为外给电子体, 进行多级的
(两个反应器)的丙烯均聚合或共聚合反应。通过控制各反应器的氢 气浓度,第一阶段生产"高分子量级分 "的聚丙烯(MFR<0.1g/10min), 其重量含量为 10-35%, 第二阶段生产 "低分子量级分" 的聚丙烯
( MFR>0.5g/10min ) , 其重量含量为 65-90%, 最终聚合物的 MFR=0.1-20g/min。 反应最终得到具有宽分子量分布 (Mw/Mn>6)、 线性高熔体强度丙烯均聚物。
众所周知, 对于丙烯聚合而言, 外给电子体的种类通常会对聚 合物的立构规整性和分子量分布产生明显的影响。当采用上述的通过 多个反应器制备宽分子量分布均聚聚丙烯的方法时,理想状态是使决 定聚合物力学性能的高分子量级分的分子量和等规度越高越好,尤其 具备一定量的 "很高分子量级分"; 而决定聚合物挤出性能 (加工性 能) 的 "低分子量级分" 的分子量越低越好, 且要具备较多的含量。 但由于上述专利中催化剂的组分和特性在两个反应器内并没有变化, 因此在两个阶段的聚合反应中, 催化剂对于分子量调节剂(氢气) 的 反应敏感性是一致的,这样对于聚合物链特性的控制或调节具有一定 的局限性。
具体地说, 当在催化剂体系中使用具有较低氢调敏感性的外给 电子体时,虽然可以在生产较高分子量级分的第一阶段使聚合物的分 子量较高, 但其在生产较低分子量级分的第二阶段时, 由于对氢调的 不敏感性, 则需要极高的氢气含量, 才能达到实际的要求。 而若在催 化剂体系中使用具有较高氢调敏感性外给电子体时,虽然生产较低分 子量级分的第二阶段时氢气用量较少,但其在生产较高分子量级分的 第一阶段时, 分子量不能做得的足够大, 从而影响最终产品的力学性 能。
另如专利 CN1241196A中描述的聚丙烯树脂组合物及其用途, 也 使用两段法得到高熔融张力的聚丙烯树脂组合物;其中第一阶段在无 氢气条件下制备高分子量的聚丙烯,第二段在氢气存在条件下制备低 分子量的聚丙烯, 整个过程中使用相同的外给电子体, 如二环戊基二 甲氧基硅烷;所制备得到的聚丙烯可含有分子量大于 1.5xl06的高分子 量成分。 但其同样不能解决前述专利伴随的问题。
在专利 CN1156999A "用于烯烃聚合的二元给体催化剂体系"中 在不同阶段使用了两种不同的催化剂,其第一阶段使用四乙氧基硅烷 作外给电子体, 第二阶段使用二环戊基二甲氧基硅垸作外给电子体; 与此相似的还有专利 CN1612901A和 US6686433B1。 这些专利发明目 的不是为了得到大分子, 从而得到高熔体强度的聚丙烯; 其工艺步骤 也是先制备小分子聚丙烯, 再在第二阶段制备较大分子的聚丙烯, 从 而得到高结晶度的聚烯烃。若使用这些专利所述方法生产聚丙烯, 第 一阶段制备小分子时,该对氢调敏感较高的外给电子体还将在第二阶 段起作用, 因而在第二阶段无法制备出超大分子。 同样, 在这些专利 中也无法得到具有优越力学性能和加工性能的高熔体强度的丙烯均 聚物。
对于某些聚丙烯的具体应用, 例如发泡制品, 其熔体流动速率 MFR的要求约为 2-3 g/10min, 由于上述聚合工艺的局限性, 使其聚合 物中"很高分子量聚合物的级分"、"较高分子量聚合物的级分"和"低 分子量聚合物级分"这三个级分的分布不够理想。 因此, 对最终聚合 物的性能产生一定的影响。 发明内容
为了解决现有技术存在的问题,本发明提供一种采用直接聚合法 制备高熔体强度的丙烯均聚物的方法。
本发明人通过反复试验发现,在串联操作的不同丙烯聚合反应阶 段中, 根据不同分子量级分的要求, 通过控制 Ziegler-Natta催化剂体 系中外给电子体组分在不同反应阶段的种类和比例,优选地结合分子 量调节剂用量的控制, 可制备具有宽分子量分布、 并含有 "很高分子 量级分"的丙烯聚合物, 该聚合物具有很好的力学性能, 特别是具有 很高的熔体强度。
本发明的丙烯聚合方法,包括在两个或两个以上的串联操作的反 应器中, 进行两阶段或两阶段以上丙烯均聚合反应, 其中:
第一阶段: Ziegler-Natta催化剂存在下, 在 50~100°C的聚合温度 下, 进行丙烯的均聚合反应, 所得聚合物的 MFR控制为 0.01-0.3g/10min,所述的 Ziegler-Natta催化剂中包括第一外给电子体组 分; 第二阶段: 在第一阶段反应生成物的基础上, 氢气存在下, 加入 第二外给电子体组分继续进行丙烯的均聚合反应;最终聚合物的 MFR 控制为 0.2 10 g/lOmin; 其中, 所述第一外给电子体比第二外给电子 体的氢调敏感度低。
优选的, 第一阶段中, Ziegler-Natta催化剂由以下组分组成: (1 ) 一种以镁、钛、卤素和内给电子体为主要组分的固体催化剂组分, (2 ) 一种有机铝组分, (3 ) 第一外给电子体组分; 其中组分 (1 ) 与组分 (2 ) 之间的比例以钛铝比计为 1 : 10〜500 (重量比); 组分 (2 ) 与 组分 (3 ) 之间的比例为 10〜150: 1 (重量比); 第二阶段中, 有机铝 组分与补入的第二外给电子体组分间的比例为 1〜50: 1 (重量比)。
优选的, 为实现对不同分子量级分的要求, 在第一阶段反应中, 调整第一外给电子体组分的用量,使其与有机铝比例为 1 : 15~100 (重 量比); 在第二阶段反应中, 按第一阶段加入的有机铝组分的量确定, 补入第二外给电子体组分, 使其与有机铝比例为 1 : 2-20 (重量比)。 第一阶段与第二阶段的氢气加入量以最终 MFR的要求来控制。优 选的, 在第一阶段中, 氢气含量小于或等于 300ppmV。
其中第一外给电子体组分如通式 R'nSi (OR2) 4.n所示, 式中 R1 相同或不同, 为 C3-C6支化的或环状的脂族基团; R2为 -C3直链脂 族基团, 例如甲基、 乙基或丙基; n为 1或 2。
其中第二外给电子体组分如通式 R3 nSi (OR4) 4.n所示, 式中 n为 0 或 1或 2, R3和 R4为相同或不同的 CVC3直链脂族基团; 或如通式为 R5 R6Si (OR7) 2所示, 通式中 R7为 直链脂族基团, ^为^-^直链 脂族基团, R^¾C3-C6支化的或环状的脂族基团。
其中第一阶段与第二阶段的产率比为 30: 70-70: 30, 优选为 40: 60〜60: 40。
在本发明的聚合反应方法中, 丙烯聚合的催化剂包括但不仅限于 Ziegler-Natta催化剂。 使用的 Ziegler-Natta催化剂已被大量公开, 优选 具有高立构选择性的催化剂, 此处所述的高立构选择性的 Ziegler-Natta催化剂 "是指可以制备全同立构指数大于 95 %的丙烯均 聚物。 此类催化剂通常含有 (1 ) 固体催化剂组分, 优选为含钛的固 体催化剂活性组分; (2)有机铝化合物助催化剂组分; (3 )外给电子 体组分。
可供使用的这类含有活性固体催化剂组分 (1 ) 的具体实例公开 在 中 国 专利 CN85100997 、 CN98126383.6 、 CN98111780.5 、 CN98126385.2 , CN93102795.0、 CN00109216.2 CN99125566.6、 CN99125567.4, CN02100900.7中。 所述的催化剂可以直接使用, 也 可以经过预络合和 /或预聚合后加入。 中国专利 CN85100997、 CN93102795.0 、 CN98111780.5和 CN02100900.7中所描述的催化剂, 用于本发明高熔体强度聚丙烯制备方法特别具有优势。
本发明助催化剂组分(2)为有机铝化合物, 优选烷基铝化合物, 更优选三烷基铝, 如: 三乙基铝、 三异丁基铝、 三正丁基铝等, 其中 含钛固体催化剂组分与有机铝化合物助催化剂组分之比,以 Al/Ti重量 比计为 10~500: 1。
根据对不同分子量级分的要求, 在不同反应器内加入具有不同 特性的外给电子体。 具体地, 在第一阶段即第一反应器中, 本发明需 要制备高分子量级分的丙烯聚合物, 为了使该级分具有更高的分子 量, 选择了一种具有较低氢调敏感性外给电子体, 其如 R'nSi (OR2) 4-n所示, 式中 R1相同或不同, 为 C3-C6支化的或环状的脂族基团, 优选 R1为环戊基、 异丙基或环己基; R2为 C C3直链脂族基团, 例如甲基、 乙基或丙基; n为 1或 2, 优选为 2。 具体化合物如: 二环戊基二甲氧基 硅烷、 二异丙基二甲氧基硅垸、 二环己基二甲氧基硅烷、 二异丁基二 甲氧基硅垸等。
优选其中第一外给电子体为二环戊基二甲氧基硅垸和 /或二异丙 基二甲氧基硅垸。
第一阶段所得聚合物的 MFR值控制在 0.01-0.3g/10min, 根据实际 需要, 通常选择在第一反应器不加入分子量调节剂或加入极少量(小 于等于 300ppmV)的氢气作分子量调节剂,以便得到高分子量的级分。
在第一阶段聚合反应生成物的基础上, 加入第二外给电子体组分 和分子量调节剂(氢气)进行第二阶段的聚合反应, 并控制最终聚合 物的 MFR值控制为 1 - 10g/ 1 Omin。
第二外给电子体组分的通式为 R3 nSi (OR4) 4.n, 式中 n为 0或 1或 2。 通式中 R3和 R4为相同或不同的 (^-(:3直链脂族基团, 例如甲基、 乙基 或丙基。 具体可包括但不仅限于四甲氧基硅垸、 四乙氧基硅垸、 三甲 基甲氧基硅垸、 三甲基乙氧基硅烷、 二甲基二甲氧基硅垸、 二甲基二 乙氧基硅烷等。 第二外给电子体组分的通式或为 R5 R6Si (OR7) 2, 通 式中 ^为^-^直链脂族基团, R5为 C C3直链脂族基团, 例如甲基、 乙基或丙基, 1 6为( 3 &支化的或环状的脂族基团; 具体化合物如甲 基环己基二甲氧硅垸。
其中优选第二外给电子体为四乙氧基硅垸和 /或甲基环己基二甲 氧基硅烷。
本发明的聚合方法中所述的不同阶段的聚合反应可分别在不同 的反应器中进行。具体一个实施方案是: 第一阶段的聚合反应在第一 反应器内进行, 第二阶段的聚合反应在第二反应器内进行。在第一反 应器中加入: (1 )一种以镁、 钛、 卤素和内给电子体为主要组分的固 体催化剂组分、 (2)—种有机铝组分、 (3 )第一外给电子体组分, 在 基本无氢气的条件下, 进行丙烯的均聚合反应, 所得聚合产物引入第 二反应器, 加入第二外给电子体组分, 在一定氢气存在下进行进一步 丙烯的均聚合反应。
在第一反应器中,所述的三种催化剂组分可以直接加入到第一反 应器内, 也可以经过业界共知的预络合和 /或预聚合之后, 再加入到 第一反应器内。其中预络合反应的反应器的形式可以是多样的, 其目 的是使催化剂各组分能获得充分有效的混合,可以是连续搅拌釜反应 器、 环管反应器、 含静态混合器的一段管路, 甚至也可以是一段物料 处于湍流状态的管路。
预络合的温度可控制在 -10~60°C之间,优选的温度为 0〜30°C。预 络合的时间控制在 0.1〜180min, 优选的时间为 5~30min。
经过或不经过预络合的催化剂还可以进行任选地预聚合处理。预 聚合可在液相本体条件下连续进行, 也可以在惰性溶剂中间歇进行。 预聚合反应器可以是连续搅拌釜、环管反应器等。预聚合的温度可控 制在 -10~60°C之间, 优选的温度为 0~40°C。 预聚合的倍数控制在 0.5~1000倍, 优选的倍数为 1.0〜500倍。
所述的聚合反应可以在丙烯液相中, 或在气相中进行, 或采用液 一气组合技术进行。 在进行液相聚合时, 聚合温度为 0〜150°C, 以 40〜100°C为好; 聚合压力应高于丙烯在相应聚合温度下的饱和蒸汽 压力。 在气相聚合时聚合温度为 0〜150°C, 以 40〜100°C为好; 聚合 压力可以是常压或更高, 优选压力为 1.0~3.0MPa (表压, 下同)。
聚合可以是连续进行, 也可以间歇进行。连续聚合可以是两个或 多个串联的液相反应器或气相反应器,液相反应器可以是环管反应器 或搅拌釜反应器,气相反应器可以是卧式搅拌床反应器或是立式搅拌 床反应器或是流化床反应器等,以上液相反应器和气相反应器也可以 任意地搭配组合。本发明的丙烯均聚合反应优选在两个或两个以上串 联的环管反应器中进行。
本发明的所得聚合物可以使用设备进行挤出造粒,造粒时通常添 加该技术领域使用的添加剂, 如抗氧剂、 光稳定剂、 热稳定剂、 着色 剂和填料等。
在本发明的聚合物的制备方法中,通过调整加入串联的两反应器 或间歇操作时不同阶段的外给电子体用量、种类以及氢气加入量, 不 需用特殊催化剂, 也不用另外加入任何多功能共聚单体; 较之于常规 仅通过不同加氢浓度调整聚合物分子量分布的方法,本发明可以得到 更高分子量组份, 可以使用更少量的氢气。 因而可以以更经济的手段 制备更高性能的产品。
本发明的聚合方法不仅可得到较宽分子量分布的丙烯聚合物,而 且其最大的特点是 "很高分子量级分"的含量较高, 同时 "低分子量 级分"的含量也可保证大于一定量, 这样使所得丙烯聚合物的熔体强 度有了明显地提高, 而且还保证了聚合物的加工性能。
本发明最具体的一种具有高熔体强度的丙烯均聚物的制备方法, 其特征在于, 在两个串联的环管反应器中, 进行两阶段丙烯均聚合反 应, 其中, 第一阶段: Ziegler-Natta催化剂存在下, 在 50〜100°C的 聚合温度下, 在氢气含量小于或等于 300ppmV条件下, 进行丙烯的 均聚合反应, 所得聚合物的 MFR控制为 0.01-0.3g/10min, 所述的 Ziegler-Natta催化剂是由以下组分组成: ( 1 ) 一种以镁、 钛、 卤素和 内给电子体为主要组分的固体催化剂组分,(2)—种有机铝组分, (3 ) 二环戊基二甲氧基硅垸; 其中组分(1 )与组分(2)之间的比例以钛 铝比计为 1 : 10〜500 (重量比);组分(2)与组分(3 )的比例为 10~150: 1 (重量比); 第二阶段: 在第一阶段反应生成物的基础上, 氢气存在 下, 加入四乙氧基硅烷继续进行丙烯的均聚合反应; 按第一阶段加入 的有机铝组分的量确定,补入四乙氧基硅烷,使其与有机铝比例为 1-50 (重量比); 最终聚合物的 MFR控制为 0.2-10 g/10min。
本发明还相应提供一种具有高熔体强度的丙烯均聚物,其具有如 下特征:
( 1 ) 在 230°C, 负载 2·16kg时的MFR为0.2-10g/10min;
(2) 分子量分布 Mw/Mn=6 20;
(3 ) 分子量大于 500万级分的含量大于或等于 0.8wt%;
(4) Mz+1/ Mn大于或等于 70。
为了提高聚合物的熔体强度, 提高聚合物的分子量是必须的, 但 为了保证产品具有良好的加工性能, 在一定平均分子量 (即一定的 MFR)范围内, 控制其分子量的分布是非常关键的。 该聚合物中, 一 方面需要具有一定量的 "很高分子量聚合物"级分, 而另一方面, 又 需要具有较大量的 "低分子量聚合物"级分, 即一种较宽范围的分子 量分布。
众所周知, 高分子不是由单一分子量的化合物所组成, 即使是 一种 "纯粹" 的高分子, 也是由化学组成相同、 分子量不等、 结构 不同的同系聚合物的混合物所组成。这种高分子的分子量不均一(即 分子量大小不一、 参差不齐) 的特性, 就称为分子量的多分散性。 一般测得的高分子的分子量都是平均分子量。 聚合物的平均分子量 相同, 但分散性不一定相同。 通常, 人们使用凝胶渗透色谱仪测定 聚合物的分子量分布, 由分子量分布曲线可以得到数均分子量、 重 均分子量、 Z均分子量或 Z+1均分子量。 高分子量级分对这些分子 量平均值的权重是不同, 呈依次增大的趋势, 即 Mn<Mw<Mz< Mz+1。 通常, 人们采用 Mw/Mn来表示聚合物的分子量分布, Mn靠近聚合物 的低分子量的部分, 即低分子量部分对 Mn影响较大; !^^靠近聚合 物中高分子量的部分, 即高分子量部分对 Mw影响较大。为了使聚丙 烯具有较好的综合性能 /加工性能, 一般将丙稀聚合物的分子量分布 Mw/Mn控制在 6-20之内。
但本发明人通过反复试验发现, 仅仅控制^^ 。这一数据, 并 不能满足本课题制备高熔体强度的需求, 还必须将 "很高分子量聚 合物级分"定量地控制在一定的范围内才能达到本发明的目的。 特 别优选将 "很高分子量聚合物级分"和 "低分子量聚合物级分"均 定量地控制在一定的范围内。 考虑到由于少量的 "很高分子量级分" 并不显著影响 Mw, 但却能显著地影响 Mz+1。而且较大量的 "低分子 量聚合物级分 "'对 Mn影响较大, 因此, 在本发明丙烯聚合物中保证 Mz+1/ Mn大于或等于 70是非常重要的。
上述本发明的丙烯均聚物中, 优选地, 分子量大于 500万的级 分含量大于或等于 1.0wt%,更优选地,大于或等于 1.5wt%。 Mz+1/ Mn 优选地大于或等于 80。 优选地, 分子量小于 5万的级分的含量大于 或等于 15.0wt%,小于或等于 40wt %;更优选地大于或等于 17.5wt%, 小于或等于 30%。
优选的, 该丙烯均聚物在 230°C, 负载 2.16kg 时的 MFR 为 1.6-6g/10min; 更优选其 MFR为 2.5-6g/10min。 另外, 本发明通过对各分子量级分的控制, 可得到分散指数 PI 为 6.0-20.0的聚合物, 优选为 9.0-16.0。
本发明丙烯均聚物特征的熔点(Tm)大于或等于 163 °C, ATREF 升温淋洗曲线的峰温 (Tpeak-atref) 大于或等于 122°C。 二甲苯可溶 物含量小于或等于 4wt%。
本发明中高熔体强度的丙烯均聚物, 优选地具有以下特征:
( 1 ) 在 230°C, 负载 2.16kg时的 !VtFR为 0.2-10g/10min, 优选地为 1.6-6g/10min;
(2) 分子量分布 Mw/Mn=6-20;
(3 )分子量大于 500万级分的含量大于或等于 0.8wt%, 优选地大 于或等于 1.0wt%;
(4) Mz+1/ Mn大于或等于 70, 优选地大于或等于 80。
更优选地, 丙烯均聚物具有以下特征-
( 1 ) 在 230°C, 负载 2.16kg时的MFR为1.6-6g/10min;
(2) 分子量分布 Mw/Mn=6-20;
(3 ) 分子量大于 500万级分的含量大于或等于 1.0wt%;
(4) Mz+1/ Mn大于或等于 80;
( 5 ) 分子量小于 5万级分的含量大于或等于 17.5wt%, 小于或等 于 30%;
(6) 聚合物的分散指数 PI为 9.0-16.0。
本发明聚合物与现有技术相比, 具有更高的熔体强度, 大于 0.8 牛顿, 甚至可超过 2.2牛顿; 主要可用于制备发泡制品、 双向拉伸薄 膜、 热成形制品及吹塑制品。 具体实施方式
下面将通过具体的实施例对本发明进行详细描述,但其仅仅是解 释而不是限定本发明。
实施例中聚合物有关数据按以下测试方法获得-
① 热变形温度的检测: 按照 ASTM D648-07检测。
② 熔体强度:采用德国 Geottfert WerkstoffPmefmaschinen公司生 产的 Rheoten熔体强度仪。 该仪器包括一对旋转方向相反的辊子, 聚 合物经单螺杆挤出机熔融塑化后, 再经 90°转向的圆孔模头挤出 夹 持在两个辊子之间采用等加速加速方式被单轴拉伸,拉伸力可通过测 量力元件测定,从拉伸开始至熔体断裂时测得的最大力值即所谓的熔 体强度。
③熔体流动速率(MFR)按 ISO1133,230°C, 2.16kg载荷下测定。
④ 分子量多分散指数 PI: 用美国 heometric Scientific Inc出售的 型号为 ARES (高级流变仪扩展系统)的流变仪在 190°C, 一定频率范 围测定样品的粘度及模量值, 样品夹具的型式为平板式。分子量多分 散指数 PI=105/G, G为"存储模量(G' )—频率曲线"与"损耗模量(G") 一频率曲线"交点处的模量值。 测试前将树脂样品在 200°C模压成 2 mm的薄片。
⑤ 分子量分布( MJMm Mz+J/ Mn ):采用英国 Polymer Laboratories 公司产 PL-GPC 220凝胶渗透色谱仪和西班牙 Polymer Char公司产的 IR5检测器联用测定样品的分子量及分子量分布, 色谱柱为 3根串联 Plgel ΙΟμηι MIXED-B柱, 溶剂及流动相为 1, 2, 4-三氯苯 (含 0.3g/1000ml抗氧剂 2, 6-二丁基对甲酚), 柱温 150°C , 流速 1.0ml/min。
⑥ 树脂拉伸强度按 ASTM D638-00测量。
⑦ 树脂弯曲强度和弯曲模量按 ASTM D790-97测量。
⑧ IZOD缺口冲击强度按 ASTM D256-00测量。
⑨ 特性粘数: 采用美国 VISCOTEK公司的 Y501C特性粘数分析 仪,按 ASTM D 5225-1998方法测量。溶剂为十氢萘,测试温度 135°C。
⑩ 可溶物含量: 采用西班牙 PolyChar公司的 CRYSTEX仪器测 得,溶剂为三氯苯。其结果用根据 AS†M D5492-2006标准测得的聚合 物的冷二甲苯可溶物数据校正。 实施例 1 :
聚合反应在一套聚丙烯中试装置上进行。其主要设备包括预聚反 应器、 第一环管反应器和第二环管反应器。 聚合方法及步骤如下: ( 1 ) 预聚合反应:
主催化剂 (含钛的固体催化剂活性组分) 采用中国专利
CN93102795中实施例 1描述的方法得到, 其 Ti含量: 2.4wt%, Mg含量 18.0wt%, 邻苯二甲酸二正丁酯含量: 13wt%。 主催化剂、 助催化剂 (三乙基铝)、 第一种外给电子体 (二环戊 基二甲氧基硅垸, DCPMS)经 10°C、 20min预接触后, 连续地加入预 聚反应器进行预聚合反应器, 预聚合在丙烯液相本体环境下进行, 温 度为 15°C, 停留时间为约 4min, 此条件下催化剂的预聚倍数为约 120 一 150倍。 进预聚反应器的三乙基铝流量为 6.33g/hr, 二环戊基二甲氧 硅垸流量为 0.33g/hr, 主催化剂流量为约 0.01g/hr。
(2) 丙烯的均聚合:
预聚后催化剂进入两个串联的环管反应器中,在环管反应器内完 成丙烯的均聚合反应。 两环管聚合反应温度 70°C, 反应压力 4.0MPa。 控制环管反应器的工艺条件,使第一、第二环管的产率比为约 45: 55。
第一环管反应器的进料中不加氢气,在线色谱检测的氢气浓度 < lOppmV, 第二环管反应器进料中加一定量的氢气, 在线色谱检测的 氢气浓度为 4500ppmV。
由于这些催化剂组份经预聚合后直接进入第一环管反应器,第一 环管反应器除丙烯外不再有任何其它进料, 因此, 第一环管反应器内 三乙基铝 /二环戊基二甲氧基硅烷(Al/Si-I)比即为催化剂预聚物中的 比例为 19.0 (重量比)。
在第二环管反应器内补加进 0,67g/hr的四乙氧基硅垸 (TEOS ), 因此, 在第二环管反应器内三乙基铝 /四乙氧基硅垸 (Al/Si-Π) 比为 9.4 (重量比)。 具体工艺条件见表 1。
从第二环管出来的聚合物经过闪蒸分离出丙烯后,经湿氮气去除 反应器内催化剂的活性, 聚合物经加热干燥, 得到聚合物粉料。
将聚合得到的粉料中加入 0.1 wt%的 IRGAFOS 168添加剂、 0.2wt%的 IRGANOX 1010添加剂和 0.05wt%的硬脂酸钙, 用双螺杆挤 出机造粒。 将所得粒料按现行相关 ASTM标准进行性能测试。 实施例 2:
同实施例 1, 只是在第一环管反应器的补充丙烯进料中加入少量 的氢气, 在线色谱检测的氢气浓度为 230ppmV。第二环管反应器的补 充丙烯进料中氢气进料量调整为 8500ppmV。 通过调整外给电子体进 料量, 将 Al/Si-I调整为 45 (重量比), Al/Si-Π调整为 4.2 (重量比)。 助 催化剂三乙基铝的加入量不变。 实施例 3:
同实施例 2, 只是通过调整外给电子体进料量, 将 Al/Si-I调整为 85 (重量比)。 助催化剂三乙基铝的加入量不变。 实施例 4:
同实施例 3, 只是将第二环管反应器的补充丙烯进料中氢气进料 量调整为 12000ppmV。 - 实施例 5:
同实施例 2, 只是将进第二环管反应器的四乙氧基硅垸改为甲基 环己基二甲氧基硅垸(CHMMS), 加入量为 1.51g/hr, Al/Si-II比为 4.2 (重量比); 并且, 将第一环管反应器的 Al/Si-I调整为 60。
各实施例的具体工艺参数、所得聚合物分析结果和聚合物物理性 能列于表 1〜4。
表 1. 实施例聚合工艺条件
Figure imgf000016_0001
表 2. 实施例聚合物分析结果 (1)
Figure imgf000017_0001
表 3. 实施例聚合物分析结果 (2)
Figure imgf000018_0001
表中: F280z: 中国石油化工股份有限公司镇海炼化分公司生产的聚丙烯
T38f: 湖南长盛石化有限公司生产的聚丙烯
表 4. 实施例聚合物物理性能
Figure imgf000019_0001

Claims

1 . 一种具有高熔体强度的丙烯均聚物的制备方法, 其特征在于, 在两个或两个以上的串联操作的反应器中,进行两阶段或两阶段以上 丙烯均聚合反应, 其中:
第一阶段: Ziegler-Natta催化剂存在下, 在 50〜100°C的聚合温度 下, 进行丙烯的均聚合反应, 所得聚合物的 MFR控制为 0.01-0.3g/10min,所述的 Ziegler-Natta催化剂中包括第一外给电子体组 分;
第二阶段: 在第一阶段反应生成物的基础上, 氢气存在下, 加入 第二外给电子体组分继续进行丙烯的均聚合反应;
最终聚合物的 MFR控制为 0.2-10 g/10min;
其中, 所述第一外给电子体比第二外给电子体的氢调敏感度低。
2. 根据权利要求 1 所述的制备方法, 第一阶段中, Ziegler-Natta 催化剂由以下组分组成: (1 ) 一种以镁、 钛、 卤素和内给电子 体为主要组分的固体催化剂组分, (2 ) —种有机铝组分, (3 ) 第一外给电子体组分; 其中组分 (1 ) 与组分 (2 ) 之间的比例 以钛铝比计为 1 : 10-500 (重量比); 组分 (2) 与组分 (3 ) 之 间的比例为 10〜150: 1 (重量比); 第二阶段中, 有机铝组分与 补入的第二外给电子体组分间的比例为 1〜50: 1 (重量比)。
3. 根据权利要求 2所述的制备方法, 第一阶段中, 调整第一外给 电子体组分的用量,使其与有机铝比例为 1 : 15~100 (重量比); 第二阶段中, 按第一阶段加入的有机铝组分的量确定, 补入第 二外给电子体组分, 使其与有机铝比例为 1 : 2-20 (重量比)。
4. 根据权利要求 1所述的制备方法, 在第一阶段中, 氢气含量小 于或等于 300ppmV。
5. 根据权利要求 1所述的制备方法, 其中第一外给电子体组分如 通式 R'nSi (OR2) 4.n所示, 式中 R1相同或不同, 为 C3-C6支化 的或环状的脂族基团; R2为 -C3直链脂族基团; n为 1或 2。
6. 根据权利要求 1所述的制备方法, 其中第二外给电子体组分如 通式 R3 nSi (OR4) 4-n所示, 式中 n为 0或 1或 2, R3和 R4为相 同或不同的 C3直链脂族基团; 或如通式为 R5 R6Si (OR7) 2 所示, 通式中 1 5为 直链脂族基团, R6 C3-C6支化的或 环状的脂族基团, R7为 CrC3直链脂族基团。
7. 根据权利要求 1所述的制备方法, 其中第一阶段与第二阶段的 产率比为 30: 70-70: 30。
8. 根据权利要求 1所述的制备方法, 其中所述的丙烯均聚合反应 在两个串联的环管反应器中进行。
9. 根据权利要求 1所述的制备方法, 其中第一外给电子体为二环 戊基二甲氧基硅烷和 /或二异丙基二甲氧基硅垸, 第二外给电子 体为四乙氧基硅烷和 /或甲基环己基二甲氧基硅垸。
10. 一种具有高熔体强度的丙烯均聚物的制备方法, 其特征在于, 在两个串联的环管反应器中, 进行两阶段丙烯均聚合反应, 其 中:
第一阶段: Ziegler-Natta催化剂存在下, 在 50〜100°C的聚合温度 下, 在氢气含量小于或等于 300ppmV条件下进行丙烯的均聚合反应, 所得聚合物的 MFR控制为 0.01-0.3g/10min,所述的 Ziegler-Natta催化剂 是由以下组分组成: (1 )一种以镁、 钛、 卤素和内给电子体为主要组 分的固体催化剂组分, (2)—种有机铝组分, (3 )二环戊基二甲氧基 硅垸; 其中组分(1 )与组分(2)之间的比例以钛铝比计为 1 : 10-500 (重量比); 组分 (2 ) 与组分 (3 ) 的比例为 10〜150: 1 (重量比); 第二阶段: 在第一阶段反应生成物的基础上, 氢气存在下, 按第 一阶段加入的有机铝组分的量确定,补入四乙氧基硅烷继续进行丙烯 的均聚合反应, 使其与有机铝比例为 1 : 1〜50 (重量比);
最终聚合物的 MFR控制为 0.2-10 g/10min。
11. 一种具有高熔体强度的丙烯均聚物, 其具有以下特征-
( 1 ) 在 230°C, 负载 2.16kg时的MFR为0.2-10g/10min;
(2) 分子量分布 Mw/Mn=6-20; (3 ) 分子量大于 500万级分的含量大于或等于 0.8wt%;
(4) Mz+1/ Mn大于或等于 70。
12. 根据权利要求 11所述的具有高熔体强度的丙烯均聚物,其中分 子量大于 500万级分的含量大于或等于 1.0wt%。
13. 根据权利要求 12所述的具有高熔体强度的丙烯均聚物,其中分 子量大于 500万级分的含量大于或等于 1.5wt%。
14. 根据权利要求 11所述的具有高熔体强度的丙烯均聚物,其 Mz+1/ Mn大于或等于 80。
15. 根据权利要求 11 所述的具有高熔体强度的丙烯均聚物, 其在 230°C , 负载 2.16kg时的 MFR为 2.5-6g/10min。
16. 根据权利要求 11所述的具有高熔体强度的丙烯均聚物,其中分 子量小于 5 万级分的含量大于或等于 15.0wt%, 小于或等于 40%。
17. 根据权利要求 16所述的具有高熔体强度的丙烯均聚物,其中分 子量小于 5 万级分的含量大于或等于 17.5wt%, 小于或等于 30%。
18. 根据权利要求 11所述的具有高熔体强度的丙烯均聚物,其特征 在于, 聚合物的分散指数 PI为 6.0-20.0。
19. 一种具有高熔体强度的丙烯均聚物, 其具有以下特征-
( 1 ) 在 230°C, 负载 2.16kg时的 MFR为 1.6-6g/10min;
(2) 分子量分布 Mw/Mn=6-20;
(3 ) 分子量大于 500万级分的含量大于或等于 1.0wt%;
(4) Mz+1/ Mn大于或等于 80;
( 5 ) 分子量小于 5万级分的含量大于或等于 17.5wt%, 小于或等 于 30%;
(6) 聚合物的分散指数 PI为 9.0 16.0。
20. 根据权利要求 11-19中任意一项所述丙烯均聚物可用于制备发 泡制品、 热成形制品、 双向拉伸薄膜、 吹塑薄膜及吹塑制品。
PCT/CN2011/000107 2010-01-22 2011-01-21 一种具有高熔体强度的丙烯均聚物及其制备方法 WO2011088754A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112012018282A BR112012018282B1 (pt) 2010-01-22 2011-01-21 homopolímero de propileno com elevada resistência à fusão, seu uso e seu processo de preparação
SG2012054078A SG182655A1 (en) 2010-01-22 2011-01-21 Propylene homopolymer having high melt strength and preparation method thereof
KR1020127021847A KR101798500B1 (ko) 2010-01-22 2011-01-21 고 용융강도를 가지는 프로필렌 단일중합체 및 이의 제조 방법
CN201180010274.3A CN102884093B (zh) 2010-01-22 2011-01-21 一种具有高熔体强度的丙烯均聚物及其制备方法
EP11734336.8A EP2527376B1 (en) 2010-01-22 2011-01-21 Preparation method for propylene homopolymer having high melt strength
US13/574,435 US9068030B2 (en) 2010-01-22 2011-01-21 Propylene homopolymer having high melt strength and preparation method thereof
ZA2012/06323A ZA201206323B (en) 2010-01-22 2012-08-22 Propylene homopolymer having high melt strength and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2010100009756A CN102134291B (zh) 2010-01-22 2010-01-22 一种高熔体强度聚丙烯的制备方法
CN201010000975.6 2010-01-22
CN201010000974.1 2010-01-22
CN2010100009741A CN102134290B (zh) 2010-01-22 2010-01-22 具有高熔体强度的聚丙烯及其制品

Publications (1)

Publication Number Publication Date
WO2011088754A1 true WO2011088754A1 (zh) 2011-07-28

Family

ID=44306397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000107 WO2011088754A1 (zh) 2010-01-22 2011-01-21 一种具有高熔体强度的丙烯均聚物及其制备方法

Country Status (9)

Country Link
US (1) US9068030B2 (zh)
EP (1) EP2527376B1 (zh)
KR (1) KR101798500B1 (zh)
CN (1) CN102884093B (zh)
BR (1) BR112012018282B1 (zh)
MY (1) MY158286A (zh)
SG (2) SG10201500468RA (zh)
WO (1) WO2011088754A1 (zh)
ZA (1) ZA201206323B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250400A (zh) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 一种聚丙烯发泡珠粒的制备方法
US20150252127A1 (en) * 2012-10-31 2015-09-10 Exxonmobil Chemical Patents Inc. Broad Molecular Weight Distribution Polypropylene Resins
US20150284521A1 (en) * 2012-10-31 2015-10-08 Exxonmobil Chemical Patents Inc. Articles Comprising Broad Molecular Weight Distribution Polypropylene Resins
US20150291755A1 (en) * 2012-10-31 2015-10-15 Exxonmobil Chemical Patents Inc. Articles Comprising Broad Molecular Weight Distribution Polypropylene Resins
CN111004338A (zh) * 2019-11-11 2020-04-14 徐州聚西廷新型材料科技有限公司 一种提高ppr管材专用基础树脂刚韧平衡性的催化剂复配体系
CN115160463A (zh) * 2022-06-24 2022-10-11 中国石化中原石油化工有限责任公司 一种高纯度、低析出物的聚丙烯生产方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796235B2 (ja) * 2001-03-27 2011-10-19 上野製薬株式会社 ビナフトール誘導体金属塩およびその製法
CN103717500B (zh) 2011-06-17 2016-02-03 比瑞塑料公司 绝热容器
US9067705B2 (en) 2011-06-17 2015-06-30 Berry Plastics Corporation Process for forming an insulated container having artwork
WO2012174422A2 (en) 2011-06-17 2012-12-20 Berry Plastics Corporation Insulated container with molded brim
WO2013101301A2 (en) 2011-06-17 2013-07-04 Berry Plastics Corporation Insulated sleeve for a cup
DE112012003070T5 (de) 2011-08-31 2014-04-30 Berry Plastics Corp. Polymermaterial für einen isolierten Behälter
CA2879564A1 (en) 2012-08-07 2014-02-13 Berry Plastics Corporation Cup-forming process and machine
SG11201503213PA (en) 2012-10-25 2015-06-29 Prime Polymer Co Ltd Polypropylene for microporous film
AU2013334155B2 (en) 2012-10-26 2017-02-02 Berry Plastics Corporation Polymeric material for an insulated container
AR093944A1 (es) 2012-12-14 2015-07-01 Berry Plastics Corp Troquelado para envase
AR093943A1 (es) 2012-12-14 2015-07-01 Berry Plastics Corp Reborde de un envase termico
US9840049B2 (en) 2012-12-14 2017-12-12 Berry Plastics Corporation Cellular polymeric material
US9957365B2 (en) 2013-03-13 2018-05-01 Berry Plastics Corporation Cellular polymeric material
TW201505928A (zh) 2013-03-14 2015-02-16 Berry Plastics Corp 容器
KR102225853B1 (ko) * 2013-07-16 2021-03-12 다우 글로벌 테크놀로지스 엘엘씨 가요성 전력 케이블 절연
CN105592997A (zh) 2013-08-16 2016-05-18 比瑞塑料公司 用于绝缘容器的聚合物材料
EP3068809B1 (en) * 2013-11-15 2021-03-03 W.R. Grace & CO. - CONN. Propylene-based polymer with reduced high-molecular weight portion
RU2692720C2 (ru) 2014-06-25 2019-06-26 Эксонмобил Кемикэл Пейтентс Инк. Полипропилен с высокой прочностью расплава и способ экструзии для сохранения прочности расплава
US9758655B2 (en) 2014-09-18 2017-09-12 Berry Plastics Corporation Cellular polymeric material
CN105623077B (zh) * 2014-10-31 2018-05-11 中国石油化工股份有限公司 一种高熔体强度的抗冲聚丙烯材料及其制备方法
WO2016118838A1 (en) 2015-01-23 2016-07-28 Berry Plastics Corporation Polymeric material for an insulated container
BR112017016387B1 (pt) 2015-02-04 2021-11-23 Exxonmobil Chemical Patents Inc. Composições de polipropileno com encruamento, resistência à fusão e pseudoplasticidade equilibrada e artigo de espuma
EP3280767A4 (en) 2015-04-10 2018-12-05 ExxonMobil Chemical Patents Inc. Extrusion of polypropylenes with organic peroxides
WO2016175942A1 (en) 2015-04-28 2016-11-03 Exxonmobil Chemical Patents Inc. Propylene-based impact copolymers
EP3334602A4 (en) 2015-08-13 2019-01-09 ExxonMobil Chemical Patents Inc. MULTILAYER SHEETS INCLUDING HIGH MELT RESISTANCE POLYPROPYLENE
CN107325395B (zh) * 2016-04-29 2020-07-24 中国石油化工股份有限公司 一种聚丙烯组合物和阻燃抗静电管材
EP3630852A4 (en) 2017-05-30 2021-05-26 ExxonMobil Chemical Patents Inc. HIGH MELT STRENGTH POLYPROPYLENE WITH HIGH STIFFNESS AND CLARITY
KR102325239B1 (ko) 2017-06-07 2021-11-10 엑손모빌 케미칼 패턴츠 인코포레이티드 높은 용융 유량 및 높은 굴곡 탄성률을 갖는, 분자량 분포가 넓은 폴리프로필렌
EP3652221B1 (en) 2017-07-13 2021-08-11 ExxonMobil Chemical Patents Inc. Process to produce strain hardened polypropylene
CA3013576A1 (en) 2017-08-08 2019-02-08 Berry Global, Inc. Insulated multi-layer sheet and method of making the same
WO2019121701A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Polypropylene composition for tapes
EP3783038A4 (en) 2018-04-20 2022-01-26 Toho Titanium Co., Ltd. OLEFIN POLYMER AND METHOD OF MAKING AN OLEFIN POLYMER

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100997A (zh) 1985-04-01 1987-01-10 化工部北京化工研究院 用于烯烃聚合和共聚合的催化剂体系
JPH04370103A (ja) * 1991-06-18 1992-12-22 Tonen Corp ポリプロピレンの製造方法
JPH04372610A (ja) * 1991-06-24 1992-12-25 Tonen Corp ポリプロピレンの製造方法
CN1090854A (zh) * 1992-12-04 1994-08-17 三井石油化学工业株式会社 烯烃聚合物的制备方法
CN1156999A (zh) 1994-02-04 1997-08-13 埃克森化学专利公司 用于烯烃聚合的二元给体催化剂体系
CN1241196A (zh) 1997-08-05 2000-01-12 株式会社宏大化纤 聚丙烯树脂组合物及其用途
US6686433B1 (en) 1994-02-04 2004-02-03 Exxonmobil Chemical Patents Inc. Dual donor catalyst system for the polymerization of olefins
US6875826B1 (en) 1997-09-26 2005-04-05 Borealis A/S High melt strength polypropylene
CN1612901A (zh) 2002-01-03 2005-05-04 Bp北美公司 使用双供体催化剂体系的烯烃气相聚合
CN101058654A (zh) * 2006-04-20 2007-10-24 中国石油化工股份有限公司 高性能聚丙烯组合物的制备方法
CN101180325A (zh) * 2005-05-27 2008-05-14 北方科技有限公司 具有高结晶度的丙烯聚合物

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410663B2 (en) * 1992-06-08 2002-06-25 Fina Technology, Inc. Electron donors in a Ziegler-Natta catalyst for the production of high melt flow copolymers
CN1036011C (zh) 1993-03-29 1997-10-01 中国石油化工总公司 烯烃聚合用的球形催化剂组分、制备方法和应用以及球形催化剂
FI105820B (fi) 1995-10-10 2000-10-13 Borealis Tech Oy Prosessi propeenin homo- tai kopolymeerien valmistamiseksi
WO1999020663A2 (en) * 1997-10-17 1999-04-29 Exxon Chemical Patents Inc. High impact, flexural moduli polymeric materials formed using sequential donors
FI974175A (fi) 1997-11-07 1999-05-08 Borealis As Menetelmä polypropeenin valmistamiseksi
CN1099428C (zh) 1998-12-30 2003-01-22 中国石油化工集团公司 用于丙烯聚合或共聚合的催化剂及其制法和用途
CN1097597C (zh) 1998-12-30 2003-01-01 中国石油化工集团公司 用于丙烯聚合或共聚合的催化剂及其制法和该催化剂的应用
CN1097596C (zh) 1998-12-30 2003-01-01 中国石油化工集团公司 一种使聚丙烯等规度易调的催化剂及其活性组份的制法和该催化剂的应用
CN1137155C (zh) 1999-12-06 2004-02-04 中国石油化工集团公司 用于烯烃聚合或共聚合的催化剂体系
CN1137156C (zh) 1999-12-06 2004-02-04 中国石油化工集团公司 用于烯烃聚合的催化剂组分、烯烃聚合催化剂及其用途
CN1151183C (zh) 2000-06-15 2004-05-26 中国石油化工股份有限公司 用于烯烃聚合或共聚合的球形催化剂组分及其催化剂
CN1169845C (zh) 2002-02-07 2004-10-06 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分和含该催化剂组分的催化剂及其应用
CA2488140A1 (en) 2002-06-14 2003-12-24 Union Carbide Chemicals & Plastics Technology Corporation Catalyst composition and polymerization process using mixtures of selectivity control agents
EP1641835B1 (en) * 2003-06-24 2010-01-06 Union Carbide Chemicals & Plastics Technology LLC Catalyst composition and polymerization process using mixture of silane electron donors
RU2361885C2 (ru) * 2003-09-23 2009-07-20 Дау Глобал Текнолоджиз Инк. Каталитическая композиция, содержащая эфир монокарбоновой кислоты в качестве внутреннего донора, и способ полимеризации пропилена
EP1544218A1 (en) * 2003-12-19 2005-06-22 Borealis Technology Oy Process for producing olefin polymers
US7217772B2 (en) * 2005-03-25 2007-05-15 Sunoco, Inc. (R&M) Process for production of propylene homopolymers
EP2118147A1 (en) * 2007-03-06 2009-11-18 Ineos USA, LLC Gas-phase propylene polymerization process using staged addition of aluminum alkyl
US8779058B2 (en) * 2007-08-24 2014-07-15 William G. Sheard High melt flow propylene impact copolymer and method
CN102453163B (zh) * 2010-10-21 2014-02-05 中国石油化工股份有限公司 丙烯聚合物的制备方法及由该方法制备的丙烯聚合物
CN102816269B (zh) * 2011-06-09 2014-05-28 中国石油化工股份有限公司 一种高熔体强度丙烯/乙烯共聚物及其制备方法
CN102816270B (zh) * 2011-06-09 2015-07-22 中国石油化工股份有限公司 一种高熔体强度丙烯/丁烯共聚物及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100997A (zh) 1985-04-01 1987-01-10 化工部北京化工研究院 用于烯烃聚合和共聚合的催化剂体系
JPH04370103A (ja) * 1991-06-18 1992-12-22 Tonen Corp ポリプロピレンの製造方法
JPH04372610A (ja) * 1991-06-24 1992-12-25 Tonen Corp ポリプロピレンの製造方法
CN1090854A (zh) * 1992-12-04 1994-08-17 三井石油化学工业株式会社 烯烃聚合物的制备方法
CN1156999A (zh) 1994-02-04 1997-08-13 埃克森化学专利公司 用于烯烃聚合的二元给体催化剂体系
US6686433B1 (en) 1994-02-04 2004-02-03 Exxonmobil Chemical Patents Inc. Dual donor catalyst system for the polymerization of olefins
CN1241196A (zh) 1997-08-05 2000-01-12 株式会社宏大化纤 聚丙烯树脂组合物及其用途
US6875826B1 (en) 1997-09-26 2005-04-05 Borealis A/S High melt strength polypropylene
US7365136B2 (en) 1997-09-26 2008-04-29 Borealis Technology Oy High melt strength polypropylene
CN1612901A (zh) 2002-01-03 2005-05-04 Bp北美公司 使用双供体催化剂体系的烯烃气相聚合
CN101180325A (zh) * 2005-05-27 2008-05-14 北方科技有限公司 具有高结晶度的丙烯聚合物
CN101058654A (zh) * 2006-04-20 2007-10-24 中国石油化工股份有限公司 高性能聚丙烯组合物的制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150252127A1 (en) * 2012-10-31 2015-09-10 Exxonmobil Chemical Patents Inc. Broad Molecular Weight Distribution Polypropylene Resins
US20150284521A1 (en) * 2012-10-31 2015-10-08 Exxonmobil Chemical Patents Inc. Articles Comprising Broad Molecular Weight Distribution Polypropylene Resins
US20150291755A1 (en) * 2012-10-31 2015-10-15 Exxonmobil Chemical Patents Inc. Articles Comprising Broad Molecular Weight Distribution Polypropylene Resins
EP2914649A4 (en) * 2012-10-31 2016-05-11 Exxonmobil Chem Patents Inc ARTICLES COMPRISING POLYPROPYLENE RESINS WITH LARGE MOLECULAR WEIGHT DISTRIBUTION
US9453093B2 (en) * 2012-10-31 2016-09-27 Exxonmobil Chemical Patents Inc. Broad molecular weight distribution polypropylene resins
US9464178B2 (en) * 2012-10-31 2016-10-11 Exxonmobil Chemical Patents Inc. Articles comprising broad molecular weight distribution polypropylene resins
US9902822B2 (en) * 2012-10-31 2018-02-27 Exxonmobil Chemical Patents Inc. Articles comprising broad molecular weight distribution polypropylene resins
US10752740B2 (en) 2012-10-31 2020-08-25 Exxonmobil Chemical Patents Inc. Articles comprising broad molecular weight distribution polypropylene resins
CN104250400A (zh) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 一种聚丙烯发泡珠粒的制备方法
CN111004338A (zh) * 2019-11-11 2020-04-14 徐州聚西廷新型材料科技有限公司 一种提高ppr管材专用基础树脂刚韧平衡性的催化剂复配体系
CN115160463A (zh) * 2022-06-24 2022-10-11 中国石化中原石油化工有限责任公司 一种高纯度、低析出物的聚丙烯生产方法
CN115160463B (zh) * 2022-06-24 2023-07-28 中国石化中原石油化工有限责任公司 一种高纯度、低析出物的聚丙烯生产方法

Also Published As

Publication number Publication date
US9068030B2 (en) 2015-06-30
BR112012018282B1 (pt) 2020-04-07
MY158286A (en) 2016-09-30
CN102884093A (zh) 2013-01-16
CN102884093B (zh) 2014-03-12
KR101798500B1 (ko) 2017-11-16
EP2527376A4 (en) 2015-04-29
SG10201500468RA (en) 2015-03-30
BR112012018282A2 (pt) 2016-04-19
KR20120127466A (ko) 2012-11-21
SG182655A1 (en) 2012-08-30
US20130023598A1 (en) 2013-01-24
EP2527376B1 (en) 2017-07-19
ZA201206323B (en) 2013-10-30
EP2527376A1 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2011088754A1 (zh) 一种具有高熔体强度的丙烯均聚物及其制备方法
KR101441018B1 (ko) 프로필렌 단일중합체 성분을 포함하는 폴리프로필렌 조성물
CN102134290B (zh) 具有高熔体强度的聚丙烯及其制品
RU2470946C2 (ru) Гетерофазные сополимеры пропилена высокой чистоты
KR101457779B1 (ko) 폴리프로필렌 바틀
CN102134291B (zh) 一种高熔体强度聚丙烯的制备方法
CN102816269B (zh) 一种高熔体强度丙烯/乙烯共聚物及其制备方法
CN100363417C (zh) 丙烯聚合物组合物和由其制备的双向拉伸薄膜
EP2462175B1 (en) Improved polypropylene for use in bopp applications
JP2010537036A (ja) 相溶化ポリオレフィン組成物
CN102816271B (zh) 一种高熔体强度丙烯/乙烯/丁烯共聚物及其制备方法
US20090326171A1 (en) Process for the preparation of high performance polypropylene
KR20080087082A (ko) 프로필렌 공중합체 성분을 포함하는 폴리프로필렌 조성물
CN105579518A (zh) 具有高二甲苯可溶物XS和适用于BOPP方法的高解链温度Tm的聚合物组合物
BRPI0206560B1 (pt) composições poliméricas límpidas e flexíveis de propileno
CN105622819B (zh) 一种高熔体强度的抗冲聚丙烯材料的制备方法
CN102816270B (zh) 一种高熔体强度丙烯/丁烯共聚物及其制备方法
JPH1053628A (ja) 広範な分子量分布を有する高分子量エチレン−プロピレン反応容器ブレンド
WO2013135654A1 (en) Propylene polymer compositions
CN105623077A (zh) 一种高熔体强度的抗冲聚丙烯材料及其制备方法
CN107805340B (zh) 一种聚烯烃组合物和聚烯烃材料
JP2014129434A (ja) ポリプロピレン樹脂組成物およびその製造方法ならびにポリプロピレンシートおよび二軸延伸ポリプロピレンフィルム
CN105623075B (zh) 一种高熔体强度的抗冲聚丙烯材料的制备方法
CN105623076B (zh) 一种高熔体强度的抗冲聚丙烯材料
CN107325411B (zh) 一种阻燃抗静电无规共聚聚丙烯组合物和管材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010274.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1201003683

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011734336

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011734336

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127021847

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13574435

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012018282

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012018282

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120723