WO2010128561A1 - Parking controller for vehicle - Google Patents

Parking controller for vehicle Download PDF

Info

Publication number
WO2010128561A1
WO2010128561A1 PCT/JP2009/058711 JP2009058711W WO2010128561A1 WO 2010128561 A1 WO2010128561 A1 WO 2010128561A1 JP 2009058711 W JP2009058711 W JP 2009058711W WO 2010128561 A1 WO2010128561 A1 WO 2010128561A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
vehicle
brake
gear
predetermined
Prior art date
Application number
PCT/JP2009/058711
Other languages
French (fr)
Japanese (ja)
Inventor
弘記 上野
圭介 関谷
啓之 舘野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/058711 priority Critical patent/WO2010128561A1/en
Publication of WO2010128561A1 publication Critical patent/WO2010128561A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/06Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels
    • B60T1/062Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels acting on transmission parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/005Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles by locking of wheel or transmission rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission
    • F16H63/486Common control of parking locks or brakes in the transmission and other parking brakes, e.g. wheel brakes

Definitions

  • the present invention relates to a control device that performs parking lock when a vehicle is parked, and relates to a technique for improving the certainty of the parking lock.
  • a parking operation device that has a shift lever that is an operating body operated by a driver and generates a parking command signal in response to the shift lever being operated to a preset parking position, and the parking command signal 2.
  • a vehicle is known that includes a parking lock device that meshes a meshing member with a parking gear by an actuator that operates according to the above, thereby locking the rotation of an output shaft of an automatic transmission that is a power transmission mechanism.
  • This is a vehicle equipped with a so-called shift-by-wire vehicle parking control device.
  • the arrangement position of the parking operation device is free, so that the operability is further improved.
  • the position can be selected, and the design and design in the passenger compartment can be improved.
  • the vehicle parking control device described in Patent Document 1 is an example of the shift-by-wire vehicle parking control device.
  • the vehicle parking control device of Patent Document 1 when a parking command signal is generated due to an erroneous operation or the like while the vehicle is running, the vehicle speed is automatically set between the upper limit determination value VSP2 and the lower limit determination value VSP1.
  • the brake is actuated to suppress the occurrence of a large shock caused by the parking lock of the parking lock device.
  • the driver performs an operation using the parking operation device.
  • There is a certain response time until the actuator that operates according to the parking command signal based on it is brought into a locked state that locks the rotation of the output shaft of the power transmission mechanism.
  • the response time to some extent can be said to be extremely short or substantially zero, but in a parking lock device in a shift-by-wire vehicle parking control device, There is an opportunity that the vehicle can move for some reason and the parking gear can rotate within a certain response time.
  • An object of the present invention is to improve the certainty of causing the parking lock device that locks the rotation of the output shaft of the power transmission mechanism by the actuator that operates according to the control signal to lock the rotation of the output shaft.
  • An object of the present invention is to provide a vehicle parking control device that can suppress a decrease in durability.
  • the gist of the invention according to claim 1 is that (a) a parking intention detection device for detecting a driver's parking intention and an actuator that operates in accordance with a control signal, the meshing member is used as a parking gear.
  • the actuator In a vehicle including a parking lock device that meshes and locks the rotation of the output shaft of the power transmission mechanism and a wheel braking device that brakes the rotation of the wheel, the actuator is operated when the parking intention is detected.
  • the parking intention is detected, and the rotational position of the parking gear relative to the meshing member is determined from a predetermined rotational position range. If it is off, the brake coordination that brakes the rotation of the wheel by the wheel braking device with a predetermined wheel braking force.
  • the gist of the invention according to claim 2 is that the brake cooperative control is performed with the predetermined wheel braking force when the gradient of the road surface on which the vehicle is located is larger than a predetermined road surface gradient determination value. It is characterized by performing.
  • the gist of the invention according to claim 3 is that: (a) a first rotation speed sensor capable of detecting a rotation position and a rotation speed of the parking gear is provided; and (b) the parking of the engagement member. The rotational position of the gear is detected by the first rotational speed sensor.
  • an electric motor that rotates in a one-to-one relationship with the parking gear is connected to a power transmission path, and (b) the electric motor is a rotational position of the electric motor. And a second rotational speed sensor for detecting the rotational speed, and (c) a rotational position of the parking gear with respect to the meshing member is detected by the second rotational speed sensor.
  • the gist of the invention according to claim 5 is that: (a) a first rotational speed sensor capable of detecting the rotational position and rotational speed of the parking gear is provided; and (b) a one-to-one relationship with the parking gear. And (c) the motor includes a second rotational speed sensor that detects a rotational position and a rotational speed of the motor, and (d) the parking gear for the meshing member. Is detected by the first rotation speed sensor and the second rotation speed sensor.
  • the gist of the invention according to claim 6 is that when a predetermined determination time elapses in a state where the vehicle speed is equal to or lower than a predetermined vehicle speed determination value after the execution of the brake cooperative control is started. The brake cooperative control is terminated.
  • the gist of the invention according to claim 7 is that when the vehicle speed is larger than the predetermined vehicle speed determination value, the brake cooperative control is executed with the predetermined wheel braking force. To do.
  • the gist of the invention according to claim 8 is characterized in that the predetermined wheel braking force is increased as the gradient of the road surface on which the vehicle is located is increased.
  • the vehicle parking control device locks the rotation of the output shaft by operating the actuator when the parking intention is detected. Further, (a) when the parking intention is detected and the rotational position of the parking gear with respect to the meshing member is out of a predetermined rotational position range, the predetermined wheel braking force is used. (B) The parking intention is detected, and the rotation position of the parking gear with respect to the meshing member is within the predetermined rotation position range. If this is the case, the brake cooperative control is executed with a braking force lower than the predetermined wheel braking force or the wheel braking device is released.
  • the parking gear is in a rotational position that is difficult to mesh with the meshing member, that is, a rotational angle, based on whether or not it is within the predetermined rotational position range.
  • the braking force of the wheel braking device in the brake cooperative control is adjusted to brake the wheel, that is, the parking gear that rotates in conjunction with the wheel, so that the meshing member meshes with the parking gear. Even if the vehicle tries to move, the parking gear does not rotate fast, and it is possible to improve the certainty that the parking lock device locks the output shaft.
  • the durability fall of the said wheel braking device can be suppressed.
  • the vehicular parking control apparatus is configured such that the road surface on which the vehicle is located is greater than a predetermined road surface gradient determination value. Since the brake cooperative control is executed with a predetermined wheel braking force, the ease of movement of the vehicle is determined, and the brake cooperative control needs to be executed with the predetermined wheel braking force. Therefore, the deterioration of the durability of the wheel braking device can be further suppressed as compared with the invention according to claim 1.
  • a first rotational speed sensor capable of detecting the rotational position and rotational speed of the parking gear is provided, and (b) the meshing member. Since the rotation position of the parking gear with respect to is detected by the first rotation speed sensor, the rotation speed of the member that rotates integrally with the parking gear can be detected by the first rotation speed sensor. For example, if the parking gear is arranged so as to rotate integrally with the output shaft, the rotation speed of the output shaft is detected by detecting the rotation speed of the output shaft with the first rotation speed sensor. The corresponding vehicle speed can be detected by the first rotational speed sensor.
  • an electric motor that rotates in a one-to-one relationship with the parking gear is connected to a power transmission path
  • the electric motor is an electric motor.
  • the rotation position of the parking gear with respect to the meshing member is detected by the second rotation speed sensor, so that the motor transmits power.
  • the present invention can be applied by using a resolver provided in the electric motor as the second rotation speed sensor.
  • a first rotational speed sensor capable of detecting the rotational position and rotational speed of the parking gear
  • a pair with the parking gear An electric motor that rotates in one relationship is coupled to the power transmission path;
  • the electric motor includes a second rotational speed sensor that detects a rotational position and a rotational speed of the electric motor; Since the rotation position of the parking gear is detected by the first rotation speed sensor and the second rotation speed sensor, for example, in the hybrid vehicle or the electric vehicle, the first rotation speed sensor and the second rotation speed sensor If one fails, the other can be used as a backup.
  • a predetermined determination time has elapsed in a state in which the vehicle speed is equal to or less than a predetermined vehicle speed determination value after the execution of the brake cooperative control is started.
  • the end time of the brake cooperative control can be easily determined by measuring the vehicle speed and the passage of time, and it is possible to suppress unnecessary braking of the wheels.
  • the brake cooperative control when the vehicle speed is larger than the predetermined vehicle speed determination value, the brake cooperative control is executed with the predetermined wheel braking force. Compared with the case where the brake cooperative control is started without being based on the vehicle speed, the necessity of executing the brake cooperative control is more appropriately determined, and the deterioration of the durability of the wheel braking device can be suppressed.
  • the predetermined wheel braking force is increased as the gradient of the road surface on which the vehicle is located is increased. Therefore, the braking force is unnecessarily large. Execution of brake cooperative control is suppressed, and a decrease in durability of the wheel braking device can be suppressed.
  • the vehicle parking control device executes the brake cooperative control until the parking lock device is locked by the actuator, and performs the brake cooperative control when the parking lock device is locked. finish.
  • the wheel braking device brakes rotation of the wheel by friction between a rotating body that rotates together with the wheel and a friction material provided on a non-rotating member.
  • FIG. 2 is a collinear diagram that can represent the relative relationship between the rotational speeds of the rotary elements on a straight line in the power transmission mechanism of FIG. 1.
  • FIG. 2 is a block diagram illustrating an electrical control system for input / output signals and the like of an electronic control unit provided in the vehicle for controlling the power transmission mechanism of FIG. 1 and the like.
  • the power transmission mechanism of FIG. 1 it is a figure which shows an example of the shift operation apparatus as a switching apparatus which switches several types of shift ranges by human operation.
  • FIG. 2 is a diagram illustrating a configuration of a parking lock device that mechanically blocks rotation of drive wheels in the power transmission mechanism of FIG. 1.
  • FIG. 4 is a functional block diagram for explaining a main part of a control function provided in the electronic control device of FIG. 3, for explaining a schematic configuration of a braking device operated by the electronic control device.
  • the parking lock device of FIG. 5 it is a figure for demonstrating the level of certainty with which a parking lock pole meshes with a parking gear.
  • the brake cooperative control executed by the parking lock control means included in the electronic control device of FIG. 6 the road surface gradient and the wheel control when the wheel braking force is changed according to the road surface gradient (road surface gradient) on which the vehicle is located. It is the figure which illustrated the relationship with motive power. It is a flowchart for demonstrating the principal part of the control action of the electronic controller of FIG.
  • FIG. 10 is a flowchart for explaining a main part of a control operation executed by the electronic control device of FIG. 6 in parallel with the flowchart of FIG. 9, that is, a control operation for executing brake cooperative control.
  • FIG. 11 is a flowchart for explaining a main part of another control operation corresponding to FIG. 10, and is an excerpt of a changed part of the flowchart in which a part of FIG. 10 is changed.
  • FIG. 11 is a flowchart corresponding to FIG. 10 for explaining a main part of another control operation different from FIGS. 10 and 11, and is a first of two diagrams showing a flowchart obtained by changing a part of FIG. 10.
  • FIG. FIG. 12 is a flowchart corresponding to FIG. 10 for explaining a main part of another control operation different from FIGS. 10 and 11, and is a second of all two diagrams showing a flowchart obtained by changing a part of FIG. 10.
  • FIG. 11 is a flowchart for explaining a main part of another control operation corresponding
  • FIG. 1 illustrates a case where the vehicle 6 to which the present invention is applied may be a normal engine vehicle or a hybrid vehicle, but the case where the vehicle 6 is a hybrid vehicle will be described below as an example.
  • a power transmission mechanism 10 includes an input rotation member disposed on a first axis RC1 in a transmission case 12 (hereinafter referred to as “case 12”) as a non-rotation member attached to a vehicle body.
  • the second counter gear 20 that forms a counter gear pair with the first counter gear 19 and the second counter gear 20 are integrally connected as an output rotating member of the power transmission mechanism 10.
  • an output shaft 22 which is counter shaft.
  • the power transmission mechanism 10 includes a chain 23 that is wound around the outer periphery of the first counter gear 19 and the second counter gear 20 and transmits a driving force between the first counter gear 19 and the second counter gear 20.
  • the first counter gear 19 and the second counter gear 20 rotate in a one-to-one correspondence relationship with the chain 23 being wound around.
  • the power transmission mechanism 10 is preferably used for, for example, an FF (front engine / front drive) type vehicle that is placed horizontally in the vehicle 6, and directly to the input shaft 14 or directly via a pulsation absorbing damper (not shown).
  • Differential drive gear in which power from an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine, for example, is connected as a driving force source for driving connected to the output shaft 22 integrally on the second axis RC2. 32 and a differential gear device (final reduction gear) 36 having a differential ring gear 34 meshing therewith, a pair of axles 37 and the like are sequentially transmitted to left and right drive wheels 38 (see FIG. 6).
  • an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine, for example, is connected as a driving force source for driving connected to the output shaft 22 integrally on the second axis RC2.
  • 32 and a differential gear device (final reduction gear) 36 having a differential ring gear 34 meshing therewith, a pair of axles 37 and the like are sequentially transmitted to left and right drive wheels 38 (see FIG. 6).
  • the differential unit 11 is a mechanical mechanism that mechanically distributes the output of the engine 8 input to the first electric motor M1 and the input shaft 14, and distributes the output of the engine 8 to the first electric motor M1 and the transmission member 18.
  • a power distribution mechanism 16 serving as a differential mechanism, and a second electric motor M2 serving as a traveling motor coupled so as to rotate integrally with the transmission member 18.
  • the first electric motor M1 and the second electric motor M2 of this embodiment are so-called motor generators that have not only a motor function but also a power generation function.
  • the first electric motor M1 and the second electric motor M2 have rotational speeds of the electric motors M1 and M2. When generating reaction torque that works in the direction of decreasing the absolute value, it functions as a generator.
  • the power distribution mechanism 16 is mainly composed of a single pinion type differential planetary gear device 24 having a predetermined gear ratio ⁇ 0.
  • the differential unit planetary gear unit 24 includes a differential unit sun gear S0, a differential unit planetary gear P0, a differential unit carrier CA0 that supports the differential unit planetary gear P0 so as to rotate and revolve, and a differential unit planetary gear P0.
  • the differential part ring gear R0 meshing with the differential part sun gear S0 is provided as a rotating element (element). If the number of teeth of the differential sun gear S0 is ZS0 and the number of teeth of the differential ring gear R0 is ZR0, the gear ratio ⁇ 0 is ZS0 / ZR0.
  • the differential carrier CA0 is connected to the input shaft 14, that is, the engine 8, the differential sun gear S0 is connected to the first electric motor M1, and the differential ring gear R0 is connected to the transmission member 18. ing.
  • the differential unit sun gear S0, the differential unit carrier CA0, and the differential unit ring gear R0 which are the three elements of the differential unit planetary gear unit 24, can be rotated relative to each other.
  • the differential action is operable, that is, the differential state where the differential action works is set, so that the output of the engine 8 is distributed to the first electric motor M1 and the transmission member 18, and the output of the distributed engine 8 is distributed.
  • the differential unit 11 (power distribution mechanism 16) functions as an electric differential device.
  • the differential section 11 is in a so-called continuously variable transmission state (electric CVT state), and the rotation of the transmission member 18 is continuously changed regardless of the predetermined rotation of the engine 8. That is, the differential unit 11 is an electrically stepless variable gear whose ratio ⁇ 0 (the rotational speed N IN of the input shaft 14 / the rotational speed N 18 of the transmission member 18 ) is continuously changed from the minimum value ⁇ 0min to the maximum value ⁇ 0max. It functions as a transmission.
  • the differential state of the power distribution mechanism 16 That is, the differential state between the rotational speed of the input shaft 14 and the rotational speed of the transmission member 18 is controlled.
  • the power transmission from the engine 8 to the drive wheel 38 is interrupted by the first electric motor M1 being in a free rotation state.
  • the power transmission mechanism 10 includes a vehicle speed sensor 84, a first motor rotation speed sensor 85, and a second motor rotation speed sensor 86 in order to detect the rotation speed and the like of each part constituting the power transmission path.
  • the vehicle speed sensor 84 is provided on the output shaft 22 and detects the rotational speed N OUT of the output shaft 22 (hereinafter referred to as “output shaft rotational speed N OUT ”), thereby outputting the output.
  • a vehicle speed V corresponding to the shaft rotational speed N OUT is detected.
  • the first motor rotation speed sensor 85 is a rotation speed sensor such as a resolver provided in the first motor M1, and the rotation speed N M1 of the first motor M1 (hereinafter referred to as “first motor rotation speed N M1 ”).
  • the second motor rotation speed sensor 86 is a rotation speed sensor such as a resolver provided in the second motor M2, and the rotation speed N M2 of the second motor M2 (hereinafter referred to as “second motor rotation speed N M2 ”). Is detected.
  • the vehicle speed sensor 84, the first electric motor rotational speed sensor 85, and the second electric motor rotational speed sensor 86 are all not only the rotational speeds N OUT , N M1 and N M2 of the detection target member, but also the non-rotating of the case 12 or the like.
  • the vehicle speed sensor 84 can also detect the rotational position and the rotational speed of the parking gear 64. Corresponds to the rotation speed sensor.
  • the second electric motor M2 connected to the power transmission path between the engine 8 and the drive wheel 38 has the chain 23 wound around the first counter gear 19 and the second counter gear 20, so that the parking gear 64, the second motor rotation speed sensor 86 can detect the rotation position and rotation speed of the parking gear 64, and corresponds to the second rotation speed sensor of the present invention. To do.
  • FIG. 2 is a collinear diagram that can represent the relative relationship between the rotational speeds of the rotating elements in the power transmission mechanism 10 on a straight line.
  • the collinear diagram of FIG. 2 is a two-dimensional coordinate composed of a horizontal axis indicating the relationship of the gear ratio ⁇ 0 of the differential planetary gear unit 24 and a vertical axis indicating the relative rotational speed.
  • the horizontal line X1 is the rotational speed. indicates zero, it indicates the rotational speed N E of the engine 8
  • horizontal line X2 is linked to the rotational speed of "1.0" that is, the input shaft 14.
  • three vertical lines Y1, Y2, and Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential unit 11 indicate the differential corresponding to the second rotation element (second element) RE2 in order from the left side.
  • These intervals are determined according to the gear ratio ⁇ 0 of the differential planetary gear unit 24.
  • the distance between the sun gear and the carrier corresponds to “1” in the relationship between the vertical axes of the nomograph
  • the distance between the carrier and the ring gear corresponds to the gear ratio ⁇ of the planetary gear unit. It is said. That is, in the differential section 11, the interval between the vertical lines Y1 and Y2 is set to an interval corresponding to “1”, and the interval between the vertical lines Y2 and Y3 is set to an interval corresponding to the gear ratio ⁇ 0.
  • the power transmission mechanism 10 of the present embodiment is the power distribution mechanism 16 (differential portion 11), and the first rotating element RE1 (The differential carrier CA0) is connected to the input shaft 14, that is, the engine 8, the second rotating element RE2 is connected to the first electric motor M1, and the third rotating element (differential ring gear R0) RE3 is connected to the transmission member 18 and the second rotating element RE2. It is connected to the electric motor M ⁇ b> 2 and is configured to transmit the rotation of the input shaft 14 to the drive wheel 38 via the transmission member 18. At this time, the relationship between the rotational speed of the differential section sun gear S0 and the rotational speed of the differential section ring gear R0 is shown by an oblique straight line L0 passing through the intersection of Y2 and X2.
  • the engine rotational speed NE is controlled.
  • the rotational speed of the differential carrier CA0 indicated by the intersection of the straight line L0 and the vertical line Y2 is increased or decreased, the rotation of the differential sun gear S0 indicated by the intersection of the straight line L0 and the vertical line Y1.
  • the speed that is, the rotational speed of the first electric motor M1 is increased or decreased.
  • FIG. 3 is a block diagram illustrating an electrical control system such as an input / output signal of an electronic control unit 80 provided in the vehicle 6 for controlling the power transmission mechanism 10 and the like.
  • the electronic control device 80 also functions as a vehicle parking control device that locks the rotation of the output shaft 22 when the vehicle is parked, and switches the shift position (shift range) by electric control or locks the rotation of the output shaft 22.
  • a so-called shift-by-wire system is employed.
  • the electronic control unit 80 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in the ROM in advance while using a temporary storage function of the RAM.
  • drive control such as hybrid drive control for the motors M1 and M2 provided in the engine 8 and the power transmission mechanism 10 and shift range switching control of the power transmission mechanism 10 using a shift-by-wire system are executed.
  • the electronic control unit 80 includes, for example, a position signal corresponding to the shift position P SH from the shift position sensor for detecting the operation position (shift position) P SH of the shift lever 44, and the power transmission mechanism 10 operated by the user.
  • a P switch signal indicating a switch operation in the P switch 48 for switching the shift range between the parking range (P range) and a non-P range other than the parking range.
  • Power switch signal representative of the switch operation a vehicle speed signal representing a vehicle speed V corresponding to the output shaft speed N OUT of the power transmission mechanism 10 from the vehicle speed sensor 84, the first electric motor speed N M1 of the first electric motor speed sensor 85 signal representative of the signal representative of the second electric motor rotation speed N M2 of the second electric motor rotation speed sensor 86, a brake operation signal indicative of a foot brake operation B ON foot brake base which dull 92 is depressed from the brake switch 90 , Each supplied.
  • an engine output control command signal for controlling the engine output for controlling the engine output
  • a hybrid motor control command signal for commanding the operation of the electric motor in the power transmission mechanism 10 and a shift range for switching the power transmission mechanism 10 are switched.
  • a P switching control command signal or the like for commanding the operation of the parking lock device 50 is output.
  • the electronic control unit 80 includes a power control computer (hereinafter referred to as “PM-ECU”) 100, a hybrid control computer (hereinafter referred to as “HV-ECU”) 102, a parking control computer (hereinafter referred to as “PM-ECU”). (Hereinafter referred to as “P-ECU”) 104.
  • PM-ECU power control computer
  • HV-ECU hybrid control computer
  • PM-ECU parking control computer
  • PM-ECU 100 switches between vehicle power ON and vehicle power OFF based on, for example, a power switch signal from vehicle power switch 82 operated by the user. For example, when the PM-ECU 100 detects an input of a power switch signal when the vehicle power is off, the PM-ECU 100 turns on a vehicle power on by turning on a relay (not shown) for switching between the vehicle power on and the vehicle power off. Further, when the PM-ECU 100 detects that the vehicle speed V is lower than the predetermined vehicle speed V ′ and the input of the power switch signal when the vehicle power is on, the PM-ECU 100 turns off the relay and turns off the vehicle power.
  • a power switch signal from vehicle power switch 82 operated by the user. For example, when the PM-ECU 100 detects an input of a power switch signal when the vehicle power is off, the PM-ECU 100 turns on a vehicle power on by turning on a relay (not shown) for switching between the vehicle power on and the vehicle power off. Further, when the PM-ECU 100 detects that the
  • the PM-ECU 100 When the P-lock state signal input from the P-ECU 104 when the vehicle power is turned off is a signal indicating that the parking lock in the parking lock device 50 is being released, the PM-ECU 100 Is operated to output a signal for setting the shift range to the P range to the P-ECU 104 (this operation is referred to as “auto P operation”).
  • the HV-ECU 102 comprehensively controls the operation of the power transmission mechanism 10. For example, when the HV-ECU 102 detects an input of a brake operation signal indicating the foot brake operation B ON when the PM-ECU 100 switches from the vehicle power supply OFF to the vehicle power supply ON, the hybrid system for enabling vehicle travel , And a hybrid motor control command related to vehicle travel is output to the power transmission mechanism 10 to control vehicle travel. Further, HV-ECU 102 includes a shift range and outputs a shift range switching control command based on the position signal corresponding to the shift position P SH from the shift position sensor for detecting an operation position of the shift lever 44 to the power transmission mechanism 10 Switch.
  • HV-ECU 102 outputs to P-ECU 104 a P switching signal for switching the shift range of power transmission mechanism 10 between the P range and the non-P range based on the P switch signal from P switch 48. Further, the HV-ECU 102 outputs a display signal for displaying the state of the shift range to the indicator 94. The indicator 94 displays the shift range state based on the display signal output from the HV-ECU 102.
  • the vehicle power ON means that the hybrid system is activated to enable the vehicle to travel as described above, and that the vehicle cannot travel (such as an electric motor). Even in a state in which hybrid motor control cannot be performed, it is sufficient that at least the shift range switching control of the power transmission mechanism 10 can be performed.
  • the P-ECU 104 activates the parking lock by controlling the driving of the parking lock device 50 in order to switch the shift range between the P range and the non-P range based on the P switching signal from the HV-ECU 102, for example. Or let it be released. Further, the P-ECU 104 determines whether the shift range of the power transmission mechanism 10 is the P range or the non-P range based on the P position signal indicating the parking lock operating state from the parking lock device 50, and The determination result is output to PM-ECU 100 as a P-lock state signal.
  • the P-ECU 104 controls the driving of the parking lock device 50 to activate the parking lock, and simultaneously brakes the rotation of the wheel 40 by the braking device 110
  • the P-ECU 104 causes the brake hydraulic control circuit 118 to
  • the brake device is instructed to supply the brake oil pressure to the caliper 114, or if the wheel 40 has been braked by the brake device 110 until just before, the brake device is instructed to maintain the residual pressure of the brake oil pressure to some extent. 110 is caused to brake the rotation of the wheel 40.
  • FIG. 4 is a diagram illustrating an example of a shift operation device 42 as a switching device that switches a plurality of types of shift ranges by an artificial operation in the power transmission mechanism 10.
  • the shift operating device 42 is for example disposed near the driver's seat, automatically returns operator i.e. solving the original position the operating force of the momentary to be operated to a plurality of shift positions P SH to (initial position)
  • a shift lever 44 is provided as an automatic return type operator.
  • the shift operation device 42 according to the present embodiment is provided with a P switch 48 as a momentary type operation element for locking the parking with the shift range of the power transmission mechanism 10 as a parking range (P range). It is provided as a switch.
  • the shift lever 44 has three shift positions P SH arranged in the front-rear direction or the up-down direction, that is, the vertical direction of the vehicle 6. (D position), and M position (M position) and B position (B position) arranged in parallel with each other are operated. Then, the shift operation device 42 detects the shift position P SH by the shift position sensor that it has, and outputs a position signal corresponding to the shift position P SH to the HV-ECU 102.
  • the shift lever 44 can be operated in the vertical direction between the R position, the N position, and the D position, and can be operated in the vertical direction between the M position and the B position.
  • the B position can be operated in the lateral direction of the vehicle 6 perpendicular to the longitudinal direction.
  • the P switch 48 is, for example, a momentary push button switch, and outputs a P switch signal to the HV-ECU 102 every time the user performs a push operation. For example, when the P switch 48 is pressed when the shift range of the power transmission mechanism 10 is in the non-P range, a predetermined P range switching condition such that the foot brake pedal 92 is stepped on and the vehicle 6 is stopped is satisfied. If it is satisfied, the shift range is set to the P range by the P-ECU 104 based on the P switching signal from the HV-ECU 102.
  • the P range is a parking range in which the power transmission path in the power transmission mechanism 10 is interrupted and the parking lock is executed in which the rotation of the drive wheel 38 is mechanically blocked (locked) by the parking lock device 50. .
  • the M position of the shift operation device 42 is the initial position (home position) of the shift lever 44, and even if the shift operation is performed to a shift position P SH (R, N, D, B position) other than the M position, the driver If the shift lever 44 is released, that is, if the external force acting on the shift lever 44 is eliminated, the shift lever 44 returns to the M position by a mechanical mechanism such as a spring.
  • the shift operating device 42 is shifted to each shift position P SH , the HV-ECU 102 switches to a shift range corresponding to the shift position P SH after the shift operation based on the shift position P SH (position signal).
  • the current shift position PSH that is, the state of the shift range of the power transmission mechanism 10 is displayed on the indicator 94.
  • the R range selected when the shift lever 44 is shifted to the R position is a reverse travel range in which the driving force for moving the vehicle 6 backward is transmitted to the drive wheels 38.
  • the neutral range (N range) selected by shifting the shift lever 44 to the N position is a neutral range for setting the neutral state in which the power transmission path in the power transmission mechanism 10 is interrupted.
  • the D range selected when the shift lever 44 is shifted to the D position is a forward travel range in which a driving force for moving the vehicle 6 forward is transmitted to the drive wheels 38.
  • the HV-ECU 102 determines a predetermined shift position P SH (specifically, the R position, the N position, or the D position) for releasing the movement prevention (parking lock) of the vehicle 6 when the shift range is the P range. ), A P switching signal for releasing the parking lock is output to the P-ECU 104.
  • the P-ECU 104 outputs a P switching control command signal for releasing the parking lock to the parking lock device 50 based on the P switching signal from the HV-ECU 102 to release the parking lock. Then, the HV-ECU 102 switches to a shift range corresponding to the shift position P SH after the shift operation.
  • the B range selected by shifting the shift lever 44 to the B position causes the engine brake effect to be exerted in the D range by, for example, generating a regenerative torque in the second electric motor M2, thereby rotating the drive wheels 38.
  • the HV-ECU 102 invalidates the shift operation even if the shift lever 44 is shifted to the B position when the current shift range is a shift range other than the D range, and shifts to the B position only when the shift lever 44 is in the D range.
  • the shift operation is enabled. For example, even if the driver performs a shift operation to the B position in the P range, the shift range is continued as the P range.
  • the power transmission mechanism 10 (vehicle 6) of this embodiment employs a so-called shift-by-wire, and a shift position PSH is detected by a shift position sensor provided in the shift operation device 42. Then, the HV-ECU 102 determines each shift position P based on a position signal indicating the shift position P SH from the shift position sensor, for example, based on a change in output voltage from the shift position sensor as the position signal. Recognize SH .
  • a predetermined range confirmation time is preset for each shift position PSH or each shift range.
  • the HV-ECU 102 determines the shift operation when the dwell time, which is the time during which the shift lever 44 remains at the shift position P SH after the shift operation, exceeds the predetermined range determination time, and after the shift operation It switched to a shift range corresponding to the shift position P SH.
  • the dwell time which is the time during which the shift lever 44 remains at the shift position P SH after the shift operation
  • the HV-ECU 102 sets the N position of the shift shift lever 44.
  • the dwell time at is equal to or longer than the neutral range determination time, which is the predetermined range determination time for determining the shift operation to the N position
  • the shift position P SH after the shift operation is the N position. Is determined (determined), and the shift range of the power transmission mechanism 10 is switched from the P range to the N range.
  • FIG. 5 is a diagram illustrating the configuration of the parking lock device 50 that mechanically blocks the rotation of the drive wheels 38.
  • the parking lock device 50 includes a P lock mechanism 52, a P lock drive motor 54, an encoder 56, and the like, and prevents the vehicle 6 from moving based on a control signal from the electronic control device 80.
  • the P lock drive motor 54 is an electric actuator that is configured by a switched reluctance motor (SR motor) and operates according to a command (control signal) from the P-ECU 104. That is, the P lock drive motor 54 receives the control signal from the P-ECU 104 and drives the P lock mechanism 52 by the shift-by-wire system.
  • SR motor switched reluctance motor
  • the encoder 56 is a rotary encoder that outputs A-phase, B-phase, and Z-phase signals.
  • the encoder 56 rotates integrally with the P-lock drive motor 54, detects the rotation status of the SR motor, and indicates the rotation status. That is, a pulse signal for obtaining a count value (encoder count) corresponding to the movement amount (rotation amount) of the P lock drive motor 54 is supplied to the P-ECU 104.
  • the P-ECU 104 obtains a signal supplied from the encoder 56, grasps the rotation status of the SR motor, and controls energization for driving the SR motor.
  • the P lock mechanism 52 is interlocked with a shaft 58 that is rotated by a P lock drive motor 54, a detent plate 60 that rotates as the shaft 58 rotates, a rod 62 that operates as the detent plate 60 rotates, and a drive wheel 38.
  • Parking gear 64 that rotates
  • parking lock pawl 66 that is a meshing member that meshes with parking gear 64 to prevent parking gear 64 from rotating
  • detent spring that restricts the rotation of detent plate 60 and fixes the shift position.
  • 68 and rollers 70 are provided.
  • the parking gear 64 is not limited in the place where the driving wheel 38 is locked if the parking gear 64 is locked, but in the present embodiment, as shown in FIG.
  • the output shaft 22 of the mechanism 10 is fixed integrally.
  • the detent plate 60 is operatively connected to the drive shaft of the P-lock drive motor 54 via the shaft 58, and is driven by the P-lock drive motor 54 together with the rod 62, the detent spring 68, the roller 70, etc. to the P range. It functions as a parking lock positioning member for switching between a corresponding parking lock position and a non-parking lock position corresponding to each shift range other than the P range.
  • FIG. 5 shows a state when the vehicle is in the non-parking lock position.
  • the parking lock pole 66 corresponding to the meshing member of the present invention does not lock the parking gear 64, so that the rotation of the drive wheel 38 is not hindered by the P lock mechanism 52.
  • the shaft 58 is rotated in the direction of the arrow C shown in FIG. 5 by the P lock drive motor 54, the rod 62 is pushed in the direction of the arrow A shown in FIG.
  • the parking lock pole 66 is pushed up in the direction of arrow B shown in FIG. 5 by the taper member 72 provided at the tip.
  • the parking lock device 50 functions as a parking lock device that locks the rotation of the output shaft 22 of the power transmission mechanism 10 by engaging the parking lock pole 66 with the parking gear 64 by the P lock drive motor 54.
  • FIG. 6 is a functional block diagram illustrating a main part of the control function provided in the electronic control device 80, and is a diagram for explaining a schematic configuration of the braking device 110 corresponding to the wheel braking device of the present invention.
  • the braking device (wheel braking device) 110 is provided for each of the four wheels 40 including the drive wheels 38 and brakes the rotation of the wheels 40.
  • the braking device 110 provided on the driving wheel 38 that is the front wheel is illustrated, but the braking device 110 provided on the non-driving wheel that is the rear wheel is not illustrated.
  • the braking device 110 includes a disc-like disk (rotor, rotor) 112 that is arranged perpendicular to the axle 37 and parallel to the wheel 40 and rotates with the wheel 40, and a vehicle connected to the vehicle body as a non-rotating member. 6 and a pair of calipers 114 including hydraulic cylinders that are fixed to the components constituting the suspension 6 to clamp the disk 112 from both disk surface sides, and disposed between the piston end of the hydraulic cylinder and the disk surface of the disk 112. Brake pads (friction material) 116.
  • the brake hydraulic control circuit 118 includes a hydraulic pump and an accumulator that generates an original pressure of the brake hydraulic pressure for, for example, ABS control or VSC control, and applies brake hydraulic pressure to the hydraulic cylinder of the caliper 114 according to a command from the electronic control unit 80. It supplies and controls the pressure of the supplied brake hydraulic pressure.
  • the braking device 110 brakes the rotation of the wheel 40 by friction between the disc 112 that rotates integrally with the wheel 40 and the brake pad 116 indirectly provided on the non-rotating member when the vehicle 6 is braked.
  • the braking force due to friction between the disk 112 and the brake pad 116 is increased or decreased according to the hydraulic pressure supplied from the brake hydraulic control circuit 118.
  • the braking force is The larger the hydraulic pressure from the brake hydraulic control circuit 118, the larger the hydraulic pressure.
  • the electronic control unit 80 includes a hybrid control unit 140, a parking intention determination unit 142, a slope determination unit 144, a brake determination unit 146, a parking gear rotation position determination unit 148, a parking lock control unit 152, and a control end determination. Means 154 are provided.
  • the electronic control unit 80 may further include a control start vehicle speed determining means 156, which will be described later. Therefore, in FIG. 6, the control start vehicle speed determining means 156 is also described in advance.
  • the hybrid control means 140 operates the engine 8 in an efficient operating range, while optimizing the reaction force due to the distribution of the driving force between the engine 8 and the second electric motor M2 and the power generation of the first electric motor M1.
  • the gear ratio ⁇ 0 as an electric continuously variable transmission of the differential section 11 is controlled.
  • the target (request) output of the vehicle 6 is calculated from the accelerator opening (accelerator operation amount) Acc which is the operation amount of the accelerator pedal as the driver's output request amount and the vehicle speed V
  • the required total target output is calculated from the target output of the vehicle 6 and the required charging value, and the target engine is considered in consideration of transmission loss, auxiliary load, assist torque of the second electric motor M2, and the like so as to obtain the total target output.
  • calculating the output to control the amount of power generated by the first electric motor M1 controls the engine 8 so that the target engine output is engine speed N E and engine torque T E obtained.
  • the hybrid control means 140 both the drivability and the fuel consumption when the continuously-variable shifting control in a two-dimensional coordinate composed of the output torque (engine torque) T E of the engine rotational speed N E and the engine 8
  • the target output total target output, request
  • the target value is set so that the engine 8 is operated along the well-known optimal fuel consumption rate curve (fuel consumption map, relationship) of the engine 8 that is experimentally obtained and stored in advance. It determines the target value of the speed ratio ⁇ 0 of the differential portion 11 so that the engine torque T E and the engine rotational speed N E for generating the engine output necessary to meet the driving force), the target value is obtained
  • the speed ratio ⁇ 0 is controlled steplessly within the changeable range of the speed change.
  • the hybrid control means 140 supplies the electric energy generated by the first electric motor M1 to the power storage device 124 and the second electric motor M2 through the inverter 122, the main part of the power of the engine 8 is mechanically the first counter. Although it is transmitted to the gear 19, a part of the motive power of the engine 8 is consumed for power generation of the first electric motor M1, and is converted into electric energy there, and the electric energy is supplied to the second electric motor M2 through the inverter 122, The second electric motor M2 is driven and transmitted from the second electric motor M2 to the first counter gear 19.
  • the power storage device 124 is an electric energy source capable of supplying power to the first motor M1 and the second motor M2 and receiving power from each of the motors M1 and M2. It is charged by driving.
  • the power storage device 124 is, for example, a battery such as a lead storage battery or a capacitor.
  • the hybrid control means 140 regardless of the stopping or during traveling of the vehicle 6, owing to the electric CVT function of the power transmission mechanism 10, for example, the engine rotational speed N E by controlling the first electric motor speed N M1 Maintaining a substantially constant value or controlling the rotation to an arbitrary rotation speed. That is, the hybrid control means 140 can transmit power to the input shaft 14 from the first electric motor M1 operatively connected to the input shaft 14 (that is, the output shaft of the engine 8) via the differential planetary gear device 24. By making it function as a drive device, the engine 8 is driven to rotate by the first electric motor M1. For example, when the engine speed NE is increased while the vehicle is traveling, the hybrid controller 140 rotates the first motor while maintaining the output shaft speed N OUT restricted by the vehicle speed V (drive wheel 38) substantially constant. The speed N M1 is increased.
  • the hybrid control means 140 controls the opening and closing of the electronic throttle valve 130 provided in the intake pipe 128 of the engine 8 by the throttle actuator 126 for throttle control, and the fuel injection by the fuel injection device 132 for fuel injection control.
  • a command for controlling the amount and injection timing and controlling the ignition timing by the ignition device 134 such as an igniter for controlling the ignition timing is output to the engine output control device 136 alone or in combination to generate a necessary engine output.
  • engine output control means for executing output control of the engine 8 is functionally provided.
  • the hybrid controller 140 basically drives the throttle actuator 126 based on the accelerator opening Acc from a previously stored relationship (not shown), and the opening ⁇ of the electronic throttle valve 130 increases as the accelerator opening Acc increases. Execute throttle control to increase TH .
  • the engine output control device 136 controls the opening and closing of the electronic throttle valve 130 by the throttle actuator 126 for throttle control in accordance with a command from the hybrid control means 140, and the fuel injection by the fuel injection device 132 for fuel injection control.
  • the engine torque control is executed by controlling the ignition timing by the ignition device 134 such as an igniter for controlling the ignition timing.
  • the hybrid control means 140 drives the second electric motor M2 with electric power from the power storage device 124 in a state where the operation of the engine 8 is stopped, and uses only the second electric motor M2 as a driving power source for traveling ( EV traveling) can be executed.
  • the EV traveling by the hybrid control means 140 is a comparison of a relatively low output torque T OUT region, that is, a low engine torque TE region, or a vehicle speed V, which is generally considered to have a low engine efficiency compared to a high torque region. It is executed at a low vehicle speed range, that is, a low load range.
  • the hybrid control means 140 causes the first electric motor M1 to idle so as to improve the fuel efficiency by suppressing dragging of the engine 8 that has stopped driving, and thereby driving the power. maintaining the engine speed N E at zero or substantially zero as needed by the electric CVT function of the transmission mechanism 10 (differential action). That is, the hybrid control means 140 does not simply stop the operation of the engine 8 during EV traveling, but also stops the rotation of the engine 8. Further, the hybrid control means 140 stops the operation of the engine 8 in order to improve fuel efficiency when a predetermined engine stop condition is satisfied, such as when the vehicle 6 is stopped for a predetermined time or more.
  • the hybrid control means 140 functionally includes an engine start control means for starting the engine 8 while the vehicle is stopped or during EV traveling.
  • the hybrid control means 140 by raising the first electric motor speed N M1 is energized to the first electric motor M1, i.e., by function of the first electric motor M1 as a starter, complete explosion of the engine rotational speed N E 'together pulled above the predetermined rotational speed N E' given rotation speed N E capable of supplying fuel by the fuel injection device 132 at least at autonomously rotate eg idle or rotational speed of the engine rotational speed N E (injection)
  • the ignition device 134 is ignited to start the engine 8.
  • the hybrid control means 140 uses the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 124 by the electric path described above during the engine running using the engine 8 as a driving force source. , And driving the second electric motor M2 to apply torque to the drive wheels 38, so-called torque assist for assisting the power of the engine 8 is possible. That is, the drive wheel 38 may be driven only by the output of the engine 8, may be driven by adding the output of the second electric motor M2 to the output of the engine 8, or only the output of the second electric motor M2. It may be driven by.
  • the hybrid control means 140 causes the first electric motor M1 to rotate freely, i.e., idle, with no load, whereby the power transmission mechanism 10 cannot transmit torque, that is, the power transmission path in the power transmission mechanism 10 is interrupted. It is possible to set the second electric motor M2 in a no-load state so that no output from the power transmission mechanism 10 is generated. That is, the hybrid control unit 140 can place the power transmission mechanism 10 in the neutral state by setting the electric motors M1 and M2 to a no-load state.
  • the hybrid control means 140 uses the kinetic energy of the vehicle 6 when the vehicle is decelerated or braked with the accelerator off, that is, the reverse driving force transmitted from the driving wheel 38 to the second electric motor M2 side, and thereby the first electric motor M1 and the first electric motor M1.
  • 2 Acts as a regenerative brake control means for performing so-called regenerative braking in which the electric motor M2 is rotated to operate as a generator and the electric energy, that is, the electric current generated by the electric motors M1 and M2 is charged to the power storage device 124 via the inverter 122. To do.
  • the parking intention determination unit 142 determines whether or not the driver's intention to park has been detected, in other words, whether or not a shift range switching operation from a shift range other than the P range to the P range has been performed. Specifically, the parking intention determination unit 142 determines that the driver is in the case where the P range switching condition is satisfied and the P switch 48 is pressed, that is, when the switching operation to the P range is performed by the P switch 48. It is determined that no parking intention has been detected. In this case, the P switch 48 corresponds to a parking intention detection device that detects the driver's intention to park.
  • the parking intention determination unit 142 determines whether the driver intends to park the vehicle when the switching operation to the P range in the auto P operation is performed, that is, when the switching operation to the P range is performed by the vehicle power switch 82. Is detected.
  • the vehicle power switch 82 corresponds to the parking intention detection device.
  • the slope judgment means 144 judges whether or not the slope (road slope) ⁇ SL of the road surface on which the vehicle 6 is located is larger than a predetermined road slope judgment value ⁇ 1 SL . At this time, the slope determination means 144 compares the absolute value of the road surface gradient ⁇ SL with the road surface gradient determination value ⁇ 1 SL .
  • the road surface gradient ⁇ SL is an angle formed by the road surface with respect to a horizontal plane, and examples of the unit include degrees and radians.
  • the road surface gradient ⁇ SL may be detected by, for example, a gradient detection sensor that can directly detect the road surface gradient ⁇ SL , or the power transmission mechanism 10 is in the neutral state and all the wheels 40 are not braked.
  • a change in the vehicle speed V may be detected by a wheel speed sensor or a vehicle speed sensor 84 provided on each wheel 40 and may be calculated based on the change.
  • the road surface gradient judgment value ⁇ 1 SL is experimentally obtained, for example, as the minimum road surface gradient ⁇ SL at which the vehicle 6 moves with its own weight when the power transmission mechanism 10 is in the neutral state and all the wheels 40 are not braked. Therefore, the minimum road surface gradient ⁇ SL is set.
  • the slope determination unit 144 determines whether the road surface on which the vehicle 6 is located is inclined in a direction in which the vehicle 6 is moved forward or in a direction in which the vehicle 6 is moved backward.
  • the inclination direction of the road surface may also be detected by the gradient detection sensor, or may be detected from the rotation direction of the wheel 40 or the output shaft 22 by a wheel speed sensor or a vehicle speed sensor 84 provided on each wheel 40. .
  • the brake determination means 146 determines whether or not the foot brake pedal 92 is depressed. For example, the determination is made based on a brake operation signal indicating foot brake operation B ON from the brake switch 90.
  • Parking gear rotational position determining means 148 determines whether or not the rotational position theta PG is predetermined rotational position range W ⁇ the PG of the parking gear 64 with respect to the parking lock pole 66. At this time, the parking gear rotational position determining means 148, as the rotational position theta PG of the parking gear 64 to the determination, for example, the parking gear 64 at the time of switching operation to the P range by the P switch 48 or the vehicle power supply switch 82 rotational position theta PG, or to adopt a rotational position theta PG release at the parking gear 64 of the foot brake base Dar 92 if the foot brake base Dar 92 is released after the switching operation to the P range.
  • the rotational position theta PG of the parking gear 64 in other words, it means the rotational angle or phase of the parking gear 64, as is the unit, for example, time, etc. radians and the like.
  • a fixing member such as the case 12 may be used instead of the parking lock pole 66.
  • FIG. 7 is a diagram for explaining the certainty with which the parking lock pole 66 meshes with the parking gear 64.
  • the parking gear 64 rotates in the direction of the arrow AP in FIG. 7 until the parking lock pole 66 is engaged with the parking gear 64. To do. Then, it indicates to mesh with the teeth 67 of the parking lock pole 66 when a non-parking lock position, the parking gear 64 by a two-dot chain line RP2 if and 7 in the rotational position theta PG indicated by the solid line RP1 of FIG. 7 The case of the rotational position ⁇ PG is compared with each other.
  • the parking gear 64 when the parking gear 64 is in the rotational position theta PG indicated by the solid line RP1, the particular point P3 on the gear teeth 75 are meshing valley 76 and the parking lock pole 66 of the parking gear 64 teeth
  • the parking lock pawl 66 can be engaged with the parking gear 64 by rotating about the second axial center RC2 to the point P1 indicating the position where the 67 faces each other.
  • the parking gear 64 when in the rotational position theta PG the parking gear 64 is indicated by the two-dot chain line RP2, if rotated about the second axis RC2 certain point P2 on the gear teeth 75 until the point P1
  • the parking lock pole 66 can be engaged with the parking gear 64.
  • a certain response time is required until the P-lock mechanism 52 is switched from the non-parking lock position to the parking lock position after the switching operation is performed. Therefore, when the vehicle 6 is stopped on the slope, the rotation speed of the parking gear 64 is adjusted so that the foot brake is applied within the response time from the switching operation to the P range until the P lock mechanism 52 switches to the parking lock position.
  • the parking lock pawl 66 is certainty that meshes with the parking gear 64, when the parking gear 64 is in the rotational position theta PG indicated by the solid line RP1 it is believed to be lower than in the rotational position theta PG indicated by the two-dot chain line RP2. Therefore, the rotational position range Wshita PG used in the determination of the parking gear rotational position determining means 148, the same number and the gear teeth 75 on the rotation axis (RC2) around the parking gear 64 provided at equal intervals of an angle Yes.
  • the rotational position range Wshita PG for example, without braking the wheel 40 braking device 110 when the vehicle 6 is stopped at a slope, the parking lock pawl 66 meshes with the parking gear 64 when the parking lock execution a range of rotational positions theta PG of the parking gear 64 that certainty can be sufficiently secured, is set experimentally.
  • the rotational position range Wshita PG is without braking by the brake device 110 to the wheel 40 to the parked vehicle 6 is the slope, the rotational position theta PG when the parking lock is in its rotational position range Wshita PG If there is, it is set as a range of the rotational position ⁇ PG where the vehicle speed V is estimated not to exceed the mechanical ratchet vehicle speed determined by flipping the parking lock pole 66 to which the parking gear 64 is engaged.
  • the parking gear rotational position determining means 148 by determining whether the rotational position theta PG of the parking gear 64 with respect to the parking lock pawl 66 is in the predetermined rotational position range W ⁇ the PG, the parking lock It can be said that sometimes it is estimated whether the vehicle speed V does not exceed the ratchet vehicle speed.
  • the level of certainty that the parking lock pole 66 meshes with the parking gear 64 is determined when the rotation direction of the parking gear 64 is in the direction of the arrow AP, assuming that the rotation direction of the parking gear 64 is opposite to the arrow AP. against it, reversed between the case where the parking gear 64 is in the rotational position theta PG indicated when the two-dot chain line RP2 in the rotational position theta PG indicated by the solid line RP1. Therefore, the parking gear rotation position determination means 148 determines the rotation position range W ⁇ PG when the slope on which the vehicle 6 is located is a gradient that advances the vehicle 6, that is, the rotation position range W ⁇ 1 PG for the advance gradient, and the vehicle 6.
  • the rotational position range Wshita PG when a gradient to backward, i.e., stores and rotational position range Wshita2 PG for reverse gradients in advance.
  • the slope is a slope of advancing the vehicle 6, the rotational position theta PG while setting the rotational position range Wshita PG for the determination of the rotational position range Wshita1 PG for forward slope for, when the slope is a slope to reverse the vehicle 6, the rotational position range Wshita PG setting the rotational position range Wshita2 PG for reverse gradients.
  • the forward gradient rotational position range W ⁇ 1 PG and the reverse gradient rotational position range W ⁇ 2 PG are mutually centered (for example, through the rotational axis (RC2) when the parking gear 64 is viewed in plan). They are in a line-symmetric relationship with respect to the one-dot chain line LC1) in FIG.
  • the parking lock control unit 152 When the parking intention determination unit 142 determines that the driver's intention to park is detected, the parking lock control unit 152 operates the P lock drive motor (actuator) 54 of the parking lock device 50 to operate the output shaft 22. The parking lock is executed in which the rotation of the drive wheel 38 is mechanically blocked (locked) by the parking lock device 50. In addition to the parking lock, the parking lock control means 152 determines that the driver's intention to park is detected by the parking intention determination means 142, and the road surface gradient ⁇ SL is determined in advance by the slope determination means 144.
  • the brake determination means 146 determines that the foot brake pedal 92 is not depressed, and the parking gear rotation position determination means 148 determines the parking gear 64 for the parking lock pole 66.
  • the rotational position theta PG of is determined to the deviates from a predetermined rotational position range Wshita PG is a predetermined wheel braking force F1 WH, to brake the rotation of the wheel 40 by the braking device 110 Execute brake coordination control.
  • the parking lock control unit 152 determines that the driver's intention to park has been detected by the parking intention determination unit 142, and the road surface gradient ⁇ SL is determined by the slope determination unit 144 to the predetermined road surface gradient determination value ⁇ 1. Even if it is determined that it is greater than SL , and the brake determination means 146 determines that the foot brake pedal 92 is not depressed, the parking gear rotation position determination means 148 causes the rotation position ⁇ PG to be If it is determined that the predetermined rotational position range W ⁇ the PG, to release the brake device 110 without executing the cooperative brake control.
  • the parking lock control means 152 replaces with releasing the braking device 110 without executing the brake cooperative control, and a predetermined braking force F2 lower than the predetermined wheel braking force F1 WH.
  • the brake cooperative control may be executed by WH .
  • the predetermined wheel braking force F1 WH is a braking force that is low enough to avoid a decrease in durability of the braking device 110 even if the brake cooperative control is repeatedly executed, and the parking force is locked when the parking lock is performed. It is experimentally set to a braking force capable of suppressing acceleration of rotation of the parking gear 64 due to the road surface gradient ⁇ SL to some extent.
  • the wheel braking force F1 WH the if the braking device 110 before execution of the cooperative brake control is not brake the wheel 40, so that a predetermined ratio of the brake hydraulic pressure at the time of braking is continued as residual pressure
  • it is predetermined before execution of the brake cooperative control.
  • the predetermined wheel braking force F1 WH is a parameter set for the purpose of suppressing acceleration of rotation of the parking gear 64 at the time of parking lock. Therefore, preferably, as shown in FIG.
  • the predetermined wheel braking force F1 WH is increased as the gradient ⁇ SL (absolute value) of the road surface on which the vehicle 6 is located is increased.
  • how much the predetermined braking force F2 WH is set to be lower than the predetermined wheel braking force F1 WH depends on the execution of the brake cooperative control with the predetermined braking force F2WH. It is set experimentally so as not to affect the durability of 110 as much as possible.
  • the parking lock control means 152 executes the brake cooperative control until the parking lock device 50 is locked by the P lock drive motor 54, and when the parking lock device 50 is locked. It is desirable to end the brake cooperative control.
  • the valley 76 of the parking gear 64 and the meshing teeth 67 of the parking lock pole 66 are not necessarily in a state where they can be meshed with each other at the start of execution of the parking lock, and in the vehicle 6 of this embodiment, A sensor or the like for directly detecting whether or not the parking gear 64 and the parking lock pole 66 are engaged with each other is not provided.
  • the control end determination unit 154 is in a state where the vehicle speed V is equal to or less than a predetermined vehicle speed determination value V1 after the execution of the brake cooperative control is started. It is determined whether or not a predetermined determination time TM1 has passed.
  • the P position signal indicating that the shift range is switched to the P range is obtained from the parking lock device 50, that is, it is recognized that the shift range is switched to the P range based on the P position signal. After that, the above judgment is made.
  • the parking lock control means 152 causes the control end determination means 154 to elapse the predetermined determination time TM1 in a state where the vehicle speed V is equal to or less than the predetermined vehicle speed determination value V1 after the execution of the brake cooperative control is started. If it is determined that the brake coordination has been performed, the brake cooperative control is terminated.
  • the predetermined vehicle speed determination value V1 and determination time TM1 are experimentally set parameters for determining the necessity of continuing the brake cooperative control.
  • the vehicle speed determination value V1 is a vehicle speed V that is sufficiently lower than the ratchet vehicle speed and greater than zero, and the parking gear 64 can be prevented from rotating (locked) even when the braking device 110 is released on the slope and the vehicle 6 is accelerated.
  • the vehicle speed V is set, and the determination time TM1 is set to about 1 second.
  • the parking lock control unit 152 executes the brake cooperative control based on the determinations of the parking intention determination unit 142, the slope determination unit 144, the brake determination unit 146, and the parking gear rotation position determination unit 148 described above.
  • the brake cooperative control may be executed after the determination of the vehicle speed V is added to the determination.
  • the electronic control unit 80 further includes a control start vehicle speed determination unit 156.
  • the control start vehicle speed determination unit 156 determines whether the vehicle speed V is greater than the predetermined vehicle speed determination value V1. Judge whether or not.
  • the control start vehicle speed determination means 156 determines, for example, that the vehicle speed V at the time of switching operation to the P range by the P switch 48 or the vehicle power switch 82 or the foot brake pedal 92 after the switching operation to the P range. If released, the vehicle speed V when the foot brake pedal 92 is released is compared with the predetermined vehicle speed determination value V1. Then, the parking lock control means 152 determines that the driver's intention to park is detected by the parking intention determination means 142, and the slope determination means 144 determines that the road surface gradient ⁇ SL is based on the predetermined road surface gradient determination value ⁇ 1 SL .
  • the parking lock control unit 152 determines that the driver's intention to park has been detected by the parking intention determination unit 142, and the road surface gradient ⁇ SL is determined by the slope determination unit 144 to the predetermined road surface gradient determination value ⁇ 1.
  • the parking gear rotation position determination means 148 causes the rotation position ⁇ PG to be If it is determined that the predetermined rotational position range W ⁇ the PG, or when the vehicle speed V is determined to the at most vehicle speed determining value V1 predetermined by the control start vehicle speed determining means 156, The braking device 110 is released without executing the brake cooperative control, or the brake cooperation is performed with the predetermined braking force F2 WH. Execute adjustment control.
  • FIG. 9 is a flowchart for explaining the main part of the control operation of the electronic control unit 80, that is, the control operation for executing the parking lock.
  • the control operation is repeatedly executed with a very short cycle time of about several milliseconds to several tens of milliseconds. Is done.
  • step it is determined whether or not the driver's parking intention is detected. For example, it is determined that the driver's intention to park is detected when the P range switching condition is satisfied and the P switch 48 is pressed, or when the switching operation to the P range is performed in the auto P operation. The If the determination of SA1 is affirmative, that is, if the driver's intention to park is detected, the process proceeds to SA2. On the other hand, if the determination of SA1 is negative, the flowchart of FIG. 9 ends.
  • FIG. 10 is a flowchart for explaining a main part of the control operation of the electronic control unit 80, that is, a control operation for executing the brake cooperative control.
  • the control operation is repeated with a very short cycle time of about several milliseconds to several tens of milliseconds. Executed.
  • the flowchart of FIG. 9 and the flowchart of FIG. 10 are executed in parallel with each other.
  • SB1 corresponding to the parking intention determination means 142 the same content as SA1 in FIG. 9 is determined.
  • SB1 determination of SB1 is affirmed, that is, when the driver's intention to park is detected, the process proceeds to SB2.
  • SB1 determination of SB1 is negative, the process proceeds to SB9.
  • SB2 corresponding to the slope determining means 144, whether the vehicle 6 is greater than the slope theta SL is the pre-road gradient determining value ⁇ 1 defined SL to the road surface position is determined. If the determination in SB2 is affirmative, that is, if the road surface gradient ⁇ SL is greater than the predetermined road surface gradient determination value ⁇ 1 SL , the process proceeds to SB3. On the other hand, if the determination at SB2 is negative, the operation proceeds to SB9.
  • SB3 corresponding to the brake determination means 146, it is determined whether or not the foot brake pedal 92 is depressed. This is because if the foot brake pedal 92 is depressed, the brake device 110 brakes the wheel 40, and there is no need to execute the brake cooperative control. If the determination at SB3 is affirmative, that is, if the foot brake pedal 92 is depressed, the process proceeds to SB9. On the other hand, if the determination at SB3 is negative, the operation proceeds to SB4.
  • SB4 corresponding to the parking gear rotational position determining means 148, when slope where the vehicle 6 is located, is the slope of advancing the vehicle 6, the rotational position range Wshita1 PG for the forward slope as the rotational position range Wshita PG Is set.
  • the slope is in the case of gradient to reverse the vehicle 6, the rotational position range Wshita2 PG for reverse gradients as the rotational position range Wshita PG is set.
  • SB6 corresponding to the parking lock control means 152, execution of the brake cooperative control is started with the predetermined wheel braking force F1WH .
  • the wheel braking force F1 WH may be changed based on the gradient ⁇ SL of the road surface on which the vehicle 6 is located.
  • SB6 if the brake cooperative control has already been started, the execution is continued. After SB6, the process proceeds to SB7.
  • the shift range is the P range, and the vehicle speed V is equal to or less than the predetermined vehicle speed determination value V1. It is determined whether or not a predetermined determination time TM1 has elapsed.
  • the fact that the shift range is the P range specifically means that the P position signal indicating that the shift range has been switched to the P range is obtained from the parking lock device 50. is there.
  • the determination of SB7 is affirmative, that is, the predetermined determination time TM1 has elapsed in a state where the shift range is the P range and the vehicle speed V is equal to or less than the predetermined vehicle speed determination value V1. In the case, the process proceeds to SB8. On the other hand, if the determination at SB7 is negative, the operation proceeds to SB6.
  • SB9 corresponding to the parking lock control means 152, the brake cooperative control is not executed. For example, if the foot brake pedal 92 is not depressed, the braking device 110 is released.
  • SB5 ′ corresponding to the control start vehicle speed determining means 156 is a step executed when the determination of SB5 in FIG. 10 is denied, and in the SB5 ′, the vehicle speed V is determined in advance. It is determined whether or not the vehicle speed determination value V1 is greater. If the determination at SB5 'is affirmative, that is, if the vehicle speed V is greater than the predetermined vehicle speed determination value V1, the process proceeds to SB6. On the other hand, if the determination at SB5 'is negative, the operation proceeds to SB9.
  • the parking lock control means 152 shown in FIG. 6 is lower than the predetermined wheel braking force F1 WH instead of releasing the braking device 110 without executing the brake cooperative control. no problem even when executing the cooperative brake control in the predetermined braking force F2 WH.
  • 12 and 13 are flowcharts for explaining the main part of the control operation of the electronic control unit 80 in such a case. Note that the flowcharts of FIGS. 12 and 13 are obtained by adding SB 5 ′ of FIG. 11 and further adding SB 101 and SB 102 to FIG. 10. SB1 to SB9 and SB5 ′ in FIGS. 12 and 13 have the same contents as SB1 to SB9 and SB5 ′ in FIGS. 10 and 11 except for the following description. In FIGS. 12 and 13, differences from FIGS. 10 and 11 are mainly described.
  • SB101 the braking force for the wheel 40 in the brake cooperative control executed in SB6 is determined to be the predetermined wheel braking force F1 WH . After SB101, the process proceeds to SB6.
  • SB102 is the braking force to the wheels 40 in the cooperative brake control executed by SB6 is, the determined lower the predetermined braking force F2 WH than a predetermined wheel braking force F1 WH.
  • SB101 and SB102 correspond to the parking lock control means 152.
  • the parking lock control means 152 determines that the driver's intention to park has been detected by the parking intention determination means 142, and the foot brake pedal 92 has not been depressed by the brake determination means 146. It is determined, and, when it is determined that the rotational position theta PG of the parking gear 64 with respect to the parking lock pawl 66 is disengaged from the rotational position range Wshita PG said predetermined by the parking gear rotational position determining means 148, In conjunction with the parking lock, the brake cooperative control for braking the rotation of the wheel 40 by the braking device 110 is executed with a predetermined wheel braking force F1 WH .
  • the parking lock control means 152 determines that the driver's intention to park has been detected by the parking intention determination means 142 and the brake determination means 146 has determined that the foot brake pedal 92 has not been depressed. even if, when the rotational position theta PG is determined to be in the predetermined rotational position range W ⁇ the PG by the parking gear rotational position determining means 148 releases the braking device 110, or, wherein performing the cooperative brake control at a low predetermined braking force F2 WH than the wheel braking force F1 WH predetermined.
  • the rotational position theta PG is the predetermined rotational position range Wshita PG in whether on the basis of the parking gear 64 is the parking lock pawl (engaging member) 66 and meshed hardly rotational position theta PG whether judgment
  • the brake cooperative control is executed as necessary, or the braking force of the braking device 110 in the brake cooperative control is adjusted, and the parking gear 64 that rotates in conjunction with the wheels 40 is braked.
  • the parking gear 64 does not rotate fast, and the certainty that the parking lock device 50 locks the rotation of the output shaft 22 is improved. Is possible.
  • the durable fall of the braking device 110 can be suppressed.
  • the parking lock control means 152 determines the predetermined wheel control based on the judgments of the aforementioned parking intention judgment means 142, brake judgment means 146, and parking gear rotation position judgment means 148. is a should execute the cooperative brake control by the power F1 WH, further, when the road surface gradient theta SL is determined to the greater than a predetermined road gradient determining value .theta.1 SL by slope determination unit 144, the Since the brake cooperative control is executed with a predetermined wheel braking force F1 WH , the ease of movement of the vehicle 6 is determined from the road surface gradient ⁇ SL , and the predetermined wheel braking force F1 WH is determined. Therefore, the necessity of executing the brake cooperative control is more appropriately determined, and the deterioration of the durability of the braking device 110 can be further suppressed.
  • the rotational position theta PG of the parking gear 64 with respect to the parking lock pole 66 since it is detected by the vehicle speed sensor 84, a vehicle speed sensor 84 corresponds to the output shaft rotation speed N OUT it is possible to detect the vehicle speed V, the can also be detected the rotational position theta PG. Therefore, it is not necessary to provide a sensor only for the detection of the rotational position theta PG.
  • the rotational position theta PG of the parking gear 64 with respect to the parking lock pole 66 since it is detected by the second electric motor rotation speed sensor 86, a hybrid such as a vehicle 6 in this embodiment in such a vehicle, an electric vehicle, without providing the sensor only for the detection of the rotational position theta PG, the second electric motor rotation speed sensor 86 can be also used for the detection of the rotational position theta PG.
  • the rotational position theta PG of the parking gear 64 with respect to the parking lock pole 66 since it is detected by both the vehicle speed sensor 84 and the second electric motor rotation speed sensor 86, the vehicle speed sensor 84 and when one of the second electric motor rotation speed sensor 86 fails the other is allowed to function as a backup can be reliably detect the rotational position theta PG.
  • the parking lock control means 152 causes the control end judgment means 154 to make the vehicle speed V equal to or lower than the predetermined vehicle speed judgment value V1 after the execution of the brake cooperative control.
  • the brake cooperative control is terminated. Therefore, by measuring the vehicle speed V and the passage of time, it is possible to easily determine the end time of the brake cooperative control, and it is possible to suppress unnecessary braking of the wheels 40 by the braking device 110.
  • the parking lock control means 152 determines whether the parking intent judgment means 142, the slope judgment means 144, the brake judgment means 146, and the parking gear rotation position judgment means 148 are in advance.
  • the brake cooperative control may be executed with the predetermined wheel braking force F1 WH . If so, compared with the case where the brake cooperative control is started without being based on the vehicle speed V, the necessity of executing the brake cooperative control is more appropriately determined, and the durability of the braking device 110 is determined. The decrease can be suppressed.
  • the predetermined wheel braking force F1 WH increases as the gradient ⁇ SL (absolute value) of the road surface on which the vehicle 6 is located increases. Is enlarged. If it does so, it will be suppressed that the said brake cooperation control is performed with an unnecessarily big braking force, and the durable fall of the braking device 110 can be suppressed.
  • the rotation of the wheel 40 is braked by the braking device 110.
  • all four wheels may be braked, or all of the four wheels may be braked. Only one wheel may be braked.
  • the wheel 40 to be braked in the brake cooperative control may or may not be the drive wheel 38.
  • the driver's intention to park is detected by pressing the P switch 48 or the vehicle power switch 82.
  • the present invention is not limited to such switch operation.
  • a specific voice is recognized.
  • the driver's intention to park may be detected.
  • the parking intention detection device of the present invention is not limited to the P switch 48 or the vehicle power switch 82, and may be a voice recognition device such as a microphone.
  • the road surface gradient ⁇ SL and the vehicle speed V are determined as preconditions for executing the brake cooperative control according to the flowcharts of FIGS. 10 to 13.
  • the brake coordination control may be executed after determining other parameters not shown in FIGS. 10 to 13.
  • the brake cooperative control is to brake the rotation of the wheel 40 by the braking device 110. At this time, it is not necessary to completely stop the rotation of the wheel 40. For example, when the wheel 40 is about to rotate, a rotation resistance may be given to the wheel 40.
  • the brake cooperative control can be executed regardless of whether the slope on which the vehicle 6 is located has a gradient that causes the vehicle 6 to move forward or a gradient that causes the vehicle 6 to move backward. It does not matter if it is not performed on a gradient.
  • the vehicle 6 includes the power distribution mechanism 16 as the differential mechanism and the first electric motor M1.
  • the vehicle 6 does not include the first electric motor M1 and the power distribution mechanism 16.
  • a so-called parallel hybrid vehicle in which the engine 8, the clutch, the second electric motor M2, the automatic transmission, and the drive wheels 38 are connected in series may be used.
  • the said clutch between the engine 8 and the 2nd electric motor M2 is provided as needed, the structure where the said parallel hybrid vehicle is not equipped with the clutch can also be considered.
  • vehicle 6 of the present embodiment described above is a hybrid vehicle, it may be a normal engine vehicle that does not include an electric motor, or an electric vehicle that does not include an engine 8.
  • the second electric motor M2 is directly connected to the transmission member 18, but the connection position of the second electric motor M2 is not limited thereto, and the power between the transmission member 18 and the drive wheels 38 is not limited thereto. It may be directly or indirectly connected to the transmission path via an engagement device or the like.
  • the second electric motor M2 may be directly connected to the output shaft 22 instead of the transmission member 18.
  • the differential unit 11 by controlling the operating state of the first electric motor M1, the differential unit 11 has the electric gear ratio ⁇ 0 continuously changed from the minimum value ⁇ 0min to the maximum value ⁇ 0max.
  • the gear ratio ⁇ 0 of the differential section 11 may be changed stepwise by using a differential action instead of continuously.
  • the differential carrier CA0 is connected to the engine 8
  • the differential sun gear S0 is connected to the first electric motor M1
  • the differential ring gear R0 is connected to the transmission member 18.
  • their connection relationship is not necessarily limited thereto.
  • the engine 8 is directly connected to the input shaft 14.
  • the engine 8 may be operatively connected via a gear, a belt, or the like, and may be disposed on a common shaft center. Absent.
  • the engine 8 and the differential unit 11 are directly connected.
  • the engine 8 and the differential unit 11 are not necessarily connected directly, and are connected via a clutch between the engine 8 and the differential unit 11. May be.
  • the first electric motor M1 and the second electric motor M2 are disposed concentrically with the input shaft 14, the first electric motor M1 is connected to the differential sun gear S0, and the second electric motor M2 is connected to the transmission member 18.
  • the first motor M1 is operatively connected to the differential unit sun gear S0 through, for example, a gear, a belt, a speed reducer, etc.
  • the second motor M2 is It may be connected to the transmission member 18.
  • the power distribution mechanism 16 is composed of one set of planetary gear devices (differential planetary gear device 24).
  • the power distribution mechanism 16 may be composed of two or more planetary gear devices.
  • the differential planetary gear device 24 is not limited to a single pinion type, and may be a double pinion type planetary gear device.
  • the first electric motor M1 and the second rotating element RE2 are directly connected, and the second electric motor M2 and the third rotating element RE3 are directly connected.
  • the electric motor M1 may be connected to the second rotating element RE2 via an engaging element such as a clutch, and the second electric motor M2 may be connected to the third rotating element RE3 via an engaging element such as a clutch.
  • the differential unit 11 includes the first electric motor M1 and the second electric motor M2. However, the first electric motor M1 and the second electric motor M2 are separate from the differential unit 11 in the power transmission mechanism 10. May be provided.
  • Vehicle 8 Engine 10: Power transmission mechanism 22: Output shaft 40: Wheel 48: P switch (parking intention detection device) 50: Parking lock device 54: P lock drive motor (actuator) 64: Parking gear 66: Parking lock pole (meshing member) 80: Electronic control device (vehicle parking control device) 82: Vehicle power switch (parking intention detection device) 84: Vehicle speed sensor (first rotational speed sensor) 86: Second motor rotation speed sensor (second rotation speed sensor) 110: Braking device (wheel braking device) M2: Second electric motor (electric motor)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Regulating Braking Force (AREA)

Abstract

Provided is a parking controller for a vehicle wherein decrease in the durability of a wheel brake unit can be limited by making a parking lock device for locking rotation of wheels perform parking lock surely. When the intention of an operator to park is detected, a foot brake pedal (92) is not stepped, and the rotary position θPG of a parking gear (64) for a parking lock pole (66) deviates from a predetermined range of rotary position WθPG, a parking lock control means (152) performs brake coordination control for braking rotation of wheels (40) by a brake unit (110) with a predetermined wheel brake force F1WH in conjunction with parking lock, and thereby parking lock is performed surely.  Furthermore, decrease in durability of the brake unit (110) can be limited because a judgment is made on whether brake coordination control with a predetermined wheel brake force F1WH is required or not depending on the rotary position θPG of the parking gear (64).

Description

車両用駐車制御装置Vehicle parking control device
 本発明は、車両の駐車時にパーキングロックを行う制御装置に係り、そのパーキングロックの確実性を向上させる技術に関するものである。 The present invention relates to a control device that performs parking lock when a vehicle is parked, and relates to a technique for improving the certainty of the parking lock.
 運転者に操作される操作体であるシフトレバーを有し、そのシフトレバーが予め設定された駐車位置へ操作されたことに応答して駐車指令信号を発生する駐車操作装置と、その駐車指令信号に従って作動するアクチュエータによって噛合部材をパーキングギヤに噛み合わせて、それにより動力伝達機構である自動変速機の出力軸の回転をロックする駐車ロック装置とを備えた車両が知られている。所謂シフトバイワイヤ方式の車両用駐車制御装置を備えた車両がそれである。このような車両では、上記自動変速機と上記駐車操作装置との間の機械的な連携が不要であることから、その駐車操作装置の配設位置が自由であるため、操作性に一層優れた位置を選択できたり、車室内における意匠やデザインを向上させることができる。例えば、特許文献1に記載された車両用駐車制御装置が、前記シフトバイワイヤ方式の車両用駐車制御装置の一例である。 A parking operation device that has a shift lever that is an operating body operated by a driver and generates a parking command signal in response to the shift lever being operated to a preset parking position, and the parking command signal 2. Description of the Related Art A vehicle is known that includes a parking lock device that meshes a meshing member with a parking gear by an actuator that operates according to the above, thereby locking the rotation of an output shaft of an automatic transmission that is a power transmission mechanism. This is a vehicle equipped with a so-called shift-by-wire vehicle parking control device. In such a vehicle, since mechanical cooperation between the automatic transmission and the parking operation device is not necessary, the arrangement position of the parking operation device is free, so that the operability is further improved. The position can be selected, and the design and design in the passenger compartment can be improved. For example, the vehicle parking control device described in Patent Document 1 is an example of the shift-by-wire vehicle parking control device.
 上記特許文献1の車両用駐車制御装置によれば、車両走行中に誤操作等により駐車指令信号が発生させられた場合には、車速が上限判定値VSP2と下限判定値VSP1との間においては自動ブレーキを作動させて、駐車ロック装置のパーキングロックによる大きなショックの発生が、抑制されるようになっている。 According to the vehicle parking control device of Patent Document 1, when a parking command signal is generated due to an erroneous operation or the like while the vehicle is running, the vehicle speed is automatically set between the upper limit determination value VSP2 and the lower limit determination value VSP1. The brake is actuated to suppress the occurrence of a large shock caused by the parking lock of the parking lock device.
特開2001-153225号公報JP 2001-153225 A
 しかし、前記特許文献1に記載されたような従来のシフトバイワイヤ方式(SBW方式)の車両用駐車制御装置における駐車ロック装置では、運転者が前記駐車操作装置を用いて操作を行ってから、それに基づく駐車指令信号に従って作動する前記アクチュエータが前記動力伝達機構の出力軸の回転をロックするロック状態とされるまでにある程度の応答時間が存在する。すなわち、前記駐車ロック装置が前記駐車操作装置と機械的に連動する車両ではそのある程度の応答時間は極めて短いか略零であると言えるが、シフトバイワイヤ方式の車両用駐車制御装置における駐車ロック装置では、そのある程度の応答時間内に何らかの原因によって車両が移動し前記パーキングギヤが回転し得る機会が存在する。そのため、例えば、勾配がある路面に停車した車両において運転者により前記シフトレバーが駐車位置へ操作された場合には、前記アクチュエータにより前記駐車ロック装置をロックさせる段階で既に車両が移動を開始して前記パーキングギヤが回転し始めて、その駐車ロック装置がロック状態とされ難い状態になる可能性があった。なお、このような課題は未公知のことである。 However, in the parking lock device in the conventional parking control device for a vehicle by the shift-by-wire method (SBW method) described in Patent Document 1, the driver performs an operation using the parking operation device. There is a certain response time until the actuator that operates according to the parking command signal based on it is brought into a locked state that locks the rotation of the output shaft of the power transmission mechanism. In other words, in a vehicle in which the parking lock device is mechanically linked to the parking operation device, the response time to some extent can be said to be extremely short or substantially zero, but in a parking lock device in a shift-by-wire vehicle parking control device, There is an opportunity that the vehicle can move for some reason and the parking gear can rotate within a certain response time. Therefore, for example, when the driver operates the shift lever to the parking position in a vehicle parked on a road with a slope, the vehicle has already started moving at the stage where the parking lock device is locked by the actuator. There is a possibility that the parking gear starts to rotate and the parking lock device is difficult to be locked. Such a problem is not yet known.
 ここで、上記課題を解決するために、未公知のことであるが、例えば、前記駐車指令信号の発生時から前記駐車ロック装置が前記出力軸の回転ロックを完了するまでの間、各車輪に設けられた車輪制動装置(ブレーキ装置)で車輪の回転を制動することが考えられた。しかし、上記車輪制動装置の制動回数には上限があるものであり、前記シフトレバーが駐車位置へ操作される度に一律に上記車輪制動装置が車輪の制動作動をするのではその車輪制動装置の耐久性が低下する可能性があった。 Here, in order to solve the above-mentioned problem, although it is unknown, for example, from the time when the parking command signal is generated until the parking lock device completes the rotation lock of the output shaft, It has been considered that the rotation of the wheel is braked by the provided wheel braking device (brake device). However, there is an upper limit on the number of times of braking of the wheel braking device, and if the wheel braking device performs the braking operation of the wheel uniformly each time the shift lever is operated to the parking position, the wheel braking device Durability may be reduced.
 本発明の目的とするところは、制御信号に従って作動するアクチュエータにより動力伝達機構の出力軸の回転をロックする駐車ロック装置にその出力軸の回転ロックをさせる確実性を向上させ、前記車輪制動装置の耐久性低下を抑えることができる車両用駐車制御装置を提供することにある。 An object of the present invention is to improve the certainty of causing the parking lock device that locks the rotation of the output shaft of the power transmission mechanism by the actuator that operates according to the control signal to lock the rotation of the output shaft. An object of the present invention is to provide a vehicle parking control device that can suppress a decrease in durability.
 上記目的を達成するための請求項1に係る発明の要旨とするところは、(a)運転者の駐車意図を検出する駐車意図検出装置と、制御信号に従って作動するアクチュエータによって噛合部材をパーキングギヤに噛み合わせて動力伝達機構の出力軸の回転をロックする駐車ロック装置と、車輪の回転を制動する車輪制動装置とを備えた車両において、前記駐車意図が検出された場合には前記アクチュエータを作動させることにより前記出力軸の回転をロックする車両用駐車制御装置であって、(b)前記駐車意図が検出され、且つ、前記噛合部材に対する前記パーキングギヤの回転位置が予め定められた回転位置範囲から外れている場合には、予め定められた車輪制動力で、前記車輪制動装置によって前記車輪の回転を制動するブレーキ協調制御を実行し、(c)前記駐車意図が検出され、且つ、前記噛合部材に対する前記パーキングギヤの回転位置が前記予め定められた回転位置範囲内にある場合には、前記予め定められた車輪制動力よりも低い制動力で前記ブレーキ協調制御を実行し或いは前記車輪制動装置を解放することを特徴とする。 To achieve the above object, the gist of the invention according to claim 1 is that (a) a parking intention detection device for detecting a driver's parking intention and an actuator that operates in accordance with a control signal, the meshing member is used as a parking gear. In a vehicle including a parking lock device that meshes and locks the rotation of the output shaft of the power transmission mechanism and a wheel braking device that brakes the rotation of the wheel, the actuator is operated when the parking intention is detected. (B) The parking intention is detected, and the rotational position of the parking gear relative to the meshing member is determined from a predetermined rotational position range. If it is off, the brake coordination that brakes the rotation of the wheel by the wheel braking device with a predetermined wheel braking force. (C) if the parking intention is detected and the rotational position of the parking gear with respect to the meshing member is within the predetermined rotational position range, the predetermined wheel control is performed. The brake cooperative control is executed with a braking force lower than the power or the wheel braking device is released.
 また、請求項2に係る発明の要旨とするところは、前記車両が位置する路面の勾配が予め定められた路面勾配判定値より大きい場合に、前記予め定められた車輪制動力で前記ブレーキ協調制御を実行することを特徴とする。 Further, the gist of the invention according to claim 2 is that the brake cooperative control is performed with the predetermined wheel braking force when the gradient of the road surface on which the vehicle is located is larger than a predetermined road surface gradient determination value. It is characterized by performing.
 また、請求項3に係る発明の要旨とするところは、(a)前記パーキングギヤの回転位置および回転速度を検出できる第1回転速度センサが設けられており、(b)前記噛合部材に対する前記パーキングギヤの回転位置は前記第1回転速度センサにより検出されることを特徴とする。 The gist of the invention according to claim 3 is that: (a) a first rotation speed sensor capable of detecting a rotation position and a rotation speed of the parking gear is provided; and (b) the parking of the engagement member. The rotational position of the gear is detected by the first rotational speed sensor.
 また、請求項4に係る発明の要旨とするところは、(a)前記パーキングギヤと一対一の関係で回転する電動機が動力伝達経路に連結され、(b)その電動機は、その電動機の回転位置および回転速度を検出する第2回転速度センサを備えており、(c)前記噛合部材に対する前記パーキングギヤの回転位置はその第2回転速度センサにより検出されることを特徴とする。 According to a fourth aspect of the present invention, (a) an electric motor that rotates in a one-to-one relationship with the parking gear is connected to a power transmission path, and (b) the electric motor is a rotational position of the electric motor. And a second rotational speed sensor for detecting the rotational speed, and (c) a rotational position of the parking gear with respect to the meshing member is detected by the second rotational speed sensor.
 また、請求項5に係る発明の要旨とするところは、(a)前記パーキングギヤの回転位置および回転速度を検出できる第1回転速度センサが設けられ、(b)前記パーキングギヤと一対一の関係で回転する電動機が動力伝達経路に連結され、(c)その電動機は、その電動機の回転位置および回転速度を検出する第2回転速度センサを備えており、(d)前記噛合部材に対する前記パーキングギヤの回転位置は前記第1回転速度センサ及び前記第2回転速度センサにより検出されることを特徴とする。 The gist of the invention according to claim 5 is that: (a) a first rotational speed sensor capable of detecting the rotational position and rotational speed of the parking gear is provided; and (b) a one-to-one relationship with the parking gear. And (c) the motor includes a second rotational speed sensor that detects a rotational position and a rotational speed of the motor, and (d) the parking gear for the meshing member. Is detected by the first rotation speed sensor and the second rotation speed sensor.
 また、請求項6に係る発明の要旨とするところは、前記ブレーキ協調制御の実行開始後において車速が予め定められた車速判定値以下である状態で予め定められた判定時間が経過した場合には、そのブレーキ協調制御を終了することを特徴とする。 Further, the gist of the invention according to claim 6 is that when a predetermined determination time elapses in a state where the vehicle speed is equal to or lower than a predetermined vehicle speed determination value after the execution of the brake cooperative control is started. The brake cooperative control is terminated.
 また、請求項7に係る発明の要旨とするところは、車速が前記予め定められた車速判定値より大きい場合に、前記予め定められた車輪制動力で前記ブレーキ協調制御を実行することを特徴とする。 The gist of the invention according to claim 7 is that when the vehicle speed is larger than the predetermined vehicle speed determination value, the brake cooperative control is executed with the predetermined wheel braking force. To do.
 また、請求項8に係る発明の要旨とするところは、前記車両が位置する路面の勾配が大きいほど前記予め定められた車輪制動力を大きくすることを特徴とする。 Further, the gist of the invention according to claim 8 is characterized in that the predetermined wheel braking force is increased as the gradient of the road surface on which the vehicle is located is increased.
 請求項1に係る発明の車両用駐車制御装置によれば、その車両用駐車制御装置は、前記駐車意図が検出された場合には前記アクチュエータを作動させることにより前記出力軸の回転をロックする。更に、(a)上記駐車意図が検出され、且つ、前記噛合部材に対する前記パーキングギヤの回転位置が予め定められた回転位置範囲から外れている場合には、予め定められた車輪制動力で、前記車輪制動装置によって前記車輪の回転を制動するブレーキ協調制御を実行し、(b)上記駐車意図が検出され、且つ、前記噛合部材に対する前記パーキングギヤの回転位置が前記予め定められた回転位置範囲内にある場合には、前記予め定められた車輪制動力よりも低い制動力で前記ブレーキ協調制御を実行し或いは前記車輪制動装置を解放する。従って、前記予め定められた回転位置範囲内か否かに基づいて前記パーキングギヤが前記噛合部材と噛み合わされ難い回転位置すなわち回転角度か否かが判断され、それにより必要に応じて前記ブレーキ協調制御が実行され或いはそのブレーキ協調制御における前記車輪制動装置の制動力が加減されて、前記車輪すなわちそれと連動回転する前記パーキングギヤが制動されることになるので、上記パーキングギヤに上記噛合部材を噛み合わせる際に車両が移動しようとしても上記パーキングギヤが速く回転することがなく、前記駐車ロック装置が前記出力軸の回転ロックを行う確実性を向上させることが可能である。また、前記駐車意図が検出された場合に一律に上記ブレーキ協調制御が実行される場合と比較して、前記車輪制動装置の耐久性低下を抑えることができる。 According to the vehicle parking control device of the invention of claim 1, the vehicle parking control device locks the rotation of the output shaft by operating the actuator when the parking intention is detected. Further, (a) when the parking intention is detected and the rotational position of the parking gear with respect to the meshing member is out of a predetermined rotational position range, the predetermined wheel braking force is used. (B) The parking intention is detected, and the rotation position of the parking gear with respect to the meshing member is within the predetermined rotation position range. If this is the case, the brake cooperative control is executed with a braking force lower than the predetermined wheel braking force or the wheel braking device is released. Therefore, it is determined whether or not the parking gear is in a rotational position that is difficult to mesh with the meshing member, that is, a rotational angle, based on whether or not it is within the predetermined rotational position range. Or the braking force of the wheel braking device in the brake cooperative control is adjusted to brake the wheel, that is, the parking gear that rotates in conjunction with the wheel, so that the meshing member meshes with the parking gear. Even if the vehicle tries to move, the parking gear does not rotate fast, and it is possible to improve the certainty that the parking lock device locks the output shaft. Moreover, compared with the case where the said brake cooperation control is performed uniformly when the said parking intention is detected, the durability fall of the said wheel braking device can be suppressed.
 また、請求項2に係る発明の車両用駐車制御装置によれば、その車両用駐車制御装置は、前記車両が位置する路面の勾配が予め定められた路面勾配判定値より大きい場合に、前記予め定められた車輪制動力で前記ブレーキ協調制御を実行するものであるので、車両の移動し易さが判断されることになり、その予め定められた車輪制動力で前記ブレーキ協調制御を実行する必要性がより適切に判断され、前記請求項1に係る発明と比較して前記車輪制動装置の耐久性低下を更に抑えることができる。 According to the vehicular parking control apparatus of the invention according to claim 2, the vehicular parking control apparatus is configured such that the road surface on which the vehicle is located is greater than a predetermined road surface gradient determination value. Since the brake cooperative control is executed with a predetermined wheel braking force, the ease of movement of the vehicle is determined, and the brake cooperative control needs to be executed with the predetermined wheel braking force. Therefore, the deterioration of the durability of the wheel braking device can be further suppressed as compared with the invention according to claim 1.
 また、請求項3に係る発明の車両用駐車制御装置によれば、(a)前記パーキングギヤの回転位置および回転速度を検出できる第1回転速度センサが設けられており、(b)前記噛合部材に対する前記パーキングギヤの回転位置は前記第1回転速度センサにより検出されるので、上記パーキングギヤと一体回転する部材の回転速度を上記第1回転速度センサで検出できる。例えば、上記パーキングギヤが前記出力軸と一体回転するように配設されているのであれば、上記第1回転速度センサで上記出力軸の回転速度を検出することにより、その出力軸の回転速度に対応する車速を上記第1回転速度センサで検出できる。 According to the vehicle parking control apparatus of the invention of claim 3, (a) a first rotational speed sensor capable of detecting the rotational position and rotational speed of the parking gear is provided, and (b) the meshing member. Since the rotation position of the parking gear with respect to is detected by the first rotation speed sensor, the rotation speed of the member that rotates integrally with the parking gear can be detected by the first rotation speed sensor. For example, if the parking gear is arranged so as to rotate integrally with the output shaft, the rotation speed of the output shaft is detected by detecting the rotation speed of the output shaft with the first rotation speed sensor. The corresponding vehicle speed can be detected by the first rotational speed sensor.
 また、請求項4に係る発明の車両用駐車制御装置によれば、(a)前記パーキングギヤと一対一の関係で回転する電動機が動力伝達経路に連結され、(b)その電動機は、その電動機の回転位置および回転速度を検出する第2回転速度センサを備えており、(c)前記噛合部材に対する前記パーキングギヤの回転位置はその第2回転速度センサにより検出されるので、上記電動機が動力伝達経路に連結されている例えばハイブリッド車両や電気自動車などにおいて、上記電動機が備えるレゾルバなどを前記第2回転速度センサとして兼用して本発明を適用できる。 According to the vehicle parking control apparatus of the invention of claim 4, (a) an electric motor that rotates in a one-to-one relationship with the parking gear is connected to a power transmission path, and (b) the electric motor is an electric motor. And (c) the rotation position of the parking gear with respect to the meshing member is detected by the second rotation speed sensor, so that the motor transmits power. For example, in a hybrid vehicle, an electric vehicle, or the like connected to a route, the present invention can be applied by using a resolver provided in the electric motor as the second rotation speed sensor.
 また、請求項5に係る発明の車両用駐車制御装置によれば、(a)前記パーキングギヤの回転位置および回転速度を検出できる第1回転速度センサが設けられ、(b)前記パーキングギヤと一対一の関係で回転する電動機が動力伝達経路に連結され、(c)その電動機は、その電動機の回転位置および回転速度を検出する第2回転速度センサを備えており、(d)前記噛合部材に対する前記パーキングギヤの回転位置は前記第1回転速度センサ及び前記第2回転速度センサにより検出されるので、例えば前記ハイブリッド車両や電気自動車などにおいて、上記第1回転速度センサ及び上記第2回転速度センサの一方が故障した場合に他方をバックアップとして使用できる。 According to the vehicle parking control apparatus of the invention according to claim 5, (a) a first rotational speed sensor capable of detecting the rotational position and rotational speed of the parking gear is provided, and (b) a pair with the parking gear. An electric motor that rotates in one relationship is coupled to the power transmission path; (c) the electric motor includes a second rotational speed sensor that detects a rotational position and a rotational speed of the electric motor; Since the rotation position of the parking gear is detected by the first rotation speed sensor and the second rotation speed sensor, for example, in the hybrid vehicle or the electric vehicle, the first rotation speed sensor and the second rotation speed sensor If one fails, the other can be used as a backup.
 また、請求項6に係る発明の車両用駐車制御装置によれば、前記ブレーキ協調制御の実行開始後において車速が予め定められた車速判定値以下である状態で予め定められた判定時間が経過した場合には、そのブレーキ協調制御を終了するので、車速及び時間経過を測定することにより上記ブレーキ協調制御の終了時期を容易に決定でき、前記車輪が不要に制動されることを抑制できる。 According to the vehicle parking control apparatus of the invention according to claim 6, a predetermined determination time has elapsed in a state in which the vehicle speed is equal to or less than a predetermined vehicle speed determination value after the execution of the brake cooperative control is started. In this case, since the brake cooperative control is finished, the end time of the brake cooperative control can be easily determined by measuring the vehicle speed and the passage of time, and it is possible to suppress unnecessary braking of the wheels.
 また、請求項7に係る発明の車両用駐車制御装置によれば、車速が前記予め定められた車速判定値より大きい場合に、前記予め定められた車輪制動力で前記ブレーキ協調制御を実行するので、車速に基づかずにそのブレーキ協調制御が開始される場合と比較して、そのブレーキ協調制御を実行する必要性がより適切に判断され、前記車輪制動装置の耐久性低下を抑えることができる。 According to the vehicle parking control apparatus of the invention according to claim 7, when the vehicle speed is larger than the predetermined vehicle speed determination value, the brake cooperative control is executed with the predetermined wheel braking force. Compared with the case where the brake cooperative control is started without being based on the vehicle speed, the necessity of executing the brake cooperative control is more appropriately determined, and the deterioration of the durability of the wheel braking device can be suppressed.
 また、請求項8に係る発明の車両用駐車制御装置によれば、前記車両が位置する路面の勾配が大きいほど前記予め定められた車輪制動力を大きくするので、不必要に大きな制動力で前記ブレーキ協調制御が実行されることが抑制され、前記車輪制動装置の耐久性低下を抑えることができる。 According to the vehicle parking control device of the invention according to claim 8, the predetermined wheel braking force is increased as the gradient of the road surface on which the vehicle is located is increased. Therefore, the braking force is unnecessarily large. Execution of brake cooperative control is suppressed, and a decrease in durability of the wheel braking device can be suppressed.
 ここで、好適には、前記車両用駐車制御装置は、前記アクチュエータによって前記駐車ロック装置がロック状態になるまで前記ブレーキ協調制御を実行し、その駐車ロック装置がロック状態になるとそのブレーキ協調制御を終了する。 Preferably, the vehicle parking control device executes the brake cooperative control until the parking lock device is locked by the actuator, and performs the brake cooperative control when the parking lock device is locked. finish.
 また、好適には、前記車輪制動装置は、前記車輪と共に回転する回転体と非回転部材に設けられた摩擦材との間の摩擦によりその車輪の回転を制動するものである。 Also preferably, the wheel braking device brakes rotation of the wheel by friction between a rotating body that rotates together with the wheel and a friction material provided on a non-rotating member.
本発明が適用される車両に含まれる動力伝達機構を説明する骨子図である。It is a skeleton diagram explaining a power transmission mechanism included in a vehicle to which the present invention is applied. 図1の動力伝達機構において各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。FIG. 2 is a collinear diagram that can represent the relative relationship between the rotational speeds of the rotary elements on a straight line in the power transmission mechanism of FIG. 1. 図1の動力伝達機構などを制御するために車両に設けられた電子制御装置の入出力信号等の電気的な制御系統を説明するブロック線図である。FIG. 2 is a block diagram illustrating an electrical control system for input / output signals and the like of an electronic control unit provided in the vehicle for controlling the power transmission mechanism of FIG. 1 and the like. 図1の動力伝達機構において、複数種類のシフトレンジを人為的操作により切り換える切換装置としてのシフト操作装置の一例を示す図である。In the power transmission mechanism of FIG. 1, it is a figure which shows an example of the shift operation apparatus as a switching apparatus which switches several types of shift ranges by human operation. 図1の動力伝達機構において、駆動輪の回転を機械的に阻止するパーキングロック装置の構成を説明する図である。FIG. 2 is a diagram illustrating a configuration of a parking lock device that mechanically blocks rotation of drive wheels in the power transmission mechanism of FIG. 1. 図3の電子制御装置に備えられた制御機能の要部を説明する機能ブロック線図であり、その電子制御装置により作動させられる制動装置の概略構成を説明するための図である。FIG. 4 is a functional block diagram for explaining a main part of a control function provided in the electronic control device of FIG. 3, for explaining a schematic configuration of a braking device operated by the electronic control device. 図5のパーキングロック装置において、パーキングロックポールがパーキングギヤに噛み合う確実性の高低に関して説明するための図である。In the parking lock device of FIG. 5, it is a figure for demonstrating the level of certainty with which a parking lock pole meshes with a parking gear. 図6の電子制御装置に含まれるパーキングロック制御手段が実行するブレーキ協調制御において、車両が位置する路面の勾配(路面勾配)に応じて車輪制動力が変更される場合のその路面勾配と車輪制動力との関係を例示した図である。In the brake cooperative control executed by the parking lock control means included in the electronic control device of FIG. 6, the road surface gradient and the wheel control when the wheel braking force is changed according to the road surface gradient (road surface gradient) on which the vehicle is located. It is the figure which illustrated the relationship with motive power. 図6の電子制御装置の制御作動の要部、すなわち、パーキングロックを実行する制御作動を説明するためのフローチャートである。It is a flowchart for demonstrating the principal part of the control action of the electronic controller of FIG. 図6の電子制御装置が図9のフローチャートと並行して実行する制御作動の要部、すなわち、ブレーキ協調制御を実行する制御作動を説明するためのフローチャートである。10 is a flowchart for explaining a main part of a control operation executed by the electronic control device of FIG. 6 in parallel with the flowchart of FIG. 9, that is, a control operation for executing brake cooperative control. 図10に相当する他の制御作動の要部を説明するためのフローチャートであって、その図10の一部を変更したフローチャートの変更箇所の抜粋図である。FIG. 11 is a flowchart for explaining a main part of another control operation corresponding to FIG. 10, and is an excerpt of a changed part of the flowchart in which a part of FIG. 10 is changed. 図10に相当し図10及び図11とは異なる他の制御作動の要部を説明するためのフローチャートであって、その図10の一部を変更したフローチャートを示す全2図のうちの第1図である。FIG. 11 is a flowchart corresponding to FIG. 10 for explaining a main part of another control operation different from FIGS. 10 and 11, and is a first of two diagrams showing a flowchart obtained by changing a part of FIG. 10. FIG. 図10に相当し図10及び図11とは異なる他の制御作動の要部を説明するためのフローチャートであって、その図10の一部を変更したフローチャートを示す全2図のうちの第2図である。FIG. 12 is a flowchart corresponding to FIG. 10 for explaining a main part of another control operation different from FIGS. 10 and 11, and is a second of all two diagrams showing a flowchart obtained by changing a part of FIG. 10. FIG.
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明が適用される車両6は、通常のエンジン車両であってもハイブリッド車両であっても差し支えないが、上記車両6がハイブリッド車両である場合を例として、以下に説明する。図1において、動力伝達機構10は、車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、「ケース12」と表す)内において、第1軸心RC1上に配設された、入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された無段変速部としての差動部11と、差動部11の出力回転部材である伝達部材18と、その伝達部材18と一体に連結された第1カウンタギヤ19とを備えており、また、第1軸心RC1に平行な第2軸心RC2上に配設された、上記第1カウンタギヤ19とで一つのカウンタギヤ対をなす第2カウンタギヤ20と、動力伝達機構10の出力回転部材としてその第2カウンタギヤ20と一体に連結されたカウンタ軸である出力軸22とを備えている。更に、動力伝達機構10は、第1カウンタギヤ19及び第2カウンタギヤ20の外周に巻き掛けられその第1カウンタギヤ19と第2カウンタギヤ20との間で駆動力を伝達するチェーン23を備えており、第1カウンタギヤ19及び第2カウンタギヤ20は、このチェーン23が巻き掛けられていることにより相互に一対一の対応関係で回転する。この動力伝達機構10は、例えば車両6において横置きされるFF(フロントエンジン・フロントドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動力源としての例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8からの動力を第2軸心RC2上で出力軸22に一体に連結されたデフドライブギヤ32と、それに噛み合うデフリングギヤ34を有する差動歯車装置(終減速機)36と、一対の車軸37等を順次介して左右の駆動輪38(図6参照)へ伝達する。 FIG. 1 illustrates a case where the vehicle 6 to which the present invention is applied may be a normal engine vehicle or a hybrid vehicle, but the case where the vehicle 6 is a hybrid vehicle will be described below as an example. In FIG. 1, a power transmission mechanism 10 includes an input rotation member disposed on a first axis RC1 in a transmission case 12 (hereinafter referred to as “case 12”) as a non-rotation member attached to a vehicle body. An input shaft 14, a differential unit 11 as a continuously variable transmission unit directly connected to the input shaft 14 or indirectly via a pulsation absorbing damper (vibration damping device) (not shown), and the differential unit 11 And a first counter gear 19 integrally connected to the transmission member 18, and disposed on a second axis RC2 parallel to the first axis RC1. The second counter gear 20 that forms a counter gear pair with the first counter gear 19 and the second counter gear 20 are integrally connected as an output rotating member of the power transmission mechanism 10. And an output shaft 22 which is counter shaft. Furthermore, the power transmission mechanism 10 includes a chain 23 that is wound around the outer periphery of the first counter gear 19 and the second counter gear 20 and transmits a driving force between the first counter gear 19 and the second counter gear 20. The first counter gear 19 and the second counter gear 20 rotate in a one-to-one correspondence relationship with the chain 23 being wound around. The power transmission mechanism 10 is preferably used for, for example, an FF (front engine / front drive) type vehicle that is placed horizontally in the vehicle 6, and directly to the input shaft 14 or directly via a pulsation absorbing damper (not shown). Differential drive gear in which power from an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine, for example, is connected as a driving force source for driving connected to the output shaft 22 integrally on the second axis RC2. 32 and a differential gear device (final reduction gear) 36 having a differential ring gear 34 meshing therewith, a pair of axles 37 and the like are sequentially transmitted to left and right drive wheels 38 (see FIG. 6).
 差動部11は、第1電動機M1と、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、伝達部材18と一体的に回転するように連結された走行用電動機としての第2電動機M2とを備えている。本実施例の第1電動機M1および第2電動機M2はモータ機能のみならず発電機能をも有する所謂モータジェネレータであり、第1電動機M1および第2電動機M2は、その電動機M1,M2の回転速度の絶対値を小さくする方向に働く反力トルクを発生させる場合にはジェネレータ(発電機)として機能する。 The differential unit 11 is a mechanical mechanism that mechanically distributes the output of the engine 8 input to the first electric motor M1 and the input shaft 14, and distributes the output of the engine 8 to the first electric motor M1 and the transmission member 18. A power distribution mechanism 16 serving as a differential mechanism, and a second electric motor M2 serving as a traveling motor coupled so as to rotate integrally with the transmission member 18. The first electric motor M1 and the second electric motor M2 of this embodiment are so-called motor generators that have not only a motor function but also a power generation function. The first electric motor M1 and the second electric motor M2 have rotational speeds of the electric motors M1 and M2. When generating reaction torque that works in the direction of decreasing the absolute value, it functions as a generator.
 動力分配機構16は、所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24を主体として構成されている。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転および公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。 The power distribution mechanism 16 is mainly composed of a single pinion type differential planetary gear device 24 having a predetermined gear ratio ρ0. The differential unit planetary gear unit 24 includes a differential unit sun gear S0, a differential unit planetary gear P0, a differential unit carrier CA0 that supports the differential unit planetary gear P0 so as to rotate and revolve, and a differential unit planetary gear P0. The differential part ring gear R0 meshing with the differential part sun gear S0 is provided as a rotating element (element). If the number of teeth of the differential sun gear S0 is ZS0 and the number of teeth of the differential ring gear R0 is ZR0, the gear ratio ρ0 is ZS0 / ZR0.
 この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン8に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。このように構成された動力分配機構16は、差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されるとともに、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する。このように、動力分配機構16(差動部11)に動力伝達可能に連結された第1電動機M1および第2電動機M2の運転状態が制御されることにより、動力分配機構16の差動状態、すなわち入力軸14の回転速度と伝達部材18の回転速度の差動状態が制御される。また、第1電動機M1が自由回転状態とされることでエンジン8から駆動輪38への動力伝達が遮断される。 In the power distribution mechanism 16, the differential carrier CA0 is connected to the input shaft 14, that is, the engine 8, the differential sun gear S0 is connected to the first electric motor M1, and the differential ring gear R0 is connected to the transmission member 18. ing. In the power distribution mechanism 16 configured in this way, the differential unit sun gear S0, the differential unit carrier CA0, and the differential unit ring gear R0, which are the three elements of the differential unit planetary gear unit 24, can be rotated relative to each other. Thus, the differential action is operable, that is, the differential state where the differential action works is set, so that the output of the engine 8 is distributed to the first electric motor M1 and the transmission member 18, and the output of the distributed engine 8 is distributed. Are stored with electric energy generated from the first electric motor M1 and the second electric motor M2 is rotationally driven, so that the differential unit 11 (power distribution mechanism 16) functions as an electric differential device. Thus, for example, the differential section 11 is in a so-called continuously variable transmission state (electric CVT state), and the rotation of the transmission member 18 is continuously changed regardless of the predetermined rotation of the engine 8. That is, the differential unit 11 is an electrically stepless variable gear whose ratio γ0 (the rotational speed N IN of the input shaft 14 / the rotational speed N 18 of the transmission member 18 ) is continuously changed from the minimum value γ0min to the maximum value γ0max. It functions as a transmission. Thus, by controlling the operating state of the first electric motor M1 and the second electric motor M2 connected to the power distribution mechanism 16 (differential unit 11) so as to be able to transmit power, the differential state of the power distribution mechanism 16, That is, the differential state between the rotational speed of the input shaft 14 and the rotational speed of the transmission member 18 is controlled. Moreover, the power transmission from the engine 8 to the drive wheel 38 is interrupted by the first electric motor M1 being in a free rotation state.
 動力伝達機構10は、動力伝達経路を構成する各部の回転速度などを検出するために、車速センサ84、第1電動機回転速度センサ85、及び、第2電動機回転速度センサ86を備えている。図1に示すように、上記車速センサ84は出力軸22に設けられており、その出力軸22の回転速度NOUT(以下、「出力軸回転速度NOUT」という)を検出しそれによりその出力軸回転速度NOUTに対応する車速Vを検出する。第1電動機回転速度センサ85は、第1電動機M1に備えられたレゾルバ等の回転速度センサであり、その第1電動機M1の回転速度NM1(以下、「第1電動機回転速度NM1」という)を検出する。第2電動機回転速度センサ86は、第2電動機M2に備えられたレゾルバ等の回転速度センサであり、その第2電動機M2の回転速度NM2(以下、「第2電動機回転速度NM2」という)を検出する。上記車速センサ84、第1電動機回転速度センサ85、及び、第2電動機回転速度センサ86は何れも、検出対象部材の回転速度NOUT、NM1、NM2のみならず、ケース12などの非回転部材を基準とした絶対的な回転位置(回転角度、位相)及び回転方向をも検出できるセンサであり、回転速度を表す信号とともにその回転位置及び回転方向を表す信号も電子制御装置80に出力する。なお、図1に示すように、パーキングギヤ64は出力軸22と一体回転するので、前記車速センサ84は、そのパーキングギヤ64の回転位置及び回転速度も検出することができ、本発明の第1回転速度センサに対応する。また、エンジン8と駆動輪38との間の動力伝達経路に連結された第2電動機M2は、第1カウンタギヤ19及び第2カウンタギヤ20にチェーン23が巻き掛けられていることから、パーキングギヤ64と一対一の関係で回転する電動機であるので、前記第2電動機回転速度センサ86は、パーキングギヤ64の回転位置及び回転速度も検出することができ、本発明の第2回転速度センサに対応する。 The power transmission mechanism 10 includes a vehicle speed sensor 84, a first motor rotation speed sensor 85, and a second motor rotation speed sensor 86 in order to detect the rotation speed and the like of each part constituting the power transmission path. As shown in FIG. 1, the vehicle speed sensor 84 is provided on the output shaft 22 and detects the rotational speed N OUT of the output shaft 22 (hereinafter referred to as “output shaft rotational speed N OUT ”), thereby outputting the output. A vehicle speed V corresponding to the shaft rotational speed N OUT is detected. The first motor rotation speed sensor 85 is a rotation speed sensor such as a resolver provided in the first motor M1, and the rotation speed N M1 of the first motor M1 (hereinafter referred to as “first motor rotation speed N M1 ”). Is detected. The second motor rotation speed sensor 86 is a rotation speed sensor such as a resolver provided in the second motor M2, and the rotation speed N M2 of the second motor M2 (hereinafter referred to as “second motor rotation speed N M2 ”). Is detected. The vehicle speed sensor 84, the first electric motor rotational speed sensor 85, and the second electric motor rotational speed sensor 86 are all not only the rotational speeds N OUT , N M1 and N M2 of the detection target member, but also the non-rotating of the case 12 or the like. It is a sensor that can also detect the absolute rotational position (rotation angle, phase) and rotational direction with reference to the member, and outputs a signal representing the rotational speed and a signal representing the rotational position and rotational direction to the electronic control unit 80. . As shown in FIG. 1, since the parking gear 64 rotates integrally with the output shaft 22, the vehicle speed sensor 84 can also detect the rotational position and the rotational speed of the parking gear 64. Corresponds to the rotation speed sensor. Further, the second electric motor M2 connected to the power transmission path between the engine 8 and the drive wheel 38 has the chain 23 wound around the first counter gear 19 and the second counter gear 20, so that the parking gear 64, the second motor rotation speed sensor 86 can detect the rotation position and rotation speed of the parking gear 64, and corresponds to the second rotation speed sensor of the present invention. To do.
 図2は、動力伝達機構10において各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図2の共線図は、差動部遊星歯車装置24のギヤ比ρ0の関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、横線X1が回転速度零を示し、横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度Nを示している。 FIG. 2 is a collinear diagram that can represent the relative relationship between the rotational speeds of the rotating elements in the power transmission mechanism 10 on a straight line. The collinear diagram of FIG. 2 is a two-dimensional coordinate composed of a horizontal axis indicating the relationship of the gear ratio ρ0 of the differential planetary gear unit 24 and a vertical axis indicating the relative rotational speed. The horizontal line X1 is the rotational speed. indicates zero, it indicates the rotational speed N E of the engine 8 horizontal line X2 is linked to the rotational speed of "1.0" that is, the input shaft 14.
 また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。詳細には、共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。 In addition, three vertical lines Y1, Y2, and Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential unit 11 indicate the differential corresponding to the second rotation element (second element) RE2 in order from the left side. This shows the relative rotational speed of the differential part ring gear R0 corresponding to the part sun gear S0, the differential part carrier CA0 corresponding to the first rotational element (first element) RE1, and the third rotational element (third element) RE3. These intervals are determined according to the gear ratio ρ 0 of the differential planetary gear unit 24. More specifically, when the distance between the sun gear and the carrier corresponds to “1” in the relationship between the vertical axes of the nomograph, the distance between the carrier and the ring gear corresponds to the gear ratio ρ of the planetary gear unit. It is said. That is, in the differential section 11, the interval between the vertical lines Y1 and Y2 is set to an interval corresponding to “1”, and the interval between the vertical lines Y2 and Y3 is set to an interval corresponding to the gear ratio ρ0.
 上記図2の共線図を用いて表現すれば、本実施例の動力伝達機構10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して駆動輪38へ伝達するように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。 If expressed using the collinear diagram of FIG. 2 described above, the power transmission mechanism 10 of the present embodiment is the power distribution mechanism 16 (differential portion 11), and the first rotating element RE1 ( The differential carrier CA0) is connected to the input shaft 14, that is, the engine 8, the second rotating element RE2 is connected to the first electric motor M1, and the third rotating element (differential ring gear R0) RE3 is connected to the transmission member 18 and the second rotating element RE2. It is connected to the electric motor M <b> 2 and is configured to transmit the rotation of the input shaft 14 to the drive wheel 38 via the transmission member 18. At this time, the relationship between the rotational speed of the differential section sun gear S0 and the rotational speed of the differential section ring gear R0 is shown by an oblique straight line L0 passing through the intersection of Y2 and X2.
 例えば、差動部11において、直線L0と縦線Y3との交点で示される差動部リングギヤR0の回転速度が車速Vに拘束されて略一定である場合には、エンジン回転速度Nを制御することによって直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度が上昇或いは下降させられると、直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転速度すなわち第1電動機M1の回転速度が上昇或いは下降させられる。なお、車両6を後進させる場合には、例えば、第1電動機M1が自由回転状態にされて第2電動機M2が負方向に回転駆動される。 For example, in the differential section 11, when the rotational speed of the differential section ring gear R0 indicated by the intersection of the straight line L0 and the vertical line Y3 is substantially constant by being constrained by the vehicle speed V, the engine rotational speed NE is controlled. Thus, when the rotational speed of the differential carrier CA0 indicated by the intersection of the straight line L0 and the vertical line Y2 is increased or decreased, the rotation of the differential sun gear S0 indicated by the intersection of the straight line L0 and the vertical line Y1. The speed, that is, the rotational speed of the first electric motor M1 is increased or decreased. When the vehicle 6 is moved backward, for example, the first electric motor M1 is brought into a free rotation state and the second electric motor M2 is rotationally driven in the negative direction.
 図3は、動力伝達機構10などを制御するために車両6に設けられた電子制御装置80の入出力信号等の電気的な制御系統を説明するブロック線図である。この電子制御装置80は、車両駐車時に出力軸22の回転をロックする車両用駐車制御装置としても機能し、また、電気制御によりシフトポジション(シフトレンジ)を切り替えたり上記出力軸22の回転をロックする所謂シフトバイワイヤ方式が採用されている。 FIG. 3 is a block diagram illustrating an electrical control system such as an input / output signal of an electronic control unit 80 provided in the vehicle 6 for controlling the power transmission mechanism 10 and the like. The electronic control device 80 also functions as a vehicle parking control device that locks the rotation of the output shaft 22 when the vehicle is parked, and switches the shift position (shift range) by electric control or locks the rotation of the output shaft 22. A so-called shift-by-wire system is employed.
 電子制御装置80は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、エンジン8や動力伝達機構10に備えられた電動機M1,M2に関するハイブリッド駆動制御等の駆動制御、シフトバイワイヤ方式を用いた動力伝達機構10のシフトレンジの切替制御などを実行する。 The electronic control unit 80 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in the ROM in advance while using a temporary storage function of the RAM. As a result, drive control such as hybrid drive control for the motors M1 and M2 provided in the engine 8 and the power transmission mechanism 10 and shift range switching control of the power transmission mechanism 10 using a shift-by-wire system are executed.
 電子制御装置80には、例えばシフトレバー44の操作位置(シフトポジション)PSHを検出する為のシフト位置センサからのシフトポジションPSHに応じた位置信号、ユーザにより操作されて動力伝達機構10のシフトレンジをパーキングレンジ(Pレンジ)とパーキングレンジ以外の非Pレンジとの間で切り替える為のPスイッチ48におけるスイッチ操作を表すPスイッチ信号、パーキングロックを作動或いは解除して動力伝達機構10のシフトレンジをPレンジと非Pレンジとの間で切り替える為のパーキングロック装置50におけるパーキングロックの作動状態を表すP位置信号、ユーザにより操作されて車両電源のオン状態(車両電源ON)とオフ状態(車両電源OFF)とを切り替える為の車両電源スイッチ82におけるスイッチ操作を表すパワースイッチ信号、車速センサ84からの動力伝達機構10の出力軸回転速度NOUTに対応する車速Vを表す車速信号、第1電動機回転速度センサ85からの第1電動機回転速度NM1を表す信号、第2電動機回転速度センサ86からの第2電動機回転速度NM2を表す信号、ブレーキスイッチ90からのフットブレーキべダル92が踏み込まれたフットブレーキ操作BONを表すブレーキ操作信号などが、それぞれ供給される。 The electronic control unit 80 includes, for example, a position signal corresponding to the shift position P SH from the shift position sensor for detecting the operation position (shift position) P SH of the shift lever 44, and the power transmission mechanism 10 operated by the user. A P switch signal indicating a switch operation in the P switch 48 for switching the shift range between the parking range (P range) and a non-P range other than the parking range. A P position signal indicating the parking lock operating state in the parking lock device 50 for switching the range between the P range and the non-P range, the vehicle power on state (vehicle power ON) and the off state (operated by the user) Vehicle power switch 82 for switching between vehicle power off) Power switch signal representative of the switch operation, a vehicle speed signal representing a vehicle speed V corresponding to the output shaft speed N OUT of the power transmission mechanism 10 from the vehicle speed sensor 84, the first electric motor speed N M1 of the first electric motor speed sensor 85 signal representative of the signal representative of the second electric motor rotation speed N M2 of the second electric motor rotation speed sensor 86, a brake operation signal indicative of a foot brake operation B ON foot brake base which dull 92 is depressed from the brake switch 90 , Each supplied.
 また、電子制御装置80からは、例えばエンジン出力を制御するエンジン出力制御指令信号、動力伝達機構10内の電動機の作動を指令するハイブリッドモータ制御指令信号、動力伝達機構10のシフトレンジを切り替える為のシフトレンジ切換制御指令信号、インジケータ(表示装置)94を作動させて動力伝達機構10におけるシフトレンジの切替状態を表示する為のシフトレンジ表示信号及びパーキングロック状態を表示する為のパーキングロック表示信号、パーキングロック装置50の作動を指令するP切換制御指令信号等が、それぞれ出力される。 Further, from the electronic control unit 80, for example, an engine output control command signal for controlling the engine output, a hybrid motor control command signal for commanding the operation of the electric motor in the power transmission mechanism 10, and a shift range for switching the power transmission mechanism 10 are switched. A shift range switching control command signal, a shift range display signal for displaying the shift range switching state in the power transmission mechanism 10 by operating the indicator (display device) 94, and a parking lock display signal for displaying the parking lock state; A P switching control command signal or the like for commanding the operation of the parking lock device 50 is output.
 具体的には、電子制御装置80は、電源制御用コンピュータ(以下、「PM-ECU」と表す)100、ハイブリッド制御用コンピュータ(以下、「HV-ECU」と表す)102、パーキング制御用コンピュータ(以下、「P-ECU」と表す)104を備えている。 Specifically, the electronic control unit 80 includes a power control computer (hereinafter referred to as “PM-ECU”) 100, a hybrid control computer (hereinafter referred to as “HV-ECU”) 102, a parking control computer (hereinafter referred to as “PM-ECU”). (Hereinafter referred to as “P-ECU”) 104.
 PM-ECU100は、例えばユーザにより操作される車両電源スイッチ82からのパワースイッチ信号に基づいて車両電源ONと車両電源OFFとを切り替える。例えば、PM-ECU100は、車両電源OFFのときにパワースイッチ信号の入力を検知すると、車両電源ONと車両電源OFFとを切り替える為の不図示のリレーをオン状態として車両電源ONとする。また、PM-ECU100は、車両電源ONのときに車速Vが所定車速V’未満であること及びパワースイッチ信号の入力を検知すると、上記リレーをオフ状態として車両電源OFFとする。車両電源OFFとするときにP-ECU104から入力されるPロック状態信号がパーキングロック装置50におけるパーキングロックの解除中を表す信号である場合には、PM-ECU100は、パーキングロック装置50におけるパーキングロックを作動させてシフトレンジをPレンジとする信号をP-ECU104へ出力する(この作動を「オートP作動」という)。 PM-ECU 100 switches between vehicle power ON and vehicle power OFF based on, for example, a power switch signal from vehicle power switch 82 operated by the user. For example, when the PM-ECU 100 detects an input of a power switch signal when the vehicle power is off, the PM-ECU 100 turns on a vehicle power on by turning on a relay (not shown) for switching between the vehicle power on and the vehicle power off. Further, when the PM-ECU 100 detects that the vehicle speed V is lower than the predetermined vehicle speed V ′ and the input of the power switch signal when the vehicle power is on, the PM-ECU 100 turns off the relay and turns off the vehicle power. When the P-lock state signal input from the P-ECU 104 when the vehicle power is turned off is a signal indicating that the parking lock in the parking lock device 50 is being released, the PM-ECU 100 Is operated to output a signal for setting the shift range to the P range to the P-ECU 104 (this operation is referred to as “auto P operation”).
 HV-ECU102は、例えば動力伝達機構10の作動を統括的に制御する。例えば、HV-ECU102は、PM-ECU100により車両電源OFFから車両電源ONへ切り替えられる際に、フットブレーキ操作BONを表すブレーキ操作信号の入力を検知すると、車両走行を可能とする為のハイブリッドシステムを起動し、車両走行に関わるハイブリッドモータ制御指令を動力伝達機構10へ出力して車両走行を制御する。また、HV-ECU102は、シフトレバー44の操作位置を検出する前記シフト位置センサからのシフトポジションPSHに応じた位置信号に基づいてシフトレンジ切換制御指令を動力伝達機構10へ出力してシフトレンジを切り替える。また、HV-ECU102は、Pスイッチ48からのPスイッチ信号に基づいて動力伝達機構10のシフトレンジをPレンジと非Pレンジとの間で切り替えるP切替信号をP-ECU104へ出力する。また、HV-ECU102は、シフトレンジの状態を表示する為の表示信号をインジケータ94へ出力する。インジケータ94は、HV-ECU102が出力した表示信号に基づいてシフトレンジの状態を表示する。なお、本実施例では、車両電源ONというのは上述したようにハイブリッドシステムを起動して車両走行を可能な状態とするものであることはもちろんのこと、車両走行が可能でない状態(電動機等のハイブリッドモータ制御が実行できない状態)であっても少なくとも動力伝達機構10のシフトレンジの切換制御を可能な状態とするものであればよい。 For example, the HV-ECU 102 comprehensively controls the operation of the power transmission mechanism 10. For example, when the HV-ECU 102 detects an input of a brake operation signal indicating the foot brake operation B ON when the PM-ECU 100 switches from the vehicle power supply OFF to the vehicle power supply ON, the hybrid system for enabling vehicle travel , And a hybrid motor control command related to vehicle travel is output to the power transmission mechanism 10 to control vehicle travel. Further, HV-ECU 102 includes a shift range and outputs a shift range switching control command based on the position signal corresponding to the shift position P SH from the shift position sensor for detecting an operation position of the shift lever 44 to the power transmission mechanism 10 Switch. Further, HV-ECU 102 outputs to P-ECU 104 a P switching signal for switching the shift range of power transmission mechanism 10 between the P range and the non-P range based on the P switch signal from P switch 48. Further, the HV-ECU 102 outputs a display signal for displaying the state of the shift range to the indicator 94. The indicator 94 displays the shift range state based on the display signal output from the HV-ECU 102. In this embodiment, the vehicle power ON means that the hybrid system is activated to enable the vehicle to travel as described above, and that the vehicle cannot travel (such as an electric motor). Even in a state in which hybrid motor control cannot be performed, it is sufficient that at least the shift range switching control of the power transmission mechanism 10 can be performed.
 P-ECU104は、例えばHV-ECU102からのP切替信号に基づいてシフトレンジをPレンジと非Pレンジとの間で切り替える為に、パーキングロック装置50の駆動を制御してパーキングロックを作動させるか或いは解除させる。また、P-ECU104は、パーキングロック装置50からのパーキングロックの作動状態を表すP位置信号に基づいて動力伝達機構10のシフトレンジがPレンジであるか非Pレンジであるかを判断し、その判断した結果をPロック状態信号としてPM-ECU100へ出力する。 Whether the P-ECU 104 activates the parking lock by controlling the driving of the parking lock device 50 in order to switch the shift range between the P range and the non-P range based on the P switching signal from the HV-ECU 102, for example. Or let it be released. Further, the P-ECU 104 determines whether the shift range of the power transmission mechanism 10 is the P range or the non-P range based on the P position signal indicating the parking lock operating state from the parking lock device 50, and The determination result is output to PM-ECU 100 as a P-lock state signal.
 また、P-ECU104は、パーキングロック装置50の駆動を制御してパーキングロックを作動させるときに、それと併せて制動装置110により車輪40の回転を制動する場合には、ブレーキ用油圧制御回路118に対して、キャリパー114へブレーキ油圧を供給するように指令し或いは直前まで車輪40が制動装置110により制動されていたのであればそのブレーキ油圧の残圧をある程度維持するように指令して、制動装置110に車輪40の回転を制動させる。 In addition, when the P-ECU 104 controls the driving of the parking lock device 50 to activate the parking lock, and simultaneously brakes the rotation of the wheel 40 by the braking device 110, the P-ECU 104 causes the brake hydraulic control circuit 118 to On the other hand, the brake device is instructed to supply the brake oil pressure to the caliper 114, or if the wheel 40 has been braked by the brake device 110 until just before, the brake device is instructed to maintain the residual pressure of the brake oil pressure to some extent. 110 is caused to brake the rotation of the wheel 40.
 図4は、動力伝達機構10において複数種類のシフトレンジを人為的操作により切り換える切換装置としてのシフト操作装置42の一例を示す図である。このシフト操作装置42は、例えば運転席の近傍に配設され、複数のシフトポジションPSHへ操作されるモーメンタリ式の操作子すなわち操作力を解くと元位置(初期位置)へ自動的に復帰する自動復帰式の操作子としてのシフトレバー44を備えている。また、本実施例のシフト操作装置42は、動力伝達機構10のシフトレンジをパーキングレンジ(Pレンジ)としてパーキングロックする為のモーメンタリ式の操作子としてのPスイッチ48をシフトレバー44の近傍に別スイッチとして備えている。 FIG. 4 is a diagram illustrating an example of a shift operation device 42 as a switching device that switches a plurality of types of shift ranges by an artificial operation in the power transmission mechanism 10. The shift operating device 42 is for example disposed near the driver's seat, automatically returns operator i.e. solving the original position the operating force of the momentary to be operated to a plurality of shift positions P SH to (initial position) A shift lever 44 is provided as an automatic return type operator. Further, the shift operation device 42 according to the present embodiment is provided with a P switch 48 as a momentary type operation element for locking the parking with the shift range of the power transmission mechanism 10 as a parking range (P range). It is provided as a switch.
 シフトレバー44は、図4に示すように車両6の前後方向または上下方向すなわち縦方向に配列された3つのシフトポジションPSHであるRポジション(R位置)、Nポジション(N位置)、Dポジション(D位置)と、それに平行に配列されたMポジション(M位置)、Bポジション(B位置)とへそれぞれ操作されるようになっている。そして、シフト操作装置42は、それが有するシフト位置センサによりシフトポジションPSHを検出しそのシフトポジションPSHに応じた位置信号をHV-ECU102へ出力する。また、シフトレバー44は、RポジションとNポジションとDポジションとの相互間で縦方向に操作可能とされ、MポジションとBポジションとの相互間で縦方向に操作可能とされ、更に、NポジションとBポジションとの相互間で上記縦方向に直交する車両6の横方向に操作可能とされている。 As shown in FIG. 4, the shift lever 44 has three shift positions P SH arranged in the front-rear direction or the up-down direction, that is, the vertical direction of the vehicle 6. (D position), and M position (M position) and B position (B position) arranged in parallel with each other are operated. Then, the shift operation device 42 detects the shift position P SH by the shift position sensor that it has, and outputs a position signal corresponding to the shift position P SH to the HV-ECU 102. The shift lever 44 can be operated in the vertical direction between the R position, the N position, and the D position, and can be operated in the vertical direction between the M position and the B position. And the B position can be operated in the lateral direction of the vehicle 6 perpendicular to the longitudinal direction.
 Pスイッチ48は、例えばモーメンタリ式の押しボタンスイッチであって、ユーザにより押込み操作される毎にPスイッチ信号をHV-ECU102へ出力する。例えば動力伝達機構10のシフトレンジが非PレンジにあるときにPスイッチ48が押されると、フットブレーキべダル92が踏まれており車両6が停止状態であるなどの所定のPレンジ切替条件が満たされていれば、HV-ECU102からのP切替信号に基づいてP-ECU104によりシフトレンジがPレンジとされる。このPレンジは、動力伝達機構10内の動力伝達経路が遮断され、且つ、パーキングロック装置50により駆動輪38の回転が機械的に阻止(ロック)されるパーキングロックが実行される駐車レンジである。 The P switch 48 is, for example, a momentary push button switch, and outputs a P switch signal to the HV-ECU 102 every time the user performs a push operation. For example, when the P switch 48 is pressed when the shift range of the power transmission mechanism 10 is in the non-P range, a predetermined P range switching condition such that the foot brake pedal 92 is stepped on and the vehicle 6 is stopped is satisfied. If it is satisfied, the shift range is set to the P range by the P-ECU 104 based on the P switching signal from the HV-ECU 102. The P range is a parking range in which the power transmission path in the power transmission mechanism 10 is interrupted and the parking lock is executed in which the rotation of the drive wheel 38 is mechanically blocked (locked) by the parking lock device 50. .
 シフト操作装置42のMポジションはシフトレバー44の初期位置(ホームポジション)であり、Mポジション以外のシフトポジションPSH(R,N,D,Bポジション)へシフト操作されていたとしても、運転者がシフトレバー44を解放すればすなわちシフトレバー44に作用する外力が無くなれば、バネなどの機械的機構によりシフトレバー44はMポジションへ戻るようになっている。シフト操作装置42が各シフトポジションPSHへシフト操作された際には、HV-ECU102によりシフトポジションPSH(位置信号)に基づいてそのシフト操作後のシフトポジションPSHに対応したシフトレンジに切り替えられると共に、現在のシフトポジションPSHすなわち動力伝達機構10のシフトレンジの状態がインジケータ94に表示される。 The M position of the shift operation device 42 is the initial position (home position) of the shift lever 44, and even if the shift operation is performed to a shift position P SH (R, N, D, B position) other than the M position, the driver If the shift lever 44 is released, that is, if the external force acting on the shift lever 44 is eliminated, the shift lever 44 returns to the M position by a mechanical mechanism such as a spring. When the shift operating device 42 is shifted to each shift position P SH , the HV-ECU 102 switches to a shift range corresponding to the shift position P SH after the shift operation based on the shift position P SH (position signal). In addition, the current shift position PSH, that is, the state of the shift range of the power transmission mechanism 10 is displayed on the indicator 94.
 各シフトレンジについて説明すると、シフトレバー44がRポジションへシフト操作されることにより選択されるRレンジは、車両6を後進させる駆動力が駆動輪38に伝達される後進走行レンジである。また、シフトレバー44がNポジションへシフト操作されることにより選択されるニュートラルレンジ(Nレンジ)は、動力伝達機構10内の動力伝達経路が遮断されるニュートラル状態とするための中立レンジである。また、シフトレバー44がDポジションへシフト操作されることにより選択されるDレンジは、車両6を前進させる駆動力が駆動輪38に伝達される前進走行レンジである。例えば、HV-ECU102は、シフトレンジがPレンジであるときに、車両6の移動防止(パーキングロック)を解除する所定のシフトポジションPSH(具体的には、Rポジション、Nポジション、又はDポジション)へシフト操作されたと判断した場合には、パーキングロックを解除させるP切替信号をP-ECU104へ出力する。P-ECU104は、HV-ECU102からのP切替信号に基づいてパーキングロック装置50に対してパーキングロックを解除するP切換制御指令信号を出力してパーキングロックを解除させる。そして、HV-ECU102は、そのシフト操作後のシフトポジションPSHに対応したシフトレンジへ切り換える。 Explaining each shift range, the R range selected when the shift lever 44 is shifted to the R position is a reverse travel range in which the driving force for moving the vehicle 6 backward is transmitted to the drive wheels 38. Further, the neutral range (N range) selected by shifting the shift lever 44 to the N position is a neutral range for setting the neutral state in which the power transmission path in the power transmission mechanism 10 is interrupted. The D range selected when the shift lever 44 is shifted to the D position is a forward travel range in which a driving force for moving the vehicle 6 forward is transmitted to the drive wheels 38. For example, the HV-ECU 102 determines a predetermined shift position P SH (specifically, the R position, the N position, or the D position) for releasing the movement prevention (parking lock) of the vehicle 6 when the shift range is the P range. ), A P switching signal for releasing the parking lock is output to the P-ECU 104. The P-ECU 104 outputs a P switching control command signal for releasing the parking lock to the parking lock device 50 based on the P switching signal from the HV-ECU 102 to release the parking lock. Then, the HV-ECU 102 switches to a shift range corresponding to the shift position P SH after the shift operation.
 また、シフトレバー44がBポジションへシフト操作されることにより選択されるBレンジは、Dレンジにおいて例えば第2電動機M2に回生トルクを発生させるなどによりエンジンブレーキ効果を発揮させ駆動輪38の回転を減速させる減速前進走行レンジ(エンジンブレーキレンジ)である。従って、HV-ECU102は、現在のシフトレンジがDレンジ以外のシフトレンジであるときにシフトレバー44がBポジションへシフト操作されてもそのシフト操作を無効とし、DレンジであるときのみBポジションへのシフト操作を有効とする。例えば、Pレンジであるときに運転者がBポジションへシフト操作したとしてもシフトレンジはPレンジのまま継続される。 The B range selected by shifting the shift lever 44 to the B position causes the engine brake effect to be exerted in the D range by, for example, generating a regenerative torque in the second electric motor M2, thereby rotating the drive wheels 38. A deceleration forward travel range (engine brake range) for decelerating. Accordingly, the HV-ECU 102 invalidates the shift operation even if the shift lever 44 is shifted to the B position when the current shift range is a shift range other than the D range, and shifts to the B position only when the shift lever 44 is in the D range. The shift operation is enabled. For example, even if the driver performs a shift operation to the B position in the P range, the shift range is continued as the P range.
 本実施例のシフト操作装置42では、シフトレバー44に作用する外力が無くなればMポジションへ戻されるので、シフトレバー44のシフトポジションPSHを視認しただけでは選択中のシフトレンジを認識することは出来ない。そのため、運転者の見易い位置にインジケータ94が設けられており、選択中のシフトレンジがPレンジである場合も含めてインジケータ94に表示されるようになっている。 In the shift operating device 42 of the present embodiment, since the external force acting on the shift lever 44 is returned to the M position when no longer, that simply by visually checking the shift position P SH of the shift lever 44 to recognize the shift range in the selected I can't. For this reason, an indicator 94 is provided at a position that is easy for the driver to see, and is displayed on the indicator 94 even when the selected shift range is the P range.
 本実施例の動力伝達機構10(車両6)は所謂シフトバイワイヤを採用しており、シフト操作装置42に設けられたシフト位置センサによりシフトポジションPSHは検出される。そして、HV-ECU102は、そのシフト位置センサからのシフトポジションPSHを表す位置信号に基づいて、例えば、その位置信号としてのそのシフト位置センサからの出力電圧変化などに基づいて、各シフトポジションPSHを認識する。 The power transmission mechanism 10 (vehicle 6) of this embodiment employs a so-called shift-by-wire, and a shift position PSH is detected by a shift position sensor provided in the shift operation device 42. Then, the HV-ECU 102 determines each shift position P based on a position signal indicating the shift position P SH from the shift position sensor, for example, based on a change in output voltage from the shift position sensor as the position signal. Recognize SH .
 また、誤操作や誤認識(判定)等の防止のため、各シフトポジションPSHへシフト操作されれば直ちにそのシフト操作後のシフトポジションPSHに対応したシフトレンジへと切り換えられるわけでは無く、各シフトポジションPSHもしくは各シフトレンジにつき所定のレンジ確定時間(シフト操作確定時間)が予め設定されている。例えば、HV-ECU102は、シフト操作後のシフトポジションPSHでシフトレバー44が留まっている時間である滞留時間が上記所定のレンジ確定時間以上になった場合にそのシフト操作を確定しシフト操作後のシフトポジションPSHに対応したシフトレンジへと切り換える。PレンジからNレンジへと切り換えられる場合を例に説明すると、シフトレンジがPレンジであるときにMポジションからNポジションへシフト操作された場合において、HV-ECU102は、シフトシフトレバー44のNポジションでの滞留時間が、Nポジションへのシフト操作を確定する為の上記所定のレンジ確定時間であるニュートラルレンジ確定時間以上になった場合に、そのシフト操作後のシフトポジションPSHがNポジションであると確定(判定)し、動力伝達機構10のシフトレンジをPレンジからNレンジに切り換える。 In addition, in order to prevent erroneous operation and erroneous recognition (judgment), if a shift operation is performed to each shift position P SH , the shift range corresponding to the shift position P SH after the shift operation is not immediately switched. A predetermined range confirmation time (shift operation confirmation time) is preset for each shift position PSH or each shift range. For example, the HV-ECU 102 determines the shift operation when the dwell time, which is the time during which the shift lever 44 remains at the shift position P SH after the shift operation, exceeds the predetermined range determination time, and after the shift operation It switched to a shift range corresponding to the shift position P SH. The case where the range is switched from the P range to the N range will be described as an example. When the shift range is the P range and the shift operation is performed from the M position to the N position, the HV-ECU 102 sets the N position of the shift shift lever 44. When the dwell time at is equal to or longer than the neutral range determination time, which is the predetermined range determination time for determining the shift operation to the N position, the shift position P SH after the shift operation is the N position. Is determined (determined), and the shift range of the power transmission mechanism 10 is switched from the P range to the N range.
 図5は、駆動輪38の回転を機械的に阻止するパーキングロック装置50の構成を説明する図である。図5において、パーキングロック装置50は、Pロック機構52、Pロック駆動モータ54、エンコーダ56などを備え、電子制御装置80からの制御信号に基づき車両6の移動を防止する。 FIG. 5 is a diagram illustrating the configuration of the parking lock device 50 that mechanically blocks the rotation of the drive wheels 38. In FIG. 5, the parking lock device 50 includes a P lock mechanism 52, a P lock drive motor 54, an encoder 56, and the like, and prevents the vehicle 6 from moving based on a control signal from the electronic control device 80.
 Pロック駆動モータ54は、スイッチトリラクタンスモータ(SRモータ)により構成され、P-ECU104からの指令(制御信号)に従って作動する電動のアクチュエータである。つまり、Pロック駆動モータ54は、そのP-ECU104からの制御信号を受けてシフトバイワイヤシステムによってPロック機構52を駆動する。 The P lock drive motor 54 is an electric actuator that is configured by a switched reluctance motor (SR motor) and operates according to a command (control signal) from the P-ECU 104. That is, the P lock drive motor 54 receives the control signal from the P-ECU 104 and drives the P lock mechanism 52 by the shift-by-wire system.
 エンコーダ56は、A相、B相及びZ相の信号を出力するロータリエンコーダであって、Pロック駆動モータ54と一体的に回転し、SRモータの回転状況を検知してその回転状況を表す信号すなわちPロック駆動モータ54の移動量(回転量)に応じた計数値(エンコーダカウント)を取得するためのパルス信号をP-ECU104へ供給する。P-ECU104は、エンコーダ56から供給される信号を取得してSRモータの回転状況を把握し、SRモータを駆動するための通電の制御を行う。 The encoder 56 is a rotary encoder that outputs A-phase, B-phase, and Z-phase signals. The encoder 56 rotates integrally with the P-lock drive motor 54, detects the rotation status of the SR motor, and indicates the rotation status. That is, a pulse signal for obtaining a count value (encoder count) corresponding to the movement amount (rotation amount) of the P lock drive motor 54 is supplied to the P-ECU 104. The P-ECU 104 obtains a signal supplied from the encoder 56, grasps the rotation status of the SR motor, and controls energization for driving the SR motor.
 Pロック機構52は、Pロック駆動モータ54により回転駆動されるシャフト58、シャフト58の回転に伴って回転するディテントプレート60、ディテントプレート60の回転に伴って動作するロッド62、駆動輪38と連動して回転するパーキングギヤ64、パーキングギヤ64を回転阻止(ロック)するためにパーキングギヤ64に噛み合う噛合部材であるパーキングロックポール66、ディテントプレート60の回転を制限してシフトポジションを固定するディテントスプリング68、及びころ70を備えている。パーキングギヤ64は、それがロックされれば駆動輪38もロックされる関係にあれば設けられる場所に制限は無いが、本実施例では、図1に示すように、パーキングギヤ64は、動力伝達機構10の出力軸22に一体に固定されている。 The P lock mechanism 52 is interlocked with a shaft 58 that is rotated by a P lock drive motor 54, a detent plate 60 that rotates as the shaft 58 rotates, a rod 62 that operates as the detent plate 60 rotates, and a drive wheel 38. Parking gear 64 that rotates, parking lock pawl 66 that is a meshing member that meshes with parking gear 64 to prevent parking gear 64 from rotating, and detent spring that restricts the rotation of detent plate 60 and fixes the shift position. 68 and rollers 70 are provided. The parking gear 64 is not limited in the place where the driving wheel 38 is locked if the parking gear 64 is locked, but in the present embodiment, as shown in FIG. The output shaft 22 of the mechanism 10 is fixed integrally.
 ディテントプレート60は、シャフト58を介してPロック駆動モータ54の駆動軸に作動的に連結されており、ロッド62、ディテントスプリング68、ころ70などと共にPロック駆動モータ54により駆動されてPレンジに対応するパーキングロックポジションとPレンジ以外の各シフトレンジに対応する非パーキングロックポジションとを切り替えるためのパーキングロック位置決め部材として機能する。 The detent plate 60 is operatively connected to the drive shaft of the P-lock drive motor 54 via the shaft 58, and is driven by the P-lock drive motor 54 together with the rod 62, the detent spring 68, the roller 70, etc. to the P range. It functions as a parking lock positioning member for switching between a corresponding parking lock position and a non-parking lock position corresponding to each shift range other than the P range.
 図5は、非パーキングロックポジションであるときの状態を示している。この状態では、本発明の噛合部材に対応するパーキングロックポール66がパーキングギヤ64をロックしていないので、駆動輪38の回転はPロック機構52によっては妨げられない。この状態から、Pロック駆動モータ54によりシャフト58を図5に示す矢印Cの方向に回転させると、ディテントプレート60を介してロッド62が図5に示す矢印Aの方向に押され、ロッド62の先端に設けられたテーパー部材72によりパーキングロックポール66が図5に示す矢印Bの方向に押し上げられる。ディテントプレート60の回転に伴って、ディテントプレート60の頂部に設けられた2つの谷のうち一方、すなわち非パーキングロックポジションにあったディテントスプリング68のころ70は、山74を乗り越えて他方の谷、すなわちパーキングロックポジションへ移る。ころ70は、その軸心を中心として回転可能にディテントスプリング68に設けられている。ころ70がパーキングロックポジションに来るまでディテントプレート60が回転したとき、パーキングロックポール66は、パーキングギヤ64と噛み合う位置まで押し上げられる。これにより、パーキングギヤ64と連動して回転する駆動輪38の回転が機械的に阻止され、シフトレンジがPレンジに切り換わる。このようにして、パーキングロック装置50は、Pロック駆動モータ54によってパーキングロックポール66をパーキングギヤ64に噛み合わせて動力伝達機構10の出力軸22の回転をロックする駐車ロック装置として機能する。 FIG. 5 shows a state when the vehicle is in the non-parking lock position. In this state, the parking lock pole 66 corresponding to the meshing member of the present invention does not lock the parking gear 64, so that the rotation of the drive wheel 38 is not hindered by the P lock mechanism 52. From this state, when the shaft 58 is rotated in the direction of the arrow C shown in FIG. 5 by the P lock drive motor 54, the rod 62 is pushed in the direction of the arrow A shown in FIG. The parking lock pole 66 is pushed up in the direction of arrow B shown in FIG. 5 by the taper member 72 provided at the tip. As the detent plate 60 rotates, one of the two valleys provided at the top of the detent plate 60, that is, the roller 70 of the detent spring 68 in the non-parking lock position, climbs over the mountain 74 and the other valley, That is, it moves to the parking lock position. The roller 70 is provided on the detent spring 68 so as to be rotatable about its axis. When the detent plate 60 rotates until the roller 70 reaches the parking lock position, the parking lock pole 66 is pushed up to a position where it engages with the parking gear 64. As a result, the rotation of the drive wheel 38 that rotates in conjunction with the parking gear 64 is mechanically blocked, and the shift range is switched to the P range. Thus, the parking lock device 50 functions as a parking lock device that locks the rotation of the output shaft 22 of the power transmission mechanism 10 by engaging the parking lock pole 66 with the parking gear 64 by the P lock drive motor 54.
 図6は、電子制御装置80に備えられた制御機能の要部を説明する機能ブロック線図であり、本発明の車輪制動装置に対応する制動装置110の概略構成を説明するための図である。制動装置(車輪制動装置)110は、駆動輪38を含む4つの各車輪40毎に設けられており、その車輪40の回転を制動する。図6では、前輪である駆動輪38に設けられた制動装置110は図示されているが後輪である非駆動輪に設けられた制動装置110は図示されていない。 FIG. 6 is a functional block diagram illustrating a main part of the control function provided in the electronic control device 80, and is a diagram for explaining a schematic configuration of the braking device 110 corresponding to the wheel braking device of the present invention. . The braking device (wheel braking device) 110 is provided for each of the four wheels 40 including the drive wheels 38 and brakes the rotation of the wheels 40. In FIG. 6, the braking device 110 provided on the driving wheel 38 that is the front wheel is illustrated, but the braking device 110 provided on the non-driving wheel that is the rear wheel is not illustrated.
 図6の制動装置110は、常用ブレーキであるフットブレーキとしてよく知られた所謂ディスクブレーキを含んで構成されている。この制動装置110は、車軸37に対して垂直且つ車輪40と平行に配置されてその車輪40と共に回転する円盤状のディスク(回転体、ローター)112と、非回転部材として車体に連結された車両6のサスペンションを構成する部品等に固定されてディスク112を両円盤面側から挟圧する油圧シリンダを含むキャリパー114と、その油圧シリンダのピストン端とディスク112の円盤面との間に配置された一対のブレーキパッド(摩擦材)116とを備えている。ブレーキ用油圧制御回路118は、たとえばABS制御あるいはVSC制御のためにブレーキ油圧の元圧を発生させる油圧ポンプやアキュムレータを備え、電子制御装置80からの指令に従って上記キャリパー114の油圧シリンダにブレーキ油圧を供給し、またその供給するブレーキ油圧を調圧制御するものである。制動装置110は、車両6の制動に際して車輪40と一体回転するディスク112と非回転部材に間接的に設けられたブレ-キパッド116との間の摩擦により車輪40の回転を制動するものである。そして、そのディスク112とブレ-キパッド116との間の摩擦による制動力は、ブレーキ用油圧制御回路118から供給される油圧の大きさに応じて増減させられ、具体的に、その制動力は、そのブレーキ用油圧制御回路118からの油圧が大きいほど大きくなる。 6 includes a so-called disc brake well known as a foot brake which is a service brake. The braking device 110 includes a disc-like disk (rotor, rotor) 112 that is arranged perpendicular to the axle 37 and parallel to the wheel 40 and rotates with the wheel 40, and a vehicle connected to the vehicle body as a non-rotating member. 6 and a pair of calipers 114 including hydraulic cylinders that are fixed to the components constituting the suspension 6 to clamp the disk 112 from both disk surface sides, and disposed between the piston end of the hydraulic cylinder and the disk surface of the disk 112. Brake pads (friction material) 116. The brake hydraulic control circuit 118 includes a hydraulic pump and an accumulator that generates an original pressure of the brake hydraulic pressure for, for example, ABS control or VSC control, and applies brake hydraulic pressure to the hydraulic cylinder of the caliper 114 according to a command from the electronic control unit 80. It supplies and controls the pressure of the supplied brake hydraulic pressure. The braking device 110 brakes the rotation of the wheel 40 by friction between the disc 112 that rotates integrally with the wheel 40 and the brake pad 116 indirectly provided on the non-rotating member when the vehicle 6 is braked. The braking force due to friction between the disk 112 and the brake pad 116 is increased or decreased according to the hydraulic pressure supplied from the brake hydraulic control circuit 118. Specifically, the braking force is The larger the hydraulic pressure from the brake hydraulic control circuit 118, the larger the hydraulic pressure.
 図6において、電子制御装置80は、ハイブリッド制御手段140、駐車意図判断手段142、坂路判断手段144、ブレーキ判断手段146、パーキングギヤ回転位置判断手段148、パーキングロック制御手段152、及び、制御終了判断手段154を備えている。なお、図6において、電子制御装置80が更に後述する制御開始車速判断手段156を備える場合も考えられるので、図6では、予めその制御開始車速判断手段156も記載されている。 In FIG. 6, the electronic control unit 80 includes a hybrid control unit 140, a parking intention determination unit 142, a slope determination unit 144, a brake determination unit 146, a parking gear rotation position determination unit 148, a parking lock control unit 152, and a control end determination. Means 154 are provided. In FIG. 6, the electronic control unit 80 may further include a control start vehicle speed determining means 156, which will be described later. Therefore, in FIG. 6, the control start vehicle speed determining means 156 is also described in advance.
 図6において、ハイブリッド制御手段140は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて、差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセルペダルの操作量であるアクセル開度(アクセル操作量)Accや車速Vから車両6の目標(要求)出力を算出し、その車両6の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NとエンジントルクTとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。 In FIG. 6, the hybrid control means 140 operates the engine 8 in an efficient operating range, while optimizing the reaction force due to the distribution of the driving force between the engine 8 and the second electric motor M2 and the power generation of the first electric motor M1. Thus, the gear ratio γ0 as an electric continuously variable transmission of the differential section 11 is controlled. For example, at the traveling vehicle speed V at that time, the target (request) output of the vehicle 6 is calculated from the accelerator opening (accelerator operation amount) Acc which is the operation amount of the accelerator pedal as the driver's output request amount and the vehicle speed V, The required total target output is calculated from the target output of the vehicle 6 and the required charging value, and the target engine is considered in consideration of transmission loss, auxiliary load, assist torque of the second electric motor M2, and the like so as to obtain the total target output. calculating the output, to control the amount of power generated by the first electric motor M1 controls the engine 8 so that the target engine output is engine speed N E and engine torque T E obtained.
 つまり、ハイブリッド制御手段140は、エンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められて記憶されたよく知られたエンジン8の最適燃費率曲線(燃費マップ、関係)に沿ってエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力を発生するためのエンジントルクTとエンジン回転速度Nとなるように差動部11の変速比γ0の目標値を定め、その目標値が得られるように変速比γ0をその変速可能な変化範囲内で無段階に制御する。 In other words, the hybrid control means 140 both the drivability and the fuel consumption when the continuously-variable shifting control in a two-dimensional coordinate composed of the output torque (engine torque) T E of the engine rotational speed N E and the engine 8 For example, the target output (total target output, request) is set so that the engine 8 is operated along the well-known optimal fuel consumption rate curve (fuel consumption map, relationship) of the engine 8 that is experimentally obtained and stored in advance. It determines the target value of the speed ratio γ0 of the differential portion 11 so that the engine torque T E and the engine rotational speed N E for generating the engine output necessary to meet the driving force), the target value is obtained Thus, the speed ratio γ0 is controlled steplessly within the changeable range of the speed change.
 このとき、ハイブリッド制御手段140は、第1電動機M1により発電された電気エネルギをインバータ122を通して蓄電装置124や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に第1カウンタギヤ19へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ122を通してその電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から第1カウンタギヤ19へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。前記蓄電装置124は、第1電動機M1及び第2電動機M2に電力を供給し且つそれらの各電動機M1,M2から電力の供給を受けることが可能な電気エネルギ源であって、例えば、エンジン8の駆動により充電される。そして、蓄電装置124は、例えば鉛蓄電池などのバッテリ、又は、キャパシタなどである。 At this time, since the hybrid control means 140 supplies the electric energy generated by the first electric motor M1 to the power storage device 124 and the second electric motor M2 through the inverter 122, the main part of the power of the engine 8 is mechanically the first counter. Although it is transmitted to the gear 19, a part of the motive power of the engine 8 is consumed for power generation of the first electric motor M1, and is converted into electric energy there, and the electric energy is supplied to the second electric motor M2 through the inverter 122, The second electric motor M2 is driven and transmitted from the second electric motor M2 to the first counter gear 19. An electric path from conversion of a part of the power of the engine 8 into electric energy and conversion of the electric energy into mechanical energy by a device related from the generation of the electric energy to consumption by the second electric motor M2 Composed. The power storage device 124 is an electric energy source capable of supplying power to the first motor M1 and the second motor M2 and receiving power from each of the motors M1 and M2. It is charged by driving. The power storage device 124 is, for example, a battery such as a lead storage battery or a capacitor.
 また、ハイブリッド制御手段140は、車両6の停止中又は走行中に拘わらず、動力伝達機構10の電気的CVT機能によって、例えば、第1電動機回転速度NM1を制御してエンジン回転速度Nを略一定に維持したり任意の回転速度に回転制御する。つまり、ハイブリッド制御手段140は、差動部遊星歯車装置24を介して入力軸14(すなわちエンジン8の出力軸)に作動的に連結される第1電動機M1をその入力軸14に動力伝達可能な駆動装置として機能させることで、第1電動機M1にエンジン8を回転駆動させる。例えば、ハイブリッド制御手段140は車両走行中にエンジン回転速度Nを引き上げる場合には、車速V(駆動輪38)に拘束される出力軸回転速度NOUTを略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。 The hybrid control means 140, regardless of the stopping or during traveling of the vehicle 6, owing to the electric CVT function of the power transmission mechanism 10, for example, the engine rotational speed N E by controlling the first electric motor speed N M1 Maintaining a substantially constant value or controlling the rotation to an arbitrary rotation speed. That is, the hybrid control means 140 can transmit power to the input shaft 14 from the first electric motor M1 operatively connected to the input shaft 14 (that is, the output shaft of the engine 8) via the differential planetary gear device 24. By making it function as a drive device, the engine 8 is driven to rotate by the first electric motor M1. For example, when the engine speed NE is increased while the vehicle is traveling, the hybrid controller 140 rotates the first motor while maintaining the output shaft speed N OUT restricted by the vehicle speed V (drive wheel 38) substantially constant. The speed N M1 is increased.
 また、ハイブリッド制御手段140は、スロットル制御のためにスロットルアクチュエータ126によってエンジン8の吸気管128に備えられた電子スロットル弁130を開閉制御させる他、燃料噴射制御のために燃料噴射装置132による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置134による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置136に出力して、必要なエンジン出力を発生するようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。例えば、ハイブリッド制御手段140は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータ126を駆動し、アクセル開度Accが増加するほど電子スロットル弁130の開度θTHを増加させるようにスロットル制御を実行する。また、上記エンジン出力制御装置136は、ハイブリッド制御手段140による指令に従って、スロットル制御のためにスロットルアクチュエータ126により電子スロットル弁130を開閉制御する他、燃料噴射制御のために燃料噴射装置132による燃料噴射を制御し、点火時期制御のためにイグナイタ等の点火装置134による点火時期を制御するなどしてエンジントルク制御を実行する。 Further, the hybrid control means 140 controls the opening and closing of the electronic throttle valve 130 provided in the intake pipe 128 of the engine 8 by the throttle actuator 126 for throttle control, and the fuel injection by the fuel injection device 132 for fuel injection control. A command for controlling the amount and injection timing and controlling the ignition timing by the ignition device 134 such as an igniter for controlling the ignition timing is output to the engine output control device 136 alone or in combination to generate a necessary engine output. Thus, engine output control means for executing output control of the engine 8 is functionally provided. For example, the hybrid controller 140 basically drives the throttle actuator 126 based on the accelerator opening Acc from a previously stored relationship (not shown), and the opening θ of the electronic throttle valve 130 increases as the accelerator opening Acc increases. Execute throttle control to increase TH . The engine output control device 136 controls the opening and closing of the electronic throttle valve 130 by the throttle actuator 126 for throttle control in accordance with a command from the hybrid control means 140, and the fuel injection by the fuel injection device 132 for fuel injection control. The engine torque control is executed by controlling the ignition timing by the ignition device 134 such as an igniter for controlling the ignition timing.
 また、ハイブリッド制御手段140は、エンジン8の運転を停止した状態で蓄電装置124からの電力により第2電動機M2を駆動してその第2電動機M2のみを走行用の駆動力源とするモータ走行(EV走行)を実行することができる。例えば、このハイブリッド制御手段140によるEV走行は、一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT域すなわち低エンジントルクT域、或いは車速Vの比較的低車速域すなわち低負荷域で実行される。 In addition, the hybrid control means 140 drives the second electric motor M2 with electric power from the power storage device 124 in a state where the operation of the engine 8 is stopped, and uses only the second electric motor M2 as a driving power source for traveling ( EV traveling) can be executed. For example, the EV traveling by the hybrid control means 140 is a comparison of a relatively low output torque T OUT region, that is, a low engine torque TE region, or a vehicle speed V, which is generally considered to have a low engine efficiency compared to a high torque region. It is executed at a low vehicle speed range, that is, a low load range.
 ハイブリッド制御手段140は、このEV走行時には、運転を停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、例えば第1電動機M1を無負荷状態とすることにより空転させて、動力伝達機構10の電気的CVT機能(差動作用)により必要に応じてエンジン回転速度Nを零乃至略零に維持する。つまり、ハイブリッド制御手段140は、EV走行時には、エンジン8の運転を単に停止させるのではなく、エンジン8の回転も停止させる。また、ハイブリッド制御手段140は、車両6が所定時間以上停止している場合など、所定のエンジン停止条件が満たされた場合には、燃費を向上させるために、エンジン8の作動を停止する。 During this EV traveling, the hybrid control means 140 causes the first electric motor M1 to idle so as to improve the fuel efficiency by suppressing dragging of the engine 8 that has stopped driving, and thereby driving the power. maintaining the engine speed N E at zero or substantially zero as needed by the electric CVT function of the transmission mechanism 10 (differential action). That is, the hybrid control means 140 does not simply stop the operation of the engine 8 during EV traveling, but also stops the rotation of the engine 8. Further, the hybrid control means 140 stops the operation of the engine 8 in order to improve fuel efficiency when a predetermined engine stop condition is satisfied, such as when the vehicle 6 is stopped for a predetermined time or more.
 また、ハイブリッド制御手段140は、車両停止中やEV走行中にエンジン8の始動を行うエンジン始動制御手段を機能的に備えている。例えば、ハイブリッド制御手段140は、第1電動機M1に通電して第1電動機回転速度NM1を引き上げることで、すなわち、第1電動機M1をスタータとして機能させることで、エンジン回転速度Nを完爆可能な所定回転速度N’以上に引き上げると共に、所定回転速度N’以上にて例えばアイドル回転速度以上の自律回転可能なエンジン回転速度Nにて燃料噴射装置132により燃料を供給(噴射)し点火装置134により点火してエンジン8を始動する。 Moreover, the hybrid control means 140 functionally includes an engine start control means for starting the engine 8 while the vehicle is stopped or during EV traveling. For example, the hybrid control means 140, by raising the first electric motor speed N M1 is energized to the first electric motor M1, i.e., by function of the first electric motor M1 as a starter, complete explosion of the engine rotational speed N E 'together pulled above the predetermined rotational speed N E' given rotation speed N E capable of supplying fuel by the fuel injection device 132 at least at autonomously rotate eg idle or rotational speed of the engine rotational speed N E (injection) The ignition device 134 is ignited to start the engine 8.
 また、ハイブリッド制御手段140は、エンジン8を駆動力源とするエンジン走行中には、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置124からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪38にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。つまり、駆動輪38は、エンジン8の出力のみで駆動されることもあり、そのエンジン8の出力に第2電動機M2の出力を加えて駆動されることもあり、或いは第2電動機M2の出力のみで駆動されることもある。 Further, the hybrid control means 140 uses the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 124 by the electric path described above during the engine running using the engine 8 as a driving force source. , And driving the second electric motor M2 to apply torque to the drive wheels 38, so-called torque assist for assisting the power of the engine 8 is possible. That is, the drive wheel 38 may be driven only by the output of the engine 8, may be driven by adding the output of the second electric motor M2 to the output of the engine 8, or only the output of the second electric motor M2. It may be driven by.
 また、ハイブリッド制御手段140は、第1電動機M1を無負荷状態として自由回転すなわち空転させることにより、動力伝達機構10がトルクの伝達を不能な状態すなわち動力伝達機構10内の動力伝達経路が遮断された状態と同等の状態であって、且つ第2電動機M2を無負荷状態として動力伝達機構10からの出力が発生されない状態とすることが可能である。すなわち、ハイブリッド制御手段140は、電動機M1、M2を無負荷状態とすることにより動力伝達機構10をニュートラル状態とすることが可能である。 Further, the hybrid control means 140 causes the first electric motor M1 to rotate freely, i.e., idle, with no load, whereby the power transmission mechanism 10 cannot transmit torque, that is, the power transmission path in the power transmission mechanism 10 is interrupted. It is possible to set the second electric motor M2 in a no-load state so that no output from the power transmission mechanism 10 is generated. That is, the hybrid control unit 140 can place the power transmission mechanism 10 in the neutral state by setting the electric motors M1 and M2 to a no-load state.
 また、ハイブリッド制御手段140は、アクセルオフの車両減速走行時や制動時には車両6の運動エネルギ、すなわち、駆動輪38から第2電動機M2側へ伝達される逆駆動力により、第1電動機M1や第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち上記電動機M1,M2の発電電流をインバータ122を介して蓄電装置124へ充電する所謂回生制動を実行する回生ブレーキ制御手段として機能する。 Further, the hybrid control means 140 uses the kinetic energy of the vehicle 6 when the vehicle is decelerated or braked with the accelerator off, that is, the reverse driving force transmitted from the driving wheel 38 to the second electric motor M2 side, and thereby the first electric motor M1 and the first electric motor M1. 2 Acts as a regenerative brake control means for performing so-called regenerative braking in which the electric motor M2 is rotated to operate as a generator and the electric energy, that is, the electric current generated by the electric motors M1 and M2 is charged to the power storage device 124 via the inverter 122. To do.
 駐車意図判断手段142は、運転者の駐車意図が検出されたか否か、換言すれば、Pレンジ以外のシフトレンジからPレンジへのシフトレンジ切替操作がなされたか否かを判断する。具体的には、駐車意図判断手段142は、前記Pレンジ切替条件が満たされてPスイッチ48が押された場合、すなわち、Pスイッチ48によるPレンジへの切替操作がなされた場合に、運転者の駐車意図が検出されたと判断する。この場合には、Pスイッチ48がその運転者の駐車意図を検出する駐車意図検出装置に相当する。また、駐車意図判断手段142は、前記オートP作動でのPレンジへの切替操作がなされた場合、すなわち、車両電源スイッチ82によるPレンジへの切替操作がなされた場合に、運転者の駐車意図が検出されたと判断する。この場合には、車両電源スイッチ82が前記駐車意図検出装置に相当する。 The parking intention determination unit 142 determines whether or not the driver's intention to park has been detected, in other words, whether or not a shift range switching operation from a shift range other than the P range to the P range has been performed. Specifically, the parking intention determination unit 142 determines that the driver is in the case where the P range switching condition is satisfied and the P switch 48 is pressed, that is, when the switching operation to the P range is performed by the P switch 48. It is determined that no parking intention has been detected. In this case, the P switch 48 corresponds to a parking intention detection device that detects the driver's intention to park. In addition, the parking intention determination unit 142 determines whether the driver intends to park the vehicle when the switching operation to the P range in the auto P operation is performed, that is, when the switching operation to the P range is performed by the vehicle power switch 82. Is detected. In this case, the vehicle power switch 82 corresponds to the parking intention detection device.
 坂路判断手段144は、車両6が位置する路面の勾配(路面勾配)θSLが予め定められた路面勾配判定値θ1SLより大きいか否かを判断する。このとき、坂路判断手段144は、その路面勾配θSLの絶対値をその路面勾配判定値θ1SLと比較する。上記路面勾配θSLとは、上記路面が水平面に対してなす角度であり、単位としては、例えば、度、ラジアンなどが挙げられる。そして、その路面勾配θSLは、例えば、その路面勾配θSLを直接検出できる勾配検出センサによって検出されてもよいし、動力伝達機構10がニュートラル状態であり全ての車輪40が制動されていないのであれば各車輪40に設けられた車輪速センサや車速センサ84により車速Vの変化を検出してそれに基づき算出されてもよい。前記路面勾配判定値θ1SLは、例えば、動力伝達機構10がニュートラル状態であり全ての車輪40が制動されていない状態で車両6がその自重で動き出す最小限の路面勾配θSLが実験的に求められて、その最小限の路面勾配θSLが設定されている。 The slope judgment means 144 judges whether or not the slope (road slope) θ SL of the road surface on which the vehicle 6 is located is larger than a predetermined road slope judgment value θ1 SL . At this time, the slope determination means 144 compares the absolute value of the road surface gradient θ SL with the road surface gradient determination value θ1 SL . The road surface gradient θ SL is an angle formed by the road surface with respect to a horizontal plane, and examples of the unit include degrees and radians. The road surface gradient θ SL may be detected by, for example, a gradient detection sensor that can directly detect the road surface gradient θ SL , or the power transmission mechanism 10 is in the neutral state and all the wheels 40 are not braked. If there is, a change in the vehicle speed V may be detected by a wheel speed sensor or a vehicle speed sensor 84 provided on each wheel 40 and may be calculated based on the change. The road surface gradient judgment value θ1 SL is experimentally obtained, for example, as the minimum road surface gradient θ SL at which the vehicle 6 moves with its own weight when the power transmission mechanism 10 is in the neutral state and all the wheels 40 are not braked. Therefore, the minimum road surface gradient θ SL is set.
 また、坂路判断手段144は、路面勾配θSLの他に、車両6が位置する路面がその車両6を前進させる方向に傾斜しているのか或いは後進させる方向に傾斜しているのかを判断する。この路面の傾斜方向についても、前記勾配検出センサにより検出されてもよいし、各車輪40に設けられた車輪速センサ又は車速センサ84により車輪40又は出力軸22の回転方向から検出されてもよい。 In addition to the road surface gradient θ SL , the slope determination unit 144 determines whether the road surface on which the vehicle 6 is located is inclined in a direction in which the vehicle 6 is moved forward or in a direction in which the vehicle 6 is moved backward. The inclination direction of the road surface may also be detected by the gradient detection sensor, or may be detected from the rotation direction of the wheel 40 or the output shaft 22 by a wheel speed sensor or a vehicle speed sensor 84 provided on each wheel 40. .
 ブレーキ判断手段146は、フットブレーキべダル92が踏み込まれているか否かを判断する。例えば、ブレーキスイッチ90からのフットブレーキ操作BONを表すブレーキ操作信号に基づいて判断する。 The brake determination means 146 determines whether or not the foot brake pedal 92 is depressed. For example, the determination is made based on a brake operation signal indicating foot brake operation B ON from the brake switch 90.
 パーキングギヤ回転位置判断手段148は、パーキングロックポール66に対するパーキングギヤ64の回転位置θPGが予め定められた回転位置範囲WθPG内にあるか否かを判断する。このとき、パーキングギヤ回転位置判断手段148は、その判断をするためのパーキングギヤ64の回転位置θPGとして、例えば、Pスイッチ48もしくは車両電源スイッチ82によるPレンジへの切替操作時のパーキングギヤ64の回転位置θPG、または、そのPレンジへの切替操作後にフットブレーキべダル92が解放されたのであればそのフットブレーキべダル92の解放時のパーキングギヤ64の回転位置θPGを採用する。前記パーキングギヤ64の回転位置θPGとは、換言すれば、パーキングギヤ64の回転角度や位相のことであり、その単位としては、例えば、度、ラジアンなどが挙げられる。また、その回転位置θPGの基準としては、パーキングロックポール66ではなくケース12などの固定部材であっても差し支えない。 Parking gear rotational position determining means 148 determines whether or not the rotational position theta PG is predetermined rotational position range Wθ the PG of the parking gear 64 with respect to the parking lock pole 66. At this time, the parking gear rotational position determining means 148, as the rotational position theta PG of the parking gear 64 to the determination, for example, the parking gear 64 at the time of switching operation to the P range by the P switch 48 or the vehicle power supply switch 82 rotational position theta PG, or to adopt a rotational position theta PG release at the parking gear 64 of the foot brake base Dar 92 if the foot brake base Dar 92 is released after the switching operation to the P range. Wherein the rotational position theta PG of the parking gear 64, in other words, it means the rotational angle or phase of the parking gear 64, as is the unit, for example, time, etc. radians and the like. Further, as a reference for the rotational position θPG , a fixing member such as the case 12 may be used instead of the parking lock pole 66.
 このようにパーキングギヤ回転位置判断手段148がパーキングロックポール66に対するパーキングギヤ64の回転位置θPGに関して前記判断をするのは、パーキングロックが実行される場合のパーキングロックポール66がパーキングギヤ64に噛み合う確実性が、そのパーキングギヤ64の回転位置θPGに応じて異なるからである。そのパーキングロックポール66がパーキングギヤ64に噛み合う確実性に関して説明するための図が図7である。 This way the parking gear rotational position determining means 148 for the determination with respect to the rotational position theta PG of the parking gear 64 with respect to the parking lock pawl 66, the parking lock pole 66 when the parking lock is performed meshes with the parking gear 64 certainty, because different depending on the rotational position theta PG of the parking gear 64. FIG. 7 is a diagram for explaining the certainty with which the parking lock pole 66 meshes with the parking gear 64.
 例えば、車両6が坂路に停車させられてパーキングロックが実行されるとき、パーキングロックポール66がパーキングギヤ64に噛み合うまでに、パーキングギヤ64が、図7の矢印APの方向に回転する場合を想定する。そして、非パーキングロックポジションであるときのパーキングロックポール66の噛合歯67に対して、パーキングギヤ64が図7の実線RP1で示す回転位置θPGにある場合と図7の二点鎖線RP2で示す回転位置θPGにある場合とを相互に比較する。 For example, it is assumed that when the vehicle 6 is stopped on a slope and parking lock is executed, the parking gear 64 rotates in the direction of the arrow AP in FIG. 7 until the parking lock pole 66 is engaged with the parking gear 64. To do. Then, it indicates to mesh with the teeth 67 of the parking lock pole 66 when a non-parking lock position, the parking gear 64 by a two-dot chain line RP2 if and 7 in the rotational position theta PG indicated by the solid line RP1 of FIG. 7 The case of the rotational position θPG is compared with each other.
 図7に示すように、パーキングギヤ64が実線RP1で示す回転位置θPGにある場合には、ギヤ歯75上の特定の点P3が、パーキングギヤ64の谷76とパーキングロックポール66の噛合歯67とが互いに向き合う位置を示す点P1にまで前記第2軸心RC2を中心に回動すれば、パーキングロックポール66はパーキングギヤ64に噛み合うことが可能になる。一方で、パーキングギヤ64が二点鎖線RP2で示す回転位置θPGにある場合には、ギヤ歯75上の特定の点P2が前記点P1にまで第2軸心RC2を中心に回動すれば、パーキングロックポール66はパーキングギヤ64に噛み合うことが可能になる。図7でこれらを比較すると、非パーキングロックポジションであるときのパーキングギヤ64が実線RP1で示す回転位置θPGにある場合の方が、二点鎖線RP2で示す回転位置θPGにある場合よりも、より大きな角度で回動しなければパーキングロックポール66はパーキングギヤ64に噛み合えないということが解る。また、本実施例の車両6では、前記シフトバイワイヤシステムによってPロック機構52を駆動するので、そのシフトバイワイヤシステムを採用していない車両と比較して、Pスイッチ48もしくは車両電源スイッチ82によるPレンジへの切替操作がなされてからPロック機構52が非パーキングロックポジションからパーキングロックポジションへと切り替わるまでに、ある程度の応答時間を必要とする。従って、車両6が坂路に停車させられている場合、パーキングギヤ64の回転速度は、上記Pレンジへの切替操作時からPロック機構52がパーキングロックポジションへと切り替わるまでの応答時間内にフットブレーキべダル92の解放と同時に加速するので、パーキングギヤ64が実線RP1で示す回転位置θPGにある場合の方が、二点鎖線RP2で示す回転位置θPGにある場合よりも、点P3から点P1に至る回転角度が点P2から点P1に至る回転角度よりも大きい分、点P1に至った時のパーキングギヤ64の回転速度が大きくなる。そして、パーキングロックポール66は、パーキングギヤ64に噛み合う時のパーキングギヤ64の回転速度が大きいほど、そのパーキングギヤ64に噛み合い難くなり、また、パーキングギヤ64に噛み合うことができたとしても弾かれてその噛合いが外れる可能性が高くなる。従って、図7では、パーキングギヤ64が矢印APの方向に回転する場合において、パーキングロックポール66がパーキングギヤ64に噛み合う確実性は、パーキングギヤ64が実線RP1で示す回転位置θPGにある場合の方が二点鎖線RP2で示す回転位置θPGにある場合よりも低くなると考えられる。このことから、パーキングギヤ回転位置判断手段148の判断に用いられる前記回転位置範囲WθPGは、パーキングギヤ64の回転軸心(RC2)まわりにギヤ歯75と同数だけ等間隔の角度で設けられている。また、その回転位置範囲WθPGは、例えば、車両6が坂路に停車された場合に車輪40を制動装置110で制動しなくても、パーキングロックの実行時にパーキングロックポール66がパーキングギヤ64に噛み合う確実性が十分に確保できるパーキングギヤ64の回転位置θPGの範囲として、実験的に設定されている。換言すれば、上記回転位置範囲WθPGは、車両6が坂路に停車中に車輪40を制動装置110で制動しなくても、パーキングロック時に上記回転位置θPGがその回転位置範囲WθPG内にあれば、パーキングギヤ64が噛み合おうとするパーキングロックポール66を弾く機械的に定まるラチェット車速を車速Vが超えないと推定される回転位置θPGの範囲として設定されている。すなわち、パーキングギヤ回転位置判断手段148は、パーキングロックポール66に対するパーキングギヤ64の回転位置θPGが前記予め定められた回転位置範囲WθPG内にあるか否かを判断することにより、前記パーキングロック時に車速Vが前記ラチェット車速を超えることはないか否かを推定していると言える。 As shown in FIG. 7, when the parking gear 64 is in the rotational position theta PG indicated by the solid line RP1, the particular point P3 on the gear teeth 75 are meshing valley 76 and the parking lock pole 66 of the parking gear 64 teeth The parking lock pawl 66 can be engaged with the parking gear 64 by rotating about the second axial center RC2 to the point P1 indicating the position where the 67 faces each other. On the other hand, when in the rotational position theta PG the parking gear 64 is indicated by the two-dot chain line RP2, if rotated about the second axis RC2 certain point P2 on the gear teeth 75 until the point P1 The parking lock pole 66 can be engaged with the parking gear 64. Comparing these in Figure 7, towards the case where the parking gear 64 when a non-parking lock position is in the rotational position theta PG indicated by the solid line RP1 is than in the rotational position theta PG indicated by the two-dot chain line RP2 It can be seen that the parking lock pole 66 cannot mesh with the parking gear 64 unless it is rotated at a larger angle. Further, in the vehicle 6 of the present embodiment, the P lock mechanism 52 is driven by the shift-by-wire system. Therefore, compared to a vehicle that does not employ the shift-by-wire system, the P range by the P switch 48 or the vehicle power switch 82 is used. A certain response time is required until the P-lock mechanism 52 is switched from the non-parking lock position to the parking lock position after the switching operation is performed. Therefore, when the vehicle 6 is stopped on the slope, the rotation speed of the parking gear 64 is adjusted so that the foot brake is applied within the response time from the switching operation to the P range until the P lock mechanism 52 switches to the parking lock position. since accelerate base release of Dar 92 at the same time, towards the case where the parking gear 64 is in the rotational position theta PG indicated by the solid line RP1 is than in the rotational position theta PG indicated by the two-dot chain line RP2, the point from point P3 Since the rotation angle reaching P1 is larger than the rotation angle reaching from point P2 to point P1, the rotation speed of parking gear 64 when reaching point P1 increases. The parking lock pole 66 becomes harder to engage with the parking gear 64 as the rotational speed of the parking gear 64 when engaging with the parking gear 64 becomes larger, and even if it can engage with the parking gear 64, it is repelled. The possibility of disengagement increases. Thus, in FIG. 7, when the parking gear 64 is rotated in the direction of the arrow AP, the parking lock pawl 66 is certainty that meshes with the parking gear 64, when the parking gear 64 is in the rotational position theta PG indicated by the solid line RP1 it is believed to be lower than in the rotational position theta PG indicated by the two-dot chain line RP2. Therefore, the rotational position range Wshita PG used in the determination of the parking gear rotational position determining means 148, the same number and the gear teeth 75 on the rotation axis (RC2) around the parking gear 64 provided at equal intervals of an angle Yes. Further, the rotational position range Wshita PG, for example, without braking the wheel 40 braking device 110 when the vehicle 6 is stopped at a slope, the parking lock pawl 66 meshes with the parking gear 64 when the parking lock execution a range of rotational positions theta PG of the parking gear 64 that certainty can be sufficiently secured, is set experimentally. In other words, the rotational position range Wshita PG is without braking by the brake device 110 to the wheel 40 to the parked vehicle 6 is the slope, the rotational position theta PG when the parking lock is in its rotational position range Wshita PG If there is, it is set as a range of the rotational position θ PG where the vehicle speed V is estimated not to exceed the mechanical ratchet vehicle speed determined by flipping the parking lock pole 66 to which the parking gear 64 is engaged. That is, the parking gear rotational position determining means 148, by determining whether the rotational position theta PG of the parking gear 64 with respect to the parking lock pawl 66 is in the predetermined rotational position range Wθ the PG, the parking lock It can be said that sometimes it is estimated whether the vehicle speed V does not exceed the ratchet vehicle speed.
 図7において、パーキングロックポール66がパーキングギヤ64に噛み合う確実性の高低は、パーキングギヤ64の回転方向が矢印APとは逆方向であることを前提すれば、前記矢印APの方向である場合に対して、パーキングギヤ64が実線RP1で示す回転位置θPGにある場合と二点鎖線RP2で示す回転位置θPGにある場合との間で逆転する。従って、パーキングギヤ回転位置判断手段148は、車両6が位置する坂路がその車両6を前進させる勾配である場合の回転位置範囲WθPG、すなわち、前進勾配用の回転位置範囲Wθ1PGと、車両6を後進させる勾配である場合の回転位置範囲WθPG、すなわち、後進勾配用の回転位置範囲Wθ2PGとを予め記憶している。そして、パーキングギヤ64の回転位置θPGが回転位置範囲WθPG内にあるか否かの判断をするに先立って、前記坂路が車両6を前進させる勾配である場合には、上記回転位置θPGについての判断をするための上記回転位置範囲WθPGを前進勾配用の回転位置範囲Wθ1PGに設定する一方で、前記坂路が車両6を後進させる勾配である場合には、上記回転位置範囲WθPGを後進勾配用の回転位置範囲Wθ2PGに設定する。なお、この前進勾配用の回転位置範囲Wθ1PGと後進勾配用の回転位置範囲Wθ2PGとは、相互に、パーキングギヤ64を平面的に見てその回転軸心(RC2)を通る中心線(例えば図7の一点鎖線LC1)を基準に線対称の関係にある。 In FIG. 7, the level of certainty that the parking lock pole 66 meshes with the parking gear 64 is determined when the rotation direction of the parking gear 64 is in the direction of the arrow AP, assuming that the rotation direction of the parking gear 64 is opposite to the arrow AP. against it, reversed between the case where the parking gear 64 is in the rotational position theta PG indicated when the two-dot chain line RP2 in the rotational position theta PG indicated by the solid line RP1. Therefore, the parking gear rotation position determination means 148 determines the rotation position range Wθ PG when the slope on which the vehicle 6 is located is a gradient that advances the vehicle 6, that is, the rotation position range Wθ 1 PG for the advance gradient, and the vehicle 6. the rotational position range Wshita PG when a gradient to backward, i.e., stores and rotational position range Wshita2 PG for reverse gradients in advance. Then, when the rotational position theta PG of the parking gear 64 is prior to the determination whether or not in the rotary position range Wshita PG, the slope is a slope of advancing the vehicle 6, the rotational position theta PG while setting the rotational position range Wshita PG for the determination of the rotational position range Wshita1 PG for forward slope for, when the slope is a slope to reverse the vehicle 6, the rotational position range Wshita PG setting the rotational position range Wshita2 PG for reverse gradients. Note that the forward gradient rotational position range Wθ1 PG and the reverse gradient rotational position range Wθ2 PG are mutually centered (for example, through the rotational axis (RC2) when the parking gear 64 is viewed in plan). They are in a line-symmetric relationship with respect to the one-dot chain line LC1) in FIG.
 パーキングロック制御手段152は、駐車意図判断手段142により運転者の駐車意図が検出されたと判断された場合には、パーキングロック装置50のPロック駆動モータ(アクチュエータ)54を作動させることにより出力軸22の回転をロックする、すなわち、パーキングロック装置50により駆動輪38の回転を機械的に阻止(ロック)するパーキングロックを実行する。更に、そのパーキングロックと併せて、パーキングロック制御手段152は、駐車意図判断手段142により運転者の駐車意図が検出されたと判断され、坂路判断手段144により前記路面勾配θSLが前記予め定められた路面勾配判定値θ1SLよりも大きいと判断され、ブレーキ判断手段146によりフットブレーキべダル92が踏み込まれていないと判断され、且つ、パーキングギヤ回転位置判断手段148によりパーキングロックポール66に対するパーキングギヤ64の回転位置θPGが前記予め定められた回転位置範囲WθPGから外れていると判断された場合には、予め定められた車輪制動力F1WHで、制動装置110によって車輪40の回転を制動するブレーキ協調制御を実行する。その一方で、パーキングロック制御手段152は、駐車意図判断手段142により運転者の駐車意図が検出されたと判断され、坂路判断手段144により前記路面勾配θSLが前記予め定められた路面勾配判定値θ1SLよりも大きいと判断され、且つ、ブレーキ判断手段146によりフットブレーキべダル92が踏み込まれていないと判断された場合であっても、パーキングギヤ回転位置判断手段148により前記回転位置θPGが前記予め定められた回転位置範囲WθPG内にあると判断された場合には、前記ブレーキ協調制御を実行せずに制動装置110を解放する。なお、パーキングロック制御手段152は、この場合、前記ブレーキ協調制御を実行せずに制動装置110を解放することに替えて、前記予め定められた車輪制動力F1WHよりも低い所定の制動力F2WHで前記ブレーキ協調制御を実行しても差し支えない。 When the parking intention determination unit 142 determines that the driver's intention to park is detected, the parking lock control unit 152 operates the P lock drive motor (actuator) 54 of the parking lock device 50 to operate the output shaft 22. The parking lock is executed in which the rotation of the drive wheel 38 is mechanically blocked (locked) by the parking lock device 50. In addition to the parking lock, the parking lock control means 152 determines that the driver's intention to park is detected by the parking intention determination means 142, and the road surface gradient θ SL is determined in advance by the slope determination means 144. It is determined that the road surface gradient determination value θ1 SL is larger than that, the brake determination means 146 determines that the foot brake pedal 92 is not depressed, and the parking gear rotation position determination means 148 determines the parking gear 64 for the parking lock pole 66. when the rotational position theta PG of is determined to the deviates from a predetermined rotational position range Wshita PG is a predetermined wheel braking force F1 WH, to brake the rotation of the wheel 40 by the braking device 110 Execute brake coordination control. On the other hand, the parking lock control unit 152 determines that the driver's intention to park has been detected by the parking intention determination unit 142, and the road surface gradient θ SL is determined by the slope determination unit 144 to the predetermined road surface gradient determination value θ1. Even if it is determined that it is greater than SL , and the brake determination means 146 determines that the foot brake pedal 92 is not depressed, the parking gear rotation position determination means 148 causes the rotation position θPG to be If it is determined that the predetermined rotational position range Wθ the PG, to release the brake device 110 without executing the cooperative brake control. In this case, the parking lock control means 152 replaces with releasing the braking device 110 without executing the brake cooperative control, and a predetermined braking force F2 lower than the predetermined wheel braking force F1 WH. The brake cooperative control may be executed by WH .
 ここで、前記予め定められた車輪制動力F1WHは、前記ブレーキ協調制御が繰り返し実行されても制動装置110の耐久性低下を回避できる程度の低い制動力であって、パーキングロック時に坂路における前記路面勾配θSLによるパーキングギヤ64の回転の加速をある程度抑制できる制動力に実験的に設定されている。例えば、上記車輪制動力F1WHは、前記ブレーキ協調制御の実行前に制動装置110が車輪40を制動していたのであれば、その制動時のブレーキ油圧の所定割合が残圧として継続されるように、そのブレーキ協調制御の実行前に予め定められる。また、前記予め定められた車輪制動力F1WHは、パーキングロック時にパーキングギヤ64の回転が加速するのを抑えることを目的に設定されるパラメータであるので、好適には、図8に示すように、車両6が位置する路面の勾配θSL(絶対値)が大きいほど前記予め定められた車輪制動力F1WHは大きくされる。また、前記所定の制動力F2WHが上記予め定められた車輪制動力F1WHよりどれだけ低い制動力とされるかは、その所定の制動力F2WHでの前記ブレーキ協調制御の実行が制動装置110の耐久性にできるだけ影響しないように実験的に設定されている。 Here, the predetermined wheel braking force F1 WH is a braking force that is low enough to avoid a decrease in durability of the braking device 110 even if the brake cooperative control is repeatedly executed, and the parking force is locked when the parking lock is performed. It is experimentally set to a braking force capable of suppressing acceleration of rotation of the parking gear 64 due to the road surface gradient θ SL to some extent. For example, the wheel braking force F1 WH, the if the braking device 110 before execution of the cooperative brake control is not brake the wheel 40, so that a predetermined ratio of the brake hydraulic pressure at the time of braking is continued as residual pressure In addition, it is predetermined before execution of the brake cooperative control. Further, the predetermined wheel braking force F1 WH is a parameter set for the purpose of suppressing acceleration of rotation of the parking gear 64 at the time of parking lock. Therefore, preferably, as shown in FIG. The predetermined wheel braking force F1 WH is increased as the gradient θ SL (absolute value) of the road surface on which the vehicle 6 is located is increased. Further, how much the predetermined braking force F2 WH is set to be lower than the predetermined wheel braking force F1 WH depends on the execution of the brake cooperative control with the predetermined braking force F2WH. It is set experimentally so as not to affect the durability of 110 as much as possible.
 前記ブレーキ協調制御の終了時期に関し、パーキングロック制御手段152は、Pロック駆動モータ54によってパーキングロック装置50がロック状態になるまで前記ブレーキ協調制御を実行し、そのパーキングロック装置50がロック状態になるとそのブレーキ協調制御を終了するというのが望ましい。しかし、前記パーキングロックの実行開始時にパーキングギヤ64の谷76とパーキングロックポール66の噛合歯67とが互いに向き合って噛合可能な状態にあるとは限らず、また、本実施例の車両6では、そのパーキングギヤ64とパーキングロックポール66とが相互に噛み合ったか否かを直接検出するセンサ等は設けられていない。そこで、制御終了判断手段154は、パーキングロック制御手段152が前記ブレーキ協調制御を開始した場合には、そのブレーキ協調制御の実行開始後において車速Vが予め定められた車速判定値V1以下である状態で予め定められた判定時間TM1が経過したか否かを判断する。望ましくは、パーキングロック装置50からシフトレンジがPレンジに切り換わった旨の前記P位置信号が得られた後において、すなわち、そのP位置信号に基づいてシフトレンジがPレンジに切り換わったと認められた後において、上記判断を行う。パーキングロック制御手段152は、制御終了判断手段154により、前記ブレーキ協調制御の実行開始後において車速Vが前記予め定められた車速判定値V1以下である状態で前記予め定められた判定時間TM1が経過したと判断された場合には、前記ブレーキ協調制御を終了する。上記予め定められた車速判定値V1及び判定時間TM1は、そのブレーキ協調制御を継続する必要性を判断するための実験的に設定されたパラメータである。例えば、上記車速判定値V1は前記ラチェット車速よりも十分に低く零より大きい車速Vであって、坂路において制動装置110が解放され車両6が加速したとしてもパーキングギヤ64を回転阻止(ロック)できる車速Vに設定されており、上記判定時間TM1は1秒ぐらいに設定されている。 Regarding the end timing of the brake cooperative control, the parking lock control means 152 executes the brake cooperative control until the parking lock device 50 is locked by the P lock drive motor 54, and when the parking lock device 50 is locked. It is desirable to end the brake cooperative control. However, the valley 76 of the parking gear 64 and the meshing teeth 67 of the parking lock pole 66 are not necessarily in a state where they can be meshed with each other at the start of execution of the parking lock, and in the vehicle 6 of this embodiment, A sensor or the like for directly detecting whether or not the parking gear 64 and the parking lock pole 66 are engaged with each other is not provided. Therefore, when the parking lock control unit 152 starts the brake cooperative control, the control end determination unit 154 is in a state where the vehicle speed V is equal to or less than a predetermined vehicle speed determination value V1 after the execution of the brake cooperative control is started. It is determined whether or not a predetermined determination time TM1 has passed. Preferably, after the P position signal indicating that the shift range is switched to the P range is obtained from the parking lock device 50, that is, it is recognized that the shift range is switched to the P range based on the P position signal. After that, the above judgment is made. The parking lock control means 152 causes the control end determination means 154 to elapse the predetermined determination time TM1 in a state where the vehicle speed V is equal to or less than the predetermined vehicle speed determination value V1 after the execution of the brake cooperative control is started. If it is determined that the brake coordination has been performed, the brake cooperative control is terminated. The predetermined vehicle speed determination value V1 and determination time TM1 are experimentally set parameters for determining the necessity of continuing the brake cooperative control. For example, the vehicle speed determination value V1 is a vehicle speed V that is sufficiently lower than the ratchet vehicle speed and greater than zero, and the parking gear 64 can be prevented from rotating (locked) even when the braking device 110 is released on the slope and the vehicle 6 is accelerated. The vehicle speed V is set, and the determination time TM1 is set to about 1 second.
 パーキングロック制御手段152は、前述の駐車意図判断手段142、坂路判断手段144、ブレーキ判断手段146、及び、パーキングギヤ回転位置判断手段148の判断に基づいて前記ブレーキ協調制御を実行するが、それらの判断に車速Vについての判断も加えた上で、前記ブレーキ協調制御を実行してもよい。例えばそのようにするとすれば、電子制御装置80は更に、制御開始車速判断手段156を備えており、その制御開始車速判断手段156は、車速Vが前記予め定められた車速判定値V1より大きいか否かを判断する。制御開始車速判断手段156は、この判断において、例えば、Pスイッチ48もしくは車両電源スイッチ82によるPレンジへの切替操作時の車速V、または、そのPレンジへの切替操作後にフットブレーキべダル92が解放されたのであればそのフットブレーキべダル92の解放時の車速Vを、前記予め定められた車速判定値V1と比較する。そして、パーキングロック制御手段152は、駐車意図判断手段142により運転者の駐車意図が検出されたと判断され、坂路判断手段144により前記路面勾配θSLが前記予め定められた路面勾配判定値θ1SLよりも大きいと判断され、ブレーキ判断手段146によりフットブレーキべダル92が踏み込まれていないと判断され、パーキングギヤ回転位置判断手段148によりパーキングロックポール66に対するパーキングギヤ64の回転位置θPGが前記予め定められた回転位置範囲WθPGから外れていると判断され、且つ、制御開始車速判断手段156により車速Vが前記予め定められた車速判定値V1より大きいと判断された場合に、前記予め定められた車輪制動力F1WHで前記ブレーキ協調制御を実行する。その一方で、パーキングロック制御手段152は、駐車意図判断手段142により運転者の駐車意図が検出されたと判断され、坂路判断手段144により前記路面勾配θSLが前記予め定められた路面勾配判定値θ1SLよりも大きいと判断され、且つ、ブレーキ判断手段146によりフットブレーキべダル92が踏み込まれていないと判断された場合であっても、パーキングギヤ回転位置判断手段148により前記回転位置θPGが前記予め定められた回転位置範囲WθPG内にあると判断された場合、或いは、制御開始車速判断手段156により車速Vが前記予め定められた車速判定値V1以下であると判断された場合には、前記ブレーキ協調制御を実行せずに制動装置110を解放するか、または、前記所定の制動力F2WHで前記ブレーキ協調制御を実行する。 The parking lock control unit 152 executes the brake cooperative control based on the determinations of the parking intention determination unit 142, the slope determination unit 144, the brake determination unit 146, and the parking gear rotation position determination unit 148 described above. The brake cooperative control may be executed after the determination of the vehicle speed V is added to the determination. For example, in such a case, the electronic control unit 80 further includes a control start vehicle speed determination unit 156. The control start vehicle speed determination unit 156 determines whether the vehicle speed V is greater than the predetermined vehicle speed determination value V1. Judge whether or not. In this determination, the control start vehicle speed determination means 156 determines, for example, that the vehicle speed V at the time of switching operation to the P range by the P switch 48 or the vehicle power switch 82 or the foot brake pedal 92 after the switching operation to the P range. If released, the vehicle speed V when the foot brake pedal 92 is released is compared with the predetermined vehicle speed determination value V1. Then, the parking lock control means 152 determines that the driver's intention to park is detected by the parking intention determination means 142, and the slope determination means 144 determines that the road surface gradient θ SL is based on the predetermined road surface gradient determination value θ1 SL . is determined to be large, it is determined that the foot brake base Dar 92 by the brake determination section 146 is not depressed, defined rotational position theta PG of the parking gear 64 with respect to the parking lock pawl 66 is the advance by the parking gear rotational position determining means 148 It was judged to be out of the rotational position range Wshita PG, and, when the vehicle speed V by the control start vehicle speed determining means 156 is determined to greater than said vehicle speed determining value V1 predetermined said predetermined The brake cooperative control is executed with the wheel braking force F1 WH . On the other hand, the parking lock control unit 152 determines that the driver's intention to park has been detected by the parking intention determination unit 142, and the road surface gradient θ SL is determined by the slope determination unit 144 to the predetermined road surface gradient determination value θ1. Even if it is determined that it is greater than SL , and the brake determination means 146 determines that the foot brake pedal 92 is not depressed, the parking gear rotation position determination means 148 causes the rotation position θPG to be If it is determined that the predetermined rotational position range Wθ the PG, or when the vehicle speed V is determined to the at most vehicle speed determining value V1 predetermined by the control start vehicle speed determining means 156, The braking device 110 is released without executing the brake cooperative control, or the brake cooperation is performed with the predetermined braking force F2 WH. Execute adjustment control.
 図9は、電子制御装置80の制御作動の要部、すなわち、前記パーキングロックを実行する制御作動を説明するためのフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。 FIG. 9 is a flowchart for explaining the main part of the control operation of the electronic control unit 80, that is, the control operation for executing the parking lock. For example, the control operation is repeatedly executed with a very short cycle time of about several milliseconds to several tens of milliseconds. Is done.
 先ず、駐車意図判断手段142に対応するステップ(以下、「ステップ」を省略する)SA1においては、運転者の駐車意図が検出されたか否かが判断される。例えば、前記Pレンジ切替条件が満たされてPスイッチ48が押された場合や、前記オートP作動でのPレンジへの切替操作がなされた場合に、運転者の駐車意図が検出されたと判断される。このSA1の判断が肯定された場合、すなわち、運転者の駐車意図が検出された場合には、SA2に移る。一方、このSA1の判断が否定された場合には、図9のフローチャートは終了する。 First, in a step (hereinafter, “step” is omitted) SA1 corresponding to the parking intention determination unit 142, it is determined whether or not the driver's parking intention is detected. For example, it is determined that the driver's intention to park is detected when the P range switching condition is satisfied and the P switch 48 is pressed, or when the switching operation to the P range is performed in the auto P operation. The If the determination of SA1 is affirmative, that is, if the driver's intention to park is detected, the process proceeds to SA2. On the other hand, if the determination of SA1 is negative, the flowchart of FIG. 9 ends.
 パーキングロック制御手段152に対応するSA2においては、前記パーキングロックが実行される。 In SA2 corresponding to the parking lock control means 152, the parking lock is executed.
 図10は、電子制御装置80の制御作動の要部、すなわち、前記ブレーキ協調制御を実行する制御作動を説明するためのフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。なお、例えば、図9のフローチャートと図10のフローチャートとは相互に並行して実行される。 FIG. 10 is a flowchart for explaining a main part of the control operation of the electronic control unit 80, that is, a control operation for executing the brake cooperative control. For example, the control operation is repeated with a very short cycle time of about several milliseconds to several tens of milliseconds. Executed. For example, the flowchart of FIG. 9 and the flowchart of FIG. 10 are executed in parallel with each other.
 駐車意図判断手段142に対応するSB1においては、図9のSA1と同じ内容が判断される。このSB1の判断が肯定された場合、すなわち、運転者の駐車意図が検出された場合には、SB2に移る。一方、このSB1の判断が否定された場合には、SB9に移る。 In SB1 corresponding to the parking intention determination means 142, the same content as SA1 in FIG. 9 is determined. When the determination of SB1 is affirmed, that is, when the driver's intention to park is detected, the process proceeds to SB2. On the other hand, when the determination of SB1 is negative, the process proceeds to SB9.
 坂路判断手段144に対応するSB2においては、車両6が位置する路面の勾配θSLが前記予め定められた路面勾配判定値θ1SLより大きいか否かが判断される。このSB2の判断が肯定された場合、すなわち、上記路面の勾配θSLが上記予め定められた路面勾配判定値θ1SLより大きい場合には、SB3に移る。一方、このSB2の判断が否定された場合には、SB9に移る。 In SB2 corresponding to the slope determining means 144, whether the vehicle 6 is greater than the slope theta SL is the pre-road gradient determining value θ1 defined SL to the road surface position is determined. If the determination in SB2 is affirmative, that is, if the road surface gradient θ SL is greater than the predetermined road surface gradient determination value θ1 SL , the process proceeds to SB3. On the other hand, if the determination at SB2 is negative, the operation proceeds to SB9.
 ブレーキ判断手段146に対応するSB3においては、フットブレーキべダル92が踏み込まれているか否かが判断される。フットブレーキべダル92が踏み込まれていれば、それにより制動装置110は車輪40を制動しており、前記ブレーキ協調制御を実行する必要性が無いからである。このSB3の判断が肯定された場合、すなわち、フットブレーキべダル92が踏み込まれている場合には、SB9に移る。一方、このSB3の判断が否定された場合には、SB4に移る。 In SB3 corresponding to the brake determination means 146, it is determined whether or not the foot brake pedal 92 is depressed. This is because if the foot brake pedal 92 is depressed, the brake device 110 brakes the wheel 40, and there is no need to execute the brake cooperative control. If the determination at SB3 is affirmative, that is, if the foot brake pedal 92 is depressed, the process proceeds to SB9. On the other hand, if the determination at SB3 is negative, the operation proceeds to SB4.
 パーキングギヤ回転位置判断手段148に対応するSB4においては、車両6が位置する坂路が車両6を前進させる勾配である場合には、前記回転位置範囲WθPGとして前記前進勾配用の回転位置範囲Wθ1PGが設定される。その一方で、上記坂路が車両6を後進させる勾配である場合には、上記回転位置範囲WθPGとして後進勾配用の回転位置範囲Wθ2PGが設定される。SB4の次はSB5に移る。 In SB4 corresponding to the parking gear rotational position determining means 148, when slope where the vehicle 6 is located, is the slope of advancing the vehicle 6, the rotational position range Wshita1 PG for the forward slope as the rotational position range Wshita PG Is set. On the other hand, the slope is in the case of gradient to reverse the vehicle 6, the rotational position range Wshita2 PG for reverse gradients as the rotational position range Wshita PG is set. After SB4, the process proceeds to SB5.
 パーキングギヤ回転位置判断手段148に対応するSB5においては、パーキングロックポール66に対するパーキングギヤ64の回転位置θPGが、前記SB4にて予め定められた前記回転位置範囲WθPG内にあるか否かが判断される。上記パーキングロックポール66に対するパーキングギヤ64の回転位置θPGは、車速センサ84と第2電動機回転速度センサ86との何れか一方により検出されてもよいが、本実施例では、その車速センサ84及び第2電動機回転速度センサ86の両方により検出される。そして、その車速センサ84及び第2電動機回転速度センサ86の一方が故障した場合には他方がバックアップとして機能する。このSB5の判断が肯定された場合、すなわち、上記回転位置θPGが上記回転位置範囲WθPG内にある場合には、SB9に移る。一方、このSB5の判断が否定された場合には、SB6に移る。 In SB5 corresponding to the parking gear rotational position determining means 148, the rotational position theta PG of the parking gear 64 with respect to the parking lock pawl 66, whether the predetermined said rotational position range Wθ the PG at the SB4 is To be judged. Rotational position theta PG of the parking gear 64 with respect to the parking lock pawl 66, a vehicle speed sensor 84 may be detected by one of the second electric motor rotation speed sensor 86, but in this embodiment, and a vehicle speed sensor 84 It is detected by both the second motor rotation speed sensor 86. When one of the vehicle speed sensor 84 and the second motor rotation speed sensor 86 fails, the other functions as a backup. If the determination in SB5 is positive, i.e., when the rotational position theta PG is in the rotational position range Wθ the PG proceeds to SB9. On the other hand, if the determination at SB5 is negative, the operation proceeds to SB6.
 パーキングロック制御手段152に対応するSB6においては、前記予め定められた車輪制動力F1WHで前記ブレーキ協調制御の実行が開始される。このとき、図8に示すように、その車輪制動力F1WHは、車両6が位置する路面の勾配θSLに基づいて変更されてもよい。また、SB6では、そのブレーキ協調制御が既に開始されているのであればその実行が継続される。SB6の次はSB7に移る。 In SB6 corresponding to the parking lock control means 152, execution of the brake cooperative control is started with the predetermined wheel braking force F1WH . At this time, as shown in FIG. 8, the wheel braking force F1 WH may be changed based on the gradient θ SL of the road surface on which the vehicle 6 is located. In SB6, if the brake cooperative control has already been started, the execution is continued. After SB6, the process proceeds to SB7.
 制御終了判断手段154に対応するSB7においては、前記ブレーキ協調制御の実行開始後において、シフトレンジがPレンジであり、且つ、車速Vが前記予め定められた車速判定値V1以下である状態で前記予め定められた判定時間TM1が経過したか否かが判断される。なお、このSB7において、上記シフトレンジがPレンジであるということは、具体的には、パーキングロック装置50からシフトレンジがPレンジに切り換わった旨の前記P位置信号が得られたということである。このSB7の判断が肯定された場合、すなわち、シフトレンジがPレンジであり、且つ、車速Vが前記予め定められた車速判定値V1以下である状態で前記予め定められた判定時間TM1が経過した場合には、SB8に移る。一方、このSB7の判断が否定された場合には、SB6に移る。 In SB7 corresponding to the control end determination means 154, after the execution of the brake cooperative control is started, the shift range is the P range, and the vehicle speed V is equal to or less than the predetermined vehicle speed determination value V1. It is determined whether or not a predetermined determination time TM1 has elapsed. In SB7, the fact that the shift range is the P range specifically means that the P position signal indicating that the shift range has been switched to the P range is obtained from the parking lock device 50. is there. When the determination of SB7 is affirmative, that is, the predetermined determination time TM1 has elapsed in a state where the shift range is the P range and the vehicle speed V is equal to or less than the predetermined vehicle speed determination value V1. In the case, the process proceeds to SB8. On the other hand, if the determination at SB7 is negative, the operation proceeds to SB6.
 パーキングロック制御手段152に対応するSB8においては、前記ブレーキ協調制御が終了させられる。 In SB8 corresponding to the parking lock control means 152, the brake cooperative control is terminated.
 パーキングロック制御手段152に対応するSB9においては、前記ブレーキ協調制御が実行されない。例えば、フットブレーキべダル92が踏み込まれていなければ制動装置110が解放させられる。 In SB9 corresponding to the parking lock control means 152, the brake cooperative control is not executed. For example, if the foot brake pedal 92 is not depressed, the braking device 110 is released.
 図10のフローチャートでは、前記ブレーキ協調制御が開始される条件がSB1、SB2、SB3、及びSB5にて判断されたが、更に、図10に図11のSB5’が加えられてもよい。なお、図11のSB5~SB9は図10のそれと同一である。 In the flowchart of FIG. 10, the conditions for starting the brake cooperative control are determined in SB1, SB2, SB3, and SB5, but SB5 'in FIG. 11 may be added to FIG. Note that SB5 to SB9 in FIG. 11 are the same as those in FIG.
 図11において、制御開始車速判断手段156に対応するSB5’は、図10のSB5の判断が否定された場合に実行されるステップであり、そのSB5’においては、車速Vが前記予め定められた車速判定値V1より大きいか否かが判断される。このSB5’の判断が肯定された場合、すなわち、車速Vが前記予め定められた車速判定値V1より大きい場合には、SB6に移る。一方、このSB5’の判断が否定された場合には、SB9に移る。 In FIG. 11, SB5 ′ corresponding to the control start vehicle speed determining means 156 is a step executed when the determination of SB5 in FIG. 10 is denied, and in the SB5 ′, the vehicle speed V is determined in advance. It is determined whether or not the vehicle speed determination value V1 is greater. If the determination at SB5 'is affirmative, that is, if the vehicle speed V is greater than the predetermined vehicle speed determination value V1, the process proceeds to SB6. On the other hand, if the determination at SB5 'is negative, the operation proceeds to SB9.
 前述したように、図6のパーキングロック制御手段152は、前記ブレーキ協調制御を実行せずに制動装置110を解放する場合に、それに替えて、前記予め定められた車輪制動力F1WHよりも低い前記所定の制動力F2WHで前記ブレーキ協調制御を実行しても差し支えない。このようにした場合の電子制御装置80の制御作動の要部を説明するためのフローチャートが図12及び図13である。なお、図12及び図13のフローチャートは、図10に対して、図11のSB5’を追加し、新たにSB101とSB102とを更に追加したものである。そして、図12及び図13のSB1~SB9、SB5’は、以下の説明を除き、図10及び図11のSB1~SB9、SB5’と同じ内容である。図12及び図13では、図10及び図11とは異なる点を主として説明する。 As described above, the parking lock control means 152 shown in FIG. 6 is lower than the predetermined wheel braking force F1 WH instead of releasing the braking device 110 without executing the brake cooperative control. no problem even when executing the cooperative brake control in the predetermined braking force F2 WH. 12 and 13 are flowcharts for explaining the main part of the control operation of the electronic control unit 80 in such a case. Note that the flowcharts of FIGS. 12 and 13 are obtained by adding SB 5 ′ of FIG. 11 and further adding SB 101 and SB 102 to FIG. 10. SB1 to SB9 and SB5 ′ in FIGS. 12 and 13 have the same contents as SB1 to SB9 and SB5 ′ in FIGS. 10 and 11 except for the following description. In FIGS. 12 and 13, differences from FIGS. 10 and 11 are mainly described.
 図13において、SB5の判断が否定された場合にはSB5’に移り、そのSB5’の判断が肯定された場合にはSB101に移る。そのSB101においては、SB6で実行される前記ブレーキ協調制御での車輪40に対する制動力が、前記予め定められた車輪制動力F1WHに決定される。SB101の次はSB6に移る。 In FIG. 13, when the determination of SB5 is denied, the process proceeds to SB5 ′, and when the determination of SB5 ′ is affirmed, the process proceeds to SB101. In SB101, the braking force for the wheel 40 in the brake cooperative control executed in SB6 is determined to be the predetermined wheel braking force F1 WH . After SB101, the process proceeds to SB6.
 SB5の判断が肯定された場合、または、SB5’の判断が否定された場合にはSB102に移る。そのSB102においては、SB6で実行される前記ブレーキ協調制御での車輪40に対する制動力が、前記予め定められた車輪制動力F1WHよりも低い前記所定の制動力F2WHに決定される。SB102の次はSB6に移る。なお、SB101及びSB102はパーキングロック制御手段152に対応する。 When the determination of SB5 is affirmed, or when the determination of SB5 ′ is denied, the process proceeds to SB102. In the SB102 is the braking force to the wheels 40 in the cooperative brake control executed by SB6 is, the determined lower the predetermined braking force F2 WH than a predetermined wheel braking force F1 WH. After SB102, the process proceeds to SB6. SB101 and SB102 correspond to the parking lock control means 152.
 図13のSB6においては、SB101又はSB102で決定された車輪40に対する制動力で前記ブレーキ協調制御の実行が開始される。また、そのブレーキ協調制御が既に開始されているのであればその実行が継続される。 In SB6 of FIG. 13, execution of the brake cooperative control is started with the braking force applied to the wheel 40 determined in SB101 or SB102. If the brake cooperative control has already been started, the execution is continued.
 本実施例には次のような効果(A1)乃至(A8)がある。(A1)本実施例によれば、パーキングロック制御手段152は、駐車意図判断手段142により運転者の駐車意図が検出されたと判断され、ブレーキ判断手段146によりフットブレーキべダル92が踏み込まれていないと判断され、且つ、パーキングギヤ回転位置判断手段148によりパーキングロックポール66に対するパーキングギヤ64の回転位置θPGが前記予め定められた回転位置範囲WθPGから外れていると判断された場合には、前記パーキングロックと併せて、予め定められた車輪制動力F1WHで、制動装置110によって車輪40の回転を制動する前記ブレーキ協調制御を実行する。その一方で、パーキングロック制御手段152は、駐車意図判断手段142により運転者の駐車意図が検出されたと判断され、且つ、ブレーキ判断手段146によりフットブレーキべダル92が踏み込まれていないと判断された場合であっても、パーキングギヤ回転位置判断手段148により前記回転位置θPGが前記予め定められた回転位置範囲WθPG内にあると判断された場合には、制動装置110を解放し、或いは、前記予め定められた車輪制動力F1WHよりも低い所定の制動力F2WHで前記ブレーキ協調制御を実行する。従って、前記回転位置θPGが前記予め定められた回転位置範囲WθPG内か否かに基づいてパーキングギヤ64がパーキングロックポール(噛合部材)66と噛み合わされ難い回転位置θPGか否かが判断され、それにより必要に応じて前記ブレーキ協調制御が実行され或いはそのブレーキ協調制御における制動装置110の制動力が加減されて、車輪40と連動回転するパーキングギヤ64が制動されることになるので、パーキングギヤ64にパーキングロックポール66を噛み合わせる際に車両6が移動しようとしてもパーキングギヤ64が速く回転することがなく、パーキングロック装置50が出力軸22の回転ロックを行う確実性を向上させることが可能である。また、前記駐車意図が検出された場合に一律に前記ブレーキ協調制御が実行される場合と比較して、制動装置110の耐久性低下を抑えることができる。 This embodiment has the following effects (A1) to (A8). (A1) According to the present embodiment, the parking lock control means 152 determines that the driver's intention to park has been detected by the parking intention determination means 142, and the foot brake pedal 92 has not been depressed by the brake determination means 146. It is determined, and, when it is determined that the rotational position theta PG of the parking gear 64 with respect to the parking lock pawl 66 is disengaged from the rotational position range Wshita PG said predetermined by the parking gear rotational position determining means 148, In conjunction with the parking lock, the brake cooperative control for braking the rotation of the wheel 40 by the braking device 110 is executed with a predetermined wheel braking force F1 WH . On the other hand, the parking lock control means 152 determines that the driver's intention to park has been detected by the parking intention determination means 142 and the brake determination means 146 has determined that the foot brake pedal 92 has not been depressed. even if, when the rotational position theta PG is determined to be in the predetermined rotational position range Wθ the PG by the parking gear rotational position determining means 148 releases the braking device 110, or, wherein performing the cooperative brake control at a low predetermined braking force F2 WH than the wheel braking force F1 WH predetermined. Thus, the rotational position theta PG is the predetermined rotational position range Wshita PG in whether on the basis of the parking gear 64 is the parking lock pawl (engaging member) 66 and meshed hardly rotational position theta PG whether judgment As a result, the brake cooperative control is executed as necessary, or the braking force of the braking device 110 in the brake cooperative control is adjusted, and the parking gear 64 that rotates in conjunction with the wheels 40 is braked. Even when the vehicle 6 tries to move when the parking lock pole 66 is engaged with the parking gear 64, the parking gear 64 does not rotate fast, and the certainty that the parking lock device 50 locks the rotation of the output shaft 22 is improved. Is possible. Moreover, compared with the case where the said brake cooperation control is performed uniformly when the said parking intention is detected, the durable fall of the braking device 110 can be suppressed.
 (A2)また、本実施例によれば、パーキングロック制御手段152は、前述の駐車意図判断手段142、ブレーキ判断手段146、及びパーキングギヤ回転位置判断手段148の判断から前記予め定められた車輪制動力F1WHで前記ブレーキ協調制御を実行すべきとされ、更に、坂路判断手段144により前記路面勾配θSLが前記予め定められた路面勾配判定値θ1SLよりも大きいと判断された場合に、前記予め定められた車輪制動力F1WHで前記ブレーキ協調制御を実行するので、車両6の移動し易さが上記路面勾配θSLから判断されることになり、その予め定められた車輪制動力F1WHでブレーキ協調制御を実行する必要性がより適切に判断され、一層、制動装置110の耐久性低下を抑えることができる。 (A2) Further, according to the present embodiment, the parking lock control means 152 determines the predetermined wheel control based on the judgments of the aforementioned parking intention judgment means 142, brake judgment means 146, and parking gear rotation position judgment means 148. is a should execute the cooperative brake control by the power F1 WH, further, when the road surface gradient theta SL is determined to the greater than a predetermined road gradient determining value .theta.1 SL by slope determination unit 144, the Since the brake cooperative control is executed with a predetermined wheel braking force F1 WH , the ease of movement of the vehicle 6 is determined from the road surface gradient θ SL , and the predetermined wheel braking force F1 WH is determined. Therefore, the necessity of executing the brake cooperative control is more appropriately determined, and the deterioration of the durability of the braking device 110 can be further suppressed.
 (A3)また、本実施例によれば、パーキングロックポール66に対するパーキングギヤ64の回転位置θPGは、車速センサ84により検出されるので、車速センサ84により、出力軸回転速度NOUTに対応する車速Vを検出できるとともに、その回転位置θPGも検出できる。従って、その回転位置θPGの検出のためだけにセンサを設ける必要がない。 (A3) Further, according to this embodiment, the rotational position theta PG of the parking gear 64 with respect to the parking lock pole 66, since it is detected by the vehicle speed sensor 84, a vehicle speed sensor 84 corresponds to the output shaft rotation speed N OUT it is possible to detect the vehicle speed V, the can also be detected the rotational position theta PG. Therefore, it is not necessary to provide a sensor only for the detection of the rotational position theta PG.
 (A4)また、本実施例によれば、パーキングロックポール66に対するパーキングギヤ64の回転位置θPGは、第2電動機回転速度センサ86により検出されるので、本実施例の車両6のようなハイブリッド車両や電気自動車などにおいて、その回転位置θPGの検出のためだけにセンサを設けずに、第2電動機回転速度センサ86を上記回転位置θPGの検出のために兼用できる。 (A4) Further, according to this embodiment, the rotational position theta PG of the parking gear 64 with respect to the parking lock pole 66, since it is detected by the second electric motor rotation speed sensor 86, a hybrid such as a vehicle 6 in this embodiment in such a vehicle, an electric vehicle, without providing the sensor only for the detection of the rotational position theta PG, the second electric motor rotation speed sensor 86 can be also used for the detection of the rotational position theta PG.
 (A5)また、本実施例によれば、パーキングロックポール66に対するパーキングギヤ64の回転位置θPGは、車速センサ84及び第2電動機回転速度センサ86の両方により検出されるので、その車速センサ84及び第2電動機回転速度センサ86の一方が故障した場合には他方がバックアップとして機能させられ、確実に上記回転位置θPGを検出できる。 (A5) Also, according to this embodiment, the rotational position theta PG of the parking gear 64 with respect to the parking lock pole 66, since it is detected by both the vehicle speed sensor 84 and the second electric motor rotation speed sensor 86, the vehicle speed sensor 84 and when one of the second electric motor rotation speed sensor 86 fails the other is allowed to function as a backup can be reliably detect the rotational position theta PG.
 (A6)また、本実施例によれば、パーキングロック制御手段152は、制御終了判断手段154により、前記ブレーキ協調制御の実行開始後において車速Vが前記予め定められた車速判定値V1以下である状態で前記予め定められた判定時間TM1が経過したと判断された場合には、前記ブレーキ協調制御を終了する。従って、車速V及び時間経過を測定することにより上記ブレーキ協調制御の終了時期を容易に決定でき、制動装置110により車輪40が不要に制動されることを抑制できる。 (A6) Also, according to this embodiment, the parking lock control means 152 causes the control end judgment means 154 to make the vehicle speed V equal to or lower than the predetermined vehicle speed judgment value V1 after the execution of the brake cooperative control. When it is determined that the predetermined determination time TM1 has elapsed in the state, the brake cooperative control is terminated. Therefore, by measuring the vehicle speed V and the passage of time, it is possible to easily determine the end time of the brake cooperative control, and it is possible to suppress unnecessary braking of the wheels 40 by the braking device 110.
 (A7)また、本実施例によれば、パーキングロック制御手段152は、前述の駐車意図判断手段142、坂路判断手段144、ブレーキ判断手段146、及びパーキングギヤ回転位置判断手段148の判断から前記予め定められた車輪制動力F1WHで前記ブレーキ協調制御を実行すべきとされ、更に、制御開始車速判断手段156により車速Vが前記予め定められた車速判定値V1より大きいと判断された場合に、前記予め定められた車輪制動力F1WHで前記ブレーキ協調制御を実行するものであってもよい。そのようにしたとすれば、車速Vに基づかずにそのブレーキ協調制御が開始される場合と比較して、そのブレーキ協調制御を実行する必要性がより適切に判断され、制動装置110の耐久性低下を抑えることができる。 (A7) Further, according to the present embodiment, the parking lock control means 152 determines whether the parking intent judgment means 142, the slope judgment means 144, the brake judgment means 146, and the parking gear rotation position judgment means 148 are in advance. When the brake cooperative control is to be executed with a predetermined wheel braking force F1 WH , and when the vehicle speed V is determined to be greater than the predetermined vehicle speed determination value V1 by the control start vehicle speed determination means 156, The brake cooperative control may be executed with the predetermined wheel braking force F1 WH . If so, compared with the case where the brake cooperative control is started without being based on the vehicle speed V, the necessity of executing the brake cooperative control is more appropriately determined, and the durability of the braking device 110 is determined. The decrease can be suppressed.
 (A8)また、本実施例によれば、好適には、図8に示すように、車両6が位置する路面の勾配θSL(絶対値)が大きいほど前記予め定められた車輪制動力F1WHは大きくされる。そのようにしたとすれば、不必要に大きな制動力で前記ブレーキ協調制御が実行されることが抑制され、制動装置110の耐久性低下を抑えることができる。 (A8) Also, according to the present embodiment, preferably, as shown in FIG. 8, the predetermined wheel braking force F1 WH increases as the gradient θ SL (absolute value) of the road surface on which the vehicle 6 is located increases. Is enlarged. If it does so, it will be suppressed that the said brake cooperation control is performed with an unnecessarily big braking force, and the durable fall of the braking device 110 can be suppressed.
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.
 例えば、前述の本実施例の前記ブレーキ協調制御において、車輪40は、その回転が制動装置110によって制動されるが、その場合、4輪全てが制動されてもよいし、全4輪のうちの1輪だけが制動されてもよい。また、そのブレーキ協調制御において制動される車輪40は、駆動輪38であっても無くてもよい。 For example, in the brake cooperative control of the above-described embodiment, the rotation of the wheel 40 is braked by the braking device 110. In that case, all four wheels may be braked, or all of the four wheels may be braked. Only one wheel may be braked. Further, the wheel 40 to be braked in the brake cooperative control may or may not be the drive wheel 38.
 また、前述の本実施例においては、Pスイッチ48や車両電源スイッチ82が押されて運転者の駐車意図が検出されるが、そのようなスイッチ操作に限定されず、例えば、特定の音声が認識されることにより運転者の駐車意図が検出されても差し支えない。従って、本発明の駐車意図検出装置は、Pスイッチ48や車両電源スイッチ82に限定されるものではなく、マイク等の音声認識装置であってもよい。 In the above-described embodiment, the driver's intention to park is detected by pressing the P switch 48 or the vehicle power switch 82. However, the present invention is not limited to such switch operation. For example, a specific voice is recognized. Thus, the driver's intention to park may be detected. Accordingly, the parking intention detection device of the present invention is not limited to the P switch 48 or the vehicle power switch 82, and may be a voice recognition device such as a microphone.
 また、前述の本実施例においては、図10乃至図13のフローチャートからすると、前記ブレーキ協調制御が実行される前提条件として、坂路の路面勾配θSLや車速Vなどについて判断されるが、更に図10乃至図13に示されていない他のパラメータについて判断した上で上記ブレーキ協調制御が実行されても差し支えない。 In the above-described embodiment, the road surface gradient θ SL and the vehicle speed V are determined as preconditions for executing the brake cooperative control according to the flowcharts of FIGS. 10 to 13. The brake coordination control may be executed after determining other parameters not shown in FIGS. 10 to 13.
 また、前述の本実施例の図10において、SB2が設けられておらずに、SB1の判断が肯定された場合にはSB3に移るフローチャートも考え得る。 Also, in FIG. 10 of the above-described embodiment, if SB2 is not provided and the determination of SB1 is affirmed, a flowchart of moving to SB3 can be considered.
 また、前述の本実施例の図12及び図13において、SB5’が設けられておらずに、SB5の判断が否定された場合にはSB101に移るフローチャートも考え得る。 Further, in FIGS. 12 and 13 of the above-described embodiment, if SB5 'is not provided and the determination of SB5 is denied, a flowchart of moving to SB101 can be considered.
 また、前述の本実施例において、前記ブレーキ協調制御とは制動装置110によって車輪40の回転を制動するものであるが、そのときに、車輪40の回転が完全に停止される必要は無く、坂路などで車輪40が回転しようする場合に車輪40に対し回転抵抗を与えることができればよい。 In the above-described embodiment, the brake cooperative control is to brake the rotation of the wheel 40 by the braking device 110. At this time, it is not necessary to completely stop the rotation of the wheel 40. For example, when the wheel 40 is about to rotate, a rotation resistance may be given to the wheel 40.
 また、前述の本実施例において、前記ブレーキ協調制御は、車両6が位置する坂路がその車両6を前進させる勾配であっても後進させる勾配であっても実行され得るが、その何れか一方の勾配では実行されないとしても差し支えない。 In the above-described embodiment, the brake cooperative control can be executed regardless of whether the slope on which the vehicle 6 is located has a gradient that causes the vehicle 6 to move forward or a gradient that causes the vehicle 6 to move backward. It does not matter if it is not performed on a gradient.
 また、前述の本実施例において、車両6は、差動機構としての動力分配機構16と第1電動機M1とを備えているが、例えば、第1電動機M1及び動力分配機構16を備えてはおらず、エンジン8,クラッチ,第2電動機M2,自動変速機,駆動輪38が直列に連結された所謂パラレルハイブリッド車両であってもよい。なお、エンジン8と第2電動機M2との間の上記クラッチは必要に応じて設けられるものであるので、上記パラレルハイブリッド車両がそのクラッチを備えていない構成も考え得る。 In the above-described embodiment, the vehicle 6 includes the power distribution mechanism 16 as the differential mechanism and the first electric motor M1. However, for example, the vehicle 6 does not include the first electric motor M1 and the power distribution mechanism 16. Also, a so-called parallel hybrid vehicle in which the engine 8, the clutch, the second electric motor M2, the automatic transmission, and the drive wheels 38 are connected in series may be used. In addition, since the said clutch between the engine 8 and the 2nd electric motor M2 is provided as needed, the structure where the said parallel hybrid vehicle is not equipped with the clutch can also be considered.
 また、前述の本実施例の車両6はハイブリッド車両であるが、電動機を備えていない通常のエンジン車両であってもよいし、エンジン8を備えていない電気自動車であっても差し支えない。 Further, although the vehicle 6 of the present embodiment described above is a hybrid vehicle, it may be a normal engine vehicle that does not include an electric motor, or an electric vehicle that does not include an engine 8.
 また、前述の実施例では、第2電動機M2は、伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、伝達部材18から駆動輪38までの間の動力伝達経路に直接的或いは係合装置等を介して間接的に連結されていてもよい。例えば、第2電動機M2は、伝達部材18にではなく、出力軸22に直接連結されていてもよい。 In the above-described embodiment, the second electric motor M2 is directly connected to the transmission member 18, but the connection position of the second electric motor M2 is not limited thereto, and the power between the transmission member 18 and the drive wheels 38 is not limited thereto. It may be directly or indirectly connected to the transmission path via an engagement device or the like. For example, the second electric motor M2 may be directly connected to the output shaft 22 instead of the transmission member 18.
 また、前述の実施例では、第1電動機M1の運転状態が制御されることにより、差動部11はその変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能するものであったが、たとえば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであっても差し支えない。 Further, in the above-described embodiment, by controlling the operating state of the first electric motor M1, the differential unit 11 has the electric gear ratio γ0 continuously changed from the minimum value γ0min to the maximum value γ0max. Although it functions as a step transmission, for example, the gear ratio γ0 of the differential section 11 may be changed stepwise by using a differential action instead of continuously.
 また、前述の実施例の動力分配機構16では、差動部キャリヤCA0がエンジン8に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではない。 In the power distribution mechanism 16 of the above-described embodiment, the differential carrier CA0 is connected to the engine 8, the differential sun gear S0 is connected to the first electric motor M1, and the differential ring gear R0 is connected to the transmission member 18. However, their connection relationship is not necessarily limited thereto.
 また、前述の実施例では、エンジン8は入力軸14と直結されていたが、たとえばギヤ、ベルト等を介して作動的に連結されていてもよく、共通の軸心上に配置される必要もない。 In the above-described embodiment, the engine 8 is directly connected to the input shaft 14. However, the engine 8 may be operatively connected via a gear, a belt, or the like, and may be disposed on a common shaft center. Absent.
 また、前述の実施例ではエンジン8と差動部11とが直接連結されているが、必ずしも直接連結される必要はなく、エンジン8と差動部11との間にクラッチを介して連結されていてもよい。 In the above-described embodiment, the engine 8 and the differential unit 11 are directly connected. However, the engine 8 and the differential unit 11 are not necessarily connected directly, and are connected via a clutch between the engine 8 and the differential unit 11. May be.
 また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、たとえばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。 In the above-described embodiment, the first electric motor M1 and the second electric motor M2 are disposed concentrically with the input shaft 14, the first electric motor M1 is connected to the differential sun gear S0, and the second electric motor M2 is connected to the transmission member 18. However, the first motor M1 is operatively connected to the differential unit sun gear S0 through, for example, a gear, a belt, a speed reducer, etc., and the second motor M2 is It may be connected to the transmission member 18.
 また、前述の実施例において、動力分配機構16は、1組の遊星歯車装置(差動部遊星歯車装置24)から構成されていたが2以上の遊星歯車装置から構成されていても差し支えない。また、差動部遊星歯車装置24はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。 In the above-described embodiment, the power distribution mechanism 16 is composed of one set of planetary gear devices (differential planetary gear device 24). However, the power distribution mechanism 16 may be composed of two or more planetary gear devices. The differential planetary gear device 24 is not limited to a single pinion type, and may be a double pinion type planetary gear device.
 また、前述の実施例の動力伝達機構10において、第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。 In the power transmission mechanism 10 of the above-described embodiment, the first electric motor M1 and the second rotating element RE2 are directly connected, and the second electric motor M2 and the third rotating element RE3 are directly connected. The electric motor M1 may be connected to the second rotating element RE2 via an engaging element such as a clutch, and the second electric motor M2 may be connected to the third rotating element RE3 via an engaging element such as a clutch.
 また前述の実施例において、差動部11が、第1電動機M1及び第2電動機M2を備えているが、第1電動機M1及び第2電動機M2は差動部11とは別個に動力伝達機構10に備えられていてもよい。 In the above-described embodiment, the differential unit 11 includes the first electric motor M1 and the second electric motor M2. However, the first electric motor M1 and the second electric motor M2 are separate from the differential unit 11 in the power transmission mechanism 10. May be provided.
 その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the present invention is implemented with various modifications within a range not departing from the gist thereof.
6:車両
8:エンジン
10:動力伝達機構
22:出力軸
40:車輪
48:Pスイッチ(駐車意図検出装置)
50:パーキングロック装置
54:Pロック駆動モータ(アクチュエータ)
64:パーキングギヤ
66:パーキングロックポール(噛合部材)
80:電子制御装置(車両用駐車制御装置)
82:車両電源スイッチ(駐車意図検出装置)
84:車速センサ(第1回転速度センサ)
86:第2電動機回転速度センサ(第2回転速度センサ)
110:制動装置(車輪制動装置)
M2:第2電動機(電動機)
6: Vehicle 8: Engine 10: Power transmission mechanism 22: Output shaft 40: Wheel 48: P switch (parking intention detection device)
50: Parking lock device 54: P lock drive motor (actuator)
64: Parking gear 66: Parking lock pole (meshing member)
80: Electronic control device (vehicle parking control device)
82: Vehicle power switch (parking intention detection device)
84: Vehicle speed sensor (first rotational speed sensor)
86: Second motor rotation speed sensor (second rotation speed sensor)
110: Braking device (wheel braking device)
M2: Second electric motor (electric motor)

Claims (8)

  1.  運転者の駐車意図を検出する駐車意図検出装置と、制御信号に従って作動するアクチュエータによって噛合部材をパーキングギヤに噛み合わせて動力伝達機構の出力軸の回転をロックする駐車ロック装置と、車輪の回転を制動する車輪制動装置とを備えた車両において、前記駐車意図が検出された場合には前記アクチュエータを作動させることにより前記出力軸の回転をロックする車両用駐車制御装置であって、
     前記駐車意図が検出され、且つ、前記噛合部材に対する前記パーキングギヤの回転位置が予め定められた回転位置範囲から外れている場合には、予め定められた車輪制動力で、前記車輪制動装置によって前記車輪の回転を制動するブレーキ協調制御を実行し、
     前記駐車意図が検出され、且つ、前記噛合部材に対する前記パーキングギヤの回転位置が前記予め定められた回転位置範囲内にある場合には、前記予め定められた車輪制動力よりも低い制動力で前記ブレーキ協調制御を実行し或いは前記車輪制動装置を解放する
     ことを特徴とする車両用駐車制御装置。
    A parking intention detection device that detects the driver's intention to park, a parking lock device that locks the rotation of the output shaft of the power transmission mechanism by engaging the meshing member with the parking gear by an actuator that operates according to a control signal, and rotation of the wheels. In a vehicle provided with a wheel braking device for braking, a vehicle parking control device that locks rotation of the output shaft by operating the actuator when the parking intention is detected,
    When the parking intention is detected and the rotation position of the parking gear with respect to the meshing member is out of a predetermined rotation position range, the wheel braking device uses the wheel braking device with the predetermined wheel braking force. Execute brake coordination control to brake the rotation of the wheels,
    When the parking intention is detected and the rotation position of the parking gear with respect to the meshing member is within the predetermined rotation position range, the braking force is lower than the predetermined wheel braking force. A vehicle parking control device that executes brake cooperative control or releases the wheel braking device.
  2.  前記車両が位置する路面の勾配が予め定められた路面勾配判定値より大きい場合に、前記予め定められた車輪制動力で前記ブレーキ協調制御を実行する
     ことを特徴とする請求項1に記載の車両用駐車制御装置。
    2. The vehicle according to claim 1, wherein the brake coordination control is executed with the predetermined wheel braking force when a gradient of a road surface on which the vehicle is located is larger than a predetermined road gradient determination value. Parking control device.
  3.  前記パーキングギヤの回転位置および回転速度を検出できる第1回転速度センサが設けられており、
     前記噛合部材に対する前記パーキングギヤの回転位置は前記第1回転速度センサにより検出される
     ことを特徴とする請求項1又は2に記載の車両用駐車制御装置。
    A first rotational speed sensor capable of detecting the rotational position and rotational speed of the parking gear is provided;
    The vehicle parking control device according to claim 1, wherein a rotation position of the parking gear with respect to the meshing member is detected by the first rotation speed sensor.
  4.  前記パーキングギヤと一対一の関係で回転する電動機が動力伝達経路に連結され、
     該電動機は、該電動機の回転位置および回転速度を検出する第2回転速度センサを備えており、
     前記噛合部材に対する前記パーキングギヤの回転位置は該第2回転速度センサにより検出される
     ことを特徴とする請求項1又は2に記載の車両用駐車制御装置。
    An electric motor that rotates in a one-to-one relationship with the parking gear is connected to a power transmission path,
    The electric motor includes a second rotational speed sensor that detects a rotational position and a rotational speed of the electric motor,
    The vehicle parking control device according to claim 1 or 2, wherein a rotational position of the parking gear with respect to the meshing member is detected by the second rotational speed sensor.
  5.  前記パーキングギヤの回転位置および回転速度を検出できる第1回転速度センサが設けられ、
     前記パーキングギヤと一対一の関係で回転する電動機が動力伝達経路に連結され、
     該電動機は、該電動機の回転位置および回転速度を検出する第2回転速度センサを備えており、
     前記噛合部材に対する前記パーキングギヤの回転位置は前記第1回転速度センサ及び前記第2回転速度センサにより検出される
     ことを特徴とする請求項1又は2に記載の車両用駐車制御装置。
    A first rotational speed sensor capable of detecting the rotational position and rotational speed of the parking gear is provided;
    An electric motor that rotates in a one-to-one relationship with the parking gear is connected to a power transmission path,
    The electric motor includes a second rotational speed sensor that detects a rotational position and a rotational speed of the electric motor,
    The vehicle parking control device according to claim 1 or 2, wherein a rotational position of the parking gear with respect to the meshing member is detected by the first rotational speed sensor and the second rotational speed sensor.
  6.  前記ブレーキ協調制御の実行開始後において車速が予め定められた車速判定値以下である状態で予め定められた判定時間が経過した場合には、該ブレーキ協調制御を終了する
     ことを特徴とする請求項1乃至5の何れか1項に記載の車両用駐車制御装置。
    The brake cooperative control is terminated when a predetermined determination time elapses in a state where the vehicle speed is equal to or lower than a predetermined vehicle speed determination value after the execution of the brake cooperative control is started. The vehicle parking control device according to any one of 1 to 5.
  7.  車速が前記予め定められた車速判定値より大きい場合に、前記予め定められた車輪制動力で前記ブレーキ協調制御を実行する
     ことを特徴とする請求項6に記載の車両用駐車制御装置。
    The vehicle parking control device according to claim 6, wherein when the vehicle speed is greater than the predetermined vehicle speed determination value, the brake cooperative control is executed with the predetermined wheel braking force.
  8.  前記車両が位置する路面の勾配が大きいほど前記予め定められた車輪制動力を大きくする
     ことを特徴とする請求項1乃至7の何れか1項に記載の車両用駐車制御装置。
    The vehicle parking control device according to any one of claims 1 to 7, wherein the predetermined wheel braking force is increased as a gradient of a road surface on which the vehicle is located is larger.
PCT/JP2009/058711 2009-05-08 2009-05-08 Parking controller for vehicle WO2010128561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058711 WO2010128561A1 (en) 2009-05-08 2009-05-08 Parking controller for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058711 WO2010128561A1 (en) 2009-05-08 2009-05-08 Parking controller for vehicle

Publications (1)

Publication Number Publication Date
WO2010128561A1 true WO2010128561A1 (en) 2010-11-11

Family

ID=43050074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058711 WO2010128561A1 (en) 2009-05-08 2009-05-08 Parking controller for vehicle

Country Status (1)

Country Link
WO (1) WO2010128561A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064736A (en) * 2014-09-24 2016-04-28 トヨタ自動車株式会社 Parking lock mechanism control device for vehicle
WO2016159279A1 (en) * 2015-03-31 2016-10-06 株式会社アドヴィックス Braking-power-maintaining device for vehicle and electric braking device for vehicle
WO2018141494A1 (en) * 2017-02-06 2018-08-09 Zf Friedrichshafen Ag Method and control unit for braking a vehicle and switch device for a vehicle
US11124169B2 (en) * 2016-10-20 2021-09-21 Zf Active Safety Gmbh System comprising separate control units for the actuation units of an electric parking brake

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237550A (en) * 2002-02-19 2003-08-27 Toyota Motor Corp Parking device
JP2006224819A (en) * 2005-02-17 2006-08-31 Toyota Motor Corp Parking lock mechanism for vehicle
JP2008307996A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Controller for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237550A (en) * 2002-02-19 2003-08-27 Toyota Motor Corp Parking device
JP2006224819A (en) * 2005-02-17 2006-08-31 Toyota Motor Corp Parking lock mechanism for vehicle
JP2008307996A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Controller for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064736A (en) * 2014-09-24 2016-04-28 トヨタ自動車株式会社 Parking lock mechanism control device for vehicle
WO2016159279A1 (en) * 2015-03-31 2016-10-06 株式会社アドヴィックス Braking-power-maintaining device for vehicle and electric braking device for vehicle
JP2016190626A (en) * 2015-03-31 2016-11-10 株式会社アドヴィックス Brake force holding device of vehicle and electric brake device of vehicle
US11124169B2 (en) * 2016-10-20 2021-09-21 Zf Active Safety Gmbh System comprising separate control units for the actuation units of an electric parking brake
WO2018141494A1 (en) * 2017-02-06 2018-08-09 Zf Friedrichshafen Ag Method and control unit for braking a vehicle and switch device for a vehicle

Similar Documents

Publication Publication Date Title
US7502679B2 (en) Deceleration control apparatus and method for a vehicle
JP4525613B2 (en) Control device for vehicle power transmission device
JP4840464B2 (en) Power supply control device for vehicle
US10166953B2 (en) Vehicle shift control system
JP5299576B1 (en) Control device for hybrid vehicle
JP2009012726A (en) Control device for hybrid vehicle
JP2009023614A (en) Controller for power transmission device for vehicle
WO2013128552A1 (en) Hybrid vehicle
WO2006028026A1 (en) Parking pawl engagement control
JP5360297B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP6319037B2 (en) Parking lock control device for vehicle
WO2010128561A1 (en) Parking controller for vehicle
JP5724854B2 (en) Vehicle control device
EP2123532B1 (en) Device and method for controlling vehicle
JP2017082884A (en) Vehicle control apparatus
JP6406154B2 (en) Control device for vehicle power transmission device
JP2008154394A (en) Vehicle and control method therefor
WO2014087515A1 (en) Drive device for hybrid vehicle
JP6575250B2 (en) Control device for parking lock device
JP5327177B2 (en) Vehicle control system
JP2010074886A (en) Control system of transmission system for vehicles
JP2014051222A (en) Control unit of hybrid vehicle
JP2010023775A (en) Control device for power transmission device for vehicle
JP2012001186A (en) Device for control of vehicle
JP2007120586A (en) Control device for automatic transmission for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP