WO2010100997A1 - Electronic component and electronic device - Google Patents
Electronic component and electronic device Download PDFInfo
- Publication number
- WO2010100997A1 WO2010100997A1 PCT/JP2010/051677 JP2010051677W WO2010100997A1 WO 2010100997 A1 WO2010100997 A1 WO 2010100997A1 JP 2010051677 W JP2010051677 W JP 2010051677W WO 2010100997 A1 WO2010100997 A1 WO 2010100997A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electronic component
- external electrode
- conductors
- metal case
- coil
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 170
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 46
- 239000003990 capacitor Substances 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 239000012212 insulator Substances 0.000 claims description 11
- 238000010030 laminating Methods 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 description 18
- 239000010949 copper Substances 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 229910018125 Al-Si Inorganic materials 0.000 description 2
- 229910018520 Al—Si Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
- H01F27/292—Surface mounted devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0115—Frequency selective two-port networks comprising only inductors and capacitors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/17—Structural details of sub-circuits of frequency selective networks
- H03H7/1708—Comprising bridging elements, i.e. elements in a series path without own reference to ground and spanning branching nodes of another series path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
- H01F2017/0026—Multilayer LC-filter
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F2017/008—Electric or magnetic shielding of printed inductances
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H1/00—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
- H03H2001/0021—Constructional details
- H03H2001/0085—Multilayer, e.g. LTCC, HTCC, green sheets
Definitions
- the present invention relates to an electronic component and an electronic device, and more particularly to an electronic component and an electronic device including a coil and a capacitor.
- FIG. 7A is a cross-sectional structure diagram of the LC resonant component 110 described in Patent Document 1.
- FIG. 7B is a diagram in which the LC resonant component 110 is mounted on the circuit board 120.
- the LC resonant component 110 includes a multilayer body 112, external electrodes 114a and 114b, internal conductors 116a to 116e, and via hole conductors B1 to B5.
- the stacked body 112 is configured by stacking a plurality of rectangular insulating layers.
- the external electrodes 114a and 114b are provided on the side surface of the stacked body 112 and face each other.
- the external electrodes 114a and 114b are connected to the ground.
- the inner conductors 116a to 116c are provided in parallel to each other and connect the outer electrodes 114a and 114b.
- the inner conductors 116d and 116e are provided below the inner conductors 116a to 116c in the stacking direction, and constitute a capacitor by facing each other.
- the internal conductor 116d is connected to two external electrodes (not shown) through which signals are input and output.
- the inner conductor 116e is connected to the outer electrodes 114a and 114b.
- the via-hole conductors B1, B2, B4, and B5 extend in the stacking direction, connect the internal conductors 116a to 116c, and function as coils.
- the via-hole conductor B3 extends in the stacking direction, connects the internal conductors 116a to 116d, and functions as a coil.
- a resonant circuit is formed in which a coil and a capacitor are connected in parallel between two external electrodes (not shown) for inputting and outputting signals.
- the LC resonant component 110 is used by being mounted on a circuit board 120 as shown in FIG. At this time, the LC resonant component 110 is covered with the metal case 122. Thereby, it is suppressed that the noise from the outside penetrates into the LC resonance component 110 and other mounting components.
- the LC resonant component 110 may be disposed in the vicinity of the metal case 122.
- the external electrode 114 b of the LC resonant component 110 faces the metal case 122.
- the external electrode 114b and the metal case 122 are magnetically coupled and capacitively coupled.
- the external electrode 114b is connected to the via-hole conductors B1 to B5 via internal conductors 116a to 116c. A signal flows through the via-hole conductors B1 to B5.
- the noise absorbed by the metal case 122 enters the signals flowing through the via-hole conductors B1 to B5 via the external electrode 114b and the internal conductors 116a to 116c. Resulting in.
- the internal conductor 116a to which the via-hole conductors B1 to B5 through which signals flow is connected is provided in the vicinity of the upper surface of the multilayer body 112. Therefore, the inner conductor 116a and the metal case 122 are magnetically coupled and capacitively coupled. As a result, the noise absorbed by the metal case 122 enters the signals flowing through the via-hole conductors B1 to B5 via the internal conductor 116a.
- an object of the present invention is to provide an electronic component and an electronic device that can suppress noise from entering through a metal case provided on a substrate.
- the electronic component according to the first aspect of the present invention includes a laminate in which a plurality of insulator layers are laminated, a plurality of internal conductors constituting coils and capacitors built in the laminate, A first ground external electrode provided on a side surface of the multilayer body; and a second ground external electrode provided on a side surface of the multilayer body and facing the first ground external electrode; The internal conductor constituting the coil is connected to the first ground external electrode and is not connected to the second ground external electrode. To do.
- an electronic device includes a substrate, the electronic component according to the first embodiment mounted on the substrate, and the second ground external electrode, And a metal case covering the electronic component.
- an electronic component includes a laminated body in which a plurality of insulator layers are laminated, and a plurality of internal conductors constituting a coil and a capacitor built in the laminated body.
- the inner conductor constituting the coil is provided on the upper side in the stacking direction than the inner conductor constituting the capacitor, and the inner conductor provided on the uppermost side in the stacking direction.
- the dielectric layer provided on the upper side in the stacking direction is lower in relative dielectric constant than the insulator layer provided on the lower side in the stacking direction than the inner conductor provided on the uppermost side in the stacking direction. It is characterized by having a rate.
- An electronic device includes a substrate, an electronic component according to the third embodiment mounted on the substrate, and a metal case covering the electronic component. It is characterized by this.
- noise can be prevented from entering through the metal case provided on the substrate.
- FIG. 1 is an external perspective view of an electronic component according to an embodiment of the present invention. It is a disassembled perspective view of the laminated body of the electronic component which concerns on 1st Embodiment.
- FIG. 3 is a perspective view of an electronic device in which the electronic component of FIG. 2 is mounted on a circuit board.
- FIG. 3 is an equivalent circuit diagram of the electronic component of FIG. 2.
- FIG. 6 is a perspective view of an electronic device in which the electronic component of FIG. 5 is mounted on a circuit board.
- FIG. 7A is a cross-sectional structure diagram of the LC resonant component described in Patent Document 1.
- FIG. FIG. 7B is a diagram in which the LC resonant component is mounted on a substrate.
- FIG. 1 is an external perspective view of electronic components 10a and 10b according to an embodiment of the present invention.
- FIG. 2 is an exploded perspective view of the multilayer body 12a of the electronic component 10a.
- FIG. 3 is a perspective view of an electronic device 50 a in which the electronic component 10 a is mounted on the circuit board 30.
- FIG. 4 is an equivalent circuit diagram of the electronic component 10a.
- the stacking direction of the electronic component 10a is defined as the z-axis direction
- the direction along the long side of the electronic component 10a is defined as the x-axis direction
- the direction along the short side of the electronic component 10a is defined as the y-axis direction.
- the origin in the x-axis direction, y-axis direction, and z-axis direction is the center of the electronic component 10a.
- the electronic component 10a includes a laminated body 12a, external electrodes 14 (14a to 14d), a recognition mark 15, internal conductors 18 (18a to 18h), and via-hole conductors b (b1, b2). I have.
- the laminated body 12a is formed by laminating a plurality of rectangular dielectric layers 16 (16a to 16g) in this order, and has a rectangular parallelepiped shape.
- the external electrode 14a is provided on the side surface on the negative direction side in the x-axis direction of the multilayer body 12a, and is used as a signal input terminal.
- the external electrode 14b is provided on the side surface on the positive side in the x-axis direction of the multilayer body 12a, and is used as a signal output terminal.
- the external electrode 14c is provided on the side surface on the negative side in the y-axis direction of the multilayer body 12a and is used as a ground terminal.
- the external electrode 14d is provided on the side surface on the positive side in the y-axis direction of the multilayer body 12a and is used as a ground terminal.
- the external electrode 14d is opposed to the external electrode 14c.
- the recognition mark 15 is provided on the upper surface on the positive side in the z-axis direction of the laminated body 12a, and is used for identifying the direction of the electronic component 10a during mounting.
- the dielectric layer 16 is a rectangular insulating layer made of, for example, a Ba—Al—Si based dielectric ceramic.
- the inner conductor 18 is made of a conductive material mainly composed of Cu, and constitutes coils L1 and L2 and capacitors C1 to C3 built in the multilayer body 12a. More specifically, each of the inner conductors 18a and 18b extends from the negative side in the y-axis direction toward the positive direction in the y-axis direction on the main surface of the dielectric layer 16b. Part of the coils L1 and L2 is configured. However, the inner conductors 18a and 18b are not drawn out to the side on the positive direction side in the y-axis direction. Therefore, the internal conductors 18a and 18b are connected to the external electrode 14c but are not connected to the external electrode 14d.
- the inner conductors 18c and 18d are provided on the main surface of the dielectric layer 16c so as to overlap with the inner conductors 18a and 18b and the dielectric layer 16b when viewed in plan from the z-axis direction.
- the internal conductor 18c is connected to the external electrode 14a by being drawn out to the side on the negative side in the x-axis direction in the dielectric layer 16c.
- the internal conductor 18d is connected to the external electrode 14b by being drawn out to the side on the positive direction side in the x-axis direction in the dielectric layer 16c.
- the via-hole conductor b1 penetrates the dielectric layer 16b in the z-axis direction, and connects the internal conductor 18a and the internal conductor 18c.
- the via-hole conductor b2 penetrates the dielectric layer 16b in the z-axis direction, and connects the internal conductor 18b and the internal conductor 18d.
- Via-hole conductors b1 and b2 constitute part of coils L1 and L2, respectively.
- the inner conductor 18a and the via hole conductor b1 constitute the coil L1 in FIG.
- the internal conductor 18b and the via-hole conductor b2 constitute the coil L2 in FIG.
- the via-hole conductor b is made of, for example, a conductive material whose main component is copper.
- the inner conductor 18e is provided on the dielectric layer 16d so as to face the inner conductors 18c and 18d with the dielectric layer 16c interposed therebetween when viewed in plan from the z-axis direction.
- the inner conductors 18c and 18e constitute the capacitor C1 in FIG.
- the internal conductors 18d and 18e also constitute the capacitor C1 in FIG.
- the inner conductor 18 e is provided at the center of the dielectric layer 16 d and is not connected to any of the outer electrodes 14.
- the inner conductors 18f and 18g are provided on the main surface of the dielectric layer 16e so as to overlap with the inner conductor 18e and the dielectric layer 16d when viewed in plan from the z-axis direction.
- the internal conductors 18e and 18f constitute the capacitor C1 of FIG.
- the inner conductors 18e and 18g also constitute the capacitor C1 in FIG.
- the internal conductor 18f is connected to the external electrode 14a by being drawn out to the side on the negative direction side in the x-axis direction in the dielectric layer 16e.
- the internal conductor 18g is connected to the external electrode 14b by being drawn out to the side on the positive direction side in the x-axis direction in the dielectric layer 16e.
- the inner conductor 18h is provided on the dielectric layer 16f so as to face the inner conductors 18f and 18g with the dielectric layer 16e interposed therebetween when viewed in plan from the z-axis direction.
- the inner conductors 18f and 18h constitute the capacitor C2 in FIG. 4
- the inner conductors 18g and 18h constitute the capacitor C3 in FIG.
- the inner conductor 18h is connected to the outer electrodes 14c and 14d by being drawn out to the side on the positive side and the side on the negative direction in the dielectric layer 16f. Has been.
- the internal conductors 18a and 18b and the via-hole conductors b1 and b2 constituting the coils L1 and L2 are the internal conductors constituting the capacitors C1 to C3. It is provided on the positive direction side in the z-axis direction from 18c to 18h.
- the electronic component 10a is mounted on the circuit board 30 as shown in FIG.
- a metal case 32 is provided so as to cover the main surface of the circuit board 30.
- the metal case 32 has a side surface portion 32a and an upper surface portion 32b, and plays a role of suppressing external noise from entering the electronic component 10a and the like.
- the side surface portion 32a is attached perpendicular to the circuit board 30 and faces the external electrode 14d.
- the upper surface portion 32 b is connected to the side surface portion 32 a and covers the main surface of the circuit board 30 with a predetermined distance from the main surface of the circuit board 30.
- the electronic component 10 a is covered with the metal case 32.
- the metal case 32 does not face the external electrode 14c.
- the internal conductors 18a and 18b constituting the coils L1 and L2 are not connected to the external electrode 14d facing the metal case 32. Therefore, the noise absorbed by the metal case 32 does not enter the laminated body 12a from the internal electrodes 18a and 18b from the external electrode 14b. Therefore, in the electronic component 10a and the electronic device 50a, it is possible to prevent noise from entering the electronic component 10a through the metal case 32.
- the inner conductors 18a and 18b constituting the coils L1 and L2 are provided above the inner conductors 18c to 18h constituting the capacitors C1 to C3 in the z-axis direction. Furthermore, in the electronic component 10a, the inner conductors 18a and 18b are provided on the uppermost side in the z-axis direction. Therefore, the inner conductors 18a and 18b are easily affected by noise from the metal case 32 because the distance between the inner conductors 18a and 18b is shorter than the inner conductors 18c to 18h. Therefore, by not connecting the internal conductors 18a and 18b to the external electrode 14d, it is possible to effectively suppress noise from entering the internal conductors 18a and 18b from the metal case 32.
- the internal conductors 18a and 18b are provided only between the via-hole conductors b1 and b2 and the external electrode 14c, respectively. Therefore, the internal conductors 18a and 18b are not provided on the external electrode 14d side than the via-hole conductors b1 and b2. Therefore, the size of the area where the inner conductors 18a, 18b and the metal case 32 face each other is reduced. As a result, magnetic coupling and capacitive coupling between the inner conductors 18a and 18b and the metal case 32 are reduced. Therefore, it is possible to prevent noise from entering the inner conductors 18a and 18b from the metal case 32.
- a plurality (two) of the internal conductors 18a and 18b constituting the coils L1 and L2 are provided on the same dielectric layer 16b. Furthermore, a plurality (two) of via-hole conductors b1 and b2 are provided so as to be connected to the internal conductors 18a and 18b, respectively. Thereby, the coil L1 and the coil L2 come close to each other. As a result, the magnetic coupling between the coil L1 and the coil L2 can be strengthened.
- FIG. 5 is an exploded perspective view of the multilayer body 12b of the electronic component 10b.
- FIG. 6 is a perspective view of an electronic device 50 b in which the electronic component 10 b is mounted on the circuit board 30.
- the stacking direction of the electronic component 10b is defined as the z-axis direction
- the direction along the long side of the electronic component 10b is defined as the x-axis direction
- the direction along the short side of the electronic component 10b is defined as the y-axis direction.
- the origin in the x-axis direction, y-axis direction, and z-axis direction is the center of the electronic component 10b. 1 and 4 are used for an external perspective view and an equivalent circuit diagram of the electronic component 10b.
- the electronic component 10b includes a laminated body 12b, external electrodes 14 (14a to 14d), a recognition mark 15, internal conductors 68 (68a to 68h), and via-hole conductors b (b11, b12). I have.
- the multilayer body 12b is formed by laminating a plurality of rectangular dielectric layers 65 (65a) and 66 (66b to 66g) in this order, and forms a rectangular parallelepiped shape.
- the external electrode 14a is provided on the side surface on the negative direction side in the x-axis direction of the multilayer body 12b, and is used as a signal input terminal.
- the external electrode 14 b is provided on the side surface on the positive side in the x-axis direction of the multilayer body 12 b and is used as a signal output terminal.
- the external electrode 14c is provided on the side surface on the negative direction side in the y-axis direction of the multilayer body 12b and is used as a ground terminal.
- the external electrode 14d is provided on the side surface on the positive side in the y-axis direction of the multilayer body 12b and is used as a ground terminal.
- the external electrode 14c is opposed to the external electrode 14d.
- the recognition mark 15 is provided on the upper surface of the laminated body 12b on the positive side in the z-axis direction, and is used for identifying the direction of the electronic component 10b during mounting.
- the dielectric layers 65 and 66 are rectangular insulating layers made of, for example, a Ba—Al—Si based dielectric ceramic.
- the inner conductor 68 is made of a conductive material containing Cu as a main component, and constitutes coils L1 and L2 and capacitors C1 to C3 built in the multilayer body 12b. More specifically, the inner conductors 68a and 68b extend from the negative side in the y-axis direction to the positive side in the y-axis direction on the main surface of the dielectric layer 66b, and the coil L1. , L2 is configured. Thereby, the inner conductors 68a and 68b are connected to the outer electrodes 14c and 14d.
- the inner conductors 68c and 68d are provided on the main surface of the dielectric layer 66c so as to overlap with the inner conductors 68a and 68b and the dielectric layer 66b when viewed in plan from the z-axis direction.
- the internal conductor 68c is connected to the external electrode 14a by being drawn out to the side on the negative direction side in the x-axis direction in the dielectric layer 66c.
- the internal conductor 68d is connected to the external electrode 14b by being drawn out to the side on the positive side in the x-axis direction in the dielectric layer 66c.
- the via-hole conductor b11 passes through the dielectric layer 66b in the z-axis direction, and connects the internal conductor 68a and the internal conductor 68c.
- the via-hole conductor b12 passes through the dielectric layer 66b in the z-axis direction, and connects the internal conductor 68b and the internal conductor 68d.
- the via-hole conductors b11 and b12 constitute part of the coils L1 and L2, respectively.
- the internal conductor 68a and the via hole conductor b11 constitute the coil L1 in FIG.
- the inner conductor 68b and the via-hole conductor b12 constitute the coil L2 in FIG.
- the via-hole conductor b is made of, for example, a conductive material whose main component is copper.
- the inner conductor 68e is provided on the dielectric layer 66d so as to face the inner conductors 68c and 68d with the dielectric layer 66c interposed therebetween when viewed in plan from the z-axis direction.
- the internal conductors 68c and 68e constitute the capacitor C1 of FIG.
- the internal conductors 68d and 68e also constitute the capacitor C1 in FIG.
- the inner conductor 68 e is provided in the center of the dielectric layer 66 d and is not connected to any of the outer electrodes 14.
- the inner conductors 68f and 68g are provided on the main surface of the dielectric layer 66e so as to overlap with the inner conductor 68e and the dielectric layer 66d when viewed in plan from the z-axis direction.
- the inner conductors 68e and 68f constitute the capacitor C1 in FIG.
- the internal conductors 68e and 68g also constitute the capacitor C1 in FIG.
- the internal conductor 68f is connected to the external electrode 14a by being drawn out to the side on the negative direction side in the x-axis direction in the dielectric layer 66e.
- the internal conductor 68g is connected to the external electrode 14b by being drawn out to the side on the positive side in the x-axis direction in the dielectric layer 66e.
- the inner conductor 68h is provided on the dielectric layer 66f so as to face the inner conductors 68f and 68g with the dielectric layer 66e interposed therebetween when viewed in plan from the z-axis direction.
- the inner conductors 68f and 68h constitute the capacitor C2 of FIG. 4
- the inner conductors 68g and 68h constitute the capacitor C3 of FIG.
- the inner conductor 68h is connected to the outer electrodes 14c and 14d by being drawn out to the positive side and the negative side in the dielectric layer 66f. Has been.
- the internal conductors 68a and 68b and the via-hole conductors b11 and b12 constituting the coils L1 and L2 constitute the capacitors C1 to C3. It is provided on the positive side in the z-axis direction from the internal conductors 68c to 68h.
- the dielectric layer 65a is provided on the positive side in the z-axis direction relative to the inner conductors 68a and 68b provided on the most positive direction side in the z-axis direction, and is located on the positive side in the z-axis direction.
- the dielectric constant is lower than that of the dielectric layer 66 provided on the negative side in the axial direction.
- the electronic component 10b is mounted on the circuit board 30 as shown in FIG.
- a metal case 32 is provided so as to cover the main surface of the circuit board 30.
- the metal case 32 has a side surface portion 32a and an upper surface portion 32b, and plays a role of suppressing external noise from entering the electronic component 10b and the like.
- the side surface portion 32a is attached perpendicularly to the circuit board 30 and faces the external electrode 14d.
- the upper surface portion 32 b is connected to the side surface portion 32 a and covers the main surface of the circuit board 30 with a predetermined distance from the main surface of the circuit board 30. Thereby, the electronic component 10 b is covered with the metal case 32.
- the metal case 32 does not face the external electrode 14c.
- the dielectric layer 65a provided on the positive side in the z-axis direction relative to the internal conductors 68a and 68b provided on the most positive direction side in the z-axis direction includes the internal conductor 68a, It has a relative dielectric constant lower than that of the dielectric layer 66 provided on the negative side in the z-axis direction from 68b.
- stray capacitance generated between the inner conductors 68a and 68b and the upper surface portion 32b of the metal case 32 is reduced.
- the electronic component 10b it is possible to prevent noise from entering the electronic component 10b via the metal case 32.
- the inner conductors 68a and 68b constitute coils L1 and L2. Therefore, a signal flows through the internal conductors 68a and 68b. Therefore, by reducing the stray capacitance between the inner conductors 68a and 68b and the metal case 32, it is possible to more effectively suppress noise from entering the signal in the electronic component 10b.
- the manufacturing method of the electronic component 10a is demonstrated, referring FIG.1 and FIG.2.
- the manufacturing method of the electronic component 10b is basically the same as the manufacturing method of the electronic component 10a, and thus the description thereof is omitted.
- a ceramic green sheet to be the dielectric layer 16 is prepared. Specifically, each material obtained by weighing barium oxide (BaO), aluminum oxide (Al 2 O 3 ), and silicon oxide (SiO 2 ) at a predetermined ratio is put into a ball mill as a raw material, and wet blending is performed. The obtained mixture is dried and pulverized, and the obtained powder is calcined. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a dielectric ceramic powder.
- barium oxide (BaO), aluminum oxide (Al 2 O 3 ), and silicon oxide (SiO 2 ) at a predetermined ratio is put into a ball mill as a raw material, and wet blending is performed. The obtained mixture is dried and pulverized, and the obtained powder is calcined. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a dielectric ceramic powder.
- This binder ceramic powder is mixed with a binder, a plasticizer, a wetting material, and a dispersing agent, mixed with a ball mill, and then defoamed under reduced pressure.
- the obtained ceramic slurry is formed into a sheet shape on a carrier sheet by a doctor blade method and dried to produce a ceramic green sheet to be the dielectric layer 16.
- via hole conductors b1 and b2 are formed in each of the ceramic green sheets to be the dielectric layer 16b. Specifically, a via hole is formed by irradiating a ceramic green sheet to be the dielectric layer 16b with a laser beam. Next, the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
- a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
- a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied on the ceramic green sheets to be the dielectric layers 16b to 16f by a method such as a screen printing method or a photolithography method.
- the inner conductors 18a to 18h are formed.
- the step of forming the internal conductors 18a to 18h and the step of filling the via hole with the conductive paste may be performed in the same step.
- each ceramic green sheet is laminated. Specifically, a ceramic green sheet to be the dielectric layer 16g is disposed. The carrier film of the ceramic green sheet to be the dielectric layer 16g is peeled off, and the ceramic green sheet to be the dielectric layer 16f is disposed on the ceramic green sheet to be the dielectric layer 16g. Thereafter, the ceramic green sheet to be the dielectric layer 16f is pressure-bonded to the ceramic green sheet to be the dielectric layer 16g.
- the discharge method of the carrier film is discharge by suction and grabbing discharge by a chuck. Thereafter, the ceramic green sheets to be the dielectric layers 16e, 16d, 16c, 16b, and 16a are similarly laminated and pressure-bonded in this order. Thereby, a mother laminated body is formed. The mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like.
- the mother laminated body is cut into a laminated body 12a having a predetermined size with a cutting blade. Thereby, the unsintered laminated body 12a is obtained.
- This unfired laminate 12a is subjected to binder removal processing and firing.
- the fired laminated body 12a is obtained through the above steps.
- the laminated body 12a is barrel-processed and chamfered. Thereafter, a copper electrode to be the external electrodes 14a to 14d is formed on the surface of the laminated body 12a by applying and baking an electrode paste whose main component is copper by a method such as dipping.
- the external electrodes 14a to 14d are formed by performing Ni plating / Sn plating on the surface of the copper electrode. Through the above steps, an electronic component 10a as shown in FIG. 1 is completed.
- the electronic component and the electronic device according to the present invention are not limited to the electronic components 10a and 10b and the electronic devices 50a and 50b shown in the above-described embodiment, and can be changed within the scope of the gist thereof.
- a resin may be used as the dielectric layer.
- the present invention is useful for electronic parts and electronic devices, and is particularly excellent in that noise can be prevented from entering through a metal case provided on a substrate.
- Capacitors L1, L2 Coils b1, b2, b11, b12 Via hole conductors 10a, 10b Electronic parts 12a, 12b Laminated bodies 14a-14d External electrodes 16a-16g, 65a, 66b-66g Dielectric layers 18a-18h, 68a- 68h Inner conductor 30 Circuit board 32 Metal case 32a Side surface portion 32b Upper surface portion 50a, 50b Electronic device
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Coils Or Transformers For Communication (AREA)
- Filters And Equalizers (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
(電子部品の構成)
以下に、本発明の第1の実施形態に係る電子部品の構成について図面を参照しながら説明する。図1は、本発明の実施形態に係る電子部品10a,10bの外観斜視図である。図2は、電子部品10aの積層体12aの分解斜視図である。図3は、電子部品10aが回路基板30上に実装された電子装置50aの透視図である。図4は、電子部品10aの等価回路図である。以下、電子部品10aの積層方向をz軸方向と定義し、電子部品10aの長辺に沿った方向をx軸方向と定義し、電子部品10aの短辺に沿った方向をy軸方向と定義する。なお、x軸方向、y軸方向及びz軸方向の原点は、電子部品10aの中心とする。 (First embodiment)
(Configuration of electronic parts)
Hereinafter, the configuration of the electronic component according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of
以上のように構成された電子部品10a及び電子装置50aによれば、以下に説明するように、金属ケース32を介して電子部品10aにノイズが侵入することを抑制できる。より詳細には、図7に示すLC共振部品110では、外部電極114bと金属ケース122とが対向し、かつ、外部電極114bと内部導体116a~116cとが接続されていた。そのため、金属ケース122が吸収したノイズが、外部電極114b及び内部導体116a~116cを介して、コイルを構成しているビアホール導体B1~B5に侵入していた。 (effect)
According to the
(電子部品の構成)
以下に、本発明の第2の実施形態に係る電子部品の構成について図面を参照しながら説明する。図5は、電子部品10bの積層体12bの分解斜視図である。図6は、電子部品10bが回路基板30上に実装された電子装置50bの透視図である。以下、電子部品10bの積層方向をz軸方向と定義し、電子部品10bの長辺に沿った方向をx軸方向と定義し、電子部品10bの短辺に沿った方向をy軸方向と定義する。なお、x軸方向、y軸方向及びz軸方向の原点は、電子部品10bの中心とする。電子部品10bの外観斜視図及び等価回路図は、図1及び図4を援用する。 (Second Embodiment)
(Configuration of electronic parts)
The configuration of the electronic component according to the second embodiment of the present invention will be described below with reference to the drawings. FIG. 5 is an exploded perspective view of the
以上のように構成された電子部品10b及び電子装置50bによれば、以下に説明するように、金属ケース32を介して電子部品10bにノイズが侵入することを抑制できる。より詳細には、図7に示すLC共振部品110では、内部導体116aは、金属ケース122と対向し、該金属ケース122との間で容量結合する。そのため、金属ケース122が吸収したノイズが、内部導体116aを介してLC共振部品110内に侵入するおそれがある。 (effect)
According to the
以下に、電子部品10aの製造方法について図1及び図2を参照しながら説明する。なお、電子部品10bの製造方法は、電子部品10aの製造方法と基本的に同じであるので、説明を省略する。 (Method for manufacturing electronic parts)
Below, the manufacturing method of the
なお、本発明に係る電子部品及び電子装置は、前記実施形態に示した電子部品10a,10b及び電子装置50a,50bに限らず、その要旨の範囲内において変更可能である。 (Other embodiments)
The electronic component and the electronic device according to the present invention are not limited to the
L1,L2 コイル
b1,b2,b11,b12 ビアホール導体
10a,10b 電子部品
12a,12b 積層体
14a~14d 外部電極
16a~16g,65a,66b~66g 誘電体層
18a~18h,68a~68h 内部導体
30 回路基板
32 金属ケース
32a 側面部
32b 上面部
50a,50b 電子装置 C1 to C3 Capacitors L1, L2 Coils b1, b2, b11, b12 Via
Claims (9)
- 複数の絶縁体層が積層されてなる積層体と、
前記積層体に内蔵されているコイル及びコンデンサを構成している複数の内部導体と、
前記積層体の側面に設けられている第1のグランド用外部電極と、
前記積層体の側面に設けられ、かつ、前記第1のグランド用外部電極と対向している第2のグランド用外部電極と、
を備え、
前記コイルを構成している前記内部導体は、前記第1のグランド用外部電極に接続されており、かつ、前記第2のグランド用外部電極に接続されていないこと、
を特徴とする電子部品。 A laminate formed by laminating a plurality of insulator layers;
A plurality of internal conductors constituting a coil and a capacitor built in the laminate; and
A first ground external electrode provided on a side surface of the laminate;
A second ground external electrode provided on a side surface of the multilayer body and facing the first ground external electrode;
With
The internal conductor constituting the coil is connected to the first ground external electrode and not connected to the second ground external electrode;
Electronic parts characterized by - 回路基板上に実装されると共に、金属ケースにより覆われる電子部品であって、
前記第1のグランド用外部電極は、実装時に、前記金属ケースと対向せず、
前記第2のグランド用外部電極は、実装時に、前記金属ケースと対向すること、
を特徴とする請求項1に記載の電子部品。 An electronic component mounted on a circuit board and covered with a metal case,
The first ground external electrode does not face the metal case when mounted,
The second ground external electrode is opposed to the metal case at the time of mounting;
The electronic component according to claim 1. - 前記コイルを構成している前記内部導体は、前記コンデンサを構成している前記内部導体よりも積層方向の上側に設けられていること、
を特徴とする請求項1又は請求項2のいずれかに記載の電子部品。 The inner conductor constituting the coil is provided above the inner conductor constituting the capacitor in the stacking direction;
The electronic component according to claim 1, wherein: - 前記コイルの一部を構成しているビアホール導体を、
更に備え、
前記コイルを構成している前記内部導体の一方端は、前記第1のグランド用外部電極に接続され、
前記内部導体の他方端は、前記ビアホール導体に接続されていること、
を特徴とする請求項3に記載の電子部品。 A via-hole conductor constituting a part of the coil,
In addition,
One end of the internal conductor constituting the coil is connected to the first ground external electrode,
The other end of the inner conductor is connected to the via-hole conductor;
The electronic component according to claim 3. - 前記コイルを構成している前記内部導体は、同じ前記絶縁体層上に複数設けられており、
前記ビアホール導体は、同じ前記絶縁体層上に設けられている前記複数の内部導体のそれぞれに接続されるように複数設けられていること、
を特徴とする請求項4に記載の電子部品。 A plurality of the inner conductors constituting the coil are provided on the same insulator layer,
A plurality of the via-hole conductors are provided so as to be connected to each of the plurality of inner conductors provided on the same insulator layer;
The electronic component according to claim 4. - 積層方向の最も上側に設けられている前記内部導体よりも積層方向の上側に設けられている前記絶縁体層は、積層方向の最も上側に設けられている該内部導体よりも積層方向の下側に設けられている前記絶縁体層よりも低い比誘電率を有していること、
を特徴とする請求項1ないし請求項5のいずれかに記載の電子部品。 The insulator layer provided above the inner conductor provided in the uppermost layer in the stacking direction is lower than the inner conductor provided in the uppermost layer in the stacking direction. Having a dielectric constant lower than that of the insulator layer provided in
The electronic component according to claim 1, wherein: - 基板と、
前記基板に実装されている請求項1ないし請求項6のいずれかに記載の電子部品と、
前記第2のグランド用外部電極と対向した状態で、前記電子部品を覆っている金属ケースと、
を備えていること、
を特徴とする電子装置。 A substrate,
The electronic component according to any one of claims 1 to 6, which is mounted on the substrate,
A metal case covering the electronic component in a state facing the second ground external electrode;
Having
An electronic device characterized by the above. - 複数の絶縁体層が積層されてなる積層体と、
前記積層体に内蔵されているコイル及びコンデンサを構成している複数の内部導体と、
を備え、
前記コイルを構成している前記内部導体は、前記コンデンサを構成している前記内部導体よりも積層方向の上側に設けられ、
積層方向の最も上側に設けられている前記内部導体よりも積層方向の上側に設けられている前記絶縁体層は、積層方向の最も上側に設けられている該内部導体よりも積層方向の下側に設けられている前記絶縁体層よりも低い比誘電率を有していること、
を特徴とする電子部品。 A laminate formed by laminating a plurality of insulator layers;
A plurality of internal conductors constituting a coil and a capacitor built in the laminate; and
With
The inner conductor constituting the coil is provided above the inner conductor constituting the capacitor in the stacking direction,
The insulator layer provided above the inner conductor provided in the uppermost layer in the stacking direction is lower than the inner conductor provided in the uppermost layer in the stacking direction. Having a dielectric constant lower than that of the insulator layer provided in
Electronic parts characterized by - 基板と、
前記基板に実装されている請求項8に記載の電子部品と、
前記電子部品を覆っている金属ケースと、
を備えていること、
を特徴とする電子装置。 A substrate,
The electronic component according to claim 8 mounted on the substrate;
A metal case covering the electronic component;
Having
An electronic device characterized by the above.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011502698A JP5516572B2 (en) | 2009-03-02 | 2010-02-05 | Electronic component and electronic device |
CN201080010628.XA CN102342021B (en) | 2009-03-02 | 2010-02-05 | Electronic component and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-048266 | 2009-03-02 | ||
JP2009048266 | 2009-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010100997A1 true WO2010100997A1 (en) | 2010-09-10 |
Family
ID=42709559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051677 WO2010100997A1 (en) | 2009-03-02 | 2010-02-05 | Electronic component and electronic device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5516572B2 (en) |
CN (1) | CN102342021B (en) |
WO (1) | WO2010100997A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069419A1 (en) * | 2011-11-09 | 2013-05-16 | 株式会社村田製作所 | Stacked lc filter |
WO2018100923A1 (en) * | 2016-12-02 | 2018-06-07 | 株式会社村田製作所 | Lc resonator and lc filter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6593209B2 (en) * | 2016-02-05 | 2019-10-23 | 株式会社村田製作所 | Electronic components |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05136644A (en) * | 1991-11-11 | 1993-06-01 | Tdk Corp | Lc resonator |
JP2000323908A (en) * | 1999-05-07 | 2000-11-24 | Murata Mfg Co Ltd | Stacked lc filter |
JP2001143965A (en) * | 1999-11-16 | 2001-05-25 | Murata Mfg Co Ltd | Composite electronic component |
JP2006025145A (en) * | 2004-07-07 | 2006-01-26 | Tdk Corp | Laminated type lc composite component |
JP2007158440A (en) * | 2005-11-30 | 2007-06-21 | Tdk Corp | Laminated dielectric resonator and band pass filter |
JP2007306172A (en) * | 2006-05-10 | 2007-11-22 | Tdk Corp | Bandpass filter element, and high frequency module |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3500319B2 (en) * | 1998-01-08 | 2004-02-23 | 太陽誘電株式会社 | Electronic components |
-
2010
- 2010-02-05 WO PCT/JP2010/051677 patent/WO2010100997A1/en active Application Filing
- 2010-02-05 JP JP2011502698A patent/JP5516572B2/en active Active
- 2010-02-05 CN CN201080010628.XA patent/CN102342021B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05136644A (en) * | 1991-11-11 | 1993-06-01 | Tdk Corp | Lc resonator |
JP2000323908A (en) * | 1999-05-07 | 2000-11-24 | Murata Mfg Co Ltd | Stacked lc filter |
JP2001143965A (en) * | 1999-11-16 | 2001-05-25 | Murata Mfg Co Ltd | Composite electronic component |
JP2006025145A (en) * | 2004-07-07 | 2006-01-26 | Tdk Corp | Laminated type lc composite component |
JP2007158440A (en) * | 2005-11-30 | 2007-06-21 | Tdk Corp | Laminated dielectric resonator and band pass filter |
JP2007306172A (en) * | 2006-05-10 | 2007-11-22 | Tdk Corp | Bandpass filter element, and high frequency module |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069419A1 (en) * | 2011-11-09 | 2013-05-16 | 株式会社村田製作所 | Stacked lc filter |
WO2018100923A1 (en) * | 2016-12-02 | 2018-06-07 | 株式会社村田製作所 | Lc resonator and lc filter |
JPWO2018100923A1 (en) * | 2016-12-02 | 2019-10-17 | 株式会社村田製作所 | LC resonator and LC filter |
US10944376B2 (en) | 2016-12-02 | 2021-03-09 | Murata Manufacturing Co., Ltd. | LC resonator and LC filter |
Also Published As
Publication number | Publication date |
---|---|
JP5516572B2 (en) | 2014-06-11 |
JPWO2010100997A1 (en) | 2012-09-06 |
CN102342021B (en) | 2014-07-23 |
CN102342021A (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5787760B2 (en) | filter | |
JP6064973B2 (en) | Electronic component and manufacturing method thereof | |
KR102105389B1 (en) | Multilayered electronic component | |
TWI434308B (en) | Electronic component | |
KR101092390B1 (en) | Laminated electronic component and method for manufacturing the same | |
US7430107B2 (en) | Monolithic capacitor, circuit board, and circuit module | |
TWI433456B (en) | Electronic Parts | |
KR101536678B1 (en) | Electronic component | |
WO2017169102A1 (en) | Electronic component | |
JP2010232343A (en) | Electronic component and manufacturing method thereof | |
KR101523872B1 (en) | Electronic component | |
US10645798B2 (en) | Composite component-embedded circuit board and composite component | |
US20220115171A1 (en) | High-frequency inductor component | |
US9461611B2 (en) | Low pass filter having attenuation pole and wave splitter | |
US11456109B2 (en) | Coil component | |
JP6673298B2 (en) | Coil parts | |
JP5516572B2 (en) | Electronic component and electronic device | |
JP5163714B2 (en) | Electronic components | |
JPWO2006085465A1 (en) | LC filter composite module | |
JP2012146940A (en) | Electronic component and electronic device | |
JP2010147701A (en) | Electronic component | |
JP5915800B2 (en) | Electronic components | |
JP2023143583A (en) | Multilayer capacitor and board having the same embedded therein | |
JP2023047754A (en) | wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080010628.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10748594 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011502698 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10748594 Country of ref document: EP Kind code of ref document: A1 |