WO2010013335A1 - Reaction device and method - Google Patents

Reaction device and method Download PDF

Info

Publication number
WO2010013335A1
WO2010013335A1 PCT/JP2008/063744 JP2008063744W WO2010013335A1 WO 2010013335 A1 WO2010013335 A1 WO 2010013335A1 JP 2008063744 W JP2008063744 W JP 2008063744W WO 2010013335 A1 WO2010013335 A1 WO 2010013335A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetic body
capillary
magnetic
sample
Prior art date
Application number
PCT/JP2008/063744
Other languages
French (fr)
Japanese (ja)
Inventor
アダルシュ サンドゥー
Original Assignee
株式会社フォスメガ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フォスメガ filed Critical 株式会社フォスメガ
Priority to PCT/JP2008/063744 priority Critical patent/WO2010013335A1/en
Publication of WO2010013335A1 publication Critical patent/WO2010013335A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/42Mixers with shaking, oscillating, or vibrating mechanisms with pendulum stirrers, i.e. with stirrers suspended so as to oscillate about fixed points or axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/453Magnetic mixers; Mixers with magnetically driven stirrers using supported or suspended stirring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0484Cantilevers

Definitions

  • the present invention relates to a reaction apparatus and method using a capillary in which probe molecules that cause a specific binding reaction with a target substance are fixed on the inner surface.
  • Patent Document 1 discloses an affinity detection / analysis chip and a detection system having a structure in which a plurality of capillaries each having a probe molecule that causes a specific binding reaction with an analyte to be immobilized are bundled. Is disclosed.
  • a sample containing a molecule to be detected is caused to flow inside a plurality of capillaries, and a specific binding reaction is caused with a probe molecule on the inner surface of the capillary to cause the molecule to be detected to be detected. Connect to the inner surface of the capillary. Then, the presence or absence of binding inside the capillary is observed and analyzed using an absorption observation device.
  • the target substance is contained inside the capillary. It is necessary to provide a general pump such as a syringe pump or a piston pump outside the capillary in order to flow a fluid (sample).
  • the present invention has been made in view of such circumstances, and a binding reaction can be obtained in a short throughput time using a capillary in which probe molecules that cause a specific binding reaction with a target substance are immobilized on the inner surface. It is another object of the present invention to provide a new reaction apparatus and method which can efficiently react with a small amount of sample.
  • the reaction apparatus of the present invention is arranged in the fluid in a state where a capillary in which probe molecules that cause a specific binding reaction with the target substance are fixed on the inner surface and a fluid containing the target substance is introduced into the capillary
  • end motion means for moving the fluid to stir.
  • the end motion means applies an AC magnetic field so that the direction of the magnetic field rotates 360 ° in a plane including the flow path, and the magnetic body operates like a conical pendulum with the one end as a fulcrum. Further, the other end can be moved in a substantially circular motion within the plane.
  • the columnar magnetic body may be generated by magnetically coupling a plurality of magnetic particles into a columnar shape by the DC magnetic field.
  • a columnar magnet disposed in the fluid is introduced in a state where a fluid containing the target substance is introduced into a capillary in which probe molecules that cause a specific binding reaction with the target substance are fixed on the inner surface.
  • An end fixing step of fixing one end of the body within the target device using a DC magnetic field, and the other end of the columnar magnetic body moving so as to stir the fluid using an AC magnetic field A stirring step.
  • reaction apparatus and method of the present invention it is possible to efficiently react with a small amount of sample using a capillary in which probe molecules that cause a specific binding reaction with a target substance are fixed on the inner surface.
  • FIG. 1 (A) is a diagram schematically showing a schematic configuration of a reaction apparatus 1 according to an embodiment of the present invention.
  • the reaction apparatus 1 includes a microcapillary tube 10 having probe molecules 51 that cause a specific binding reaction with a target substance 50 (for example, a physiologically active substance such as protein or DNA) fixed to the inner surface, and a microcapillary.
  • a flow path (circulation path) 11 that connects both ends of the tube 10 is provided.
  • a plurality of microcapillary tubes 10 may be integrated and used.
  • the X axis is assigned in the direction from the left to the right of the drawing, the Y axis in the direction from the bottom to the top, and the Z axis in the direction from the near side to the back.
  • the microcapillary tube 10 can be manufactured using a conventional technique (for example, Patent Document 1). Specifically, the microcapillary tube 10 is manufactured using a material such as a glassy material (quartz glass, borosilicate glass), an organic material, a plastic material (polyetheretherketone, polyethylene, polypropylene), or a carbon nanotube.
  • the size may be, for example, an inner diameter of about 10 to 100 micrometers and a length of about 1 mm to 5 mm.
  • the channel 11 is a channel for circulating a fluid (for example, gas, liquid, gel, etc .; selected according to the purpose; hereinafter referred to as “sample”) containing the target substance 50, and the microcapillary tube 10.
  • sample for example, gas, liquid, gel, etc .; selected according to the purpose; hereinafter referred to as “sample”
  • the sample discharged from one end (outlet end 12) is allowed to flow to the other end (inlet end 13).
  • the flow path 11 can be formed using various materials such as glass, silicon, and plastic as in the prior art, and the size can be determined according to the size of the microcapillary tube 10.
  • An inlet path 14 for introducing a sample into the reaction apparatus 1 is connected to the vicinity of the inlet end 13 of the microcapillary tube 10 so that the sample does not flow into the inlet path during circulation.
  • a valve (not shown) is provided.
  • FIG. 1 (B) is a diagram schematically showing the state of the microcapillary tube 10 in a state where the sample is introduced into the reaction apparatus 1.
  • the probe molecule 51 may be a complementary molecule that causes a specific binding reaction with the target substance 50, and can be appropriately selected according to the design as in the prior art. Specifically, DNA, RNA, antigen, antibody, enzyme, protein or the like can be used depending on the target substance 50.
  • the probe molecule 51 can be fixed to the inner surface of the microcapillary tube 10 with a linker substance, as in the prior art.
  • a linker substance for example, glutaraldehyde
  • a reactive group for example, a silanol group
  • a mode in which a linker substance (for example, succinic acid) is bonded to the reacted group and the probe molecule 51 is synthesized on the linker substance can be considered.
  • the reaction apparatus 1 of the present embodiment further introduces a sample into the reaction apparatus 1 (specifically, into the microcapillary tube 10 and the flow path 11).
  • the magnetic body 20 arranged in the sample in the state, and an end fixing means 31 and an end motion means 32 are provided as a control device 30 for controlling the behavior of the magnetic body 20.
  • the end fixing means 31 is arranged on the Z axis plus direction side in the drawing with respect to the microcapillary tube 10, and the end movement means 32 is arranged on the Y axis minus direction side in the drawing.
  • These means can be arranged at arbitrary positions according to the design as long as they can apply a DC magnetic field 40 and AC magnetic fields 41 and 42 described later.
  • FIG. 2 schematically shows the structure of the magnetic body 20.
  • the magnetic body 20 is formed by magnetically coupling a plurality of magnetic particles 21 in a columnar shape, and includes two end portions 22 and 23 corresponding to both ends of the column.
  • One end 22 of the magnetic body 20 is fixed in contact with the microcapillary tube 10 by an end fixing means 31 as described later.
  • the other end 23 of the magnetic body 20 is not fixed, and is controlled so as to reciprocate by the end motion means 32 as will be described later.
  • the magnetic particles 21 can be manufactured using conventional techniques, and may be particles of a composition containing a magnetic material in addition to particles of the magnetic material itself.
  • the magnetic particles 21 can take various shapes such as granular, plate-like, box-like, and needle-like (for example, magnetic carbon nanotube (CNT)).
  • the size is the size of the microcapillary tube 10 and the type of sample. It can be determined according to the required liquid feeding ability and stirring ability (in this application, the term “liquid feeding” is used even when the sample is other than liquid).
  • the end fixing means 31 is a device that applies a DC magnetic field 40 in a direction substantially perpendicular to the pipe line direction of the microcapillary tube 10 (for example, the Z-axis minus direction in the coordinate system shown in FIG. 1) (FIG. 3 ( A)).
  • a DC magnetic field 40 in a direction substantially perpendicular to the pipe line direction of the microcapillary tube 10 (for example, the Z-axis minus direction in the coordinate system shown in FIG. 1) (FIG. 3 ( A)).
  • Such a device can be realized by controlling a permanent magnet, an electromagnet, and the like with a controller, as in the prior art.
  • the magnetic body 20 of the present embodiment is formed using the above phenomenon. That is, after the magnetic particles 21 are introduced and dispersed in the sample, the DC fixing magnetic field 40 is applied to the microcapillary tube 10 by the end fixing means 31 in a direction substantially orthogonal to the pipe direction of the microcapillary tube 10. The magnetic particles 21 are magnetically coupled in a columnar shape with the magnetic field incident side as the bottom (fixed end 22), and the magnetic body 20 is formed.
  • a magnetic particle or a magnetic thin film may be provided in advance on the magnetic field incident side of the microcapillary tube 10.
  • the attaching method can use a conventional technique such as adhesion.
  • the magnetic particles 21 are magnetically coupled so that the magnetic particles attached in advance are at the bottom of the column, the formation position of the magnetic body 20 can be designated in advance.
  • the end motion means 32 applies an alternating magnetic field 41 substantially parallel to the pipe direction of the microcapillary tube 10 (the Y-axis direction in the coordinate system shown in FIG. 1), and also has a predetermined plane (for example, FIG. 1).
  • the AC magnetic field 42 is applied so that the direction of the magnetic field rotates 360 ° within the XY plane in the coordinate system shown in FIG. 3 (see FIGS. 3B and 3C).
  • Such a device can be realized by controlling a magnetic field generated by an alternating current with a controller, as in the prior art.
  • the end portion 23 of the magnetic body 20 is not fixed to the microcapillary tube 10 and therefore moves under the influence of the alternating magnetic field 41 applied by the end motion means 32.
  • the end moving means 32 can be fixed to the microcapillary tube 10 under the influence.
  • the strength of the DC magnetic field 40 applied by the end fixing means 31 is set to be sufficiently larger than the strength of the AC magnetic field 41 applied by.
  • Example 1 In Example 1, the reaction efficiency is improved by causing the magnetic body 20 to act as a nanopump.
  • magnetic particles 21 are mixed and dispersed in a sample containing the target substance 50 (step 1).
  • the sample in which the magnetic particles 21 are dispersed is introduced into the reaction apparatus 1 (microcapillary tube 10) from the introduction path (step 2).
  • a DC magnetic field 40 is applied by the end fixing means 31 in a direction substantially orthogonal to the pipe line direction of the microcapillary tube 10 (step 3).
  • the DC magnetic field 40 is applied in the negative Z-axis direction in the coordinate system shown in FIG.
  • the magnetic particles 21 dispersed in the sample are fixed (bottomed) on the back side surface (the surface on the Z-axis plus direction side) of the microcapillary tube 10 on which the DC magnetic field is incident.
  • the magnetic body 20 is formed by magnetic coupling in the form of a column as the end 22).
  • the distance (interval between the end portions 22) and the height (number of bonds of the magnetic particles 21) of the magnetic bodies 20 formed on the back side surface of the microcapillary tube 10 are the diameter, magnetic moment, and type (Fe, Co, Ni, etc.).
  • the specific spacing and height can be determined according to the size of the microcapillary tube 10, the type of sample, the required liquid feeding ability and stirring ability, the density of the probe molecules 51, and the like. it can.
  • an alternating magnetic field 41 is applied by the end motion means 32 in the liquid feeding operation mode (step 4).
  • an alternating magnetic field 41 is applied substantially in parallel to the pipe line direction of the microcapillary tube 10 (Y-axis direction in the coordinate system shown in FIG. 1).
  • the end portion 23 of the magnetic body 20 causes the direction of the AC magnetic field 41, that is, the Y-axis minus direction (liquid feeding direction) and the Y-axis plus direction (liquid feeding direction) in the coordinate system shown in FIG. Reciprocate in the opposite direction).
  • the reciprocating motion of the end portion 23 can be controlled by the waveform of the alternating magnetic field 41 to be applied.
  • the moving speed of the end portion 23 during the forward movement is higher than the moving speed during the backward movement.
  • the waveform of the AC magnetic field 41 can be set. Specifically, during the forward movement, the waveform of the AC magnetic field 41 is set so that a relatively steep magnetic field gradient (change in magnetic flux density) is generated, and the end 23 is controlled to move at a relatively high speed. To do. Further, during the backward movement, the waveform of the AC magnetic field 41 is set so that a relatively gentle magnetic field gradient is generated, and the end portion 23 is controlled to move at a relatively slow speed.
  • the magnetic body 20 is like a pendulum with the fixed end portion 22 as a fulcrum. It works to feed the sample (functions as a nanopump). By such a liquid feeding action, the sample circulates through the microcapillary tube 10 and the flow path 11 in a certain direction.
  • FIG. 4 schematically shows how the magnetic body 20 in the sample functions as a nanopump.
  • 4A is a view of the columnar magnetic body 20 viewed from the side
  • FIG. 4B is a view of the columnar magnetic body 20 viewed from above.
  • the magnetic body 20 in each drawing is schematically shown, and the dimensional ratio is not limited to the illustrated ratio.
  • the moving speed difference of the reciprocating motion in the liquid feeding operation mode can be determined according to the type of sample and the required liquid feeding capacity. Moreover, what is necessary is just to stop the application of the alternating current magnetic field 41, when a liquid feeding effect becomes unnecessary. Since the reaction apparatus 1 of Example 1 can send a sample according to the behavior of the magnetic body 20 in the sample, a conventional pump apparatus is unnecessary. As a result, the sample that passes through the piping in the pump device, which has been necessary in the past, is no longer necessary, so that the sample utilization efficiency can be improved. Further, since the mechanical part called the pump device can be eliminated, it is possible to avoid shortening the apparatus life due to a failure of the mechanical part.
  • the magnetic body 20 acting as a nanopump is dispersed in the sample in the microcapillary tube 10, the liquid feeding can be accurately controlled over the entire microcapillary tube 10, and as a result, the microcapillary tube 10. Since the sample can be smoothly circulated in the inside, the throughput time until the binding reaction is obtained can be shortened.
  • the target substance 50 and the probe molecule can be obtained without increasing the amount of sample introduced into the reaction apparatus 1.
  • the chance of combining with 51 can be increased.
  • Example 2 In Example 2, the reaction efficiency is improved by causing the magnetic body 20 to act as a nanopump and a nanostirrer.
  • steps 1 to 4 are the same as those in the first embodiment.
  • the end motion means 32 switches between step 4 and the following step 5 and repeatedly executes both steps.
  • step 5 the AC magnetic field 42 is applied by the end motion means 32 in the stirring operation mode.
  • the application direction and strength of the AC magnetic field 42 in the stirring operation mode can be determined according to the type of sample and the required stirring ability.
  • the waveform of the AC magnetic field 42 can be set so that the end 23 rotates 360 degrees in a predetermined plane (for example, the XY plane in the coordinate system shown in FIG. 1) (FIG. 3). (See (C)).
  • a predetermined plane for example, the XY plane in the coordinate system shown in FIG. 1
  • FIG. 3 See (C)
  • the end portion 23 of the magnetic body 20 moves in a substantially circular motion within the plane.
  • the magnetic body 20 operates like a conical pendulum with the fixed end 22 as a fulcrum, and acts to stir the fluid (functions as a nanostirrer).
  • FIG. 5 schematically shows how the magnetic body 20 in the sample functions as a nanostirrer.
  • 5A is a view of the columnar magnetic body 20 viewed from the side
  • FIG. 5B is a view of the columnar magnetic body 20 viewed from above.
  • the magnetic body 20 in each drawing is schematically shown, and the dimensional ratio is not limited to the illustrated ratio.
  • the rotation speed of the magnetic field in the stirring operation mode can be determined according to the type of sample and the required stirring ability. Further, when the stirring action becomes unnecessary, the application of the alternating magnetic field 42 may be stopped. Moreover, the execution time of step 4 and step 5 may be different, and the execution time of each step may be changed with the passage of time. .
  • the reaction apparatus 1 of Example 2 can exhibit the same operational effects as Example 1. Furthermore, by controlling the alternating magnetic field 42 applied to the microcapillary tube 10, the magnetic body 20 can function as a nanostirrer and the sample can be stirred in the microcapillary tube 10, so that it is introduced into the reaction apparatus 1. The binding chance between the target substance 50 and the probe molecule 51 can be increased without increasing the amount of the sample.
  • the present invention is not limited to the above embodiment and can be applied in various modifications.
  • the AC magnetic fields 41 and 42 are uniformly applied to the entire microcapillary tube 10, but a configuration in which an AC magnetic field is locally applied may be employed.
  • an AC magnetic field may be applied uniformly or locally to the flow path 11. That is, a DC magnetic field is applied in a direction substantially orthogonal to the liquid feeding direction of the flow path 11 by the end fixing means, and an AC magnetic field is applied in a direction corresponding to the liquid feeding direction of the flow path 11 by the end moving means.
  • the magnetic body 20 arranged in the sample in the flow channel 11 can act as a nanopump or a nanostirrer.
  • Example 1 describes an aspect in which the magnetic body 20 acts as a nanopump
  • Example 2 describes an aspect in which the magnetic body 20 acts as a nanopump and a nanostarr. You may employ
  • the reaction apparatus may be configured to have a configuration for detecting the presence or absence of binding of the target substance in the microcapillary tube 10 and a configuration for processing the detection result.
  • a method for detecting the presence or absence of binding an aspect using an absorption observation device as in the prior art, an aspect in which the amount of binding is determined based on a change in impedance of the microcapillary tube 10, and the like can be considered.
  • the liquid feeding function and the agitation function can be realized by controlling the behavior of the magnetic body 20 in the sample, so that it can be widely applied to various reaction apparatuses using capillaries. Can be used.
  • FIG. 1 is a diagram illustrating a schematic configuration of a microcapillary tube 10 in a state where a reaction apparatus 1 according to an embodiment of the present invention and a sample are introduced into the reaction apparatus 1.
  • FIG. FIG. 6 is a diagram for explaining a magnetic body 20. It is a figure for demonstrating the DC magnetic field 40 and the AC magnetic fields 41 and 42 which are applied by the edge part fixing means 31 and the edge movement means 32.
  • FIG. It is a figure for demonstrating the magnetic body 20 which functions as a nanopump. It is a figure for demonstrating the magnetic body 20 which functions as a nanostirrer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Clinical Laboratory Science (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

It is intended to provide a novel reaction device and a method whereby a reaction can be efficiently achieved by using a sample in a minor amount with the use of a capillary which has a probe molecule that is capable of inducing a specific binding reaction with a target substance and has been fixed to the inner face thereof. Namely, a reaction device which comprises a capillary having a probe molecule that is capable of being inducing a specific binding reaction with a target substance and has been fixed to the inner face thereof, a rod-shaped magnetic body provided, in the state where a fluid containing the above-described target substance is introduced into the above-described capillary, in the above-described fluid, an end-fixing unit for fixing one end of the rod-shaped magnetic body as described above in the above-described capillary by using a direct current magnetic field, and an end-moving unit for moving the other end of the rod-shaped magnetic body as described above by using an alternate current magnetic field so as to stir the above-described fluid.

Description

反応装置及び方法Reaction apparatus and method
 本発明は、対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリーを用いた反応装置及び方法に関する。 The present invention relates to a reaction apparatus and method using a capillary in which probe molecules that cause a specific binding reaction with a target substance are fixed on the inner surface.
 従来より、特定の分子と選択的に結合する物質を用い、それに対応する物質を選択的に検出するアフィニティー検出法を利用した反応装置が開発されている。例えば特開2002-202305号公報(特許文献1)には、分析対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリーを複数個束ねた構造を持つアフィニティー検出分析チップ及び検出システムが開示されている。 Conventionally, a reaction apparatus using an affinity detection method that uses a substance that selectively binds to a specific molecule and selectively detects the corresponding substance has been developed. For example, Japanese Patent Laid-Open No. 2002-202305 (Patent Document 1) discloses an affinity detection / analysis chip and a detection system having a structure in which a plurality of capillaries each having a probe molecule that causes a specific binding reaction with an analyte to be immobilized are bundled. Is disclosed.
 具体的には、特許文献1に記載の検出システムでは、検出対象分子を含むサンプルを複数のキャピラリーの内部に流し、キャピラリー内面のプローブ分子と特異的な結合反応を起こさせることにより検出対象分子をキャピラリー内面に結合させる。そして、吸光観測装置を用いてキャピラリー内部の結合の有無を観測・分析する。 Specifically, in the detection system described in Patent Document 1, a sample containing a molecule to be detected is caused to flow inside a plurality of capillaries, and a specific binding reaction is caused with a probe molecule on the inner surface of the capillary to cause the molecule to be detected to be detected. Connect to the inner surface of the capillary. Then, the presence or absence of binding inside the capillary is observed and analyzed using an absorption observation device.
 このような、対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリーを用いて、対象物質を結合する(固定する)反応装置を構成する場合、キャピラリーの内部に対象物質を含有する流体(サンプル)を流すために、シリンジポンプやピストンポンプなどの一般的なポンプをキャピラリー外部に設ける必要がある。 When constructing a reaction device that binds (fixes) a target substance using a capillary in which probe molecules that cause a specific binding reaction with the target substance are fixed on the inner surface, the target substance is contained inside the capillary. It is necessary to provide a general pump such as a syringe pump or a piston pump outside the capillary in order to flow a fluid (sample).
 しかし、キャピラリーの微細な流路内では流体の見かけの粘度が非常に高くなることから、一般的なポンプを用いる方法では、流路内の任意の位置(特にポンプから離れた位置)にあるサンプルの送液を精度よく制御することが難しく、結果として、結合反応が得られるまでのスループット時間が長くなってしまうおそれがある。 However, since the apparent viscosity of the fluid is very high in the fine flow path of the capillary, in the method using a general pump, the sample at an arbitrary position in the flow path (particularly a position away from the pump). It is difficult to accurately control the liquid feeding, and as a result, there is a possibility that the throughput time until the binding reaction is obtained becomes long.
 また、ポンプ内などの配管を通る分の流体が最低限必要となるため、サンプルの利用効率が低下してしまうという問題もある。 Also, since the minimum amount of fluid that passes through the piping such as the inside of the pump is required, there is a problem that the utilization efficiency of the sample is lowered.
 更に、従来の構成では、例えばサンプルに含まれる検出対象分子が少ない場合、キャピラリー内面のプローブ分子に検出対象分子を十分に結合させるためには、キャピラリーに流すサンプルの量を増やすことで結合チャンスを増やさざるを得ず、多量のサンプルが必要になるという問題も存在する。 Furthermore, in the conventional configuration, for example, when the number of molecules to be detected contained in the sample is small, in order to sufficiently bind the molecules to be detected to the probe molecules on the inner surface of the capillary, the binding chance is increased by increasing the amount of the sample flowing through the capillary. There is also a problem that a large amount of sample is required.
 そこで、本発明は、かかる事情に鑑みてなされたものであり、対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリーを用いて、短いスループット時間で結合反応を得ることができ、また少量のサンプルで効率よく反応させることができる、新しい反応装置及び方法を提供することを目的とする。 Therefore, the present invention has been made in view of such circumstances, and a binding reaction can be obtained in a short throughput time using a capillary in which probe molecules that cause a specific binding reaction with a target substance are immobilized on the inner surface. It is another object of the present invention to provide a new reaction apparatus and method which can efficiently react with a small amount of sample.
 本発明の反応装置は、対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリーと、前記キャピラリー内に前記対象物質を含有する流体を導入した状態において前記流体中に配された柱状の磁性体と、前記柱状の磁性体の一方の端部を、直流磁界を用いて前記キャピラリー内で固定する端部固定手段と、前記柱状の磁性体の他方の端部を、交流磁界を用いて前記流体を攪拌するように運動させる端部運動手段と、を備える。 The reaction apparatus of the present invention is arranged in the fluid in a state where a capillary in which probe molecules that cause a specific binding reaction with the target substance are fixed on the inner surface and a fluid containing the target substance is introduced into the capillary A columnar magnetic body, an end fixing means for fixing one end of the columnar magnetic body in the capillary using a DC magnetic field, and an AC magnetic field between the other end of the columnar magnetic body And end motion means for moving the fluid to stir.
 前記端部運動手段が、流路を含む平面内で磁界の向きが360°回転するように交流磁界を印加し、前記磁性体が前記一方の端部を支点として円錐振り子の様に動作するように、前記他方の端部を前記平面内で略円運動させることができる。 The end motion means applies an AC magnetic field so that the direction of the magnetic field rotates 360 ° in a plane including the flow path, and the magnetic body operates like a conical pendulum with the one end as a fulcrum. Further, the other end can be moved in a substantially circular motion within the plane.
 前記柱状の磁性体は、前記直流磁界によって複数の磁性粒子を柱状に磁気結合させて生成されるものであってよい。 The columnar magnetic body may be generated by magnetically coupling a plurality of magnetic particles into a columnar shape by the DC magnetic field.
 本発明の反応方法は、対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリー内に前記対象物質を含有する流体を導入した状態において、前記流体中に配された柱状の磁性体の一方の端部を、直流磁界を用いて対象装置内で固定する端部固定工程と、前記柱状の磁性体の他方の端部を、交流磁界を用いて前記流体を攪拌するように運動させる攪拌工程と、を備える。 In the reaction method of the present invention, a columnar magnet disposed in the fluid is introduced in a state where a fluid containing the target substance is introduced into a capillary in which probe molecules that cause a specific binding reaction with the target substance are fixed on the inner surface. An end fixing step of fixing one end of the body within the target device using a DC magnetic field, and the other end of the columnar magnetic body moving so as to stir the fluid using an AC magnetic field A stirring step.
 本発明の反応装置及び方法によれば、対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリーを用いて、少量のサンプルで効率よく反応させることができる。 According to the reaction apparatus and method of the present invention, it is possible to efficiently react with a small amount of sample using a capillary in which probe molecules that cause a specific binding reaction with a target substance are fixed on the inner surface.
 以下に本発明の実施形態について図面を用いて説明する。図1(A)は、本発明の実施形態である反応装置1の概略構成を模式的に示す図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 (A) is a diagram schematically showing a schematic configuration of a reaction apparatus 1 according to an embodiment of the present invention.
 図に示すように、反応装置1は、対象物質50(例えば、タンパク質やDNAなどの生理活性物質)と特異的な結合反応を起こすプローブ分子51を内面に固定したマイクロキャピラリーチューブ10と、マイクロキャピラリーチューブ10の両端を接続する流路(循環路)11とを備えている。なお、図では1本のマイクロキャピラリーチューブ10を示しているが、複数個のマイクロキャピラリーチューブ10を集積させて用いてもよい。また説明のために、図では、図面の左から右に向かう方向にX軸を、下から上に向かう方向にY軸を、手前から奥に向かう方向にZ軸を割り当てている。
As shown in the drawing, the reaction apparatus 1 includes a microcapillary tube 10 having probe molecules 51 that cause a specific binding reaction with a target substance 50 (for example, a physiologically active substance such as protein or DNA) fixed to the inner surface, and a microcapillary. A flow path (circulation path) 11 that connects both ends of the tube 10 is provided. Although one microcapillary tube 10 is shown in the figure, a plurality of microcapillary tubes 10 may be integrated and used. For the sake of explanation, in the figure, the X axis is assigned in the direction from the left to the right of the drawing, the Y axis in the direction from the bottom to the top, and the Z axis in the direction from the near side to the back.
 マイクロキャピラリーチューブ10は、従来技術(例えば特許文献1)を用いて製造することができる。具体的には、マイクロキャピラリーチューブ10は、ガラス質材料(石英ガラス、ホウケイ酸ガラス)、有機系材料、プラスチック系材料(ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン)、カーボンナノチューブなどの材料を用いて製造することができ、そのサイズは、例えば内径10マイクロメートル~100マイクロメートル程度、長さ1mm~5mm程度とすることが考えられる。 The microcapillary tube 10 can be manufactured using a conventional technique (for example, Patent Document 1). Specifically, the microcapillary tube 10 is manufactured using a material such as a glassy material (quartz glass, borosilicate glass), an organic material, a plastic material (polyetheretherketone, polyethylene, polypropylene), or a carbon nanotube. The size may be, for example, an inner diameter of about 10 to 100 micrometers and a length of about 1 mm to 5 mm.
 流路11は、対象物質50を含有する流体(例えば、気体、液体、ゲルなど;目的に応じて選択される;以下、「サンプル」という)を循環させるための路であり、マイクロキャピラリーチューブ10の一方の端(出口端12)から排出されるサンプルを他方の端(入口端13)へ流通させることができるように構成されている。流路11は、従来同様、ガラス、シリコン、プラスチックなど、種々の材料を用いて形成することができ、そのサイズはマイクロキャピラリーチューブ10のサイズに応じて決定できる。 The channel 11 is a channel for circulating a fluid (for example, gas, liquid, gel, etc .; selected according to the purpose; hereinafter referred to as “sample”) containing the target substance 50, and the microcapillary tube 10. The sample discharged from one end (outlet end 12) is allowed to flow to the other end (inlet end 13). The flow path 11 can be formed using various materials such as glass, silicon, and plastic as in the prior art, and the size can be determined according to the size of the microcapillary tube 10.
 なお、マイクロキャピラリーチューブ10の入口端13近傍には、反応装置1内にサンプルを導入するための導入路14が接続されており、その接続部には循環時にサンプルが導入路に流入しないようにする弁(図示せず)が設けられている。 An inlet path 14 for introducing a sample into the reaction apparatus 1 is connected to the vicinity of the inlet end 13 of the microcapillary tube 10 so that the sample does not flow into the inlet path during circulation. A valve (not shown) is provided.
 図1(B)は、サンプルを反応装置1に導入した状態での、マイクロキャピラリーチューブ10の様子を模式的に示す図である。 FIG. 1 (B) is a diagram schematically showing the state of the microcapillary tube 10 in a state where the sample is introduced into the reaction apparatus 1.
 プローブ分子51は、対象物質50と特異的な結合反応を起こす相補的な分子であればよく、従来技術同様、設計に応じて適宜、選択することができる。具体的には、対象物質50に応じて、DNA、RNA、抗原、抗体、酵素、タンパク質などを用いることができる。 The probe molecule 51 may be a complementary molecule that causes a specific binding reaction with the target substance 50, and can be appropriately selected according to the design as in the prior art. Specifically, DNA, RNA, antigen, antibody, enzyme, protein or the like can be used depending on the target substance 50.
 プローブ分子51は、従来技術同様、リンカー物質によりマイクロキャピラリーチューブ10の内面に固定することができる。例えば、プローブ分子51に結合させたリンカー物質(例えば、グルタルアルデヒド)と、マイクロキャピラリーチューブ10の内面に形成した反応基(例えばシラノール基)とを結合させる態様や、マイクロキャピラリーチューブ10の内面に存在させた反応基にリンカー物質(例えば、コハク酸)を結合させ、該リンカー物質の上にプローブ分子51を合成していく態様などを考えることができる。 The probe molecule 51 can be fixed to the inner surface of the microcapillary tube 10 with a linker substance, as in the prior art. For example, a mode in which a linker substance (for example, glutaraldehyde) bonded to the probe molecule 51 and a reactive group (for example, a silanol group) formed on the inner surface of the microcapillary tube 10 are bonded or present on the inner surface of the microcapillary tube 10. A mode in which a linker substance (for example, succinic acid) is bonded to the reacted group and the probe molecule 51 is synthesized on the linker substance can be considered.
 図1(A)及び(B)に示すように、本実施形態の反応装置1は、更に、反応装置1内(具体的には、マイクロキャピラリーチューブ10及び流路11内)にサンプルを導入した状態においてサンプル中に配された磁性体20と、磁性体20の挙動を制御するための制御装置30として端部固定手段31及び端部運動手段32とを備えている。 As shown in FIGS. 1A and 1B, the reaction apparatus 1 of the present embodiment further introduces a sample into the reaction apparatus 1 (specifically, into the microcapillary tube 10 and the flow path 11). The magnetic body 20 arranged in the sample in the state, and an end fixing means 31 and an end motion means 32 are provided as a control device 30 for controlling the behavior of the magnetic body 20.
 なお、図1(A)では、端部固定手段31をマイクロキャピラリーチューブ10に対して図においてZ軸プラス方向側に、端部運動手段32を図においてY軸マイナス方向側に配置しているが、これらの手段は、後述する直流磁界40及び交流磁界41、42を印加できる位置であれば、設計に応じて任意の位置に配置することができる。 In FIG. 1A, the end fixing means 31 is arranged on the Z axis plus direction side in the drawing with respect to the microcapillary tube 10, and the end movement means 32 is arranged on the Y axis minus direction side in the drawing. These means can be arranged at arbitrary positions according to the design as long as they can apply a DC magnetic field 40 and AC magnetic fields 41 and 42 described later.
 図2に、磁性体20の構造を模式的に示す。図に示すように、磁性体20は、複数の磁性粒子21が柱状に磁性結合して構成されており、柱の両端に相当する2つの端部22、23を備えている。 FIG. 2 schematically shows the structure of the magnetic body 20. As shown in the figure, the magnetic body 20 is formed by magnetically coupling a plurality of magnetic particles 21 in a columnar shape, and includes two end portions 22 and 23 corresponding to both ends of the column.
 磁性体20の一方の端部22は、後述するように端部固定手段31によってマイクロキャピラリーチューブ10に接した状態で固定されている。一方、磁性体20の他方の端部23は固定されておらず、後述するように端部運動手段32によって往復運動などを行うように制御される。 One end 22 of the magnetic body 20 is fixed in contact with the microcapillary tube 10 by an end fixing means 31 as described later. On the other hand, the other end 23 of the magnetic body 20 is not fixed, and is controlled so as to reciprocate by the end motion means 32 as will be described later.
 磁性粒子21は、従来技術を用いて製造することができ、磁性体自体の粒子のほか、磁性体を含む組成物の粒子であってもよい。磁性粒子21は、粒状、板状、箱状、針状(例えばマグネチックカーボンナノチューブ(CNT))など、種々の形状をとることができ、そのサイズは、マイクロキャピラリーチューブ10のサイズ、サンプルの種類、必要とされる送液能力や攪拌能力に応じて、決定することができる(なお、本願ではサンプルが液体以外の場合にも「送液」との用語を用いる)。 The magnetic particles 21 can be manufactured using conventional techniques, and may be particles of a composition containing a magnetic material in addition to particles of the magnetic material itself. The magnetic particles 21 can take various shapes such as granular, plate-like, box-like, and needle-like (for example, magnetic carbon nanotube (CNT)). The size is the size of the microcapillary tube 10 and the type of sample. It can be determined according to the required liquid feeding ability and stirring ability (in this application, the term “liquid feeding” is used even when the sample is other than liquid).
 端部固定手段31は、マイクロキャピラリーチューブ10の管路方向に対して略直交方向(例えば、図1に示す座標系においてZ軸マイナス方向)に直流磁界40を印加する装置である(図3(A)参照)。このような装置は、従来同様、永久磁石、電磁石等をコントローラで制御することにより実現できる。 The end fixing means 31 is a device that applies a DC magnetic field 40 in a direction substantially perpendicular to the pipe line direction of the microcapillary tube 10 (for example, the Z-axis minus direction in the coordinate system shown in FIG. 1) (FIG. 3 ( A)). Such a device can be realized by controlling a permanent magnet, an electromagnet, and the like with a controller, as in the prior art.
 流体中に分散した磁性粒子に対して直流磁界を印加すると、磁性粒子が磁界入射側を底として柱状に磁性結合することが知られている(例えば、「Field-Induced Structures in Ferrofluid Emulsions」,PHYSICAL REVIEW LETTERS, Volume 74, Number 13, 3 April 1995を参照のこと。この文献は参照により本願に組み込まれる)。「柱」の間隔、高さは、印加する直流磁界の強さ等によって制御可能である。 It is known that when a DC magnetic field is applied to magnetic particles dispersed in a fluid, the magnetic particles are magnetically coupled in a columnar shape with the magnetic field incident side as the bottom (for example, "Field-Induced Structures-in Ferrofluid Emulsions", PHYSICAL REVIEW LETTERS, Volume 74, Number 13, 3 April 1995, which is incorporated herein by reference). The interval and height of the “columns” can be controlled by the strength of the applied DC magnetic field.
 本実施形態の磁性体20は、上記の現象を利用して形成される。すなわち、サンプル中に磁性粒子21を導入・分散させた後、端部固定手段31によりマイクロキャピラリーチューブ10の管路方向に対して略直交方向に直流磁界40を印加することで、マイクロキャピラリーチューブ10の磁界入射側を底(固定された端部22)として磁性粒子21が柱状に磁性結合され、磁性体20が形成される。 The magnetic body 20 of the present embodiment is formed using the above phenomenon. That is, after the magnetic particles 21 are introduced and dispersed in the sample, the DC fixing magnetic field 40 is applied to the microcapillary tube 10 by the end fixing means 31 in a direction substantially orthogonal to the pipe direction of the microcapillary tube 10. The magnetic particles 21 are magnetically coupled in a columnar shape with the magnetic field incident side as the bottom (fixed end 22), and the magnetic body 20 is formed.
 ここで、マイクロキャピラリーチューブ10の磁界入射側に予め磁性粒子や磁性薄膜を付しておいてもよい。付す方法は、接着など従来技術を用いることができる。この場合、予め付した磁性粒子等が柱の底となるように磁性粒子21が磁性結合されるので、磁性体20の形成位置を予め指定することが可能となる。 Here, a magnetic particle or a magnetic thin film may be provided in advance on the magnetic field incident side of the microcapillary tube 10. The attaching method can use a conventional technique such as adhesion. In this case, since the magnetic particles 21 are magnetically coupled so that the magnetic particles attached in advance are at the bottom of the column, the formation position of the magnetic body 20 can be designated in advance.
 端部運動手段32は、マイクロキャピラリーチューブ10の管路方向(図1に示す座標系においてY軸方向)に対して略平行に交流磁界41を印加し、又、所定の平面(例えば、図1に示す座標系においてXY平面)内で磁界の向きが360°回転するように交流磁界42を印加する装置である(図3(B)、(C)参照)。このような装置は、従来同様、交流電流により発生する磁界をコントローラで制御することにより実現できる。 The end motion means 32 applies an alternating magnetic field 41 substantially parallel to the pipe direction of the microcapillary tube 10 (the Y-axis direction in the coordinate system shown in FIG. 1), and also has a predetermined plane (for example, FIG. 1). The AC magnetic field 42 is applied so that the direction of the magnetic field rotates 360 ° within the XY plane in the coordinate system shown in FIG. 3 (see FIGS. 3B and 3C). Such a device can be realized by controlling a magnetic field generated by an alternating current with a controller, as in the prior art.
 磁性体20の端部23は、マイクロキャピラリーチューブ10に固定されておらず、そのため、端部運動手段32により印加される交流磁界41の影響を受けて運動する。 The end portion 23 of the magnetic body 20 is not fixed to the microcapillary tube 10 and therefore moves under the influence of the alternating magnetic field 41 applied by the end motion means 32.
 なお、磁性体20の端部22も端部運動手段32により印加される交流磁界41の影響を受けるため、その影響下でも端部22をマイクロキャピラリーチューブ10に固定できるよう、端部運動手段32により印加される交流磁界41の強さに対して、端部固定手段31により印加される直流磁界40の強さを十分に大きく設定する。 Since the end 22 of the magnetic body 20 is also affected by the AC magnetic field 41 applied by the end moving means 32, the end moving means 32 can be fixed to the microcapillary tube 10 under the influence. The strength of the DC magnetic field 40 applied by the end fixing means 31 is set to be sufficiently larger than the strength of the AC magnetic field 41 applied by.
 次に、本実施形態における反応装置1を利用した反応方法の実施例を具体的に説明する。  Next, an example of a reaction method using the reaction apparatus 1 in this embodiment will be specifically described. *

(実施例1) 実施例1では、磁性体20をナノポンプとして作用させることで反応効率の向上を図る。

Example 1 In Example 1, the reaction efficiency is improved by causing the magnetic body 20 to act as a nanopump.
 まず、対象物質50を含有するサンプルに磁性粒子21を混入し、分散させる(ステップ1)。 First, magnetic particles 21 are mixed and dispersed in a sample containing the target substance 50 (step 1).
 次に、磁性粒子21を分散させたサンプルを導入路から反応装置1(マイクロキャピラリーチューブ10)内に導入する(ステップ2)。 Next, the sample in which the magnetic particles 21 are dispersed is introduced into the reaction apparatus 1 (microcapillary tube 10) from the introduction path (step 2).
 次に、端部固定手段31により、マイクロキャピラリーチューブ10の管路方向に対して略直交方向に直流磁界40を印加する(ステップ3)。ここでは、図1に示す座標系においてZ軸マイナス方向に直流磁界40を印加するものとする。 Next, a DC magnetic field 40 is applied by the end fixing means 31 in a direction substantially orthogonal to the pipe line direction of the microcapillary tube 10 (step 3). Here, it is assumed that the DC magnetic field 40 is applied in the negative Z-axis direction in the coordinate system shown in FIG.
 かかる直流磁界40の印加により、サンプル中に分散していた磁性粒子21は、直流磁界が入射する側であるマイクロキャピラリーチューブ10の奥側面(Z軸プラス方向側の面)を底(固定された端部22)として柱状に磁性結合し、磁性体20を形成する。 By the application of the DC magnetic field 40, the magnetic particles 21 dispersed in the sample are fixed (bottomed) on the back side surface (the surface on the Z-axis plus direction side) of the microcapillary tube 10 on which the DC magnetic field is incident. The magnetic body 20 is formed by magnetic coupling in the form of a column as the end 22).
 マイクロキャピラリーチューブ10の奥側面に形成される磁性体20の間隔(端部22どうしの間隔)や高さ(磁性粒子21の結合数)は、磁性粒子21の直径、磁気モーメント、種類(Fe、Co、Niなど)によって決まる。具体的にどのような間隔、高さとするかは、マイクロキャピラリーチューブ10のサイズ、サンプルの種類、必要とされる送液能力や攪拌能力、プローブ分子51の密度などに応じて、決定することができる。 The distance (interval between the end portions 22) and the height (number of bonds of the magnetic particles 21) of the magnetic bodies 20 formed on the back side surface of the microcapillary tube 10 are the diameter, magnetic moment, and type (Fe, Co, Ni, etc.). The specific spacing and height can be determined according to the size of the microcapillary tube 10, the type of sample, the required liquid feeding ability and stirring ability, the density of the probe molecules 51, and the like. it can.
 次に、端部運動手段32により、送液動作モードにて、交流磁界41を印加する(ステップ4)。送液動作モードでは、マイクロキャピラリーチューブ10の管路方向(図1に示す座標系においてY軸方向)に対して略平行に交流磁界41を印加する。かかる交流磁界41の印加により、磁性体20の端部23は、交流磁界41の方向、すなわち、図1に示す座標系においてY軸マイナス方向(送液方向)及びY軸プラス方向(送液方向の逆方向)に往復運動する。 Next, an alternating magnetic field 41 is applied by the end motion means 32 in the liquid feeding operation mode (step 4). In the liquid feeding operation mode, an alternating magnetic field 41 is applied substantially in parallel to the pipe line direction of the microcapillary tube 10 (Y-axis direction in the coordinate system shown in FIG. 1). By the application of the AC magnetic field 41, the end portion 23 of the magnetic body 20 causes the direction of the AC magnetic field 41, that is, the Y-axis minus direction (liquid feeding direction) and the Y-axis plus direction (liquid feeding direction) in the coordinate system shown in FIG. Reciprocate in the opposite direction).
 端部23の往復運動は、印加する交流磁界41の波形によって制御することができる。 The reciprocating motion of the end portion 23 can be controlled by the waveform of the alternating magnetic field 41 to be applied.
 例えば、送液方向への動きを往運動、送液方向の逆方向への動きを復運動とする場合、端部23の往運動時の移動速度が、復運動時の移動速度よりも大きくなるように交流磁界41の波形を設定することができる。具体的には、往運動時には、相対的に急峻な磁場勾配(磁束密度の変化)が生じるように交流磁界41の波形を設定し、端部23が相対的に速い速度で移動するように制御する。また、復運動時には、相対的に緩やかな磁場勾配が生じるように交流磁界41の波形を設定し、端部23が相対的に遅い速度で移動するように制御する。 For example, when the movement in the liquid feeding direction is a forward movement and the movement in the direction opposite to the liquid feeding direction is a backward movement, the moving speed of the end portion 23 during the forward movement is higher than the moving speed during the backward movement. Thus, the waveform of the AC magnetic field 41 can be set. Specifically, during the forward movement, the waveform of the AC magnetic field 41 is set so that a relatively steep magnetic field gradient (change in magnetic flux density) is generated, and the end 23 is controlled to move at a relatively high speed. To do. Further, during the backward movement, the waveform of the AC magnetic field 41 is set so that a relatively gentle magnetic field gradient is generated, and the end portion 23 is controlled to move at a relatively slow speed.
 このように往運動の移動速度が復運動の移動速度よりも大きくなるように端部23の往復運動を制御することで、磁性体20は、固定されている端部22を支点として振り子の様に動作し、サンプルを送液するように作用する(ナノポンプとして機能する)。かかる送液作用により、サンプルはマイクロキャピラリーチューブ10及び流路11を一定方向に循環する。 By controlling the reciprocating motion of the end portion 23 so that the moving speed of the forward motion is larger than the moving speed of the backward motion in this way, the magnetic body 20 is like a pendulum with the fixed end portion 22 as a fulcrum. It works to feed the sample (functions as a nanopump). By such a liquid feeding action, the sample circulates through the microcapillary tube 10 and the flow path 11 in a certain direction.
 図4に、サンプル中の磁性体20がナノポンプとして機能する様子を模式的に示す。図4(A)は柱状の磁性体20を横から見た図、図4(B)は柱状の磁性体20を上から見た図である。各図における磁性体20は模式的に示したものであり、その寸法比率は図示の比率に限られるものではない。 FIG. 4 schematically shows how the magnetic body 20 in the sample functions as a nanopump. 4A is a view of the columnar magnetic body 20 viewed from the side, and FIG. 4B is a view of the columnar magnetic body 20 viewed from above. The magnetic body 20 in each drawing is schematically shown, and the dimensional ratio is not limited to the illustrated ratio.
 なお、送液動作モードにおける往復運動の移動速度差は、サンプルの種類、必要とされる送液能力に応じて、決定することができる。また、送液作用が不要となった場合は、交流磁界41の印加を停止すればよい。 
 実施例1の反応装置1は、サンプル中の磁性体20の挙動によってサンプルを送液できるので、従来のようなポンプ装置は不要である。その結果、従来必要であったポンプ装置内の配管を通る分のサンプルも不要となるから、サンプルの利用効率を向上させることができる。また、ポンプ装置という機械部分を排除できるので、機械部分の故障等による装置寿命の短縮を回避することができる。
In addition, the moving speed difference of the reciprocating motion in the liquid feeding operation mode can be determined according to the type of sample and the required liquid feeding capacity. Moreover, what is necessary is just to stop the application of the alternating current magnetic field 41, when a liquid feeding effect becomes unnecessary.
Since the reaction apparatus 1 of Example 1 can send a sample according to the behavior of the magnetic body 20 in the sample, a conventional pump apparatus is unnecessary. As a result, the sample that passes through the piping in the pump device, which has been necessary in the past, is no longer necessary, so that the sample utilization efficiency can be improved. Further, since the mechanical part called the pump device can be eliminated, it is possible to avoid shortening the apparatus life due to a failure of the mechanical part.
 また、ナノポンプとして作用する磁性体20は、マイクロキャピラリーチューブ10内のサンプル中に分散しているため、マイクロキャピラリーチューブ10全体にわたって精度よく送液を制御することができ、その結果、マイクロキャピラリーチューブ10内でサンプルをスムースに流通させることができるので、結合反応が得られるまでのスループット時間を短縮することができる。 In addition, since the magnetic body 20 acting as a nanopump is dispersed in the sample in the microcapillary tube 10, the liquid feeding can be accurately controlled over the entire microcapillary tube 10, and as a result, the microcapillary tube 10. Since the sample can be smoothly circulated in the inside, the throughput time until the binding reaction is obtained can be shortened.
 更に、サンプルは流路11を経由してマイクロキャピラリーチューブ10内を循環することでプローブ分子51に繰り返し接触するため、反応装置1に導入するサンプルの量を増やすことなく、対象物質50とプローブ分子51との結合チャンスを増加させることができる。 Furthermore, since the sample circulates through the microcapillary tube 10 via the flow path 11 and repeatedly contacts the probe molecule 51, the target substance 50 and the probe molecule can be obtained without increasing the amount of sample introduced into the reaction apparatus 1. The chance of combining with 51 can be increased.

(実施例2) 実施例2では、磁性体20をナノポンプ及びナノスターラとして作用させることで反応効率の向上を図る。

(Example 2) In Example 2, the reaction efficiency is improved by causing the magnetic body 20 to act as a nanopump and a nanostirrer.
 実施例2において、ステップ1~4までは実施例1と同様である。ただし、実施例2では、端部運動手段32は、サンプルがマイクロキャピラリーチューブ10内に充填された状態となった場合、ステップ4と以下のステップ5とを切り替えて、両ステップを繰り返し実行する。
In the second embodiment, steps 1 to 4 are the same as those in the first embodiment. However, in the second embodiment, when the sample is filled in the microcapillary tube 10, the end motion means 32 switches between step 4 and the following step 5 and repeatedly executes both steps.
 具体的には、ステップ5では、端部運動手段32により、攪拌動作モードにて交流磁界42を印加する。攪拌動作モードにおける交流磁界42の印加方向や強さは、サンプルの種類、必要とされる攪拌能力に応じて、決定することができる。 Specifically, in step 5, the AC magnetic field 42 is applied by the end motion means 32 in the stirring operation mode. The application direction and strength of the AC magnetic field 42 in the stirring operation mode can be determined according to the type of sample and the required stirring ability.
 例えば、端部23が、所定の平面(例えば、図1に示す座標系においてXY平面)内で磁界の向きが360°回転するように、交流磁界42の波形を設定することができる(図3(C)参照)。この場合、磁性体20の端部23は、前記平面内で略円運動する。その結果、磁性体20は、固定されている端部22を支点として円錐振り子の様に動作し、流体を攪拌するように作用する(ナノスターラとして機能する)。 For example, the waveform of the AC magnetic field 42 can be set so that the end 23 rotates 360 degrees in a predetermined plane (for example, the XY plane in the coordinate system shown in FIG. 1) (FIG. 3). (See (C)). In this case, the end portion 23 of the magnetic body 20 moves in a substantially circular motion within the plane. As a result, the magnetic body 20 operates like a conical pendulum with the fixed end 22 as a fulcrum, and acts to stir the fluid (functions as a nanostirrer).
 図5に、サンプル中の磁性体20がナノスターラとして機能する様子を模式的に示す。図5(A)は柱状の磁性体20を横から見た図、図5(B)は柱状の磁性体20を上から見た図である。各図における磁性体20は模式的に示したものであり、その寸法比率は図示の比率に限られるものではない。 FIG. 5 schematically shows how the magnetic body 20 in the sample functions as a nanostirrer. 5A is a view of the columnar magnetic body 20 viewed from the side, and FIG. 5B is a view of the columnar magnetic body 20 viewed from above. The magnetic body 20 in each drawing is schematically shown, and the dimensional ratio is not limited to the illustrated ratio.
 なお、攪拌動作モードにおける磁界の回転速度などは、サンプルの種類、必要とされる攪拌能力に応じて、決定することができる。また、攪拌作用が不要となった場合は、交流磁界42の印加を停止すればよい。また、ステップ4及びステップ5の実行時間は異なっていてもよく、また時間の経過に応じて各ステップの実行時間を変化させてもおい。      Note that the rotation speed of the magnetic field in the stirring operation mode can be determined according to the type of sample and the required stirring ability. Further, when the stirring action becomes unnecessary, the application of the alternating magnetic field 42 may be stopped. Moreover, the execution time of step 4 and step 5 may be different, and the execution time of each step may be changed with the passage of time. .
 実施例2の反応装置1は、実施例1と同様の作用効果を奏することができる。更に、マイクロキャピラリーチューブ10に対して印加する交流磁界42を制御することで、磁性体20をナノスターラとして機能させ、マイクロキャピラリーチューブ10内でサンプルを攪拌することができるので、反応装置1に導入するサンプルの量を増やすことなく、対象物質50とプローブ分子51との結合チャンスを増加させることができる。 The reaction apparatus 1 of Example 2 can exhibit the same operational effects as Example 1. Furthermore, by controlling the alternating magnetic field 42 applied to the microcapillary tube 10, the magnetic body 20 can function as a nanostirrer and the sample can be stirred in the microcapillary tube 10, so that it is introduced into the reaction apparatus 1. The binding chance between the target substance 50 and the probe molecule 51 can be increased without increasing the amount of the sample.
 本発明は、上記実施形態に限定されることなく種々に変形して適用することが可能である。例えば、上記実施形態ではマイクロキャピラリーチューブ10全体に対して一様に交流磁界41、42を印加しているが、局所的に交流磁界を印加する構成としてもよい。またマイクロキャピラリーチューブ10に加えて又は代えて、流路11に対して一様に又は局所的に交流磁界を印加する構成としてもよい。すなわち、端部固定手段により、流路11の送液方向に対して略直交方向に直流磁界を印加し、端部運動手段により、流路11の送液方向に応じた方向に交流磁界を印加することで、流路11内のサンプル中に配された磁性体20をナノポンプ又はナノスターラとして作用させることができる。 The present invention is not limited to the above embodiment and can be applied in various modifications. For example, in the above embodiment, the AC magnetic fields 41 and 42 are uniformly applied to the entire microcapillary tube 10, but a configuration in which an AC magnetic field is locally applied may be employed. Further, in addition to or instead of the microcapillary tube 10, an AC magnetic field may be applied uniformly or locally to the flow path 11. That is, a DC magnetic field is applied in a direction substantially orthogonal to the liquid feeding direction of the flow path 11 by the end fixing means, and an AC magnetic field is applied in a direction corresponding to the liquid feeding direction of the flow path 11 by the end moving means. By doing so, the magnetic body 20 arranged in the sample in the flow channel 11 can act as a nanopump or a nanostirrer.
 また、上記実施形態では、実施例1では磁性体20をナノポンプとして作用させる態様を説明し、実施例2では磁性体20をナノポンプ及びナノスターラとして作用させる態様を説明しているが、磁性体20をナノスターラとしてのみ作用させる態様を採用してもよい。この場合でも、磁性体20のナノスターラとしての作用により、及び流路11を経由してサンプルがマイクロキャピラリーチューブ10を循環することにより、反応装置1に導入するサンプルの量を増やすことなく、対象物質50とプローブ分子51との結合チャンスを増加させることができる。 In the above-described embodiment, Example 1 describes an aspect in which the magnetic body 20 acts as a nanopump, and Example 2 describes an aspect in which the magnetic body 20 acts as a nanopump and a nanostarr. You may employ | adopt the aspect made to act only as a nano stirrer. Even in this case, the target substance can be obtained without increasing the amount of the sample introduced into the reaction apparatus 1 by the action of the magnetic body 20 as a nanostirrer and by circulating the sample through the microcapillary tube 10 via the flow path 11. 50 and the binding chance of the probe molecule 51 can be increased.
 また、反応装置が、マイクロキャピラリーチューブ10内の対象物質の結合の有無を検出する構成や、検出結果をデータ処理する構成を備えるように構成してもよい。結合の有無を検出する方法として、従来技術のように吸光観測装置を用いる態様や、マイクロキャピラリーチューブ10のインピーダンスの変化により結合の量を判定する態様などを考えることができる。 Further, the reaction apparatus may be configured to have a configuration for detecting the presence or absence of binding of the target substance in the microcapillary tube 10 and a configuration for processing the detection result. As a method for detecting the presence or absence of binding, an aspect using an absorption observation device as in the prior art, an aspect in which the amount of binding is determined based on a change in impedance of the microcapillary tube 10, and the like can be considered.
 以上説明したとおり、本発明の反応装置及び方法によれば、サンプル中の磁性体20の挙動を制御することで送液機能及び攪拌機能を実現できるので、キャピラリーを用いた種々の反応装置に広く利用することができる。 As described above, according to the reaction apparatus and method of the present invention, the liquid feeding function and the agitation function can be realized by controlling the behavior of the magnetic body 20 in the sample, so that it can be widely applied to various reaction apparatuses using capillaries. Can be used.
本発明の一実施形態である反応装置1、及び、サンプルを反応装置1に導入した状態での、マイクロキャピラリーチューブ10の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of a microcapillary tube 10 in a state where a reaction apparatus 1 according to an embodiment of the present invention and a sample are introduced into the reaction apparatus 1. FIG. 磁性体20を説明するための図である。FIG. 6 is a diagram for explaining a magnetic body 20. 端部固定手段31及び端部運動手段32によって印加される直流磁界40及び交流磁界41、42を説明するための図である。It is a figure for demonstrating the DC magnetic field 40 and the AC magnetic fields 41 and 42 which are applied by the edge part fixing means 31 and the edge movement means 32. FIG. ナノポンプとして機能する磁性体20を説明するための図である。It is a figure for demonstrating the magnetic body 20 which functions as a nanopump. ナノスターラとして機能する磁性体20を説明するための図である。It is a figure for demonstrating the magnetic body 20 which functions as a nanostirrer.
符号の説明Explanation of symbols
1     反応装置
10  マイクロキャピラリーチューブ
11  流路
12   出口端
13  入口端
14  導入路
20  磁性体
21  磁性粒子
22、23  磁性体20の端部
30  制御装置
31  端部固定手段
32  端部運動手段
40  直流磁界
41、42  交流磁界
DESCRIPTION OF SYMBOLS 1 Reaction apparatus 10 Microcapillary tube 11 Flow path 12 Outlet end 13 Inlet end 14 Introduction path 20 Magnetic body 21 Magnetic particles 22, 23 End 30 of magnetic body 20 Controller 31 End fixing means 32 End movement means 40 DC magnetic field 41, 42 AC magnetic field

Claims (4)

  1.  対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリーと、
     前記キャピラリー内に前記対象物質を含有する流体を導入した状態において前記流体中に配された柱状の磁性体と、
     前記柱状の磁性体の一方の端部を、直流磁界を用いて前記キャピラリー内で固定する端部固定手段と、
     前記柱状の磁性体の他方の端部を、交流磁界を用いて前記流体を攪拌するように運動させる端部運動手段と、
    を備える反応装置。
    A capillary in which probe molecules that cause a specific binding reaction with a target substance are fixed on the inner surface;
    A columnar magnetic body disposed in the fluid in a state where the fluid containing the target substance is introduced into the capillary;
    End fixing means for fixing one end of the columnar magnetic body in the capillary using a DC magnetic field;
    End motion means for moving the other end of the columnar magnetic body so as to stir the fluid using an alternating magnetic field;
    A reaction apparatus comprising:
  2.  前記端部運動手段が、流路を含む平面内で磁界の向きが360°回転するように交流磁界を印加し、前記磁性体が前記一方の端部を支点として円錐振り子の様に動作するように、前記他方の端部を前記平面内で略円運動させることを特徴とする請求の範囲第1項記載の反応装置。 The end motion means applies an AC magnetic field so that the direction of the magnetic field rotates 360 ° in a plane including the flow path, and the magnetic body operates like a conical pendulum with the one end as a fulcrum. The reaction apparatus according to claim 1, wherein the other end portion is moved in a substantially circular motion within the plane.
  3.  前記柱状の磁性体は、前記直流磁界によって複数の磁性粒子を柱状に磁気結合させて生成されることを特徴とする請求の範囲第1項記載の反応装置。 The reaction apparatus according to claim 1, wherein the columnar magnetic body is generated by magnetically coupling a plurality of magnetic particles into a columnar shape by the DC magnetic field.
  4.  対象物質と特異的な結合反応を起こすプローブ分子を内面に固定したキャピラリー内に前記対象物質を含有する流体を導入した状態において、前記流体中に配された柱状の磁性体の一方の端部を、直流磁界を用いて対象装置内で固定する端部固定工程と、
     前記柱状の磁性体の他方の端部を、交流磁界を用いて前記流体を攪拌するように運動させる攪拌工程と、
    を備える反応方法。
     
    In a state where a fluid containing the target substance is introduced into a capillary in which probe molecules that cause a specific binding reaction with the target substance are fixed on the inner surface, one end of a columnar magnetic body disposed in the fluid is , An end fixing step of fixing in the target device using a DC magnetic field,
    A stirring step of moving the other end of the columnar magnetic body so as to stir the fluid using an alternating magnetic field;
    A reaction method comprising:
PCT/JP2008/063744 2008-07-31 2008-07-31 Reaction device and method WO2010013335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063744 WO2010013335A1 (en) 2008-07-31 2008-07-31 Reaction device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063744 WO2010013335A1 (en) 2008-07-31 2008-07-31 Reaction device and method

Publications (1)

Publication Number Publication Date
WO2010013335A1 true WO2010013335A1 (en) 2010-02-04

Family

ID=41610058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063744 WO2010013335A1 (en) 2008-07-31 2008-07-31 Reaction device and method

Country Status (1)

Country Link
WO (1) WO2010013335A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013170048A1 (en) * 2012-05-09 2013-11-14 Advanced Animal Diagnostics, Inc. Rapid detection of analytes in liquid samples
US9052315B2 (en) 2012-05-09 2015-06-09 Advanced Animal Diagnostics, Inc. Rapid detection of analytes in liquid samples
US9797893B2 (en) 2013-05-09 2017-10-24 Advanced Animal Diagnostics, Inc. Rapid detection of analytes in liquid samples
US10359614B2 (en) 2012-07-03 2019-07-23 Advanced Animal Diagnostics, Inc. Diagnostic apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100657A (en) * 1976-02-20 1977-08-23 Gorou Yabe Mixing method and apparatus therefor
JPS58210863A (en) * 1982-06-03 1983-12-08 株式会社富士電機総合研究所 Working piece of mobile magnetic field type processor
JPS601793Y2 (en) * 1980-08-25 1985-01-18 日本電気ホームエレクトロニクス株式会社 liquid stirring device
JP2003504195A (en) * 1999-07-19 2003-02-04 オルガノン・テクニカ・ベー・ヴエー Apparatus and method for mixing magnetic particles with a fluid
JP2003248008A (en) * 2001-12-18 2003-09-05 Inst Of Physical & Chemical Res Method of stirring reaction liquid
JP2004534243A (en) * 2001-07-09 2004-11-11 ビオムリュー、エス.エー Method for treating magnetic particles and biological analyzer using magnet
WO2006079998A1 (en) * 2005-01-31 2006-08-03 Koninklijke Philips Electronics N.V. Rapid and sensitive biosensing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100657A (en) * 1976-02-20 1977-08-23 Gorou Yabe Mixing method and apparatus therefor
JPS601793Y2 (en) * 1980-08-25 1985-01-18 日本電気ホームエレクトロニクス株式会社 liquid stirring device
JPS58210863A (en) * 1982-06-03 1983-12-08 株式会社富士電機総合研究所 Working piece of mobile magnetic field type processor
JP2003504195A (en) * 1999-07-19 2003-02-04 オルガノン・テクニカ・ベー・ヴエー Apparatus and method for mixing magnetic particles with a fluid
JP2004534243A (en) * 2001-07-09 2004-11-11 ビオムリュー、エス.エー Method for treating magnetic particles and biological analyzer using magnet
JP2003248008A (en) * 2001-12-18 2003-09-05 Inst Of Physical & Chemical Res Method of stirring reaction liquid
WO2006079998A1 (en) * 2005-01-31 2006-08-03 Koninklijke Philips Electronics N.V. Rapid and sensitive biosensing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013170048A1 (en) * 2012-05-09 2013-11-14 Advanced Animal Diagnostics, Inc. Rapid detection of analytes in liquid samples
US9052315B2 (en) 2012-05-09 2015-06-09 Advanced Animal Diagnostics, Inc. Rapid detection of analytes in liquid samples
US9482670B2 (en) 2012-05-09 2016-11-01 Advanced Animal Diagnostic, Inc. Rapid detection of analytes in liquid samples
US10359614B2 (en) 2012-07-03 2019-07-23 Advanced Animal Diagnostics, Inc. Diagnostic apparatus
US9797893B2 (en) 2013-05-09 2017-10-24 Advanced Animal Diagnostics, Inc. Rapid detection of analytes in liquid samples

Similar Documents

Publication Publication Date Title
JP6030197B2 (en) Device and method for manipulating and mixing magnetic particles in a liquid medium
Van Reenen et al. Integrated lab-on-chip biosensing systems based on magnetic particle actuation–a comprehensive review
US10900896B2 (en) Flow cells utilizing surface-attached structures, and related systems and methods
US9421555B2 (en) Non-linear magnetophoretic separation device, system and method
KR101431778B1 (en) Droplet actuator devices and methods employing magnetic beads
US20110137018A1 (en) Magnetic separation system with pre and post processing modules
US20110127222A1 (en) Trapping magnetic cell sorting system
EP2208531A1 (en) Distribution of particles in capillary channel by application of magnetic field
EP3574319B1 (en) Electromagnetic assemblies for processing fluids
JP2009543088A (en) Magnetic sensor element
WO2010013335A1 (en) Reaction device and method
WO2010099250A1 (en) Standing wave fluidic and biological tools
Ebrahimi et al. Molecular separation by using active and passive microfluidic chip designs: a comprehensive review
WO2023137139A2 (en) Mechanical microfluidic manipulation
JP2008525788A (en) Method for controlling the flow of a liquid containing biological material by inducing electrical or magnetorheological effects
JP4269001B1 (en) Reaction apparatus and method
JP4269002B1 (en) Reaction apparatus and method
JP2014093988A (en) Method of manipulating solid carriers and apparatus of manipulating solid carriers
JP2008256377A (en) Method and instrument for detecting specimen
JP2007101318A (en) Analyzer
Abonnenc et al. Magnetic track array for efficient bead capture in microchannels
JP2005318834A (en) On-line chemical reaction device
KR101312090B1 (en) The lab-on a chip and method of driving the same
JP2003014772A (en) Method for transporting liquid and microreactor
WO2010013312A1 (en) Liquid feeding device and method, agitation device and method and microreactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08808654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08808654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP