WO2009151039A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2009151039A1
WO2009151039A1 PCT/JP2009/060490 JP2009060490W WO2009151039A1 WO 2009151039 A1 WO2009151039 A1 WO 2009151039A1 JP 2009060490 W JP2009060490 W JP 2009060490W WO 2009151039 A1 WO2009151039 A1 WO 2009151039A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
organic
unsubstituted aromatic
unsubstituted
Prior art date
Application number
PCT/JP2009/060490
Other languages
English (en)
French (fr)
Inventor
紀昌 横山
重 草野
秀一 林
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to CN200980121974.2A priority Critical patent/CN102057514B/zh
Priority to US12/737,099 priority patent/US8716698B2/en
Priority to EP09762469A priority patent/EP2299510A4/en
Priority to JP2010516852A priority patent/JP5373787B2/ja
Publication of WO2009151039A1 publication Critical patent/WO2009151039A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to an organic electroluminescence element which is a self-luminous element suitable for various display devices. Specifically, the present invention relates to an organic electroluminescence element using an arylamine derivative and a pyridine derivative (hereinafter abbreviated as an organic EL element). .).
  • organic EL elements are self-luminous elements, they have been actively researched because they are brighter and more visible than liquid crystal elements and are capable of clear display.
  • JP-A-8-48656 Japanese Patent No. 3194657
  • Non-Patent Document 2 the use of triplet excitons has been attempted for the purpose of further improving the luminous efficiency, and the use of phosphorescent compounds has been studied (for example, see Non-Patent Document 2).
  • the light emitting layer can also be produced by doping a charge transporting compound generally called a host material with a fluorescent compound or a phosphorescent compound.
  • a charge transporting compound generally called a host material
  • a fluorescent compound or a phosphorescent compound.
  • selection of an organic material in an organic EL element greatly affects various characteristics such as efficiency and durability of the element (see Non-patent document 2).
  • the light injected from both electrodes is recombined in the light emitting layer to obtain light emission.
  • positive and negative charges are obtained. It is necessary to provide an element with excellent carrier balance in which holes are injected and transported efficiently and recombined.
  • phthalocyanines such as copper phthalocyanine (hereinafter abbreviated as CuPc) have been proposed as hole-injecting materials used in organic EL devices (see, for example, Patent Document 3).
  • a material having a phenylenediamine structure has been widely used (for example, see Patent Document 4).
  • arylamine-based materials containing a benzidine skeleton have been used as hole transport materials (see, for example, Patent Document 5).
  • Tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq), which is a typical light emitting material, is generally used as an electron transport material, but has a generally used hole transport material. Since the electron mobility of Alq is lower than that of hole mobility, and the work function of Alq is 5.8 eV, it cannot be said that there is sufficient hole blocking ability, so some of the holes pass through the light emitting layer. And efficiency will be reduced.
  • the ionization potential value and electron affinity value of the material are set in stages, and the hole injection layer and the electron injection layer respectively.
  • Patent Document 6 an element in which two or more layers are stacked has been developed (see, for example, Patent Document 6), it cannot be said that the materials used are sufficient in any of light emission efficiency, drive voltage, and element lifetime.
  • the object of the present invention is to combine various materials for organic EL elements excellent in hole and electron injection / transport performance, thin film stability and durability, and achieve high efficiency, low driving voltage, and long life organic EL. It is to provide an element.
  • the physical characteristics of the organic compound suitable for the present invention include (1) good hole and electron injection characteristics, (2) fast movement speed of holes and electrons, and (3) electrons and holes. It can be mentioned that it has excellent blocking ability, (4) that the thin film state is stable, and (5) that it has excellent heat resistance.
  • the physical characteristics of the element suitable for the present invention include (1) high luminous efficiency, (2) low emission start voltage, (3) low practical driving voltage, and (4) long life. Can be said.
  • the present inventors have demonstrated that the arylamine-based material is excellent in hole injection and transport capability, thin film stability and durability, and pyridine derivatives having electron affinity. Focusing on the excellent electron injection and transport capability, thin film stability and durability, various organic ELs selected from specific arylamine compounds and specific pyridine derivatives and combined to achieve carrier balance As a result of producing an element and intensively evaluating the characteristics of the element, the present invention was completed.
  • the following organic EL elements are provided.
  • the hole injection layer has three or more triphenylamine structures in the molecule.
  • the hole transport layer contains an arylamine compound having two triphenylamine structures in the molecule, and the electron transport layer is substituted by the following general formula (1):
  • An organic electroluminescence device comprising a bipyridyl compound.
  • R 1 to R 7 may be the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or a linear or branched alkyl group having 1 to 6 carbon atoms
  • n1 represents an integer of 2 to 4
  • a 1 represents A divalent to tetravalent group of a substituted or unsubstituted aromatic hydrocarbon, a divalent to tetravalent group of a substituted or unsubstituted aromatic heterocyclic ring, a divalent to tetravalent group of a substituted or unsubstituted condensed polycyclic aromatic, or Trivalent group represented by general formula (2)
  • R 8 to R 19 may be the same or different, and are a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a linear or branched alkyl group having 1 to 6 carbon atoms, and the number of carbon atoms.
  • n2 represents an integer of 1 to 3
  • R 20 to R 25 may be the same or different from each other, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, linear or branched alkyl group having 1 to 6 carbon atoms, carbon atom number) 1 to 6 linear or branched alkenyl groups, substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups, or substituted or unsubstituted condensed polycyclic aromatic groups, In the case where a plurality of these substituents are bonded to the same benzene ring, they may form a ring with each other, r 20 to r 25 represent 0 or an integer of 1 to 4, and A 5 represents the following structure (It represents a divalent group represented by formulas (B) to (F) or a single bond.)
  • n2 represents an integer of 1 to 3
  • R 26 to R 32 may be the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or a linear or branched alkyl group having 1 to 6 carbon atoms
  • n3 represents an integer of 3 or 4
  • a 6 represents Represents a trivalent or tetravalent group of a substituted or unsubstituted aromatic hydrocarbon, a trivalent or tetravalent group of a substituted or unsubstituted aromatic heterocyclic ring, a trivalent or tetravalent group of a substituted or unsubstituted condensed polycyclic aromatic .
  • Specific examples of the hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group include the following groups. From these groups, 1 to 3 hydrogen atoms are further reduced to form divalent to tetravalent groups.
  • Substituent for substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group or substituted or unsubstituted condensed polycyclic aromatic group represented by A 1 in general formula (1) Specific examples include a fluorine atom, a chlorine atom, a cyano group, a hydroxyl group, a nitro group, a linear or branched alkyl group having 1 to 6 carbon atoms, and further substituted May be.
  • Aromatic hydrocarbon group substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted, substituted or unsubstituted aromatic hydrocarbon group represented by R 1 to R 7 in general formula (1)
  • Specific examples of the condensed polycyclic aromatic group include phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, styryl group, naphthyl group, anthryl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, pyridyl group.
  • substituent for are fluorine atom, chlorine atom, trifluoromethyl group, linear or branched alkyl group having 1 to 6 carbon atoms, phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, Styryl, naphthyl, fluorenyl, phenanthryl, indenyl, pyrenyl, pyridyl, bipyridyl, pyrimidyl, quinolyl, isoquinolyl, indolyl, carbazolyl, quinoxalyl, pyrazolyl, Further, it may be substituted.
  • aromatic hydrocarbon group aromatic heterocyclic group or condensed polycyclic aromatic group, specifically, phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, styryl group, naphthyl group, anthryl group, acenaphthenyl group, Fluorenyl, phenanthryl, indenyl, pyrenyl, pyridyl, pyrimidyl, furanyl, pyranyl, thiophenyl, quinolyl, isoquinolyl, benzofuranyl, benzothiophenyl, indolyl, carbazolyl, benzoxazolyl Group, benzothiazolyl group,
  • substituent for are fluorine atom, chlorine atom, trifluoromethyl group, linear or branched alkyl group having 1 to 6 carbon atoms, phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, Examples thereof include a styryl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an indenyl group, and a pyrenyl group, which may be further substituted.
  • aromatic hydrocarbon group aromatic heterocyclic group or condensed polycyclic aromatic group, specifically, phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, styryl group, naphthyl group, anthryl group, acenaphthenyl group, Fluorenyl, phenanthryl, indenyl, pyrenyl, pyridyl, pyrimidyl, furanyl, pyranyl, thiophenyl, quinolyl, isoquinolyl, benzofuranyl, benzothiophenyl, indolyl, carbazolyl, benzoxazolyl Group, benzothiazolyl
  • substituent for are fluorine atom, chlorine atom, trifluoromethyl group, linear or branched alkyl group having 1 to 6 carbon atoms, phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, Examples thereof include a styryl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an indenyl group, and a pyrenyl group, which may be further substituted.
  • Specific examples of the hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group include the following groups. From these groups, 2 or 3 hydrogen atoms are further reduced to form a trivalent or tetravalent group.
  • Substituent for the substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group or substituted or unsubstituted condensed polycyclic aromatic group represented by A 6 in the general formula (5) Specific examples include a fluorine atom, a chlorine atom, a cyano group, a hydroxyl group, a nitro group, a linear or branched alkyl group having 1 to 6 carbon atoms, and further substituted May be.
  • the substituted bipyridyl compound represented by the general formula (1) or the general formula (5) used in the organic EL device of the present invention may be used as a constituent material of the electron transport layer of the organic EL device. it can.
  • An arylamine compound having two phenylamine structures can be used as a constituent material of a hole injection layer or a hole transport layer of an organic EL device.
  • the arylamine compound having three or more triphenylamine structures in the molecule represented by the general formula (3) is an arylamine compound having two triphenylamine structures in the molecule represented by the general formula (4). Compared with the above, it has a high hole mobility and is a preferred compound as a material for the hole injection layer.
  • the organic EL element of the present invention combines materials for organic EL elements that are excellent in hole / electron injection / transport performance, thin film stability and durability in consideration of carrier balance. Compared to EL elements, the hole transport efficiency to the hole transport layer is improved, and the electron transport efficiency from the electron transport layer to the light emitting layer is also improved, so that the light emission efficiency is improved and the driving voltage is reduced. The durability of the organic EL element can be improved. It has become possible to realize organic EL elements with high efficiency, low drive voltage, and long life.
  • the organic EL device of the present invention selects a specific arylamine compound and a specific pyridine derivative excellent in hole and electron injection / transport performance, thin film stability and durability, and is combined so that carrier balance can be achieved, An organic EL element with high efficiency, low drive voltage, and long life can be realized. Luminous efficiency and driving voltage and durability of conventional organic EL elements can be improved.
  • the substituted bipyridyl compound represented by the general formula (1) or the general formula (5) used in the organic EL device of the present invention includes, for example, various aromatic hydrocarbon compounds and condensed polycyclic aromatic compounds.
  • a boronic acid or boronic acid ester synthesized by a reaction of a halide of a compound or an aromatic heterocyclic compound with pinacol borane or bis (pinacolato) diboron see, for example, Non-Patent Document 3
  • pinacol borane or bis (pinacolato) diboron see, for example, Non-Patent Document 3
  • various halogenopyridines are used in a Suzuki cup.
  • a substituted bipyridyl compound can be synthesized by performing a cross-coupling reaction such as a ring (see, for example, Non-Patent Document 4).
  • An arylamine compound having three or more triphenylamine structures in the molecule represented by the general formula (3) or a trimethylamine in the molecule represented by the general formula (4) used in the organic EL device of the present invention An arylamine compound having two phenylamine structures can be synthesized by a known method. (For example, see Patent Documents 7 to 9)
  • an anode (transparent electrode) 2 As the structure of the organic EL device of the present invention, an anode (transparent electrode) 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport are sequentially formed on a glass substrate 1 as shown in FIG. Examples include a layer 7, an electron injection layer 8, and a cathode 9, and a layer having a hole blocking layer 6 between the light emitting layer 5 and the electron transport layer 7 as shown in FIG. 1.
  • several organic layers can be omitted.
  • an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially formed on a glass substrate. You can also.
  • an electrode material having a large work function such as ITO or gold is used as the anode of the organic EL element of the present invention.
  • an arylamine compound having high hole mobility and having three or more triphenylamine structures in the molecule is used as the hole injection layer.
  • an arylamine compound having two triphenylamine structures in the molecule is used as the hole transport layer.
  • the light emitting layer and hole blocking layer of the organic EL device of the present invention aluminum complexes, styryl derivatives, thiazole derivatives, oxazole derivatives, carbazole derivatives, polydialkylfluorene derivatives, and the like are used. Further, as a host material for the light emitting layer, for example, a phosphor such as quinacridone, coumarin, or rubrene can be used.
  • Examples of phosphorescent emitters include green phosphorescent emitters such as iridium complexes of phenylpyridine (Ir (PPy) 3 ), blue phosphorescent emitters such as FIrpic and FIr6, and red phosphorescent emitters such as Btp 2 Ir (acac).
  • green phosphorescent emitters such as iridium complexes of phenylpyridine (Ir (PPy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6
  • red phosphorescent emitters such as Btp 2 Ir (acac).
  • CBP hole injecting / transporting host material 4,4′-di (N-carbazolyl) biphenyl
  • a substituted bipyridyl compound can also be used.
  • a substituted bipyridyl compound is used as the electron transport layer of the organic EL device of the present invention.
  • the organic EL device of the present invention may have an electron injection layer as shown in FIGS.
  • the electron injection layer lithium fluoride or the like can be used.
  • an electrode material having a low work function such as aluminum or an alloy having a lower work function such as aluminum magnesium is used as the electrode material.
  • the organic EL element has a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, and an electron transport layer on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2. 7, an electron injection layer 8 and a cathode (aluminum electrode) 9 were deposited in this order.
  • the glass substrate 1 on which ITO having a thickness of 150 nm was formed was subjected to ultrasonic cleaning in isopropyl alcohol for 20 minutes, and then subjected to boiling cleaning for 20 minutes on a hot plate heated to 150 ° C. Then, this glass substrate with ITO was attached in a vacuum vapor deposition machine, and after performing oxygen plasma treatment for 5 minutes, the pressure was reduced to 0.001 Pa or less.
  • a compound 3-1 having the following structural formula was formed to a thickness of 20 nm as a hole injection layer 3 so as to cover the transparent electrode 2.
  • a compound 4-1 having the following structural formula was formed as the hole transport layer 4 so as to have a film thickness of 40 nm.
  • a compound 1-8 having the following structural formula was formed as an electron transport layer 7 to a thickness of 30 nm.
  • lithium fluoride was formed as the electron injection layer 8 so as to have a film thickness of 0.5 nm.
  • 150 nm of aluminum was deposited to form the cathode 9.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3 except that Compound 1-2 having the following structural formula was formed to a thickness of 30 nm instead of Compound 1-8 as the electron transport layer 7.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3 except that the compound 1-3 having the following structural formula was formed to a thickness of 30 nm instead of the compound 1-8 as the electron transport layer 7.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3, except that Compound 1-6 having the following structural formula was formed to a thickness of 30 nm instead of Compound 1-8 as the electron transport layer 7.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3 except that Compound 1-18 having the following structural formula was formed to a thickness of 30 nm instead of Compound 1-8 as the electron transport layer 7.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3, except that Compound 3-4 having the following structural formula was formed to a thickness of 20 nm instead of Compound 3-1 as hole injection layer 3.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3, except that Compound 3-6 having the following structural formula was formed to a thickness of 20 nm in place of Compound 3-1 as hole injection layer 3.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3, except that Compound 3-14 having the following structural formula was formed to a thickness of 20 nm in place of Compound 3-1 as hole injection layer 3.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3 except that the hole injection layer 3 was formed by replacing the compound 3-1 with a compound 3-15 having the following structural formula so as to have a film thickness of 20 nm.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3, except that Compound 4-4 having the following structural formula was formed to a thickness of 40 nm instead of Compound 4-1 as the hole transport layer 4.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3, except that Compound 4-6 having the following structural formula was formed to a film thickness of 40 nm instead of Compound 4-1 as hole transport layer 4.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3, except that Compound 4-9 having the following structural formula was formed to a thickness of 40 nm instead of Compound 4-1 as the hole transport layer 4.
  • the characteristic measurement was performed by applying DC voltage in air
  • An organic EL device was produced in the same manner as in Example 3, except that Compound 4-13 having the following structural formula was formed to a thickness of 40 nm instead of Compound 4-1 as the hole transport layer 4.
  • the characteristic measurement was performed by applying DC voltage in air
  • Example 1 An organic EL device was produced in the same manner as in Example 3 except that Alq was formed to a thickness of 30 nm as the electron transport layer 7 instead of the compound 1-8. About the produced organic EL element, the characteristic measurement was performed by applying DC voltage in air
  • Comparative Example 2 An organic EL device was produced in the same manner as in Comparative Example 1 except that CuPc was formed to a thickness of 20 nm instead of the compound 3-1 as the hole injection layer 3. About the produced organic EL element, the characteristic measurement was performed by applying DC voltage in air
  • the organic EL device of the present invention improves the carrier balance inside the organic EL device by combining a specific arylamine compound and a specific substituted bipyridyl compound, and compared with a conventional organic EL device using CuPc and Alq. Thus, it was found that an organic EL element having a low driving voltage and a long lifetime can be realized.
  • the organic EL device of the present invention which combines a specific arylamine compound and a specific pyridine derivative, can improve the light emission efficiency and reduce the driving voltage, thereby improving the durability of the organic EL device. It has become possible to expand into home appliances and lighting applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

【課題】  正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた有機EL素子用の各種材料を組み合わせることで、高効率、低駆動電圧、長寿命の有機EL素子を提供すること。 【解決手段】  少なくとも陽極電極、正孔注入層、正孔輸送層、発光層、電子輸送層及び陰極電極をこの順に有する有機エレクトロルミネッセンス素子において、前記正孔注入層が分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物を含有し、前記正孔輸送層が分子中にトリフェニルアミン構造を2個有するアリールアミン化合物を含有し、かつ前記電子輸送層が下記一般式(1)で表される置換されたビピリジル化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。 (式中、R~Rは、同一でも異なってもよく水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1は2ないし4の整数を表し、Aは置換もしくは無置換の芳香族炭化水素の2~4価基、置換もしくは無置換の芳香族複素環の2~4価基、置換もしくは無置換の縮合多環芳香族の2~4価基または下記一般式(2)で表される3価基 (式中、X、Y、Zは炭素原子または窒素原子を表す。)を表す。ただし、n1=2の場合、2つのビピリジル構造同志が直接結合することができるものとし、そのときAは基ではない。)

Description

有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子に関するものであリ、詳しくはアリールアミン誘導体とピリジン誘導体を用いた有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する。)に関するものである。
 有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(例えば、特許文献1および特許文献2参照)。
特開平8-48656号公報 特許第3194657号公報
 現在まで、有機EL素子の実用化のために多くの改良がなされ、積層構造の各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されるようになってきた(例えば、非特許文献1参照)。
応用物理学会第9回講習会予稿集55~61ページ(2001)
 また発光効率の更なる向上を目的として三重項励起子の利用が試みられ、燐光発光性化合物の利用が検討されている(例えば、非特許文献2参照)。
応用物理学会第9回講習会予稿集23~31ページ(2001)
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光性化合物や燐光発光性化合物をドープして作製することもできる。前記非特許文献に記載されているように、有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える(非特許文献2参照)。
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られるが、高効率、低駆動電圧、長寿命となる有機EL素子とするためには、電子と正孔を効率良く注入・輸送し再結合させたキャリアバランスに優れた素子とする必要がある。
 有機EL素子に用いられる正孔注入材料として初期には銅フタロシアニン(以下CuPcと略称する)のようなフタロシアニン類が提案されたが(例えば、特許文献3参照)、可視域に吸収があることから、フェニレンジアミン構造を有する材料が広く用いられるようになった(例えば、特許文献4参照)。一方、正孔輸送材料としては、ベンジジン骨格を含むアリールアミン系材料が用いられてきた(例えば、特許文献5参照)。
米国特許第4,720,432号公報 特開平8-291115号公報 特許第3529735号公報
 代表的な発光材料であるトリス(8-ヒドロキシキノリン)アルミニウム(以後、Alqと略称する)は電子輸送材料として一般的に使用されているが、一般的に使用されている正孔輸送材料が持つ正孔移動度に比べ、Alqが持つ電子移動度が低いこと、Alqの仕事関数が5.8eVと十分な正孔阻止能力があるとは言えないため、正孔の一部が発光層を通り抜けてしまい、効率が低下してしまう。
 更に、陽極および陰極から発光層へ、正孔注入または電子注入を効率良く行うため、材料の持つイオン化ポテンシャルの値と電子親和力の値を段階的に設定し、正孔注入層および電子注入層それぞれについて2層以上積層した素子が開発されているが(例えば、特許文献6参照)、用いられている材料では、発光効率、駆動電圧、素子寿命のいずれにおいても十分であるとはいえない。
特開平6-314594号公報
 有機EL素子の素子特性を改善させるために、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた材料を組み合わせることで、キャリアバランスのとれた高効率、低駆動電圧、長寿命な素子が求められている。
 本発明の目的は、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた有機EL素子用の各種材料を組み合わせることで、高効率、低駆動電圧、長寿命の有機EL素子を提供することにある。本発明に適した有機化合物の物理的な特性としては、(1)正孔および電子の注入特性が良いこと、(2)正孔および電子の移動速度が速いこと、(3)電子および正孔阻止能力に優れること、(4)薄膜状態が安定であること(5)耐熱性に優れていることをあげることができる。また、本発明に適した素子の物理的な特性としては、(1)発光効率が高いこと、(2)発光開始電圧が低いこと、(3)実用駆動電圧が低いこと、(4)長寿命であること、をあげることができる。
 そこで本発明者らは上記の目的を達成するために、アリールアミン系材料が、正孔注入および輸送能力、薄膜の安定性や耐久性に優れていることと、電子親和性であるピリジン誘導体が電子注入および輸送能力、薄膜の安定性や耐久性に優れているということに着目して、特定のアリールアミン化合物と特定のピリジン誘導体を選択し、キャリアバランスのとれるように組み合わせた種々の有機EL素子を作製し、素子の特性評価を鋭意行なった結果、本発明を完成するに至った。
 すなわち、本発明によれば、以下の有機EL素子が提供される。
1.少なくとも陽極電極、正孔注入層、正孔輸送層、発光層、電子輸送層及び陰極電極をこの順に有する有機エレクトロルミネッセンス素子において、前記正孔注入層が分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物を含有し、前記正孔輸送層が分子中にトリフェニルアミン構造を2個有するアリールアミン化合物を含有し、かつ前記電子輸送層が下記一般式(1)で表される置換されたビピリジル化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000016
(式中、R~Rは、同一でも異なってもよく水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1は2ないし4の整数を表し、Aは置換もしくは無置換の芳香族炭化水素の2~4価基、置換もしくは無置換の芳香族複素環の2~4価基、置換もしくは無置換の縮合多環芳香族の2~4価基または下記一般式(2)で表される3価基
Figure JPOXMLDOC01-appb-C000017
(式中、X、Y、Zは炭素原子または窒素原子を表す。)を表す。ただし、n1=2の場合、2つのビピリジル構造同士が直接結合することができるものとし、そのときAは基ではない。)
 2.前記正孔注入層に含有される前記分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物が、下記一般式(3)で表されるアリールアミン化合物である1記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000018
(式中、R~R19は同一でも異なってもよくフッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルケニル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基であって、これらの置換基が同一のベンゼン環に複数個結合している場合は互いに環を形成していても良い。r~r19は0または1~4の整数を表し、A、A、Aは同一でも異なってもよく、下記構造式(B)~(F)で示される2価基、または単結合を表す。)
Figure JPOXMLDOC01-appb-C000019
 (式中、n2は1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 3.前記正孔輸送層に含有される前記分子中にトリフェニルアミン構造を2個有するアリールアミン化合物が、下記一般式(4)で表されるアリールアミン化合物である1または2に記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000024
(式中、R20~R25は同一でも異なってもよくフッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルケニル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基であって、これらの置換基が同一のベンゼン環に複数個結合している場合は互いに環を形成していても良い。r20~r25は0または1~4の整数を表し、Aは下記構造式(B)~(F)で示される2価基、または単結合を表す。)
Figure JPOXMLDOC01-appb-C000025
(式中、n2は1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 4.前記置換されたビピリジル化合物が、下記一般式(5)で表されるアリールアミン化合物である1~3のいずれかに記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000030
(式中、R26~R32は、同一でも異なってもよく水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n3は3または4の整数を表し、Aは置換もしくは無置換の芳香族炭化水素の3または4価基、置換もしくは無置換の芳香族複素環の3または4価基、置換もしくは無置換の縮合多環芳香族の3または4価基を表す。)
 一般式(1)中のAで表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的に次のような基をあげることができる。これらの基からさらに水素原子が1~3個減じて、2~4価基となるものである。フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、ピレニル基、ピリジル基、ピリミジル基、トリアジン基、フラニル基、ピラニル基、チオフェニル基、キノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ナフチリジニル基、フェナントロリル基。
 一般式(1)中のAで表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基に対する置換基として、具体的には、フッ素原子、塩素原子、シアノ基、水酸基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基のような基をあげることができ、さらに置換されていても良い。
 一般式(1)中のR~Rで表される、置換もしくは無置換の芳香族炭化水素基の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基としては、具体的にフェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、ビピリジル基、ピリミジル基、フラニル基、ピラニル基、チオフェニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基をあげることができる。
 一般式(1)中のR~Rで表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基に対する置換基としては、具体的にフッ素原子、塩素原子、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、ビピリジル基、ピリミジル基、キノリル基、イソキノリル基、インドリル基、カルバゾリル基、キノキサリル基、ピラゾリル基をあげることができ、さらに置換されていても良い。
 一般式(3)中のR~R19で表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的にフェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、ピリミジル基、フラニル基、ピラニル基、チオフェニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基をあげることができる。
 一般式(3)中のR~R19で表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基に対する置換基としては、具体的にフッ素原子、塩素原子、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基をあげることができ、さらに置換されていても良い。
 一般式(4)中のR20~R25で表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的にフェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、ピリミジル基、フラニル基、ピラニル基、チオフェニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基をあげることができる。
 一般式(4)中のR20~R25で表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基に対する置換基としては、具体的にフッ素原子、塩素原子、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基をあげることができ、さらに置換されていても良い。
 一般式(5)中のAで表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的に次のような基をあげることができる。これらの基からさらに水素原子が2または3個減じて、3または4価基となるものである。フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、ピレニル基、ピリジル基、ピリミジル基、トリアジン基、フラニル基、ピラニル基、チオフェニル基、キノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ナフチリジニル基、フェナントロリル基。
 一般式(5)中のAで表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基に対する置換基として、具体的には、フッ素原子、塩素原子、シアノ基、水酸基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基のような基をあげることができ、さらに置換されていても良い。
 本発明の有機EL素子に用いられる、前記一般式(1)または前記一般式(5)で表される、置換されたビピリジル化合物は、有機EL素子の電子輸送層の構成材料として使用することができる。
 本発明の有機EL素子に用いられる、前記一般式(3)で表される分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物または前記一般式(4)で表される分子中にトリフェニルアミン構造を2個有するアリールアミン化合物は、有機EL素子の正孔注入層または正孔輸送層の構成材料として使用することができる。
 前記一般式(3)で表される分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物は前記一般式(4)で表される分子中にトリフェニルアミン構造を2個有するアリールアミン化合物と比較して、正孔の移動度が高く正孔注入層の材料として好ましい化合物である。
 本発明の有機EL素子は、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた有機EL素子用の材料を、キャリアバランスを考慮しながら組み合わせているため、従来の有機EL素子に比べて、正孔輸送層への正孔輸送効率が向上し、電子輸送層から発光層への電子輸送効率も向上することによって、発光効率が向上すると共に、駆動電圧が低下して、有機EL素子の耐久性を向上させることができる。
 高効率、低駆動電圧、長寿命の有機EL素子を実現することが可能となった。
 本発明の有機EL素子は、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた特定のアリールアミン化合物と特定のピリジン誘導体を選択し、キャリアバランスのとれるように組み合わせ、高効率、低駆動電圧、長寿命の有機EL素子を実現することができる。従来の有機EL素子の発光効率および駆動電圧、そして耐久性を改良することができる。
 本発明の有機EL素子に用いられる、前記一般式(1)または前記一般式(5)で表される、置換されたビピリジル化合物は、例えば、種々の芳香族炭化水素化合物、縮合多環芳香族化合物または芳香族複素環化合物のハライドとピナコールボランやビス(ピナコラート)ジボロンとの反応で合成されたボロン酸またはボロン酸エステル(例えば、非特許文献3参照)と、種々のハロゲノピリジンとをSuzukiカップリングなどのクロスカップリング反応(例えば、非特許文献4参照)を行うことによって、置換されたビピリジル化合物を合成することができる。
J.Org.Chem.,60,7508(1995) Synth.Commun.,11,513(1981)
 本発明の有機EL素子に用いられる、前記一般式(3)で表される分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物または前記一般式(4)で表される分子中にトリフェニルアミン構造を2個有するアリールアミン化合物は、既知の方法によって合成することができる。(例えば、特許文献7~9参照)
特開平7-126615号公報 特開平8-048656号公報 特開2005-108804号公報
 本発明の有機EL素子に用いられる、前記一般式(1)で表される置換されたビピリジル化合物の中で、好ましい化合物の具体例を以下に示すが、これらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043

Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 本発明の有機EL素子に用いられる、前記一般式(3)で表される分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物の中で、好ましい化合物の具体例を以下に示すが、これらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000049

Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062

Figure JPOXMLDOC01-appb-C000063
 本発明の有機EL素子に用いられる、前記一般式(4)で表される分子中にトリフェニルアミン構造を2個有するアリールアミン化合物の中で、好ましい化合物の具体例を以下に示すが、これらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
 本発明の有機EL素子の構造としては、図2に示すようにガラス基板1上に順次に、陽極(透明電極)2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層7、電子注入層8、陰極9からなるもの、また、図1に示すように、発光層5と電子輸送層7の間に正孔阻止層6を有するものがあげられる。これらの多層構造においては有機層を何層か省略することが可能であり、例えばガラス基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、陰極とすることもできる。
 本発明の有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。
 正孔注入層としては、正孔の移動度が高い、分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物が用いられる。
 正孔輸送層としては、分子中にトリフェニルアミン構造を2個有するアリールアミン化合物が用いられる。
 本発明の有機EL素子の発光層、正孔阻止層としては、アルミニウムの錯体、スチリル誘導体、チアゾール誘導体、オキサゾール誘導体、カルバゾール誘導体、ポリジアルキルフルオレン誘導体などが用いられる。
 また、発光層のホスト材料として、例えば、キナクリドン、クマリン、ルブレンなどの蛍光体を用いることができる。燐光発光体としては、フェニルピリジンのイリジウム錯体(Ir(PPy))などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などが用いられ、このときのホスト材料としては正孔注入・輸送性のホスト材料4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)などを用いることによっても、高性能の有機EL素子を作製することができる。
 本発明の有機EL素子の正孔阻止層としては、置換されたビピリジル化合物を用いることもできる。
 本発明の有機EL素子の電子輸送層としては、置換されたビピリジル化合物が用いられる。
 本発明の有機EL素子は図1、図2に示すように電子注入層を有していても良い。電子注入層としてはフッ化リチウムなどを用いることができる。
 陰極としては、アルミニウムのような仕事関数の低い電極材料や、アルミニウムマグネシウムのような、より仕事関数の低い合金が電極材料として用いられる。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
 (1,3,5-トリス(2,2’;6’,2’’-ターピリジン-6-イル)ベンゼン(化合物1-8)の合成)
 窒素雰囲気下、反応容器に1,3,5-トリブロモベンゼン8.6g、ビス(ピナコラート)ジボロン(PIN)25.0g、酢酸カリウム24.1g、予めモレキュラーシーブス4Aで脱水したジメチルスルホキシド250ml、PdCl(dppf)-CHCl1.35gを加えて加熱し、80℃で20時間撹拌を行った。室温まで冷却した後、反応液を水1000mlに加え、30分撹拌した。ろ過によって析出物をろ別し、析出物をメタノール洗浄した。粗製物を酢酸エチル200mlに溶解させ、不溶物をろ過によって除き、ろ液を濃縮乾固することによって1,3,5-トリス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)ベンゼン7.1g(収率57%)の白色粉体を得た。
 得られた1,3,5-トリス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)ベンゼン3.0g、6-ブロモ-[2,2’;6’,2’’]-ターピリジン6.2g、1M炭酸カリウム水溶液59.2ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.39g、トルエン131ml、エタノール33mlを窒素雰囲気下、反応容器に加え、攪拌しながら18時間加熱還流した。室温まで冷却し、水100ml、トルエン100mlを加えて分液し、有機層をさらに水100mlで洗浄した。有機層を無水硫酸マグネシウムで脱水した後、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:NHシリカゲル、溶離液:クロロホルム/n-ヘキサン)によって精製し、1,3,5-トリス(2,2’;6’,2’’-ターピリジン-6-イル)ベンゼン(化合物1-8)1.8g(収率35%)の白色粉末を得た。
 <3,5,3’,5’-テトラキス(2,2’-ビピリジン-6-イル)ビフェニル(化合物1-18)の合成>
 前記実施例1と同様に、3,5,3’,5’-テトラブロモビフェニルとビス(ピナコラート)ジボロンから3,5,3’,5’-テトラキス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)ビフェニルを合成した。得られた3,5,3’,5’-テトラキス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)ビフェニル3.2g、6-ブロモ-2,2’-ビピリジン4.5g、2M炭酸カリウム水溶液28.7ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.3g、トルエン110ml、エタノール25mlを窒素置換した反応容器に加え、攪拌しながら22時間加熱還流した。室温まで冷却し、水100ml、クロロホルム300mlを加えて分液し、有機層をさらに水100mlで洗浄した。有機層を無水硫酸マグネシウムで脱水した後、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:NHシリカゲル、溶離液:クロロホルム/n-ヘキサン)によって精製し、3,5,3’,5’-テトラキス(2,2’-ビピリジン-6-イル)ビフェニル(化合物1-18)2.4g(収率64%)の白色粉末を得た。
 [合成例1]
 (1,3,5-トリス(2,2’-ビピリジン-6-イル)ベンゼン(化合物1-2)の合成)
 実施例1で得られた、前記1,3,5-トリス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)ベンゼン2.5g、6-ブロモ-2,2’-ビピリジン3.8g、1M炭酸カリウム水溶液32.3ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.32g、トルエン108ml、エタノール27mlを窒素雰囲気下、反応容器に加え、攪拌しながら18時間加熱還流した。室温まで冷却し、水100ml、トルエン100mlを加えて分液し、有機層をさらに水100mlで洗浄した。有機層を無水硫酸マグネシウムで脱水した後、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:NHシリカゲル、溶離液:クロロホルム/n-ヘキサン)によって精製し、1,3,5-トリス(2,2’-ビピリジン-6-イル)ベンゼン(化合物1-2)1.1g(収率38%)の白色粉末を得た。
 有機EL素子は、図2に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層5、電子輸送層7、電子注入層8、陰極(アルミニウム電極)9の順に蒸着して作製した。膜厚150nmのITOを成膜したガラス基板1をイソプロピルアルコール中にて超音波洗浄を20分間行った後、150℃に加熱したホットプレート上にて20分間煮沸洗浄を行った。その後、このITO付きガラス基板を真空蒸着機内に取り付け、酸素プラズマ処理5分間行った後に、0.001Pa以下まで減圧した。
 続いて、透明電極2を覆うように正孔注入層3として、下記構造式の化合物3-1を膜厚20nmとなるように形成した。この正孔注入層3の上に、正孔輸送層4として下記構造式の化合物4-1を膜厚40nmとなるように形成した。この正孔輸送層4の上に、発光層5として下記構造式の化合物6と下記構造式の化合物7を、蒸着速度比が化合物6:化合物7=5:95となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この発光層5の上に、電子輸送層7として下記構造式の化合物1-8を膜厚30nmとなるように形成した。この電子輸送層7の上に、電子注入層8としてフッ化リチウムを膜厚0.5nmとなるように形成した。最後に、アルミニウムを150nm蒸着して陰極9を形成した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.70Vであった。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
 実施例3において、電子輸送層7として化合物1-8に代えて下記構造式の化合物1-2を膜厚30nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.68Vであった。
Figure JPOXMLDOC01-appb-C000082
 実施例3において、電子輸送層7として化合物1-8に代えて下記構造式の化合物1-3を膜厚30nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.78Vであった。
Figure JPOXMLDOC01-appb-C000083
 実施例3において、電子輸送層7として化合物1-8に代えて下記構造式の化合物1-6を膜厚30nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.73Vであった。
Figure JPOXMLDOC01-appb-C000084
 実施例3において、電子輸送層7として化合物1-8に代えて下記構造式の化合物1-18を膜厚30nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.75Vであった。
Figure JPOXMLDOC01-appb-C000085
 実施例3において、正孔注入層3として化合物3-1に代えて下記構造式の化合物3-4を膜厚20nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.77Vであった。
Figure JPOXMLDOC01-appb-C000086
 実施例3において、正孔注入層3として化合物3-1に代えて下記構造式の化合物3-6を膜厚20nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.95Vであった。
Figure JPOXMLDOC01-appb-C000087
 実施例3において、正孔注入層3として化合物3-1に代えて下記構造式の化合物3-14を膜厚20nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.88Vであった。
Figure JPOXMLDOC01-appb-C000088
 実施例3において、正孔注入層3として化合物3-1に代えて下記構造式の化合物3-15を膜厚20nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.85Vであった。
Figure JPOXMLDOC01-appb-C000089
 実施例3において、正孔輸送層4として化合物4-1に代えて下記構造式の化合物4-4を膜厚40nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.74Vであった。
Figure JPOXMLDOC01-appb-C000090

 実施例3において、正孔輸送層4として化合物4-1に代えて下記構造式の化合物4-6を膜厚40nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.82Vであった。
Figure JPOXMLDOC01-appb-C000091
 実施例3において、正孔輸送層4として化合物4-1に代えて下記構造式の化合物4-9を膜厚40nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.81Vであった。
Figure JPOXMLDOC01-appb-C000092
 実施例3において、正孔輸送層4として化合物4-1に代えて下記構造式の化合物4-13を膜厚40nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、3.76Vであった。
Figure JPOXMLDOC01-appb-C000093
 [比較例1]
 実施例3において、電子輸送層7として化合物1-8に代えてAlqを膜厚30nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、5.43Vであった。
 [比較例2]
 比較例1において、正孔注入層3として化合物3-1に代えてCuPcを膜厚20nmとなるように形成した以外は、同様の方法で有機EL素子を作製した。
 作製した有機EL素子について、大気中、常温下で直流電圧を印加することによって特性測定を行なった。その結果、電流密度10mA/cmの電流を流したときの駆動電圧は、8.30Vであった。
 比較例1と比較例2より、正孔注入層の化合物をCuPcから、化合物3-1に代えると、駆動電圧は8.30Vから5.43Vに低下した。ここでさらに、電子輸送層の化合物を、電子キャリアの輸送速度が速い材料である置換されたビピリジル化合物(化合物1-8)に代えることにより、実施例3に示すような、駆動電圧3.70Vと大きく低下することが確認できた。これは、正孔の移動度が高い材料と電子キャリアの輸送速度が速い材料を組み合わせることにより、正孔キャリアと電子キャリアのキャリアバランスが改善されたことを示している。
 本発明の有機EL素子は、特定のアリールアミン化合物と特定の置換されたビピリジル化合物を組み合わせることによって、有機EL素子内部のキャリアバランスを改善し、CuPcおよびAlqを用いる従来の有機EL素子と比較して、低駆動電圧、長寿命の有機EL素子を実現できることがわかった。
 本発明の、特定のアリールアミン化合物と特定のピリジン誘導体を組み合わせた有機EL素子は、発光効率が向上すると共に、駆動電圧が低下して、有機EL素子の耐久性を改善させることができ、例えば、家庭電化製品や照明の用途への展開が可能となった。
本発明のEL素子構成例を示した図である。 実施例のEL素子構成を示した図である。
1 ガラス基板
2 透明陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極

Claims (4)

  1.  少なくとも陽極電極、正孔注入層、正孔輸送層、発光層、電子輸送層及び陰極電極をこの順に有する有機エレクトロルミネッセンス素子において、前記正孔注入層が分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物を含有し、前記正孔輸送層が分子中にトリフェニルアミン構造を2個有するアリールアミン化合物を含有し、かつ前記電子輸送層が下記一般式(1)で表される置換されたビピリジル化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001


    (式中、R~Rは、同一でも異なってもよく水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1は2ないし4の整数を表し、Aは置換もしくは無置換の芳香族炭化水素の2~4価基、置換もしくは無置換の芳香族複素環の2~4価基、置換もしくは無置換の縮合多環芳香族の2~4価基または下記一般式(2)で表される3価基
    Figure JPOXMLDOC01-appb-C000002

    (式中、X、Y、Zは炭素原子または窒素原子を表す。)を表す。ただし、n1=2の場合、2つのビピリジル構造同士が直接結合することができるものとし、そのときAは基ではない。)
  2.  前記正孔注入層に含有される前記分子中にトリフェニルアミン構造を3個以上有するアリールアミン化合物が、下記一般式(3)で表されるアリールアミン化合物である請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003


    (式中、R~R19は同一でも異なってもよくフッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルケニル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基であって、これらの置換基が同一のベンゼン環に複数個結合している場合は互いに環を形成していても良い。r~r19は0または1~4の整数を表し、A、A、Aは同一でも異なってもよく、下記構造式(B)~(F)で示される2価基、または単結合を表す。)
    Figure JPOXMLDOC01-appb-C000004

     (式中、n2は1~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007


    Figure JPOXMLDOC01-appb-C000008
  3.  前記正孔輸送層に含有される前記分子中にトリフェニルアミン構造を2個有するアリールアミン化合物が、下記一般式(4)で表されるアリールアミン化合物である請求項1または2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000009


    (式中、R20~R25は同一でも異なってもよくフッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルケニル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基であって、これらの置換基が同一のベンゼン環に複数個結合している場合は互いに環を形成していても良い。r20~r25は0または1~4の整数を表し、Aは下記構造式(B)~(F)で示される2価基、または単結合を表す。)
    Figure JPOXMLDOC01-appb-C000010

     (式中、n2は1~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000011

    Figure JPOXMLDOC01-appb-C000012

    Figure JPOXMLDOC01-appb-C000013

    Figure JPOXMLDOC01-appb-C000014
  4.  前記置換されたビピリジル化合物が、下記一般式(5)で表されるアリールアミン化合物である請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015


    (式中、R26~R32は、同一でも異なってもよく水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n3は3または4の整数を表し、Aは置換もしくは無置換の芳香族炭化水素の2~4価基、置換もしくは無置換の芳香族複素環の2~4価基、置換もしくは無置換の縮合多環芳香族の2~4価基を表す。)
PCT/JP2009/060490 2008-06-11 2009-06-09 有機エレクトロルミネッセンス素子 WO2009151039A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980121974.2A CN102057514B (zh) 2008-06-11 2009-06-09 有机电致发光器件
US12/737,099 US8716698B2 (en) 2008-06-11 2009-06-09 Organic electroluminescent device containing arylamine compound and bipyridyl compound
EP09762469A EP2299510A4 (en) 2008-06-11 2009-06-09 ORGANIC ELECTROLUMINESCENCE ELEMENT
JP2010516852A JP5373787B2 (ja) 2008-06-11 2009-06-09 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008152473 2008-06-11
JP2008-152473 2008-06-11

Publications (1)

Publication Number Publication Date
WO2009151039A1 true WO2009151039A1 (ja) 2009-12-17

Family

ID=41416746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060490 WO2009151039A1 (ja) 2008-06-11 2009-06-09 有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
US (1) US8716698B2 (ja)
EP (1) EP2299510A4 (ja)
JP (1) JP5373787B2 (ja)
KR (1) KR20110030544A (ja)
CN (1) CN102057514B (ja)
WO (1) WO2009151039A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137601A1 (en) 2009-05-29 2010-12-02 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
WO2011115163A1 (ja) 2010-03-16 2011-09-22 東ソー株式会社 1,2,4,5-置換フェニル誘導体とその製造方法、及びそれを構成成分とする有機電界発光素子
WO2012117973A1 (ja) * 2011-02-28 2012-09-07 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN102781918A (zh) * 2010-02-25 2012-11-14 保土谷化学工业株式会社 被取代了的吡啶化合物以及有机电致发光器件
WO2013038627A1 (ja) * 2011-09-12 2013-03-21 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2013531360A (ja) * 2010-04-27 2013-08-01 ノヴァレッド・アクチエンゲゼルシャフト 有機半導体材料および電子部品
WO2013141097A1 (ja) * 2012-03-22 2013-09-26 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
KR20130130781A (ko) 2010-12-17 2013-12-02 토소가부시키가이샤 1,2,4,5-치환 페닐 유도체와 그 제조 방법, 그리고 유기 전계 발광 소자
CN103493239A (zh) * 2011-04-25 2014-01-01 保土谷化学工业株式会社 有机电致发光器件
JP2014103103A (ja) * 2012-10-22 2014-06-05 Konica Minolta Inc 透明電極、電子デバイスおよび有機エレクトロルミネッセンス素子
JP2015092581A (ja) * 2013-07-12 2015-05-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2017501585A (ja) * 2013-12-31 2017-01-12 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. 有機発光表示装置及び視野角特性を改善したトップエミッション型oled装置
JPWO2014129201A1 (ja) * 2013-02-22 2017-02-02 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324950B2 (en) 2010-11-22 2016-04-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US8883323B2 (en) 2010-11-22 2014-11-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR102198635B1 (ko) 2012-04-20 2021-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
CN103579521B (zh) * 2012-07-31 2016-05-25 昆山维信诺显示技术有限公司 一种顶发射有机电致发光器件及其制造方法
CN103396355B (zh) * 2013-07-31 2016-06-22 华南理工大学 一种以三吡啶基苯为核的化合物及其制备方法和应用
CN103360303B (zh) * 2013-07-31 2015-09-16 华南理工大学 一种以吡啶为核的化合物及其制备方法和应用
CN108470839B (zh) * 2013-12-31 2022-06-14 昆山工研院新型平板显示技术中心有限公司 一种改善视角特性的顶发射oled器件
CN105566123B (zh) * 2014-10-13 2018-03-23 江苏和成新材料有限公司 芳香族胺衍生物及其有机电致发光器件
CN104538559B (zh) * 2014-12-31 2017-10-10 北京维信诺科技有限公司 一种具有rgb像素区的有机电致发光显示装置
KR102261644B1 (ko) 2015-03-11 2021-06-08 삼성디스플레이 주식회사 유기 발광 소자
JP6692126B2 (ja) * 2015-06-03 2020-05-13 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
CN110088926B (zh) * 2016-11-16 2021-07-27 保土谷化学工业株式会社 有机电致发光元件
JP6731126B2 (ja) 2017-12-21 2020-07-29 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子およびその製造方法
CN111470984B (zh) * 2020-04-16 2022-12-13 苏州欧谱科显示科技有限公司 一种空穴传输材料及其制备方法和应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPH06314594A (ja) 1992-12-18 1994-11-08 Ricoh Co Ltd 複数のキャリヤー注入層を有する有機薄膜el素子
JPH07126615A (ja) 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JPH08291115A (ja) 1995-04-21 1996-11-05 Bando Chem Ind Ltd 新規なトリフェニルアミン化合物
JP2003206278A (ja) * 2001-10-10 2003-07-22 Toray Ind Inc テトラフェニルメタン誘導体、及びこれを含む発光素子
JP2003336043A (ja) * 2002-05-21 2003-11-28 Toray Ind Inc 発光素子用材料およびそれを用いた発光素子
JP3529735B2 (ja) 2001-02-23 2004-05-24 松下電器産業株式会社 電界発光素子
JP2005108804A (ja) 2003-05-27 2005-04-21 Denso Corp 有機el素子およびその製造方法
WO2006103848A1 (ja) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007029696A1 (ja) * 2005-09-05 2007-03-15 Chisso Corporation 電子輸送材料およびこれを用いた有機電界発光素子
JP2007084439A (ja) * 2004-03-25 2007-04-05 Hodogaya Chem Co Ltd アリールアミン化合物
WO2007039952A1 (ja) * 2005-09-30 2007-04-12 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007086552A1 (ja) * 2006-01-30 2007-08-02 Chisso Corporation 新規化合物およびこれを用いた有機電界発光素子
WO2007148660A1 (ja) * 2006-06-22 2007-12-27 Idemitsu Kosan Co., Ltd. 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子
JP2008120696A (ja) * 2006-11-08 2008-05-29 Chemiprokasei Kaisha Ltd 新規なトリピリジルフェニル誘導体、それよりなる電子輸送材料およびそれを含む有機エレクトロルミネッセンス素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581355B2 (ja) * 2003-09-09 2010-11-17 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子
US7862905B2 (en) 2004-03-25 2011-01-04 Hodogaya Chemical Co., Ltd. Arylamine compound and organic electroluminescent device
JP2007109988A (ja) * 2005-10-17 2007-04-26 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
WO2008010487A1 (fr) * 2006-07-19 2008-01-24 Hitachi Chemical Co., Ltd. Matériau électronique organique, dispositif électronique organique et dispositif électroluminescent organique
EP2055704A4 (en) * 2006-08-21 2009-09-02 Hodogaya Chemical Co Ltd COMPOUND HAVING CYCLIC PYRIDYL SUBSTITUTED TRIAZINE STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPH06314594A (ja) 1992-12-18 1994-11-08 Ricoh Co Ltd 複数のキャリヤー注入層を有する有機薄膜el素子
JPH07126615A (ja) 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd 電界発光素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JPH08291115A (ja) 1995-04-21 1996-11-05 Bando Chem Ind Ltd 新規なトリフェニルアミン化合物
JP3529735B2 (ja) 2001-02-23 2004-05-24 松下電器産業株式会社 電界発光素子
JP2003206278A (ja) * 2001-10-10 2003-07-22 Toray Ind Inc テトラフェニルメタン誘導体、及びこれを含む発光素子
JP2003336043A (ja) * 2002-05-21 2003-11-28 Toray Ind Inc 発光素子用材料およびそれを用いた発光素子
JP2005108804A (ja) 2003-05-27 2005-04-21 Denso Corp 有機el素子およびその製造方法
JP2007084439A (ja) * 2004-03-25 2007-04-05 Hodogaya Chem Co Ltd アリールアミン化合物
WO2006103848A1 (ja) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007029696A1 (ja) * 2005-09-05 2007-03-15 Chisso Corporation 電子輸送材料およびこれを用いた有機電界発光素子
WO2007039952A1 (ja) * 2005-09-30 2007-04-12 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007086552A1 (ja) * 2006-01-30 2007-08-02 Chisso Corporation 新規化合物およびこれを用いた有機電界発光素子
WO2007148660A1 (ja) * 2006-06-22 2007-12-27 Idemitsu Kosan Co., Ltd. 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子
JP2008120696A (ja) * 2006-11-08 2008-05-29 Chemiprokasei Kaisha Ltd 新規なトリピリジルフェニル誘導体、それよりなる電子輸送材料およびそれを含む有機エレクトロルミネッセンス素子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. ORG. CHEM., vol. 60, 1995, pages 7508
JAPAN SOCIETY OF APPLIED PHYSICS, 9TH SEMINAR, PREPRINT, 2001, pages 55 - 61
See also references of EP2299510A4
SYNTH. COMMUN., vol. 11, 1981, pages 513
THE JAPAN SOCIETY OF APPLIED PHYSICS, 9TH SEMINAR, PREPRINT, 2001, pages 23 - 31

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006405A (ja) * 2009-05-29 2011-01-13 Semiconductor Energy Lab Co Ltd フルオレン誘導体、発光素子、発光装置、電子機器、及び照明装置
US10862042B2 (en) 2009-05-29 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
EP2435399A1 (en) * 2009-05-29 2012-04-04 Semiconductor Energy Laboratory Co, Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
US10553797B2 (en) 2009-05-29 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting elements, light-emitting device, electronic device, and lighting device
EP2435399A4 (en) * 2009-05-29 2012-11-14 Semiconductor Energy Lab FLUORENE DERIVATIVE, LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE
WO2010137601A1 (en) 2009-05-29 2010-12-02 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
US9741937B2 (en) 2009-05-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
US9051239B2 (en) 2009-05-29 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
EP2540707A4 (en) * 2010-02-25 2014-01-15 Hodogaya Chemical Co Ltd SUBSTITUTED PYRIDYL COMPOUND AND ORGANIC ELECTROLUMINESCENT ELEMENT
CN102781918A (zh) * 2010-02-25 2012-11-14 保土谷化学工业株式会社 被取代了的吡啶化合物以及有机电致发光器件
EP2540707A1 (en) * 2010-02-25 2013-01-02 Hodogaya Chemical Co., Ltd. Substituted pyridyl compound and organic electroluminescent element
JPWO2011105373A1 (ja) * 2010-02-25 2013-06-20 保土谷化学工業株式会社 置換されたピリジル化合物および有機エレクトロルミネッセンス素子
KR20130016273A (ko) 2010-03-16 2013-02-14 토소가부시키가이샤 1,2,4,5―치환 페닐 유도체와 그 제조방법, 그리고 그것을 구성 성분으로 하는 유기 전계 발광소자
WO2011115163A1 (ja) 2010-03-16 2011-09-22 東ソー株式会社 1,2,4,5-置換フェニル誘導体とその製造方法、及びそれを構成成分とする有機電界発光素子
US8796461B2 (en) 2010-03-16 2014-08-05 Tosoh Corporation 1,2,4,5-substituted phenyl compound, method for producing same and organic electroluminescent device comprising same as constituent
JP2013531360A (ja) * 2010-04-27 2013-08-01 ノヴァレッド・アクチエンゲゼルシャフト 有機半導体材料および電子部品
KR20130130781A (ko) 2010-12-17 2013-12-02 토소가부시키가이샤 1,2,4,5-치환 페닐 유도체와 그 제조 방법, 그리고 유기 전계 발광 소자
JP5977227B2 (ja) * 2011-02-28 2016-08-24 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN103403909A (zh) * 2011-02-28 2013-11-20 保土谷化学工业株式会社 有机电致发光器件
WO2012117973A1 (ja) * 2011-02-28 2012-09-07 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US9444055B2 (en) 2011-02-28 2016-09-13 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
CN103493239A (zh) * 2011-04-25 2014-01-01 保土谷化学工业株式会社 有机电致发光器件
JPWO2013038627A1 (ja) * 2011-09-12 2015-03-23 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2013038627A1 (ja) * 2011-09-12 2013-03-21 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US12089488B2 (en) 2011-09-12 2024-09-10 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
JP2018110121A (ja) * 2011-09-12 2018-07-12 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2013141097A1 (ja) * 2012-03-22 2013-09-26 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JPWO2013141097A1 (ja) * 2012-03-22 2015-08-03 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP2014103103A (ja) * 2012-10-22 2014-06-05 Konica Minolta Inc 透明電極、電子デバイスおよび有機エレクトロルミネッセンス素子
JPWO2014129201A1 (ja) * 2013-02-22 2017-02-02 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2015092581A (ja) * 2013-07-12 2015-05-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2017501585A (ja) * 2013-12-31 2017-01-12 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. 有機発光表示装置及び視野角特性を改善したトップエミッション型oled装置

Also Published As

Publication number Publication date
JPWO2009151039A1 (ja) 2011-11-17
JP5373787B2 (ja) 2013-12-18
KR20110030544A (ko) 2011-03-23
EP2299510A1 (en) 2011-03-23
CN102057514B (zh) 2016-03-30
US20120161107A1 (en) 2012-06-28
EP2299510A4 (en) 2012-03-28
US8716698B2 (en) 2014-05-06
CN102057514A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
JP5373787B2 (ja) 有機エレクトロルミネッセンス素子
TWI498412B (zh) 芳基胺化合物
KR101650595B1 (ko) 치환된 안트라센환 구조와 피리도인돌환 구조를 가지는 화합물 및 유기 전계 발광 소자
JP5291463B2 (ja) 置換されたピリジル基が連結したピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2011105373A1 (ja) 置換されたピリジル化合物および有機エレクトロルミネッセンス素子
JP5979873B2 (ja) ベンゾトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
TWI475022B (zh) Organic electroluminescent elements
JP5861843B2 (ja) 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JPWO2008023628A1 (ja) ピリジル基で置換されたトリアジン環構造を有する化合物および有機エレクトロルミネッセンス素子
TWI464167B (zh) A substituted pyridyl group and a pyridoindole ring structure, and an organic electroluminescent element
WO2009107651A1 (ja) 置換されたビピリジル化合物および有機エレクトロルミネッセンス素子
JP5955228B2 (ja) 置換されたビピリジル基とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2009051764A (ja) 置換されたフェナントレン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2014024447A1 (ja) トリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2012114746A1 (ja) 置換されたオルトターフェニル構造を有する化合物および有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121974.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516852

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12737099

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762469

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117000464

Country of ref document: KR

Kind code of ref document: A