WO2009091068A1 - 太陽電池モジュールおよびその製造方法 - Google Patents

太陽電池モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2009091068A1
WO2009091068A1 PCT/JP2009/050787 JP2009050787W WO2009091068A1 WO 2009091068 A1 WO2009091068 A1 WO 2009091068A1 JP 2009050787 W JP2009050787 W JP 2009050787W WO 2009091068 A1 WO2009091068 A1 WO 2009091068A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
solar cell
substrate
cell module
silicone
Prior art date
Application number
PCT/JP2009/050787
Other languages
English (en)
French (fr)
Inventor
Haruo Watanabe
Original Assignee
Affinity Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affinity Co., Ltd. filed Critical Affinity Co., Ltd.
Priority to EP09702907.8A priority Critical patent/EP2234172A4/en
Priority to JP2009550082A priority patent/JP4869408B2/ja
Priority to CN2009801063630A priority patent/CN101960614B/zh
Priority to US12/811,894 priority patent/US20100275992A1/en
Publication of WO2009091068A1 publication Critical patent/WO2009091068A1/ja
Priority to US13/783,064 priority patent/US20130178009A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10798Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing silicone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module in which a solar cell element (photoelectric conversion element) is laminated between a transparent substrate, a back surface protection substrate, and a substrate via a filler.
  • a solar cell element photoelectric conversion element
  • solar cells are desired to have high conversion efficiency, high durability, and low cost.
  • This conversion efficiency depends on the element characteristics of the solar cell, but its practical performance largely depends on the durability of the solar cell module.
  • solar cell module that can be used semipermanently while maintaining the initial high conversion efficiency.
  • Solar cell elements such as plate-like crystal elements, spherical crystal elements, and thin-film elements are basically stable members made of inorganic materials, although their characteristics change slightly due to solar radiation. Therefore, the present inventors paid attention to the durability of the material used for modularizing the element.
  • EVA ethylene / vinyl acetate copolymer
  • the cut EVA sheet is placed between the substrates together with the elements, heated and melted under vacuum, and then pressure-adhered, followed by additional heat treatment to cause a crosslinking reaction.
  • problems have been pointed out, such as delays in production rate due to heat treatment under vacuum, generation of corrosive gas during heat treatment, removal of resin protruding from the edge, and moisture-proof treatment at the edge.
  • Solar power generation CMC, Inc.
  • the potting method is a technique in which a silicone-based liquid substance is poured into a concave box, gelled, and encapsulates a plate crystal element.
  • a method of removing the protruding gel by laminating plate crystal elements between small substrates via a silicon-based liquid substance and then gelling them.
  • the solar cell element is fixed to a glass substrate, a gap and an injection hole are provided, the opposite substrate is fixed with a double-sided adhesive tape, and then an acrylic liquid material is poured from the injection hole. Residues, lead wire lead-out, long-term durability, etc. are problems.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 3-1 0 1 0 5 8) proposes a module containing a liquid substance in a bag shape for easy recycling.
  • the enveloping structure is taken and the substrate material is hermetically sealed by thermocompression bonding without any sealant.
  • such sealing does not provide sufficient contact with the lead wire, which easily causes liquid leakage, resulting in durability problems.
  • the liquid material wraps around during thermocompression bonding, and it is difficult to manufacture a module without generating bubbles.
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 5-1 0 1 0 3 proposes to enclose a liquid substance as a filler between plastic substrates, with the goal of preventing breakage of the connector in the evening. .
  • a liquid substance as a filler between plastic substrates, with the goal of preventing breakage of the connector in the evening.
  • the sealing of the outermost part which is the most important for durability, no specific study has been made just by touching on the use of welding (thermocompression bonding) and adhesives.
  • no consideration has been given to the method of laminating without bubbles and the treatment of lead wire lead-out portions, which are essential issues when using liquid substances as fillers.
  • fluid paraffin, silicone oil, etc. as fillers
  • Patent Document 3 Japanese Patent Laid-Open No. 8-8 8 3 8 8
  • a solid film such as EVA
  • thermocompression bonding a manufacturing method thereof.
  • a two-step complex process is used here, in which the filler and sealant are separately thermocompressed, and it is difficult to stack without bubbles using the simple thermocompression method of the outer periphery used here.
  • Patent Documents 1, 2, and 3 are basically different from the present invention in which ultra-high durability is a problem because a plastic plate is used as a substrate.
  • it can be said that it is difficult to stack the filler in a bubble-free state, which is essential for electrical components.
  • EVA electroactive polymer with ester bonds (hydrophilic functional groups), and has been improved by the addition of UV absorbers and antioxidants, but it has a long period of about 20 years.
  • resin degradation such as peeling, whitening, and yellowing occurs, resulting in a decrease in solar light transmittance and a decrease in power generation efficiency year by year.
  • thin film elements are mainly formed directly on a glass substrate, but they are easily affected by moisture, and the use of EVA as a filler is regarded as a problem.
  • Polyvinyl petitals are also being studied, but there are concerns about durability issues as with EVA. Disclosure of the invention
  • the present inventor again recognizes that the solar cell module is used under severe conditions in which it is exposed to sunlight for an extremely long time in an outdoor environment.
  • the study was conducted on the assumption that it would be used.
  • a liquid material was used as a filler or its starting material, and a method of high-speed lamination at room temperature was found, and an innovative solar cell module that could be used semipermanently and a manufacturing method thereof were completed. Is.
  • an object of the present invention is to provide an ultra-durable solar cell module that can be used semi-permanently outdoors while maintaining the high conversion efficiency important for solar cells, and a method that can be manufactured at low cost. It is to provide.
  • this invention consists of the following matters, for example.
  • a photoelectric conversion thin film element or a crystal element is disposed between the transparent substrate and the back surface protection substrate, a filler is disposed around the element, and an outer periphery thereof is sealed with a sealant.
  • a solar cell module wherein the transparent substrate is a glass substrate, the filler is a silicone-based liquid material, fluorine oil, or silicone gel, and the sealing agent is a cross-linking reaction type adhesive, Both substrates are bonded and fixed in contact with the outer periphery, and the portion of the lead wire extending from the element that penetrates the sealing agent disposed in the outer peripheral portion is brought into close contact with the sealing agent to contact between the substrates.
  • a solar cell module wherein the solar cell module is fixedly attached, and the filler and the element are sealed between both substrates together with the sealant.
  • the isobutylene-based resin adhesive is formed by placing the isobutylene-based resin adhesive in the vicinity of the crosslinking reaction type adhesive and then pressurizing and laminating, and further providing a layer of the isoptylene-based resin adhesive between the substrates. Manufacturing method for solar cell module.
  • a solar cell module in which a photoelectric conversion crystal element is disposed between a transparent substrate and a back surface protection substrate, a filler is disposed around the element, and an outer periphery thereof is sealed with a sealant.
  • the transparent substrate is a glass substrate
  • the filler is a silicone gel
  • the sealing agent is made of an isobutylene resin adhesive
  • the both substrates are in close contact with and fixed to the outer periphery of the filler.
  • a portion of the lead wire extending from the element that penetrates the sealing agent disposed on the outer peripheral portion is brought into close contact with the sealing agent to be closely fixed between the two substrates, and the filler and the element Is sealed between both substrates together with the sealing agent.
  • a solar cell module in which a photoelectric conversion thin film element is disposed between a transparent substrate and a back surface protection substrate, a filler is disposed around the element, and an outer periphery thereof is sealed with a sealant.
  • the transparent substrate is a glass substrate
  • the filler is a silicone gel
  • the sealing agent is made of an isobutylene resin adhesive
  • the both substrates are in close contact with and fixed to the outer periphery of the filler.
  • a portion of the lead wire extending from the element that penetrates the sealing agent disposed on the outer peripheral portion is brought into close contact with the sealing agent to be closely fixed between the two substrates, and the filler and the element Is sealed between the two substrates together with the sealing agent.
  • an ultra-durable solar cell module that has high conversion efficiency and can be used semi-permanently outdoors can be provided at low cost.
  • FIG. 1 is a cross-sectional view showing an example of a laminated structure and a lead wire lead-out portion in the solar cell module of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the laminated structure in the solar cell module of the present invention.
  • FIG. 3 is a cross-sectional view showing another example of the laminated structure in the solar cell module of the present invention.
  • FIG. 4 is a cross-sectional view showing another example of the laminated structure in the solar cell module of the present invention.
  • FIG. 5 is a cross-sectional view showing another example of the laminated structure in the solar cell module of the present invention.
  • FIG. 6 is a cross-sectional view showing another example of the laminated structure in the solar cell module of the present invention.
  • FIG. 7 is a cross-sectional view showing another example of the lead wire lead-out portion in the solar cell module of the present invention.
  • FIG. 8 is a cross-sectional view showing another example of the lead wire lead-out portion in the solar cell module of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present inventor has realized that it is essential that at least the transparent substrate, the solar cell element, and the filler are made of a material that can be used semipermanently. . If the transparent substrate is a glass substrate, it is stable.
  • the solar cell element of the present invention is an inorganic substance such as a plate-like crystal element or a thin film element, and can basically be used for a long period of time although there are some differences inherent to the element.
  • the present inventor has obtained a highly durable liquid substance (for example, silicone oil, silicone gel) with a robust sealing structure (for example, silicone resin adhesive).
  • a method for sealing between substrates without bubbles and have completed a super-durable solar cell module.
  • a glass substrate as the back surface protection substrate, we were able to obtain an innovative solar cell module with even higher durability. Providing such an ultra-durable solar cell module is extremely important in terms of energy recovery, resource saving, and economic efficiency.
  • Crystal elements such as single crystal silicon elements and polycrystalline silicon elements (plate crystal elements, spherical crystal elements), amorphous silicon thin film elements, microcrystalline silicon thin film elements
  • a thin film element in which an element is formed on a substrate such as a CIGS-based thin film element, and an eight-iblet type element in which a thin film element is laminated on the surface of a plate-like crystal element, which can be widely used in the present invention. it can.
  • the plate crystal element and the thin film element will be described in detail, but the present invention includes a spherical crystal element.
  • the present invention can solve all of the above-mentioned problems that have been regarded as improvements of the conventional EVA method.
  • the present invention has been successful for the first time in the construction of a robust sealing structure that reliably prevents leakage of liquid substances, including the most difficult lead wire extraction site.
  • a robust sealing structure that reliably prevents leakage of liquid substances, including the most difficult lead wire extraction site.
  • Durable module was obtained.
  • application of the sealant and filler is a simple application process, and it can easily cope with various sizes and shapes (eg, rectangle, triangle, trapezoid, circle, etc.) from small to very large.
  • a sealing agent is placed on the outer periphery of the glass substrate, a plate-like crystal element (thin film element is already formed on the glass substrate surface) is placed, and it is also sealed on the upper side of the lead wire lead-out part Add the agent, drop the liquid material that will be the filler, place the spacer if necessary, and stack the back protective substrate to form a temporary laminate, and vacuum deaerate this temporary laminate with a vacuum laminator. Then, the laminate is made by press-contacting at room temperature.
  • the main point of this method is that when pressurized under room temperature vacuum, the high-viscosity sealant is crushed while holding the position of the outer periphery where it is placed, and is in close contact between both substrates, at the same time a liquid substance It also functions as a bank to prevent liquid leakage. as a result,
  • silicone oil will be described as a representative example of the liquid material, but the present invention is not limited to this.
  • Silicone oil is fluid in a wide range of 70 ° C to 300 ° C and meets the requirements of transparency, heat resistance, cold resistance, water resistance, insulation and weather resistance.
  • a non-fluid material such as a gel may be obtained by reacting a silicone-based liquid substance after lamination.
  • gel in the present invention means a filler obtained by reacting a liquid substance after laminating into a non-fluid (eg, gel, elastomer, etc.).
  • Sealing agents are required to have a bank function that prevents liquid substances from leaking during lamination and an adhesive function that stably fixes both substrates.
  • one type of sealant has both functions and two types of sealant have different functions. There is a way to separate and hold.
  • the liquid substance is cross-linked to form a gel after lamination, only the sealant having a bank function may be used. The reason is that the liquid substance becomes a non-fluid and does not leak.
  • high durability is required especially for the bonding function.
  • high-viscosity silicone resin adhesive crosslinking reaction type adhesive
  • ultra-high viscosity isobutylene resin adhesive hot melt type adhesive
  • solar cell elements include plate-like crystal elements and thin film elements, and the thicknesses of these elements differ greatly.
  • a module comprising an element (plate crystal element and thin film element), a filler (silicone oil and silicone gel), a sealant (silicone resin adhesive and isobutylene resin adhesive), etc. The structure of is described.
  • a glass substrate As the back surface protection substrate.
  • a resin sheet, a resin plate, or the like can be used.
  • the illustration of the spacer is omitted.
  • FIG. 1 is a diagram showing a cross-sectional structure of a module in which thin film elements 8 formed on one surface of a glass substrate 3 are stacked. Silicone oil as the filler 5 is sealed by the silicone resin adhesive of the first seal 6 provided between the glass substrate 3 and the back protective substrate 4.
  • the lead wire 10 is connected and drawn out at a joint portion 9 made of a thin film element 8 and a conductive bonding agent (for example, solder, silver paste, etc.).
  • a silicon-based resin adhesive of the first seal 6 is also disposed on both the upper and lower surfaces of the lead wire 10 lead portion, and the glass substrate 3, the back surface protection substrate 4, and the lead wire 10 are bonded and fixed.
  • silicone-based resin adhesive may be disposed and laminated so as to sufficiently cover the joint 9.
  • the board spacing of this joint is the lead Line 10 makes it bulky.
  • the thin film element 8 is disposed away from the outer peripheral region as shown in the figure so that the sealant can adhere and adhere well to the glass substrate 3. Further, after laminating, the liquid substance may react to change into a silicone gel.
  • silicone resin adhesives have high weather resistance.
  • a module in which the back surface protection substrate 4 is also a glass substrate can be used for windows, windows, atriums, etc. with high durability and design like conventional window glass. In addition, if a glass layer is added to provide a gas layer, it becomes a window glass with added heat insulation.
  • FIG. 2 is a diagram showing a cross-sectional structure of a module in which thin film elements 8 are stacked.
  • the thin film element 8 is easily affected by moisture, and the silicone resin adhesive of the first seal 6 may transmit water molecules. Therefore, providing the isobutylene resin adhesive layer of the second sealing 7 has a very low moisture permeability, which is advantageous for use in high-temperature and high-humidity areas.
  • the first seal 6 may be placed outside or on both sides of the second seal 7, and may have a two-stage, four-layer seal structure. .
  • both boards are made of glass, it will be extremely durable, and it can be used without an aluminum frame on the module, so it will be low cost, and will be excellent in preventing lightning strikes and garbage collection. This is particularly useful for large-scale solar power plants in the wilderness.
  • FIG. 3 is a diagram showing a cross-sectional structure of a module in which the plate crystal elements 1 are stacked.
  • the plate-like crystal element 1 is connected by the connector 2 and is filled with silicon oil (fluid) or silicone gel (non-flowing) between the glass substrate 3 which is the light receiving surface and the back surface protective substrate 4.
  • the second seal 7 is an isobutylene-based resin adhesion agent that is super-highly viscous and adheres to the outer periphery to ensure a bank function that reliably prevents liquid leakage.
  • it is necessary to bond and fix both boards. It is not strong and cannot hold the weight of silicone oil.
  • the silicone resin adhesive of the first seal 6 disposed, it is possible to prevent liquid leakage due to the flow-down of the silicone oil, resulting in a good module.
  • the liquid substance may react to change into a silicone gel after lamination.
  • the isobutylene resin adhesive is moisture-proof and prevents electrode corrosion.
  • FIG. 4 shows a cross-sectional structure of a module in which thin film elements 8 are stacked.
  • This is a sealing structure in which the silicone resin adhesive composition of the first sealing 6 in Fig. 1 has been devised.
  • Seal made of two types of silicone resin adhesives, which is a high-viscosity silicone resin adhesive with a higher viscosity of the silicone resin adhesive, placed as an additional first seal 6 'to obtain a bank function. It is.
  • the positions of the first seal 6 and the additional first seal 6 ′ may be reversed. Although not particularly illustrated, this configuration can also be used for a module using the plate-like crystal element 1.
  • FIG. 5 is a diagram showing a cross-sectional structure of a module in which the plate crystal elements 1 are stacked.
  • the isobutylene resin adhesive in the second seal 7 adheres to the outer periphery so that it securely acts as a bank to prevent liquid leakage.
  • the liquid material is reacted after lamination to react with the silicone gel (5) Non-fluid).
  • a silicone resin adhesive is partially placed on the lead wire lead-out portion, and the lead wire and the board are adhered and fixed to fix the lead wire. It is possible to prevent wobble.
  • FIG. 6 is a diagram showing a cross-sectional structure of a module in which thin film elements 8 are stacked.
  • the second seal 7 is isobutylene resin dense.
  • the filler 5 is a silicone gel.
  • the lead wire 10 is fixed by being connected to the thin film element 8 and the joint 9 by solder or the like.
  • Solar cell elements include a plate-like crystal element 1 and a thin film element 8.
  • the plate-like crystal element 1 connected by the interconnector 2 is laminated between the glass substrate 3 and the back surface protection substrate 4 through the silicone oil of the filler 5 in a thin and air-free state.
  • This module structure was made possible for the first time by the manufacturing method of the present invention in which silicone oil was sealed under vacuum.
  • the board spacing of this module is thicker for the plate crystal element 1 and thinner for the thin film element 8.
  • the plate crystal element 1 has a plate thickness of about 0.05 to 0.2 mm, and the thin film element 8 can be regarded as being very thin and integral with the glass substrate.
  • the distance between the two substrates becomes thicker due to the connection with the interconnector 2, and the distance between the substrates may be about 0.1 mm to 3 mm, preferably 0.2 mm to 1 mm. About 5 mm, more preferably about 0.3 mm to 0.8 mm.
  • it may be about 0.05 mm to 3 mm, preferably about 0.02 to 1 mm, and more preferably about 0.05 to 0.5 mm. There is no advantage of making this distance particularly thick. The thinner one is lighter and the amount of filler used is reduced, which is economical.
  • the sealing width is about 2 mm to 50 mm for both the use of a silicone resin adhesive alone and the combined use of a silicone resin adhesive and an isoprene resin adhesive. It is preferably about 5 mm to 30 mm, more preferably about 8 mm to 20 mm. When isobutylene resin adhesive is used alone, it may be about 2 mm to 30 mm, preferably about 3 mm to 15 mm. More preferably, it may be about 5 mm to 1 O mm. As a matter of course, when the sealing width of the outer peripheral portion is increased, the light receiving area is reduced, which affects the amount of power generation.
  • a flexible thin film element in which a thin film element is provided on a special sheet (for example, a polyimide sheet, a stainless steel sheet, etc.) It can be used for the module structure and manufacturing method as described above, and these aspects are also included in the present invention.
  • a special sheet for example, a polyimide sheet, a stainless steel sheet, etc.
  • the manufacturing method of the present invention will be described using the structure of FIG. 3 in which the plate crystal elements 1 are stacked as an example.
  • Place a string-like isobutylene resin adhesive (which easily deforms like clay when pressed at room temperature and adheres closely to the substrate) on the outer periphery of the glass substrate 3 from the inner edge to about 3 mm inside.
  • Place a two-component silicone resin adhesive (reaction-cured at room temperature to bond and fix both substrates) thinly in a line.
  • silicone oil is dripped almost evenly, and the plate-like crystal element 1 connected by the interconnector 2 is placed thereon, and the isobutylene resin adhesive and silicone are also partially placed on the upper surface of the lead wire part.
  • a resin adhesive is placed, and if necessary, silicone oil is dropped on the plate-like crystal element 1.
  • the back protective substrate 4 is laminated to form a temporary laminate.
  • This temporary laminate is put into a room temperature vacuum laminator, sufficiently degassed under reduced pressure, and lightly pressurized under vacuum (0.7 to 1. OT orr).
  • the two substrates are brought into close contact with each other by the ultrahigh viscosity isobutylene resin adhesive in a short time.
  • the sealant is crushed and flattened, and the low-viscosity silicone oil gradually It spreads throughout and flows into fine gaps and fills.
  • the silicone resin adhesive is crushed while in contact with the isobutylene resin adhesive, and gradually crosslinks to bond and fix both substrates as shown in FIG.
  • the plate crystal element 1 is sealed between the glass substrate 3 and the back surface protective substrate 4 via silicone oil. Further, as shown in FIG. 8, the upper and lower surfaces of the lead portion of the lead wire 10 are surely secured by the silicone resin adhesive of the first seal 6 and the isobutylene resin adhesive of the second seal 7. Sealed.
  • a silicone resin adhesive is injected into the gap between the substrates after lamination. For example, a laminate with the outermost peripheral portion of about 5 mm is provided and the second seal 7 is provided, and then a silicone resin is injected into the gap between the substrates to cause a crosslinking reaction to form the first seal 6.
  • a low-viscosity UV curable adhesive may be injected into the gap and then irradiated with light to be cured.
  • this temporary laminate may be pressurized to room temperature and released to atmospheric pressure if the isobutylene resin adhesive comes into contact with and adheres to both substrates.
  • the reason is that the inside becomes a vacuum state due to the sealing effect, and even if it is left under atmospheric pressure, the filler 5 naturally spreads throughout and is filled with details.
  • the expensive vacuum laminating equipment can be constrained by a few minutes, resulting in high-speed production and a significant contribution to lower costs.
  • Silicone oil may be placed on both the upper and lower sides of the plate-like crystal element 1 and can be soaked in even a small gap, so it may be placed only on one side of the plate-like crystal element 1, and it is necessary to be balanced on the substrate It is sufficient that the amount is arranged almost evenly.
  • the filler is degassed and then dripped, or the coating amount is slightly larger than the theoretical amount necessary to fill the gap.
  • the lead wire drawn from the outer periphery of the board can be easily connected to the terminal box even in large-area modules. Further, the lead wire may be drawn out from the outer peripheral portion of the hole provided by removing the inside of the back surface protection substrate 4 which is a conventional method and connected to the terminal box.
  • a small module shown in Fig. 3 was fabricated and tested for durability. Both sides Prepare a polycrystalline plate-like crystal element 1 (25 x 50 x 0.15 mm, manufactured by Kyocera) with electrodes formed on a 3 1 x 2 x 0.1 mm thin copper plate. The resulting lead wire was connected with solder (4 mm). White plate glass (90 x 65 x 4 mm) is used as the glass substrate 3, and the string-like isobutylene resin adhesive (diameter 2 mm) that forms the second seal 7 about 2 mm inward from the end.
  • a two-component mixed silicone resin adhesive (Toray 'Dauco) Nineteen SE 9 3 6) was applied in a thin line.
  • dimethyl silicone oil viscosity: 10,000 CSZ 25 degrees
  • filler 5 is applied in a line shape in the shape of a mouth on the outer periphery with a gap of about 5 mm, and in the form of small dots in the center. Two points were applied.
  • a plate-like crystal element 1 with a lead wire was placed in the center of the coated substrate.
  • An isobutylene resin adhesive and a silicone resin adhesive are additionally placed on the upper surface of the lead wire 10, and two small points of silicone oil are applied on the plate-like crystal element 1, and then the back surface protection substrate.
  • a blue sheet glass (90 x 65 x 4 mm) to be 4 was placed to make a temporary laminate.
  • the temporary laminate was put in a vacuum apparatus and degassed at room temperature (23 ° C.) for 60 seconds, and then lightly pressurized, and the isobutylene resin adhesive was brought into contact with both substrates and then released to atmospheric pressure.
  • the isobutylene resin adhesive and the silicone resin adhesive were squeezed into place by atmospheric pressure, and the silicone oil gradually flowed into details.
  • the lead wire 10 and both substrates were bonded and fixed with a silicone-based resin adhesive at room temperature. As a result, a bubble-free small module comprising a first seal 6 having a width of 4 mm and a second seal 7 having a width of 6 mm was obtained.
  • the lead wire 10 pulled out is bent into a U shape, and the measurement terminal (4 mm) is turned on the surface of the back surface protection substrate 4, and a silicone resin adhesive is applied to the end surface of the substrate.
  • the lead wires were covered with insulation, and fixed to the edge of the substrate.
  • the metal halide lamp type super UV test (10 O m WZ cm 2 , Iwasaki Electric Eye Super UV Tester) was irradiated for 100 hours, temperature 85 degrees, relative humidity 85 % Of the samples were allowed to stand for 30 hours, and a temperature cycle test at 120 ° C. and 95 ° C. was conducted for a severe durability test consisting of 20 0 times.
  • This sealing structure consists only of a silicone resin adhesive that becomes the first seal 6. Since the thickness of the thin film element 8 is negligibly thin, the distance between the substrates is very thin, and the bank function of the sealant is easily secured. Specifically, a silicone-based resin adhesive is arranged in a line on the outer periphery of the substrate provided with the thin film element 8 in which the lead wires are connected by solder. In addition, silicone resin adhesive is placed on the upper and lower surfaces of the lead-out part of the lead wire.
  • low-viscosity silicone oil to be used as filler 5 is dripped several times in the shape of the mouth so that it is almost even over the entire surface, and then a glass bead spacer is sprayed.
  • a back protective substrate 4 is stacked to form a temporary laminate.
  • This temporary laminate is put into a room temperature vacuum laminator and pressurized in multiple stages under vacuum. As a result, both substrates are sealed in a short time. When this sealed laminate is released to atmospheric pressure, it is naturally pressurized at atmospheric pressure, and the silicone-based resin adhesive applied to the outer periphery is further crushed, and the silicone oil gradually and completely does not leak. Spread and filled with details. In addition, silicone tree The fat adhesive provides a robust seal by adhering and fixing both substrates as the crosslinking reaction proceeds.
  • a method for manufacturing a module having the plate crystal element 1 shown in FIG. 5 will be described. Only the isobutylene resin adhesive of the second seal 7 is placed on the outer periphery as the sealant, but the other steps are the same as those of the module of FIG. However, the isoprene-based resin adhesion agent adheres to both substrates with an appropriate tackiness, but cannot fix both substrates. Therefore, it is necessary to react the liquid material of filler 5 after lamination to form a gel. This reaction may be slow and may be moderately heated to promote the reaction.
  • FIG. 7 shows a cross-sectional view of the lead wire 10 drawn from the thin film element 8 in the module shown in FIG.
  • the thin film element 8 and the lead wire 10 are connected by a conductive bonding agent (for example, solder, silver base, etc.) to form the joint 9.
  • the isobutylene resin adhesive of the second seal 7 is in close contact with the upper and lower surfaces of the lead portion of the lead wire 10 to prevent liquid material from leaking during lamination. After lamination, a liquid substance is reacted to form a gel (non-fluid).
  • the manufacturing method at room temperature has been mainly described.
  • the temporary laminate is heated and sealed under vacuum, heated after the sealed lamination, and ultraviolet rays. It is also possible to use light irradiation such as.
  • the glass substrate 3 can be widely used as long as it transmits light sufficiently, and examples thereof include white plate glass and blue plate glass.
  • the glass substrate may be subjected to processing such as tempered glass, antireflection on the surface, template glass, and ultraviolet cut as required. In particular, in order to prevent surface reflection, processing that reduces reflection from the interface with the atmosphere and the filler is preferable.
  • Conventionally used members can be widely used for the back surface protection substrate 4.
  • a glass substrate for example, blue plate glass, tempered glass, template glass, etc.
  • a resin sheet for example, hard polyvinyl chloride, polyester) Tell
  • steel plate stainless steel plate, etc. Resin sheets are useful for reducing the weight of the module.
  • the manufacturing temperature of the present invention may be room temperature, and hard polyvinyl chloride is a thin sheet of less than 0.1 to 1 mm (for example, vinyl resin foil of Mitsubishi resin). Thick plates of about 1 to 3 mm (for example, Shin-Etsu polymer panel) can be used according to the application.
  • Hard polyvinyl chloride is very useful because it has good adhesion and adhesion to sealants (eg, silicone resin adhesives, isoprene resin adhesives, etc.), weather resistance, and economic efficiency. .
  • Also useful are aluminum foil, polyethylene sheet with ethylene tetrafluoroethylene, etc., resin sheet with deposited silica (Techba U-LX, etc. from Mitsubishi Plastics), surface modified sheet with improved adhesion, etc.
  • a thin film element since it dislikes moisture, a glass substrate, an aluminum foil lantern, a resin sheet on which silica is vapor-deposited, etc. are preferable.
  • liquid material used as the filler 5 include silicone oils such as dimethyl silicone oil, methyl phenyl silicone oil, methyl octane silicone oil, alkyl-modified silicone oil, and polyester.
  • silicone oils such as dimethyl silicone oil, methyl phenyl silicone oil, methyl octane silicone oil, alkyl-modified silicone oil, and polyester.
  • modified silicone oils, alcohol-modified silicone oils, and fluorine oils such as fluorinated polyethers, Daikin Chemical Co., Ltd. demnam, and NOK fluids.
  • Ultrafine powder silica or the like may be added to this liquid material to give thixotropy characteristics, thereby making it difficult to cause sagging and improving the coating performance.
  • the processes from substrate cleaning, coating, and temporary stacking can be processed in an inclined state, and there are advantages such as reduced dust adhesion, easy coating, and easy substrate movement, especially in the production of thin-film device modules. Useful is there.
  • liquid substance that is liquid at room temperature during lamination but reacts (thermal reaction or photoreaction) after lamination to become a gel
  • thermo reaction or photoreaction a liquid substance that is liquid at room temperature during lamination but reacts (thermal reaction or photoreaction) after lamination to become a gel
  • an ultraviolet absorber for example, benzophenone series, benzotriazole series, triazine series, etc.
  • an ultraviolet absorber for example, benzophenone series, benzotriazole series, triazine series, etc.
  • an ultraviolet absorber may be added to the liquid substance to improve the weather resistance. This also protects the resin sheet when used as 4.
  • useful ultraviolet absorbers include SEES® RB—10 3 from Sipro Kasei Co., Ltd., TI NUV IN 3 2 8 from Ciba Specialty Chemicals, and TI NUV IN 400.
  • the amount of addition may be about 0.1 to 5 W%, preferably about 0.2 to 3 W%, more preferably about 0.5 to 2 W%.
  • methylphenyl silicone oil for example, SH550, SH700, SH700, manufactured by Toray Dow Co., Ltd.
  • SH550, SH700, SH700, manufactured by Toray Dow Co., Ltd. makes it easy to dissolve the UV absorber due to the effect of the phenyl group.
  • functional groups that have an affinity for fillers in UV absorbers for example, substances in which UV absorbers are bound to modified silicon
  • those having low solubility may be uniformly dispersed as ultrafine particles.
  • the sealant includes a crosslinking reaction type adhesive used for the first seal 6 and a hot melt type adhesive used for the second seal 7. These are pressurized at room temperature It is a substance that flows and deforms.
  • crosslinking reaction type adhesive examples include a two-component mixed type crosslinking reaction type adhesive, a one-component type crosslinking reaction type adhesive by reaction with water molecules, and a crosslinking reaction type adhesive by ultraviolet irradiation.
  • the viscosity is preferably a high-viscosity pace ridge that can be applied by extrusion and is not easily deformed by its own weight.
  • a silicone resin adhesive having high weather resistance has good adhesion to a glass substrate and is very useful in the present invention, and can be used for both one-component and two-component mixtures.
  • dealcohol-free silicone resin adhesive for example, SE 9 1 5 5, SE 9 1 7 5, SE 7 3 7, SE 9 5 0 0, SE 9 3 6 etc.
  • Silicone resin adhesives are well known and will not be described here.
  • weather resistance is inferior to that of silicone, there are sulfide, urethane, acrylic, isobutylene, acrylic urethane, epoxy, and acrylic epoxy.
  • filler eg, powdered silica, ultrafine powdered silica, calcium carbonate, etc.
  • antioxidant e.g., sodium citrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium
  • the viscosity of the crosslinking reaction type adhesive is preferably higher than that of the liquid material of the filler 5, preferably more than twice as high, and more preferably 10 times or more, so that it can be easily disposed at a predetermined position.
  • cross-linking reaction type adhesion When forming a seal on the outer periphery only with the agent, a method of making it have a thixotropy characteristic to make it more viscous (not easily deformed by its own weight) (for example, addition of ultrafine powder silica, etc.) By reacting to increase viscosity (for example, modified silicone resin adhesive), heating to increase fluidity to facilitate application (for example, silicone reactive hot melt adhesive), etc. The viscosity can be adjusted.
  • this silicone-reactive hot melt adhesive has both adhesiveness and bank function, so it is useful for the module of the plate-like crystal element 1 that is relatively resistant to moisture and has a large substrate spacing.
  • the silicone resin adhesive is more chemically stable than the isobutylene resin adhesive. It is good to arrange inside like the 1st seal 6 of 3.
  • silicone resin adhesives are stable and remain stable even when in contact with silicone oil, silicone gel, fluorine oil, and the like.
  • Hot melt adhesives include, for example, isobutylene resins. These can be heated and continuously extruded into a string shape (cross-section: circular, semi-circular, fine circular, rectangular, etc.), and can be easily plastically deformed by room temperature pressurization without causing self-weight deformation at room temperature.
  • an isobutylene resin adhesive will be described. Isobutylene resins can be used as detailed in the chapter on butyl rubber / polyisobutylene adhesives in Asakura Shoten's Adhesion Encyclopedia (H andbook of Adhesives / Third E dition from Van Nostrad Reinhold) It consists only of hydrocarbons with an isobutylene unit as the basic structure.
  • This resin has a very low water vapor transmission rate due to the methyl group effect and hydrophobicity.
  • it since it is an amorphous polymer, it has excellent flexibility, impact resistance, and permanent tackiness.
  • the glass transition temperature is close to 160, so that it can maintain flexibility even at low temperatures below room temperature and has a high density. Shows wearing ability.
  • polyisobutylene, isoprene-isoprene copolymer, etc., adhesion-imparting agent eg, epoxy resin, silane coupling agent, alkyl titanate agent, etc.
  • adhesion-imparting agent eg, epoxy resin, silane coupling agent, alkyl titanate agent, etc.
  • insulating filler eg, powdered silica, ultrafine, etc. Powdered silica, etc.
  • antioxidants eg, UV absorbers, plasticizers, lubricants, pigments, etc.
  • the isobutylene resin adhesive is very useful for preventing moisture from diffusing into the inside from the cross section of the outer periphery of the substrate.
  • a sealing structure that uses a silicone resin adhesive at the same time rather than a single use, the filler is non-flowable. Even gels are preferred.
  • the spacer may be used as necessary to maintain the substrate spacing, and the shape may be a bead shape, a rod shape, a planar shape, etc.
  • the material part, the sealing part, etc.) may be appropriately selected.
  • the arrangement of the spacers may be fixed at regular intervals, or may be randomly distributed and not fixed. Further, there is a method in which a spacer is added in advance to the filler and applied.
  • the material can be widely selected from glass, ceramics, resin, rubber, metal and the like.
  • the inventor in order to obtain a solar cell module that can be used semi-permanently, the inventor must at least include a transparent substrate, a solar cell element, and a filler made of an ultra-high durability material. I found out. Therefore, focusing on the use of highly durable liquid materials as fillers, we have established a manufacturing method that seals liquid materials in a bubble-free state at room temperature under vacuum. As a result, liquid substances must be sealed with a robust sealing structure. Led to a highly durable module. This high durability has an essential meaning in energy recovery, resource saving, and economic efficiency. Naturally, we were able to obtain a module that was completely free of air bubbles (a fatal defect in electrical components) and liquid leakage (defective products).
  • the sealant and liquid material are applied directly to the substrate, it can be quickly applied to modules of various sizes and shapes, including ultra-large sizes, and is suitable for continuous mass production.
  • it is economical and provides lightning protection because it can ensure high moisture resistance and durability without having an aluminum frame on the module. Therefore, the present invention is very useful for a photovoltaic power plant in which an ultra-large module is constructed on a large scale. Also, in urban areas, it is installed on the roof, etc. Considering the replacement cost, semi-permanent durability has significant economic significance, and expensive crystal elements can be easily removed from the substrate. Because it can be used, it has excellent recyclability.
  • the internal stress can be kept small because the filler 5 is a liquid material or a flexible gel even under a large temperature difference. Therefore, even elements that are expected to be put to practical use, such as ultra-thin plate crystal elements, heterostructure elements having a high conversion rate, and multi-junction elements, are effective in preventing element damage, interface peeling, electrode peeling, etc. There are fruits. Industrial applicability
  • the present invention can provide an ultra-high durability solar cell module at a low cost, and thus is extremely useful industrially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

透明基板、太陽電池素子、充填材が超高耐久性であり、半永久的に使用できる超高耐久性の太陽電池モジュールであって、ガラス基板と裏面保護基板との間に設けられた高耐久性の架橋反応型接着剤、ホットメルト型密着剤からなる堅牢な封止構造により、太陽電池素子、充填材である液状物質または液状物質が反応してなるゲルが密封されている。このモジュールは、ガラス基板に封止剤、太陽電池素子、液状物質を配置し、最後に裏面保護基板を重ねて仮積層体とし、この仮積層体を室温の真空下で加圧密着させて密封することにより製造される。

Description

太陽電池モジュールおよびその製造方法
技術分野
本発明は、 透明基板と裏面保護基板と基板間に充填材を介して太 陽電池素子 (光電変換素子) を積層してなる太陽電池モジュールお 明
よびその製造方法に関する。 書
背景技術
昨今、 太陽電池は、 高変換効率、 高耐久性、 低コス ト化が望まれ ている。 この変換効率は太陽電池の素子特性に依存するが、 その実 用性能は太陽電池モジュールの耐久性に大きく依存する。 事実、 初 期の高い変換効率を維持しつつ半永久的に使用可能な太陽電池モジ ユールが求められている。 板状結晶素子、 球状結晶素子、 薄膜素子 等の太陽電池素子は、 日射を受けてその特性の変化は若干起こるが 、 基本的には無機材料からなる安定した部材である。 そこで、 本発 明者は、 素子をモジュール化するために用いる材料の耐久性に着目 した。
大面積の太陽電池モジュールに広く使用されている充填材は主に エチレン · 酢酸ビニル共重合体 (以下、 E V Aと記す) の樹脂シー トである。 その使用に際しては、 裁断した E V Aシートを基板間に 素子とともに配置し、 真空下で加温溶融後に加圧密着させて、 さら に追加の加熱処理をして架橋反応させる。 そのため、 真空下の加熱 処理による生産速度の遅延、 加熱処理時の腐食ガスの発生、 端部か らはみ出した樹脂の除去、 端部の防湿処理等の多くの課題が指摘さ れてきた。 なお、 モジュールの詳細は 「太陽光発電」 (浜川圭弘編 著、 シーエムシ一社) に記載されているので、 ここでは省略する。 次に、 本発明と類似する先行技術に関して述べる。 ポッティ ング 法は、 凹状の箱にシリコーン系液状物質を流し込み、 ゲル化して、 板状結晶素子を包み込む手法である。 また、 小型基板の間にシリコ ーン系液状物質を介して板状結晶素子を積層してからゲル化させ、 はみ出したゲルを除去する手法もある。 しかし、 これらは大面積モ ジュールに利用できるものではなかった。 また、 太陽電池素子をガ ラス基板に固定し、 空隙と注入孔を設けて両面接着剤テープで対向 基板を固定してから、 アク リル系の液状物質を注入孔から流し込む 方法もあるが、 気泡の残存、 リード線の引出部の処理、 長期間の耐 久性等が問題とされている。
また、 特許文献 1 (特開 2 0 0 3 — 1 0 1 0 5 8号公報) には、 易リサイクルを課題にして液状物質を袋状に内包したモジュールが 提案されている。 ここでは、 包み込む構造をとり、 封止剤を特に設 けることなく、 基板材料の熱圧着により密閉している。 しかし、 こ のような封止では、 リ一ド線との密着が十分ではなく、 容易に液漏 れを起こし、 耐久性に問題が生じる。 また、 熱圧着する際にも液状 物質の回り込みが起こり、 気泡を生じさせることなくモジュールを 製造することは困難である。
特許文献 2 (特開 2 0 0 5— 1 0 1 0 3 3号公報) には、 イン夕 一コネクタの破断防止を課題として、 充填材として液状物質をブラ スチック基板間に内包させる提案がある。 しかし、 耐久性に関して 最も重要な外周部の封止に関しては、 溶接 (熱圧着) や接着剤の利 用に触れているだけで具体的な検討はなされていない。 さらに、 液 状物質を充填材とするに当たって必須の課題となる、 無気泡に積層 化する方法やリード線の引出部の処理等については全く検討されて いない。 ただ、 充填材として流動パラフィ ン、 シリコーンオイル等 の液状物質が例示されているだけである。
特許文献 3 (特開平 8 — 8 8 3 8 8号公報) には、 アルミフレー ムを設けない簡潔なモジュールを得ることを課題として、 充填材と して E V A等の個体膜をフィルム基板間に積層後に、 外周部にホッ トメルト型接着剤を塗布し、 熱圧着して封止してなるモジュールと その製造方法が提案されている。 しかし、 ここでは充填材と封止剤 を別々に熱圧着する 2段階の複雑工程が用いられており、 またここ で用いている外周部の単純熱圧着法では無気泡に積層することは困 難であるという問題がある。
この特許文献 1 、 2 、 3の提案は、 基板にプラスチックプレート を利用することが念頭にあり、 超高耐久性を課題にした本発明とは 基本的に異なる。 また、 これらの先行技術では、 電気部品に必須と なる無気泡の状態で充填材を積層することは困難と言える。 さらに 、 長期間に渡って屋外で使用できる高耐久性のモジュールを得るこ とは困難である。
従来の大面積モジュールでは、 発電効率を数 1 0〜数 1 0 0 Wに 高めるために、 板状結晶素子 (厚み : 0 . 0 5 〜 0 . 3 m m程) が インターコネクタによって多数枚接続された状態で E V Aを介して モジュール化されている。 E V Aの分子構造はエステル結合 (親水 性の官能基) をもつ炭化水素系高分子であり、 紫外線吸収剤、 酸化 防止剤等の添加で改良はされてきているが、 2 0年程の長期間に渡 つて日射を受けると、 剥離、 白化、 黄変等の樹脂劣化が起きて太陽 光線の透過率が減少し、 発電効率が年々低下する問題が指摘されて いる。 また、 薄膜素子は主にガラス基板上に素子を直接形成してな るが、 水分の影響を大きく受けやすく、 E V Aを充填材として使用 することが問題視されている。 そこで、 ポリ ビニルプチラールも検 討されているが、 E V Aと同様に耐久性の問題が懸念されている。 発明の開示
そこで本発明者は、 太陽電池モジュールは屋外環境で超長期間に 渡って太陽光線を浴びる過酷な条件下で使用されることを再度認識 して、 はじめから半永久的に使用できる劣化し難い材料を用いるこ とを前提にして検討した。 その結果、 充填材としてまたはその出発 物質として液状物質を使用し、 室温下に高速積層する手法を見出し て、 半永久的に使用できる画期的な太陽電池モジュールおよびその 製造方法を完成するに至ったものである。
すなわち、 本発明の課題は、 太陽電池に重要な高変換効率を維持 しつつ半永久的に屋外で使用できる超高耐久性の太陽電池モジユー ルおよびこれを低コス トで製造することのできる方法を提供するこ とにある。
そして、 上記課題を解決するため、 本発明は、 例えば、 下記の事 項からなる。
1 . 透明基板と裏面保護基板との間に光電変換薄膜素子または結 晶素子が配置され、 前記素子の周囲には充填材が配置され、 その外 周部が封止剤で封止されている太陽電池モジュールであって、 透明 基板がガラス基板であり、 充填材がシリコーン系液状物質、 フッ素 オイルまたはシリコーンゲルであり、 前記封止剤が、 架橋反応型接 着剤からなり、 前記充填材の外周に接する状態で両基板を接着固定 し、 かつ前記素子から伸びるリード線の、 前記外周部に配置された 前記封止剤を貫通する部分をこの封止剤に密着させて両基板間に接 着固定しており、 前記充填材と前記素子が前記封止剤とともに両基 板間に密封されていることを特徴とする太陽電池モジュール。
2 . 架橋反応型接着剤がシリコーン系樹脂接着剤である、 上記 1 に記載の太陽電池モジュール。
3 . 架橋反応型接着剤と接するようにイソブチレン系樹脂密着剤 が基板間の外周部に設けられている、 上記 1 または 2に記載の太陽 電池モジュール。
4 . 上記 1 に記載の太陽電池モジュールの製造方法であって、 ガ ラス基板または裏面保護基板のいずれか一方の上に光電変換薄膜素 子または結晶素子を配置し、 前記基板の外周部並びに前記素子から 伸びるリ一ド線の前記外周部に位置する部分に架橋反応型接着剤を 封止剤として配置し、 シリコーン系液状物質またはフッ素オイルを 充填材として配置し、 その上に他方のガラス基板または裏面保護基 板を重ね合わせ、 前記充填材と前記素子がその外周部に配置された 架橋反応型接着剤とともに両基板間に密封されるように真空状態の もとで加圧積層して積層体を形成し、 次いで前記架橋反応型接着剤 を架橋させることを特徴とする太陽電池モジュールの製造方法。
5 . 架橋反応型接着剤に近接してィソブチレン系樹脂密着剤を配 置した後に加圧積層して積層体を形成し、 イソプチレン系樹脂密着 剤の層をさらに基板間に設ける、 上記 4に記載の太陽電池モジュ一 ルの製造方法。
6 . 積層後にシリコーン系液状物質を反応させてシリコーンゲル とする、 上記 4または 5に記載の太陽電池モジュールの製造方法。
7 . 透明基板と裏面保護基板との間に光電変換結晶素子が配置さ れ、 前記素子の周囲には充填材が配置され、 その外周部が封止剤で 封止されている太陽電池モジュールであって、 透明基板がガラス基 板であり、 充填材がシリコーンゲルであり、 前記封止剤が、 イソブ チレン系樹脂密着剤からなり、 前記充填材の外周に接する状態で両 基板を密着固定し、 かつ前記素子から伸びるリード線の、 前記外周 部に配置された前記封止剤を貫通する部分をこの封止剤に密着させ て両基板間に密着固定しており、 前記充填材と前記素子が前記封止 剤とともに両基板間に密封されていることを特徴とする太陽電池モ ジュール。
8 . 上記 7に記載の太陽電池モジュールの製造方法であって、 ガ ラス基板または裏面保護基板のいずれか一方の上に結晶素子を配置 し、 前記基板の外周部並びに前記素子から伸びるリード線の前記外 周部に位置する部分にィソブチレン系樹脂密着剤を封止剤として配 置し、 シリコーン系液状物質を充填材として配置し、 その上に他方 のガラス基板または裏面保護基板を重ね合わせ、 前記充填材と前記 素子がその外周部に配置されたイソプチレン系樹脂密着剤とともに 両基板間に密封されるように真空状態のもとで加圧積層して積層体 を形成し、 次いで前記シリコーン系液状物質を反応させてシリコ一 ンゲルとすることを特徴とする太陽電池モジュールの製造方法。
9 . 透明基板と裏面保護基板との間に光電変換薄膜素子が配置さ れ、 前記素子の周囲には充填材が配置され、 その外周部が封止剤で 封止されている太陽電池モジュールであって、 透明基板がガラス基 板であり、 充填材がシリコーンゲルであり、 前記封止剤が、 イソブ チレン系樹脂密着剤からなり、 前記充填材の外周に接する状態で両 基板を密着固定し、 かつ前記素子から伸びるリード線の、 前記外周 部に配置された前記封止剤を貫通する部分をこの封止剤に密着させ て両基板間に密着固定しており、 前記充填材と前記素子が前記封止 剤とともに両基板間に密封されていることを特徴とする太陽電池モ ン ユール。
1 0 . 上記 9に記載の太陽電池モジュールの製造方法であって、 基板面に光電変換薄膜素子が設けられたガラス基板の外周部並びに 前記素子から伸びるリ一ド線の前記外周部に位置する部分にィソブ チレン系樹脂密着剤を封止剤として配置し、 シリコーン系液状物質 を充填材として配置し、 その上に裏面保護基板を重ね合わせ、 前記 充填材と前記素子がその外周部に配置されたイソブチレン系樹脂密 着剤とともに両基板間に密封されるように真空状態のもとで加圧積 層して積層体を形成し、 次いで前記シリコーン系液状物質を反応さ せてシリコーンゲルとすることを特徴とする太陽電池モジュールの 製造方法。
上記本発明によれば、 高変換効率を有し、 かつ半永久的に屋外で 使用することが可能な超高耐久性の太陽電池モジュールを低コス ト で提供することができる。 図面の簡単な説明
図 1 は、 本発明の太陽電池モジュールにおける積層構造とリ一ド 線の引出部の一例を示す断面図である。
図 2は、 本発明の太陽電池モジュールにおける積層構造の他の例 を示す断面図である。
図 3は、 本発明の太陽電池モジュールにおける積層構造の他の例 を示す断面図である。
図 4は、 本発明の太陽電池モジュールにおける積層構造の他の例 を示す断面図である。
図 5は、 本発明の太陽電池モジュールにおける積層構造の他の例 を示す断面図である。
図 6は、 本発明の太陽電池モジュールにおける積層構造の他の例 を示す断面図である。
図 7は、 本発明の太陽電池モジュールにおけるリード線の引出部 の他の例を示す断面図である。
図 8は、 本発明の太陽電池モジュールにおけるリード線の引出部 の他の例を示す断面図である。 発明を実施するための最良の形態 本発明者は、 超高耐久性の太陽電池モジュールを得るために、 少 なく とも透明基板、 太陽電池素子、 充填材が半永久的に使用できる 材料からなることが必須であるとの認識に至った。 透明基板はガラ ス基板であれば安定している。 本発明の太陽電池素子は板状結晶素 子、 薄膜素子等の無機物質であり、 素子固有の若干の相違はあるが 基本的には長期間に渡って利用できる。 そこで、 本発明者は充填材 を根本から再検討した結果、 堅牢な封止構造 (例えば、 シリコーン 系樹脂接着剤等) をもって超高耐久性の液状物質 (例えば、 シリコ ーンオイル、 シリコーンゲル等) を基板間に無気泡で密封する方法 を見出し、 超高耐久性の太陽電池モジュールを完成するに至った。 また、 裏面保護基板もガラス基板にすることでさらに耐久性に優れ た画期的な太陽電池モジュールを得ることもできた。 かかる超高耐 久性の太陽電池モジュールを提供することは、 エネルギー回収、 省 資源、 経済性の面から極めて重要な意義がある。
太陽電池の光電変換素子には様々な種類があり、 単結晶シリコン 素子、 多結晶シリコン素子等の結晶素子 (板状結晶素子、 球状結晶 素子) とアモルファスシリコン薄膜素子、 微結晶シリ コン薄膜素子
、 C I G S系薄膜素子等のように基板上に素子を形成した薄膜素子 、 板状結晶素子の面上に薄膜素子を積層した八イブリ ッ ト型素子等 があり、 広く本発明に利用することができる。 以下においては、 板 状結晶素子と薄膜素子に関して詳細に記すが、 本発明には球状結晶 素子も含まれる。
本発明は、 従来の E V A法の改善点とされていた前記した問題を 全て解決できるものである。 また、 本発明は、 最も困難であるリー ド線の引出部位も含めて、 液状物質の漏れを確実に防止する堅牢な 封止構造の構築にはじめて成功したものである。 その結果、 気泡 ( 電気部品には致命的な欠陥) 、 液漏れ (不良品) 等が全くない超高 耐久性のモジュールを得た。 さらに、 封止剤と充填材の適用は簡便 な塗布工程で済み、 小型から超大型までの各種サイズ、 各種形状 ( 例えば、 長方形、 三角形、 台形、 円形等) に容易に対応できる。 具 体的には、 ガラス基板の外周部に封止剤を置き、 板状結晶素子 (薄 膜素子はガラス基板面に形成済み) を配置し、 リード線の引出部の 上側面にも封止剤を追加配置し、 充填材となる液状物質を滴下し、 必要に応じてスぺーサーを配置し、 裏面保護基板を重ねて仮積層体 とし、 この仮積層体を真空ラミネート装置により真空脱気してから 室温で加圧密着させて積層体とするものである。 この方法の要点は 、 室温の真空下で加圧された時に、 高粘性の封止剤は、 配置された 外周部の位置を保持しつつ押しつぶされて両基板間に密着し、 同時 に液状物質の液漏れを防止する土手の機能をも果たす。 その結果、
2〜 3分程度の短時間の真空下の室温加圧処理と自然放置のみで積 層化を完了する画期的な方法となった。
以下、 より詳細に説明するにあたり、 液状物質としてシリコーン オイルを代表例として記すがこれに限定されるものではない。 シリ コーンオイルは— 7 0 °Cから 3 0 0 °Cの広い範囲で流動性があり、 かつ透明性、 耐熱性、 耐寒性、 耐水性、 絶縁性、 耐候性の要件をも 満たす。 また、 シリコーン系液状物質を積層後に反応させてゲル等 の非流動体にしてもよい。
以下、 本発明において 「ゲル」 とは、 液状物質を積層後に反応さ せて非流動体 (例えば、 ゲル、 エラス トマ一等) にした充填材を意 味する。
次に、 液状物質を密封する封止構造と封止剤に関して述べる。 封 止剤には、 積層時に液状物質の液漏れを防止する土手機能と両基板 を安定的に固定する接着機能が要求される。 具体的には、 1種類の 封止剤に両機能を持たせる方法と 2種類の封止剤にそれぞれの機能 を分けて持たせる方法がある。 また、 積層後に液状物質が架橋反応 してゲルとなる場合は土手機能を奏する封止剤のみでもよい。 その 理由は、 液状物質が非流動体となり、 液漏れを起こさないからであ る。 当然、 特に接着機能に関しては、 高耐久性が必要である。 例え ば、 両機能を備えた高粘性のシリコーン系樹脂接着剤 (架橋反応型 接着剤) 、 土手機能をもつ超高粘性のイソブチレン系樹脂密着剤 ( ホッ トメルト型密着剤) 等である。
太陽電池素子には板状結晶素子と薄膜素子とがあり、 これらの素 子の厚みは大きく異なることに注意する必要がある。 以下、 具体的 に図示して、 素子 (板状結晶素子と薄膜素子) 、 充填材 (シリコー ンオイルとシリコーンゲル) 、 封止剤 (シリコーン系樹脂接着剤と イソブチレン系樹脂密着剤) 等からなるモジュールの構造を説明す る。
なお、 超高耐久性を考慮すると裏面保護基板としてもガラス基板 を用いるのが好ましいが、 軽量化を考慮すると樹脂シート、 樹脂板 等を用いることもできる。 添付図面においては、 スぺ一サ一の図示 は省略した。
図 1は、 ガラス基板 3の一面に形成された薄膜素子 8を積層した モジュールの断面構造を示す図である。 ガラス基板 3 と裏面保護基 板 4の基板間に設けた第一封止 6のシリコーン系樹脂接着剤により 、 充填材 5 となるシリコーンオイルが密封される。 リード線 1 0は 薄膜素子 8 と導電接合剤 (例えば、 半田、 銀ペース ト等) からなる 接合部 9で結線されて引き出される。 このリード線 1 0の引出部の 上下両面にも第一封止 6 のシリコ一ン系樹脂接着剤が配置されて、 ガラス基板 3 と裏面保護基板 4とリード線 1 0が接着固定される。 なお、 接合部 9 を十分に覆うようにシリコーン系樹脂接着剤を多め に配置して積層してもよい。 ただ、 この接合部の基板間隔はリード 線 1 0により嵩高になる。 さらに、 封止剤がガラス基板 3 と良好に 接着、 密着するように、 図示したように薄膜素子 8が外周部の領域 から外れて配置されているのが好ましい。 また、 積層後に液状物質 が反応してシリコーンゲルに変化してもよい。 なお、 シリコーン系 樹脂接着剤は高耐候性であることは公知である。 また、 裏面保護基 板 4もガラス基板としたモジュールは、 従来の窓ガラスと同様に高 耐久性、 意匠性をもって、 窓、 庇、 アトリウム等に利用できる。 さ らに、 ガラス基板を追加して気体層を設けると断熱性も付加した窓 ガラスとなる。
図 2は、 薄膜素子 8 を積層したモジュールの断面構造を示す図で ある。 薄膜素子 8は水分の影響を受けやすく、 第一封止 6のシリコ ーン系樹脂接着剤は水分子を透過させることがある。 そこで、 第二 封止 7のイソブチレン系樹脂密着剤の層を設けると、 透湿性が非常 に小さくなり、 高温多湿地域での利用には有利である。 なお、 この 第一封止 6は、 第二封止 7の外側に置かれていても、 あるいは両側 に置かれていてもよく、 さらに 2段、 4層の封止構造となっていて もよい。 また、 両基板をガラス基板にすると超高耐久性となり、 そ のモジュールにアルミ枠を設けなくても使用できるので、 低コス ト で、 落雷の防止、 ごみ溜り防止等に優れることにもなり、 特に原野 での大規模な太陽光発電所には有用となる。
図 3は、 板状結晶素子 1 を積層したモジュールの断面構造を示す 図である。 板状結晶素子 1はイン夕一コネクタ 2で結線されて、 受 光面となるガラス基板 3 と裏面保護基板 4との間に充填材 5のシリ コーンオイル (流動体) またはシリコーンゲル (非流動体) に埋め 込まれるように積層される。 第二封止 7はイソブチレン系樹脂密着 剤であり、 超高粘性で外周部に粘着するように密着して確実に液漏 れを防止する土手機能を果たす。 しかし、 両基板を接着固定する接 着力はなく、 シリコーンオイルの重量を持ちこたえることはできな い。 そこで、 第一封止 6のシリコーン系樹脂接着剤を配置した多段 封止とすることで、 シリコーンオイルの流動落下による液漏れを防 止でき、 良好なモジュールとなる。 また、 積層後に液状物質が反応 してシリコーンゲルに変化してもよい。 なお、 イソブチレン系樹脂 密着剤は防湿性があり、 電極の腐食を防止する。
図 4は、 薄膜素子 8 を積層したモジュールの断面構造を示すであ る。 図 1 の第一封止 6のシリコーン系樹脂接着剤の構成に工夫を加 えた封止構造である。 シリコーン系樹脂接着剤の粘性をより大きく した高粘性シリコーン系樹脂接着剤を、 土手機能を得るために追加 の第一封止 6 ' として配置した、 2種類のシリコーン系樹脂接着剤 からなる封止である。 この第一封止 6 と追加第一封止 6 ' の位置を 逆にして配置してもよい。 特に図示しないが、 この構成は、 板状結 晶素子 1 を用いたモジュールにも利用することができる。
図 5は、 板状結晶素子 1 を積層したモジュールの断面構造を示す 図である。 第二封止 7のイソブチレン系樹脂密着剤は、 外周部に粘 着するように密着して確実に液漏れ防止の土手機能を果たす。 しか し、 この封止構造においては、 両基板を接着固定してはいないから 、 積層後の液状物質の液漏れを防止するために、 積層後に液状物質 を反応させて充填材 5のシリコーンゲル (非流動体) とするのがよ い。 また、 特に図示していないが、 追加の工夫として、 シリコーン 系樹脂接着剤を部分的にリ一ド線の引出部に配置してリ一ド線と基 板を接着固定させることにより リード線のぐらつき防止を図ること もできる。 また、 板状結晶素子 1 と裏面保護基板 4の間に点状にシ リコーン系樹脂接着剤を置いて板状結晶素子 1 を固定してもよい。 図 6は、 薄膜素子 8 を積層したモジュールの断面構造を示す図で ある。 図 5におけると同様に、 第二封止 7はイソブチレン系樹脂密 着剤であり、 充填材 5はシリコーンゲルである。 図 7に示したよう に、 半田等により リード線 1 0は薄膜素子 8と接合部 9で結線され て固定されている。
以下に、 本発明をより詳細に説明する。 太陽電池素子には、 板状 結晶素子 1と薄膜素子 8がある。 インターコネクタ 2で結線された 板状結晶素子 1は、 ガラス基板 3と裏面保護基板 4との間に、 薄く 無気泡の状態の充填材 5のシリコーンオイルを介して積層される。 このモジュール構造は、 真空下でシリコーンオイルを密封する本発 明の製造方法により初めて可能となった。
このモジュールの基板間隔は、 板状結晶素子 1では厚くなり、 薄 膜素子 8では薄くなる。 板状結晶素子 1の板厚は 0. 0 5〜 0. 2 mm程度であり、 また薄膜素子 8は非常に薄くガラス基板と一体で あるとみなすことができる。 板状結晶素子の場合は、 両基板の間隔 はインターコネクタ 2との結線もあってさらに厚くなり、 その基板 間隔は、 0. 1 mmから 3 mm程度でよく、 好ましくは 0. 2 mm から 1. 5mm程度であり、 より好ましくは 0. 3mmから 0. 8 mm程度である。 薄膜素子の場合は、 0. 0 0 5 mmから 3mm程 度でよく、 好ましくは 0. 0 2から 1 mm程度であり、 さらに好ま しくは 0. 0 5から 0. 5mm程度である。 この間隔を特に厚くす る利点はなく、 薄い方が軽量となり、 かつ充填材の使用量も減り、 経済的である。
また、 封止幅は、 シリコーン系樹脂接着剤の単独使用の場合とシ リコーン系樹脂接着剤とイソプチレン系樹脂密着剤の複合使用の場 合がある力 いずれも、 2 mm〜 5 0 mm程度で良く、 好ましくは 5mm〜 3 0 mm程度、 さらに好ましくは 8mm〜 2 0mm程度で よい。 なお、 イソブチレン系樹脂密着剤を単独で使用する場合は、 2mm〜 3 0mm程度で良く、 好ましくは 3mm〜 1 5mm程度で 良く、 さらに好ましくは 5 m m〜 1 O m m程度でよい。 当然のこと ながら、 外周部の封止幅が広くなると受光する面積が狭くなり、 発 電量に影響する。
さらに、 特に図示していないが、 特殊シート (例えば、 ポリイミ ドシート、 ステンレスシート等) に薄膜素子を設けたフレキシブル 薄膜素子、 球状結晶素子等を、 板状結晶素子を用いる場合と同様に して、 上記に説明したごときモジュール構造、 製造方法に用いるこ とができ、 これらの態様も本発明に含まれる。
次に、 板状結晶素子 1 を積層した図 3の構造を例にして本発明の 製造方法を説明する。 ガラス基板 3の端部から内側 3 m m程の外周 部に紐状のィソブチレン系樹脂密着剤 (室温加圧で容易に粘土のよ うに変形して基板に密着する) を配置し、 さらにその内側を l m m 程離して 2液混合型のシリコーン系樹脂接着剤 (室温で反応硬化し て両基板を接着固定する) をライン状に細く配置する。 さらに、 シ リコーンオイルをほぼ均等に滴下し、 その上にインターコネクタ 2 で結線された板状結晶素子 1 を置き、 リ一ド線部の上側面にも部分 的にィソブチレン系樹脂密着剤とシリコーン系樹脂接着剤を配置し 、 さらに必要に応じて板状結晶素子 1 の上にシリコーンオイルを滴 下する。 その後、 裏面保護基板 4を積層して仮積層体とする。
この仮積層体を室温の真空ラミネート装置に入れ、 十分に減圧脱 気して真空状態 ( 0 . 7〜 1 . O T o r r ) の下で軽く加圧する。 その結果、 両基板は短時間で超高粘度のィソブチレン系樹脂密着剤 により密着されて密封状態となる。 この密着した積層体を大気圧に 開放すると内部は負圧となり、 自然に大気圧で加圧された状態とな り、 封止剤が押しつぶされて扁平になると共に低粘性のシリコーン オイルは徐々に全体に広がり、 微細な隙間まで流れ込んで充填され る。 また、 シリコーン系樹脂接着剤は、 イソブチレン系樹脂密着剤と 接触しつつ押しつぶされ、 徐々に架橋反応して図 3に示す様に両基 板を接着固定する。 その結果、 板状結晶素子 1はガラス基板 3 と裏 面保護基板 4の間にシリコーンオイルを介して密封される。 また、 図 8に示すように、 リ一ド線 1 0の引出部の上下両面は、 第一封止 6のシリコーン系樹脂接着剤と第二封止 7のイソブチレン系樹脂密 着剤により確実に封止される。 なお、 第一封止 6 を外側に配置する 場合は、 積層後に基板間の隙間にシリコーン系樹脂接着剤を注入す る方法もある。 例えば、 最外周部を 5 m m程空けて第二封止 7 を設 けた積層体とし、 その後にシリコーン系樹脂を基板間の隙間に注入 し、 架橋反応させて第一封止 6 とする。 また、 低粘度の紫外線硬化 型接着剤を隙間に注入後に光照射して接着硬化させてもよい。
ここで注目すべきことは、 この仮積層体を室温の真空状態で加圧 して、 ィソブチレン系樹脂密着剤が両基板と接触して密着すれば大 気圧に開放してもよいことである。 その理由は、 封止効果により内 部が真空状態となり、 大気圧下に放置しても、 充填材 5は自然に全 体に広がり、 細部まで充填される。 その結果、 高価な真空積層装置 の拘束時間は 2〜 3分程で済み、 高速生産となり、 低コス ト化に大 きく貢献できる。
しかし、 積層時には小気泡が点々と残存する現象が発生すること がある。 この気泡の残存は、 太陽電池モジュールの耐久性にとって は致命的な欠陥となる。 しかしながら、 驚くべきことに、 小気泡が 点々と残存した積層体であっても、 積層後に数日間に渡って放置し た後では、 気泡は徐々にそのサイズが縮小していき、 完全に消失し た。 本発明においては、 このように、 残存気泡がシリコーンオイル に吸収され、 やがては消失することを見出し、 これに基づいてかか る難題を解決するに至ったものである。 その理由は、 シリコーンォ ィルは真空に減圧脱気 (空気の溶解が可能となる) した状態で積層 されており、 かつ内部は負圧となり、 大気圧で加圧されている状態 にあるためと思われる。 また、 この負圧により両基板が大気圧で常 に押された状態となり、 点在するスぺーサ一が有効に働き、 基板間 隔が維持されることも見出された。
シリコーンオイルは、 板状結晶素子 1の上下両側に配置されても よく、 僅かな隙間でも浸み込むことができるので板状結晶素子 1の 片側のみに配置されてもよく、 基板に偏りなく必要量がほぼ均等に 配置されていればよい。 また、 充填材を脱気処理してから滴下した り、 隙間を埋めるのに必要な理論量よりも塗布量を多少多く したり
、 点状、 ライン状、 面状等とほぼ均等間隔 (例えば、 1 0 m m、 3 0 m m、 5 0 m mピッチ等) にほぼ等量を滴下したり、 徐々に多段 に加圧したり、 スぺーサーを配置したり してもよい。 その結果、 シ リコーンオイルが均等に広がり易くなる。 なお、 封止剤、 板状結晶 素子 1、 シリコーンオイル等の配置の順番は入れ替えられてもよく 、 真空下で加圧して密封する前にこれらが基板間の所定の位置にあ ればよい。 また、 リード線 1 0の引出部の上下両面に封止剤を配置 することでリード線 1 0の引出部の段差も真空下の加圧密着により 、 無気泡の状態で確実に密封できる。 また、 ガラス基板 3 と裏面保 護基板 4の使用順を逆にして仮積層体としてもよい。 なお、 生産性 を向上させるために、 仮積層体を多数枚重ねて装置に入れ、 同時に 真空脱気して同時に加圧密着させてもよい。 なお、 特にアルミ枠を 設ける必要がないので、 大面積モジュールでも基板の外周部から引 き出されたリ一ド線は容易に端子ボックスと接続できる。 また、 従 来法である裏面保護基板 4の内部を削除して設けた穴の外周部から リード線を引き出して端子ボックスに接続してもよい。
図 3に示す小型モジュールを作製して耐久性試験を行った。 両面 に電極形成された多結晶型の板状結晶素子 1 ( 2 5 x 5 0 x 0. 1 5 mm、 京セラ製) を準備し、 その電極に 3 1 x 2 x 0. 1 mmの 細い銅板からなるリード線を半田で結線 ( 4 mm) した。 ガラス基 板 3 となる白板ガラス ( 9 0 x 6 5 x 4 mm) を用い、 その端部か ら 2 mm程内側に第二封止 7 となる紐状のィソブチレン系樹脂密着 剤 (直径 2 mm、 横浜ゴムの S M 4 8 8 ) を配置し、 次に 1 mm程 の隙間を空けて第一封止 6 となる、 室温で硬化する 2液混合型のシ リコーン系樹脂接着剤 (東レ ' ダウコ一二ングの S E 9 3 6 ) を細 くライン状に塗布した。 さらに充填材 5 となるジメチルシリコーン オイル (粘度 : 1万 C S Z 2 5度) を 5 mm程の隙間を空けて外周 部に口の字型にライン状に塗布し、 かつ中央部分に小さく点状に 2 点塗布した。 この塗布基板の中央部分にリ一ド線付きの板状結晶素 子 1 を配置した。 そのリード線 1 0の上側面にもイソブチレン系樹 脂密着剤とシリコーン系樹脂接着剤を追加配置し、 板状結晶素子 1 の上にシリコーンオイルを小さく 2点追加塗布してから裏面保護基 板 4となる青板ガラス ( 9 0 x 6 5 x 4 mm) を置いて仮積層体と した。
この仮積層体を真空装置に入れて室温 ( 2 3度) で 6 0秒間減圧 脱気してから軽く加圧し、 イソブチレン系樹脂密着剤を両基板に接 触させてから大気圧に開放した。 イソブチレン系樹脂密着剤とシリ コーン系樹脂接着剤は、 大気圧により所定の位置に押しつぶされ、 シリコーンオイルは徐々に細部まで流動展開した。 リード線 1 0 と 両基板は、 室温放置下に、 シリコーン系樹脂接着剤により接着固定 された。 その結果、 4 mm幅程の第一封止 6 と 6 mm幅程の第二封 止 7からなる無気泡の小型モジュールを得た。 加えて、 引き出され たリード線 1 0 をコの字形に折り曲げて裏面保護基板 4の面に測定 端子 ( 4 mm) を回し、 基板の端面部にはシリコーン系樹脂接着剤 を塗布し、 リード線を絶縁被覆し、 基板端面に接着固定をした。 次に、 この小型モジュールを用いて、 メタルハライ ドランプ式の スーパー U V試験 ( 1 0 O m W Z c m 2 、 岩崎電気アイスーパー U Vテスター) の 1 0 0 0時間照射、 温度 8 5度、 相対湿度 8 5 %の 3 0 0 0時間放置、 一 2 0 °Cと 9 5 °Cの温度サイクル試験を 2 0 0 回からなる超過酷な耐久性試験をした。 汎用テスターを端子に当て る測定をしたところ、 ランプ光源で 0 . 4 2 5 m V程、 晴天の日射 で 0 . 6 1 5 m V程を示した。 驚くべく ことに試験前後で同様な測 定をしたところ、 この値はほぼ同じ値を示し、 安定していた。 また 、 外観検査でも特に変化は認められなかった。
次に、 薄膜素子 8からなる図 1 に示すモジュールの製造方法を記 す。 この封止構造は、 第一封止 6 となるシリコーン系樹脂接着剤の みからなる。 薄膜素子 8では素子の厚みが無視できるほどに薄いた めに、 基板間隔は非常に薄くなり、 封止剤の土手機能も確保し易く なる。 具体的には、 リード線を半田で結線した薄膜素子 8を設けた 基板の外周部にシリコ一ン系樹脂接着剤をライン状に配置する。 な お、 リ一ド線の引出部には上下両面にシリコーン系樹脂接着剤を配 置する。 さらに、 充填材 5 となる低粘度のシリコーンオイルを封止 に沿って、 面全体にほぼ均等になるよう口の字型に幾重かに滴下し 、 ガラスビーズのスぺ一サーを散布し、 その後裏面保護基板 4を積 層して仮積層体とする。
この仮積層体を室温の真空ラミネート装置に入れ、 真空状態の下 で多段に加圧をする。 その結果、 両基板は短時間で密封された状態 となる。 この密封した積層体を大気圧に開放すると自然に大気圧で 加圧されて、 外周部に塗布されたシリコーン系樹脂接着剤はさらに 押しつぶされるとともに、 シリコーンオイルは液漏れすることなく 徐々に全体に広がり、 細部まで充填される。 また、 シリコーン系樹 脂接着剤は、 架橋反応が進行して両基板を接着固定して堅牢な封止 となる。
図 5に示す板状結晶素子 1 を有するモジュールの製造方法を説明 する。 封止剤として第二封止 7のィソブチレン系樹脂密着剤のみを 外周部に配置するが、 その他の工程は図 3のモジュールのそれと同 様である。 ただし、. イソプチレン系樹脂密着剤は適度なタック性を もつて両基板に密着するが両基板を接着固定することができない。 そこで、 充填材 5の液状物質を積層後に反応させてゲルにする必要 がある。 この反応はゆっく りでよく、 適度に加温して反応を促進さ せてもよい。
さらに、 図 6に示したモジュールにおける薄膜素子 8から引出さ れるリード線 1 0の断面図が図 7に示されている。 薄膜素子 8 とリ ード線 1 0が導電接合剤 (例えば、 半田、 銀べ一ス ト等) で結線さ れて接合部 9 となる。 第二封止 7のイソブチレン系樹脂密着剤は、 リード線 1 0の引出部の上下両面に密着して積層時の液状物質の液 漏れを防止する。 積層後に液状物質を反応させてゲル (非流動体) とする。
なお、 以上においては、 室温での製造方法を主に記してきたが、 本発明においては、 仮積層体を加温して真空下で密封すること、 そ の密封積層後に加温すること、 紫外線等の光照射を利用することも 可能である。
次に、 本発明に使用される部材について説明する。 ガラス基板 3 としては、 十分に光線を透過するものであれば広く利用でき、 白板 ガラス、 青板ガラス等を挙げることができる。 ガラス基板には、 必 要に応じて強化ガラス、 表面反射防止、 型板ガラス、 紫外線カッ ト 等の加工がされていてもよい。 特に表面反射防止には、 大気、 充填 材との界面からの反射を低減させる加工処理が好ましい。 裏面保護基板 4には、 従来から使用されている部材を広く使用で き、 例えば、 ガラス基板 (例えば、 青板ガラス、 強化ガラス、 型板 ガラス等) 、 樹脂シート (例えば、 硬質ポリ塩化ビニル、 ポリエス テル等) 、 鋼板、 ステンレス板等がある。 モジュールの軽量化には 樹脂シートが有用であり、 本発明の製造温度は室温でよく、 硬質ポ リ塩化ビニルは 0 . 1〜 1 m m未満の薄いシート (例えば、 三菱樹 脂のビニホイル等) から 1〜 3 m m程度の厚板 (例えば、 信越ポリ マーのポリマパネル等) まで用途に応じて利用できる。 硬質ポリ塩 化ビニルは、 封止剤 (例えば、 シリコーン系樹脂接着剤、 イソプチ レン系樹脂密着剤等) との接着性、 密着性も良く、 耐候性、 経済性 もあり、 非常に有用である 。 また、 アルミ箔、 エチレンテトラフル ォロエチレン等とのラ ネ一トシ一ト、 シリカを蒸着した樹脂シー ト (三菱樹脂のテックバ Uァ L X等) 、 接着性を向上させた表面改 質シート等も有用である 特に薄膜素子の場合は水分を嫌うので、 ガラス基板、 アルミ箔ラ ネートやシリカを蒸着した樹脂シート等 が好ましい。
充填材 5 となる液状物質としては、 具体的には、 シリコーンオイ ル、 例えば、 ジメチルシ コーンオイル、 メチルフエニルシリコ一 ンオイル、 メチル八ィ 口ジェンシリコーンオイル、 アルキル変性 シリコーンオイル、 ポ Uェ一テル変性シリコーンオイル、 アルコー ル変性シリコ一ンオイル等やフッ素オイル、 例えば、 フッ素化ポリ エーテル、 ダイキン化学ェ業社のデムナム、 N O K社のフルード等 が挙げられる。 この液状物質に超微粉末シリカ等を添加してチキソ トロピー特性を持たせて、 ダレを生じ難く して塗布性能を改良して もよい。 その結果、 基板洗浄、 塗布、 仮積層までの工程を傾斜状態 で加工できるようになり、 ゴミの付着減少、 塗布が容易、 基板移動 が容易等の利点があり、 特に薄膜素子のモジュールの生産に有用で ある。
また、 積層時は室温で液体であるが、 積層後に反応 (熱反応また は光反応) してゲルとなる液状物質として、 例えば、 シリコーン系
(例えば、 信越化学工業の KE 1 0 5 1、 K E 1 0 5 2 , 東レ * ダ ゥコ一二ングの S E 1 7 4 0、 S E 1 8 8 7、 C Y 5 2— 2 7 6等 ) 、 変性シリコーン系 (例えば、 信越化学工業の S I F E L 8 5 7 0 A/B等) 等を挙げることができ、 これらは超高耐久性のシリコ ーンゲルとなり、 本発明に有用である。 なお、 本発明ではこれらの シリコーン系または変性シリコーン系液状物質をも含めてシリコ一 ン系液状物質と呼ぶことにする。
また、 紫外線吸収剤 (例えば、 ベンゾフエノン系、 ベンゾトリア ゾ一ル系、 トリアジン系等) を液状物質に添加して耐候性を向上さ せてもよく、 同時に充填材 5による紫外線カツ 卜は裏面保護基板 4 として用いた場合の樹脂シー トの保護にもなる。 有用な紫外線吸収 剤としては、 例えば、 シプロ化成社の S E E S〇 R B— 1 0 3、 チ バ · スペシャルティ · ケミカルズ社の T I NUV I N 3 2 8、 T I NUV I N 4 0 0等がある。 その添加量は 0. 1〜 5 W%程度でよ く、 好ましくは 0. 2〜 3 W%程度でよく、 より好ましくは 0. 5 〜 2 W %程度でよい。 特にメチルフエニルシリコーンオイル (例え ば、 東レ . ダウコ一二ング社の S H 5 5 0、 S H 7 0 2、 S H 7 0 5 ) は、 フエニル基の効果により紫外線吸収剤を溶解し易くする。 また、 溶解度を向上させる工夫として、 充填材の混合利用、 紫外線 吸収剤に充填材と親和性のある官能基の導入 (例えば、 変性シリコ —ンに紫外線吸収剤を結合させた物質等) 等を行う こともできる。 また、 溶解度の低いものは超微粒子として均等分散させてもよい。 封止剤には、 第一封止 6 に使用する架橋反応型接着剤と第二封止 7 に使用するホッ トメルト型密着剤がある。 これらは室温での加圧 で流動変形する物質である。 架橋反応型接着剤には、 2液混合型の 架橋反応型接着剤、 水分子との反応による 1液型の架橋反応型接着 剤、 紫外線照射による架橋反応型接着剤等がある。 その粘性は、 押 し出し塗布ができて自重変形し難い高粘性のペース 卜状であるのが 好ましい。 特に、 高耐候性であるシリコーン系樹脂接着剤はガラス 基板との接着性もよく本発明に非常に有用であり、 1液型、 2液混 合型ともに利用できる。 例えば、 脱アルコールのシリコーン系樹脂 接着剤 (例えば、 東レ · ダウコ一ニング社の S E 9 1 5 5、 S E 9 1 7 5、 S E 7 3 7、 S E 9 5 0 0、 S E 9 3 6等、 信越化学工業 の K E 4 8 6 6、 KE 4 8 9 8、 モメンテイブ社の T S E 3 9 2— C等) 、 脱アセトンのシリ コーン系樹脂接着剤 (例えば、 信越化学 工業の K E 3 4 8、 KE 3 4 2 8等) 、 変性シリコーン系樹脂接着 剤 (例えば、 セメダインの S U P E R— X、 信越化学工業の S I F E L 2 0 0 0等) 、 シリコーン反応性ホッ 卜メル卜接着剤 (例えば 、 D o w . C o r n i n g社の I n s t a n t G l a z e等) 等が ある。 シリコーン系樹脂接着剤は公知であり、 ここでは説明は省略 する。 また、 耐候性がシリコーン系よりも劣るが、 サルファイ ド系 、 ウレタン系、 アクリル系、 イソブチレン系、 アクリルウレタン系 、 エポキシ系、 アクリルエポキシ系等もある。
当然ながら、 フイ ラ一 (例えば、 粉末シリカ、 超微粉末シリカ、 炭酸カルシウム等) 、 酸化防止剤、 紫外線吸収剤、 可塑剤、 滑剤、 顔料、 たれ防止剤、 反応調整剤等などを必要に応じて添加してもよ い。 また、 第一封止 6、 第二封止 7 ともに絶縁性にも配慮して添加 剤を選択すべきである。
また、 架橋反応型接着剤の粘度は、 充填材 5の液状物質より高い のがよく、 好ましくは倍以上高いのがよく、 より好ましくは 1 0倍 以上であると所定の位置に配置し易くなる。 特に、 架橋反応型接着 剤のみで外周部に封止を形成する場合は、 チキソ トロピー特性を持 たせてより高粘度 (自重変形し難い) にする方法 (例えば、 超微粉 末シリカの添加等) 、 塗布してから少々反応させて高粘度にする方 法 (例えば、 変性シリコーン系樹脂接着剤等) 、 加温して流動性を 高めて塗布し易くする方法 (例えば、 シリコーン反応性ホッ トメル ト接着剤等) 等で粘度の調整をすることができる。 特に、 このシリ コーン反応性ホッ トメルト接着剤は接着性と土手機能をともに持つ ことから、 水分に比較的強く基板間隔が大きくなる板状結晶素子 1 のモジュールには有用となる。 また、 充填材 5の液状物質との長期 間の接触を考慮すると、 シリコーン系樹脂接着剤はイソブチレン系 樹脂密着剤より化学的安定性が高いことから、 シリコーン系樹脂接 着剤を図 2、 図 3の第一封止 6のように内側に配置するとよい。 例 えば、 シリコーン系樹脂接着剤はシリコーンオイル、 シリコーンゲ ル、 フッ素オイル等と接触しても特に変化なく安定である。
ホッ トメルト型密着剤には、 例えば、 イソブチレン系樹脂等があ る。 これらは、 加熱して紐状に連続押出 (断面 : 円形、 半円形、 精 円形、 長方形等) ができて、 室温で自重変形を起こすことなく、 室 温加圧で容易に塑性変形する。 その代表例としてイソブチレン系樹 脂密着剤を説明する。 イソブチレン系樹脂は、 朝倉書店の接着大百 科 (V a n N o s t r a d R e i n h o l d社の H a n d b o o k o f A d h e s i v e s /T h i r d E d i t i o nの 訳本) のブチルゴム/ポリイソプチレン接着剤の章で詳説されてい るように、 イソブチレン単位を基本構造とする炭化水素だけからな る。 この樹脂は、 メチル基効果と疎水性により水蒸気透過率が非常 に低い樹脂である。 また、 無定形高分子であるために、 柔軟性、 耐 衝撃性、 永久タック性に優れている。 ガラス転移温度は一 6 0で付 近にあり、 そのため室温以下の低温でも柔軟性を維持できて高い密 着性を示す。 より具体的には、 ポリイソプチレン、 イソプチレン一 イソプレンコポリマ一等に接着付与剤 (例えば、 エポキシ樹脂、 シ ランカップリ ング剤、 アルキルチタネート剤等) 、 絶縁性をもった フィ ラー (例えば、 粉末シリカ、 超微粉末シリカ等) 、 酸化防止剤 、 紫外線吸収剤、 可塑剤、 滑剤、 顔料等などを必要に応じて添加し た混合物である。 なお、 このイソブチレン系樹脂密着剤は、 高耐候 性であり、 かつ水分、 酸素の透過性も小さく、 屋外使用する本発明 の太陽電池モジュールに有用である。 両基板をガラス基板にしても 、 基板外周部の断面から水分が内部に拡散するのを防止するのにィ ソブチレン系樹脂密着剤は非常に有用である。 当然、 この密着性 ( 防湿性の確保) を長期間に渡って確保するには、 単独使用よりもシ リコーン系樹脂接着剤をも同時に用いた封止構造が、 充填材が非流 動性のゲルの場合でも好ましい。
特に図示していないが、 スぺーサ一を基板間隔を保持するために 必要に応じて使用するとよく、 その形状はビーズ状、 棒状、 面状等 があり、 そのサイズは使用部位 (例えば、 充填材の部分、 封止の部 位等) で適宜選択するとよい。 また、 スぺ一サ一の配置は、 一定の 間隔に固定されてもよく、 ランダムに散布されて非固定でもよい。 さらに充填材にスぺ一サ一を事前に添加して塗布する方法もある。 その材料はガラス、 セラミックス、 樹脂、 ゴム、 金属等から広く選 択できる。
以上に説明したように、 本発明者は、 半永久的に使用できる太陽 電池モジュールを得るには、 少なく とも透明基板、 太陽電池素子、 充填材が超高耐久性の材料からなることが必須であることを見出し た。 そこで、 充填材として高耐久性の液状物質を用いることに着目 して、 真空下で液状物質を室温で無気泡状態に密封する製造方法を 確立した。 その結果、 液状物質を堅牢な封止構造により密封してな る高耐久性のモジュールに至った。 この高耐久性は、 エネルギー回 収率、 省資源、 経済性に本質的な意味がある。 当然、 気泡 (電気部 品には致命的な欠陥) 、 液漏れ (不良品) 等が全くないモジュール を得ることができた。 また、 室温で高速生産が可能となり、 低コス ト化に大きく寄与し、 かつ製造エネルギーの低減にもなる。 さらに 、 基板に封止剤と液状物質を直接塗布する方式であることから、 超 大型サイズも含めて各種サイズ、 各種形状のモジュールに素早く対 応でき、 連続大量生産にも適合する。 また、 モジュールにアルミ枠 を設けることなく高防湿性、 高耐久性を確保できることから、 経済 的であり、 かつ雷対策にもなる。 よって、 本発明は超大型モジュ一 ルを大規模に施工する太陽光発電所に非常に有用となる。 また、 都 市部では屋根等に設置されるものであり、 その交換費用を考慮する と半永久的な耐久性は経済的に大きな意味があり、 かつ高価な結晶 素子を.基板から容易に外せることができるのでリサイクル性にも優 れている。 さらに、 本発明のモジュールでは、 大きな寒暖差を受け ても、 充填材 5が液状物質または柔軟なゲルであることから、 内部 応力を小さく維持できる。 よって、 超薄型の板状結晶素子、 高変換 率のへテロ構造素子、 多接合素子等のこれから実用化が期待されて いる素子においても、 素子破損、 界面剥離、 電極剥離等の防止に効 果がある。 産業上の利用可能性
本発明は、 超高耐久性の太陽電池モジュールを低コス 卜で提供す ることができるので、 産業上極めて有用である。

Claims

1 . 透明基板と裏面保護基板との間に光電変換薄膜素子または結 晶素子が配置され、 前記素子の周囲には充填材が配置され、 その外 周部が封止剤で封止されている太陽電池モジュールであって、 透明 基板がガラス基板であり、 充填材がシリコーン系液状物質、 フッ素 請
オイルまたはシリコーンゲルであり、 前記封止剤が、 架橋反応型接 着剤からなり、 前記充填材の外周に接する状態で両基板を接着固定 し、 かつ前記素子から伸びるリード線の、 前記外周部に配置された 前記封止剤を貫通する部分をこの封止剤に密着させて両基板間に接 着固定しており、 前記充填材と前記素子が囲前記封止剤とともに両基 板間に密封されていることを特徴とする太陽電池モジュール。
2 . 架橋反応型接着剤がシリコーン系樹脂接着剤である、 請求項 1 に記載の太陽電池モジュール。
3 . 架橋反応型接着剤と接するようにイソブチレン系樹脂密着剤 が基板間の外周部に設けられている、 請求項 1 または 2に記載の太 陽電池モジュール。
4 . 請求項 1 に記載の太陽電池モジュールの製造方法であって、 ガラス基板または裏面保護基板のいずれか一方の上に光電変換薄膜 素子または結晶素子を配置し、 前記基板の外周部並びに前記素子か ら伸びるリード線の前記外周部に位置する部分に架橋反応型接着剤 を封止剤として配置し、 シリコーン系液状物質またはフッ素オイル を充填材として配置し、 その上に他方のガラス基板または裏面保護 基板を重ね合わせ、 前記充填材と前記素子がその外周部に配置され た架橋反応型接着剤とともに両基板間に密封されるように真空状態 のもとで加圧積層して積層体を形成し、 次いで前記架橋反応型接着 剤を架橋させることを特徴とする太陽電池モジュールの製造方法。
5 . 架橋反応型接着剤に近接してィソブチレン系樹脂密着剤を配 置した後に加圧積層して積層体を形成し、 イソプチレン系樹脂密着 剤の層をさらに基板間に設ける、 請求項 4に記載の太陽電池モジュ ールの製造方法。
6 . 積層後にシリコーン系液状物質を反応させてシリコーンゲル とする、 請求項 4または 5 に記載の太陽電池モジュールの製造方法
7 . 透明基板と裏面保護基板との間に光電変換結晶素子が配置さ れ、 前記素子の周囲には充填材が配置され、 その外周部が封止剤で 封止されている太陽電池モジュールであって、 透明基板がガラス基 板であり、 充填材がシリコーンゲルであり、 前記封止剤が、 イソブ チレン系樹脂密着剤からなり、 前記充填材の外周に接する状態で両 基板を密着固定し、 かつ前記素子から伸びるリード線の、 前記外周 部に配置された前記封止剤を貫通する部分をこの封止剤に密着させ て両基板間に密着固定しており、 前記充填材と前記素子が前記封止 剤とともに両基板間に密封されていることを特徴とする太陽電池モ ンユール。
8 . 請求項 7に記載の太陽電池モジュールの製造方法であって、 ガラス基板または裏面保護基板のいずれか一方の上に結晶素子を配 置し、 前記基板の外周部並びに前記素子から伸びるリード線の前記 外周部に位置する部分にイソブチレン系樹脂密着剤を封止剤として 配置し、 シリコーン系液状物質を充填材として配置し、 その上に他 方のガラス基板または裏面保護基板を重ね合わせ、 前記充填材と前 記素子がその外周部に配置されたィソブチレン系樹脂密着剤ととも に両基板間に密封されるように真空状態のもとで加圧積層して積層 体を形成し、 次いで前記シリコーン系液状物質を反応させてシリコ ーンゲルとすることを特徴とする太陽電池モジュールの製造方法。
9 . 透明基板と裏面保護基板との間に光電変換薄膜素子が配置さ れ、 前記素子の周囲には充填材が配置され、 その外周部が封止剤で 封止されている太陽電池モジュールであって、 透明基板がガラス基 板であり、 充填材がシリコーンゲルであり、 前記封止剤が、 イソブ チレン系樹脂密着剤からなり、 前記充填材の外周に接する状態で両 基板を密着固定し、 かつ前記素子から伸びるリード線の、 前記外周 部に配置された前記封止剤を貫通する部分をこの封止剤に密着させ て両基板間に密着固定しており、 前記充填材と前記素子が前記封止 剤とともに両基板間に密封されていることを特徴とする太陽電池モ ンユール。
1 0 . 請求項 9 に記載の太陽電池モジュールの製造方法であって 、 基板面に光電変換薄膜素子が設けられたガラス基板の外周部並び に前記素子から伸びるリ一ド線の前記外周部に位置する部分にィソ ブチレン系樹脂密着剤を封止剤として配置し、 シリコーン系液状物 質を充填材として配置し、 その上に裏面保護基板を重ね合わせ、 前 記充填材と前記素子がその外周部に配置されたイソブチレン系樹脂 密着剤とともに両基板間に密封されるように真空状態のもとで加圧 積層して積層体を形成し、 次いで前記シリコーン系液状物質を反応 させてシリコーンゲルとすることを特徴とする太陽電池モジュール の製造方法。
PCT/JP2009/050787 2008-01-15 2009-01-14 太陽電池モジュールおよびその製造方法 WO2009091068A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09702907.8A EP2234172A4 (en) 2008-01-15 2009-01-14 Solar cell module and method for manufacturing the same
JP2009550082A JP4869408B2 (ja) 2008-01-15 2009-01-14 太陽電池モジュールおよびその製造方法
CN2009801063630A CN101960614B (zh) 2008-01-15 2009-01-14 太阳能电池模块及其制造方法
US12/811,894 US20100275992A1 (en) 2008-01-15 2009-01-14 Solar Cell Module and Process for its Production
US13/783,064 US20130178009A1 (en) 2008-01-15 2013-03-01 Solar cell module and process for its production

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008029640 2008-01-15
JP2008-029640 2008-01-15
JP2008-120015 2008-04-03
JP2008120015 2008-04-03
JP2008-163801 2008-05-28
JP2008163801 2008-05-28
JP2008298746 2008-10-28
JP2008-298746 2008-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/783,064 Division US20130178009A1 (en) 2008-01-15 2013-03-01 Solar cell module and process for its production

Publications (1)

Publication Number Publication Date
WO2009091068A1 true WO2009091068A1 (ja) 2009-07-23

Family

ID=40885448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050787 WO2009091068A1 (ja) 2008-01-15 2009-01-14 太陽電池モジュールおよびその製造方法

Country Status (5)

Country Link
US (2) US20100275992A1 (ja)
EP (1) EP2234172A4 (ja)
JP (2) JP4869408B2 (ja)
CN (1) CN101960614B (ja)
WO (1) WO2009091068A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124435A (ja) * 2009-12-11 2011-06-23 Kaneka Corp 薄膜型太陽電池モジュール及び薄膜型太陽電池モジュールの製造方法
EP2404125A2 (de) * 2009-10-05 2012-01-11 Inova Lisec Technologiezentrum GmbH Vakuumelement und verfahren zum herstellen desselben
WO2012117891A1 (ja) * 2011-02-28 2012-09-07 三洋電機株式会社 太陽電池モジュールの出力配線、太陽電池モジュール及びその製造方法
JP2012175079A (ja) * 2011-02-24 2012-09-10 Honda Motor Co Ltd 太陽電池モジュール
JP2012206411A (ja) * 2011-03-30 2012-10-25 Fujifilm Corp 電子部品の製造方法
WO2012165002A1 (ja) * 2011-05-31 2012-12-06 三洋電機株式会社 太陽電池モジュール
JP2013115438A (ja) * 2011-11-29 2013-06-10 Lg Innotek Co Ltd 太陽光発電装置
CN103227235A (zh) * 2012-01-25 2013-07-31 信越化学工业株式会社 太阳能电池模组的制造方法及太阳能电池模组
KR20130133698A (ko) 2012-05-29 2013-12-09 신에쓰 가가꾸 고교 가부시끼가이샤 태양 전지 모듈의 제조 방법
JP2014013875A (ja) * 2012-06-04 2014-01-23 Sharp Corp 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2014013876A (ja) * 2012-06-04 2014-01-23 Sharp Corp 太陽電池モジュール及び太陽電池モジュールの製造方法
KR20140044740A (ko) 2012-10-04 2014-04-15 신에쓰 가가꾸 고교 가부시끼가이샤 태양 전지 모듈의 제조 방법
KR20140044739A (ko) 2012-10-04 2014-04-15 신에쓰 가가꾸 고교 가부시끼가이샤 태양 전지 모듈의 제조 방법
US8999743B2 (en) 2013-07-04 2015-04-07 Shin-Etsu Chemical Co., Ltd. Manufacture of solar cell module
WO2015068633A1 (ja) 2013-11-11 2015-05-14 信越化学工業株式会社 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール
EP2930214A1 (en) 2014-04-07 2015-10-14 Shin-Etsu Chemical Co., Ltd. Solar cell encapsulant silicone composition and solar cell module
WO2017098728A1 (ja) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2018515355A (ja) * 2015-03-04 2018-06-14 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 埋め込み機能構造を有する金属複合材料の製造方法および対応する金属複合材料
JP2019195046A (ja) * 2018-02-28 2019-11-07 ザ・ボーイング・カンパニーTheBoeing Company ソーラーセルをパネルに取り付けるための無加圧接合プロセス

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100124812A (ko) * 2008-03-14 2010-11-29 다우 코닝 코포레이션 광전지 모듈과 이를 형성하는 방법
JP2010282998A (ja) * 2009-06-02 2010-12-16 Seiko Epson Corp 太陽電池、太陽電池の製造方法
WO2011091694A1 (zh) * 2010-01-29 2011-08-04 天津大学 一种液浸光伏组件
IT1402581B1 (it) * 2010-09-30 2013-09-13 Luxferov S R L Pannello fotovoltaico ad alto rendimento ed elevata resistenza.
DE102010050187A1 (de) * 2010-10-30 2012-05-03 Robert Bürkle GmbH Verfahren zum Herstellen einer Randversiegelung von Photovoltaik-Modulen sowie Verwendung eines Strangkörpers hierfür
JP5119376B2 (ja) 2010-11-30 2013-01-16 パナソニック株式会社 光電変換装置及びその製造方法
US20130014808A1 (en) * 2011-07-14 2013-01-17 Sabic Innovative Plastics Ip B.V. Photovoltaic modules and methods for making and using the same
KR101305810B1 (ko) * 2011-10-25 2013-09-09 엘지이노텍 주식회사 태양전지 모듈
WO2013179530A1 (ja) * 2012-05-30 2013-12-05 パナソニック株式会社 光電変換装置
US10269998B2 (en) * 2012-06-04 2019-04-23 Sharp Kabushiki Kaisha Solar battery module, and method of manufacturing solar battery module
US20160204296A1 (en) * 2012-07-20 2016-07-14 Tianjin University Liquid immersing photovoltaic module
JP2015012114A (ja) * 2013-06-28 2015-01-19 信越化学工業株式会社 太陽電池モジュール及びその製造方法
JPWO2016031315A1 (ja) 2014-08-27 2017-04-27 株式会社Moresco 太陽光発電モジュール
US20190259883A1 (en) * 2016-09-30 2019-08-22 Kyocera Corporation Solar cell module
GB201707437D0 (en) * 2017-05-09 2017-06-21 Dow Corning Lamination adhesive compositions and their applications
GB201707439D0 (en) * 2017-05-09 2017-06-21 Dow Corning Lamination Process
CN109119501A (zh) * 2017-06-23 2019-01-01 上银光电股份有限公司 无框薄膜太阳能电池封装体
WO2019065837A1 (ja) * 2017-09-27 2019-04-04 積水化学工業株式会社 合わせガラス
CN108417656A (zh) * 2018-05-14 2018-08-17 陈应天 一种采用有机硅封装的浸入式水上光伏组件
JPWO2020246057A1 (ja) * 2019-06-05 2020-12-10
RU2760378C1 (ru) * 2021-03-05 2021-11-24 Акционерное общество "Сатурн" (АО "Сатурн") Способ изготовления модуля солнечных элементов

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144178A (ja) * 1983-02-07 1984-08-18 Semiconductor Energy Lab Co Ltd 光電変換装置
JPH0888388A (ja) 1994-09-16 1996-04-02 Canon Inc 太陽電池モジュール
JP2000082834A (ja) * 1998-09-04 2000-03-21 Asahi Glass Co Ltd リード線および該リード線の接続された太陽電池パネル
EP1050910A2 (de) * 1999-05-07 2000-11-08 Webasto Vehicle Systems International GmbH Solarmodul zur Anbringung an Fahrzeugen und Verfahren zur Herstellung desselben
JP2002217442A (ja) * 2001-01-17 2002-08-02 Fuji Electric Co Ltd 太陽電池モジュールとその製造方法
JP2003101058A (ja) 2001-09-26 2003-04-04 Sanyo Electric Co Ltd 太陽電池モジュール
WO2004075246A2 (fr) * 2003-01-24 2004-09-02 Apollon Solar Module photovoltaique comportant des bornes de connexion avec l’exterieur
JP2004288677A (ja) * 2003-03-19 2004-10-14 Sharp Corp 太陽電池モジュールサブアセンブリおよび複層ガラス型太陽電池モジュール
JP2005101033A (ja) 2003-09-22 2005-04-14 Sekisui Jushi Co Ltd 太陽電池モジュール
JP2006278702A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 太陽電池モジュール及びその製造方法
JP2008258269A (ja) * 2007-04-02 2008-10-23 Sharp Corp 太陽電池モジュールおよびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2862160A (en) * 1955-10-18 1958-11-25 Hoffmann Electronics Corp Light sensitive device and method of making the same
US3546064A (en) * 1966-10-06 1970-12-08 Mc Donnell Douglas Corp Adhesive and glass laminate bonded therewith
JPS5328751B2 (ja) * 1974-11-27 1978-08-16
US4170507A (en) * 1977-12-27 1979-10-09 Motorola, Inc. Method for encapsulating a solar cell array
US4239555A (en) * 1979-07-30 1980-12-16 Mobil Tyco Solar Energy Corporation Encapsulated solar cell array
JPS57178221A (en) * 1981-04-28 1982-11-02 Ricoh Elemex Corp Sealant for liquid crystal display panel
JPS60170270A (ja) * 1984-02-15 1985-09-03 Matsushita Electric Ind Co Ltd 太陽電池素子のパツケ−ジ構成法
JP3222361B2 (ja) * 1995-08-15 2001-10-29 キヤノン株式会社 太陽電池モジュールの製造方法及び太陽電池モジュール
JPH11238897A (ja) * 1998-02-23 1999-08-31 Canon Inc 太陽電池モジュール製造方法および太陽電池モジュール
JP2002536805A (ja) * 1999-02-08 2002-10-29 クルス グラス プラス スピーゲル アクチエンゲゼルシヤフト 光電池及びその製造方法
CA2453194A1 (en) * 2003-05-22 2004-11-22 Affinity Co., Ltd. Autonomous light-controlling laminated bodies and windows employing the same
WO2005006451A1 (en) * 2003-07-07 2005-01-20 Dow Corning Corporation Encapsulation of solar cells
US20070125420A1 (en) * 2003-08-06 2007-06-07 Fujikura Ltd. Photoelectric converter and method for manufacturing same
EP1548846A3 (en) * 2003-11-28 2007-09-19 Sharp Kabushiki Kaisha Solar cell module edge face sealing member and solar cell module employing same
JP4845403B2 (ja) * 2005-03-29 2011-12-28 古河電池株式会社 アルカリ蓄電池用極板
US20070215197A1 (en) * 2006-03-18 2007-09-20 Benyamin Buller Elongated photovoltaic cells in casings
US20080053519A1 (en) * 2006-08-30 2008-03-06 Miasole Laminated photovoltaic cell
EP2179450A4 (en) * 2006-10-25 2014-09-03 Jeremy Scholz ELECTRICAL CONNECTION ASSEMBLY FOR BORDER MOUNTING

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144178A (ja) * 1983-02-07 1984-08-18 Semiconductor Energy Lab Co Ltd 光電変換装置
JPH0888388A (ja) 1994-09-16 1996-04-02 Canon Inc 太陽電池モジュール
JP2000082834A (ja) * 1998-09-04 2000-03-21 Asahi Glass Co Ltd リード線および該リード線の接続された太陽電池パネル
EP1050910A2 (de) * 1999-05-07 2000-11-08 Webasto Vehicle Systems International GmbH Solarmodul zur Anbringung an Fahrzeugen und Verfahren zur Herstellung desselben
JP2002217442A (ja) * 2001-01-17 2002-08-02 Fuji Electric Co Ltd 太陽電池モジュールとその製造方法
JP2003101058A (ja) 2001-09-26 2003-04-04 Sanyo Electric Co Ltd 太陽電池モジュール
WO2004075246A2 (fr) * 2003-01-24 2004-09-02 Apollon Solar Module photovoltaique comportant des bornes de connexion avec l’exterieur
JP2004288677A (ja) * 2003-03-19 2004-10-14 Sharp Corp 太陽電池モジュールサブアセンブリおよび複層ガラス型太陽電池モジュール
JP2005101033A (ja) 2003-09-22 2005-04-14 Sekisui Jushi Co Ltd 太陽電池モジュール
JP2006278702A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 太陽電池モジュール及びその製造方法
JP2008258269A (ja) * 2007-04-02 2008-10-23 Sharp Corp 太陽電池モジュールおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2234172A4

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878051B2 (en) 2009-10-05 2014-11-04 Lisec Austria Gmbh Vacuum element and method for producing the same
EP2404125A2 (de) * 2009-10-05 2012-01-11 Inova Lisec Technologiezentrum GmbH Vakuumelement und verfahren zum herstellen desselben
CN102510983A (zh) * 2009-10-05 2012-06-20 爱诺华Lisec技术中心有限公司 真空元件和其制造方法
JP2013506583A (ja) * 2009-10-05 2013-02-28 イノバ・リゼツク・テクノロジーツエントルム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 真空素子および真空素子を製造する方法
KR101554977B1 (ko) * 2009-10-05 2015-09-22 리젝 오스트리아 게엠베하 진공 요소 및 그 제조방법
JP2011124435A (ja) * 2009-12-11 2011-06-23 Kaneka Corp 薄膜型太陽電池モジュール及び薄膜型太陽電池モジュールの製造方法
JP2012175079A (ja) * 2011-02-24 2012-09-10 Honda Motor Co Ltd 太陽電池モジュール
WO2012117891A1 (ja) * 2011-02-28 2012-09-07 三洋電機株式会社 太陽電池モジュールの出力配線、太陽電池モジュール及びその製造方法
JP2012206411A (ja) * 2011-03-30 2012-10-25 Fujifilm Corp 電子部品の製造方法
WO2012165002A1 (ja) * 2011-05-31 2012-12-06 三洋電機株式会社 太陽電池モジュール
JP2013115438A (ja) * 2011-11-29 2013-06-10 Lg Innotek Co Ltd 太陽光発電装置
US9722116B2 (en) 2011-11-29 2017-08-01 Lg Innotek Co., Ltd. Solar cell apparatus
JP2013153086A (ja) * 2012-01-25 2013-08-08 Shin Etsu Chem Co Ltd 太陽電池モジュールの製造方法及び太陽電池モジュール
CN103227235A (zh) * 2012-01-25 2013-07-31 信越化学工业株式会社 太阳能电池模组的制造方法及太阳能电池模组
KR20130133698A (ko) 2012-05-29 2013-12-09 신에쓰 가가꾸 고교 가부시끼가이샤 태양 전지 모듈의 제조 방법
JP2014013875A (ja) * 2012-06-04 2014-01-23 Sharp Corp 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2014013876A (ja) * 2012-06-04 2014-01-23 Sharp Corp 太陽電池モジュール及び太陽電池モジュールの製造方法
US9520522B2 (en) 2012-10-04 2016-12-13 Shin-Etsu Chemical Co., Ltd. Method of manufacturing solar cell module
KR20140044740A (ko) 2012-10-04 2014-04-15 신에쓰 가가꾸 고교 가부시끼가이샤 태양 전지 모듈의 제조 방법
KR20140044739A (ko) 2012-10-04 2014-04-15 신에쓰 가가꾸 고교 가부시끼가이샤 태양 전지 모듈의 제조 방법
US9385253B2 (en) 2012-10-04 2016-07-05 Shin-Etsu Chemical Co., Ltd. Method of manufacturing solar cell module
US8999743B2 (en) 2013-07-04 2015-04-07 Shin-Etsu Chemical Co., Ltd. Manufacture of solar cell module
WO2015068633A1 (ja) 2013-11-11 2015-05-14 信越化学工業株式会社 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール
KR20150116414A (ko) 2014-04-07 2015-10-15 신에쓰 가가꾸 고교 가부시끼가이샤 태양전지용 실리콘 봉지재료 및 태양전지 모듈
EP2930214A1 (en) 2014-04-07 2015-10-14 Shin-Etsu Chemical Co., Ltd. Solar cell encapsulant silicone composition and solar cell module
JP2018515355A (ja) * 2015-03-04 2018-06-14 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 埋め込み機能構造を有する金属複合材料の製造方法および対応する金属複合材料
US10933617B2 (en) 2015-03-04 2021-03-02 Thyssenkrupp Steel Europe Ag Method for producing a metal composite material with an embedded functional structure and corresponding metal composite material
WO2017098728A1 (ja) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 太陽電池モジュール
JPWO2017098728A1 (ja) * 2015-12-10 2018-09-27 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2019195046A (ja) * 2018-02-28 2019-11-07 ザ・ボーイング・カンパニーTheBoeing Company ソーラーセルをパネルに取り付けるための無加圧接合プロセス
US11626833B2 (en) 2018-02-28 2023-04-11 The Boeing Company Solar panels and electronic devices comprising solar panels
JP7421864B2 (ja) 2018-02-28 2024-01-25 ザ・ボーイング・カンパニー ソーラーセルをパネルに取り付けるための無加圧接合プロセス

Also Published As

Publication number Publication date
EP2234172A4 (en) 2017-01-04
JP4869408B2 (ja) 2012-02-08
JPWO2009091068A1 (ja) 2011-05-26
CN101960614A (zh) 2011-01-26
US20130178009A1 (en) 2013-07-11
JP2011254116A (ja) 2011-12-15
EP2234172A1 (en) 2010-09-29
CN101960614B (zh) 2012-07-18
US20100275992A1 (en) 2010-11-04
JP5411225B2 (ja) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2009091068A1 (ja) 太陽電池モジュールおよびその製造方法
JP5780209B2 (ja) 太陽電池モジュールの製造方法
KR101465924B1 (ko) 태양 전지 모듈의 제조 방법 및 태양 전지 모듈
US20090159117A1 (en) Hot melt sealant containing desiccant for use in photovoltaic modules
KR101441264B1 (ko) 태양전지 모듈, 태양전지 모듈의 제조 방법, 태양전지 셀 및 탭선의 접속 방법
CN110521006B (zh) 光伏模块,光伏密封剂和生产光伏模块的方法
KR102000793B1 (ko) 태양 전지 모듈의 제조 방법
CN102272945A (zh) 无框太阳能电池板及其制造方法
JP2003086822A (ja) 太陽電池モジュール及びその製造方法
JP2009033130A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2015029077A (ja) 太陽電池モジュールの製造方法
JP4765019B2 (ja) 太陽電池モジュールの封止構造及び製造方法
KR20150003091A (ko) 태양전지 모듈 및 그 제조 방법
JP4069405B2 (ja) 太陽電池モジュールの製造方法
CN101777434B (zh) 一种全固态染料敏化太阳能电池封装方法
JP6269527B2 (ja) 太陽電池モジュールの製造方法
WO2011099228A1 (ja) 太陽電池モジュール及びその製造方法
JP2013004902A (ja) 太陽電池モジュールの製造方法及び合わせガラスの製造方法
JP4703231B2 (ja) 太陽電池モジュール及びその製造方法
JPH06151935A (ja) 太陽電池モジュールの製造方法
JPH0476231B2 (ja)
CN107210705A (zh) 太阳能电池模块
JP2003298092A (ja) 太陽電池モジュールと太陽電池モジュール用接着性樹脂封止材
JP2008053420A (ja) 太陽電池モジュールの封止構造及び製造方法
JPS615583A (ja) 太陽電池モジユ−ル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106363.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550082

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12811894

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4939/DELNP/2010

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009702907

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009702907

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE