WO2008035672A1 - Method for manufacturing transparent cured film using positive-working photosensitive resin layer for half exposure - Google Patents

Method for manufacturing transparent cured film using positive-working photosensitive resin layer for half exposure Download PDF

Info

Publication number
WO2008035672A1
WO2008035672A1 PCT/JP2007/068083 JP2007068083W WO2008035672A1 WO 2008035672 A1 WO2008035672 A1 WO 2008035672A1 JP 2007068083 W JP2007068083 W JP 2007068083W WO 2008035672 A1 WO2008035672 A1 WO 2008035672A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
photosensitive resin
sensitivity
positive photosensitive
cured film
Prior art date
Application number
PCT/JP2007/068083
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Hatanaka
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to KR1020097006060A priority Critical patent/KR101334753B1/en
Priority to CN2007800346563A priority patent/CN101517492B/en
Priority to JP2008535354A priority patent/JP5083566B2/en
Publication of WO2008035672A1 publication Critical patent/WO2008035672A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Definitions

  • the present invention relates to a method for producing a transparent cured film obtained using a positive photosensitive resin layer.
  • the present invention relates to a method for producing a transparent cured film by exposing two positive photosensitive resin layers having different exposure sensitivities formed on a substrate and finally passing through a post-beta step.
  • the photosensitive resin layer having the above-described structure can be applied to a method for producing a reflection layer, a flat transmission layer, and a contact hole with any shape with high accuracy by half exposure, and in particular, semi-transmission.
  • the present invention relates to application to manufacturing of a liquid crystal display element.
  • a thin film transistor (TFT) type liquid crystal display element has a reflection type, a semi-transmission type, a transmission type structure, and the like, and is appropriately selected depending on a device to be used.
  • the transflective type which allows high-definition display both indoors and outdoors, day and night, is often used.
  • a flattening film is used for the purpose of flattening the TFT and widening the aperture ratio over such a transflective liquid crystal display element.
  • irregular irregularities are produced on the surface in order to provide the light scattering property of the reflection part and increase the reflection efficiency.
  • a metal such as aluminum or molybdenum is formed on the irregularities as a reflector and a pixel electrode.
  • a transparent electrode such as ITO is used as the pixel electrode in the transmissive part.
  • a contact hole is formed in the planarization film to make these pixel electrodes conductive with the common electrode.
  • the photosensitive material used here has excellent process resistance such as heat resistance and solvent resistance, good adhesion to the substrate, and high accuracy under various process conditions according to the purpose of use.
  • Various characteristics such as having a wide process margin capable of forming a pattern, high sensitivity and high transparency, and less film unevenness after development are required.
  • a photosensitive resin composition containing a naphthoquinone diazide compound has been widely used as the photosensitive material.
  • the conventional photosensitive resin material containing the naphthoquinonediazide compound described above has not been sufficiently satisfactory in terms of sensitivity.
  • This method has limitations, and dissolution of unexposed areas also occurs, resulting in a decrease in the remaining film ratio. This has the disadvantage that it causes film unevenness for large display substrates.
  • a radiation-sensitive resin composition containing an alkali-soluble resin and at least one of a specific polyhydroxy compound and a derivative thereof has been proposed! (See, for example, Patent Document 1), but naphthoquinone diazide Conventional photosensitive resin materials containing compounds have a lower exposure margin in the half-exposure area as the sensitivity increases in exposure through a half-tone mask. As a result, it was impossible to achieve both high sensitivity and improved exposure margin.
  • a protective group bond portion or an ether bond thermal bridge portion can be easily formed at a high temperature used for film curing or in the presence of a resist stripping solution. It was almost impossible to use as a permanent film that decomposed and had extremely low heat resistance and chemical resistance.
  • thermosetting in order to enable thermosetting, even if an epoxy-caminoplast cross-linking system is introduced into a chemically amplified resist, it is generated by a photoacid generator (hereinafter also referred to as PAG) in the resist by exposure. Due to the influence of the acid, the cross-linking of the exposed part proceeds and new problems such as disappearance of the dissolution contrast with the unexposed part occur. It was difficult.
  • PAG photoacid generator
  • Patent Document 1 Japanese Patent Laid-Open No. 4 211255
  • Patent Document 2 US Patent No. 5075199
  • an object of the present invention is to provide a method for producing a transparent cured film having a wide exposure margin while maintaining high sensitivity.
  • it can be applied to the production of TFT planarization films, It is an object of the present invention to provide a method for producing a transparent cured film for simultaneously forming contact holes and reflective irregularities by half exposure.
  • two positive photosensitive resin layers having different exposure sensitivities are formed on a base material, and a low sensitivity positive photosensitive resin layer is disposed between the base material and a high sensitivity positive photosensitive resin layer.
  • a method for producing a transparent cured film comprising a step of developing a photosensitive resin layer and a step of post-betaing the two positive photosensitive resin layers, wherein the low-sensitivity positive photosensitive resin layer comprises the following (A method for producing a transparent cured film, which is a positive photosensitive resin layer containing component A), component (B), component (C), and component (D).
  • (A) component alkali-soluble resin
  • Component (B) Compound having two or more butyl ether groups in one molecule
  • Component (C) Compound that crosslinks with component (A) by post-beta.
  • the method for producing a transparent cured film according to the first aspect wherein the exposure is half exposure.
  • the transparent cured film according to the first aspect or the second aspect in which the post-exposure heating is performed at a temperature of 80 ° C to 140 ° C and the post beta is performed at a temperature of 150 ° C to 270 ° C. Manufacturing method.
  • the high-sensitivity positive photosensitive resin layer is a positive photosensitive resin layer containing the following component (A), component (B), component (C) and component (D): The manufacturing method of the transparent cured film as described in any one of a 1st viewpoint thru
  • (A) component alkali-soluble resin
  • Component (B) Compound having two or more butyl ether groups in one molecule
  • Component (C) Compound that crosslinks with component (A) by post-beta.
  • the method for producing a transparent cured film according to any one of the first aspect to the fifth aspect which is a base material on which a base material STFT element is formed.
  • a TFT array planarizing film comprising a transparent cured film obtained by the manufacturing method according to any one of the first aspect to the fifth aspect.
  • a display element having a transparent cured film obtained by the production method according to any one of the first aspect to the fifth aspect.
  • a liquid crystal display element having a transparent cured film obtained by the manufacturing method according to one of the first aspect and the fifth aspect.
  • the transparent cured film obtained by the present invention has an effect of high sensitivity at the time of half exposure and a wide exposure margin.
  • the unevenness of the TFT flattening film and the contact hole are simultaneously highly sensitive and highly sensitive. It can be applied to the production of a semi-transmission type liquid crystal display device that is accurately formed.
  • the present invention provides two positive photosensitive resin layers having different exposure sensitivities on a base material, and the low-sensitivity positive photosensitive resin layer is the base material and the high-sensitivity positive photosensitive resin layer. It is characterized in that it includes a step of exposing the positive photosensitive resin layer consisting of the two layers, post exposure bake (PEB), developing, and post-beta. It is the manufacturing method of transparency cured film.
  • PEB post exposure bake
  • a low-sensitivity positive photosensitive resin layer is formed on a substrate, and a high-sensitivity positive photosensitive resin layer is further laminated on the low-sensitivity layer, so that the exposure sensitivity differs on the substrate.
  • the step of laminating two layers of the positive photosensitive resin layer, the step of exposing the two laminated positive photosensitive resin layers, and the step of heating the two positive photosensitive resin layers after exposure A process for developing the two positive photosensitive resin layers, and a method for producing a transparent cured film comprising the step of post-betaing the two positive photosensitive resin layers.
  • Type photosensitive resin layer A method for producing a transparent cured film, which is a positive photosensitive resin layer containing the components (A), (B), (C) and (D).
  • (A) component alkali-soluble resin
  • Component (B) Compound having two or more butyl ether groups in one molecule
  • Component (C) Compound that crosslinks with component (A) by post-beta.
  • two layers of positive photosensitive resin layers having different exposure sensitivities are laminated on a substrate, so that when exposed through a halftone mask, a high sensitivity is obtained.
  • Different pattern shapes can be formed between a positive photosensitive resin layer (hereinafter referred to as a high sensitivity layer) and a low sensitivity positive photosensitive resin layer (hereinafter referred to as a low sensitivity layer).
  • a high sensitivity layer a positive photosensitive resin layer
  • a low sensitivity positive photosensitive resin layer hereinafter referred to as a low sensitivity layer.
  • different image shapes can be formed in a single exposure by using a halftone mask in the high-sensitivity layer and the low-sensitivity layer.
  • the low-sensitivity layer is laminated so as to be located between the base material and the high-sensitivity layer, the high-sensitivity layer and the low sensitivity remain as unexposed portions during development, and half exposure is performed.
  • the high-sensitivity layer is removed from the part, and the low-sensitivity layer remains.
  • the positive photosensitive resin layer (high-sensitivity layer and low-sensitivity layer) is completely removed, and the base material is exposed.
  • the half-exposure portion referred to here is a portion that can be developed with a smaller exposure amount than the complete exposure portion and can form a desired image.
  • the low-sensitivity layer when the low-sensitivity layer is formed, it is contained in the resin composition by applying a solution of a positive photosensitive resin composition that forms the layer and then pre-drying (heat treatment).
  • the components are crosslinked with each other, whereby a film hardly soluble in an organic solvent is formed on the substrate. Therefore, when a high-sensitivity layer is subsequently formed on the low-sensitivity layer, the low-sensitivity layer and the high-sensitivity layer do not intermix even if a solution of the photosensitive resin composition that forms the layer is applied. There is no waking.
  • the high-sensitivity layer and the low-sensitivity layer each cause a reduction in film thickness at the time of development when irradiation is performed with an amount of light that is smaller than the exposure amount necessary for the development to start, and the development starts. It is desired that development is performed promptly (high accuracy and high sensitivity) after irradiation with a necessary amount of light.
  • the half-exposure margin In order to obtain a highly accurate image, the half exposure margin is preferably 10 mJ or more.
  • the low sensitivity layer has a certain degree of sensitivity.
  • the sensitivity of the low-sensitivity layer will be reduced, leading to a decrease in throughput. by.
  • the low-sensitivity layer is preferably, for example, a highly sensitive chemical amplification type photosensitive layer.
  • the high-sensitivity layer is required to be a photosensitive layer with higher sensitivity than the high-sensitivity low-sensitivity layer, and a higher-sensitivity layer is preferred! / A chemical amplification type photosensitive layer is preferred! /.
  • the positive photosensitive resin layer used in the present invention is as described above, and a transparent cured film can be obtained by post-beta formation after forming a desired image.
  • the low-sensitivity layer used in the present invention comprises (A) an alkali-soluble resin, (B) a compound having two or more butyl ether groups in one molecule, (C) component (A) and component (A) by post-beta. It consists of a positive photosensitive resin composition containing a compound that undergoes a crosslinking reaction and a photoacid generator as component (D).
  • the low-sensitivity layer can be formed by dissolving the positive photosensitive resin composition described above in (E) solvent to form a solution, applying the solution to a substrate, and drying.
  • the component (A) is an alkali-soluble resin, and as a preferred one, a functional group capable of undergoing a thermal crosslinking reaction with the compound having a butyl ether group of the component (B) in the resin structure, and , Having a functional group for film curing that can undergo a thermosetting reaction between the component (A) and a compound that undergoes a crosslinking reaction by post-beta of component (C), and having a number average molecular weight of 2,000 to 50 , 000, an alkali-soluble resin.
  • the component (A) is an alkali-soluble resin
  • a thermal bridge reaction is performed with the compound having a butyl ether group of the component (B) by a prebeta during the resin structure.
  • a functional group for film curing that can crosslink with the component (C) by post-beta to form a thermosetting reaction, and the number average molecular weight is 2,000 to 50,000
  • An alkali-soluble resin that is:
  • the functional group for the thermal crosslinking reaction reacts with the butyl ether group in the (B) component compound at an elevated temperature (prebeta temperature) to form the (B) component compound.
  • a typical functional group thereof is at least one selected from the group consisting of a carboxyl group and a phenolic hydroxyl group.
  • the functional group for film curing is present in the thermally crosslinked product of the above components (A) and (B) (in the exposed part, in the decrosslinked product in which the thermally crosslinked product is further dissociated). ), A group that undergoes a crosslinking reaction with the compound of component (C) under a higher temperature (post-beta temperature) and can cure the film.
  • the functional group for film curing that the (A) component has is between the compound of the (C) component.
  • a crosslinking reaction occurs through the isocyanate group from which the broth moiety has been dissociated, and the film is cured.
  • a typical functional group as a functional group for film curing is at least one selected from the group of hydroxy groups other than phenolic hydroxy groups and amino groups having active hydrogen.
  • the amino group having active hydrogen means a primary or secondary amino group capable of releasing a proton by reaction. Therefore, the amide group does not correspond to an amino group having active hydrogen because it does not have active hydrogen.
  • the alkali-soluble resin of component (A) may be an alkali-soluble resin having such a structure, and is particularly limited depending on the type of main chain skeleton and side chain of the polymer constituting the resin. Not determined.
  • the resin of component (A) has a number average molecular weight in the range of 2,000 to 50,000. If the number average molecular weight exceeds 50,000, the development residue is likely to be generated, and the sensitivity is greatly reduced. On the other hand, if the number average molecular weight is less than 2,000, and the development is too small, a considerable amount of film loss may occur in the exposed area, resulting in insufficient curing.
  • alkali-soluble resin of component (A) examples include acrylic resins, polyhydroxystyrene resins, polyimide precursors, and polyimides.
  • an alkali-soluble resin composed of a copolymer obtained by polymerizing a plurality of types of monomers (hereinafter referred to as a specific copolymer) is used as the component (A). You can also.
  • the alkali-soluble resin as the component (A) may be a blend of a plurality of types of specific copolymers.
  • the specific copolymer includes an alkali-soluble monomer, that is, a group of monomers having at least one of a carboxyl group and a phenolic hydroxy group, and at least one monomer selected as appropriate.
  • a monomer having a functional group for film curing that is, at least one monomer appropriately selected from the group of monomers having at least one of a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen, is essential.
  • the number average molecular weight and the weight average molecular weight of the above specific copolymer are measured using, for example, a GPC apparatus (Shodex (registered trademark) columns KF803L and KF804L) manufactured by JASCO Corporation, and the elution solvent tetrahydrofuran is supplied at a flow rate of lml / min. It can be measured under the condition that it is eluted by flowing through the column (column temperature 40 ° C).
  • the above-mentioned "monomer having at least one of carboxyl group and phenolic hydroxy group” includes a monomer having a carboxyl group, a monomer having a phenolic hydroxy group, and a carboxyl group and a phenolic hydroxy group. Have both Monomer. These monomers are not limited to those having one carboxyl group or phenolic hydroxy group, and may have a plurality thereof.
  • the above-mentioned "monomer having at least one of a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen” includes a monomer having a hydroxy group other than a phenolic hydroxy group, and active hydrogen.
  • These monomers are not limited to those having one hydroxyl group other than a phenolic hydroxy group or one amino group having an active hydrogen, and may have a plurality.
  • Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, crotonic acid, mono- (2- (acryloyloxy) ethyl) phthalate, mono- (2- (methacryloyloxy) ethyl) phthalate, N -(Carboxyphenyl) maleimide, N- (carboxyphenyl) methacrylamide, N- (carboxyphenyl) acrylamide and the like.
  • Examples of the monomer having a phenolic hydroxy group include hydroxystyrene, N (hydroxyphenyl) acrylamide, N- (hydroxyphenyl) methacrylamide, N- (hydroxyphenyl) maleimide and the like.
  • Examples of the monomer having a hydroxy group other than the phenolic hydroxy group include, for example, 2-hydroxy 6-hydroxynorbornene-1, 2-carboxyl-6-latatane, 2-hydroxyethyl metatalylate, 2-hydroxypropyl metatalylate 5 Methacryloyloxy 6-hydroxynorbornene 2 Carboxylic 6-latathone and the like.
  • examples of the monomer having an amino group having active hydrogen include 2-aminoethyl acrylate and 2-aminomethyl methacrylate.
  • the specific copolymer includes a monomer having a functional group for thermal crosslinking reaction and a monomer other than a monomer having a functional group for film curing (hereinafter referred to as other monomer) as structural units. It may be a formed copolymer.
  • Other monomers specifically include carboxyl groups and phenolic hydroxy groups. Any monomer that can be copolymerized with a monomer having at least one of the above and a monomer having at least one of a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen (A) is acceptable. There is no particular limitation as long as the properties of the components are not impaired.
  • Specific examples of other monomers include acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, and bur compounds.
  • Examples of the acrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2, 2 , 2-Trifluoroethyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2 ethoxyethyl acrylate Furfuryl acrylate, 3-methoxy butyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl 2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate and 8-ethOne 8-tricyclodecyl Atari rate, and the like.
  • Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthrinole methacrylate, nonlinole methacrylate methacrylate.
  • Examples thereof include 2-propyl-2-adamantyl methacrylate, 8 methyl-8 tricyclodecyl methacrylate, and 8-ethyl-8-tricyclodecyl methacrylate.
  • Examples of the bur compound include methyl butyl ether, benzyl butyl ether, 2-hydroxy ethino levino reetenole, phenino levino ree tenole, and propino vinyl ether.
  • Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • the method for obtaining the specific copolymer used in the present invention is not particularly limited.
  • the group of monomers having at least one of a carboxyl group and a phenolic hydroxy group, and at least one monomer appropriately selected from At least one monomer appropriately selected from the group of monomers having at least one of a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen, and optionally a monomer other than the above monomers, and optionally polymerization initiation It can be obtained by polymerizing the agent in a solvent at a temperature of 50 to 110 ° C.
  • the solvent used is not particularly limited as long as it dissolves the monomer constituting the specific copolymer and the specific copolymer. Specific examples include the solvents described in (E) Solvent described later.
  • the specific copolymer thus obtained is usually in a solution state in which the specific copolymer is dissolved in a solvent.
  • the solution of the specific copolymer obtained as described above is re-precipitated by stirring with stirring such as jetyl ether or water, and the generated precipitate is filtered and washed, and then at normal pressure or reduced.
  • the powder of the specific copolymer can be obtained by drying at room temperature or under heat. By such an operation, it is possible to remove the polymerization initiator and unreacted monomer coexisting with the specific copolymer, and as a result, a purified powder of the specific copolymer can be obtained. If sufficient purification is not possible with a single operation, the obtained powder may be redissolved in a solvent and the above operation repeated.
  • the powder of the specific copolymer may be used as it is, or the powder may be redissolved in a solvent (E) described later and used as a solution.
  • polyamic acid polyamic acid ester
  • polyimide precursor such as partially imidized polyamic acid
  • polyimide such as carboxylic acid group-containing polyimide
  • the polyimide precursors and polyimides are within the range of 2,000 to 50,000 in terms of developability and solubility in the solvent used, and number average molecular weight (in terms of polyethylene oxide and polyethylene glycol).
  • the number average molecular weight and weight average molecular weight of the polyimide precursor and polyimide are, for example, as follows: GPC apparatus (Shodex (registered trademark) columns KD802, KD803, and KD804) manufactured by JASCO Corporation. It is possible to measure under the following conditions when lithium bromide N, N dimethylformamide solution is eluted at a flow rate of lml / min (column temperature 40 ° C).
  • the polyamic acid as a polyimide precursor can be generally obtained by polycondensation of (a) a tetracarboxylic dianhydride compound and (b) a diamine compound.
  • tetracarboxylic dianhydride compounds include, but are not limited to, pyromellitic dianhydride, 3, 3 ', 4, 4'-biphenyl tetracarboxylic dianhydride, 3, 3 ', 4, 4' monobenzophenone tetracarboxylic dianhydride, 3, 3 ', 4, 4'-diphenyl ether tetracarboxylic dianhydride, 3, 3', 4, 4 ' —Aromatic tetracarboxylic acids such as diphenylsulfone tetracarboxylic acid dihydrate, 1, 2, 3, 4 cyclobutane tetracarboxylic acid dihydrate, 1, 2 dimethinole 1, 2, 3, 4 Cyclofu, tan tetra Force norevon dianhydride, 1, 2, 3, 4 tetramethylolene 1, 2, 3, 4 cyclobutane tetra force norevon dianhydride,
  • diamine compounds are not particularly limited.
  • Diamine compounds having Also, p-phenylenediamine, m-phenylenediamine, 4,4'-methylenebis (2,6 ethenorea diphosphorus), 4,4 'methylene monobis (2 isopropyl-6-methylaniline), 4, 4'-methi Renbis (2, 6 diisopropylaniline), 2, 4, 6 trimethyl-1,3 phenylenediamine, 2, 3, 5,6 tetramethyl-1,4 phenylenediamine, o tolidine, m tolidine, 3, 3 ', 5, 5'-tetramethylbenzidine, bis [4— (3-aminophenoxy) phenol] sulfone, 2,2bis [4— (3aminophenoxy) phenol] propane, 2,2bis [4 1- (3-aminophenoxy) phenyl] hexafluoropropane, 4,4'-diamino-3,3'-dimethyldimethylcyclohexyl, 4,4'-diamin
  • the polyamic acid used in the present invention is produced from (a) a tetracarboxylic dianhydride compound and (b) a diamine compound, the compounding ratio of both compounds, that is, ⁇ (b) the total mole of the diamine compound
  • the number / (a) the total number of moles of tetracarboxylic dianhydride compound> is preferably 0.7 to 1.2.
  • the terminal amino group can be protected by reacting the terminal amino group of the remaining polyamic acid with a carboxylic acid anhydride.
  • carboxylic anhydrides include phthalic anhydride, trimellitic anhydride, anhydrous maleic acid, naphthalic anhydride, hydrogenated phthalic anhydride, methyl-5-norbornene-2,3 dicarboxylic anhydride Power, itaconic anhydride, tetrahydrophthalic anhydride, etc.
  • the reaction temperature of the reaction between the diamine compound and the tetracarboxylic dianhydride compound can be selected from any temperature of -20 to 150 ° C, preferably -5 to 100 ° C. it can.
  • the reaction temperature is appropriately selected within the range of 5 ° C to 40 ° C and the reaction time of 1 hour to 48 hours.
  • the reaction temperature when the terminal amino group is protected with an acid anhydride can be selected from -20 to 150 ° C, preferably 5 to 100 ° C.
  • the reaction of the diamine compound and the tetracarboxylic dianhydride compound can be carried out in a solvent.
  • Solvents that can be used include N, N dimethylformamide, N, N dimethylacetamide, N methyl pyrrolidone, N butyl pyrrolidone, N methyl caprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethy Nolesulphoxide, m Cresol, ⁇ -butyrolatatone, ethyl acetate, butyl acetate, ethyl lactic acid, methyl 3 methoxypropionate, methyl 2 methoxypropionate, 3 ethyl methoxypropionate, 2 ethyl methoxypropionate, 3 ethyl ethoxypropionate, 2-Ethoxypropionate, Ethylene glycol dimethyl ether, Diethylene glyconores,
  • the solution containing the polyamic acid thus obtained can be used as it is for the preparation of a solution of the positive photosensitive resin composition.
  • the polyamic acid can be used after being isolated by precipitation in a poor solvent such as water, methanol, or ethanol and recovered.
  • the polyamic acid thus obtained can be esterified with a carboxyl group and used as a polyamic acid ester.
  • the polyamic acid thus obtained may be used alone or at the same time as the alkali-soluble resin described above.
  • any polyimide can be used.
  • the polyimide used in the present invention is obtained by chemically or thermally immobilizing 50% or more of a polyimide precursor such as polyamic acid.
  • These polyimides include polyamideimides, polyetherimides and copolymers.
  • the polyimide in the positive photosensitive resin composition used in the present invention has a carboxyl group or a phenolic hydroxy group to impart alkali solubility, or a carboxylic acid or phenolic hydroxy group by the action of heat or acid. It preferably has a group that forms a group.
  • the method of introducing a carboxyl group or a phenolic hydroxy group into polyimide is a method using a monomer having a carboxyl group or a phenolic hydroxy group, or a method of sealing an amine end with an acid anhydride having a carboxyl group or a phenolic hydroxy group.
  • a method of making the imidization rate 99% or less when imidizing the polyimide precursor is used.
  • fever or an acid to a polyimide is the method using the monomer which produces
  • Action of heat or acid on carboxyl group or phenolic hydroxy group or carboxylic acid residue after imidization There is a method of reacting a group that dissociates by.
  • Such a polyimide can be obtained by synthesizing the above polyimide precursor and then performing chemical imidization or thermal imidization.
  • acetic anhydride and pyridine are added to a polyimide precursor solution and reacted at room temperature to 100 ° C.
  • a method for thermal imidization generally, a method in which a polyimide precursor solution is heated at a temperature of 180 ° C. to 250 ° C. without being dehydrated is used.
  • the polyimide thus obtained may be used alone or at the same time as other alkali-soluble resins (for example, specific copolymers) described above.
  • Component (B) is a compound having two or more butyl ether groups in one molecule. This is the type and structure of any compound that has two or more butyl ether groups in one molecule that can be thermally crosslinked with the alkali-soluble resin (A) at a conventional prebeta temperature! /, Not particularly limited!
  • the compound of component (B) is obtained by subjecting the component (A) to alkali-solubility due to the acid generated by exposure in the presence of a photoacid generator after thermal crosslinking with the alkali-soluble resin of component (A). After separation (decrosslinking) from the resin, development with an alkaline developer removes both the alkali-soluble resin (A). Therefore, as this type of compound, a bull ether compound generally used as a component of a bull ether type chemically amplified resist can be applied. The use of such a compound has the advantage that the formed image can be controlled by adjusting the thermal crosslinking density by changing the compounding amount of the compound.
  • the compounds represented by the formulas (1) and (2) are particularly developed without residual film in the exposed area. In terms, it is preferable.
  • n is an integer of 2 to 10
  • k is an integer of 1 to 10
  • R 1 represents an n-valent organic group.
  • n an integer of 2 to 10.
  • n represents the number of butyl ether groups in one molecule, and n is more preferably an integer of 2 to 4.
  • M in the formula (2) also represents the number of butyl ether groups in one molecule, and m is more preferably an integer of 2 to 4.
  • Specific examples of the compounds represented by the formula (1) and the formula (2) include bis (4 (vinyloxymethyl) cyclohexylmethyl) glutarate, tri (ethylene glycol) dibutyrenole, dibiadipate Cyclohexane dimethanol dibulle ethers such as ninoreestenole, diethyleneglyconoresininoreethenole, tristoate, bis (4 (vinyloxy) butyl isophthalate, and 1,4-cyclohexanedimethanol dibule ether Etc.
  • the compound of component (B) is used in a proportion of 1 to 80 parts by weight, preferably 5 to 40 parts by weight, per 100 parts by weight of component (A).
  • amount of the component (B) compound used is an excessive amount less than the lower limit of the above range, the reduction of the film in the unexposed area becomes remarkable and the formed relief pattern of the pattern becomes poor.
  • amount of the component (B) compound used exceeds the upper limit of the above range, the sensitivity of the film is greatly reduced, and residues between patterns are generated after development.
  • Component (C) is a compound that undergoes a cross-linking reaction with component (A) by post-beta, and preferably a compound having two or more block isocyanate groups in one molecule. This is either thermally cross-linked with the compound of component (B) or further de-crosslinked with (A) For example, if it is a compound having two or more block isocyanate groups in one molecule that can be thermally cured at a conventional post-beta temperature with respect to a film made of an alkali-soluble resin as a component, the kind and The structure is not particularly limited.
  • the compound of component (C) has two or more blocked isocyanate groups in which one or more isocyanate groups (one NCO) are blocked by an appropriate protecting group, and is heated at high temperature during thermal curing. Exposure to the functional group (for example, phenolic hydroxy group) for thermal curing in the alkali-soluble resin of component (A) via the generated isocyanate group. Other than the hydroxy group and the amino group having active hydrogen), the crosslinking reaction proceeds between, for example, the formula (3)
  • R 2 represents an organic group in the block part
  • this group may be the same or different from each other.
  • ! /, are included.
  • an appropriate blocking agent is allowed to act on a compound having two or more isocyanate groups in one molecule. With the power S to get.
  • Examples of the compound having two or more isocyanate groups in one molecule include, for example, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, methylene bis (4-cyclohexyl isocyanate), and trimethyl hexane methacrylate.
  • Examples thereof include diisocyanate and the like, or dimers and trimers thereof, or a reaction product of these with diols, triols, diamines, and triamines.
  • Examples of the blocking agent include alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N, N-dimethylaminoethanol, 2-ethoxyethanol, and cyclohexanol.
  • alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N, N-dimethylaminoethanol, 2-ethoxyethanol, and cyclohexanol.
  • the compound of component (C) has a force S that causes the thermal release of the block portion and a crosslinking reaction proceeds through the isocyanate group at higher temperatures such as the post-beta temperature, such as the force S and the pre-beta temperature.
  • the temperature of the thermal dissociation of the block portion is considerably higher than the prebeta temperature, for example, 120 ° C to 230 ° C (C) Especially preferred as a component compound!
  • Examples of the compound of the component (C) include the following specific examples.
  • Examples of such a compound that the compound (C) is more preferred from the viewpoint of heat resistance and coating properties include the following.
  • R in the following formula represents an organic group.
  • the compound of component (C) may be used alone or in combination of two or more.
  • the compound of component (C) is used in a proportion of 3 to 70 parts by weight, preferably 5 to 40 parts by weight, per 100 parts by weight of component (A).
  • the amount of the component (C) compound used is an excessive amount less than the lower limit of the above range, the thermosetting is insufficient and a satisfactory cured film cannot be obtained.
  • the amount of the compound (C) component used If the amount exceeds the upper limit of the above range, the development becomes insufficient and a development residue is generated.
  • Component (D) is a photoacid generator (also referred to as PAG). This is a substance that generates acids (sulfonic acids, carboxylic acids, etc.) directly or indirectly by the irradiation of light used for exposure. If it has such properties, its type and structure Etc. are not particularly limited.
  • Examples of the photoacid generator of component (D) include diazomethane compounds, onium salt compounds, sulfonimide compounds, disulfone compounds, sulfonic acid derivative compounds, nitrobenzyl compounds, benzoin tosylate compounds, iron arenes. Examples include complexes, halogen-containing triazine compounds, acetophenone derivative compounds, and cyano group-containing oxime sulfonate compounds. Any conventionally known or conventionally used photoacid generator can be applied in the present invention without any particular limitation. In the present invention, the photoacid generator of component (D) may be used alone or in combination of two or more.
  • photoacid generator examples include the following. However, these compounds are a few examples of a very large number of applicable photoacid generators, and of course are not limited thereto.
  • the photoacid generator of component (D) is 100 parts by mass of the alkali-soluble resin of component (A). And 0.5 to 50 parts by weight, preferably 1 to 30 parts by weight.
  • amount of the photoacid generator used as the component (D) is too small below the lower limit of the above range, from the alkali-soluble resin of the component (A) of the component of the component (B) that has been thermally bridged during exposure. If the amount of the photoacid generator used as the component (D) exceeds the upper limit of the above range, the positive photosensitive resin may not be obtained. The storage stability of the composition becomes inferior.
  • the positive photosensitive resin composition used in the present invention contains the components (A) to (D) described above, and usually a solution obtained by dissolving these components in the solvent (E) is applied to the positive photosensitive resin composition. Forming a layer.
  • the (E) solvent dissolves the components (A) to (D) and dissolves the component (F) to be added as required, and has such a dissolving ability.
  • it is a solvent, its type and structure are not particularly limited.
  • Such (E) solvents include, for example, ethylene glycol monomethyl ether, ethylene glycol monomethenoate ethere, methinorecero sonoleb acetate, ethenorecero sonolebate, diethylene glycol monomethyl ether, diethylene glycol monoester.
  • Chill etherenole propylene glycolate, propylene glycolenomonomethinoatenole, propylene glycolenomonomethinoatenoacetate, propylene glycolenopropenoatenoate acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclo Hexanone, 2-heptanone, ⁇ -butarate ratataton, 2-hydroxyethyl ethionate, 2-hydroxyethyl 2-methylpropionate, ethoxyethyl ethoxylate, hydroxyacetic acid Tyl, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate Butyl
  • solvents propylene glycol monomethyl ether, propylene glycol Nolemonomethylenoateolacetate, 2-heptanone, propyleneglycololepropynolether, propyleneglycolpropyletheracetate, ethyl lactate, butyl lactate and the like are preferable from the viewpoint of good coating properties and high safety.
  • solvents are generally used as solvents for photoresist materials.
  • Component (F) is a surfactant.
  • a surfactant may be further added for the purpose of improving the coating property as long as the effects of the present invention are not impaired.
  • the surfactant of the component (F) is not particularly limited, and examples thereof include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
  • a fluorine-based surfactant such as those manufactured by Sumitomo 3EM Co., Ltd., Dainippon Ink & Chemicals, Inc., or Asahi Glass Co., Ltd. can be used. These commercial products are convenient because they are readily available.
  • F-top EF301, EF303, EF352 manufactured by Gemco
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink Chemical Co., Ltd.
  • Florard FC430, FC431 Fluorine surfactants such as Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SCI 06 (Asahi Glass Co., Ltd.), and the like.
  • surfactants can be used singly or in combination of two or more.
  • the content thereof is usually 0.2% by mass or less, preferably 0.1% by mass or less, in 100% by mass of the positive photosensitive resin composition solution. It is. Even if the amount of the surfactant (F) used is set to an amount exceeding 0.2% by mass, the effect of improving the coating property becomes dull and not economical.
  • the positive type photosensitive resin composition used in the present invention is, as long as it does not impair the effects of the present invention, adhesion aids such as rheology modifiers and silane coupling agents, pigments, dyes, and storage. It can contain stabilizers, antifoaming agents, or solubility promoters such as polyhydric phenols and polycarboxylic acids.
  • the silane coupling agent can be used for the purpose of improving the adhesion to the substrate. Specific examples thereof are as follows.
  • the positive photosensitive resin composition used in the present invention comprises an alkali-soluble resin as component ( ⁇ ), a compound having two or more butyl ether groups in one molecule of component ( ⁇ ), and a post-baking of component (C).
  • component (Ii) contains a compound that undergoes a crosslinking reaction with component (D) and a photoacid generator of component (D).
  • these components (i) to (D) are dissolved in (i) a solvent and used for forming a positive photosensitive resin layer in the form of a solution. Further, each of them may contain one or more of the surfactant (F) and other additives as desired.
  • component ( ⁇ ) Based on 100 parts by weight of component ( ⁇ ), 1 to 80 parts by weight of component ( ⁇ ), 3 to 70 parts by weight of component (C), and 0.5 to 50 parts by weight of (D) A positive photosensitive resin composition containing a component.
  • [2] A solution of a positive photosensitive resin composition in which the composition of [1] above is dissolved in (i) a solvent.
  • the ratio of the solid content in the solution of the positive photosensitive resin composition is not particularly limited as long as each component is uniformly dissolved in the solvent, and is, for example, 1 to 80% by mass. Also, for example, 5 to 60% by mass, or 8 to 50% by mass.
  • solid (E) Solvent is removed from all components of the positive-type photosensitive resin composition solution!
  • the method for preparing the positive type photosensitive resin composition solution is not particularly limited.
  • the component (A) (alkali-soluble resin) is dissolved in the solvent (E) and the solution is prepared.
  • B) component component (compound having two or more butyl ether groups in one molecule),
  • C) component component (compound that crosslinks with (A) component by postbeta),
  • D) component photoacid generator
  • F) Component (surfactant) is mixed at a predetermined ratio to make a uniform solution, or at the appropriate stage of this preparation method, other additives are further added as necessary and mixed.
  • a method is mentioned.
  • the solution of the specific copolymer obtained by the polymerization reaction in a solvent can be used as it is.
  • the component (A) When the solution (B), (C), (D) and the like are added to the solution in the same manner as described above, a solvent may be further added for the purpose of adjusting the concentration.
  • the solvent used in the process of forming the specific copolymer may be the same as or different from the solvent used for adjusting the concentration when preparing the solution of the positive photosensitive resin composition. May be.
  • the prepared positive photosensitive resin composition solution is preferably used after being filtered using a filter having a pore size of about 0.2 m.
  • the high-sensitivity layer used in the present invention is not particularly limited as long as it is a sufficiently high-sensitivity photosensitive resin layer compared with the sensitivity of the low-sensitivity layer described above.
  • a positive photosensitive resin composition is used as such a high-sensitivity layer.
  • the high-sensitivity layer used in the present invention may be the same type as the positive photosensitive resin composition used in the low-sensitivity layer. In this case, it is preferable because of high sensitivity and improved throughput, low pattern shape control, and suppression of film loss in unexposed areas during development! /.
  • the contents of the (B) component and the (C) component in the positive-type photosensitive resin composition of the high-sensitivity layer are set so that It is preferable that the content (mass) be less than the above.
  • the positive-type feeling of the high-sensitivity layer The component (B) and the component (C) in the photosensitive resin composition are 10 to 80% of the content (mass) of the component (B) contained in the positive photosensitive resin composition of the low sensitivity layer, In addition, the content (mass) of component (C) is preferably 30 to 70%.
  • the component (B) and the component (C) in the positive photosensitive resin composition of the high sensitivity layer are contained in the positive photosensitive resin composition of the low sensitivity layer. It is preferable that the content be 10 to 50% of the amount (mass) and 40 to 60% of the content (mass) of the component (C)! /,
  • the positive photosensitive resin composition used in the high-sensitivity layer is the above-described ⁇ Low Sensitivity Positive Photosensitive Resin Layer (Low Sensitivity Layer)> [Positive Photosensitive Resin Composition and Solution] can be obtained in the same manner.
  • the mixed solution containing the components (A) to (E) and, optionally, the component (F) is kept at a temperature higher than room temperature for a required period of time, thereby reducing the following heat.
  • Crosslinking reaction force S Some progress, positive photosensitive resin containing (A) component to (E) solvent, and optionally (F) component and (A) component and (B) component cross-linked product A solution of the composition is obtained. More preferably, by keeping the mixed solution at a temperature of 30 ° C. to 70 ° C. for 2 hours to 5 days, in addition to the components (A) to (E) and, optionally, the component (F), ( A solution of a positive photosensitive resin composition containing a cross-linked product of component A) and component (B) is obtained.
  • the homogeneity of the solution of the resulting resin composition is increased, and as a result, when the film is subjected to a subsequent film formation step, the photoacid generator is in the film.
  • the resulting film can be dispersed efficiently, leading to a dramatic improvement in the sensitivity of the resulting film.
  • the stirring temperature is higher than 70 ° C, the crosslinking reaction and curing reaction proceed and the composition solution becomes non-uniform, and the sensitivity of the resulting film is greatly reduced. The uniformity of the solution does not increase, and the sensitivity is not improved.
  • two positive photosensitive resin layers having different exposure sensitivities are disposed on the base material, and the low sensitivity positive photosensitive resin layer is disposed between the base material and the high sensitivity positive photosensitive resin layer.
  • the lamination force is not particularly limited.
  • a solution of a positive photosensitive resin composition for a low-sensitivity layer can be used in a semiconductor.
  • substrates for example, silicon / silicon dioxide coated substrates, silicon nitride substrates, substrates coated with metals such as aluminum, molybdenum, chromium, etc., glass substrates, quartz substrates, ITO substrates, etc. and devices such as transistors are formed on them.
  • Low-sensitivity by spin coating, flow coating, roll coating, slit coating, spin coating following slit, ink jet coating, etc., followed by preliminary drying in a hot plate or oven.
  • a layer can be formed.
  • the high-sensitivity layer is formed by applying a positive photosensitive resin composition solution for the high-sensitivity layer in the same manner as the low-sensitivity layer and pre-drying it with a hot plate or oven.
  • a heating temperature and a heating time appropriately selected from the range of a temperature of 70 ° C to 160 ° C and a time of 0.3 minutes to 60 minutes are employed.
  • the heating temperature and the heating time are preferably 80 ° C to 140 ° C, and 0.5 minutes to 10 minutes.
  • the solvent is removed, and the compound having a butyl ether group as the component (B) is crosslinked with the resin as the component (A), thereby forming a film hardly soluble in an alkali developer.
  • the temperature of the preliminary drying is lower than the lower limit of the above temperature range, a large amount of the solvent remains in the film and the target pattern is not formed, or the low sensitivity layer is applied when the high sensitivity layer is applied. Intermixing may occur, and thermal crosslinking may be insufficient, resulting in film loss in unexposed areas.
  • the film thickness of the positive photosensitive resin layer (the layer combining the low-sensitivity layer and the high-sensitivity layer) is, for example, 0.1 to 30 m, and for example, 0.2 to 10 m. Further, for example, 0 ⁇ 2 to 5 ⁇ m.
  • the film thicknesses of the low-sensitivity layer and the high-sensitivity layer can be arbitrarily selected as long as the effects of the present invention are not impaired.
  • the positive photosensitive resin layer obtained by the above method is exposed to light such as ultraviolet rays, ArF, KrF, and F laser light using a halftone mask having a predetermined pattern. Due to the action of the acid generated from the photoacid generator of component (D) contained in the di-type photosensitive resin layer Therefore, the exposed portion of the film becomes soluble in an alkaline developer.
  • the exposure is preferably performed with light having at least one wavelength of i-line, g-line, and h-line, or ArF, KrF, or F laser light.
  • heating conditions in this case, a heating temperature and a heating time appropriately selected from the range of a temperature of 80 ° C. to 140 ° C. and a time of 0.3 minutes to 60 minutes are employed.
  • alkaline developer examples include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, and choline.
  • Alkaline aqueous solutions such as aqueous solutions of quaternary ammonium hydroxide, amine solutions such as ethanolamine, propylamine, and ethylenediamine.
  • a surfactant or the like can be added to these developers.
  • a 0.1 to 2.38 mass% aqueous solution of tetraethylammonium hydroxide is generally used as a photoresist developer, and this alkaline developer is also used in the photosensitive resin composition of the present invention. Using this, it is possible to develop a good image without causing problems such as swelling.
  • V and displacement S such as a liquid filling method, a dating method, and a rocking dipping method.
  • the development time at that time is usually 15 seconds to 180 seconds.
  • the positive photosensitive resin layer is washed with running water, for example, for 20 to 90 seconds, followed by air drying with compressed air or compressed nitrogen or spinning. The top moisture is removed and a patterned film is obtained.
  • post-beta for thermosetting, specifically, by using a hot plate, an oven, etc. to heat resistance, transparency, and flattening.
  • the post-beta is generally at a heating temperature selected from the range of 150 ° C to 270 ° C, for 5 to 30 minutes on a hot plate, or in the oven. If treated for 30 to 90 minutes!
  • a coating film having a fine pattern with a wide half-exposure margin that has sufficiently high sensitivity and a very small film thickness reduction in an unexposed area during development can be obtained by the production method of the present invention. Can be formed.
  • PGMEA Propylene glycol monomethyl ether acetate
  • PAG 1 Ciba's Specialty. CGI 1397 (trade name) manufactured by Chemicals Co., Ltd./Compound name: 2-methyl- ⁇ — [5— [[(propylsulfonyl) oxy] imino] ichi (5H) —Cenilide N] benzeneacetonitrile (compound of formula (7))
  • PVE2 1,4-Cyclohexanedimethanonoresininoreatenore
  • NCO l Degussa AG VESTAGON (registered trademark) B 1065 (trade name) / Compound name: ⁇ One strength prolatatum block polyisocyanate (compound of formula (S-4))
  • the number-average molecular weight and weight-average molecular weight of the specific copolymer obtained according to the following synthesis example were measured using a GPC apparatus (Shodex (registered trademark) columns KF803L and KF8034) manufactured by JASCO Corporation and the elution solvent tetrahydrofuran was flowed. The measurement was performed under the condition that elution was carried out through a column (column temperature 40 ° C) at 1 ml / min.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • MAA 19.4 g, CHMI 35.3 g, HEMA 25.5 g, and MMA 19.8 g are used as monomer components constituting the specific copolymer, and AIBN 5 g is used as a radical polymerization initiator, and these are used as solvent PGMEA 212
  • (B), (C), (D), and (E) solvent, and (F) component are mixed at a predetermined ratio with the solution of component (A).
  • ⁇ Composition Example 7> As an alkali-soluble resin solution, add 17.2 g of the specific copolymer solution (P2) obtained in Synthesis Example 2, 1.7 g of P200 as a 1,2-quinonediazide compound, and GT4 as an epoxy crosslinkable compound. 1. lg, R30 as surface active Tosei IJ R. 0039g, MPTS 0.25g as adhesion assistant IJ, PGMEA 6.5g as solvent, mix for 8 hours at room temperature, positive type photosensitive resin composition The product solution was prepared.
  • Comparative Examples 2 and 3 are photobleached at the stage after image formation and before post-beta.
  • PEB post-exposure heating
  • pre-beta After applying a solution of the positive photosensitive resin composition for the lower layer onto a quartz substrate using a spin coater, pre-beta was applied on a hot plate for 120 seconds at a temperature of 110 ° C to form a coating film with a film thickness of 2. ⁇ ⁇ . Formed. Next, after applying a positive photosensitive resin composition solution for the upper layer onto the coating film using a spin coater V, pre-beta was performed on a hot plate at a temperature of 110 ° C for 120 seconds to obtain a film thickness. 1. An Om coating was formed.
  • This coating film was immersed in a 0.4% aqueous solution of tetramethylammonium hydroxide (hereinafter referred to as TMAH) for 60 seconds, and then washed with running ultrapure water for 20 seconds.
  • Post-beta was performed by heating at 230 ° C for 30 minutes at a temperature of 2! /, And a cured film having a film thickness of 2.4 ⁇ 111 was formed.
  • the initial transmittance of this cured film was measured at a wavelength of 400 nm using an ultraviolet-visible spectrophotometer (SHIMADZU UV-2550 model, manufactured by Shimadzu Corporation). Further, this coating film was heated at 250 ° C. for 30 minutes, and similarly, the transmittance was measured after heating at a wavelength of 400 nm.
  • the film thickness in this evaluation was measured using F20 manufactured by FILMETRI CS. [0141] ⁇ Comparative Example 1>
  • a positive photosensitive resin composition solution is applied onto a quartz substrate using a spin coater, and then pre-betated on a hot plate for 120 seconds at a temperature of 120 ° C to form a coating film with a thickness of 3. ⁇ ⁇ m did.
  • This coating film was immersed in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. After baking at 230 ° C for 30 minutes, a cured film with a thickness of 2.4! 11 was formed.
  • the initial transmittance of this cured film was measured at a wavelength of 400 nm using a UV-visible spectrophotometer (SHIMADZU UV-2550 model, manufactured by Shimadzu Corporation). Further, the coating film was heated at 250 ° C. for 30 minutes, and the transmittance was similarly measured after heating at a wavelength of 400 nm.
  • the film thickness in this evaluation was measured using F20 manufactured by FILMETRICS.
  • pre-beta was applied on a hot plate at a temperature of 1 10 ° C for 120 seconds to form a coating film with a thickness of 3. ⁇ ⁇ m. Formed.
  • This coating film was immersed in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds.
  • the coated film Canon KK ultraviolet irradiation apparatus PLA - light intensity at 365nm by 600FA is irradiated with ultraviolet rays of 5.
  • Post-beta was performed by heating for 30 minutes to form a cured film with a film thickness of 2.4 ⁇ .
  • the initial transmittance of this cured film was measured at a wavelength of 400 nm using an ultraviolet-visible spectrophotometer (SHIMADZU UV-2550 model, manufactured by Shimadzu Corporation). Further, this coating film was heated at 250 ° C. for 30 minutes, and the transmittance was similarly measured after heating at a wavelength of 400 ⁇ m.
  • the film thickness in this evaluation was measured using F20 manufactured by FILMETRICS.
  • pre-beta was applied on a hot plate for 120 seconds at a temperature of 1 10 ° C. Low sensitivity layer) was formed. Subsequently, the positive photosensitive resin composition for the upper layer was applied onto the coating film using a spin coater, and then hot-pressed at a temperature of 1 10 ° C for 120 seconds. A pre-beta was applied on the sheet to form a coating film (high-sensitivity layer) having a thickness of 1 ⁇ ⁇ . The film thickness was measured using F20 manufactured by FILMETRICS.
  • This coating film was irradiated with UV light with a light intensity of 5.5 mW / cm 2 at 365 nm by a UV irradiation device PLA-600FA manufactured by Canon Inc. at various exposure doses, and then on a hot plate for 120 seconds at a temperature of 110 ° C. After the exposure, heating was performed. Thereafter, the film was developed by immersing it in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. Sensitivity was defined as the lowest exposure amount (mj / cm 2 ) at which no undissolved material remained in the exposed area! In addition, the amount of decrease in the film thickness in the unexposed area was reduced.
  • pre-beta was applied on a hot plate for 120 seconds at a temperature of 110 ° C. to form a coating film having a thickness of 3.0 ⁇ m.
  • the film thickness was measured using F20 manufactured by FILMETRICS.
  • the coating film by Canon KK ultraviolet irradiation apparatus PLA-600FA light intensity at 365nm was irradiated with ultraviolet rays of 5. 5 mW / cm 2 at various exposure amounts, following! /, In 120 seconds at 110 ° C Post-exposure heating was performed on the hot plate.
  • the film was developed by being immersed in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. Sensitivity was defined as the lowest exposure (mj / cm 2 ) at which no undissolved material remained in the exposed area. In addition, the amount of decrease in the film thickness in the unexposed area was defined as film reduction.
  • pre-beta was applied on a hot plate for 120 seconds at a temperature of 110 ° C. to form a coating film having a thickness of 3.0 ⁇ m.
  • the film thickness was measured using F20 manufactured by FILMETRICS.
  • the coating film by Canon KK ultraviolet irradiation apparatus PLA-600FA light intensity at 365nm was irradiated with ultraviolet rays of 5. 5 mW / cm 2 at various exposure amounts.
  • the film was developed by immersing it in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. Sensitivity was defined as the lowest exposure (mj / cm 2 ) at which no undissolved portion remained in the exposed area.
  • the amount of decrease in the film thickness of the unexposed part was defined as film reduction.
  • Examples 1 to 4 a high-sensitivity layer is used as the upper layer and a low-sensitivity layer is used as the upper layer, so that a high transmittance can be maintained and development can be performed without film loss. An optical margin could be obtained.
  • Comparative Example 1 has a high sensitivity and the ability to develop without reducing the film. The half exposure margin was remarkably low.
  • Comparative Examples 2 and 3 are both less sensitive and less exposed in unexposed areas than Examples 1 to 4. From these results, the sensitivity of these single-layer systems increases as the sensitivity increases. A decrease in half exposure margin and transmittance was observed.
  • the transparent cured film obtained by the method for producing a transparent cured film of the present invention can be applied to the production of a TFT flattened film in a transflective liquid crystal display element, in particular, contact holes and reflective irregularities by half exposure. It is suitable as a material for forming a transparent cured film for simultaneously forming.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

[PROBLEMS] To provide a method for manufacturing a transparent cured film having a wide exposure margin while maintaining a high level of sensitivity, especially a method for manufacturing a transparent cured film, which can be applied to the manufacture of a TFT flattening film in a semitransmission liquid crystal display element, and is used particularly for simultaneously forming contact holes and reflection concavoconvexes by half exposure. [MEANS FOR SOLVING PROBLEMS] A method for manufacturing a transparent cured film, characterized by comprising stacking two positive-working photosensitive resin layers different from each other in exposure sensitivity on a base material so that the lower-sensitivity positive-working photosensitive resin layer is located between the base material and the higher-sensitivity positive-working photosensitive resin layer, exposing the positive-working resin layers to light, heating the exposed positive-working resin layers, developing the assembly, and post-baking the assembly. A display element comprising a transparent cured film produced by the above method.

Description

明 細 書  Specification
ハーフ露光用ポジ型感光性樹脂層を用いる透明性硬化膜の製造方法 技術分野  Manufacturing method of transparent cured film using positive photosensitive resin layer for half exposure
[0001] 本発明は、ポジ型感光性樹脂層を用いて得られる透明性硬化膜の製造方法に関 する。  The present invention relates to a method for producing a transparent cured film obtained using a positive photosensitive resin layer.
詳細には、基材上に形成された露光感度の異なる 2層のポジ型感光性樹脂層を露 光し、最後にポストベータの工程を経て、透明性硬化膜を製造する方法に関する。 なかでも、上記構造を有する感光性樹脂層をハーフ露光することで、任意の形状の 反射層及び平坦な透過層並びにコンタクトホールを高い精度で作製する方法に適 用可能であり、特に、半透過型液晶表示素子の製造への適用に関する。  More specifically, the present invention relates to a method for producing a transparent cured film by exposing two positive photosensitive resin layers having different exposure sensitivities formed on a substrate and finally passing through a post-beta step. In particular, the photosensitive resin layer having the above-described structure can be applied to a method for producing a reflection layer, a flat transmission layer, and a contact hole with any shape with high accuracy by half exposure, and in particular, semi-transmission. The present invention relates to application to manufacturing of a liquid crystal display element.
背景技術  Background art
[0002] 一般に、薄膜トランジスタ (TFT)型液晶表示素子は反射型、半透過型、透過型の 構造等があり、それぞれ使用するデバイスにより適宜選択される。この中でも屋内外 で昼夜問わず高精細な表示が可能な半透過型が多く用いられている。このような半 透過型液晶表示素子にぉレ、て TFTを平坦化し開口率を広げる目的で平坦化膜が 用いられている。こうした平坦化膜上には反射部の光散乱性をもたせ反射効率を上 げるため表面に不規則な凹凸が作製される。この凹凸上にアルミニウムやモリブデン のような金属が反射板および画素電極として製膜される。一方、透過部には ITOのよ うな透明電極が画素電極として用いられる。これらの画素電極を共通電極と導通させ るために平坦化膜にはコンタクトホールが形成される。  In general, a thin film transistor (TFT) type liquid crystal display element has a reflection type, a semi-transmission type, a transmission type structure, and the like, and is appropriately selected depending on a device to be used. Of these, the transflective type, which allows high-definition display both indoors and outdoors, day and night, is often used. A flattening film is used for the purpose of flattening the TFT and widening the aperture ratio over such a transflective liquid crystal display element. On such a flattened film, irregular irregularities are produced on the surface in order to provide the light scattering property of the reflection part and increase the reflection efficiency. A metal such as aluminum or molybdenum is formed on the irregularities as a reflector and a pixel electrode. On the other hand, a transparent electrode such as ITO is used as the pixel electrode in the transmissive part. A contact hole is formed in the planarization film to make these pixel electrodes conductive with the common electrode.
[0003] このような凹凸とコンタクトホールを作製する方法として、感光性材料を用いて基板 上に厚膜の突起を作製し、その上からさらに感光性材料を塗布し突起をある程度平 坦化することで反射用の凹凸を作製した後、コンタクトホールを形成する方法が多く 用いられている。  [0003] As a method for producing such irregularities and contact holes, a thick film protrusion is formed on a substrate using a photosensitive material, and a photosensitive material is further applied thereon to flatten the protrusion to some extent. Therefore, a method of forming a contact hole after forming a reflection unevenness is often used.
し力、しこのような方法では、感光性材料を用いたパターン形成を 2回行う必要がある ため、素子製造のスループット(生産効率)が上がらず、そのため、このスループット 向上が求められていた。 [0004] そこで近年、感光性材料を塗布後、ハーフトーンマスクを介して露光すること(ノヽ一 フ露光)により、コンタクトホールと反射用の凹凸を同時に作製する方法が提案され、 採用されてきている。 However, in such a method, it is necessary to perform pattern formation twice using a photosensitive material, so that the throughput (production efficiency) of device manufacturing does not increase, and therefore, an improvement in this throughput has been demanded. [0004] Therefore, in recent years, a method of simultaneously producing contact holes and reflection irregularities by applying a photosensitive material and then exposing through a halftone mask (nozzle exposure) has been proposed and adopted. Yes.
ここで用いられる感光性材料は、耐熱性、耐溶剤性などのプロセス耐性に優れてレヽ ること、下地との密着性が良好であること、使用目的に合わせた様々なプロセス条件 で高精度にパターンを形成し得る広いプロセスマージンを有すること、加えて、高感 度且つ高透明性であること並びに現像後の膜ムラが少ないこと等の諸特性が要求さ れる。  The photosensitive material used here has excellent process resistance such as heat resistance and solvent resistance, good adhesion to the substrate, and high accuracy under various process conditions according to the purpose of use. Various characteristics such as having a wide process margin capable of forming a pattern, high sensitivity and high transparency, and less film unevenness after development are required.
そこで、斯かる要求特性の点から、従来、上記の感光性材料としては、ナフトキノン ジアジド化合物を含む感光性樹脂組成物が汎用されてきた。  Therefore, from the viewpoint of such required characteristics, a photosensitive resin composition containing a naphthoquinone diazide compound has been widely used as the photosensitive material.
[0005] ところで、斯カ、る感光性樹脂材料の要求特性の中、重要な特性として、感度とプロ セスマージンが挙げられる。感度の向上は、ディスプレイ素子等の工業的な生産に おいて、その生産時間の大幅な短縮を可能にするので、液晶ディスプレイの需要量 が著しく増大している現在の状況にあっては、感度は、この種の感光性樹脂材料に 要求される最も重要な特性の一つとなっている。また、プロセスマージンは設計どおり の高精度な反射層を形成するためには重要であり、近年基板の大型化に伴い露光 マージン、現像マージンの広いことが歩留まりを向上させる上で必要となっている。  [0005] By the way, among the required characteristics of such photosensitive resin materials, important characteristics include sensitivity and process margin. The improvement in sensitivity makes it possible to drastically shorten the production time in industrial production of display elements, etc., so in the current situation where the demand for liquid crystal displays is significantly increasing, the sensitivity Is one of the most important properties required for this type of photosensitive resin material. In addition, the process margin is important for forming a highly accurate reflective layer as designed. In recent years, a wider exposure margin and development margin are required to improve yields as the substrate becomes larger. .
[0006] しかし、上述のナフトキノンジアジド化合物を含む従来の感光性樹脂材料は、感度 の面において十分満足できるものではなかった。材料中のポリマーについてアルカリ 現像液への溶解性を高めることにより、感度を向上させることも可能ではある力 この 方法には限界があり、また未露光部の溶解も起こって残膜率が低下し、それが大型 ディスプレイ用の基板にとっては膜ムラの原因になるという欠点があった。  [0006] However, the conventional photosensitive resin material containing the naphthoquinonediazide compound described above has not been sufficiently satisfactory in terms of sensitivity. The ability to improve the sensitivity of the polymer in the material by increasing the solubility in alkaline developer. This method has limitations, and dissolution of unexposed areas also occurs, resulting in a decrease in the remaining film ratio. This has the disadvantage that it causes film unevenness for large display substrates.
[0007] そこで、これまでにも、感光性樹脂材料の高感度化を目的として幾つかの提案がな されている。  [0007] Therefore, some proposals have been made so far for the purpose of increasing the sensitivity of the photosensitive resin material.
例えば、アルカリ可溶性樹脂と特定のポリヒドロキシ化合物及びその誘導体の少な くとも何れかとを含有する感放射線性樹脂組成物が提案されて!/、る (例えば、特許文 献 1参照)が、ナフトキノンジアジド化合物を含む従来の感光性樹脂材料は、ハーフト ーンマスクを介した露光では高感度化するほどハーフ露光領域の露光マージンが低 下する傾向にあり高感度と露光マージンの向上を両立することができなかった。 一方、高感度、高解像度の感光性材料として従来、化学増幅型レジストが開発され ており、半導体用レジストとして開発されてきた従来の化学増幅型レジストは、 i線より も短波長の光源 (KrF、 ArF)にも適応することができ、より微細なパターン形成が可 能であることが提案されて!/、る (例えば、特許文献 2参照)。 For example, a radiation-sensitive resin composition containing an alkali-soluble resin and at least one of a specific polyhydroxy compound and a derivative thereof has been proposed! (See, for example, Patent Document 1), but naphthoquinone diazide Conventional photosensitive resin materials containing compounds have a lower exposure margin in the half-exposure area as the sensitivity increases in exposure through a half-tone mask. As a result, it was impossible to achieve both high sensitivity and improved exposure margin. On the other hand, chemically amplified resists have been developed as high-sensitivity, high-resolution photosensitive materials, and conventional chemically amplified resists that have been developed as resists for semiconductors use light sources (KrF , ArF), and it has been proposed that a finer pattern can be formed (see, for example, Patent Document 2).
[0008] しかしながら、上記の化学増幅型レジストにおいても、膜硬化に用いるような高温の 下では、またレジスト剥離液の存在下では、保護基の結合部やエーテル結合の熱架 橋部が容易に分解してしまい、耐熱性及び耐薬品性が著しく低ぐ永久膜として利用 することは殆ど不可能であった。  [0008] However, even in the above-mentioned chemically amplified resist, a protective group bond portion or an ether bond thermal bridge portion can be easily formed at a high temperature used for film curing or in the presence of a resist stripping solution. It was almost impossible to use as a permanent film that decomposed and had extremely low heat resistance and chemical resistance.
また、熱硬化を可能とするために、エポキシ類ゃァミノプラスト類の架橋系を化学増 幅型レジストに導入しょうとしても、露光によりレジスト中の光酸発生剤(以下、 PAGと もいう)から発生した酸の影響により、露光部の架橋が進行し、未露光部との溶解コン トラストが消失するなどの問題が新たに生じるため、斯カ、る架橋系の化学増幅型レジ ストへの導入は困難であった。  In addition, in order to enable thermosetting, even if an epoxy-caminoplast cross-linking system is introduced into a chemically amplified resist, it is generated by a photoacid generator (hereinafter also referred to as PAG) in the resist by exposure. Due to the influence of the acid, the cross-linking of the exposed part proceeds and new problems such as disappearance of the dissolution contrast with the unexposed part occur. It was difficult.
[0009] このような状況の中で、半透過型液晶表示素子の製造、特に平坦化膜の製造にお いては、ハーフ露光用のマスクパターンの開口部の口径や間隔を調整して露光を行 い、コンタクトホールや反射用凹凸パターンを形成している。しかし、マスクの調整量 には限界があり、精度よく凹凸パターンを形成するためには、平坦化膜の露光感度 を低下させることが必要とされている。そのためコンタクトホール形成には、露光量を 大きくすることが必要であり、その結果、素子製造のスループットを向上させることが 困難となっている。  In such a situation, in the manufacture of a transflective liquid crystal display element, particularly in the manufacture of a flattened film, exposure is performed by adjusting the aperture diameter and interval of the mask pattern for half exposure. The contact hole and the uneven pattern for reflection are formed. However, there is a limit to the amount of mask adjustment, and it is necessary to reduce the exposure sensitivity of the planarization film in order to form a concavo-convex pattern with high accuracy. For this reason, it is necessary to increase the exposure amount for forming the contact hole, and as a result, it is difficult to improve the throughput of device manufacturing.
特許文献 1:特開平 4 211255号公報  Patent Document 1: Japanese Patent Laid-Open No. 4 211255
特許文献 2 :米国特許第 5075199号明細書  Patent Document 2: US Patent No. 5075199
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は、上記のような問題点を克服するために、高感度を維持したまま広い露光 マージンを有する透明性硬化膜を製造する方法を提供することを目的とする。なかで も、半透過型液晶表示素子において、 TFT平坦化膜の製造に適用可能な、特に、 ハーフ露光によりコンタクトホールと反射用凹凸を同時に形成するための透明性硬化 膜の製造方法を提供することを目的とする。 In order to overcome the above problems, an object of the present invention is to provide a method for producing a transparent cured film having a wide exposure margin while maintaining high sensitivity. In particular, in transflective liquid crystal display elements, it can be applied to the production of TFT planarization films, It is an object of the present invention to provide a method for producing a transparent cured film for simultaneously forming contact holes and reflective irregularities by half exposure.
課題を解決するための手段 Means for solving the problem
すなわち、第一観点として、基材上に露光感度の異なる 2層のポジ型感光性樹脂 層を、低感度のポジ型感光性樹脂層が前記基材及び高感度のポジ型感光性樹脂 層間に位置するように積層する工程、この積層された 2層のポジ型感光性樹脂層を 露光する工程、該 2層のポジ型感光性樹脂層を露光後加熱する工程、該 2層のポジ 型感光性樹脂層を現像する工程、該 2層のポジ型感光性樹脂層をポストベータする 工程を含む透明性硬化膜の製造方法であって、該低感度のポジ型感光性樹脂層が 下記の (A)成分、(B)成分、(C)成分及び (D)成分を含有するポジ型感光性樹脂層 であることを特徴とする、透明性硬化膜の製造方法。  That is, as a first aspect, two positive photosensitive resin layers having different exposure sensitivities are formed on a base material, and a low sensitivity positive photosensitive resin layer is disposed between the base material and a high sensitivity positive photosensitive resin layer. A step of exposing the two layers of the positive photosensitive resin layer, a step of heating the two layers of the positive photosensitive resin layer after exposure, and a step of exposing the two layers of the positive photosensitive resin layer. A method for producing a transparent cured film comprising a step of developing a photosensitive resin layer and a step of post-betaing the two positive photosensitive resin layers, wherein the low-sensitivity positive photosensitive resin layer comprises the following ( A method for producing a transparent cured film, which is a positive photosensitive resin layer containing component A), component (B), component (C), and component (D).
(A)成分:アルカリ可溶性樹脂  (A) component: alkali-soluble resin
(B)成分: 1分子中二個以上のビュルエーテル基を有する化合物  Component (B): Compound having two or more butyl ether groups in one molecule
(C)成分:ポストベータにより(A)成分と架橋反応する化合物  Component (C): Compound that crosslinks with component (A) by post-beta.
(D)成分:光酸発生剤  Component (D): Photoacid generator
第二観点として、前記露光がハーフ露光である第一観点に記載の透明性硬化膜の 製造方法。  As a second aspect, the method for producing a transparent cured film according to the first aspect, wherein the exposure is half exposure.
第三観点として、前記露光後加熱を温度 80°C乃至 140°Cで行い、且つ前記ポスト ベータを温度 150°C乃至 270°Cで行う第一観点又は第二観点に記載の透明性硬化 膜の製造方法。  As a third aspect, the transparent cured film according to the first aspect or the second aspect, in which the post-exposure heating is performed at a temperature of 80 ° C to 140 ° C and the post beta is performed at a temperature of 150 ° C to 270 ° C. Manufacturing method.
第四観点として、前記高感度のポジ型感光性樹脂層が、それぞれ下記の (A)成分 、(B)成分、(C)成分及び (D)成分を含有するポジ型感光性樹脂層である、第一観 点乃至第三観点のうちのいずれか一項に記載の透明性硬化膜の製造方法。  As a fourth aspect, the high-sensitivity positive photosensitive resin layer is a positive photosensitive resin layer containing the following component (A), component (B), component (C) and component (D): The manufacturing method of the transparent cured film as described in any one of a 1st viewpoint thru | or a 3rd viewpoint.
(A)成分:アルカリ可溶性樹脂  (A) component: alkali-soluble resin
(B)成分: 1分子中二個以上のビュルエーテル基を有する化合物  Component (B): Compound having two or more butyl ether groups in one molecule
(C)成分:ポストベータにより(A)成分と架橋反応する化合物  Component (C): Compound that crosslinks with component (A) by post-beta.
(D)成分:光酸発生剤  Component (D): Photoacid generator
第五観点として、前記低感度のポジ型感光性樹脂層において、(A)成分 100質量 部に基づいて、 1乃至 80質量部の前記(B)成分、 1乃至 70質量部の前記(C)成分、 及び 0. 5乃至 50質量部の前記 (D)成分を含有する、第一観点乃至第四観点のうち V、ずれか一項に記載の透明性硬化膜の製造方法。 As a fifth aspect, in the low-sensitivity positive photosensitive resin layer, (A) component 100 mass 1 to 80 parts by weight of the component (B), 1 to 70 parts by weight of the component (C), and 0.5 to 50 parts by weight of the component (D) Thru | or the manufacturing method of the transparent cured film as described in any one item of V among 4th viewpoint.
第六観点として、基材カ STFT素子を形成した基材である、第一観点乃至第五観点 のうちのいずれか一項に記載の透明性硬化膜の製造方法。  As a sixth aspect, the method for producing a transparent cured film according to any one of the first aspect to the fifth aspect, which is a base material on which a base material STFT element is formed.
第七観点として、第一観点乃至第五観点のうちのいずれか一項に記載の製造方法 によって得られる透明性硬化膜からなる TFTアレイ平坦化膜。  As a seventh aspect, a TFT array planarizing film comprising a transparent cured film obtained by the manufacturing method according to any one of the first aspect to the fifth aspect.
第八観点として、第一観点乃至第五観点のうちのいずれか一項に記載の製造方法 によって得られる透明性硬化膜を有する表示素子。  As an eighth aspect, a display element having a transparent cured film obtained by the production method according to any one of the first aspect to the fifth aspect.
第九観点として、第一観点乃至第五観点のうちのレ、ずれか一項に記載の製造方法 によって得られる透明性硬化膜を有する液晶表示素子。  As a ninth aspect, a liquid crystal display element having a transparent cured film obtained by the manufacturing method according to one of the first aspect and the fifth aspect.
発明の効果  The invention's effect
[0012] 本発明によって得られる透明性硬化膜は、ハーフ露光時に感度が高ぐ且つ露光 マージンが広いという効果を有するため、特に、 TFT平坦化膜の凹凸とコンタクトホ ールを高感度で同時に精度よく形成する半透過型液晶表示素子の製造に好適に用 いること力 Sでさる。  [0012] The transparent cured film obtained by the present invention has an effect of high sensitivity at the time of half exposure and a wide exposure margin. In particular, the unevenness of the TFT flattening film and the contact hole are simultaneously highly sensitive and highly sensitive. It can be applied to the production of a semi-transmission type liquid crystal display device that is accurately formed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明は、基材上に露光感度の異なる 2層のポジ型感光性樹脂層を、低感度のポ ジ型感光性樹脂層が前記基材及び高感度のポジ型感光性樹脂層の間に位置する ように積層し、この 2層からなるポジ型感光性樹脂層を露光し、露光後加熱 (Post Exp osure Bake : PEB)し、現像し、ポストベータする工程を含むことを特徴とする透明性 硬化膜の製造方法である。 [0013] The present invention provides two positive photosensitive resin layers having different exposure sensitivities on a base material, and the low-sensitivity positive photosensitive resin layer is the base material and the high-sensitivity positive photosensitive resin layer. It is characterized in that it includes a step of exposing the positive photosensitive resin layer consisting of the two layers, post exposure bake (PEB), developing, and post-beta. It is the manufacturing method of transparency cured film.
詳細には、基材上に低感度のポジ型感光性樹脂層を形成し、さらに該低感度層の 上に高感度のポジ型感光性樹脂層を積層して基材上に露光感度の異なる 2層のポ ジ型感光性樹脂層を積層する工程、この積層された 2層のポジ型感光性樹脂層を露 光する工程、該 2層のポジ型感光性樹脂層を露光後加熱する工程、該 2層のポジ型 感光性樹脂層を現像する工程、該 2層のポジ型感光性樹脂層をポストベータするェ 程を含む透明性硬化膜の製造方法であって、該低感度のポジ型感光性樹脂層が下 記の (A)成分、(B)成分、(C)成分及び (D)成分を含有するポジ型感光性樹脂層で あることを特徴とする、透明性硬化膜の製造方法である。 Specifically, a low-sensitivity positive photosensitive resin layer is formed on a substrate, and a high-sensitivity positive photosensitive resin layer is further laminated on the low-sensitivity layer, so that the exposure sensitivity differs on the substrate. The step of laminating two layers of the positive photosensitive resin layer, the step of exposing the two laminated positive photosensitive resin layers, and the step of heating the two positive photosensitive resin layers after exposure A process for developing the two positive photosensitive resin layers, and a method for producing a transparent cured film comprising the step of post-betaing the two positive photosensitive resin layers. Type photosensitive resin layer A method for producing a transparent cured film, which is a positive photosensitive resin layer containing the components (A), (B), (C) and (D).
(A)成分:アルカリ可溶性樹脂  (A) component: alkali-soluble resin
(B)成分: 1分子中二個以上のビュルエーテル基を有する化合物  Component (B): Compound having two or more butyl ether groups in one molecule
(C)成分:ポストベータにより(A)成分と架橋反応する化合物  Component (C): Compound that crosslinks with component (A) by post-beta.
(D)成分:光酸発生剤  Component (D): Photoacid generator
[0014] 本発明の製造方法によれば、基材上に露光感度の異なる 2層のポジ型感光性樹 脂層を積層することで、ハーフトーンマスクを介して露光した際に、高感度のポジ型 感光性樹脂層(以下、高感度層と称す。)と低感度のポジ型感光性樹脂層(以下、低 感度層と称す。)で異なるパターン形状を形成することが可能である。即ち、本発明 の製造方法によれば、ハーフトーンマスクを介することにより、高感度層と低感度層で 異なる画像形状を 1回の露光で形成することができる。  [0014] According to the production method of the present invention, two layers of positive photosensitive resin layers having different exposure sensitivities are laminated on a substrate, so that when exposed through a halftone mask, a high sensitivity is obtained. Different pattern shapes can be formed between a positive photosensitive resin layer (hereinafter referred to as a high sensitivity layer) and a low sensitivity positive photosensitive resin layer (hereinafter referred to as a low sensitivity layer). In other words, according to the manufacturing method of the present invention, different image shapes can be formed in a single exposure by using a halftone mask in the high-sensitivity layer and the low-sensitivity layer.
[0015] 本発明においては、低感度層が前記基材及び高感度層の間に位置するように積 層するため、現像時に、未露光部として高感度層及び低感度が残存し、ハーフ露光 部は高感度層が除去されて低感度層が残存することとなり、完全露光部はポジ型感 光性樹脂層(高感度層と低感度層)がすべて除去されて基材が露出する。  In the present invention, since the low-sensitivity layer is laminated so as to be located between the base material and the high-sensitivity layer, the high-sensitivity layer and the low sensitivity remain as unexposed portions during development, and half exposure is performed. The high-sensitivity layer is removed from the part, and the low-sensitivity layer remains. In the completely exposed part, the positive photosensitive resin layer (high-sensitivity layer and low-sensitivity layer) is completely removed, and the base material is exposed.
ここで言うところのハーフ露光部は、完全露光部よりも少ない露光量で現像が可能 であり、且つ所望の画像 (イメージ)を形成することができる部分である。  The half-exposure portion referred to here is a portion that can be developed with a smaller exposure amount than the complete exposure portion and can form a desired image.
[0016] 所望の画像を得るためには、積層する低感度層と高感度層のインターミキシングを 抑制することが求められる。前記の二つの層においてインターミキシングの抑制が不 充分な場合、低感度層と高感度層の界面が不明瞭となり、ハーフ露光時に所望の画 像が得られ難くなる。  [0016] In order to obtain a desired image, it is required to suppress intermixing between the low-sensitivity layer and the high-sensitivity layer to be laminated. If the intermixing is not sufficiently suppressed in the two layers, the interface between the low-sensitivity layer and the high-sensitivity layer becomes unclear and it is difficult to obtain a desired image during half exposure.
本発明においては、低感度層の形成の際、該層を形成するポジ型感光性樹脂組 成物の溶液を塗布した後に予備乾燥 (加熱処理)することで、該樹脂組成物に含有 される成分同士が架橋し、これにより、有機溶媒に難溶な膜が基材上に形成されるこ ととなる。従って、その後低感度層の上に高感度層を形成する際、該層を形成するポ ジ型感光性樹脂組成物の溶液を塗布しても、低感度層と高感度層がインターミキシ ングを起こすことがない。 [0017] そして、高感度層及び低感度層は、それぞれ、現像が始まるために必要な露光量 より少ない量の光が照射される場合には現像時に膜減りが抑制され、現像が始まる ために必要な露光量の光が照射されてからは、速やかに現像されること(高精度且 つ高感度であること)が望まれる。 In the present invention, when the low-sensitivity layer is formed, it is contained in the resin composition by applying a solution of a positive photosensitive resin composition that forms the layer and then pre-drying (heat treatment). The components are crosslinked with each other, whereby a film hardly soluble in an organic solvent is formed on the substrate. Therefore, when a high-sensitivity layer is subsequently formed on the low-sensitivity layer, the low-sensitivity layer and the high-sensitivity layer do not intermix even if a solution of the photosensitive resin composition that forms the layer is applied. There is no waking. [0017] Then, the high-sensitivity layer and the low-sensitivity layer each cause a reduction in film thickness at the time of development when irradiation is performed with an amount of light that is smaller than the exposure amount necessary for the development to start, and the development starts. It is desired that development is performed promptly (high accuracy and high sensitivity) after irradiation with a necessary amount of light.
[0018] ここでハーフ露光部において、現像時に、低感度層の溶解が終了する露光量と、 高感度層の溶解が開始する露光量の差がハーフ露光マージンとなる。これは、高感 度層と低感度層の感度差と密接に関係し、これら 2つの層の感度差が大きいほどハ ーフ露光マージンは大きくなる。つまり、高感度層は感度が高ければ高いほど、低感 度層は感度が低ければ低いほど露光マージンが広くなる。高精度な画像を得るため には、ハーフ露光マージンが 10mJ以上であることが好ましい。  [0018] Here, in the half-exposure portion, during development, the difference between the exposure amount at which dissolution of the low-sensitivity layer ends and the exposure amount at which dissolution of the high-sensitivity layer starts is the half-exposure margin. This is closely related to the sensitivity difference between the high-sensitivity layer and the low-sensitivity layer. The greater the sensitivity difference between these two layers, the greater the half exposure margin. That is, the higher the sensitivity of the high sensitivity layer, the wider the exposure margin the lower the sensitivity of the low sensitivity layer. In order to obtain a highly accurate image, the half exposure margin is preferably 10 mJ or more.
[0019] 一方、素子製造のスループットを向上させるためには、低感度層がある程度高感度 であることが肝要である。これは、ハーフ露光マージンを大きくすることを目的として、 低感度層の現像の開始に必要な露光量を大きくしすぎると、低感度層の感度を低下 させる結果となり、かえってスループットの低下につながることによる。  On the other hand, in order to improve the throughput of device manufacturing, it is important that the low sensitivity layer has a certain degree of sensitivity. For the purpose of increasing the half-exposure margin, if the amount of exposure required to start development of the low-sensitivity layer is too large, the sensitivity of the low-sensitivity layer will be reduced, leading to a decrease in throughput. by.
そのため、低感度層としては、例えば、感度の高い化学増幅型の感光層であること が好ましい。  Therefore, the low-sensitivity layer is preferably, for example, a highly sensitive chemical amplification type photosensitive layer.
従って、高感度層は高感度な低感度層よりも更に高感度の感光層であることが要 求され、より感度の高!/、化学増幅型の感光層が好まし!/、。  Therefore, the high-sensitivity layer is required to be a photosensitive layer with higher sensitivity than the high-sensitivity low-sensitivity layer, and a higher-sensitivity layer is preferred! / A chemical amplification type photosensitive layer is preferred! /.
[0020] 本発明に用いるポジ型感光性樹脂層は、上記の如く述べた通りであり、所望の画 像を形成した後にポストベータすることで透明な硬化膜が得られる。 [0020] The positive photosensitive resin layer used in the present invention is as described above, and a transparent cured film can be obtained by post-beta formation after forming a desired image.
以下により好まし!/、ポジ型感光性樹脂層につ!/、て述べる。  The following is more preferred! / And the positive photosensitive resin layer! /.
[0021] <低感度ポジ型感光性樹脂層(低感度層) > <Low-sensitivity positive photosensitive resin layer (low-sensitivity layer)>
本発明に用いる低感度層は、(A)成分のアルカリ可溶性樹脂、(B)成分の 1分子 中二個以上のビュルエーテル基を有する化合物、(C)成分のポストベータにより(A) 成分と架橋反応する化合物、及び、(D)成分の光酸発生剤を含有するポジ型感光 性樹脂組成物よりなる。  The low-sensitivity layer used in the present invention comprises (A) an alkali-soluble resin, (B) a compound having two or more butyl ether groups in one molecule, (C) component (A) and component (A) by post-beta. It consists of a positive photosensitive resin composition containing a compound that undergoes a crosslinking reaction and a photoacid generator as component (D).
通常、低感度層は、上記のポジ型感光性樹脂組成物を (E)溶剤に溶解して溶液形 態と為し、該溶液を基材に塗布し、乾燥することで形成できる。以下に、各成分につ レヽて述べる。 Usually, the low-sensitivity layer can be formed by dissolving the positive photosensitive resin composition described above in (E) solvent to form a solution, applying the solution to a substrate, and drying. Below is a description of each component. Let me tell you.
[0022] [ (A)成分] [0022] [(A) component]
(A)成分はアルカリ可溶性樹脂であり、好適なものとしては、樹脂の構造中に、 (B) 成分のビュルエーテル基を有する化合物との間で熱架橋反応をなしうるための官能 基、並びに、(C)成分のポストベータにより(A)成分と架橋反応する化合物との間で 熱硬化反応をなしうる膜硬化のための官能基を有し、且つ、数平均分子量が 2, 000 乃至 50, 000であるアルカリ可溶性樹脂を挙げることができる。  The component (A) is an alkali-soluble resin, and as a preferred one, a functional group capable of undergoing a thermal crosslinking reaction with the compound having a butyl ether group of the component (B) in the resin structure, and , Having a functional group for film curing that can undergo a thermosetting reaction between the component (A) and a compound that undergoes a crosslinking reaction by post-beta of component (C), and having a number average molecular weight of 2,000 to 50 , 000, an alkali-soluble resin.
換言すると、(A)成分はアルカリ可溶性樹脂であり、好適なものとしては、樹脂の構 造中に、プリベータにより(B)成分のビュルエーテル基を有する化合物との間で熱架 橋反応をなしうるための官能基、並びに、ポストベータにより(C)成分と架橋反応して 熱硬化反応をなしうる膜硬化のための官能基を有し、且つ、数平均分子量が 2, 000 乃至 50, 000であるアルカリ可溶性樹脂を挙げることができる。  In other words, the component (A) is an alkali-soluble resin, and it is preferable that a thermal bridge reaction is performed with the compound having a butyl ether group of the component (B) by a prebeta during the resin structure. And a functional group for film curing that can crosslink with the component (C) by post-beta to form a thermosetting reaction, and the number average molecular weight is 2,000 to 50,000 An alkali-soluble resin that is:
[0023] 熱架橋反応のための官能基は、高められた温度の下 (プリベータの温度)で (B)成 分の化合物中のビュルエーテル基と反応して、(B)成分の化合物との間で熱架橋を なしうる基であり、その代表的な官能基は、カルボキシル基及びフエノール性ヒドロキ シ基の群から選ばれる少なくとも一種である。 [0023] The functional group for the thermal crosslinking reaction reacts with the butyl ether group in the (B) component compound at an elevated temperature (prebeta temperature) to form the (B) component compound. And a typical functional group thereof is at least one selected from the group consisting of a carboxyl group and a phenolic hydroxyl group.
[0024] また、膜硬化のための官能基は、上記の (A)成分及び (B)成分の熱架橋体におい て(露光部にあっては、熱架橋体が更に解離した脱架橋体において)、より高められ た温度(ポストベータの温度)の下で、(C)成分の化合物との間で架橋反応をなし、 膜を硬化せしめうる基である。 [0024] In addition, the functional group for film curing is present in the thermally crosslinked product of the above components (A) and (B) (in the exposed part, in the decrosslinked product in which the thermally crosslinked product is further dissociated). ), A group that undergoes a crosslinking reaction with the compound of component (C) under a higher temperature (post-beta temperature) and can cure the film.
後述するように、(C)成分が、ブロックイソシァネート基を 2個以上有する化合物の 場合、(A)成分が有する膜硬化のための官能基は、(C)成分の化合物との間でブッ ロタ部分が解離したイソシァネート基を介して架橋反応をなし、膜を硬化せしめる。 膜硬化のための官能基として代表的な官能基は、フエノール性ヒドロキシ基以外の ヒドロキシ基及び活性水素を有するァミノ基の群から選ばれる少なくとも一種である。 ここで、活性水素を有するァミノ基とは、反応によりプロトンを放出しうる 1級又は 2級 のアミノ基を意味する。従って、アミド基は、活性水素を持たないので、活性水素を有 するアミノ基に該当しない。 [0025] (A)成分のアルカリ可溶性樹脂は、斯かる構造を有するアルカリ可溶性樹脂であれ ばよく、樹脂を構成する高分子の主鎖の骨格及び側鎖の種類などにっレ、て特に限 定されない。 As will be described later, when the (C) component is a compound having two or more block isocyanate groups, the functional group for film curing that the (A) component has is between the compound of the (C) component. A crosslinking reaction occurs through the isocyanate group from which the broth moiety has been dissociated, and the film is cured. A typical functional group as a functional group for film curing is at least one selected from the group of hydroxy groups other than phenolic hydroxy groups and amino groups having active hydrogen. Here, the amino group having active hydrogen means a primary or secondary amino group capable of releasing a proton by reaction. Therefore, the amide group does not correspond to an amino group having active hydrogen because it does not have active hydrogen. [0025] The alkali-soluble resin of component (A) may be an alkali-soluble resin having such a structure, and is particularly limited depending on the type of main chain skeleton and side chain of the polymer constituting the resin. Not determined.
[0026] 然しながら、(A)成分の樹脂は、数平均分子量が 2, 000乃至 50, 000の範囲内に あるものである。数平均分子量が 50, 000を超えて過大なものであると、現像残渣が 発生し易くなり、感度が大きく低下する。一方、数平均分子量が 2, 000未満で過小 なものであると、現像の際、露光部の膜減りが相当量発生し、硬化不足になる場合が ある。  [0026] However, the resin of component (A) has a number average molecular weight in the range of 2,000 to 50,000. If the number average molecular weight exceeds 50,000, the development residue is likely to be generated, and the sensitivity is greatly reduced. On the other hand, if the number average molecular weight is less than 2,000, and the development is too small, a considerable amount of film loss may occur in the exposed area, resulting in insufficient curing.
[0027] (A)成分のアルカリ可溶性樹脂としては、例えばアクリル系樹脂、ポリヒドロキシスチ レン系樹脂、あるいはポリイミド前駆体又はポリイミド等を挙げることができる。  [0027] Examples of the alkali-soluble resin of component (A) include acrylic resins, polyhydroxystyrene resins, polyimide precursors, and polyimides.
[0028] 本発明にお!/、ては、複数種のモノマーを重合して得られる共重合体(以下、特定共 重合体と称す。)からなるアルカリ可溶性樹脂を (A)成分として用いることもできる。こ の場合、(A)成分のアルカリ可溶性樹脂は、複数種の特定共重合体のブレンド物で あってもよい。  [0028] In the present invention, an alkali-soluble resin composed of a copolymer obtained by polymerizing a plurality of types of monomers (hereinafter referred to as a specific copolymer) is used as the component (A). You can also. In this case, the alkali-soluble resin as the component (A) may be a blend of a plurality of types of specific copolymers.
[0029] すなわち、上記の特定共重合体は、アルカリ可溶性を発現するモノマー、即ちカル ボキシル基及びフエノール性ヒドロキシ基のうち少なくとも一方を有するモノマーの群 力、ら適宜選ばれる少なくとも一種のモノマーと、膜硬化のための官能基を有するモノ マー、即ちフエノール性ヒドロキシ基以外のヒドロキシ基及び活性水素を有するァミノ 基のうち少なくとも一方を有するモノマーの群から適宜選ばれる少なくとも一種のモノ マーとを、必須の構成単位として形成された共重合体であって、その数平均分子量( ポリスチレン換算)が 2, 000乃至 50, 000のものである。  [0029] That is, the specific copolymer includes an alkali-soluble monomer, that is, a group of monomers having at least one of a carboxyl group and a phenolic hydroxy group, and at least one monomer selected as appropriate. A monomer having a functional group for film curing, that is, at least one monomer appropriately selected from the group of monomers having at least one of a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen, is essential. A copolymer having a number average molecular weight (polystyrene equivalent) of 2,000 to 50,000.
なお上記特定共重合体の数平均分子量は及び重量平均分子量は、例えば、 日本 分光(株)製 GPC装置(Shodex (登録商標)カラム KF803Lおよび KF804L)を用 い、溶出溶媒テトラヒドロフランを流量 lml/分でカラム中に (カラム温度 40°C)流して 溶離させるという条件で測定することができる。  The number average molecular weight and the weight average molecular weight of the above specific copolymer are measured using, for example, a GPC apparatus (Shodex (registered trademark) columns KF803L and KF804L) manufactured by JASCO Corporation, and the elution solvent tetrahydrofuran is supplied at a flow rate of lml / min. It can be measured under the condition that it is eluted by flowing through the column (column temperature 40 ° C).
[0030] 上記の「カルボキシル基及びフエノール性ヒドロキシ基のうち少なくとも一方を有す るモノマー」には、カルボキシル基を有するモノマー、フエノール性ヒドロキシ基を有 するモノマー、ならびに、カルボキシル基及びフエノール性ヒドロキシ基の両方を有す るモノマーが含まれる。これらのモノマーは、カルボキシル基又はフエノール性ヒドロ キシ基を一個有するものに限らず、複数個有するものでもよい。 [0030] The above-mentioned "monomer having at least one of carboxyl group and phenolic hydroxy group" includes a monomer having a carboxyl group, a monomer having a phenolic hydroxy group, and a carboxyl group and a phenolic hydroxy group. Have both Monomer. These monomers are not limited to those having one carboxyl group or phenolic hydroxy group, and may have a plurality thereof.
[0031] また上記の「フエノール性ヒドロキシ基以外のヒドロキシ基及び活性水素を有するァ ミノ基のうち少なくとも一方を有するモノマー」には、フエノール性ヒドロキシ基以外のヒ ドロキシ基を有するモノマー、活性水素を有するアミノ基を有するモノマー、ならびに 、フエノール性ヒドロキシ基以外のヒドロキシ基及び活性水素を有するァミノ基の両方 を有するモノマーが含まれる。これらのモノマーは、フエノール性ヒドロキシ基以外のヒ ドロキシ基又は活性水素を有するアミノ基を一個有するものに限らず、複数個有する ものでもよい。 [0031] The above-mentioned "monomer having at least one of a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen" includes a monomer having a hydroxy group other than a phenolic hydroxy group, and active hydrogen. A monomer having an amino group, and a monomer having both a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen. These monomers are not limited to those having one hydroxyl group other than a phenolic hydroxy group or one amino group having an active hydrogen, and may have a plurality.
以下、上記モノマーの具体例を挙げるが、これらに限定されるものでない。  Hereinafter, although the specific example of the said monomer is given, it is not limited to these.
[0032] カルボキシル基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸、クロト ン酸、モノー(2—(アタリロイルォキシ)ェチル)フタレート、モノー(2—(メタクリロイル ォキシ)ェチル)フタレート、 N- (カルボキシフエニル)マレイミド、 N- (カルボキシフ ェニル)メタクリルアミド、 N— (カルボキシフエニル)アクリルアミド等が挙げられる。 [0032] Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, crotonic acid, mono- (2- (acryloyloxy) ethyl) phthalate, mono- (2- (methacryloyloxy) ethyl) phthalate, N -(Carboxyphenyl) maleimide, N- (carboxyphenyl) methacrylamide, N- (carboxyphenyl) acrylamide and the like.
[0033] フエノール性ヒドロキシ基を有するモノマーとしては、例えば、ヒドロキシスチレン、 N (ヒドロキシフエニル)アクリルアミド、 N- (ヒドロキシフエニル)メタクリルアミド、 N- ( ヒドロキシフエニル)マレイミド等が挙げられる。 [0033] Examples of the monomer having a phenolic hydroxy group include hydroxystyrene, N (hydroxyphenyl) acrylamide, N- (hydroxyphenyl) methacrylamide, N- (hydroxyphenyl) maleimide and the like.
[0034] フエノール性ヒドロキシ基以外のヒドロキシ基を有するモノマーとしては、例えば、 2 キシ 6—ヒドロキシノルボルネン一 2—カルボキシリック一 6—ラタトン、 2—ヒドロキシ ェチルメタタリレート、 2 ヒドロキシプロピルメタタリレート、 5 メタクリロイルォキシー 6ーヒドロキシノルボルネン 2 カルボキシリック 6—ラタトン等が挙げられる。 [0034] Examples of the monomer having a hydroxy group other than the phenolic hydroxy group include, for example, 2-hydroxy 6-hydroxynorbornene-1, 2-carboxyl-6-latatane, 2-hydroxyethyl metatalylate, 2-hydroxypropyl metatalylate 5 Methacryloyloxy 6-hydroxynorbornene 2 Carboxylic 6-latathone and the like.
[0035] さらに、活性水素を有するアミノ基を有するモノマーとしては、 2 アミノエチルアタリ レート、 2—アミノメチルメタタリレート等が挙げられる。  [0035] Further, examples of the monomer having an amino group having active hydrogen include 2-aminoethyl acrylate and 2-aminomethyl methacrylate.
[0036] また、特定共重合体は、熱架橋反応のための官能基を有するモノマー及び膜硬化 のための官能基を有するモノマー以外のモノマー(以下、その他モノマーと称す。)を も構成単位として形成された共重合体であってもよい。  [0036] In addition, the specific copolymer includes a monomer having a functional group for thermal crosslinking reaction and a monomer other than a monomer having a functional group for film curing (hereinafter referred to as other monomer) as structural units. It may be a formed copolymer.
[0037] その他モノマーは、具体的には、カルボキシル基及びフエノール性ヒドロキシ基のう ちの少なくとも一方を有するモノマー、並びに、フエノール性ヒドロキシ基以外のヒドロ キシ基及び活性水素を有するァミノ基のうちの少なくとも一方を有するモノマーと共 重合することが可能なものであればよぐ(A)成分の特性を損ねない限り、特に限定 されるものでない。 [0037] Other monomers specifically include carboxyl groups and phenolic hydroxy groups. Any monomer that can be copolymerized with a monomer having at least one of the above and a monomer having at least one of a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen (A) is acceptable. There is no particular limitation as long as the properties of the components are not impaired.
[0038] その他モノマーの具体例としては、アクリル酸エステル化合物、メタクリル酸エステ ル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及 びビュル化合物等が挙げられる。  [0038] Specific examples of other monomers include acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, and bur compounds.
[0039] アクリル酸エステル化合物としては、例えば、メチルアタリレート、ェチルアタリレート 、イソプロピルアタリレート、ベンジルアタリレート、ナフチルアタリレート、アントリルァク リレート、アントリルメチルアタリレート、フエニルアタリレート、 2, 2, 2—トリフルォロェ チルアタリレート、 tert ブチルアタリレート、シクロへキシルアタリレート、イソボル二 ルアタリレート、 2—メトキシェチルアタリレート、メトキシトリエチレングリコールアタリレ ート、 2 エトキシェチルアタリレート、テトラヒドロフルフリルアタリレート、 3 メトキシ ブチルアタリレート、 2—メチルー 2—ァダマンチルアタリレート、 2—プロピル 2—ァ ダマンチルアタリレート、 8—メチルー 8—トリシクロデシルアタリレート、及び、 8—ェチ ル一 8—トリシクロデシルアタリレート等が挙げられる。  [0039] Examples of the acrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2, 2 , 2-Trifluoroethyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2 ethoxyethyl acrylate Furfuryl acrylate, 3-methoxy butyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl 2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate and 8-ethOne 8-tricyclodecyl Atari rate, and the like.
[0040] メタクリル酸エステル化合物としては、例えば、メチルメタタリレート、ェチルメタクリレ ート、イソプロピルメタタリレート、ベンジルメタタリレート、ナフチルメタタリレート、アント リノレメタクリレー卜、 ン卜リノレメチノレメタクリレー卜、フエニノレメタクリレー卜、 2, 2, 2—卜リ フルォロェチルメタタリレート、 tert ブチルメタタリレート、シクロへキシルメタクリレー ト、イソボルニルメタタリレート、 2—メトキシェチルメタタリレート、メトキシトリエチレング リコーノレメタタリレート、 2—エトキシェチルメタタリレート、テトラヒドロフノレフリノレメタタリ  [0040] Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthrinole methacrylate, nonlinole methacrylate methacrylate. Rhein, Phenylomethacrylate, 2, 2, 2-Lifluoroethyl methacrylate, tert Butyl methacrylate, Cyclohexyl methacrylate, Isobornyl methacrylate, 2-methoxyethyl Metatalylate, methoxytriethylene glycolate methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofunolefurenoremetatalit
2 プロピルー2 ァダマンチルメタタリレート、 8 メチルー 8 トリシクロデシルメタク リレート、及び、 8—ェチルー 8—トリシクロデシルメタタリレート等が挙げられる。 Examples thereof include 2-propyl-2-adamantyl methacrylate, 8 methyl-8 tricyclodecyl methacrylate, and 8-ethyl-8-tricyclodecyl methacrylate.
[0041] ビュル化合物としては、例えば、メチルビュルエーテル、ベンジルビュルエーテル、 2—ヒドロキシェチノレビニノレエーテノレ、フエニノレビニノレエーテノレ、及び、プロピノレビ二 ルエーテル等が挙げられる。 [0042] スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモ スチレン等が挙げられる。 [0041] Examples of the bur compound include methyl butyl ether, benzyl butyl ether, 2-hydroxy ethino levino reetenole, phenino levino ree tenole, and propino vinyl ether. [0042] Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
[0043] マレイミド化合物としては、例えば、マレイミド、 N—メチルマレイミド、 N—フエニルマ レイミド、及び N—シクロへキシルマレイミド等が挙げられる。  [0043] Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
[0044] 本発明に用いる特定共重合体を得る方法は特に限定されないが、例えば、カルボ キシル基およびフエノール性ヒドロキシ基のうち少なくとも一方を有するモノマーの群 力、ら適宜選ばれる少なくとも一種のモノマーと、フエノール性ヒドロキシ基以外のヒドロ キシ基及び活性水素を有するァミノ基のうち少なくとも一方を有するモノマーの群か ら適宜選ばれる少なくとも一種のモノマーと、所望により上記モノマー以外のモノマー と、所望により重合開始剤等を溶剤中において、 50乃至 110°Cの温度下で重合反 応させることにより、得られる。その際、用いられる溶剤は、特定共重合体を構成する モノマー及び特定共重合体を溶解するものであれば特に限定されなレ、。具体例とし ては、後述する(E)溶剤に記載する溶剤が挙げられる。  [0044] The method for obtaining the specific copolymer used in the present invention is not particularly limited. For example, the group of monomers having at least one of a carboxyl group and a phenolic hydroxy group, and at least one monomer appropriately selected from , At least one monomer appropriately selected from the group of monomers having at least one of a hydroxy group other than a phenolic hydroxy group and an amino group having an active hydrogen, and optionally a monomer other than the above monomers, and optionally polymerization initiation It can be obtained by polymerizing the agent in a solvent at a temperature of 50 to 110 ° C. In this case, the solvent used is not particularly limited as long as it dissolves the monomer constituting the specific copolymer and the specific copolymer. Specific examples include the solvents described in (E) Solvent described later.
このようにして得られる特定共重合体は、通常、この特定共重合体が溶剤に溶解し た溶液の状態である。  The specific copolymer thus obtained is usually in a solution state in which the specific copolymer is dissolved in a solvent.
また、上記のようにして得られた特定共重合体の溶液を、ジェチルエーテルや水等 の撹拌下に投入して再沈殿させ、生成した沈殿物を濾過 '洗浄した後、常圧又は減 圧下で、常温あるいは加熱乾燥することで、特定共重合体の粉体とすることができる 。このような操作により、特定共重合体と共存する重合開始剤や未反応モノマーを除 去すること力 Sでき、その結果、精製した特定共重合体の粉体を得られる。一度の操作 で充分に精製できない場合は、得られた粉体を溶剤に再溶解して、上記の操作を繰 り返し行えば良い。  In addition, the solution of the specific copolymer obtained as described above is re-precipitated by stirring with stirring such as jetyl ether or water, and the generated precipitate is filtered and washed, and then at normal pressure or reduced. The powder of the specific copolymer can be obtained by drying at room temperature or under heat. By such an operation, it is possible to remove the polymerization initiator and unreacted monomer coexisting with the specific copolymer, and as a result, a purified powder of the specific copolymer can be obtained. If sufficient purification is not possible with a single operation, the obtained powder may be redissolved in a solvent and the above operation repeated.
本発明においては、特定共重合体の粉体をそのまま用いても良ぐあるいはその粉 体を、たとえば後述する(E)溶剤に再溶解して溶液の状態として用いても良い。  In the present invention, the powder of the specific copolymer may be used as it is, or the powder may be redissolved in a solvent (E) described later and used as a solution.
[0045] また、(A)成分のアルカリ可溶性樹脂としては、ポリアミド酸、ポリアミド酸エステル、 一部イミド化したポリアミド酸等のポリイミド前駆体、カルボン酸基含有ポリイミド等のポ リイミドを用いることもでき、それらはアルカリ可溶性であれば特にその種類を限定さ れずに用いることができる。 上記ポリイミド前駆体やポリイミドは現像性や使用する溶剤に対する溶解性の観点 力、ら数平均分子量 (ポリエチレンオキサイドおよびポリエチレングリコール換算値) 2, 000乃至 50, 000の範囲内にあるものである。 [0045] As the alkali-soluble resin of component (A), polyamic acid, polyamic acid ester, polyimide precursor such as partially imidized polyamic acid, and polyimide such as carboxylic acid group-containing polyimide can also be used. As long as they are soluble in alkali, the kind thereof can be used without particular limitation. The polyimide precursors and polyimides are within the range of 2,000 to 50,000 in terms of developability and solubility in the solvent used, and number average molecular weight (in terms of polyethylene oxide and polyethylene glycol).
なお、上記ポリイミド前駆体やポリイミドの数平均分子量及び重量平均分子量は、 例えば、 日本分光(株)製 GPC装置(Shodex (登録商標)カラム KD802、 KD803 および KD804)を用い、溶出溶媒 0. lmol%臭化リチウム N, N ジメチルホルムァ ミド溶液を流量 lml/分でカラム中に (カラム温度 40°C)流して溶離させると!/、う条件 で測定すること力できる。  The number average molecular weight and weight average molecular weight of the polyimide precursor and polyimide are, for example, as follows: GPC apparatus (Shodex (registered trademark) columns KD802, KD803, and KD804) manufactured by JASCO Corporation. It is possible to measure under the following conditions when lithium bromide N, N dimethylformamide solution is eluted at a flow rate of lml / min (column temperature 40 ° C).
[0046] ポリイミド前駆体である前記ポリアミド酸は、一般的に(a)テトラカルボン酸二無水物 化合物と(b)ジァミン化合物とを重縮合して得ることができる。  [0046] The polyamic acid as a polyimide precursor can be generally obtained by polycondensation of (a) a tetracarboxylic dianhydride compound and (b) a diamine compound.
[0047] (a)テトラカルボン酸二無水物化合物は特に限定はなぐ具体例を挙げると、ピロメ リット酸二無水物、 3, 3 ' , 4, 4'—ビフエニルテトラカルボン酸二無水物、 3, 3' , 4, 4'一べンゾフエノンテトラカルボン酸二無水物、 3, 3' , 4, 4'—ジフエニルエーテル テトラカルボン酸二無水物、 3, 3' , 4, 4'—ジフエニルスルホンテトラカルボン酸二無 水物などの芳香族テトラカルボン酸、 1 , 2, 3, 4 シクロブタンテトラカルボン酸二無 水物、 1 , 2 ジメチノレー 1 , 2, 3, 4 シクロフ、、タンテトラ力ノレボン酸二無水物、 1 , 2, 3, 4 テトラメチノレー 1 , 2, 3, 4 シクロブタンテトラ力ノレボン酸二無水物、 1 , 2, 3, 4ーシクロペンタンテトラカルボン酸二無水物、 1 , 2, 3, 4—シクロへキサンテトラカル ボン酸二無水物、 3, 4 ジカノレポキシー 1 , 2, 3, 4 テトラヒドロー 1 ナフタレンコ ハク酸二無水物のような脂環式テトラカルボン酸二無水物、 1 , 2, 3, 4 ブタンテトラ カルボン酸二無水物のような脂肪族テトラカルボン酸二無水物を挙げることができる [0047] (a) Specific examples of tetracarboxylic dianhydride compounds include, but are not limited to, pyromellitic dianhydride, 3, 3 ', 4, 4'-biphenyl tetracarboxylic dianhydride, 3, 3 ', 4, 4' monobenzophenone tetracarboxylic dianhydride, 3, 3 ', 4, 4'-diphenyl ether tetracarboxylic dianhydride, 3, 3', 4, 4 ' —Aromatic tetracarboxylic acids such as diphenylsulfone tetracarboxylic acid dihydrate, 1, 2, 3, 4 cyclobutane tetracarboxylic acid dihydrate, 1, 2 dimethinole 1, 2, 3, 4 Cyclofu, tan tetra Force norevon dianhydride, 1, 2, 3, 4 tetramethylolene 1, 2, 3, 4 cyclobutane tetra force norevon dianhydride, 1, 2, 3, 4-cyclopentanetetracarboxylic dianhydride, 1, 2, 3, 4-Cyclohexanetetracarboxylic dianhydride, 3, 4 Dicanolepoxy 1, 2, 3, 4 Tetrahydro Alicyclic tetracarboxylic dianhydrides such as 1-naphthalene co Haq dianhydride, 1, 2, 3, 4 and aliphatic tetracarboxylic dianhydrides such as Butantetora dianhydride
Yes
これらは、 1種又は 2種以上の化合物を組み合わせて用いることができる。  These can be used alone or in combination of two or more compounds.
[0048] また、(b)ジァミン化合物も特に限定されることはなぐ例えば 2, 4 ジァミノ安息香 酸、 2, 5 ジァミノ安息、香酸、 3, 5 ジァミノ安息、香酸、 4, 6 ジアミノー , 3 ベン ゼンジカルボン酸、 2, 5 ジアミノー 1 , 4 ベンゼンジカルボン酸、ビス(4 アミノー 3—カルボキシフエ二ノレ)エーテル、ビス(4 アミノー 3, 5—ジカルボキシフエニル) エーテル、ビス(4—ァミノ一 3—カルボキシフエ二ノレ)スルホン、ビス(4—ァミノ一 3, 5 ージカルボキシフエ二ノレ)スルホン、 4, 4,ージアミノー 3, 3,ージカルボキシビフエ二 ノレ、 4, 4,一ジァミノ一 3, 3,一ジカルボキシ一 5, 5,一ジメチルビフエニル、 4, 4, 一 ジァミノー 3, 3'—ジカルボキシ 5, 5'—ジメトキシビフエニル、 1 , 4 ビス(4 アミ ノ一 3—カルボキシフエノキシ)ベンゼン、 1 , 3—ビス(4—ァミノ一 3—カルボキシフエ ノキシ)ベンゼン、ビス [4— (4—アミノー 3—カルボキシフエノキシ)フエ二ノレ]スルホン 、ビス [4— (4 ァミノ一 3 カルボキシフエノキシ)フエ二ノレ]プロパン、 2, 2 ビス [4 一(4 アミノー 3 カルボキシフエノキシ)フエ二ノレ]へキサフルォロプロパン、 2, 4— ジァミノフエノール、 3, 5 ジァミノフエノール、 2, 5 ジァミノフエノール、 4, 6 ジァ ミノレゾルシノール、 2, 5 ジァミノハイドロキノン、ビス(3 ァミノ一 4 ヒドロキシフエ 二ノレ)エーテル、ビス(4—アミノー 3—ヒドロキシフエ二ノレ)エーテル、ビス(4—アミノー 3, 5—ジヒドロキシフエ二ノレ)エーテル、ビス(3—アミノー 4—ヒドロキシフエ二ノレ)メタ ン、ビス(4—アミノー 3—ヒドロキシフエニル)メタン、ビス(4—アミノー 3, 5—ジヒドロキ シフエ二ノレ)メタン、ビス(3—アミノー 4—ヒドロキシフエ二ノレ)スルホン、ビス(4—ァミノ —3—ヒドロキシフエ二ノレ)スルホン、ビス(4—アミノー 3, 5—ジヒドロキシフエ二ノレ)ス ルホン、 2, 2 ビス(3 アミノー 4 ヒドロキシフエ二ノレ)へキサフルォロプロパン、 2,[0048] In addition, (b) diamine compounds are not particularly limited. For example, 2,4 diaminobenzoic acid, 2,5 diaminobenzoic acid, perfuming acid, 3,5 diaminobenzoic acid, perfuming acid, 4,6 diamino-, 3 Benzene dicarboxylic acid, 2,5 diamino-1,4 benzenedicarboxylic acid, bis (4 amino-3-carboxyphenyl) ether, bis (4 amino-3,5-dicarboxyphenyl) ether, bis (4-amino) 3-Carboxyphenol) sulfone, bis (4-amino) 3, 5 -Dicarboxyphenyl) sulfone, 4,4, -diamino-3,3, -dicarboxybiphenyl, 4,4,1 diamino-1,3,3,1 dicarboxy-1,5,5,1 dimethylbiphenyl, 4, 4, 1 Diamino 3,3'-dicarboxy 5,5'-dimethoxybiphenyl, 1,4 bis (4 amino 3-carboxyphenoxy) benzene, 1,3-bis (4-amino) 3-carboxyphenoxy) benzene, bis [4- (4-amino-3-carboxyphenoxy) phenol] sulfone, bis [4- (4-aminophenoxy) phenol] propane, 2 , 2 bis [4 (4 amino-3 carboxyphenoxy) phenol] hexafluoropropane, 2,4-diaminophenol, 3,5 diaminophenol, 2,5 diaminophenol , 4, 6 diamino resorcinol, 2, 5 diamino hydride Quinone, bis (3-amino-4-hydroxyphenol), bis (4-amino-3-hydroxyphenol) ether, bis (4-amino-3,5-dihydroxyphenol) ether, bis (3-amino) 4-Hydroxyphenol) methane, bis (4-amino-3-hydroxyphenyl) methane, bis (4-amino-3,5-dihydroxyphenyl) methane, bis (3-amino-4-hydroxyphenol) ) Sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, bis (4-amino-3,5-dihydroxyphenol) sulfone, 2,2bis (3-amino-4-hydroxyphenol) hexane Fluoropropane, 2,
2 ビス(4 アミノー 3 ヒドロキシフエ二ノレ)へキサフルォロプロパン、 2, 2 ビス(4 アミノー 3, 5—ジヒドロキシフエ二ノレ)へキサフルォロプロパン、 4, 4'ージアミノー 3 , 3'—ジヒドロキシビフエニル、 4, 4'ージアミノー 3, 3'—ジヒドロキシー 5, 5'—ジメ チルビフエニル、 4, 4, 一ジァミノ一 3, 3'—ジヒドロキシ一 5, 5, 一ジメトキシビフエ二 ル、 1 , 4—ビス(3—ァミノ一 4—ヒドロキシフエノキシ)ベンゼン、 1 , 3—ビス(3—アミ ノー 4—ヒドロキシフエノキシ)ベンゼン、 1 , 4—ビス(4—アミノー 3—ヒドロキシフエノキ シ)ベンゼン、 1 , 3—ビス(4—アミノー 3—ヒドロキシフエノキシ)ベンゼン、ビス [4— (2 Bis (4 amino-3 hydroxyphenenole) hexafluoropropane, 2, 2 Bis (4 amino-3,5-dihydroxyphenenole) hexafluoropropane, 4, 4'-diamino-3, 3 ' —Dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxy-5,5′-dimethylbiphenyl, 4,4,1 diamino-1,3,3′-dihydroxy-1,5,5,1 dimethoxybiphenyl, 1,4-bis (3-amino-4-hydroxyphenoxy) benzene, 1,3-bis (3-amino-4-hydroxyphenoxy) benzene, 1,4-bis (4-amino-3-hydroxy) (Phenoxy) benzene, 1,3-bis (4-amino-3-hydroxyphenoxy) benzene, bis [4- (
3—ァミノ一 4—ヒドロキシフエノキシ)フエ二ノレ]スルホン、ビス [4— (3—ァミノ一 4—ヒ ドロキシフエノキシ)フエ二ノレ]プロパン、 2, 2 ビス [4一(3 アミノー 4ーヒドロキシフ エノキシ)フエニル]へキサフルォロプロパン等フエノール性ヒドロキシ基を有するジァ ミン化合物、 1 , 3—ジアミノー 4 メルカプトベンゼン、 1 , 3—ジアミノー 5—メルカプト ベンゼン、 1 , 4ージアミノー 2 メルカプトベンゼン、ビス(4 アミノー 3 メルカプトフ ェニノレ)エーテル、 2, 2 ビス(3 アミノー 4 メルカプトフエ二ノレ)へキサフルォロプ 口パン等チォフエノール基を有するジァミン化合物、 1 , 3—ジァミノベンゼンー4ース ノレホン酸、 1 , 3 ジァミノベンゼン 5 スノレホン酸、 1 , 4ージァミノベンゼン 2— スルホン酸、ビス(4ーァミノベンゼン 3—スルホン酸)エーテル、 4, 4,ージアミノビ フエ二ノレ一 3, 3, 一ジスルホン酸、 4, 4, 一ジァミノ一 3, 3, 一ジメチルビフエニル一 6 , 6 ' ジスルホン酸等スルホン酸基を有するジァミン化合物が挙げられる。また、 p— フエ二レンジァミン、 m フエ二レンジァミン、 4, 4 'ーメチレン ビス(2, 6 ェチノレア 二リン)、 4, 4 ' メチレン一ビス(2 イソプロピル一 6—メチルァニリン)、 4, 4 '—メチ レン一ビス(2, 6 ジイソプロピルァニリン)、 2, 4, 6 トリメチルー 1 , 3 フエ二レン ジァミン、 2, 3, 5, 6 テトラメチルー 1 , 4 フエ二レンジァミン、 o トリジン、 m トリ ジン、 3, 3 ' , 5, 5 '—テトラメチルベンジジン、ビス [4— (3—アミノフエノキシ)フエ二 ノレ]スルホン、 2, 2 ビス [4— (3 アミノフエノキシ)フエ二ノレ]プロパン、 2, 2 ビス [ 4一(3—アミノフエノキシ)フエ二ノレ]へキサフルォロプロパン、 4, 4 'ージアミノー 3, 3 ' 一ジメチルジシクロへキシルメタン、 4, 4 'ージアミノジフエニルエーテル、 3, 4—ジ アミノジフエニルエーテル、 4, 4 'ージアミノジフエニルメタン、 2, 2 ビス(4ーァニリノ )へキサフルォロプロパン、 2, 2 ビス(3 ァニリノ)へキサフルォロプロパン、 2, 2— ビス(3—アミノー 4—トルイノレ)へキサフルォロプロパン、 1 , 4—ビス(4—アミノフエノ キシ)ベンゼン、 1 , 3—ビス(4—アミノフエノキシ)ベンゼン、ビス [4— (4—アミノフエノ キシ)フエ二ノレ]スルホン、 2, 2 ビス [4— (4 アミノフエノキシ)フエ二ノレ]プロパン、 2, 2 ビス [4一(4 アミノフエノキシ)フエ二ノレ]へキサフルォロプロパン等のジァミン 化合物を挙げることが出来る。 3-Amino-1-4-hydroxyphenoxy) phenone] sulfone, bis [4- (3-Amino-4-hydroxyphenoxy) phenol] propane, 2,2 bis [4-1- (3-amino-) 4-hydroxyphenoxy) phenyl] hexafluoropropane and other diamino compounds having a phenolic hydroxy group, 1,3-diamino-4-mercaptobenzene, 1,3-diamino-5-mercaptobenzene, 1,4-diamino-2 mercaptobenzene Bis (4 amino-3 mercaptophenol) ether, 2, 2 bis (3 amino-4-mercaptophenol) hexafluorop Diamine compounds having thiophenolic groups such as oral bread, 1,3-diaminobenzene-4-ose norphonic acid, 1,3-diaminobenzene 5 sulphonic acid, 1,4-diaminobenzene 2-sulfonic acid, bis (4-aminominobenzene 3-sulfonic acid) ether, 4, 4, diaminobiphenyl 3, 3, monodisulfonic acid, 4, 4, monodiamine 3, 3, monodimethylbiphenyl 1, 6, 6 'disulfonic acid, etc. Diamine compounds having Also, p-phenylenediamine, m-phenylenediamine, 4,4'-methylenebis (2,6 ethenorea diphosphorus), 4,4 'methylene monobis (2 isopropyl-6-methylaniline), 4, 4'-methi Renbis (2, 6 diisopropylaniline), 2, 4, 6 trimethyl-1,3 phenylenediamine, 2, 3, 5,6 tetramethyl-1,4 phenylenediamine, o tolidine, m tolidine, 3, 3 ', 5, 5'-tetramethylbenzidine, bis [4— (3-aminophenoxy) phenol] sulfone, 2,2bis [4— (3aminophenoxy) phenol] propane, 2,2bis [4 1- (3-aminophenoxy) phenyl] hexafluoropropane, 4,4'-diamino-3,3'-dimethyldimethylcyclohexyl, 4,4'-diaminodiphenyl ether, 3,4-diaminodiph Enil ether, 4, 4 '- Aminodiphenylmethane, 2, 2bis (4-anilino) hexafluoropropane, 2,2bis (3anilino) hexafluoropropane, 2,2-bis (3-amino-4-toluinore) hexa Fluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenylene] sulfone, 2,2bis Examples thereof include diamine compounds such as [4- (4 aminophenoxy) phenol] propane and 2,2bis [4 (4-aminophenoxy) phenol] hexafluoropropane.
これらは、 1種又は 2種以上の化合物を組み合わせて用いることができる。  These can be used alone or in combination of two or more compounds.
[0049] 本発明で用いられるポリアミド酸が(a)テトラカルボン酸二無水物化合物と (b)ジアミ ン化合物から製造される場合、両化合物の配合比、すなわち < (b)ジァミン化合物の 総モル数/ (a)テトラカルボン酸二無水物化合物の総モル数〉は 0. 7乃至 1. 2であ ること力 S望ましい。通常の重縮合反応同様、このモル比が 1に近いほど生成するポリ アミド酸の重合度は大きくなり分子量が増加する。  [0049] When the polyamic acid used in the present invention is produced from (a) a tetracarboxylic dianhydride compound and (b) a diamine compound, the compounding ratio of both compounds, that is, <(b) the total mole of the diamine compound The number / (a) the total number of moles of tetracarboxylic dianhydride compound> is preferably 0.7 to 1.2. As in the normal polycondensation reaction, the closer the molar ratio is to 1, the higher the degree of polymerization of the polyamic acid produced and the higher the molecular weight.
[0050] また、ジァミン化合物を過剰に用いて重合した際、残存するポリアミド酸の末端アミ ノ基に対してカルボン酸無水物を反応させ末端アミノ基を保護することもできる。 このようなカルボン酸無水物の例としてはフタル酸無水物、トリメリット酸無水物、無 水マレイン酸、ナフタル酸無水物、水素化フタル酸無水物、メチルー 5—ノルボルネ ンー 2, 3 ジカルボン酸無水物、無水ィタコン酸、テトラヒドロフタル酸無水物等を挙 げること力 Sでさる。 [0050] When the polymerization is carried out using an excess of the diamine compound, the terminal amino group can be protected by reacting the terminal amino group of the remaining polyamic acid with a carboxylic acid anhydride. Examples of such carboxylic anhydrides include phthalic anhydride, trimellitic anhydride, anhydrous maleic acid, naphthalic anhydride, hydrogenated phthalic anhydride, methyl-5-norbornene-2,3 dicarboxylic anhydride Power, itaconic anhydride, tetrahydrophthalic anhydride, etc.
[0051] ポリアミド酸の製造において、ジァミン化合物とテトラカルボン酸二無水物化合物と の反応の反応温度は— 20乃至 150°C、好ましくは— 5乃至 100°Cの任意の温度を 選択すること力できる。高分子量のポリアミド酸を得るには、反応温度 5°C乃至 40°C、 反応時間 1時間乃至 48時間の範囲にて適宜選択する。低分子量で保存安定性の 高く部分的にイミド化されたポリアミド酸を得るには反応温度 40°C乃至 90°C、反応時 間 10時間以上から選択することがより好ましい。  [0051] In the production of the polyamic acid, the reaction temperature of the reaction between the diamine compound and the tetracarboxylic dianhydride compound can be selected from any temperature of -20 to 150 ° C, preferably -5 to 100 ° C. it can. In order to obtain a high molecular weight polyamic acid, the reaction temperature is appropriately selected within the range of 5 ° C to 40 ° C and the reaction time of 1 hour to 48 hours. In order to obtain a partially imidized polyamic acid having a low molecular weight and high storage stability, it is more preferable to select from a reaction temperature of 40 ° C to 90 ° C and a reaction time of 10 hours or more.
また、末端アミノ基を酸無水物で保護する場合の反応温度は— 20乃至 150°C、好 ましくは 5乃至 100°Cの任意の温度を選択することができる。  The reaction temperature when the terminal amino group is protected with an acid anhydride can be selected from -20 to 150 ° C, preferably 5 to 100 ° C.
[0052] ジァミン化合物とテトラカルボン酸二無水物化合物の反応は溶剤中で行なうことが できる。その際に使用できる溶剤としては、 N, N ジメチルホルムアミド、 N, N ジメ チルァセトアミド、 N メチルピロリドン、 N ビュルピロリドン、 N メチルカプロラクタ ム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、へキサメチ ノレスルホキシド、 m クレゾール、 γ ブチロラタトン、酢酸ェチル、酢酸ブチル、乳 酸ェチル、 3 メトキシプロピオン酸メチル、 2 メトキシプロピオン酸メチル、 3 メト キシプロピオン酸ェチル、 2 メトキシプロピオン酸ェチル、 3 エトキシプロピオン酸 ェチル、 2—エトキシプロピオン酸ェチル、エチレングリコールジメチルエーテル、ジ エチレングリコーノレジメチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジェ チレングリコーノレメチノレエチノレエーテノレ、プロピレングリコーノレジメチノレエーテノレ、ジ プロピレングリコーノレジメチノレエーテノレ、エチレングリコーノレモノメチノレエーテノレ、ェ チレングリコールモノェチルエーテル、ジエチレングリコールモノメチルエーテル、ジ エチレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、 プロピレングリコーノレモノェチノレエーテノレ、ジプロピレングリコーノレモノメチノレエーテ ノレ、ジプロピレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノメチノレエー テノレアセテート、カノレビトーノレアセテート、ェチノレセロソノレブアセテート、シクロへキサ ノン、メチルェチルケトン、メチルイソブチルケトン、 2—ヘプタノン等を挙げることがで きる。これらは単独でも、混合して使用しても良い。さらに、ポリアミド酸を溶解しない 溶剤であっても、重合反応により生成したポリアミド酸が析出しない範囲で、上記溶 剤に混合して使用してもよい。 [0052] The reaction of the diamine compound and the tetracarboxylic dianhydride compound can be carried out in a solvent. Solvents that can be used include N, N dimethylformamide, N, N dimethylacetamide, N methyl pyrrolidone, N butyl pyrrolidone, N methyl caprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethy Nolesulphoxide, m Cresol, γ-butyrolatatone, ethyl acetate, butyl acetate, ethyl lactic acid, methyl 3 methoxypropionate, methyl 2 methoxypropionate, 3 ethyl methoxypropionate, 2 ethyl methoxypropionate, 3 ethyl ethoxypropionate, 2-Ethoxypropionate, Ethylene glycol dimethyl ether, Diethylene glyconoresin methinoleatenore, Diethyleneglycoleno retino enoenore, Jetylene glucono retino enoino ethinore Nore, Propylene Glycono Resin Methylenoateol, Dipropylene Glycono Resin Methylenoateol, Ethylene Glycolanol Monomethinoleateol, Ethylene Glycol Monoethyl Ether, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Nole Monoethyl Acetate , Propylene glycol monomethino ethenore, propylene glycol mono methino enoate, dipropylene glycol mono methino enoate, dipropylene glycol mono methino enoate, propylene glycol mono methinoate tenole acetate , Canolebitonoreacetate, ethinorecellosonolev acetate, cyclohexa Non, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone and the like can be mentioned. These may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above-mentioned solvent as long as the polyamic acid generated by the polymerization reaction does not precipitate.
[0053] このようにして得られたポリアミド酸を含む溶液は、ポジ型感光性樹脂組成物の溶 液の調製にそのまま用いることができる。また、ポリアミド酸を水、メタノール、エタノー ル等の貧溶剤に沈殿単離させて回収してから用いることもできる。 [0053] The solution containing the polyamic acid thus obtained can be used as it is for the preparation of a solution of the positive photosensitive resin composition. In addition, the polyamic acid can be used after being isolated by precipitation in a poor solvent such as water, methanol, or ethanol and recovered.
このようにして得られたポリアミド酸はカルボキシル基をエステル化し、ポリアミド酸ェ ステノレとして使用することもできる。  The polyamic acid thus obtained can be esterified with a carboxyl group and used as a polyamic acid ester.
このようにして得られたポリアミド酸は単独で用いても上述のアルカリ可溶性樹脂と 同時に用いてもよい。  The polyamic acid thus obtained may be used alone or at the same time as the alkali-soluble resin described above.
[0054] また、本発明においては、任意のポリイミドを用いることができる。本発明に用いるポ リイミドとは前記ポリアミド酸などのポリイミド前駆体を化学的又は熱的に 50%以上イミ ド化させたものである。これらのポリイミドにはポリアミドイミド、ポリエーテルイミドといつ た共重合体も含む。  In the present invention, any polyimide can be used. The polyimide used in the present invention is obtained by chemically or thermally immobilizing 50% or more of a polyimide precursor such as polyamic acid. These polyimides include polyamideimides, polyetherimides and copolymers.
本発明で用いるポジ型感光性樹脂組成物中のポリイミドは、アルカリ溶解性を与え るためにカルボキシル基もしくはフエノール性ヒドロキシ基を有すること、或いは、熱又 は酸の作用によりカルボン酸又はフエノール性ヒドロキシ基を生成する基を有すること が好ましい。  The polyimide in the positive photosensitive resin composition used in the present invention has a carboxyl group or a phenolic hydroxy group to impart alkali solubility, or a carboxylic acid or phenolic hydroxy group by the action of heat or acid. It preferably has a group that forms a group.
ポリイミドへのカルボキシル基やフエノール性ヒドロキシ基の導入方法は、カルボキ シル基又はフエノール性ヒドロキシ基を有するモノマーを用いる方法、カルボキシル 基又はフエノール性ヒドロキシ基を有する酸無水物でァミン末端を封止する方法、或 いは、ポリイミド前駆体をイミド化する際にイミド化率を 99%以下にする方法等が用い られる。  The method of introducing a carboxyl group or a phenolic hydroxy group into polyimide is a method using a monomer having a carboxyl group or a phenolic hydroxy group, or a method of sealing an amine end with an acid anhydride having a carboxyl group or a phenolic hydroxy group. Alternatively, a method of making the imidization rate 99% or less when imidizing the polyimide precursor is used.
又、ポリイミドへの熱又は酸の作用によるカルボン酸又はフエノール性ヒドロキシ基 を生成する基の導入方法は、熱又は酸の作用によりカルボキシル基又はフエノール 性ヒドロキシ基生成するモノマーを用いる方法、あらかじめ導入したカルボキシル基 又はフエノール性ヒドロキシ基もしくはイミド化後のカルボン酸残基に熱又は酸の作用 により解離する基を反応させる方法がある。 Moreover, the introduction method of the group which produces | generates the carboxylic acid or phenolic hydroxy group by the effect | action of a heat | fever or an acid to a polyimide is the method using the monomer which produces | generates a carboxyl group or a phenolic hydroxy group by the effect | action of a heat | fever or an acid, and introduce | transduced beforehand. Action of heat or acid on carboxyl group or phenolic hydroxy group or carboxylic acid residue after imidization There is a method of reacting a group that dissociates by.
このようなポリイミドは上述のポリイミド前駆体を合成した後、化学イミド化もしくは熱 イミド化を行うことで得ることができる。  Such a polyimide can be obtained by synthesizing the above polyimide precursor and then performing chemical imidization or thermal imidization.
化学イミド化の方法としては一般的にポリイミド前駆体溶液に過剰の無水酢酸およ びピリジンを添加し室温から 100°Cで反応させる方法が用いられる。また、熱イミド化 の方法としては一般的に、ポリイミド前駆体溶液を温度 180°C乃至 250°Cで脱水しな 力 ¾加熱する方法が用いられる。  As a method of chemical imidization, generally, an excess acetic anhydride and pyridine are added to a polyimide precursor solution and reacted at room temperature to 100 ° C. As a method for thermal imidization, generally, a method in which a polyimide precursor solution is heated at a temperature of 180 ° C. to 250 ° C. without being dehydrated is used.
[0055] このようにして得られたポリイミドは単独で用いても上述の他のアルカリ可溶性樹脂( 例えば特定共重合体など)と同時に用いてもよい。 [0055] The polyimide thus obtained may be used alone or at the same time as other alkali-soluble resins (for example, specific copolymers) described above.
[0056] [ (B)成分] [0056] [Component (B)]
(B)成分は、 1分子中二個以上のビュルエーテル基を有する化合物である。これは 、慣用のプリベータ温度で (A)成分のアルカリ可溶性樹脂と熱架橋することができる ようなビュルエーテル基を 1分子中二個以上有する化合物であればよぐその種類及 び構造につ!/、て特に限定されるものでな!/、。  Component (B) is a compound having two or more butyl ether groups in one molecule. This is the type and structure of any compound that has two or more butyl ether groups in one molecule that can be thermally crosslinked with the alkali-soluble resin (A) at a conventional prebeta temperature! /, Not particularly limited!
[0057] この(B)成分の化合物は、(A)成分のアルカリ可溶性樹脂との熱架橋の後、光酸 発生剤の存在下での露光により生じた酸により、(A)成分のアルカリ可溶性樹脂から 分離 (脱架橋)し、その後アルカリ現像液を用いた現像により(A)成分のアルカリ可溶 性樹脂ともに除去される。従って、この種の化合物としては、一般にビュルエーテル 型化学増幅型レジストの成分に使用されるビュルエーテル系化合物などが適用され うる。斯カ、る化合物の使用の場合、該化合物の配合量を変えて熱架橋密度を調整す ることにより、形成される画像を制御することができるという利点を有する。  [0057] The compound of component (B) is obtained by subjecting the component (A) to alkali-solubility due to the acid generated by exposure in the presence of a photoacid generator after thermal crosslinking with the alkali-soluble resin of component (A). After separation (decrosslinking) from the resin, development with an alkaline developer removes both the alkali-soluble resin (A). Therefore, as this type of compound, a bull ether compound generally used as a component of a bull ether type chemically amplified resist can be applied. The use of such a compound has the advantage that the formed image can be controlled by adjusting the thermal crosslinking density by changing the compounding amount of the compound.
[0058] そして、(B)成分の化合物としては、上記ビュルエーテル系化合物の中でも、特に 式(1)及び式(2)で表される化合物が、露光部において残膜ゃ残渣なく現像される 点で、好ましい。  [0058] As the compound of the component (B), among the above butyl ether compounds, the compounds represented by the formulas (1) and (2) are particularly developed without residual film in the exposed area. In terms, it is preferable.
[0059] [化 1]  [0059] [Chemical 1]
Figure imgf000019_0001
[0060] (式中、 nは 2乃至 10の整数、 kは 1乃至 10の整数であり、 R1は n価の有機基を表す。
Figure imgf000019_0001
[Wherein, n is an integer of 2 to 10, k is an integer of 1 to 10, and R 1 represents an n-valent organic group.
[0061] [化 2] [0061] [Chemical 2]
Figure imgf000020_0001
Figure imgf000020_0001
[0062] (式中、 mは 2乃至 10の整数を表す。 )  [In the formula, m represents an integer of 2 to 10.]
[0063] 式(1)の nは、 1分子中のビュルエーテル基の数を表すが、 nとしては、 2乃至 4の整 数がより好ましい。そして、式(2)の mも一分子中のビュルエーテル基の数を表すが 、 mとしては、 2乃至 4の整数がより好ましい。  [0063] In formula (1), n represents the number of butyl ether groups in one molecule, and n is more preferably an integer of 2 to 4. M in the formula (2) also represents the number of butyl ether groups in one molecule, and m is more preferably an integer of 2 to 4.
[0064] 前記式(1)及び前記式(2)で表される化合物の具体例としては、ビス(4 (ビニ口 キシメチル)シクロへキシルメチル)グルタレート、トリ(エチレングリコール)ジビュルェ ーテノレ、アジピン酸ジビニノレエステノレ、ジエチレングリコーノレジビニノレエーテノレ、トリス ート、ビス(4 (ビニ口キシ)ブチルイソフタレート、及び 1 , 4ーシクロへキサンジメタノ ールジビュルエーテル等のシクロへキサンジメタノールジビュルエーテル等が挙げら れる。  [0064] Specific examples of the compounds represented by the formula (1) and the formula (2) include bis (4 (vinyloxymethyl) cyclohexylmethyl) glutarate, tri (ethylene glycol) dibutyrenole, dibiadipate Cyclohexane dimethanol dibulle ethers such as ninoreestenole, diethyleneglyconoresininoreethenole, tristoate, bis (4 (vinyloxy) butyl isophthalate, and 1,4-cyclohexanedimethanol dibule ether Etc.
[0065] また、(B)成分の化合物は、(A)成分 100質量部に対して、 1乃至 80質量部、好ま しくは 5乃至 40質量部の割合で使用される。 (B)成分の化合物の使用量が前記範囲 の下限未満の過少量であると、未露光部における膜減りが顕著となり形成されるバタ ーンのレリーフ形状が不良になる。一方、(B)成分の化合物の使用量が前記範囲の 上限を超える過多量であると、膜の感度が大きく低下し、現像後にパターン間の残渣 が生じるようになる。  [0065] The compound of component (B) is used in a proportion of 1 to 80 parts by weight, preferably 5 to 40 parts by weight, per 100 parts by weight of component (A). When the amount of the component (B) compound used is an excessive amount less than the lower limit of the above range, the reduction of the film in the unexposed area becomes remarkable and the formed relief pattern of the pattern becomes poor. On the other hand, if the amount of the component (B) compound used exceeds the upper limit of the above range, the sensitivity of the film is greatly reduced, and residues between patterns are generated after development.
[0066] [ (C)成分]  [0066] [(C) component]
(C)成分は、ポストベータにより(A)成分と架橋反応する化合物であり、好適には、 1分子中二個以上のブロックイソシァネート基を有する化合物が用いられる。これは、 (B)成分の化合物との間で熱架橋された或いは更にそれとの間で脱架橋された (A) 成分のアルカリ可溶性樹脂からなる膜に対して、例えば慣用のポストベータ温度で熱 硬化することができるようなブロックイソシァネート基を 1分子中二個以上有する化合 物であればよぐその種類及び構造について特に限定されるものでない。 Component (C) is a compound that undergoes a cross-linking reaction with component (A) by post-beta, and preferably a compound having two or more block isocyanate groups in one molecule. This is either thermally cross-linked with the compound of component (B) or further de-crosslinked with (A) For example, if it is a compound having two or more block isocyanate groups in one molecule that can be thermally cured at a conventional post-beta temperature with respect to a film made of an alkali-soluble resin as a component, the kind and The structure is not particularly limited.
[0067] この(C)成分の化合物は、イソシァネート基(一 NCO)が適当な保護基によりブロッ クされたブロックイソシァネート基を 1分子中二個以上有し、そして熱硬化の際の高温 に曝されると、保護基 (ブロック部分)が熱解離して外れ、生じたイソシァネート基を介 して (A)成分のアルカリ可溶性樹脂中の熱硬化のための官能基(例えばフエノール 性ヒドロキシ基以外のヒドロキシ基及び活性水素を有するアミノ基)相互の間で架橋 反応が進行するものであり、例えば、式(3)  [0067] The compound of component (C) has two or more blocked isocyanate groups in which one or more isocyanate groups (one NCO) are blocked by an appropriate protecting group, and is heated at high temperature during thermal curing. Exposure to the functional group (for example, phenolic hydroxy group) for thermal curing in the alkali-soluble resin of component (A) via the generated isocyanate group. Other than the hydroxy group and the amino group having active hydrogen), the crosslinking reaction proceeds between, for example, the formula (3)
[0068] [化 3]  [0068] [Chemical 3]
R2— C— N— - - f \ R 2 — C— N—--f \
II I ^ (3)  II I ^ (3)
O H  O H
[0069] (式中、 R2はブロック部の有機基を表す。)で表される基を 1分子中二個以上 (この基 は同一のものでも、また各々異なってレ、るものでもよ!/、)有する化合物が挙げられる。 [0069] (wherein R 2 represents an organic group in the block part), two or more groups in one molecule (this group may be the same or different from each other). ! /,) Are included.
[0070] 1分子中二個以上のブロックイソシァネート基を有する(C)成分の化合物は、例え ば 1分子中二個以上のイソシァネート基を有する化合物に対して適当なブロック剤を 作用せしめることにより、得ること力 Sでさる。  [0070] For the compound of component (C) having two or more blocked isocyanate groups in one molecule, for example, an appropriate blocking agent is allowed to act on a compound having two or more isocyanate groups in one molecule. With the power S to get.
[0071] 1分子中二個以上のイソシァネート基を有する化合物としては、例えば、イソホロン ジイソシァネート、 1 , 6—へキサメチレンジイソシァネート、メチレンビス(4ーシクロへ キシルイソシァネート)、トリメチルへキサメチレンジイソシァネート等、又はそれらの二 量体、三量体、或いは、これらとジオール類、トリオール類、ジァミン類、トリァミン類と の反応物が挙げられる。  [0071] Examples of the compound having two or more isocyanate groups in one molecule include, for example, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, methylene bis (4-cyclohexyl isocyanate), and trimethyl hexane methacrylate. Examples thereof include diisocyanate and the like, or dimers and trimers thereof, or a reaction product of these with diols, triols, diamines, and triamines.
[0072] ブロック剤としては、例えば、メタノール、エタノール、イソプロパノール、 n—ブタノ一 ノレ、 2—エトキシへキサノール、 2 - N, N—ジメチルァミノエタノール、 2—エトキシェ タノール、シクロへキサノール等のアルコール類、フエノール、 o—二トロフエノール、 p —クロ口フエノーノレ、 o—、 m—又は p—タレゾール等のフエノール類、 ε —力プロラタ タム等のラタタム類、アセトンォキシム、メチルェチルケトンォキシム、メチルイソブチ ノレケトンォキシム、シクロへキサノンォキシム、ァセトフエノンォキシム、ベンゾフエノン ォキシム等のォキシム類、ピラゾール、 3, 5—ジメチルビラゾール、 3—メチルピラゾ 一ノレ、などのピラゾール類、ドデカンチオール、ベンゼンチオール等のチオール類力 S 挙げられる。 [0072] Examples of the blocking agent include alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N, N-dimethylaminoethanol, 2-ethoxyethanol, and cyclohexanol. , Phenol, o-nitrophenol, p—black mouth phenol, o-, m- or p-taresol and other phenols, ε — force prolatata and other ratatams, acetone oxime, methyl ethyl ketone oxime , Methyl isobuteno ketone ketone, cyclohexanone oxime, acetophenone oxime, benzophenone Examples include oximes such as oxime, pyrazoles such as pyrazole, 3,5-dimethylbiazole, and 3-methylpyrazo monole, and thiols such as dodecanethiol and benzenethiol.
[0073] (C)成分の化合物は、ポストベータ温度のようなより高温では、ブロック部分の熱解 離が生じイソシァネート基を介して架橋反応が進行するものである力 S、プリベータ温 度のようなより低温では、イソシァネート基による架橋が進行しないものとするために、 ブロック部分の熱解離の温度がプリベータ温度よりも相当に高いもの、例えば 120°C 乃至 230°Cであるものが(C)成分の化合物として特に好まし!/、。  [0073] The compound of component (C) has a force S that causes the thermal release of the block portion and a crosslinking reaction proceeds through the isocyanate group at higher temperatures such as the post-beta temperature, such as the force S and the pre-beta temperature. In order to prevent crosslinking by isocyanate groups from proceeding at lower temperatures, the temperature of the thermal dissociation of the block portion is considerably higher than the prebeta temperature, for example, 120 ° C to 230 ° C (C) Especially preferred as a component compound!
[0074] 斯かる(C)成分の化合物としては、例えば次の具体例が挙げられる。  [0074] Examples of the compound of the component (C) include the following specific examples.
[0075] [化 4] [0075] [Chemical 4]
L"" ,
Figure imgf000022_0001
L "",
Figure imgf000022_0001
(C)成分の化合物が、耐熱性、塗膜性の点からより好ましぐ斯様な化合物としては、 以下のものが挙げられる。  Examples of such a compound that the compound (C) is more preferred from the viewpoint of heat resistance and coating properties include the following.
下記式中の Rは有機基を表す。  R in the following formula represents an organic group.
[0077] [化 5] [0077] [Chemical 5]
冒 SU〕078 Prop SU] 078
Figure imgf000023_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0001
[0079] [化 7] [0079] [Chemical 7]
Figure imgf000025_0001
Figure imgf000025_0001
本発明において、(C)成分の化合物は一種単独で用いてもよぐまた二種以上を 組合せて用いてもよい。 [0081] また、(C)成分の化合物は、(A)成分 100質量部に対して、 3乃至 70質量部、好ま しくは 5乃至 40質量部の割合で使用される。 (C)成分の化合物の使用量が前記範囲 の下限未満の過少量であると、熱硬化が不十分となって満足な硬化膜が得られず、 一方、(C)成分の化合物の使用量が前記範囲の上限を超える過多量であると、現像 が不十分となり、現像残渣を生じるようになる。 In the present invention, the compound of component (C) may be used alone or in combination of two or more. [0081] The compound of component (C) is used in a proportion of 3 to 70 parts by weight, preferably 5 to 40 parts by weight, per 100 parts by weight of component (A). When the amount of the component (C) compound used is an excessive amount less than the lower limit of the above range, the thermosetting is insufficient and a satisfactory cured film cannot be obtained. On the other hand, the amount of the compound (C) component used If the amount exceeds the upper limit of the above range, the development becomes insufficient and a development residue is generated.
[0082] [ (D)成分]  [0082] [Component (D)]
(D)成分は、光酸発生剤(PAGともいう)である。これは、露光に使用される光の照 射によって直接もしくは間接的に酸 (スルホン酸類、カルボン酸類など)を発生する物 質であり、斯様な性質を有するものであれば、その種類及び構造などは特に限定さ れるものでない。  Component (D) is a photoacid generator (also referred to as PAG). This is a substance that generates acids (sulfonic acids, carboxylic acids, etc.) directly or indirectly by the irradiation of light used for exposure. If it has such properties, its type and structure Etc. are not particularly limited.
[0083] (D)成分の光酸発生剤としては、例えば、ジァゾメタン化合物、ォニゥム塩化合物、 スルホンイミド化合物、ジスルホン系化合物、スルホン酸誘導体化合物、ニトロべンジ ル化合物、ベンゾイントシレート化合物、鉄アレーン錯体、ハロゲン含有トリアジン化 合物、ァセトフヱノン誘導体化合物、及び、シァノ基含有ォキシムスルホネート化合物 などが挙げられる。従来知られ又は従来から使用されている光酸発生剤は、いずれ も、特に限定されることなぐ本発明において適用することができる。なお、本発明に おいて、(D)成分の光酸発生剤は、一種単独で用いてもよぐまた二種以上を組合 わせて用いてもよい。  [0083] Examples of the photoacid generator of component (D) include diazomethane compounds, onium salt compounds, sulfonimide compounds, disulfone compounds, sulfonic acid derivative compounds, nitrobenzyl compounds, benzoin tosylate compounds, iron arenes. Examples include complexes, halogen-containing triazine compounds, acetophenone derivative compounds, and cyano group-containing oxime sulfonate compounds. Any conventionally known or conventionally used photoacid generator can be applied in the present invention without any particular limitation. In the present invention, the photoacid generator of component (D) may be used alone or in combination of two or more.
[0084] 斯かる光酸発生剤の具体例としては、以下のものが挙げられる。尤も、これらの化 合物は、極めて多数の適用可能な光酸発生剤の中の少数例であり、当然それらに 限定されるものでない。  [0084] Specific examples of such a photoacid generator include the following. However, these compounds are a few examples of a very large number of applicable photoacid generators, and of course are not limited thereto.
[0085] [化 8]
Figure imgf000027_0001
[0085] [Chemical 8]
Figure imgf000027_0001
ジフエ二ルョードニゥムクロリド、ジフエ二ルョードニゥムトリフルォロメタンスルホネー ト、ジフエ二ルョードニゥムメシレート、ジフエ二ルョードニゥムトシレート、ジフエニノレョ 一ドニゥムブ口ミド、ジフエニノレョードニゥムテトラフノレオロボレート、ジフエニノレョード ニゥムへキサフルォロアンチモネート、ジフエニノレョードニゥムへキサフノレオロアルセ ネート、ビス(p— tert—ブチルフエ二ノレ)ョードニゥムへキサフルォロホスフェート、ビ ス(p— tert—ブチルフェニル)ョ一ドニゥムメシレート、ビス(p— tert—ブチルフエ二 ノレ)ョードニゥムトシレート、ビス(p— tert—ブチルフエ二ノレ)ョードニゥムトリフルォロメ タンスノレホネート、ビス(p— tert—ブチルフエ二ノレ)ョードニゥムテトラフノレォロボレー ト、ビス(p— tert—ブチルフエニル)ョードニゥムクロリド、ビス(p—クロ口フエニル)ョ 一ドニゥムクロリド、ビス(p クロ口フエニル)ョードニゥムテトラフルォロボレート、トリフ ェニノレスノレホニゥムクロリド、トリフエニノレスノレホニゥムブ口ミド、トリフエニノレスノレホニゥ ムトリフルォロメタンスルホネート、トリ(p メトキシフエ二ノレ)スルホ二ゥムテトラフルォ ロボレート、トリ(p メトキシフエ二ノレ)スルホニゥムへキサフルォロホスホネート、トリ(p エトキシフエニノレ)スノレホニゥムテトラフノレオロボレート、トリフエニノレホスホニゥムクロ リド、トリフエニルホスホニゥムブロミド、トリ(p メトキシフエニル)ホスホニゥムテトラフ ノレオロボレート、トリ(p メトキシフエニノレ)ホスホニゥムへキサフノレオ口ホスホネート、 トリ(p エトキシフエ二ノレ)ホスホニゥムテトラフルォロボレート、 Diphenyl chloride, difluoride trifluoromethanesulfonate, diphenylmethane mesylate, diphenylfluorate, disulfide, disulfide Ninoredonium tetrafunoleroborate, diphenenoreo nitrohexafluoroantimonate, diphenenoreo neumohexafluororeroarsenate, bis (p-tert-butylphenol Ninore) Hexafluorophosphate, Bis (p-tert-Butylphenyl) iodonymesylate, Bis (p-tert-Butylphenol) Jodonum Tosylate, Bis (p- tert-Butylphenol) Fluoromethane Tansnolephonate, Bis (p-tert-Butylphenol) Oloborate, bis (p-tert-butylphenyl) chloride, bis (p-chlorophenyl) 1donum chloride, bis (p-phloylphenyl) ododne tetrafluoroborate, triphenylenoles norehonum chloride, triphenenolesnorehonombu mouthmid, trifenenores norehon mutrifl Fluoromethanesulfonate, tri (p methoxyphenol) sulfonium tetrafluoroborate, tri (p methoxyphenol) sulfohexafluorophosphonate, tri (p ethoxyphenol) sulephonium tetrafluororeborate, triphenyl Norephosphonium chloride, Triphenyl phosphonium bromide, Tri (p methoxyphenyl) phosphonium tetrafu Noreloborate, Tri (p methoxyphenyl) phosphonium hexafunoleo phosphonate, Tri (p ethoxyphenyl) phosphonium tetra Ruoroboreto,
[化 9] [Chemical 9]
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000030_0001
) )
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000032_0001
[0092] [化 14] [0092] [Chemical 14]
Figure imgf000033_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000034_0001
式 (64) Formula (64)
Figure imgf000034_0002
Figure imgf000034_0002
式 (66)  Formula (66)
[0094] [化 16]  [0094] [Chemical 16]
Figure imgf000034_0003
Figure imgf000034_0003
[0095] また、(D)成分の光酸発生剤は、(A)成分のアルカリ可溶性樹脂 100質量部 して 0. 5乃至 50質量部、好ましくは 1乃至 30質量部の割合で使用される。 (D)成分 の光酸発生剤の使用量が前記範囲の下限未満の過少量であると、露光の際、熱架 橋された(B)成分の化合物の (A)成分のアルカリ可溶性樹脂からの解離が進行せ ず、所望のパターンのレリーフが得られにくくなり、一方、(D)成分の光酸発生剤の 使用量が前記範囲の上限を超える過多量であると、ポジ型感光性樹脂組成物の保 存安定性に劣るようになる。 [0095] The photoacid generator of component (D) is 100 parts by mass of the alkali-soluble resin of component (A). And 0.5 to 50 parts by weight, preferably 1 to 30 parts by weight. When the amount of the photoacid generator used as the component (D) is too small below the lower limit of the above range, from the alkali-soluble resin of the component (A) of the component of the component (B) that has been thermally bridged during exposure. If the amount of the photoacid generator used as the component (D) exceeds the upper limit of the above range, the positive photosensitive resin may not be obtained. The storage stability of the composition becomes inferior.
[0096] [ (E)溶剤] [0096] [(E) Solvent]
本発明に用いるポジ型感光性樹脂組成物は、上記 (A)成分乃至 (D)成分を含有 し、通常それらの成分を (E)溶剤に溶解した溶液を塗布して、ポジ型感光性樹脂層 を形成する。  The positive photosensitive resin composition used in the present invention contains the components (A) to (D) described above, and usually a solution obtained by dissolving these components in the solvent (E) is applied to the positive photosensitive resin composition. Forming a layer.
[0097] この(E)溶剤は、(A)成分乃至(D)成分を溶解し、且つ所望により添加される後述 の(F)成分などを溶解するものであり、斯様な溶解能を有する溶剤であれば、その種 類及び構造などは特に限定されるものでない。  [0097] The (E) solvent dissolves the components (A) to (D) and dissolves the component (F) to be added as required, and has such a dissolving ability. As long as it is a solvent, its type and structure are not particularly limited.
斯様な(E)溶剤としては、例えば、エチレングリコールモノメチルエーテル、ェチレ ングリコーノレモノェチノレエーテノレ、メチノレセロソノレブアセテート、ェチノレセロソノレブァ セテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノェチル エーテノレ、プロピレングリコーノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレ ングリコーノレモノメチノレエーテノレアセテート、プロピレングリコーノレプロピノレエーテノレ アセテート、トルエン、キシレン、メチルェチルケトン、シクロペンタノン、シクロへキサノ ン、 2—ヘプタノン、 γ—ブチ口ラタトン、 2—ヒドロキシプロピオン酸ェチル、 2—ヒドロ キシ 2—メチルプロピオン酸ェチル、エトキシ酢酸ェチル、ヒドロキシ酢酸ェチル、 2 ーヒドロキシー3—メチルブタン酸メチル、 3—メトキシプロピオン酸メチル、 3—メトキ シプロピオン酸ェチル、 3—エトキシプロピオン酸ェチル、 3—エトキシプロピオン酸メ チル、ピルビン酸メチル、ピルビン酸ェチル、酢酸ェチル、酢酸ブチル、乳酸ェチノレ 、乳酸ブチル、 Ν, Ν ジメチルホルムアミド、 Ν, Ν ジメチルァセトアミド、及び Ν— メチルピロリドン等が挙げられる。  Such (E) solvents include, for example, ethylene glycol monomethyl ether, ethylene glycol monomethenoate ethere, methinorecero sonoleb acetate, ethenorecero sonolebate, diethylene glycol monomethyl ether, diethylene glycol monoester. Chill etherenole, propylene glycolate, propylene glycolenomonomethinoatenole, propylene glycolenomonomethinoatenoacetate, propylene glycolenopropenoatenoate acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclo Hexanone, 2-heptanone, γ-butarate ratataton, 2-hydroxyethyl ethionate, 2-hydroxyethyl 2-methylpropionate, ethoxyethyl ethoxylate, hydroxyacetic acid Tyl, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate Butyl acetate, ethynole lactate, butyl lactate, 、, ジ メ チ ル dimethylformamide, Ν, ジ メ チ ル dimethylacetamide, and Ν-methylpyrrolidone.
これらの溶剤は、一種単独で、又は二種以上の組合せで使用することができる。  These solvents can be used singly or in combination of two or more.
[0098] これら(Ε)溶剤の中、プロピレングリコールモノメチルエーテル、プロピレングリコー ノレモノメチノレエーテノレアセテート、 2—ヘプタノン、プロピレングリコーノレプロピノレエ一 テル、プロピレングリコールプロピルエーテルアセテート、乳酸ェチル、乳酸ブチル等 、塗膜性が良好で安全性が高いという観点より好ましい。これら溶剤は、一般にフ オトレジスト材料のための溶剤として用いられている。 [0098] Among these (ii) solvents, propylene glycol monomethyl ether, propylene glycol Nolemonomethylenoateolacetate, 2-heptanone, propyleneglycololepropynolether, propyleneglycolpropyletheracetate, ethyl lactate, butyl lactate and the like are preferable from the viewpoint of good coating properties and high safety. These solvents are generally used as solvents for photoresist materials.
[0099] [ (F)成分] [0099] [Component (F)]
(F)成分は、界面活性剤である。前記ポジ型感光性樹脂組成物の溶液調製時、そ の塗布性を向上させるという目的で、本発明の効果を損なわない限りにおいて、更に 界面活性剤を添加することができる。  Component (F) is a surfactant. When preparing the solution of the positive photosensitive resin composition, a surfactant may be further added for the purpose of improving the coating property as long as the effects of the present invention are not impaired.
[0100] (F)成分の界面活性剤としては、特に制限されないが、例えば、フッ素系界面活性 剤、シリコーン系界面活性剤、ノニオン系界面活性剤などが挙げられる。この種の界 面活性剤としては、例えば、住友スリーェム (株)製、大日本インキ化学工業 (株)製 或いは旭硝子 (株)製等の市販品を用いることができる。これら市販品は、容易に入 手することができるので、好都合である。その具体的な例としては、エフトップ EF301 、 EF303、 EF352 ( (株)ジェムコ製)、メガファック F171、 F173、 R— 30 (大日本ィ ンキ化学工業 (株)製)、フロラード FC430、 FC431 (住友スリーェム(株)製)、アサヒ ガード AG710、サーフロン S— 382、 SC101 , SC102、 SC103、 SC104、 SC105 、 SCI 06 (旭硝子 (株)製)等のフッ素系界面活性剤が挙げられる。 [0100] The surfactant of the component (F) is not particularly limited, and examples thereof include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. As this type of surfactant, commercially available products such as those manufactured by Sumitomo 3EM Co., Ltd., Dainippon Ink & Chemicals, Inc., or Asahi Glass Co., Ltd. can be used. These commercial products are convenient because they are readily available. Specific examples include F-top EF301, EF303, EF352 (manufactured by Gemco), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink Chemical Co., Ltd.), Florard FC430, FC431 ( Fluorine surfactants such as Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SCI 06 (Asahi Glass Co., Ltd.), and the like.
これらの界面活性剤は、一種単独で、又は二種以上の組合せで使用することがで きる。  These surfactants can be used singly or in combination of two or more.
[0101] 界面活性剤が使用される場合、その含有量は、ポジ型感光性樹脂組成物の溶液 1 00質量%中に通常 0. 2質量%以下であり、好ましくは 0. 1質量%以下である。 (F) 成分の界面活性剤の使用量が 0. 2質量%を超える量に設定されても、上記塗布性 の改良効果は鈍くなり、経済的でなくなる。  [0101] When a surfactant is used, the content thereof is usually 0.2% by mass or less, preferably 0.1% by mass or less, in 100% by mass of the positive photosensitive resin composition solution. It is. Even if the amount of the surfactant (F) used is set to an amount exceeding 0.2% by mass, the effect of improving the coating property becomes dull and not economical.
[0102] [その他添加剤]  [0102] [Other additives]
更に、本発明に用いるポジ型感光性樹脂組成物は、本発明の効果を損なわない限 りにおいて、必要に応じて、レオロジー調整剤、シランカップリング剤等の接着補助剤 、顔料、染料、保存安定剤、消泡剤、又は多価フエノール、多価カルボン酸等の溶解 促進剤等を含有することができる。 例えば、シランカップリング剤は、基板との密着性を高める目的で用いることができ その具体例を以下に示すと、例えば、 Ίーメタクリロキシプロピルトリメトキシシラン、 γーァミノプロピノレシラン、 2—(3, 4エポキシシクロへキシノレ)ェチノレトリェトキシシラ ン、 Ν アミノエチル一 γ—ァミノプロビルトリメトキシシラン、 3—ウレイドプロピルトリ エトキシシラン、 Ί—イソシァネートプロピルトリエトキシシラン、 η ォクチルトリエトキ シシラン、ビュルトリス(2 メトキシエトキシ)シラン、 β — , 4エポキシシクロへキシ プトープロピルトリメトキシシラン、 3—オタタノィルチオ 1 プロピルトリエトキシシラ ン等が挙げられる。 Furthermore, the positive type photosensitive resin composition used in the present invention is, as long as it does not impair the effects of the present invention, adhesion aids such as rheology modifiers and silane coupling agents, pigments, dyes, and storage. It can contain stabilizers, antifoaming agents, or solubility promoters such as polyhydric phenols and polycarboxylic acids. For example, the silane coupling agent can be used for the purpose of improving the adhesion to the substrate. Specific examples thereof are as follows. For example, ク リ -methacryloxypropyltrimethoxysilane , γ-aminopropinolesilane, 2 — (3,4 Epoxycyclohexenole) ethinoretreoxysilane, 、 Aminoethyl mono-γ- aminomino trimethoxysilane, 3- Ureidopropyltriethoxysilane , ΊIsocynate propyltriethoxysilane , Examples include η octyltriethoxysilane, butururis (2 methoxyethoxy) silane, β —, 4-epoxycyclohexyl pt-propyltrimethoxysilane, 3-otatanylthio 1-propyltriethoxysilane.
[0103] [ポジ型感光性樹脂組成物及びその溶液]  [Positive photosensitive resin composition and solution thereof]
本発明に用いるポジ型感光性樹脂組成物は、(Α)成分のアルカリ可溶性樹脂、 (Β )成分の 1分子中二個以上のビュルエーテル基を有する化合物、(C)成分のポストべ ークにより(Α)成分と架橋反応する化合物及び (D)成分の光酸発生剤を含有する。 通常、これら (Α)成分乃至(D)成分を (Ε)溶剤に溶解し、溶液の形態でポジ型感光 性樹脂層の形成に供される。更に、それぞれ所望により、(F)成分の界面活性剤、及 びその他添加剤のうち一種以上を含有することができる。  The positive photosensitive resin composition used in the present invention comprises an alkali-soluble resin as component (Α), a compound having two or more butyl ether groups in one molecule of component (Β), and a post-baking of component (C). (Ii) contains a compound that undergoes a crosslinking reaction with component (D) and a photoacid generator of component (D). Usually, these components (i) to (D) are dissolved in (i) a solvent and used for forming a positive photosensitive resin layer in the form of a solution. Further, each of them may contain one or more of the surfactant (F) and other additives as desired.
[0104] 中でも、このポジ型感光性樹脂組成物及び該組成物の溶液の好まし!/、例は、以下 のとおりである。  [0104] Among these, preferred examples of the positive photosensitive resin composition and the solution of the composition are as follows.
[1]: (Α)成分 100質量部に基づいて、 1乃至 80質量部の(Β)成分、 3乃至 70質量 部の(C)成分、及び、 0. 5乃至 50質量部の (D)成分を含有するポジ型感光性樹脂 組成物。  [1]: Based on 100 parts by weight of component (Α), 1 to 80 parts by weight of component (Β), 3 to 70 parts by weight of component (C), and 0.5 to 50 parts by weight of (D) A positive photosensitive resin composition containing a component.
[2]:上記 [ 1 ]の組成物を (Ε)溶剤に溶解したポジ型感光性樹脂組成物の溶液。  [2]: A solution of a positive photosensitive resin composition in which the composition of [1] above is dissolved in (i) a solvent.
[3] :上記 [2]の組成物の溶液において、更に (F)成分を 0. 2質量%以下含有する ポジ型感光性樹脂組成物の溶液。  [3]: A solution of a positive photosensitive resin composition further containing 0.2% by mass or less of component (F) in the solution of the composition of [2] above.
[0105] 上記ポジ型感光性樹脂組成物の溶液における固形分の割合は、各成分が均一に 溶剤に溶解している限り、特に限定されるものではないが、例えば 1乃至 80質量%で あり、また例えば 5乃至 60質量%であり、又は 8乃至 50質量%である。ここで、固形 分とは、ポジ型感光性樹脂組成物の溶液の全成分から(E)溶剤を除!/、たものを!/、う [0105] The ratio of the solid content in the solution of the positive photosensitive resin composition is not particularly limited as long as each component is uniformly dissolved in the solvent, and is, for example, 1 to 80% by mass. Also, for example, 5 to 60% by mass, or 8 to 50% by mass. Where solid (E) Solvent is removed from all components of the positive-type photosensitive resin composition solution!
[0106] ポジ型感光性樹脂組成物の溶液の調製方法は、特に限定されないが、その調製 法としては、例えば、(A)成分(アルカリ可溶性樹脂)を (E)溶剤に溶解し、この溶液 に(B)成分(1分子中二個以上のビュルエーテル基を有する化合物)、(C)成分 (ポ ストベータにより (A)成分と架橋反応する化合物)、 (D)成分 (光酸発生剤)及び (F) 成分 (界面活性剤)を所定の割合で混合し、均一な溶液とする方法、或いは、この調 製法の適当な段階において、必要に応じてその他添加剤を更に添加して混合する 方法が挙げられる。 [0106] The method for preparing the positive type photosensitive resin composition solution is not particularly limited. For example, the component (A) (alkali-soluble resin) is dissolved in the solvent (E) and the solution is prepared. (B) component (compound having two or more butyl ether groups in one molecule), (C) component (compound that crosslinks with (A) component by postbeta), (D) component (photoacid generator) And (F) Component (surfactant) is mixed at a predetermined ratio to make a uniform solution, or at the appropriate stage of this preparation method, other additives are further added as necessary and mixed. A method is mentioned.
[0107] このポジ型感光性樹脂組成物の溶液の調製にあたっては、溶剤中における重合反 応によって得られる特定共重合体の溶液をそのまま使用することができ、この場合、 この (A)成分の溶液に前記と同様に (B)成分、(C)成分、(D)成分などを入れて均 一な溶液とする際に、濃度調整を目的としてさらに溶剤を追加投入してもよい。このと き、特定共重合体の形成過程で用いられる溶剤と、ポジ型感光性樹脂組成物の溶 液の調製時に濃度調整のために用いられる溶剤とは同一であってもよいし、異なつ てもよい。  [0107] In preparing the positive photosensitive resin composition solution, the solution of the specific copolymer obtained by the polymerization reaction in a solvent can be used as it is. In this case, the component (A) When the solution (B), (C), (D) and the like are added to the solution in the same manner as described above, a solvent may be further added for the purpose of adjusting the concentration. At this time, the solvent used in the process of forming the specific copolymer may be the same as or different from the solvent used for adjusting the concentration when preparing the solution of the positive photosensitive resin composition. May be.
[0108] 而して、調製されたポジ型感光性樹脂組成物の溶液は、孔径が 0.2 m程度のフィ ルタなどを用いて濾過した後、使用することが好ましい。  [0108] Thus, the prepared positive photosensitive resin composition solution is preferably used after being filtered using a filter having a pore size of about 0.2 m.
[0109] <高感度ポジ型感光性樹脂層(高感度層) > [0109] <High-sensitivity positive photosensitive resin layer (high-sensitivity layer)>
本発明に用いる高感度層は、前述の低感度層の感度と比較して十分感度の高レヽ ポジ型感光性樹脂層であれば特に限定されるものではない。このような高感度層とし て、ポジ型感光性樹脂組成物が用いられる。  The high-sensitivity layer used in the present invention is not particularly limited as long as it is a sufficiently high-sensitivity photosensitive resin layer compared with the sensitivity of the low-sensitivity layer described above. As such a high-sensitivity layer, a positive photosensitive resin composition is used.
[0110] 本発明に用いる高感度層は、低感度層に用いるポジ型感光性樹脂組成物と同種 のものであっても良い。この場合、高感度でスループットが向上する点、パターン形 状の制御のしゃすさ、現像時に未露光部の膜減りが抑制される点で好まし!/、。 [0110] The high-sensitivity layer used in the present invention may be the same type as the positive photosensitive resin composition used in the low-sensitivity layer. In this case, it is preferable because of high sensitivity and improved throughput, low pattern shape control, and suppression of film loss in unexposed areas during development! /.
この場合、低感度層と高感度層の感度差を大きくするために、高感度層のポジ型 感光性樹脂組成物における(B)成分および (C)成分の含有量を、低感度層のそれ よりも少ない含有量 (質量)とすることが好ましい。具体的には、高感度層のポジ型感 光性樹脂組成物中の(B)成分および (C)成分は、低感度層のポジ型感光性樹脂組 成物に含有される (B)成分の含有量 (質量)の 10乃至 80%、並びに、(C)成分の含 有量 (質量)の 30乃至 70%の含有量とすることが好ましい。より好ましくは、高感度層 のポジ型感光性樹脂組成物中の(B)成分および (C)成分は、低感度層のポジ型感 光性樹脂組成物に含有される (B)成分の含有量 (質量)の 10乃至 50%、並びに、( C)成分の含有量(質量)の 40乃至 60%の含有量とすることが好まし!/、 In this case, in order to increase the sensitivity difference between the low-sensitivity layer and the high-sensitivity layer, the contents of the (B) component and the (C) component in the positive-type photosensitive resin composition of the high-sensitivity layer are set so that It is preferable that the content (mass) be less than the above. Specifically, the positive-type feeling of the high-sensitivity layer The component (B) and the component (C) in the photosensitive resin composition are 10 to 80% of the content (mass) of the component (B) contained in the positive photosensitive resin composition of the low sensitivity layer, In addition, the content (mass) of component (C) is preferably 30 to 70%. More preferably, the component (B) and the component (C) in the positive photosensitive resin composition of the high sensitivity layer are contained in the positive photosensitive resin composition of the low sensitivity layer. It is preferable that the content be 10 to 50% of the amount (mass) and 40 to 60% of the content (mass) of the component (C)! /,
[0111] また、本発明に用いる高感度層において、低感度層と同種のポジ型感光性樹脂組 成物を用いる場合、該高感度層に用いるポジ型感光性樹脂組成物は、上述の <低 感度ポジ型感光性樹脂層(低感度層)〉の [ポジ型感光性樹脂組成物及びその溶 液]の調製方法と同様にして得ることができる。  [0111] In addition, in the high-sensitivity layer used in the present invention, when the same type of positive photosensitive resin composition as that of the low-sensitivity layer is used, the positive photosensitive resin composition used in the high-sensitivity layer is the above-described < Low Sensitivity Positive Photosensitive Resin Layer (Low Sensitivity Layer)> [Positive Photosensitive Resin Composition and Solution] can be obtained in the same manner.
[0112] このとき、好ましくは、(A)成分乃至 (E)溶剤、及び所望により(F)成分を含む混合 溶液を、室温より高められた温度下に所要の期間保つことにより、下記の熱架橋反応 力 Sいくらか進行して、(A)成分乃至(E)溶剤、及び所望により(F)成分に加えて、 (A )成分と(B)成分の架橋体を含有するポジ型感光性樹脂組成物の溶液を得る。 さらに好ましくは、該混合溶液を 30°C乃至 70°Cの温度下に 2時間乃至 5日間保つ ことによって、(A)成分乃至(E)溶剤、及び所望により(F)成分に加えて、(A)成分と (B)成分の架橋体を含有するポジ型感光性樹脂組成物の溶液を得る。  [0112] At this time, it is preferable that the mixed solution containing the components (A) to (E) and, optionally, the component (F) is kept at a temperature higher than room temperature for a required period of time, thereby reducing the following heat. Crosslinking reaction force S Some progress, positive photosensitive resin containing (A) component to (E) solvent, and optionally (F) component and (A) component and (B) component cross-linked product A solution of the composition is obtained. More preferably, by keeping the mixed solution at a temperature of 30 ° C. to 70 ° C. for 2 hours to 5 days, in addition to the components (A) to (E) and, optionally, the component (F), ( A solution of a positive photosensitive resin composition containing a cross-linked product of component A) and component (B) is obtained.
[0113] 上記温度および時間条件下で調整することによって、得られる樹脂組成物の溶液 の均一性が高くなり、これにより、その後の成膜工程に供した際に、光酸発生剤が膜 中に効率よく分散することになり、得られる膜の飛躍的な感度向上につながる。 攪拌温度を 70°Cより高温とすると架橋反応や硬化反応が進み組成物の溶液が不 均一となり、得られる膜の感度が大きく低下することとなり、また、 30°Cより低温とする と組成物の溶液の均一性が高くならず、感度の向上につながらない。  [0113] By adjusting under the above temperature and time conditions, the homogeneity of the solution of the resulting resin composition is increased, and as a result, when the film is subjected to a subsequent film formation step, the photoacid generator is in the film. The resulting film can be dispersed efficiently, leading to a dramatic improvement in the sensitivity of the resulting film. When the stirring temperature is higher than 70 ° C, the crosslinking reaction and curing reaction proceed and the composition solution becomes non-uniform, and the sensitivity of the resulting film is greatly reduced. The uniformity of the solution does not increase, and the sensitivity is not improved.
[0114] <ポジ型感光性樹脂層(感光層)及びパターンの形成〉  <Positive photosensitive resin layer (photosensitive layer) and pattern formation>
本発明においては、基材上に露光感度の異なる 2層のポジ型感光性樹脂層を、低 感度のポジ型感光性樹脂層が前記基材及び高感度のポジ型感光性樹脂層間に位 置するように積層する力 それらの層の形成方法は特に限定されない。  In the present invention, two positive photosensitive resin layers having different exposure sensitivities are disposed on the base material, and the low sensitivity positive photosensitive resin layer is disposed between the base material and the high sensitivity positive photosensitive resin layer. The lamination force is not particularly limited.
[0115] 例えば、低感度層用のポジ型感光性樹脂組成物の溶液を、半導体で用いられるよ うな基板 (例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金 属例えばアルミニウム、モリブデン、クロムなどが被覆された基板、ガラス基板、石英 基板、 ITO基板等やそれらにトランジスタ等の素子が形成された基板)の上に、回転 塗布、流し塗布、ロール塗布、スリット塗布、スリットに続いた回転塗布、インクジェット 塗布などによって塗布し、その後、ホットプレート又はオーブン等で予備乾燥すること により、低感度層を形成することができる。続いて、高感度層用のポジ型感光性樹脂 組成物の溶液を低感度層と同様の方法で塗布しホットプレート又はオーブン等で予 備乾燥することにより、高感度層が形成される。 [0115] For example, a solution of a positive photosensitive resin composition for a low-sensitivity layer can be used in a semiconductor. Such substrates (for example, silicon / silicon dioxide coated substrates, silicon nitride substrates, substrates coated with metals such as aluminum, molybdenum, chromium, etc., glass substrates, quartz substrates, ITO substrates, etc. and devices such as transistors are formed on them. Low-sensitivity by spin coating, flow coating, roll coating, slit coating, spin coating following slit, ink jet coating, etc., followed by preliminary drying in a hot plate or oven. A layer can be formed. Subsequently, the high-sensitivity layer is formed by applying a positive photosensitive resin composition solution for the high-sensitivity layer in the same manner as the low-sensitivity layer and pre-drying it with a hot plate or oven.
[0116] この予備乾燥の条件としては、例えば、温度 70°C乃至 160°C、時間 0. 3分乃至 60 分間の範囲の中から適宜選択された加熱温度及び加熱時間が採用される。加熱温 度及び加熱時間は、好ましくは 80°C乃至 140°C、 0. 5分乃至 10分間である。  [0116] As the pre-drying conditions, for example, a heating temperature and a heating time appropriately selected from the range of a temperature of 70 ° C to 160 ° C and a time of 0.3 minutes to 60 minutes are employed. The heating temperature and the heating time are preferably 80 ° C to 140 ° C, and 0.5 minutes to 10 minutes.
この予備乾燥においては溶剤が除去され、又、(B)成分のビュルエーテル基を有 する化合物が (A)成分の樹脂に架橋することにより、アルカリ現像液に難溶な膜とな る。この場合、予備乾燥の温度が上記の温度範囲の下限よりもより低い場合には、溶 剤が膜中に多く残存し目的とするパターンが形成されない場合や、高感度層の塗布 時に低感度層とインターミキシングが起こる場合があり、さらには、熱架橋が不十分な ものとなり、未露光部において膜減りが生じることがある。また、上記の温度範囲の上 限を超えて高すぎる場合には、未露光部の架橋が進行し現像不良を起こす場合、さ らに一旦形成された熱架橋部が再び切断され、未露光部において膜減りをひき起こ すこと力 fcる。  In this preliminary drying, the solvent is removed, and the compound having a butyl ether group as the component (B) is crosslinked with the resin as the component (A), thereby forming a film hardly soluble in an alkali developer. In this case, if the temperature of the preliminary drying is lower than the lower limit of the above temperature range, a large amount of the solvent remains in the film and the target pattern is not formed, or the low sensitivity layer is applied when the high sensitivity layer is applied. Intermixing may occur, and thermal crosslinking may be insufficient, resulting in film loss in unexposed areas. In addition, when the temperature range exceeds the upper limit of the temperature range and is too high, when crosslinking of the unexposed portion proceeds and development failure occurs, the once formed thermal crosslinking portion is cut again, and the unexposed portion is cut. Forces to cause film loss at fc.
[0117] また、ポジ型感光性樹脂層(低感度層と高感度層を併せた層)の膜厚は、例えば 0 . 1乃至 30 mであり、また例えば 0· 2乃至 10 mであり、更に例えば 0· 2乃至 5 μ mである。  [0117] The film thickness of the positive photosensitive resin layer (the layer combining the low-sensitivity layer and the high-sensitivity layer) is, for example, 0.1 to 30 m, and for example, 0.2 to 10 m. Further, for example, 0 · 2 to 5 μm.
その際、低感度層及び高感度層それぞれの膜厚は、本発明の効果を損なわない 限りにおいて任意に選択できる。  At this time, the film thicknesses of the low-sensitivity layer and the high-sensitivity layer can be arbitrarily selected as long as the effects of the present invention are not impaired.
[0118] 上記の如き方法で得られたポジ型感光性樹脂層は、所定のパターンを有するハー フトーンマスクを用いて紫外線、 ArF、 KrF、 Fレーザー光等の光で露光されると、ポ ジ型感光性樹脂層中に含まれる(D)成分の光酸発生剤から発生する酸の作用によ つて、該膜のうち露光部はアルカリ性現像液に可溶なものとなる。 [0118] The positive photosensitive resin layer obtained by the above method is exposed to light such as ultraviolet rays, ArF, KrF, and F laser light using a halftone mask having a predetermined pattern. Due to the action of the acid generated from the photoacid generator of component (D) contained in the di-type photosensitive resin layer Therefore, the exposed portion of the film becomes soluble in an alkaline developer.
上記露光は i線、 g線及び h線のうちの少なくとも 1種の波長を有する光、又は、 ArF 、 KrF又は Fレーザーの光により行われることが好ましい。  The exposure is preferably performed with light having at least one wavelength of i-line, g-line, and h-line, or ArF, KrF, or F laser light.
[0119] 次いで、ポジ型感光性樹脂層に対して露光後加熱が行われる。この場合の加熱の 条件としては、温度 80°C乃至 140°C、時間 0. 3分乃至 60分間の範囲の中から適宜 選択された加熱温度及び加熱時間が採用される。  Next, post-exposure heating is performed on the positive photosensitive resin layer. As heating conditions in this case, a heating temperature and a heating time appropriately selected from the range of a temperature of 80 ° C. to 140 ° C. and a time of 0.3 minutes to 60 minutes are employed.
[0120] その後、アルカリ性現像液を用いて現像が行われる。これにより、ポジ型感光性樹 脂層のうち、ハーフ露光された部分は高感度層のみ、完全露光された部分は高感度 層とともに低感度層も除去され、パターン様のレリーフが形成される。  [0120] Thereafter, development is performed using an alkaline developer. As a result, in the positive photosensitive resin layer, only the high-sensitivity layer is removed in the half-exposed portion, and the low-sensitivity layer is removed together with the high-sensitivity layer in the completely exposed portion, thereby forming a pattern-like relief.
[0121] 使用されうるアルカリ性現像液としては、例えば、水酸化カリウム、水酸化ナトリウム などのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニゥム、水酸化テ トラェチルアンモニゥム、コリンなどの水酸化第四級アンモニゥムの水溶液、エタノー ルァミン、プロピルァミン、エチレンジァミンなどのアミン水溶液等のアルカリ性水溶液 力 S挙げられる。さらに、これらの現像液には、界面活性剤などを加えることもできる。 上記の中、水酸化テトラエチルアンモニゥム 0. 1乃至 2. 38質量%水溶液は、フォ トレジストの現像液として一般に使用されており、本発明の感光性樹脂組成物におい ても、このアルカリ性現像液を用いて、膨潤などの問題をひき起こすことなく良好に現 像すること力でさる。  Examples of the alkaline developer that can be used include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, and choline. Alkaline aqueous solutions such as aqueous solutions of quaternary ammonium hydroxide, amine solutions such as ethanolamine, propylamine, and ethylenediamine. Further, a surfactant or the like can be added to these developers. Among the above, a 0.1 to 2.38 mass% aqueous solution of tetraethylammonium hydroxide is generally used as a photoresist developer, and this alkaline developer is also used in the photosensitive resin composition of the present invention. Using this, it is possible to develop a good image without causing problems such as swelling.
[0122] また、現像方法としては、液盛り法、デイツビング法、揺動浸漬法など、 V、ずれも用 いること力 Sできる。その際の現像時間は、通常、 15秒乃至 180秒間である。  [0122] Further, as a developing method, it is possible to use V and displacement S, such as a liquid filling method, a dating method, and a rocking dipping method. The development time at that time is usually 15 seconds to 180 seconds.
[0123] 現像後、ポジ型感光性樹脂層に対して流水による洗浄を例えば 20乃至 90秒間行 い、続!、て圧縮空気もしくは圧縮窒素を用いて又はスピユングにより風乾することに より、基材上の水分が除去され、そしてパターン形成された膜が得られる。  [0123] After the development, the positive photosensitive resin layer is washed with running water, for example, for 20 to 90 seconds, followed by air drying with compressed air or compressed nitrogen or spinning. The top moisture is removed and a patterned film is obtained.
[0124] <透明性硬化膜の形成〉  [0124] <Formation of transparent cured film>
続いて、斯かるパターン形成膜に対して、熱硬化のためにポストベータを行うことに より、具体的にはホットプレート、オーブンなどを用いて加熱することにより、耐熱性、 透明性、平坦化性、低吸水性、耐薬品性などに優れ、良好なレリーフパターンを有 する膜が得られる。 [0125] ポストベータとしては、一般に、温度 150°C乃至 270°Cの範囲の中から選択された 加熱温度にて、ホットプレート上の場合には 5分乃至 30分間、オーブン中の場合に は 30分乃至 90分間処理すると!/、う方法が採られる。 Subsequently, such a pattern-forming film is subjected to post-beta for thermosetting, specifically, by using a hot plate, an oven, etc. to heat resistance, transparency, and flattening. Film with excellent relief pattern, excellent in properties, low water absorption and chemical resistance. [0125] The post-beta is generally at a heating temperature selected from the range of 150 ° C to 270 ° C, for 5 to 30 minutes on a hot plate, or in the oven. If treated for 30 to 90 minutes!
[0126] 而して、斯カ、るポストベータにより、 目的とする、良好なパターン形状を有する透明 性硬化膜を得ることができる。 [0126] Thus, with this post-beta, an intended transparent cured film having a good pattern shape can be obtained.
[0127] 本発明において、低感度層に高い透明性と高感度層に高いリフロー性を付与する ことによって、半透過型液晶表示素子の TFTアレイ平坦化膜を作製することが可能と なる。 In the present invention, it is possible to produce a TFT array planarizing film of a transflective liquid crystal display element by imparting high transparency to the low sensitivity layer and high reflow property to the high sensitivity layer.
[0128] 以上のように、本発明の製造方法により、十分高感度であり且つ現像の際に未露 光部の膜減りが非常に小さぐハーフ露光マージンの広い微細なパターンを有する 塗膜を形成することができる。  [0128] As described above, a coating film having a fine pattern with a wide half-exposure margin that has sufficiently high sensitivity and a very small film thickness reduction in an unexposed area during development can be obtained by the production method of the present invention. Can be formed.
[0129] そのため、例えば、 TFT型液晶素子のアレイ平坦化膜、液晶又は有機 ELディスプ レイにおける各種の膜、例えば層間絶縁膜、保護膜、絶縁膜、カラーフィルターなど の製造工程で高いスループットを実現することができる。 [0129] Therefore, for example, high throughput is achieved in the manufacturing process of various types of films in TFT-type liquid crystal element array flattening films, liquid crystal or organic EL displays, such as interlayer insulating films, protective films, insulating films, and color filters. can do.
実施例  Example
[0130] 以下、実施例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例 に限定されるものでない。  [0130] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0131] [実施例で用いる略記号] [0131] [Abbreviations used in Examples]
以下の実施例で用いる略記号の意味は、次のとおりである。  The meanings of the abbreviations used in the following examples are as follows.
MAA:メタクリル酸  MAA: Methacrylic acid
MMA:メチルメタタリレート  MMA: Methyl metatalylate
HEMA: 2—ヒドロキシェチルメタタリレート  HEMA: 2-hydroxyethyl methacrylate
CHMI: N—シクロへキシルマレイミド  CHMI: N-cyclohexylmaleimide
AIBN:ァゾビスイソブチロニトリノレ  AIBN: Azobisisobutyronitrinole
PGMEA:プロピレングリコールモノメチルエーテルアセテート  PGMEA: Propylene glycol monomethyl ether acetate
PGME:プロピレングリコールモノメチルエーテル  PGME: Propylene glycol monomethyl ether
PAG 1:チバ'スペシャルティ .ケミカルズ (株)製 CGI 1397 (商品名) /化合物名: 2 ーメチルー α — [5— [ [ (プロピルスルフォニル)ォキシ]ィミノ]一(5H)—チェニリデ ン]ベンゼンァセトニトリル(式(7)の化合物) PAG 1: Ciba's Specialty. CGI 1397 (trade name) manufactured by Chemicals Co., Ltd./Compound name: 2-methyl-α — [5— [[(propylsulfonyl) oxy] imino] ichi (5H) —Cenilide N] benzeneacetonitrile (compound of formula (7))
PVE1:トリス(4 (ビュルォキシ)ブチル)トリメリテート  PVE1: Tris (4 (Buoxy) butyl) trimellitate
PVE2 : 1 , 4ーシクロへキサンジメタノーノレジビニノレエーテノレ  PVE2: 1,4-Cyclohexanedimethanonoresininoreatenore
NCO l :デグサ AG製 VESTAGON (登録商標) B 1065 (商品名)/化合物名: ε 一力プロラタタムブロックポリイソシアナート(式(S— 4)の化合物)  NCO l: Degussa AG VESTAGON (registered trademark) B 1065 (trade name) / Compound name: ε One strength prolatatum block polyisocyanate (compound of formula (S-4))
R30 :大日本インキ化学工業 (株)製 メガファック R— 30 (商品名)(フッ素系界面 活性剤)  R30: Dai-Nihon Ink Chemical Co., Ltd. MegaFuck R-30 (trade name) (Fluorosurfactant)
Ρ200 :東洋合成工業 (株)製 Ρ— 200 (商品名) 4, 4 ' [ 1 [4 [ 1一(4ーヒドロ キシフエニル) 1メチルェチノレ]フエ二ノレ]ェチリデン]ビスフエノール 1モルと 1 , 2— ナフトキノンー2 ジアジドー 5 スルホユルクロリド 2モルとの縮合反応によって合成 される感光剤(1 , 2—キノンジアジド化合物) Ρ200: Toyo Gosei Kogyo Co., Ltd. Ρ— 200 (Product Name) 4, 4 '[1 [4 [1- (4-Hydroxyphenyl) 1 Methylethinole] Phenylenole] Ethylidene] bisphenol 1 mole and 1, 2— Photosensitizer synthesized by condensation reaction with 2 moles of naphthoquinone-2 diazido 5 sulphoyl chloride (1,2-quinonediazide compound)
GT4 :エポキシ化ブタンテトラカルボン酸テトラキスー(3—シクロへキセニルメチル) 修飾 ε—力プロラタトン  GT4: Epoxidized butanetetracarboxylic acid tetrakis (3-cyclohexenylmethyl) modified ε-force prolatatone
[0132] ほ女平均分子量及び重量平均分子量の測定]  [0132] Measurement of woman average molecular weight and weight average molecular weight]
以下の合成例に従い得られる特定共重合体の数平均分子量及び重量平均分子 量は、 日本分光(株)製 GPC装置(Shodex (登録商標)カラム KF803Lおよび KF8 04L)を用い、溶出溶媒テトラヒドロフランを流量 lml/分でカラム中に(カラム温度 4 0°C)流して溶離させるという条件で測定した。なお、下記の数平均分子量 (以下、 M nと称す。)及び重量平均分子量 (以下、 Mwと称す。)は、ポリスチレン換算値にて表 される。  The number-average molecular weight and weight-average molecular weight of the specific copolymer obtained according to the following synthesis example were measured using a GPC apparatus (Shodex (registered trademark) columns KF803L and KF8034) manufactured by JASCO Corporation and the elution solvent tetrahydrofuran was flowed. The measurement was performed under the condition that elution was carried out through a column (column temperature 40 ° C) at 1 ml / min. The following number average molecular weight (hereinafter referred to as Mn) and weight average molecular weight (hereinafter referred to as Mw) are expressed in terms of polystyrene.
[0133] <合成例 1〉  [0133] <Synthesis Example 1>
特定共重合体を構成するモノマー成分として、 MAA 19. 4g、 CHMI 35. 3g、 HEMA 25. 5g、MMA 19. 8gを使用し、ラジカル重合開始剤として AIBN 5gを 使用し、これらを溶剤 PGMEA 212. 5g中において温度 60°C乃至 100°Cで重合 反応させることにより、 Mnが 4 , 100、Mwが 7, 600である(A)成分(特定共重合体) の溶液 (特定共重合体濃度: 32. 0質量%)を得た。 (P 1 )  MAA 19.4 g, CHMI 35.3 g, HEMA 25.5 g, and MMA 19.8 g are used as monomer components constituting the specific copolymer, and AIBN 5 g is used as a radical polymerization initiator, and these are used as solvent PGMEA 212 A solution of (A) component (specific copolymer) with a Mn of 4,100 and Mw of 7,600 (specific copolymer concentration) by polymerizing at a temperature of 60 ° C to 100 ° C in 5g : 32.0% by mass). (P 1)
[0134] <合成例 2〉 特定共重合体を構成するモノマー成分として、 MAA 15. 5g、 CHMI 35. 3g、 HEMA 25. 5g、MMA 23. 7gを使用し、ラジカル重合開始剤として AIBN 5gを 使用し、これらを溶剤 PGMEA 212. 5g中において温度 60°C乃至 100°Cで重合 反応させることにより、 Mnが 4, 400、Mw力 S7, 000である(A)成分(特定共重合体) の溶液 (特定共重合体濃度: 32. 0質量%)を得た。 (P2) <Synthesis Example 2> MAA 15.5 g, CHMI 35.3 g, HEMA 25.5 g, and MMA 23.7 g are used as monomer components constituting the specific copolymer, and AIBN 5 g is used as a radical polymerization initiator, and these are used as solvent PGMEA 212 By polymerizing at a temperature of 60 ° C to 100 ° C in 5g, Mn is 4,400 and Mw force S7,000 is a solution of component (A) (specific copolymer) (specific copolymer concentration) : 32.0% by mass). (P2)
[0135] <組成物例 1乃至 5〉  <Composition Examples 1 to 5>
次の表 1に示す組成に従い、(A)成分の溶液に、(B)成分、(C)成分、(D)成分、 及び (E)溶剤、更に (F)成分を所定の割合で混合し、温度 23°Cで 30分間撹拌する 、又は、 35°Cで 3日間撹拌して均一な溶液とすることにより、各実施例及び各比較 例のポジ型感光性樹脂組成物の溶液を調製した。  In accordance with the composition shown in Table 1 below, (B), (C), (D), and (E) solvent, and (F) component are mixed at a predetermined ratio with the solution of component (A). Stir at a temperature of 23 ° C for 30 minutes, or stir at 35 ° C for 3 days to prepare a uniform solution, thereby preparing positive photosensitive resin composition solutions of each example and each comparative example. .
[0136] [表 1]  [0136] [Table 1]
Figure imgf000044_0001
Figure imgf000044_0001
[0137] <組成物例 6〉  [0137] <Composition Example 6>
アルカリ可溶性樹脂溶液として、合成例 1で得られた特定共重合体溶液 (P1) 17. 2 gに、 1 , 2—キノンジアジド化合物として P200を 1. lg、エポキシ系架橋性化合物と して GT4を 1. lg、界面活十生斉 IJとして R30を 0. 0039g、密着助斉 IJとして MPTSを 0. 25g、溶剤として PGMEA5. 2gを混合し、室温で 8時間攪拌してポジ型感光性樹脂 組成物の溶液を調整した。  As an alkali-soluble resin solution, add 17.2 g of the specific copolymer solution obtained in Synthesis Example 1 (P1), 1. lg of P200 as a 1,2-quinonediazide compound, and GT4 as an epoxy crosslinkable compound. 1. lg, R30 as surface active Tosei IJ R. 0039g, adhesion assisted IJ MPTS 0.25g, PGMEA 5.2g as solvent, mixed for 8 hours at room temperature and stirred for positive type photosensitive resin composition The product solution was prepared.
[0138] <組成物例 7〉 アルカリ可溶性樹脂溶液として、合成例 2で得られた特定共重合体溶液 (P2) 17. 2 gに、 1 , 2—キノンジアジド化合物として P200を 1. 7g、エポキシ系架橋性化合物と して GT4を 1. lg、界面活十生斉 IJとして R30を 0. 0039g、密着助斉 IJとして MPTSを 0. 25g、溶剤として PGMEA6. 5gを混合し、室温で 8時間攪拌してポジ型感光性樹脂 組成物の溶液を調整した。 <Composition Example 7> As an alkali-soluble resin solution, add 17.2 g of the specific copolymer solution (P2) obtained in Synthesis Example 2, 1.7 g of P200 as a 1,2-quinonediazide compound, and GT4 as an epoxy crosslinkable compound. 1. lg, R30 as surface active Tosei IJ R. 0039g, MPTS 0.25g as adhesion assistant IJ, PGMEA 6.5g as solvent, mix for 8 hours at room temperature, positive type photosensitive resin composition The product solution was prepared.
[0139] <実施例 1乃至 4及び比較例 1乃至 3〉  <Examples 1 to 4 and Comparative Examples 1 to 3>
表 2に示す実施例 1乃至実施例 4の 2層膜と、比較例 1乃至比較例 3の各単層膜に ついて、それぞれ高温焼成後の光透過率 (透明性)、感度、未露光部の膜減り、ハー フ露光マージンを測定した。  For the two-layer films of Examples 1 to 4 and the single-layer films of Comparative Examples 1 to 3 shown in Table 2, the light transmittance (transparency), sensitivity, and unexposed area after high-temperature baking, respectively. The film exposure was reduced and the half exposure margin was measured.
尚、ポジ型感光性樹脂組成物から硬化膜を得る際、比較例 2及び 3については、現 像後、ポストベータ前の段階でフォトブリーチングが行われる。一方、実施例 1乃至 4 及び比較例 1については、該フォトブリーチングをせずに、露光後、現像前の段階で 露光後加熱(PEB)が行われることから、この点で、両者の評価手順は、以下のとおり 異なるものとなっている。  When obtaining a cured film from the positive photosensitive resin composition, Comparative Examples 2 and 3 are photobleached at the stage after image formation and before post-beta. On the other hand, for Examples 1 to 4 and Comparative Example 1, post-exposure heating (PEB) is performed after exposure and before development without performing photobleaching. The procedure is different as follows.
[0140] [高温焼成後の光透過率 (透明性)の評価]  [0140] [Evaluation of light transmittance (transparency) after high-temperature firing]
<実施例 1乃至 4〉  <Examples 1 to 4>
下層用ポジ型感光性樹脂組成物の溶液を石英基板上にスピンコーターを用いて 塗布した後、温度 110°Cで 120秒間ホットプレート上においてプリベータを行い、膜 厚 2. Ο ΐηの塗膜を形成した。続けてその塗膜の上に上層用ポジ型感光性樹脂組 成物の溶液をスピンコーターを用 V、て塗布した後、温度 110°Cで 120秒間ホットプレ ート上においてプリベータを行い、膜厚 1. O mの塗膜を形成した。この塗膜を 0. 4 %の水酸化テトラメチルアンモニゥム(以下、 TMAHと称す)水溶液に 60秒間浸漬し た後、超純水で 20秒間流水洗浄を行った。つ!/、で 230°Cで 30分加熱することにより ポストベータを行い、膜厚 2. 4 ^ 111の硬化膜を形成した。この硬化膜を紫外線可視 分光光度計((株)島津製作所製 SHIMADZU UV— 2550型番)を用いて 400nm の波長で初期透過率を測定した。さらにこの塗膜を 250°Cで 30分間加熱後、同様に 400nmの波長で加熱後透過率を測定した。この評価における膜厚は、 FILMETRI CS製 F20を用いて測定した。 [0141] <比較例 1〉 After applying a solution of the positive photosensitive resin composition for the lower layer onto a quartz substrate using a spin coater, pre-beta was applied on a hot plate for 120 seconds at a temperature of 110 ° C to form a coating film with a film thickness of 2. Ο ΐη. Formed. Next, after applying a positive photosensitive resin composition solution for the upper layer onto the coating film using a spin coater V, pre-beta was performed on a hot plate at a temperature of 110 ° C for 120 seconds to obtain a film thickness. 1. An Om coating was formed. This coating film was immersed in a 0.4% aqueous solution of tetramethylammonium hydroxide (hereinafter referred to as TMAH) for 60 seconds, and then washed with running ultrapure water for 20 seconds. Post-beta was performed by heating at 230 ° C for 30 minutes at a temperature of 2! /, And a cured film having a film thickness of 2.4 ^ 111 was formed. The initial transmittance of this cured film was measured at a wavelength of 400 nm using an ultraviolet-visible spectrophotometer (SHIMADZU UV-2550 model, manufactured by Shimadzu Corporation). Further, this coating film was heated at 250 ° C. for 30 minutes, and similarly, the transmittance was measured after heating at a wavelength of 400 nm. The film thickness in this evaluation was measured using F20 manufactured by FILMETRI CS. [0141] <Comparative Example 1>
ポジ型感光性樹脂組成物の溶液を石英基板上にスピンコーターを用いて塗布した 後、温度 120°Cで 120秒間ホットプレート上においてプリベータを行い、膜厚 3. Ο μ mの塗膜を形成した。この塗膜を 0. 4 %の TMAH水溶液に 60秒間浸漬した後、超 純水で 20秒間流水洗浄を行った。つ!/、で 230°Cで 30分加熱することによりポストべ ークを行い、膜厚 2. 4 !11の硬化膜を形成した。この硬化膜を紫外線可視分光光度 計((株)島津製作所製 SHIMADZU UV— 2550型番)を用いて 400nmの波長で 初期透過率を測定した。さらにこの塗膜を 250°Cで 30分間加熱後、同様に 400nm の波長で加熱後透過率を測定した。この評価における膜厚は、 FILMETRICS製 F20を用いて測定した。  A positive photosensitive resin composition solution is applied onto a quartz substrate using a spin coater, and then pre-betated on a hot plate for 120 seconds at a temperature of 120 ° C to form a coating film with a thickness of 3. Ο μm did. This coating film was immersed in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. After baking at 230 ° C for 30 minutes, a cured film with a thickness of 2.4! 11 was formed. The initial transmittance of this cured film was measured at a wavelength of 400 nm using a UV-visible spectrophotometer (SHIMADZU UV-2550 model, manufactured by Shimadzu Corporation). Further, the coating film was heated at 250 ° C. for 30 minutes, and the transmittance was similarly measured after heating at a wavelength of 400 nm. The film thickness in this evaluation was measured using F20 manufactured by FILMETRICS.
[0142] <比較例 2及び 3〉  [0142] <Comparative Examples 2 and 3>
ポジ型感光性樹脂組成物の溶液を石英基板上にスピンコーターを用いて塗布した 後、温度 1 10°Cで 120秒間ホットプレート上においてプリベータを行い、膜厚 3. Ο μ mの塗膜を形成した。この塗膜を 0. 4 %の TMAH水溶液に 60秒間浸漬した後、超 純水で 20秒間流水洗浄を行った。この塗膜にキャノン (株)製紫外線照射装置 PLA — 600FAにより 365nmにおける光強度が 5. 5mW/cm2の紫外線を露光量 800m j/cm2で照射し(フォトブリーチング)、ついで 230°Cで 30分加熱することによりポスト ベータを行い、膜厚 2. 4 πιの硬化膜を形成した。この硬化膜を紫外線可視分光光 度計((株)島津製作所製 SHIMADZU UV— 2550型番)を用いて 400nmの波長 で初期透過率を測定した。さらにこの塗膜を 250°Cで 30分間加熱後、同様に 400η mの波長で加熱後透過率を測定した。この評価における膜厚は、 FILMETRICS製 F20を用いて測定した。 After coating the positive photosensitive resin composition solution on a quartz substrate using a spin coater, pre-beta was applied on a hot plate at a temperature of 1 10 ° C for 120 seconds to form a coating film with a thickness of 3. Ο μm. Formed. This coating film was immersed in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. The coated film Canon KK ultraviolet irradiation apparatus PLA - light intensity at 365nm by 600FA is irradiated with ultraviolet rays of 5. 5 mW / cm 2 at an exposure amount 800 m j / cm 2 (photobleaching), then 230 ° C Post-beta was performed by heating for 30 minutes to form a cured film with a film thickness of 2.4 πι. The initial transmittance of this cured film was measured at a wavelength of 400 nm using an ultraviolet-visible spectrophotometer (SHIMADZU UV-2550 model, manufactured by Shimadzu Corporation). Further, this coating film was heated at 250 ° C. for 30 minutes, and the transmittance was similarly measured after heating at a wavelength of 400 ηm. The film thickness in this evaluation was measured using F20 manufactured by FILMETRICS.
[0143] [感度および膜減りの評価]  [0143] [Evaluation of sensitivity and film loss]
<実施例 1乃至 4〉  <Examples 1 to 4>
下層用ポジ型感光性樹脂組成物をシリコンウェハー上にスピンコーターを用いて塗 布した後、温度 1 10°Cで 120秒間ホットプレート上においてプリベータを行い膜厚 2. O ^ mの塗膜 (低感度層)を形成した。続けて前記の塗膜上に、上層用ポジ型感光性 樹脂組成物をスピンコーターを用レ、て塗布した後、温度 1 10°Cで 120秒間ホットプレ ート上においてプリベータを行い膜厚 1 · Ο ΐηの塗膜 (高感度層)を形成した。膜厚 は FILMETRICS製 F20を用いて測定した。この塗膜にキャノン (株)製紫外線照 射装置 PLA—600FAにより 365nmにおける光強度が 5. 5mW/cm2の紫外線を 種々の露光量で照射し、次いで温度 110°Cで 120秒間ホットプレート上において露 光後加熱を行った。その後 0. 4%の TMAH水溶液に 60秒間浸漬することで現像を 行った後、超純水で 20秒間流水洗浄を行った。露光部にお!/、て溶け残りのなくなる 最低の露光量 (mj/cm2)を感度とした。また、未露光部の膜厚の減少量を膜減りと した。 After coating the positive photosensitive resin composition for the lower layer on a silicon wafer using a spin coater, pre-beta was applied on a hot plate for 120 seconds at a temperature of 1 10 ° C. Low sensitivity layer) was formed. Subsequently, the positive photosensitive resin composition for the upper layer was applied onto the coating film using a spin coater, and then hot-pressed at a temperature of 1 10 ° C for 120 seconds. A pre-beta was applied on the sheet to form a coating film (high-sensitivity layer) having a thickness of 1 · ΟΟη. The film thickness was measured using F20 manufactured by FILMETRICS. This coating film was irradiated with UV light with a light intensity of 5.5 mW / cm 2 at 365 nm by a UV irradiation device PLA-600FA manufactured by Canon Inc. at various exposure doses, and then on a hot plate for 120 seconds at a temperature of 110 ° C. After the exposure, heating was performed. Thereafter, the film was developed by immersing it in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. Sensitivity was defined as the lowest exposure amount (mj / cm 2 ) at which no undissolved material remained in the exposed area! In addition, the amount of decrease in the film thickness in the unexposed area was reduced.
[0144] <比較例 1〉  [0144] <Comparative Example 1>
ポジ型感光性樹脂組成物をシリコンウェハー上にスピンコーターを用いて塗布した 後、温度 110°Cで 120秒間ホットプレート上においてプリベータを行い膜厚 3. 0〃m の塗膜を形成した。膜厚は FILMETRICS製 F20を用いて測定した。この塗膜に キャノン (株)製紫外線照射装置 PLA— 600FAにより 365nmにおける光強度が 5. 5mW/cm2の紫外線を種々の露光量で照射し、次!/、で温度 110°Cで 120秒間ホッ トプレート上において露光後加熱を行った。その後 0. 4%の TMAH水溶液に 60秒 間浸漬することで現像を行った後、超純水で 20秒間流水洗浄を行った。露光部にお いて溶け残りのなくなる最低の露光量 (mj/cm2)を感度とした。また、未露光部の膜 厚の減少量を膜減りとした。 After coating the positive photosensitive resin composition on a silicon wafer using a spin coater, pre-beta was applied on a hot plate for 120 seconds at a temperature of 110 ° C. to form a coating film having a thickness of 3.0 μm. The film thickness was measured using F20 manufactured by FILMETRICS. The coating film by Canon KK ultraviolet irradiation apparatus PLA-600FA light intensity at 365nm was irradiated with ultraviolet rays of 5. 5 mW / cm 2 at various exposure amounts, following! /, In 120 seconds at 110 ° C Post-exposure heating was performed on the hot plate. Thereafter, the film was developed by being immersed in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. Sensitivity was defined as the lowest exposure (mj / cm 2 ) at which no undissolved material remained in the exposed area. In addition, the amount of decrease in the film thickness in the unexposed area was defined as film reduction.
[0145] <比較例 2及び 3〉  [0145] <Comparative Examples 2 and 3>
ポジ型感光性樹脂組成物をシリコンウェハー上にスピンコーターを用いて塗布した 後、温度 110°Cで 120秒間ホットプレート上においてプリベータを行い膜厚 3. 0〃m の塗膜を形成した。膜厚は FILMETRICS製 F20を用いて測定した。この塗膜に キャノン (株)製紫外線照射装置 PLA— 600FAにより 365nmにおける光強度が 5. 5mW/cm2の紫外線を種々の露光量で照射した。その後 0. 4%の TMAH水溶液 に 60秒間浸漬することで現像を行った後、超純水で 20秒間流水洗浄を行った。露 光部において溶け残りのなくなる最低の露光量 (mj/cm2)を感度とした。また、未露 光部の膜厚の減少量を膜減りとした。 After coating the positive photosensitive resin composition on a silicon wafer using a spin coater, pre-beta was applied on a hot plate for 120 seconds at a temperature of 110 ° C. to form a coating film having a thickness of 3.0 μm. The film thickness was measured using F20 manufactured by FILMETRICS. The coating film by Canon KK ultraviolet irradiation apparatus PLA-600FA light intensity at 365nm was irradiated with ultraviolet rays of 5. 5 mW / cm 2 at various exposure amounts. Thereafter, the film was developed by immersing it in a 0.4% TMAH aqueous solution for 60 seconds, and then washed with running ultrapure water for 20 seconds. Sensitivity was defined as the lowest exposure (mj / cm 2 ) at which no undissolved portion remained in the exposed area. In addition, the amount of decrease in the film thickness of the unexposed part was defined as film reduction.
[0146] [ハーフ露光マージンの評価] 上記 [感度および膜減りの評価]と同様の操作で、低感度層の上に高感度層を形 成し、紫外線を照射、露光後加熱、現像、洗浄を行った。その際、露光部における残 膜量が 2 μ m± 5%となる露光量範囲をノヽーフ露光マージンとした。 [0146] [Evaluation of half exposure margin] In the same manner as in the above [Evaluation of sensitivity and film loss], a high-sensitivity layer was formed on the low-sensitivity layer, irradiated with ultraviolet rays, heated after exposure, developed and washed. At that time, the exposure amount range in which the amount of remaining film in the exposed portion was 2 μm ± 5% was defined as the noise exposure margin.
[0147] [評価の結果] [0147] [Evaluation results]
以上の評価を行った結果を、次の表 2に示す。  The results of the above evaluation are shown in Table 2 below.
[0148] [表 2] [0148] [Table 2]
Figure imgf000048_0001
Figure imgf000048_0001
※透過率の加熱後とは、 250°C、 30分加熱した後の値。  * After heating the transmittance is the value after heating at 250 ° C for 30 minutes.
[0149] 実施例 1乃至 4では上層に高感度層、下層に低感度層を用いることで尚い透過率 を維持し、高感度で膜減りなく現像することができ、さらにハーフ露光時には広い露 光マージンを得ることができた。  In Examples 1 to 4, a high-sensitivity layer is used as the upper layer and a low-sensitivity layer is used as the upper layer, so that a high transmittance can be maintained and development can be performed without film loss. An optical margin could be obtained.
一方、比較例 1では高感度で膜減りなく現像することが可能である力 ハーフ露光 マージンが著しく低かった。  On the other hand, Comparative Example 1 has a high sensitivity and the ability to develop without reducing the film. The half exposure margin was remarkably low.
また、比較例 2および 3はいずれも実施例 1乃至実施例 4と比べて低感度で未露光 部の膜減りがあり、また両者の結果から、これら単層の系では、感度を高くするほどハ ーフ露光マージン、透過率の低下が見られた。  In addition, Comparative Examples 2 and 3 are both less sensitive and less exposed in unexposed areas than Examples 1 to 4. From these results, the sensitivity of these single-layer systems increases as the sensitivity increases. A decrease in half exposure margin and transmittance was observed.
産業上の利用可能性 本発明の透明性硬化膜の製造方法によって得られる透明性硬化膜は、半透過型 液晶表示素子において、 TFT平坦化膜の製造に適用可能な、特に、ハーフ露光に よりコンタクトホールと反射用凹凸を同時に形成するための透明性硬化膜を形成する 材料として好適である。 Industrial applicability The transparent cured film obtained by the method for producing a transparent cured film of the present invention can be applied to the production of a TFT flattened film in a transflective liquid crystal display element, in particular, contact holes and reflective irregularities by half exposure. It is suitable as a material for forming a transparent cured film for simultaneously forming.

Claims

請求の範囲 The scope of the claims
[1] 基材上に露光感度の異なる 2層のポジ型感光性樹脂層を、低感度のポジ型感光性 樹脂層が前記基材及び高感度のポジ型感光性樹脂層間に位置するように積層する 工程、この積層された 2層のポジ型感光性樹脂層を露光する工程、該 2層のポジ型 感光性樹脂層を露光後加熱する工程、該 2層のポジ型感光性樹脂層を現像するェ 程、該 2層のポジ型感光性樹脂層をポストベータする工程を含む透明性硬化膜の製 造方法であって、  [1] Two positive photosensitive resin layers having different exposure sensitivities on a substrate so that the low sensitivity positive photosensitive resin layer is positioned between the substrate and the high sensitivity positive photosensitive resin layer. A step of laminating, a step of exposing the laminated two layers of the positive photosensitive resin layer, a step of heating the two layers of the positive photosensitive resin layer after exposure, and the step of heating the two layers of the positive photosensitive resin layer. A process for producing a transparent cured film comprising a step of post-betaing the two positive-type photosensitive resin layers as the development is performed.
該低感度のポジ型感光性樹脂層が下記の (A)成分、(B)成分、(C)成分及び (D) 成分を含有するポジ型感光性樹脂層であることを特徴とする、透明性硬化膜の製造 方法。  The low-sensitivity positive photosensitive resin layer is a positive photosensitive resin layer containing the following components (A), (B), (C) and (D): Manufacturing method of heat-resistant cured film.
(A)成分:アルカリ可溶性樹脂  (A) component: alkali-soluble resin
(B)成分: 1分子中二個以上のビュルエーテル基を有する化合物  Component (B): Compound having two or more butyl ether groups in one molecule
(C)成分:ポストベータにより(A)成分と架橋反応する化合物  Component (C): Compound that crosslinks with component (A) by post-beta.
(D)成分:光酸発生剤  Component (D): Photoacid generator
[2] 前記露光がハーフ露光である請求項 1に記載の透明性硬化膜の製造方法。  2. The method for producing a transparent cured film according to claim 1, wherein the exposure is half exposure.
[3] 前記露光後加熱を温度 80°C乃至 140°Cで行い、且つ前記ポストベータを温度 15 [3] The post-exposure heating is performed at a temperature of 80 ° C. to 140 ° C., and the post beta is heated at a temperature of 15 ° C.
0°C乃至 270°Cで行う請求項 1又は請求項 2に記載の透明性硬化膜の製造方法。 The method for producing a transparent cured film according to claim 1 or 2, wherein the method is performed at 0 ° C to 270 ° C.
[4] 前記高感度のポジ型感光性樹脂層が、それぞれ下記の (A)成分、(B)成分、 (C) 成分及び (D)成分を含有するポジ型感光性樹脂層である、請求項 1乃至請求項 3の うちのいずれか一項に記載の透明性硬化膜の製造方法。 [4] The high-sensitivity positive photosensitive resin layer is a positive photosensitive resin layer containing the following components (A), (B), (C) and (D), respectively: The manufacturing method of the transparent cured film as described in any one of Claim 1 thru | or 4.
(A)成分:アルカリ可溶性樹脂  (A) component: alkali-soluble resin
(B)成分: 1分子中二個以上のビュルエーテル基を有する化合物  Component (B): Compound having two or more butyl ether groups in one molecule
(C)成分:ポストベータにより(A)成分と架橋反応する化合物  Component (C): Compound that crosslinks with component (A) by post-beta.
(D)成分:光酸発生剤  Component (D): Photoacid generator
[5] 前記低感度のポジ型感光性樹脂層において、(A)成分 100質量部に基づいて、 1 乃至 80質量部の前記(B)成分、 3乃至 70質量部の前記(C)成分、及び 0. 5乃至 50 質量部の前記 (D)成分を含有する、請求項 1乃至請求項 4のうちいずれか一項に記 載の透明性硬化膜の製造方法。 [5] In the low-sensitivity positive photosensitive resin layer, based on 100 parts by mass of component (A), 1 to 80 parts by mass of component (B), 3 to 70 parts by mass of component (C), The method for producing a transparent cured film according to any one of claims 1 to 4, further comprising 0.5 to 50 parts by mass of the component (D).
[6] 基材カ STFT素子を形成した基材である、請求項 1乃至請求項 5のうちのいずれか 一項に記載の透明性硬化膜の製造方法。 [6] The method for producing a transparent cured film according to any one of claims 1 to 5, wherein the substrate is a substrate on which an STFT element is formed.
[7] 請求項 1乃至請求項 5のうちのいずれか一項に記載の製造方法によって得られる 透明性硬化膜力 なる TFTアレイ平坦化膜。 [7] A TFT array flattening film obtained by the manufacturing method according to any one of claims 1 to 5, which is a transparent cured film force.
[8] 請求項 1乃至請求項 5のうちのいずれか一項に記載の製造方法によって得られる 透明性硬化膜を有する表示素子。 [8] A display element having a transparent cured film obtained by the production method according to any one of [1] to [5].
[9] 請求項 1乃至請求項 5のうちのいずれか一項に記載の製造方法によって得られる 透明性硬化膜を有する液晶表示素子。 [9] A liquid crystal display element having a transparent cured film obtained by the production method according to any one of claims 1 to 5.
PCT/JP2007/068083 2006-09-20 2007-09-18 Method for manufacturing transparent cured film using positive-working photosensitive resin layer for half exposure WO2008035672A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020097006060A KR101334753B1 (en) 2006-09-20 2007-09-18 Method for manufacturing transparent cured film using positive-working photosensitive resin layer for half exposure
CN2007800346563A CN101517492B (en) 2006-09-20 2007-09-18 Method for manufacturing transparent cured film using positive-working photosensitive resin layer for half exposure
JP2008535354A JP5083566B2 (en) 2006-09-20 2007-09-18 Method for producing transparent cured film using positive photosensitive resin layer for half exposure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006254755 2006-09-20
JP2006-254755 2006-09-20

Publications (1)

Publication Number Publication Date
WO2008035672A1 true WO2008035672A1 (en) 2008-03-27

Family

ID=39200497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068083 WO2008035672A1 (en) 2006-09-20 2007-09-18 Method for manufacturing transparent cured film using positive-working photosensitive resin layer for half exposure

Country Status (5)

Country Link
JP (1) JP5083566B2 (en)
KR (1) KR101334753B1 (en)
CN (1) CN101517492B (en)
TW (1) TWI431425B (en)
WO (1) WO2008035672A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282312A (en) * 2008-05-22 2009-12-03 Nissan Chem Ind Ltd Photosensitive resin composition
US8168371B2 (en) 2007-01-22 2012-05-01 Nissan Chemical Industries, Ltd. Positive photosensitive resin composition
US8828651B2 (en) 2005-07-25 2014-09-09 Nissan Chemical Industries, Ltd. Positive-type photosensitive resin composition and cured film manufactured therefrom

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807553B (en) * 2010-03-18 2013-05-01 信利半导体有限公司 Preparation method of TFT ARRAY plate having OC material
WO2016143740A1 (en) * 2015-03-11 2016-09-15 東レ株式会社 Organic el display device and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020667A (en) * 2002-06-13 2004-01-22 Kyocera Chemical Corp Photosensitive resin composition and forming method of positive type pattern
JP2004144905A (en) * 2002-10-23 2004-05-20 Tokyo Ohka Kogyo Co Ltd Positive photoresist composition for manufacture of liquid crystal device (lcd) and method for forming resist pattern
JP2005316117A (en) * 2004-04-28 2005-11-10 Kansai Paint Co Ltd Photosensitive resin composition
JP2006030971A (en) * 2004-06-15 2006-02-02 Techno Network Shikoku Co Ltd Photolithographic method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173413B2 (en) * 2003-08-28 2008-10-29 東京応化工業株式会社 Method for forming resist pattern for lift-off
JP4131864B2 (en) * 2003-11-25 2008-08-13 東京応化工業株式会社 Chemical amplification type positive photosensitive thermosetting resin composition, method for forming cured product, and method for producing functional device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020667A (en) * 2002-06-13 2004-01-22 Kyocera Chemical Corp Photosensitive resin composition and forming method of positive type pattern
JP2004144905A (en) * 2002-10-23 2004-05-20 Tokyo Ohka Kogyo Co Ltd Positive photoresist composition for manufacture of liquid crystal device (lcd) and method for forming resist pattern
JP2005316117A (en) * 2004-04-28 2005-11-10 Kansai Paint Co Ltd Photosensitive resin composition
JP2006030971A (en) * 2004-06-15 2006-02-02 Techno Network Shikoku Co Ltd Photolithographic method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828651B2 (en) 2005-07-25 2014-09-09 Nissan Chemical Industries, Ltd. Positive-type photosensitive resin composition and cured film manufactured therefrom
US8168371B2 (en) 2007-01-22 2012-05-01 Nissan Chemical Industries, Ltd. Positive photosensitive resin composition
JP2009282312A (en) * 2008-05-22 2009-12-03 Nissan Chem Ind Ltd Photosensitive resin composition

Also Published As

Publication number Publication date
JP5083566B2 (en) 2012-11-28
TW200819918A (en) 2008-05-01
KR20090058530A (en) 2009-06-09
JPWO2008035672A1 (en) 2010-01-28
CN101517492A (en) 2009-08-26
KR101334753B1 (en) 2013-12-02
CN101517492B (en) 2012-04-18
TWI431425B (en) 2014-03-21

Similar Documents

Publication Publication Date Title
JP5163899B2 (en) Positive photosensitive resin composition containing a polymer compound having a ring structure
US8828651B2 (en) Positive-type photosensitive resin composition and cured film manufactured therefrom
JP5019055B2 (en) Positive photosensitive resin composition and cured film obtained therefrom
JP4753040B2 (en) Negative photosensitive resin composition containing a compound having a polymerizable group
TW201007362A (en) Positive type resist composition and method for producing microlens
JP5077526B2 (en) Positive photosensitive resin composition containing a compound having an unsaturated group at the terminal
JP7239895B2 (en) Photosensitive resin composition
TWI424270B (en) Positive-type photosensitive resin composition, and interlayer insulator and microlens produced from the composition
JP5083566B2 (en) Method for producing transparent cured film using positive photosensitive resin layer for half exposure
JP2024038456A (en) Formation method of bank pattern
JP4753036B2 (en) Positive photosensitive resin composition and cured film obtained therefrom
TWI400570B (en) Positive type photosensitive resin composition and cured film manufactured therefrom
JP2009192760A (en) Positive photosensitive resin composition
JP7045001B2 (en) Photosensitive resin composition
JP2008256974A (en) Positive photosensitive resin composition
JP5585796B2 (en) Positive photosensitive resin composition containing a compound having an unsaturated group at the terminal
JP7041402B2 (en) Photosensitive resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034656.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535354

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097006060

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07807483

Country of ref document: EP

Kind code of ref document: A1