WO2008010459A1 - Ingrédient catalyseur au titane solide, catalyseur de polymérisation d'oléfine, et procédé de polymérisation d'oléfine - Google Patents

Ingrédient catalyseur au titane solide, catalyseur de polymérisation d'oléfine, et procédé de polymérisation d'oléfine Download PDF

Info

Publication number
WO2008010459A1
WO2008010459A1 PCT/JP2007/063972 JP2007063972W WO2008010459A1 WO 2008010459 A1 WO2008010459 A1 WO 2008010459A1 JP 2007063972 W JP2007063972 W JP 2007063972W WO 2008010459 A1 WO2008010459 A1 WO 2008010459A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
catalyst component
carbon atoms
compound
polymerization
Prior art date
Application number
PCT/JP2007/063972
Other languages
English (en)
French (fr)
Inventor
Kazuhisa Matsunaga
Kazutaka Tsuru
Tetsunori Shinozaki
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP07790753.3A priority Critical patent/EP2048166B1/en
Priority to JP2008525847A priority patent/JP5479734B2/ja
Priority to US12/309,319 priority patent/US20090203855A1/en
Priority to CN2007800266855A priority patent/CN101490101B/zh
Publication of WO2008010459A1 publication Critical patent/WO2008010459A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0209Esters of carboxylic or carbonic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/122Metal aryl or alkyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene

Definitions

  • Solid titanium catalyst component Solid titanium catalyst component, catalyst for olefin polymerization, and method for olefin polymerization
  • the present invention relates to a solid titanium catalyst component preferably used for polymerization of ⁇ -olefin having 3 or more carbon atoms.
  • the present invention also relates to an polyolefin polymerization catalyst comprising the solid titanium catalyst component.
  • the present invention relates to a method for polymerizing olefin using the above olefin polymerization catalyst.
  • olefin polymerization catalyst a tetrachloride salt referred to as a Cidara one-natta catalyst.
  • a catalyst containing titanium or titanium trichloride, a catalyst comprising a solid titanium catalyst component made of magnesium, titanium, halogen and an electron donor and an organometallic compound are widely known.
  • the latter catalyst exhibits high activity in the polymerization of ⁇ -olefins such as propylene and 1-butene in addition to ethylene.
  • ⁇ -olefins such as propylene and 1-butene
  • the obtained 1-year-old refin polymer may have high stereoregularity.
  • a solid titanium catalyst component carrying an electron donor selected from carboxylic acid esters, typically phthalate esters, and an aluminum alkyl as a promoter component is used.
  • excellent polymerization activity and stereospecificity are exhibited when a catalyst comprising a compound and a key compound having at least one Si—OR (wherein R is a hydrocarbon group) is used.
  • No. 57-63310 Patent Document 1 is reported.
  • a polymer obtained by using the above catalyst often has a narrow molecular weight distribution as compared with a polymer obtained by a Tiedara one-natta catalyst.
  • a polymer with a narrow molecular weight distribution It is known that there is a tendency of “low properties”, “low melt tension”, “poor formability”, “slightly low rigidity”, and the like.
  • various high-speed molding technologies such as high-speed stretching technology for the purpose of improving the productivity of stretched films are evolving from the viewpoint of productivity improvement and cost reduction.
  • Patent Document 7 in Japanese Patent Publication No. 2005-517746 (Patent Document 7), in Patent Documents 4 to 6, a catalyst containing a carboxylic acid ester having a divalent or higher valent ester group has a polyolefin having a broad molecular weight distribution. It is disclosed to give.
  • Patent Document 1 JP-A-57-63310
  • Patent Document 2 Japanese Patent Laid-Open No. 5-170843
  • Patent Document 3 Japanese Patent Laid-Open No. 3-7703
  • Patent Document 4 Pamphlet of International Publication No. 01Z057099
  • Patent Document 5 International Publication No. 00Z63261 Pamphlet
  • Patent Document 6 Pamphlet of International Publication No. 02Z30998
  • Patent Document 7 Special Table 2005-517746
  • the above catalyst has no effect of widening the molecular weight distribution of the olefin polymer.
  • the catalyst was sufficient to broaden the molecular weight distribution by increasing the low molecular weight component.
  • these catalysts have been evaluated in the field where the melt tension of the polyolefin polymer is not sufficiently improved, and from the viewpoint of cost reduction, the molecular weight distribution can be reduced by a simpler process. There is a long-awaited appearance of a catalyst that can produce a modified olefin polymer!
  • an object of the present invention is to provide a catalyst component and a catalyst capable of easily producing an olefin polymer suitable for high-speed stretching and high-speed molding with a wide molecular weight distribution and high melt tension. .
  • the solid titanium catalyst component (I) of the present invention comprises:
  • is an integer of 5 to 10.
  • a plurality of R 1 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • a plurality of R's are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group and a silicon-containing group.
  • Basic force An atom or group selected, which may be bonded to each other to form a ring.
  • R is the backbone of Yogu said ring optionally contains double bonds in the skeleton of the ring formed by bonding to each other, if it contains C a to OCOR 1 is attached two or more
  • the number of carbon atoms constituting the ring skeleton is 5 to 10.
  • the cyclic skeleton is preferably composed of 6 carbon atoms.
  • the cyclic polyvalent ester group-containing compound (a) is preferably a compound represented by the following formula (la).
  • n is an integer of 5 to 10.
  • the single bond in the cyclic skeleton (except for the C a — C a bond and the C a — C b bond) may be replaced with a double bond.
  • a plurality of R 1 s are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • a plurality of Rs are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group, and a silicon-containing group.
  • R contains two C a in the backbone of Yogu said ring optionally contains double bonds in the skeleton of the ring formed by bonding to each other, forming a ring skeleton
  • the number of carbon atoms is 5 ⁇ : LO is there. ].
  • the catalyst for olefin polymerization of the present invention is:
  • the solid titanium catalyst component (I) is the solid titanium catalyst component (I).
  • the catalyst for olefin polymerization of the present invention may further contain an electron donor (III).
  • the olefin polymerization method of the present invention is characterized in that olefin polymerization is carried out in the presence of the olefin polymerization catalyst.
  • the solid titanium catalyst component, the olefin polymerization catalyst, and the olefin polymerization method of the present invention are suitable for producing an olefin polymer having high stereoregularity and a wide molecular weight distribution with high activity. .
  • an olefin polymer having excellent rigidity in addition to moldability such as high-speed stretchability and high-speed moldability, for example. Can be expected to be manufacturable.
  • FIG. 1 is a graph showing the relationship between the amount of hydrogen added and MFR in the production of the olefin polymer of Example.
  • solid titanium catalyst component (I) the catalyst for olefin polymerization and the method for producing the olefin polymer according to the present invention will be described in more detail.
  • the solid titanium catalyst component (I) according to the present invention is characterized in that it contains titanium, magnesium, halogen and a cyclic polyvalent ester group-containing compound (a).
  • the cyclic polyvalent ester group-containing compound (a) is represented by the following formula (1).
  • n is an integer of 5 to 10, preferably an integer of 5 to 7, and particularly preferably 6.
  • C a represents a carbon atom.
  • C a — C a and C a — C b are C— C.
  • a plurality of R 1 s each independently has 1 to 20, preferably 1 to 10, more preferably 2 to 8, more preferably 4 to 8, particularly preferably 4 to 6 carbon atoms.
  • the hydrocarbon group include ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, decyl group, dodecyl group, Examples include a tetradecyl group, a hexadecyl group, an octadecyl group, and an eicosyl group.
  • an n-butyl group, an isobutyl group, a hexyl group, and an octyl group are preferable, and an n-butyl group and an isobutyl group are preferable.
  • a plurality of R's are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group, and a silicon-containing group
  • a hydrocarbon group having 1 to 20 carbon atoms is preferable as R other than a hydrogen atom.
  • the hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, and n- Propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, butyl group, phenyl group, Examples thereof include an aliphatic hydrocarbon group such as an octyl group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • R may be bonded to each other to form a ring.
  • R may be bonded to each other.
  • the ring skeleton may include a double bond. during, if it contains C a to OCOR 1 is attached two or more, the number of carbon atoms forming the ring backbone is 5-10.
  • Examples of such a ring skeleton include a norbornane skeleton and a tetracyclododecene skeleton.
  • a plurality of Rs may be a carbocyclic group-containing group such as a carboxylic acid ester group, an alkoxy group, a siloxy group, an aldehyde group, an acetyl group, or an oxycarbonylalkyl group. Preferably contains at least one hydrocarbon group.
  • a compound in which R is a hydrocarbon group is preferable because a solid titanium catalyst component having high activity and stereoregularity tends to be obtained.
  • the compound is at least one group other than a hydrogen atom, a broad molecular weight distribution is intact, with higher activity, more stereoregular It is preferable because of its high properties and the ability to obtain an olefin polymer.
  • the compound having a diester structure as described above has isomers such as cis and trans derived from a plurality of OCOR 1 groups in Formula 1, and any structure meets the object of the present invention.
  • the content of the trans isomer is higher. The higher the content of the trans isomer, the higher the activity only by the effect of broadening the molecular weight distribution and the higher the stereoregularity of the resulting polymer.
  • the cyclic polyvalent ester group-containing compound as (a) is bonded to a substituent to a carbon adjacent to C a, a compound represented by the following formula (la) is preferred for Rukoto is preferred instrument JP ,.
  • R bonded directly to C b at least one is a group other than a hydrogen atom compounds, broad molecular weight distribution is intact, with higher activity, more stereoregular highly Orefu in polymer Preferred in terms of obtaining ⁇ .
  • Etc. can be mentioned as a preferable example.
  • These compounds may be used alone or in combination of two or more. Further, these cyclic polyvalent ester group-containing compounds (a) may be used in combination with a catalyst component (b) or a catalyst component (c) described later as long as the object of the present invention is not impaired.
  • the cyclic polyvalent ester group-containing compound (a) may be formed in the process of preparing the solid titanium catalyst component (I). For example, when preparing the solid titanium catalyst component (I), a step of substantially contacting the carboxylic anhydride or carboxylic dihalide corresponding to the catalyst component (a) and the corresponding polyol is provided. Thus, the cyclic polyvalent ester group-containing compound (a) may be contained in the solid titanium catalyst component. [0057] In the method for producing an olefin polymer of the present invention, a polymer having a wide molecular weight distribution can be obtained.
  • the cyclic hydrocarbon structure is known to form various three-dimensional structures such as a chair type and a boat type. Furthermore, if the cyclic structure has a substituent, the possible variation of the three-dimensional structure is further increased. In addition, if the C a — C a bond and the C a — C b bond linking a plurality of ester groups (OCOR 1 group) are single bonds, the possible three-dimensional norelation increases. The ability to take such a variety of three-dimensional structures leads to the formation of a variety of active species on the solid titanium catalyst component (I).
  • olefin polymers having various molecular weights can be produced at the same time, that is, broad-olefin polymers having a molecular weight distribution are produced. be able to.
  • a magnesium compound and a titanium compound are used in addition to the cyclic polyvalent ester group-containing compound (a).
  • Magnesium halides such as magnesium chloride and magnesium bromide
  • Alkoxy magnesium halides such as methoxy magnesium chloride, ethoxy magnesium chloride, phenoxy magnesium chloride;
  • Alkoxymagnesium such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, 2-ethylhexoxymagnesium; magnesium carboxylates such as magnesium stearate
  • These magnesium compounds may be used alone or in combination of two or more. These magnesium compounds may be complex compounds with other metals, double compounds, or mixtures with other metal compounds.
  • magnesium compounds containing halogen are preferred.
  • Magnesium halide particularly magnesium chloride, is preferably used.
  • alkoxymagnesium such as ethoxymagnesium is also preferably used.
  • the magnesium compound is Other materials may be derived, for example, those obtained by contacting an organomagnesium compound such as a Grignard reagent with titanium halide, silicon halide, halogenated alcohol or the like.
  • titanium compounds include general formulas
  • the tetravalent titanium compound shown by can be mentioned. More specifically,
  • Titanium tetrahalides such as TiCl and TiBr
  • Trihalogenated alkoxytitanium such as Br
  • Dihalogenated alkoxytitanium such as Ti (OCH) CI, Ti (OC H) CI;
  • Monohalogenated alkoxy such as Ti (OCH) Cl, Ti (0-n-C H) Cl, Ti (OC H) Br
  • Tetraal such as Ti (OCH), Ti (OC H), Ti (OC H), Ti (0-2-ethylhexyl)
  • titanium tetrachloride is particularly preferred. These titanium compounds may be used alone or in combination of two or more.
  • Examples of the magnesium compound and titanium compound as described above may also include compounds described in detail in Patent Document 1, Patent Document 2, and the like.
  • (P-1) A solid adduct comprising a magnesium compound and a catalyst component (b), a cyclic polyvalent ester group-containing compound (a), and a liquid titanium compound coexist in an inert hydrocarbon solvent. Below, contact method in suspension.
  • (P-2) A solid adduct comprising a magnesium compound and a catalyst component (b), a cyclic polyvalent ester group-containing compound (a), and a titanium compound in a liquid state are contacted in several steps. How to let
  • the preferred reaction temperature is in the range of -30 ° C to 150 ° C, more preferably -25 ° C to 130 ° C, and even more preferably 25 to 120 ° C.
  • the production of the above solid titanium catalyst component can be carried out in the presence of a known medium, if necessary.
  • the medium include aromatic hydrocarbons such as toluene having a slight polarity, and known aliphatic hydrocarbons such as heptane, octane, decane, and cyclohexane, and alicyclic hydrocarbon compounds. Among them, aliphatic hydrocarbons are preferable examples.
  • the catalyst component (b) used for the formation of the above solid adduct or liquid magnesium compound a known compound capable of solubilizing the above magnesium compound in a temperature range of about room temperature to 300 ° C is preferred.
  • a known compound capable of solubilizing the above magnesium compound in a temperature range of about room temperature to 300 ° C is preferred.
  • alcohol, aldehyde, amine, carboxylic acid and a mixture thereof are preferable. Examples of these compounds include compounds described in detail in Patent Document 1 and Patent Document 2.
  • alcohols having the above-mentioned magnesium compound soluble ability include methanol, ethanol, propanol, butanol, isobutanol, ethylene glycol, 2-methylpentanol, 2-ethylbutanol, aliphatic alcohols such as n-heptanol, n-octanol, 2-ethylhexanol, decanol, dodecanol; Cycloaliphatic alcohols such as cyclohexanol and methylcyclohexanol; aromatic alcohols such as benzyl alcohol and methylbenzyl alcohol; aliphatic alcohols having an alkoxy group such as n-butyl cellosolve
  • Examples of the carboxylic acid include organic carboxylic acids having 7 or more carbon atoms such as strong prillic acid and 2-ethylhexanoic acid.
  • Examples of the aldehyde include aldehydes having 7 or more carbon atoms such as capric aldehyde and 2-ethylhexyl aldehyde.
  • Examples of the amine include amines having 6 or more carbon atoms such as heptylamine, octylamine, noramine, laurylamine, 2-ethylhexylamine and the like.
  • the above alcohols are preferable, and ethanol, propanolol, butanol, isobutanol, hexanol, 2-ethynolehexanol, defanol and the like are particularly preferable.
  • the amount of the magnesium compound and the catalyst component (b) used in preparing the solid adduct or the liquid magnesium compound varies depending on the type, contact conditions, etc.
  • the compound is used in an amount of 0.1 to 20 mol Z liter, preferably 0.5 to 5 mol Z liter per unit volume of the catalyst component (b).
  • a medium inert to the solid adduct can be used in combination.
  • Preferred examples of the medium include known hydrocarbon compounds such as heptane, octane and decane.
  • the composition ratio of the obtained solid adduct or the magnesium compound in the liquid state to the catalyst component) varies depending on the type of compound used and cannot be defined unconditionally.
  • the catalyst component (b) is preferably at least 2.0 moles, more preferably at least 2.2 moles, even more preferably at least 2.6 moles, particularly preferably at least 2.7 moles relative to moles. The range is 5 mol or less.
  • the solid titanium catalyst component (I) comprises sardine, an aromatic carboxylic acid ester and a compound having two or more ether bonds via Z or a plurality of carbon atoms (hereinafter referred to as “catalyst component (c)”. ) May be included. If the solid titanium catalyst component (I) of the present invention contains the catalyst component (c), the activity and stereoregularity may be enhanced, and the molecular weight distribution may be further broadened.
  • catalyst component (c) known aromatic carboxylic acid esters and polyether compounds, which have been preferably used in conventional olefin polymerization catalysts, such as the above-mentioned Patent Document 2 and JP-A 200-354714, are disclosed. Can be used without limitation.
  • aromatic carboxylic acid ester examples include aromatic carboxylic acid monoesters such as benzoic acid esters and toluic acid esters, and aromatic polyvalent carboxylic acid esters such as phthalic acid esters. It is done. Of these, phthalic acid esters, which are preferred for aromatic polyvalent carboxylic acid esters, are more preferred. As the phthalic acid esters, phthalic acid alkyl esters such as ethyl phthalate, n-butyl phthalate, isobutyl phthalate, hexyl phthalate and heptyl phthalate are preferable, and diisobutyl phthalate is particularly preferable.
  • polyether compound is more specifically a compound represented by the following formula (3).
  • m is an integer of l ⁇ m ⁇ 10, more preferably an integer of 3 ⁇ m ⁇ 10, and R U to R 36 are each independently a hydrogen atom, Alternatively, a substituent having at least one element selected from carbon, hydrogen, oxygen, fluorine, chlorine, bromine, iodine, nitrogen, sulfur, phosphorus, boron, and key element.
  • a plurality of R 11 and R 12 may be the same or different. Any R U to R 36 , preferably R 11 and R 12 may jointly form a ring other than a benzene ring.
  • 2-substituted dialkoxypropanes such as 2-cyclohexyl-2-cyclohexylmethyl-1,3-dimethoxypropane,
  • Gianolecoxynolecans such as
  • Dialkoxycycloalkane such as
  • 1,3-diethers are preferred, especially 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl -2-Isopentyl-1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane and 2,2-bis (cyclohexylmethyl) 1,3-dimethoxypropane are preferred!
  • the cyclic polyvalent ester group-containing compound (a), the catalyst component (b), and the catalyst component (c) as described above may be considered to belong to a component called an electron donor by those skilled in the art.
  • the above-mentioned electron donor component has the effect of increasing the stereoregularity of the obtained polymer while maintaining the high activity of the catalyst, the effect of controlling the composition distribution of the obtained copolymer, the particle size of the catalyst particles, It is known to show an aggregating agent effect for controlling the particle size.
  • the cyclic polyvalent ester group-containing compound (a) of the present invention also has an effect that the molecular weight distribution can be further controlled by the electron donor.
  • the halogen Z titanium (atomic ratio) (that is, the number of moles of halogen atoms and the number of moles of Z titanium atoms) is 2 to 100, preferably Is preferably 4 to 90,
  • Cyclic polyvalent ester group-containing compound (a) Z titanium (molar ratio) that is, the number of moles of cyclic polyvalent ester group-containing compound (a) Z number of moles of titanium atom
  • Cyclic polyvalent ester group-containing compound (a) Z titanium (molar ratio) that is, the number of moles of cyclic polyvalent ester group-containing compound (a) Z number of moles of titanium atom
  • Catalyst component (b) or catalyst component (c) is catalyst component (b) Z titanium atom (molar ratio) is preferably 0 to: LOO, preferably 0 to: LO.
  • the magnesium Z titanium (atomic ratio) (that is, the number of moles of magnesium atoms and the number of moles of Z titanium atoms) is 2 to 100, preferably 4 to 50.
  • the catalyst component (b) and the catalyst component (c) is preferably cyclic polyvalent.
  • the valent ester group-containing compound (a) is not more than 20% by weight, more preferably not more than 10% by weight, based on 100% by weight.
  • the olefin polymerization catalyst according to the present invention comprises:
  • Solid titanium catalyst component (I) according to the present invention, and
  • organometallic compound catalyst component (II) a compound containing a Group 13 metal, such as an organoaluminum compound, a complex alkyl compound of a Group 1 metal and aluminum, a Group 2 metal organometallic compound, etc. Can be used. Of these, organoaluminum compounds are preferred.
  • organometallic compound catalyst component (i) examples include the known EP585869A1 and the like.
  • Preferable examples include organometallic compound catalyst components described in the literature.
  • the olefin polymerization catalyst of the present invention may contain the above-described catalyst component (III) together with the above-mentioned organometallic compound catalyst component ( ⁇ ) as necessary.
  • the catalyst component (III) is preferably an organic silicon compound. Examples of the organic silicon compound include compounds represented by the following general formula (4).
  • R and R ′ are hydrocarbon groups, and n is an integer of 0 ⁇ n ⁇ 4.
  • organic silicon compound represented by the above general formula (4) examples include diisopropylpropyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyljetoxysilane, and t-amino retino-leger.
  • Toxisilane dicyclohexylenoresimethoxymethoxy, cyclohexylmethyldimethoxysilane, cyclohexylmethyljetoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, t-butyltriethoxysilane, phenyltriethoxysilane, cyclo Hexyltrimethoxysilane, cyclopentyltrimethoxysilane, 2-methylcyclopentyltrimethoxysilane, cyclopentyltriethoxysilane, dicyclopentyldimethoxysilane, dicyclopentenolegetoxysilane, tricyclopentylmethoxy Orchids, dicyclopentyl methylmethoxysilane, dicyclopentyl Rue chill silane, such Shikurobe emissions chill dimethylethoxysilane is used.
  • butyltriethoxysilane, diphenyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexenoremethinoresimethoxymethoxysilane, and dicyclopentinoresinmethoxysilane are preferably used.
  • a silane compound represented by the following formula (5) described in International Publication No. 2004Z016662 pamphlet is also a preferable example of the organic silicon compound.
  • R a is a hydrocarbon group having 1 to 6 carbon atoms
  • examples of R a include unsaturated or saturated aliphatic hydrocarbon groups having 1 to 6 carbon atoms, particularly preferably.
  • Examples include hydrocarbon groups having 2 to 6 carbon atoms.
  • Specific examples include methyl, ethyl, n-propyl, is o-propyl, n-butyl, iso-butyl, sec-butyl, n-pentyl, is An o-pentyl group, a cyclopentyl group, an n-xyl group, a cyclohexyl group and the like can be mentioned.
  • an ethyl group is particularly preferable.
  • R b is a hydrocarbon group having 1 to 12 carbon atoms or hydrogen
  • examples of R b include an unsaturated or saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms or hydrogen. It is done. Specific examples include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butinole group, an iso-butinole group, a sec-butinole group, an n-pentinole group, an iso-pentinole group, a cyclopentyl group, An n- xyl group, a cyclohexyl group, an octyl group and the like can be mentioned, and among these, an ethyl group is particularly preferable.
  • a hydrocarbon group having 1 to 12 carbon atoms is a hydrocarbon group having 1 to 12 carbon atoms, and examples thereof include an unsaturated or saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms or hydrogen. Specific examples include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butynole group, a sec-butinole group, an n-pentinole group, an iso-pentinole group, and a cyclopentinole group. , N-hexyl group, cyclohexyl group, octyl group and the like, among which ethyl group is particularly preferable.
  • organosilicon compound is a compound represented by the following formula (6). I can get lost.
  • RN is a cyclic amino group
  • examples of the cyclic amino group include perhydroquinolino group, perhydroisoquinolino group, 1, 2, 3, 4-tetrahydroquinolino group, 1, 2 , 3, 4-tetrahydroisoquinolino group, otatamethyleneimino group and the like.
  • organic cage compounds may be used in combination of two or more.
  • catalyst component ( ⁇ ) examples include the aromatic carboxylic acid ester and a compound having two or more ether bonds via Z or a plurality of carbon atoms (the catalyst component).
  • the polyethery compounds described as examples in (c)) are also preferred and can be mentioned as examples.
  • 1,3-diethers are preferred, especially 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxy Mouth pan, 2-isopropyl-2-isopentyl-1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, 2,2-bis (cyclohexylmethyl) 1,3-dimethoxypropane Is preferred.
  • the olefin polymerization catalyst of the present invention may contain other components useful for olefin polymerization as required in addition to the above components.
  • examples of other components include a carrier such as silica, an antistatic agent, a particle flocculant, a storage stabilizer, and the like.
  • a carrier such as silica, an antistatic agent, a particle flocculant, a storage stabilizer, and the like.
  • the olefin polymerization method according to the present invention is characterized in that olefin polymerization is performed using the olefin polymerization catalyst of the present invention.
  • polymerization may include the meaning of copolymerization such as random copolymerization and block copolymerization in addition to homopolymerization.
  • the main polymerization is performed in the presence of a prepolymerization catalyst obtained by prepolymerizing ⁇ -olefin in the presence of the olefin polymerization catalyst of the present invention. It is also possible.
  • This prepolymerization is carried out by prepolymerizing a-olefin in an amount of from 0.1 to: LOOOg, preferably from 0.3 to 500 g, particularly preferably from 1 to 200 g, per lg of olefin polymerization catalyst.
  • the concentration of the solid titanium catalyst component (I) in the prepolymerization is usually about 0.001 to 200 midimono, preferably about 0.01 to 50 midmol per 1 liter of liquid medium in terms of titanium atoms. In particular, the range of 0.1 to 20 mmol is desirable.
  • the amount of the organometallic compound catalyst component ( ⁇ ) in the prepolymerization should be such that 0.1 to L000 g, preferably 0.3 to 500 g of polymer is formed per lg of the solid titanium catalyst component (I). In an amount of about 0.1 to 300 mol, preferably about 0.5 to L00 mol, particularly preferably 1 to 50 mol, per mol of titanium atom in the solid titanium catalyst component (I). I hope that there is.
  • the catalyst component (III) or the like can be used as necessary.
  • these components are added to the solid titanium catalyst component (I) with respect to 1 mole of titanium atoms. It is used in an amount of 1 to 50 mol, preferably 0.5 to 30 mol, more preferably 1 to 10 mol.
  • the prepolymerization can be performed under mild conditions by adding olefin and the above-described catalyst component to an inert hydrocarbon medium.
  • Aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, kerosene;
  • Aromatic hydrocarbons such as benzene, toluene, xylene;
  • Halogenated hydrocarbons such as ethylene chloride and chlorobenzene
  • inert hydrocarbon media it is particularly preferable to use aliphatic hydrocarbons.
  • the prepolymerization is preferably performed in a batch system.
  • prepolymerization can be performed using olefin itself as a solvent, or it can be prepolymerized in a substantially solvent-free state. In this case, it is preferable to perform preliminary polymerization continuously.
  • the olefin used in the prepolymerization may be the same as or different from the olefin used in the main polymerization described later. Specifically, propylene is preferable.
  • the temperature during the prepolymerization is usually within a range of about -20 to + 100 ° C, preferably about -20 to + 80 ° C, more preferably 0 to + 40 ° C. ! /
  • Olefins that can be used in the polymerization include ⁇ -olefins having 3 to 20 carbon atoms, such as propylene, 1-butene, 1 -Linear olefins such as pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 4-methyl-1- Examples include branched olefins such as pentene, 3-methyl-1-pentene, and 3-methyl-1-butene.
  • Propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 3-methyl- 1-butene is preferred.
  • propylene, 1-butene, 4-methyl-1-pentene, and 3-methyl-1-butene are particularly preferable from the viewpoint that the advantages of a polymer having a wide molecular weight distribution can be easily expressed in high-stiffness rosin.
  • aromatic beer compounds such as ethylene, styrene, and arylbenzene; and alicyclic beure compounds such as beucyclohexane and beucycloheptane.
  • a compound having a polyunsaturated bond such as conjugated gen such as rhododecene, isoprene, butadiene and the like and non-conjugated gen can also be used as a polymerization raw material together with ethylene and a-olefin.
  • conjugated gen such as rhododecene, isoprene, butadiene and the like
  • non-conjugated gen can also be used as a polymerization raw material together with ethylene and a-olefin.
  • These compounds may be used alone or in combination of two or more.
  • ethylene and aromatic bur compounds are preferable.
  • small amounts e.g. 10 wt% or less, preferably it is an amount of 0/0 below 5 by weight, other Orefin such as ethylene may be used in combination.
  • the prepolymerization and the main polymerization can be carried out even if they are liquid phase polymerization methods such as Balta polymerization method, solution polymerization, suspension polymerization, or gas phase polymerization methods.
  • the reaction solvent may be the inert hydrocarbon used in the above pre-polymerization, or olefin that is liquid at the reaction temperature. it can.
  • the solid titanium catalyst component (I) is usually about 0.0001 to 0.5 mmol, preferably about about 0.0001 to 0.5 mmol in terms of titanium atom per liter of polymerization volume. Used in an amount of 0.005 to 0.1 mmol.
  • the organometallic compound catalyst component ( ⁇ ) is usually about 1 to 2000 mol, preferably about 5 to 500 mol, more preferably 10 to 1 mol per 1 mol of titanium atom in the prepolymerization catalyst component in the polymerization system. 350 mol, more preferably 30 to 350 mol, particularly preferably 50 to 350 mol is used.
  • the catalyst component (III) is preferably from 0.001 to 50 mol, preferably from 0.01 to 30 mol, particularly preferably from the organometallic compound catalyst component (II). Used in an amount of 0. 05-20 moles.
  • the molecular weight of the resulting polymer can be adjusted, and a polymer having a high melt flow rate can be obtained.
  • the polymerization temperature of olefin is usually about 20 to 200 ° C, preferably about 30 to 100 ° C, more preferably 50 to 90 ° C.
  • the pressure is usually set to normal pressure to 10 Okgf / cm 2 (9.8 MPa), preferably about 2 to 50 kgfZcm 2 (0.20 to 4.9 MPa).
  • the polymerization is carried out either batchwise, semi-continuous or continuously. It can also be done in the law.
  • the polymerization can be carried out in two or more stages by changing the reaction conditions. By performing such multi-stage polymerization, it is possible to further widen the molecular weight distribution of the olefin polymer.
  • the olefin polymer obtained in this manner may be misaligned, such as a homopolymer, a random copolymer, and a block copolymer.
  • the decane insoluble component content is 70% or more, preferably 85% or more, particularly preferably 90% or more. A certain propylene-based polymer with high stereoregularity is obtained.
  • a polyolefin having a wide molecular weight distribution can be obtained without performing multistage polymerization, even with a small number of stages of polymerization, for example, single stage polymerization.
  • the ratio of components having a higher molecular weight is higher than that of conventional olefin polymers having the same melt flow rate (MFR). It is characterized in that an olefin polymer having a low molecular weight and a low component ratio is often obtained. This characteristic can be confirmed by gel permeation chromatography (GPC) measurement described later, and a polymer having both high Mw ZMn value and MzZMw value can be obtained.
  • GPC gel permeation chromatography
  • Polypropylene having a high MwZMn value is regarded as a common sense in the traders that it has excellent moldability and rigidity.
  • a high MzZMw value indicates a high content ratio of components having a high molecular weight, and it is expected that the resulting polypropylene has a high melt tension and is likely to be excellent in moldability.
  • the method for polymerizing olefins of the present invention is used, a polymer having a broad molecular weight distribution can be obtained without performing multi-stage polymerization, and therefore the possibility of simplifying the polymer production apparatus is possible. There is. In addition, when applied to a conventional multistage polymerization method, it is expected that a polymer having better melt tension and moldability can be obtained.
  • the bulk specific gravity, melt flow rate, decane-soluble (insoluble) component amount, and molecular weight distribution of the propylene polymer were measured by the following methods.
  • the measurement temperature was 230 ° C for propylene polymer and 260 ° C for 4-methyl 1-pentene polymer.
  • Decane insoluble component content 100-100 X (500 X a) / (100 X b)
  • Liquid Chromatograph Waters ALC / GPC 150-C plus (with suggested refractometer detector)
  • the MwZ Mn value and the MzZMw value were calculated by analyzing the obtained chromatogram by a known method.
  • the measurement time per sample was 60 minutes
  • the solid part was collected by hot filtration.
  • the solid part was resuspended in 200 ml of titanium tetrachloride, and the temperature was raised to 130 ° C. And held for 15 minutes with stirring.
  • the solid part was again collected by hot filtration, and thoroughly washed with decane and heptane at 100 ° C until no free titanium compound was detected in the washing solution.
  • the solid titanium catalyst component (A) was obtained by the above operation.
  • a solid titanium catalyst component (B) was obtained in the same manner as in Example 1 except that —1, 2-dibenzoate (CH) was used.
  • a solid titanium catalyst component (C) was obtained in the same manner as in Example 1 except that the reaction at 120 ° C was 90 minutes and the reaction at 130 ° C was 45 minutes.
  • the polyolefin polymerization catalyst containing the solid titanium catalyst component of the present invention is used in comparison with the olefin polymerization catalyst containing a solid titanium catalyst component of a comparative example that has been conventionally used. It can be seen that an olefin polymer having a broad molecular weight distribution can be obtained. Such an olefin polymer is also advantageous in obtaining a high melt flowable resin recently required for, for example, automobile injection molding applications.
  • Figure 1 shows the relationship between the hydrogen consumption and MFR in the above results. It is known to those skilled in the art that the relationship between the amount of hydrogen used and MFR shows good linearity on the graph when the logarithm is taken. In the case of performing multistage polymerization for the purpose of broadening the molecular weight distribution, it is shown that the catalyst with a steeper slope in this graph can greatly change the molecular weight with a small difference in the amount of hydrogen used. That is, it is advantageous for widening the molecular weight distribution.
  • the molecular weight distribution is extremely wide. It is possible to obtain a olefin polymer.
  • a solid titanium catalyst component containing a cyclic polyvalent ester group-containing compound having a substituent at the cyclic site is used, olefin polymerization with extremely high activity and higher stereoregularity is maintained while maintaining a wide molecular weight distribution.
  • the multistage polymerization method is used in combination, it is advantageous to obtain an olefin polymer having a broad molecular weight distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

明 細 書
固体状チタン触媒成分、ォレフィン重合用触媒およびォレフィン重合方法 技術分野
[0001] 本発明は、炭素原子数 3以上の α -ォレフィンの重合に好ましく用いられる固体状 チタン触媒成分に関する。また本発明は、上記固体状チタン触媒成分を含むォレフ イン重合用触媒に関する。更に本発明は、上記ォレフィン重合用触媒を用いたォレ フィンの重合方法に関する。
背景技術
[0002] 従来から、エチレン、 α—ォレフインの単独重合体あるいはエチレン · α—ォレフィ ン共重合体などのォレフィン重合体を製造するために用いられる触媒として、活性状 態のハロゲンィ匕マグネシウムに担持されたチタンィ匕合物を含む触媒が知られている。
(以下、「単独重合」と「共重合」とをまとめて「重合」と記載する場合もある。 ) このようなォレフィン重合用触媒としては、チーダラ一一ナッタ触媒と称される、四塩 化チタンや三塩化チタンを含む触媒や、マグネシウム、チタン、ハロゲンおよび電子 供与体からなる固体状チタン触媒成分と有機金属化合物とからなる触媒等が広く知 られている。
[0003] 後者の触媒は、エチレンの他、プロピレン、 1-ブテンなどの α -ォレフインの重合に 高い活性を示す。また、得られる a一才レフイン重合体は高い立体規則性を有するこ とがある。
[0004] これらの触媒の中でも、特に、フタル酸エステルを典型的な例とするカルボン酸エス テルから選択される電子供与体が担持された固体状チタン触媒成分と、助触媒成分 としてのアルミニウム アルキル化合物と、少なくとも一つの Si— OR (式中、 Rは炭化 水素基である)を有するケィ素化合物とからなる触媒を用いた場合に、優れた重合活 性と立体特異性が発現されることが特開昭 57— 63310号公報 (特許文献 1)等で報 告されている。
[0005] 上記の触媒を用いて得られた重合体は、チーダラ一一ナッタ触媒で得られる重合 体に比して分子量分布が狭いことが多い。分子量分布が狭い重合体は、「溶融流動 性が低い」、「溶融張力が低い」、「成形性に劣る」、「剛性がやや低い」等の傾向があ ることが知られている。一方で、生産性向上、コストダウン等の観点から、たとえば延 伸フィルムの生産性向上を目的とした高速延伸技術などの様々な高速成形技術が 進化している。
[0006] 上記の様な比較的狭分子量分布の重合体をたとえば高速延伸しょうとすると、溶融 張力不足からフィルムのネックインやバタツキなどがより顕著となり、生産性向上が困 難になるケースがある。よって、より高い溶融張力を有する重合体が市場から求めら れている。
[0007] このような問題を解決させるために、分子量の異なる重合体を多段重合で製造して 重合体の分子量分布を広げる方法 (特開平 5-170843号公報 (特許文献 2)等)や、 複数種の電子供与体を含む触媒 (特開平 3-7703号公報 (特許文献 3) )や、固体状 チタン触媒成分に含まれる電子供与体に不斉炭素を有するコハク酸エステルを使用 した触媒 (国際公開第 01Z057099号パンフレット (特許文献 4)、国際公開第 ΟθΖ 63261号パンフレット(特許文献 5)、国際公開第 02Z30998号パンフレット (特許文 献 6) )等の数多くの報告がある。
[0008] また、特表 2005— 517746号公報 (特許文献 7)には、上記特許文献 4〜6には 2価 以上のエステル基を有するカルボン酸エステルを含む触媒が分子量分布の広いポリ ォレフィンを与えることが開示されて 、る。
特許文献 1 :特開昭 57-63310号公報
特許文献 2:特開平 5-170843号公報
特許文献 3:特開平 3-7703号公報
特許文献 4 :国際公開第 01Z057099号パンフレット
特許文献 5 :国際公開第 00Z63261号パンフレット
特許文献 6:国際公開第 02Z30998号パンフレット
特許文献 7:特表 2005 - 517746号公報
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、上記の触媒は、ォレフィン重合体の分子量分布を広くする効果が不 充分であったり、本発明者らの検討によると、低分子量成分を増加させることによって 分子量分布を広げる触媒であった。一方、これらの触媒はォレフイン重合体の溶融 張力の向上が充分とは言えないと言う巿場の評価があり、更に、巿場からはコストダウ ンの観点等から、より簡略なプロセスで広分子量分布化したォレフィン重合体を製造 可能とする触媒の登場が待ち望まれて!/、た。
[0010] 従って、本発明は、分子量分布が広ぐ溶融張力が高ぐ高速延伸、高速成形によ り適したォレフィン重合体を簡便に製造可能な触媒成分および触媒を提供することを 目的とする。
課題を解決するための手段
[0011] 本発明者らは鋭意研究した結果、 2価以上の脂環構造エステル基を有する特定の ポリカルボン酸エステル化合物を含む固体状チタン触媒成分を用いると、極めて広 い分子量分布のォレフィン重合体を製造できることを見出し、本発明を完成させた。
[0012] 本発明の固体状チタン触媒成分 (I)は、
チタン、マグネシウム、ハロゲンおよび下記式(1)で特定される環状多価エステル 基含有化合物 (a)を含むことを特徴として!/ヽる。
[0013] [化 1]
Figure imgf000005_0001
[0014] 〔式(1)において、 ηは 5〜 10の整数である。
[0015] ca—ca;¾ t a—c1 ¾c—C"efc5。
[0016] 複数個ある R1はそれぞれ独立に炭素数 1〜20の 1価の炭化水素基である。
[0017] 複数個ある Rは、それぞれ独立に水素原子、炭素数 1〜20の炭化水素基、ハロゲ ン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素含有 基力 選ばれる原子または基であり、互 ヽに結合して環を形成して 、てもよ 、。
[0018] Rが互いに結合して形成される環の骨格中には二重結合が含まれていてもよぐ該 環の骨格中に、 OCOR1が結合した Caを 2つ以上含む場合は、該環の骨格をなす炭 素原子の数は 5〜 10である。〕。
[0019] 前記式(1)において、 Cbに直接結合する複数の Rのうち、少なくとも 1つは水素原子 以外の基であることが好まし!/、。
[0020] 前記式(1)において、前記環状骨格中の炭素原子間結合のすべてが単結合であ ることが好ましい。
[0021] 前記式(1)において、前記環状骨格が 6個の炭素原子からなることが好ましい。
[0022] 前記環状多価エステル基含有ィ匕合物(a)としては、下記式(la)で表わされる化合 物が好ましい。
[0023] [化 2]
Figure imgf000006_0001
[0024] 〔式(la)において、 nは 5〜 10の整数である。
[0025] 環状骨格中の単結合 (ただし Ca— Ca結合および Ca— Cb結合を除く。 )は、二重結合 に置き換えられて 、てもよ 、。
[0026] 複数個ある R1は、それぞれ独立に炭素数 1〜20の 1価の炭化水素基である。
[0027] 複数個ある Rは、それぞれ独立に水素原子、炭素数 1〜20の炭化水素基、ハロゲ ン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素含有 基力 選ばれる原子または基であり、互 ヽに結合して環を形成して 、てもよ 、。
[0028] Rが互いに結合して形成される環の骨格中には二重結合が含まれていてもよぐ該 環の骨格中に 2つの Caを含む場合は、該環の骨格をなす炭素原子の数は 5〜: LOで ある。〕。
本発明のォレフィン重合用触媒は、
前記固体状チタン触媒成分 (I)と、
周期表の第 1族、第 2族および第 13族から選ばれる金属元素を含む有機金属化合 物触媒成分 (Π)と
を含むことを特徴として 、る。
[0029] 本発明のォレフィン重合用触媒は、さらに、電子供与体 (III)を含んでいてもよい。
[0030] 本発明のォレフィン重合方法は、前記ォレフィン重合用触媒の存在下にォレフィン の重合を行うことを特徴として 、る。
発明の効果
[0031] 本発明の固体状チタン触媒成分、ォレフィン重合用触媒、およびォレフィンの重合 方法は、立体規則性が高ぐ広い分子量分布を有するォレフィン重合体を、高活性 で製造するのに適している。
[0032] また、本発明の固体状チタン触媒成分、ォレフィン重合用触媒、ォレフィンの重合 方法を用いれば、たとえば高速延伸性、高速成形性などの成形性に加え、剛性にも 優れたォレフィン重合体が製造可能になると期待できる。
図面の簡単な説明
[0033] [図 1]実施例のォレフィン重合体の製造における水素添加量と MFRとの関係を示し た図である。
発明を実施するための最良の形態
[0034] 以下、本発明に係る固体状チタン触媒成分 (I)、ォレフィン重合用触媒およびォレ フィン重合体の製造方法についてさらに詳細に説明する。
[0035] 「 本 チタン角虫 5^ (1) 1
本発明に係る固体状チタン触媒成分 (I)は、チタン、マグネシウム、ハロゲンおよび 環状多価エステル基含有化合物(a)を含むことを特徴として!/ヽる。
[0036] 〈環状多価エステル某含有化合物 (a) >
前記環状多価エステル基含有化合物(a)は、下記式(1)で表される。
[0037] [化 3] )
Figure imgf000008_0001
[0038] 式(1)において、 nは、 5〜10の整数、好ましくは 5〜7の整数であり、特に好ましく は 6である。また Caは、炭素原子を表わす。
[0039] Ca— Caおよび Ca— Cbは C— Cである。
[0040] 複数個ある R1は、それぞれ独立に、炭素原子数が 1〜20、好ましくは 1〜10、より 好ましくは 2〜8、さらに好ましくは 4〜8、特に好ましくは 4〜6の 1価の炭化水素基で ある。この炭化水素基としては、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチ ル基、イソブチル基、へキシル基、ヘプチル基、ォクチル基、 2—ェチルへキシル基、 デシル基、ドデシル基、テトラデシル基、へキサデシル基、ォクタデシル基、エイコシ ル基などが挙げられ、中でも n—ブチル基、イソブチル基、へキシル基、ォクチル基 が好ましぐ更には n—ブチル基、イソブチル基が好ましい。
[0041] 複数個ある Rは、それぞれ独立に、水素原子、炭素原子数 1〜20の炭化水素基、 ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素 含有基力も選ばれる原子または基であるが、少なくとも 1つの Rは水素原子以外の基 であることが好ましい。
[0042] 水素原子以外の Rとしては、これらの中でも炭素原子数 1〜20の炭化水素基が好 ましぐこの炭素原子数 1〜20の炭化水素基としては、メチル基、ェチル基、 n—プロ ピル基、 iso—プロピル基、 n—ブチル基、 iso—ブチル基、 sec—ブチル基、 n—ペン チル基、シクロペンチル基、 n—へキシル基、シクロへキシル基、ビュル基、フエニル 基、ォクチル基などの脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基 が挙げられる。中でも脂肪族炭化水素基が好ましぐ具体的にはメチル基、ェチル基 、 n—プロピル基、 iso—プロピル基、 n—ブチル基、 iso—ブチル基、 sec—ブチル基 が好ましい。 [0043] また Rは、互いに結合して環を形成していてもよぐ Rが互いに結合して形成される 環の骨格中には二重結合が含まれていてもよぐ該環の骨格中に、 OCOR1が結合 した Caを 2つ以上含む場合は、該環の骨格をなす炭素原子の数は 5〜 10である。
[0044] このような環の骨格としては、ノルボルナン骨格、テトラシクロドデセン骨格などが挙 げられる。
[0045] また複数個ある Rは、カルボン酸エステル基、アルコキシ基、シロキシ基、アルデヒド 基ゃァセチル基、ォキシカルボ-ルアルキル基などのカルボ-ル構造含有基であつ てもよく、これらの置換基には、炭化水素基 1個以上を含んでいることが好ましい。
[0046] このような環状多価エステル基含有化合物(a)としては、
シクロへキシル 1,2-ジアセテート、
シクロへキシル 1 2-ジプロピオネート
シクロへキシル 1 2-ジブタネート、
シクロへキシル 1 2-ジへキサネート、
シクロへキシル 1 2-ジォクタネート、
シクロへキシル 1 2-ジデカネート、
シクロへキシル 1 2-ジベンゾエート、
シクロへキシル 1 2-ジトルエート、
シクロペンチル 1 2-ジアセテート、
シクロペンチル 1 2-ジブタネート、
シクロペンチノレ-し 2-ジベンゾエート、
シクロペンチル 1 2-ジトルエート、
シクロへプチル 1 2-ジアセテート、
シクロへプチル 1 2-ジブタネート、
シクロへプチル 1 2-ジベンゾエート、
シクロへプチル 1 2-ジトルエート、
3-メチルシクロへキシル 1,2-ジアセテート、
3-メチルシクロへキシル 1,2-ジプロピオネート
3-メチルシクロへキシル 1,2-ジブタネート、 3-メチルシクロへキシル 1,2-ジへキサネート、
3-メチルシクロへキシル 1,2-ジォクタネート、
3-メチルシクロへキシル 1,2-ジデカネート、
3-メチルシクロへキシル 1,2-ジベンゾエート、
3-メチルシクロへキシル 1,2-ジトルエート、
3-メチルシクロペンチル 1,2-ジアセテート、
3-n-プロビルシクロペンチル 1,2-ジブタネート、
3-メチルシクロペンチル 1,2-ジベンゾエート、
3- n-プロビルシクロペンチル 1,2-ジトルエート、
3-メチルシクロへプチル 1,2-ジアセテート、
3-n-プロビルシクロへプチル 1 , 2-ジブタネート、
3-メチルシクロへプチル 1,2-ジベンゾエート、
3-n-プロビルシクロへプチル 1,2-ジトルエート、
3 , 6-ジメチルシクロへキシル 1 , 2-ジアセテート、
3-メチル 6-プロビルシクロへキシル 1,2-ジブタネート、
3.6-ジメチルシクロへキシル 1 , 2-ジベンゾエート、
3-メチル 6-プロビルシクロへキシル 1,2-ジトルエート、
3, 5-ジメチルシクロペンチル 1,2-ジアセテート、
3-メチル 5-プロビルシクロペンチル 1,2-ジブタネート、
3.7-ジメチルシクロへプチル 1,2-ジベンゾエート、
3-メチル 7-プロビルシクロへプチル 1,2-ジトルエート、
などが挙げられる。
更に上記の様なジカルボネートだけでなぐ
1-ォキシカルボニルメチル, 2-ォキシカルボニルブチル 3, 6-ジメチルシクロへキサン、
1-ォキシカルボニルメチル 2-ォキシカルボニルブチルシクロへキサン、
1-ォキシカルボニルメチル 2-ォキシカルボニルフエニルシクロへキサン、
1-ォキシカルボニルメチル 2-ォキシカルボニルフエニル 3-メチル 6-プロビルシクロへ キサン の様な非対称な化合物も挙げることが出来る。
[0048] 上記の中でも Rが炭化水素基である化合物が、活性、立体規則性が高い固体状チ タン触媒成分が得られ易 ヽ傾向があるので好ま ヽ。
[0049] また、上記の中でも、 Cbに直接結合する複数の Rのうち、少なくとも 1つは水素原子 以外の基である化合物は、広い分子量分布はそのままに、より高い活性で、より立体 規則性の高 、ォレフイン重合体が得られる点で好ま 、。
具体的には、
3-メチルシクロへキシル 1,2-ジアセテート、
3-メチルシクロへキシル 1 ,2-ジプロピオネート、
3-メチルシクロへキシル 1 ,2-ジブタネート、
3-メチルシクロへキシル 1 ,2-ジへキサネート、
3-メチルシクロへキシル 1 ,2-ジォクタネート、
3-メチルシクロへキシル 1 ,2-ジデカネート、
3-メチルシクロへキシル 1 ,2-ジベンゾエート、
3-メチルシクロへキシル 1 ,2-ジトノレエート、
3 , 6-ジメチルシクロへキシル 1 , 2-ジアセテート、
3-メチル 6-プロビルシクロへキシル 1,2-ジブタネート、
3 , 6-ジメチルシクロへキシル 1 , 2-ジベンゾエート、
3-メチル 6-プロビルシクロへキシル 1,2-ジトルエート、
等が挙げられる。
[0050] 上記のようなジエステル構造を持つ化合物には、式 1における複数の OCOR1基に 由来するシス、トランス等の異性体が存在するが、どの構造であっても本発明の目的 に合致する効果を有するが、よりトランス体の含有率が高い方が好ましい。トランス体 の含有率が高い方が、分子量分布を広げる効果だけでなぐ活性や得られる重合体 の立体規則性がより高い傾向がある。
[0051] 前記環状多価エステル基含有化合物 (a)としては、 Caに隣り合う炭素に置換基が 結合して 、ることが好ましぐ特には下記式(la)で表わされる化合物が好ま 、。
[0052] [化 4] (1 a)
Figure imgf000012_0001
[0053] 〔式(la)中の、 n、
Figure imgf000012_0002
R、 Ca— Ca、および Ca— Cbは前記同様である。〕
Cbに直接結合する複数の Rのうち、少なくとも 1つは水素原子以外の基である化合 物は、広い分子量分布はそのままに、より高い活性で、より立体規則性の高いォレフ イン重合体が得られる点で好まし ヽ。
[0054] 上記式(la)で表わされる化合物としては、
3 , 6-ジメチルシクロへキシル 1 , 2-ジアセテート、
3, 6-ジメチルシクロへキシル 1,2-ジブタネート、
3-メチル 6-プロビルシクロへキシル 1,2-ジオールアセテート、
3-メチル 6-プロビルシクロへキシル 1,2-ジブタネート、
3 , 6-ジメチルシクロへキシル 1 , 2-ジベンゾエート、
3, 6-ジメチルシクロへキシル 1,2-ジトルエート、
3-メチル 6-プロビルシクロへキシル 1,2-ジベンゾエート、
3-メチル 6-プロビルシクロへキシル 1,2-ジトルエート、
等を好ましい例として挙げることが出来る。
[0055] これらの化合物は、単独で用いてもよく 2種類以上を組み合わせて用いてもよい。ま た、本発明の目的を損なわない限り、これらの環状多価エステル基含有化合物 (a)と 後述する触媒成分 (b)や触媒成分 (c)とを組み合わせて用いてもよ!ヽ。
[0056] また環状多価エステル基含有化合物 (a)は、固体状チタン触媒成分 (I)を調製する 過程で形成されてもよい。たとえば、固体状チタン触媒成分 (I)を調製する際に、触 媒成分 (a)に対応する無水カルボン酸やカルボン酸ジハライドと、対応するポリオ一 ルとが実質的に接触する工程を設けることで、環状多価エステル基含有化合物 (a) を固体状チタン触媒成分中に含有させることもできる。 [0057] 本発明のォレフィン重合体の製造方法では、分子量分布の広い重合体が得られる
。この理由は現時点で不明である力 下記のような原因が推定される。
[0058] 環状炭化水素構造は、イス型、舟型など多彩な立体構造を形成することが知られて いる。更に、環状構造に置換基を有すると、取りうる立体構造のバリエーションは更に 増大する。また、複数のエステル基 (OCOR1基)を繋ぐ Ca— Ca結合および Ca— Cb結 合が単結合であれば、取りうる立体構造のノ リエーシヨンが広がる。この多彩な立体 構造を取りうることが、固体状チタン触媒成分 (I)上に多彩な活性種を形成することに 繋がる。その結果、固体状チタン触媒成分 (I)を用いてォレフィンの重合を行うと、多 様な分子量のォレフィン重合体を一度に製造することができる、即ち分子量分布の 広 ヽォレフイン重合体を製造することができる。
[0059] 本発明の固体状チタン触媒成分 (I)の調製には、上記の環状多価エステル基含有 化合物(a)の他、マグネシウム化合物およびチタン化合物が用いられる。
[0060] <マグネシウム化合物 >
このようなマグネシウム化合物としては、具体的には、
塩化マグネシウム、臭化マグネシウムなどのハロゲン化マグネシウム;
メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、フエノキシ塩化マグネシウム などのアルコキシマグネシウムハライド;
エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、 2-ェチ ルへキソキシマグネシウムなどのアルコキシマグネシウム; ステアリン酸マグネシウムなどのマグネシウムのカルボン酸塩
などの公知のマグネシウム化合物を挙げることができる。
[0061] これらのマグネシウム化合物は単独で用いても、 2種以上を組み合わせて用いても よい。またこれらのマグネシウム化合物は、他の金属との錯化合物、複化合物あるい は他の金属化合物との混合物であってもよ 、。
[0062] これらの中ではハロゲンを含有するマグネシウム化合物が好ましく。ハロゲン化マグ ネシゥム、特に塩化マグネシウムが好ましく用いられる。他に、エトキシマグネシウムの ようなアルコキシマグネシウムも好ましく用いられる。また、該マグネシウム化合物は、 他の物質力 誘導されたもの、たとえばグリニャール試薬のような有機マグネシウム化 合物とハロゲン化チタンやハロゲン化珪素、ハロゲン化アルコールなどとを接触させ て得られるものであってもよ 、。
[0063] <チタン化合物 >
チタンィ匕合物としては、たとえば一般式;
Ti(OR) X
g 4 - g
(Rは炭化水素基であり、 Xはハロゲン原子であり、 gは 0≤g≤4である。 )
で示される 4価のチタンィ匕合物を挙げることができる。より具体的には、
TiCl、 TiBrなどのテトラハロゲン化チタン;
4 4
Ti(OCH )C1、 Ti(OC H )C1、 Ti(0- n- C H )C1、 Ti(OC H )Br、 Ti(0- isoC H )
3 3 2 5 3 4 9 3 2 5 3 4 9
Brなどのトリハロゲン化アルコキシチタン;
3
Ti(OCH ) CI、 Ti(OC H ) CIなどのジハロゲン化アルコキシチタン;
3 2 2 2 5 2 2
Ti(OCH ) Cl、 Ti(0-n-C H ) Cl、 Ti(OC H ) Brなどのモノハロゲン化アルコキシ
3 3 4 9 3 2 5 3
チタン;
Ti(OCH )、 Ti(OC H )、 Ti(OC H )、 Ti(0- 2-ェチルへキシル)などのテトラアル
3 4 2 5 4 4 9 4 4
コキシチタン
などを挙げることができる。
[0064] これらの中で好ましいものは、テトラハロゲンィ匕チタンであり、特に四塩化チタンが 好ま 、。これらのチタンィ匕合物は単独で用いても 2種以上を組み合わせて用いても よい。
[0065] 上記の様なマグネシウム化合物およびチタンィ匕合物としては、たとえば前記特許文 献 1、特許文献 2などに詳細に記載されている化合物も挙げることができる。
[0066] 本発明で用いられる固体状チタン触媒成分 (I)の調製には、環状多価エステル基 含有化合物 (a)を使用する他は、公知の方法を制限無く使用することができる。具体 的な好まし 、方法としては、たとえば下記 (Ρ-1)〜(Ρ-4)の方法を挙げることができる。
[0067] (P-1)マグネシウム化合物および触媒成分 (b)からなる固体状付加物と、環状多価 エステル基含有化合物 (a)と、液状状態のチタン化合物とを、不活性炭化水素溶媒 共存下、懸濁状態で接触させる方法。 [0068] (P-2)マグネシウム化合物および触媒成分 (b)からなる固体状付加物と、環状多価 エステル基含有化合物 (a)と、液状状態のチタン化合物とを、複数回に分けて接触さ せる方法。
[0069] (P-3)マグネシウム化合物および触媒成分 (b)力もなる固体状付加物と、環状多価 エステル基含有化合物 (a)と、液状状態のチタン化合物とを、不活性炭化水素溶媒 共存下、懸濁状態で接触させ、且つ複数回に分けて接触させる方法。
[0070] (P-4)マグネシウム化合物および触媒成分 (b)力もなる液状状態のマグネシウム化 合物と、液状状態のチタン化合物と、環状多価エステル基含有化合物 (a)とを接触さ せる方法。
[0071] 好ましい反応温度は、— 30°C〜150°C、より好ましくは— 25°C〜130°C、更に好ま しくは一 25〜 120°Cの範囲である。
[0072] また上記の固体状チタン触媒成分の製造には、必要に応じて公知の媒体の存在 下に行うことも出来る。上記の媒体としては、やや極性を有するトルエンなどの芳香族 炭化水素やヘプタン、オクタン、デカン、シクロへキサンなどの公知の脂肪族炭化水 素、脂環族炭化水素化合物が挙げられるが、これらの中では脂肪族炭化水素が好ま しい例として挙げられる。
[0073] 上記の範囲で反応を行うと、広 ヽ分子量分布の重合体を得られる効果と、活性や 得られる重合体の立体規則性をより高いレベルで両立することが出来る。
[0074] m^ (b) )
上記の固体状付加物や液状状態のマグネシウム化合物の形成に用いられる触媒 成分 (b)としては、室温〜 300°C程度の温度範囲で上記のマグネシウム化合物を可 溶化できる公知の化合物が好ましぐたとえばアルコール、アルデヒド、ァミン、カルボ ン酸およびこれらの混合物などが好ましい。これらの化合物としては、たとえば前記 特許文献 1や特許文献 2に詳細に記載されている化合物を挙げることができる。
[0075] 上記のマグネシウム化合物可溶ィ匕能を有するアルコールとして、より具体的には メタノール、エタノール、プロパノール、ブタノール、イソブタノール、エチレングリコ ール、 2-メチルペンタノール、 2-ェチルブタノール、 n-ヘプタノール、 n-ォクタノール 、 2-ェチルへキサノール、デカノール、ドデカノールのような脂肪族アルコール; シクロへキサノール、メチルシクロへキサノールのような脂環族アルコール; ベンジルアルコール、メチルベンジルアルコールなどの芳香族アルコール; n-ブチルセルソルブなどのアルコキシ基を有する脂肪族アルコール
などを挙げることができる。
[0076] カルボン酸としては、力プリル酸、 2-ェチルへキサノイツク酸などの炭素数 7以上の 有機カルボン酸類を挙げることができる。アルデヒドとしては、カプリックアルデヒド、 2- ェチルへキシルアルデヒドなどの炭素数 7以上のアルデヒド類を挙げることができる。
[0077] ァミンとしては、ヘプチルァミン、ォクチルァミン、ノ-ルァミン、ラウリルァミン、 2-ェ チルへキシルァミンなどの炭素数 6以上のアミン類を挙げることができる。
[0078] 上記の触媒成分 (b)としては、上記のアルコール類が好ましぐ特にエタノール、プ ロパノーノレ、ブタノーノレ、イソブタノーノレ、へキサノーノレ、 2-ェチノレへキサノーノレ、デ 力ノールなどが好ましい。
[0079] 上記の固体状付加物や液状状態のマグネシウム化合物を調製する際のマグネシゥ ム化合物および触媒成分 (b)の使用量については、その種類、接触条件などによつ ても異なるが、マグネシウム化合物は、該触媒成分 (b)の単位容積あたり、 0. 1〜20 モル Zリットル、好ましくは、 0. 5〜5モル Zリットルの量で用いられる。また、必要に 応じて上記固体状付加物に対して不活性な媒体を併用することもできる。上記の媒 体としては、ヘプタン、オクタン、デカンなどの公知の炭化水素化合物が好ましい例と して挙げられる。
[0080] 得られる固体状付加物や液状状態のマグネシウム化合物のマグネシウムと触媒成 分 )との組成比は、用いる化合物の種類によって異なるので一概には規定できな いが、マグネシウム化合物中のマグネシウム 1モルに対して、触媒成分 (b)は、好まし くは 2. 0モル以上、より好ましくは 2. 2モル以上、さらに好ましくは 2. 6モル以上、特 に好ましくは 2. 7モル以上、 5モル以下の範囲である。
[0081] <芳香族カルボン酸エステルおよび Zまたは複数の炭素原子を介して 2個以上の エーテル結合を有する化合物 >
本発明の固体状チタン触媒成分 (I)は、さら〖こ、芳香族カルボン酸エステルおよび Zまたは複数の炭素原子を介して 2個以上のエーテル結合を有する化合物(以下「 触媒成分 (c)」ともいう。)を含んでいてもよい。本発明の固体状チタン触媒成分 (I)が 触媒成分 (c)を含んでいると活性や立体規則性を高めたり、分子量分布をより広げる ことができる場合がある。
[0082] この触媒成分 (c)としては、従来ォレフィン重合用触媒に好ましく用いられている公 知の芳香族カルボン酸エステルやポリエーテルィ匕合物、たとえば上記特許文献 2や 特開 200ト354714号公報などに記載されたィ匕合物を制限無く用いることができる。
[0083] この芳香族カルボン酸エステルとしては、具体的には安息香酸エステルやトルィル 酸エステルなどの芳香族カルボン酸モノエステルの他、フタル酸エステル類等の芳 香族多価カルボン酸エステルが挙げられる。これらの中でも芳香族多価カルボン酸 エステルが好ましぐフタル酸エステル類がより好ましい。このフタル酸エステル類とし ては、フタル酸ェチル、フタル酸 n-ブチル、フタル酸イソブチル、フタル酸へキシル、 フタル酸へプチル等のフタル酸アルキルエステルが好ましく、フタル酸ジイソブチル が特に好ましい。
[0084] また前記ポリエーテルィ匕合物としては、より具体的には以下の式(3)で表わされる 化合物が挙げられる。
[0085] [化 5]
R31
Figure imgf000017_0001
[0086] なお、上記式(3)において、 mは l≤m≤10の整数、より好ましくは 3≤m≤ 10の整 数であり、 RU〜R36は、それぞれ独立に、水素原子、あるいは炭素、水素、酸素、フッ 素、塩素、臭素、ヨウ素、窒素、硫黄、リン、ホウ素およびケィ素力 選択される少なく とも 1種の元素を有する置換基である。
[0087] mが 2以上である場合、複数個存在する R11および R12は、それぞれ同じであっても 異なっていてもよい。任意の RU〜R36、好ましくは R11および R12は共同してベンゼン環 以外の環を形成して 、てもよ 、。
[0088] この様な化合物の一部の具体例としては、 2-イソプロピル- 1 ,3-ジメトキシプロパン、
2-s-ブチル - 1 ,3-ジメトキシプロパン、
2-タミル- 1,3-ジメトキシプロパン
等の 1置換ジアルコキシプロパン類、
2-イソプロピル- 2-イソブチル -1 ,3-ジメトキシプロパン、
2,2-ジシクロへキシル -1,3-ジメトキシプロパン、
2-メチル -2-イソプロピル- 1 ,3-ジメトキシプロパン、
2-メチル -2-シクロへキシル -1 ,3-ジメトキシプロパン、
2-メチル -2-イソブチル -1 ,3-ジメトキシプロパン、
2,2-ジイソブチル -1,3-ジメトキシプロパン、
2,2-ビス (シクロへキシルメチル )-1,3-ジメトキシプロパン、
2,2-ジイソブチル -1,3-ジエトキシプロパン、
2,2-ジイソブチル -1,3-ジブトキシプロパン、
2,2-ジ- s-ブチル -1,3-ジメトキシプロパン、
2.2-ジネオペンチル- 1,3-ジメトキシプロパン、
2-イソプロピル- 2-イソペンチル- 1,3-ジメトキシプロパン、
2-シクロへキシル -2-シクロへキシルメチル -1,3-ジメトキシプロパン 等の 2置換ジアルコキシプロパン類、
2.3-ジシクロへキシル -1,4-ジエトキシブタン、
2,3-ジシクロへキシル -1,4-ジエトキシブタン、
2.3-ジイソプロピル- 1,4-ジエトキシブタン
2.4-ジフエ二ル- 1,5-ジメトキシペンタン、
2.5-ジフエニル- 1,5-ジメトキシへキサン、
2,4-ジイソプロピル- 1,5-ジメトキシペンタン、
2,4-ジイソブチル -1,5-ジメトキシペンタン、
2,4-ジイソアミル- 1,5-ジメトキシペンタン
等のジァノレコキシァノレカン類、
2-メチル -2-メトキシメチル- 1,3-ジメトキシプロパン、 2-シクロへキシル -2-エトキシメチル- 1,3-ジエトキシプロパン、
2-シクロへキシル -2-メトキシメチル- 1,3-ジメトキシプロパン
等のトリアルコキシアルカン類、
2,2-ジイソブチル -1,3-ジメトキシ 4-シクロへキセニル、
2-イソプロピル- 2-イソァミル- 1,3-ジメトキシ 4-シクロへキセ -ル、
2-シクロへキシル -2-メトキシメチル- 1,3-ジメトキシ 4-シクロへキセニル、 2-イソプロピル- 2-メトキシメチル- 1,3-ジメトキシ 4-シクロへキセニル、
2-イソブチル -2-メトキシメチル- 1,3-ジメトキシ 4-シクロへキセニル、
2-シクロへキシル -2-エトキシメチル- 1,3-ジメトキシ 4-シクロへキセニル、 2-イソプロピル- 2-エトキシメチル- 1,3-ジメトキシ 4-シクロへキセニル、
2-イソブチル -2-エトキシメチル- 1,3-ジメトキシ 4-シクロへキセニル
等のジアルコキシシクロアルカン
等を例示することができる。
[0089] これらのうち、 1,3-ジエーテル類が好ましぐ特に、 2-イソプロピル- 2-イソブチル -1, 3-ジメトキシプロパン、 2,2-ジイソブチル -1,3-ジメトキシプロパン、 2-イソプロピル- 2- イソペンチル- 1,3-ジメトキシプロパン、 2,2-ジシクロへキシル -1,3-ジメトキシプロパン 、 2,2-ビス (シクロへキシルメチル )1,3-ジメトキシプロパンが好まし!/、。
[0090] これらの化合物は、 1種単独で用いてもよぐ 2種以上を組み合わせて用いてもよい
[0091] 上記の様な環状多価エステル基含有化合物 (a)、触媒成分 (b)、触媒成分 (c)は、 当該業者では電子供与体と呼ばれる成分に属すると考えても差し支えない。上記の 電子供与体成分は、触媒の高い活性を維持したまま、得られる重合体の立体規則性 を高める効果や、得られる共重合体の組成分布を制御する効果や、触媒粒子の粒 形や粒径を制御する凝集剤効果などを示すことが知られている。
[0092] 本発明の環状多価エステル基含有化合物 (a)は、電子供与体によってさらに分子 量分布を制御できる効果があることをも示していると考えられる。
[0093] 本発明で用いられる固体状チタン触媒成分 (I)において、ハロゲン Zチタン (原子 比)(すなわち、ハロゲン原子のモル数 Zチタン原子のモル数)は、 2〜100、好ましく は 4〜90であることが望ましく、
環状多価エステル基含有ィ匕合物 (a) Zチタン (モル比)(すなわち、環状多価エステ ル基含有化合物(a)のモル数 Zチタン原子のモル数)は、 0.01〜100、好ましくは 0.
2〜 10であることが望ましく、
触媒成分 (b)や触媒成分 (c)は、触媒成分 (b)Zチタン原子 (モル比)は 0〜: LOO、 好ましくは 0〜: LOであることが望ましぐ触媒成分 (c)Zチタン原子 (モル比)は 0〜: LO
0、好ましくは 0〜10であることが望ましい。
[0094] マグネシウム Zチタン (原子比)(すなわち、マグネシウム原子のモル数 Zチタン原 子のモル数)は、 2〜100、好ましくは 4〜50であることが望ましい。
[0095] また、前述した環状多価エステル基含有化合物(a)以外に含まれても良 、成分、た とえば触媒成分 (b)、触媒成分 (c)の含有量は、好ましくは環状多価エステル基含有 化合物(a) 100重量%に対して 20重量%以下であり、より好ましくは 10重量%以下 である。
[0096] 固体状チタン触媒成分 (I)のより詳細な調製条件として、環状多価エステル基含有 化合物(a)を使用する以外は、たとえば EP585869A1 (欧州特許出願公開第 0585869 号明細書)や前記特許文献 2等に記載の条件を好ましく用いることができる。
[0097] 「ォレフイン重合用
本発明に係るォレフィン重合用触媒は、
上記の本発明に係る固体状チタン触媒成分 (I)と、
周期表の第 1族、第 2族および第 13族から選ばれる金属元素を含む有機金属化合 物触媒成分 (Π)と
を含むことを特徴として 、る。
[0098] <有機 Φ属ィ 合物蝕 成分 (Π) >
前記有機金属化合物触媒成分 (II)としては、第 13族金属を含む化合物、たとえば 、有機アルミニウム化合物、第 1族金属とアルミニウムとの錯アルキルィ匕物、第 2族金 属の有機金属化合物などを用いることができる。これらの中でも有機アルミニウム化 合物が好ましい。
[0099] 有機金属化合物触媒成分 (Π)としては具体的には、前記 EP585869A1等の公知の 文献に記載された有機金属化合物触媒成分を好ましい例として挙げることができる。
[0100] <蝕 成分 (ΠΙ) >
また、本発明のォレフィン重合用触媒は、上記の有機金属化合物触媒成分 (Π)と 共に、必要に応じて既述の触媒成分 (III)を含んでいてもよい。触媒成分 (III)として 好ましくは、有機ケィ素化合物が挙げられる。この有機ケィ素化合物としては、たとえ ば下記一般式 (4)で表される化合物を例示できる。
[0101] R Si(OR') · · · (4)
n 4-n
(式中、 Rおよび R'は炭化水素基であり、 nは 0<n<4の整数である。 )
上記のような一般式 (4)で示される有機ケィ素化合物としては、具体的には、ジイソ プロピルジメトキシシラン、 t-ブチルメチルジメトキシシラン、 t-ブチルメチルジェトキシ シラン、 t-アミノレメチノレジェトキシシラン、ジシクロへキシノレジメトキシシラン、シクロへ キシルメチルジメトキシシラン、シクロへキシルメチルジェトキシシラン、ビニルトリメトキ シシラン、ビニルトリエトキシシラン、 t-ブチルトリエトキシシラン、フエニルトリエトキシシ ラン、シクロへキシルトリメトキシシラン、シクロペンチルトリメトキシシラン、 2-メチルシク 口ペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、ジシクロペンチルジメ トキシシラン、ジシクロペンチノレジェトキシシラン、トリシクロペンチルメトキシシラン、ジ シクロペンチルメチルメトキシシラン、ジシクロペンチルェチルメトキシシラン、シクロべ ンチルジメチルエトキシシランなどが用いられる。
[0102] このうちビュルトリエトキシシラン、ジフエ-ルジメトキシシラン、ジシクロへキシルジメ トキシシラン、シクロへキシノレメチノレジメトキシシラン、ジシクロペンチノレジメトキシシラ ンが好ましく用いられる。
また、国際公開第 2004Z016662号パンフレットに記載されている下記式(5)で 表されるシラン化合物も前記有機ケィ素化合物の好ましい例である。
Si (ORa) (NRbRc) · · · (5)
3
式(5)中、 Raは、炭素数 1〜6の炭化水素基であり、 Raとしては、炭素数 1〜6の不 飽和あるいは飽和脂肪族炭化水素基などが挙げられ、特に好ましくは炭素数 2〜6 の炭化水素基が挙げられる。具体例としてはメチル基、ェチル基、 n—プロピル基、 is o—プロピル基、 n—ブチル基、 iso—ブチル基、 sec—ブチル基、 n—ペンチル基、 is o—ペンチル基、シクロペンチル基、 n キシル基、シクロへキシル基等が挙げられ 、これらの中でもェチル基が特に好ましい。
[0103] 式(5)中、 Rbは、炭素数 1 12の炭化水素基または水素であり、 Rbとしては、炭素 数 1 12の不飽和あるいは飽和脂肪族炭化水素基または水素などが挙げられる。 具体例としては水素原子、メチル基、ェチル基、 n—プロピル基、 iso—プロピル基、 n ーブチノレ基、 iso—ブチノレ基、 sec—ブチノレ基、 n—ペンチノレ基、 iso—ペンチノレ基、 シクロペンチル基、 n キシル基、シクロへキシル基、ォクチル基等が挙げられ、こ れらの中でもェチル基が特に好ましい。
[0104] 式(5)中、 は、炭素数 1 12の炭化水素基であり、 としては、炭素数 1 12の 不飽和あるいは飽和脂肪族炭化水素基または水素などが挙げられる。具体例として はメチル基、ェチル基、 n—プロピル基、 iso—プロピル基、 n—ブチル基、 iso—ブチ ノレ基、 sec—ブチノレ基、 n—ペンチノレ基、 iso—ペンチノレ基、シクロペンチノレ基、 n— へキシル基、シクロへキシル基、ォクチル基等が挙げられ、これらの中でもェチル基 が特に好ましい。
[0105] 上記式(5)で表される化合物の具体例としては、
ジメチルアミノトリエトキシシラン、
ジェチノレアミノトリエトキシシラン、
ジェチノレアミノトリメトキシシラン、
ジェチノレアミノトリエトキシシラン、
ジェチノレアミノトリ n—プロポキシシラン、
ジ n—プロピルアミノトリエトキシシラン、
メチル n—プロピルアミノトリエトキシシラン、
t-ブチルアミノトリエトキシシラン、
ェチル n—プロピルアミノトリエトキシシラン、
ェチル iso -プロピルアミノトリエトキシシラン、
メチルェチルアミノトリエトキシシラン
が挙げられる。
[0106] また、前記有機ケィ素化合物の他の例としては、下記式 (6)で表される化合物が挙 げられる。
RNSi(ORa) (6)
3
式(6)中、 RNは、環状アミノ基であり、この環状アミノ基として、例えば、パーヒドロ キノリノ基、パーヒドロイソキノリノ基、 1, 2, 3, 4ーテトラヒドロキノリノ基、 1, 2, 3, 4— テトラヒドロイソキノリノ基、オタタメチレンイミノ基等が挙げられる。上記式 (6)で表され る化合物として具体的には、
(パーヒドロキノリノ)トリエトキシシラン、
(パーヒドロイソキノリノ)トリエトキシシラン、
(1, 2, 3, 4—テトラヒドロキノリノ)トリエトキシシラン、
(1, 2, 3, 4—テトラヒドロイソキノリノ)トリエトキシシラン、
オタタメチレンイミノトリエトキシシラン
等が挙げられる。
[0107] これらの有機ケィ素化合物は、 2種以上組み合わせて用いることもできる。
[0108] また、触媒成分 (ΠΙ)として他に有用な化合物としては、前記芳香族カルボン酸エス テルおよび Zまたは複数の炭素原子を介して 2個以上のエーテル結合を有する化合 物(前記触媒成分 (c) )の例として記載したポリエーテルィ匕合物も好ま 、例として挙 げられる。
[0109] これらのポリエーテル化合物の中でも、 1,3-ジエーテル類が好ましぐ特に、 2-イソ プロピル- 2-イソブチル -1 ,3-ジメトキシプロパン、 2,2-ジイソブチル -1 ,3-ジメトキシプ 口パン、 2-イソプロピル- 2-イソペンチル- 1,3-ジメトキシプロパン、 2,2-ジシクロへキシ ル- 1,3-ジメトキシプロパン、 2, 2-ビス (シクロへキシルメチル )1,3-ジメトキシプロパンが 好ましい。
[0110] これらの化合物は、単独で用いることも、 2種以上を組み合わせて用いることもでき る。
[0111] なお、本発明のォレフィン重合用触媒は、上記のような各成分以外にも必要に応じ てォレフイン重合に有用な他の成分を含んでいてもよい。この他の成分としては、たと えば、シリカなどの担体、帯電防止剤等、粒子凝集剤、保存安定剤などが挙げられる [0112] 「ォレフインの重合方法 Ί
本発明に係るォレフィン重合方法は、本発明のォレフィン重合用触媒を用いてォレ フィン重合を行うことを特徴としている。本発明において、「重合」には、ホモ重合の他 、ランダム共重合、ブロック共重合などの共重合の意味が含まれることがある。
[0113] 本発明のォレフィン重合方法では、本発明のォレフィン重合用触媒の存在下に α - ォレフィンを予備重合 (prepolymerization)させて得られる予備重合触媒の存在下で、 本重合 (polymerization)を行うことも可能である。この予備重合は、ォレフィン重合用 触媒 lg当り 0. 1〜: LOOOg好ましくは 0. 3〜500g、特に好ましくは l〜200gの量で a -ォレフインを予備重合させることにより行われる。
[0114] 予備重合では、本重合における系内の触媒濃度よりも高い濃度の触媒を用いるこ とがでさる。
[0115] 予備重合における前記固体状チタン触媒成分 (I)の濃度は、液状媒体 1リットル当 り、チタン原子換算で、通常約 0. 001〜200ミジモノレ、好ましくは約 0. 01〜50ミジモ ル、特に好ましくは 0. 1〜20ミリモルの範囲とすることが望ましい。
[0116] 予備重合における前記有機金属化合物触媒成分 (Π)の量は、固体状チタン触媒 成分 (I) lg当り 0.1〜: L000g、好ましくは 0.3〜500gの重合体が生成するような量で あればよぐ固体状チタン触媒成分 (I)中のチタン原子 1モル当り、通常約 0. 1〜30 0モル、好ましくは約 0. 5〜: L00モル、特に好ましくは 1〜50モルの量であることが望 ましい。
[0117] 予備重合では、必要に応じて前記触媒成分 (III)等を用いることもでき、この際これ らの成分は、前記固体状チタン触媒成分 (I)中のチタン原子 1モル当り、 0. 1〜50モ ル、好ましくは 0. 5〜30モル、さらに好ましくは 1〜10モルの量で用いられる。
[0118] 予備重合は、不活性炭化水素媒体にォレフィンおよび上記の触媒成分を加え、温 和な条件下に行うことができる。
[0119] この場合、用いられる不活性炭化水素媒体としては、具体的には、
プロパン、ブタン、ペンタン、へキサン、ヘプタン、オクタン、デカン、ドデカン、灯油 などの脂肪族炭化水素;
シクロヘプタン、メチルシクロヘプタン、 4-シクロヘプタン、メチル 4-シクロヘプタンな どの脂環族炭化水素;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素;
エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、
あるいはこれらの混合物などを挙げることができる。
[0120] これらの不活性炭化水素媒体のうちでは、特に脂肪族炭化水素を用いることが好ま しい。このように、不活性炭化水素媒体を用いる場合、予備重合はバッチ式で行うこ とが好ましい。
[0121] 一方、ォレフィン自体を溶媒として予備重合を行うこともできるし、また実質的に溶 媒のない状態で予備重合することもできる。この場合には、予備重合を連続的に行う のが好ましい。
[0122] 予備重合で使用されるォレフインは、後述する本重合で使用されるォレフインと同 一であっても、異なっていてもよぐ具体的には、プロピレンであることが好ましい。
[0123] 予備重合の際の温度は、通常約- 20〜 + 100°C、好ましくは約- 20〜 + 80°C、さら に好ましくは 0〜 + 40°Cの範囲であることが望まし!/、。
[0124] 次に、前記の予備重合を経由した後に、あるいは予備重合を経由することなく実施 される本重合 (polymerization)について説明する。
[0125] 本重合 (polymerization)において使用することができる(すなわち、重合される)ォレ フィンとしては、炭素原子数が 3〜20の α -ォレフィン、たとえば、プロピレン、 1-ブテ ン、 1-ペンテン、 1-へキセン、 1-オタテン、 1-デセン、 1-ドデセン、 1-テトラデセン、 1- へキサデセン、 1-ォクタデセン、 1-エイコセンなどの直鎖状ォレフィンや、 4-メチル -1 -ペンテン、 3-メチル -1-ペンテン、 3-メチル -1-ブテン等の分岐状ォレフインを挙げる ことができ、プロピレン、 1-ブテン、 1-ペンテン、 4-メチル -1-ペンテン、 3-メチル -1-ブ テンが好ましい。また、剛性の高い榭脂において分子量分布の広い重合体のメリット が発現し易い観点から、プロピレン、 1-ブテン、 4-メチル -1-ペンテン、 3-メチル -1-ブ テンが特に好ましい。
[0126] これらの at -ォレフインと共に、エチレンやスチレン、ァリルベンゼン等の芳香族ビ- ル化合物;ビュルシクロへキサン、ビュルシクロヘプタン等の脂環族ビュル化合物を 用いることもできる。更に、シクロペンテン、シクロヘプテン、ノルボルネン、テトラシク ロドデセン、イソプレン、ブタジエンなどのジェン類などの共役ジェンや非共役ジェン のような多不飽和結合を有する化合物をエチレン、 a -ォレフインとともに重合原料と して用いることもできる。これらの化合物を 1種単独で用いてもよく 2種以上を併用して もよい。(以下、上記のエチレンあるいは「炭素原子数が 3〜20の α -ォレフィン」と共 に用いられるォレフィンを「他のォレフィン」ともいう。 )
上記他のォレフィンの中では、エチレンや芳香族ビュル化合物が好ましい。また、 ォレフィンの総量 100重量%のうち、少量、たとえば 10重量%以下、好ましくは 5重 量0 /0以下の量であれば、エチレン等の他のォレフィンが併用されてもよい。
[0127] 本発明では、予備重合および本重合は、バルタ重合法、溶解重合、懸濁重合など の液相重合法ある 、は気相重合法の 、ずれにお!、ても実施できる。
[0128] 本重合がスラリー重合の反応形態を採る場合、反応溶媒としては、上述の予備重 合時に用いられる不活性炭化水素を用いることもできるし、反応温度において液体 であるォレフィンを用いることもできる。
[0129] 本発明の重合方法における本重合においては、前記固体状チタン触媒成分 (I)は 、重合容積 1リットル当りチタン原子に換算して、通常は約 0.0001〜0.5ミリモル、好 ましくは約 0.005〜0.1ミリモルの量で用いられる。また、前記有機金属化合物触媒 成分 (Π)は、重合系中の予備重合触媒成分中のチタン原子 1モルに対し、通常約 1 〜2000モル、好ましくは約 5〜500モル、より好ましくは 10〜350モル、更に好ましく は 30〜350モル、特に好ましくは 50〜350モルとなるような量で用いられる。前記触 媒成分 (III)は、使用される場合であれば、前記有機金属化合物触媒成分 (II)に対 して、 0. 001〜50モル、好ましくは 0. 01〜30モル、特に好ましくは 0. 05〜20モル の量で用いられる。
[0130] 本重合を水素の存在下に行えば、得られる重合体の分子量を調節することができ、 メルトフローレートの大き 、重合体が得られる。
[0131] 本発明における本重合において、ォレフィンの重合温度は、通常、約 20〜200°C、 好ましくは約 30〜100°C、より好ましくは 50〜90°Cである。圧力は、通常、常圧〜 10 Okgf/cm2 (9. 8MPa)、好ましくは約 2〜50kgfZcm2 (0. 20〜4. 9MPa)に設定され る。本発明の重合方法においては、重合を、回分式、半連続式、連続式の何れの方 法においても行うことができる。さらに重合を、反応条件を変えて二段以上に分けて 行うこともできる。このような多段重合を行えば、ォレフィン重合体の分子量分布を更 に広げることが可能である。
[0132] このようにして得られたォレフィンの重合体は、単独重合体、ランダム共重合体およ びブロック共重合体などの 、ずれであってもよ 、。
[0133] 上記のようなォレフィン重合用触媒を用いてォレフィンの重合、特にプロピレンの重 合を行うと、デカン不溶成分含有率が 70%以上、好ましくは 85%以上、特に好ましく は 90%以上である立体規則性の高いプロピレン系重合体が得られる。
[0134] さらに本発明のォレフィン重合方法によれば、多段重合を行わなくても、少ない段 数の重合、例えば単段重合でも、分子量分布の広いポリオレフイン、特にポリプロピ レンを得ることができる。本発明のォレフィン重合方法においては、特に、メルトフロー レート(MFR)が同等である従来のォレフィン重合体よりも、分子量の高い成分の比 率が従来に比して高く、かつ (特にベタ成分と呼ばれる)分子量の低!、成分の比率が 低いォレフィン重合体が得られる場合が多いことが特徴である。この特徴は、後述す るゲルパーミエーシヨンクロマトグラフィー(GPC)測定により確認することができ、 Mw ZMn値および MzZMw値の両方が高い重合体を得ることができる。
[0135] 従来のマグネシウム、チタン、ハロゲンおよび電子供与体を含む固体状チタン触媒 成分を用いて得られるポリプロピレンは、たとえば MFRが 1〜: LOg/10分の領域では、 GPC測定で求められる分子量分布の指標である MwZMn値が 5以下、 Mz/Mw 値は 4未満となることが一般的であった力 本発明のォレフィン重合方法を用いると、 上記の同様の重合条件で MwZMn値が 6〜30、好ましくは 7〜20のォレフィン重合 体を得ることができる。また好ましくは MzZMw値が 4〜15、より好ましくは 4. 5〜10 のォレフイン重合体を得ることができる。特に、本発明のォレフィンの重合方法によれ ば、 MzZMw値の高!、重合体が得られることが多!、。
[0136] MwZMn値が高いポリプロピレンは、成形性や剛性に優れることが当該業者では 常識とされている。一方、 MzZMw値が高いことは、分子量の高い成分の含有比率 が高いことを表しており、得られるポリプロピレンの溶融張力が高ぐ成形性に優れる 可能性が高 、ことが予想される。 [0137] 本発明のォレフィンの重合方法を用いれば、多段重合を行わなくても分子量分布 の広 、重合体を得ることができるので、重合体製造装置をよりシンプルにする事がで きる可能性がある。また、従来の多段重合法に適用すると、より溶融張力や成形性に 優れた重合体を得ることができることが予想される。
[0138] 分子量分布の広い重合体を得る他の方法としては、分子量の異なる重合体を溶解 混合や、溶融混練する方法もあるが、これらの方法により得られる重合体は、作業が 比較的煩雑な割には、溶融張力や成形性の向上が充分でない場合がある。これは 分子量の異なる重合体は基本的に混ざり難い為と推定されている。一方、本発明の ォレフィンの重合方法で得られる重合体は、触媒レベル、即ちナノレベルで、極めて 広い範囲の分子量の異なる重合体が混合しているので、溶融張力が高ぐ成形性に 優れて 、ることが予想される。
[0139] 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるもの ではない。
[0140] 以下の実施例において、プロピレン重合体の嵩比重、メルトフローレート、デカン可 溶 (不溶)成分量、分子量分布は下記の方法によって測定した。
[0141] (i) -.
JIS K-6721に従って測定した。
[0142] (2)メルトフローレート(MFR):
ASTM D1238Eに準拠し、測定温度はプロピレン重合体の場合、 230°C、 4ーメ チル 1—ペンテン重合体の場合 260°Cとした。
[0143] (3)デカン ^ (不溶)成分量:
ガラス製の測定容器にプロピレン重合体約 3グラム( 10— 4グラムの単位まで測定した 。また、この重量を、下式において b (グラム)と表した。)、デカン 500ml、およびデカ ンに可溶な耐熱安定剤を少量装入し、窒素雰囲気下、スターラーで攪拌しながら 2 時間で 150°Cに昇温してプロピレン重合体を溶解させ、 150°Cで 2時間保持した後、 8時間掛けて 23°Cまで徐冷した。得られたプロピレン重合体の析出物を含む液を、 磐田ガラス社製 25G-4規格のグラスフィルタ一にて減圧濾過した。濾液の 100mlを 採取し、これを減圧乾燥してデカン可溶成分の一部を得、この重量を 10— 4グラムの単 位まで測定した (この重量を、下式において a (グラム)と表した。)この操作の後、デカ ン可溶成分量を下記式によって決定した。
[0144] デカン可溶成分含有率 = 100 X (500 X a) / (100 X b)
デカン不溶成分含有率 = 100 - 100 X (500 X a) / (100 X b)
(4)分子量分布:
液体クロマトグラフ: Waters製 ALC/GPC 150-C plus型 (示唆屈折計検出器一体 型)
カラム:東ソー株式会社製 GMH6-HT X 2本および GMH6-HTL X 2本を直列接続 した。
[0145] 移動相媒体: 0-ジクロロベンゼン
流速: l.OmlZ分
測定温度: 140°C
検量線の作成方法:標準ポリスチレンサンプルを使用した
サンプル濃度: 0.10%(w/w)
サンプル溶液量: 500 ^ 1
の条件で測定し、得られたクロマトグラムを公知の方法によって解析することで MwZ Mn値および MzZMw値を算出した。 1サンプル当たりの測定時間は 60分であった
[0146] 尚、本発明の環状多価エステル基含有化合物 (a)に該当する化合物は、特に明記 しない限りァヅマ株式会社合成品を用いた。またトランス体、シス体の異性体純度は 何れも 95%以上である。
実施例 1
[0147] (固体状チタン触媒成分 (A)の調製)
内容積 2リットルの高速撹拌装置 (特殊機化工業製)を充分窒素置換した後、この 装置に精製デカン 700ml、巿販塩ィ匕マグネシウム 10g、エタノール 24. 2gおよび商 品名レオドール SP-S20 (花王 (株)製ソルビタンジステアレート) 3gを入れ、この懸濁 液を撹拌しながら系を昇温し、懸濁液を 120°Cにて 800rpmで 30分撹拌した。次い でこの懸濁液を、沈殿物が生じないように高速撹拌しながら、内径 5mmのテフロン( 登録商標)製チューブを用いて、予め- 10°Cに冷却された精製デカン 1リットルを張り 込んである 2リットルのガラスフラスコ(攪拌機付)に移した。移液により生成した固体 を濾過し、精製 n-ヘプタンで充分洗浄することにより、塩ィ匕マグネシウム 1モルに対し てエタノールが 2. 8モル配位した固体状付加物を得た。
[0148] デカン 30mlで懸濁状にした上記固体状付加物をマグネシウム原子に換算して 46 . 2ミリモルを- 20°Cに保持した四塩ィ匕チタン 200ml中に攪拌下、全量導入した。この 混合液を 5時間かけて 80°Cに昇温し、 80°Cに達したところで、 3, 6—ジメチルシクロ へキシルー 1, 2—ジベンゾエー HMe2CH)を、固体状付カ卩物のマグネシウム原子 1モルに対して 0. 175モルの割合の量で添カ卩し、 40分間で 120°Cまで昇温した。温 度を 120°Cで 65分間攪拌しながら保持した。
[0149] 65分間の反応終了後、熱濾過にて固体部を採取し、この固体部を 200mlの四塩 化チタンにて再懸濁させた後、昇温して 130°Cに達したところで、 15分間撹拌しなが ら保持した。 15分間の反応終了後、再び熱濾過にて固体部を採取し、 100°Cのデカ ンおよびヘプタンで洗液中に遊離のチタンィ匕合物が検出されなくなるまで充分洗浄 した。
[0150] 以上の操作によって固体状チタン触媒成分 (A)を得た。
(本重合)
内容積 2リットルの重合器に、室温で 500gのプロピレンおよび水素 1NLを加えた後 、トリェチルアルミニウム 0. 5ミリモル、シクロへキシルメチルジメトキシシラン 0. 1ミリモ ル、および固体状チタン触媒成分 (A)をチタン原子換算で 0. 004ミリモルを加え、室 温で 15分間保持した後、速やかに重合器内を 70°Cまで昇温した。 70°Cで 1時間重 合した後、少量のメタノールにて反応停止し、プロピレンをパージした。更に得られた 重合体粒子を 80°Cで一晩、減圧乾燥した。
[0151] 活性、 MFR、デカン不溶成分量、嵩比重、分子量分布 (MwZMn、 MzZMw)を
1に した。
実施例 2
[0152] (固体状チタン触媒成分 (B)の調製)
3, 6—ジメチルシクロへキシルー 1, 2—ジベンゾエートの代わりにシクロへキシル —1, 2—ジベンゾエート (CH)を用いた以外は実施例 1と同様にして、固体状チタン 触媒成分 (B)を得た。
[0153] (本重合)
固体状チタン触媒成分 (A)の代わりに固体状チタン触媒成分 (B)を用いた以外は 実施例 1と同様にプロピレンの重合を行った。結果を表 1に示した。
実施例 3
[0154] (本重合)
水素を 7. 5L用いた以外は実施例 1と同様にプロピレンの重合を行った。結果を表 1に示した。
実施例 4
[0155] (本重合)
水素を 7. 5L用いた以外は実施例 2と同様にプロピレンの重合を行った。結果を表 1に示した。
[比較例 1]
(固体状チタン触媒成分 (C)の合成)
3, 6—ジメチルシクロへキシルー 1, 2—ジベンゾエートの代わりにフタル酸ジイソブ チル (DIPB) (和光純薬工業 (株)製試薬特級)をマグネシウム原子 1モルに対して 0 . 15モル用い、 120°Cでの反応を 90分、 130°Cでの反応を 45分とした以外は実施 例 1と同様にして、固体状チタン触媒成分 (C)を得た。
(本重合)
固体状チタン触媒成分 (A)の代わりに固体状チタン触媒成分 (C)を用いた以外は 実施例 1と同様にプロピレンの重合を行った。結果を表 1に示した。
[0156] [表 1] 活性/ 水素 MFR/ C10 insol. BD /
Mw/Mn Mz/Mw g/g-Cat /し g/10分 / wt% g/m! 実施例 1 38,700 1 4.5 96.0 0.45 9.6 3.6
17.800 1 8.8 92.4 0.43 1 1.2 4.2 実施例 3 44,500 7.5 195 95.8 0.42 14.4 3.8 実施例 4 19,400 7.5 220 93.9 0.42 13.7 4.2 比較例 1 22,100 1 5.0 98.5 0.49 4.3 3.0 比較例 2 21 ,800 7.5 92 98.1 0.50 ― 一
:デカン不溶成分量
[0157] [比較例 2]
(本重合)
水素を 7. 5L用いた以外は比較例 1と同様にプロピレンの重合を行った。結果を表 1に示した。
[0158] 上記の様に、本発明の固体状チタン触媒成分を含むォレフィン重合用触媒を用い ると、従来使用されていた比較例の固体状チタン触媒成分を含むォレフィン重合触 媒に比して分子量分布の広 、ォレフイン重合体が得られることがわかる。このようなォ レフイン重合体は、最近、例えば自動車用の射出成形用途に求められている高溶融 流動性の榭脂を得る上でも有利である。
[0159] 上記の結果における水素使用量と MFRとの関係を図 1に示した。水素使用量と M FRとの関係はそれぞれの対数をとるとグラフ上で良い直線性を示すことが当業者に は知られている。より分子量分布を広げる目的で多段重合を行う場合、このグラフで の傾きが急な触媒ほど、少ない水素使用量の違いで分子量を大きく変化させる事が 出来ることを示している。つまり、分子量分布を広げるのに有利である。
[0160] 環状骨格中に置換基を有する 3, 6—ジメチルシクロへキシルー 1, 2—ジベンゾェ ート (Me2CH、実線)を含む固体状チタン触媒成分を用いると、置換基のないシクロへ キシルー 1, 2—ジベンゾエート (CH、破線)を含む固体状チタン触媒成分を用いた場 合に比して、水素使用量と MFRとの関係を示すグラフの傾きが急であるので、特に 多段重合において更に分子量分布を広げるのに有利であることが分かる。また、活 性や立体規則性も高!ヽ結果が得られて!/ヽる面でもより好ま ヽ。
[0161] 上記の通り、本発明の固体状チタン触媒成分を用いると、分子量分布が極めて広 ヽォレフイン重合体を得ることが可能である。特に環状多価エステル基含有化合物 の環状部位に置換基を有するものを含む固体状チタン触媒成分を用いると、広い分 子量分布はそのままに、極めて高い活性で、より立体規則性の高いォレフィン重合 体を得ることが可能であり、多段重合法を併用した場合により分子量分布の広いォレ フィン重合体を得るのに有利である。

Claims

請求の範囲 [1] チタン、マグネシウム、ハロゲンおよび下記式(1)で特定される環状多価エステル 基含有化合物 (a)を含むことを特徴とする固体状チタン触媒成分 (I);
[化 1]
Figure imgf000034_0001
〔式(1)において、 nは 5〜 10の整数である。
ca— caおよび ca— cbは C Cである。
複数個ある R1はそれぞれ独立に炭素数 1〜20の 1価の炭化水素基である。
複数個ある Rは、それぞれ独立に水素原子、炭素数 1〜20の炭化水素基、ハロゲ ン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素含有 基力 選ばれる原子または基であり、互 ヽに結合して環を形成して 、てもよ 、。
Rが互!、に結合して形成される環の骨格中には二重結合が含まれて 、てもよく、該 環の骨格中に、 OCOR1が結合した Caを 2つ以上含む場合は、該環の骨格をなす炭 素原子の数は 5〜 10である。〕。
[2] 前記式(1)において、 Cbに直接結合する複数の Rのうち、少なくとも 1つは水素原子 以外の基である、請求項 1に記載の固体状触媒成分 (I)。
[3] 前記式(1)において、前記環状骨格中の炭素原子間結合のすべてが単結合であ ることを特徴とする請求項 1に記載の固体状チタン触媒成分 (I)。
[4] 前記式(1)において、前記環状骨格が 6個の炭素原子からなることを特徴とする請 求項 1に記載の固体状チタン触媒成分 (I)。
[5] 前記環状多価エステル基含有化合物 (a)が下記式(la)で表わされることを特徴と する請求項 1に記載の固体状チタン触媒成分 (I); [化 2]
Figure imgf000035_0001
〔式(la)において、 nは 5〜 10の整数である。
ca— caおよび ca— cbは c cである。
複数個ある R1は、それぞれ独立に炭素数 1〜20の 1価の炭化水素基である。 複数個ある Rは、それぞれ独立に水素原子、炭素数 1〜20の炭化水素基、ハロゲ ン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素含有 基力 選ばれる原子または基であり、互 ヽに結合して環を形成して 、てもよ 、。
Rが互!、に結合して形成される環の骨格中には二重結合が含まれて 、てもよく、該 環の骨格中に 2つの Caを含む場合は、該環の骨格をなす炭素原子の数は 5〜: LOで ある。〕。
[6] 請求項 1に記載の固体状チタン触媒成分 (I)と、
周期表の第 1族、第 2族および第 13族力 選ばれる金属元素を含む有機金属化合 物触媒成分 (Π)と
を含むことを特徴とするォレフィン重合用触媒。
[7] さらに、電子供与体 (ΠΙ)を含むことを特徴とする請求項 5に記載のォレフィン重合 用触媒。
[8] 請求項 5または 6に記載のォレフィン重合用触媒の存在下にォレフィンの重合を行 うことを特徴とするォレフィン重合方法。
PCT/JP2007/063972 2006-07-18 2007-07-13 Ingrédient catalyseur au titane solide, catalyseur de polymérisation d'oléfine, et procédé de polymérisation d'oléfine WO2008010459A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07790753.3A EP2048166B1 (en) 2006-07-18 2007-07-13 Solid titanium catalyst ingredient, catalyst for olefin polymerization, and method of olefin polymerization
JP2008525847A JP5479734B2 (ja) 2006-07-18 2007-07-13 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法
US12/309,319 US20090203855A1 (en) 2006-07-18 2007-07-13 Solid titanium catalyst ingredient, catalyst for olefin polymerization, and method of olefin polymerization
CN2007800266855A CN101490101B (zh) 2006-07-18 2007-07-13 固态钛催化剂成分、烯烃聚合用催化剂及烯烃聚合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-195732 2006-07-18
JP2006195732 2006-07-18

Publications (1)

Publication Number Publication Date
WO2008010459A1 true WO2008010459A1 (fr) 2008-01-24

Family

ID=38956792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063972 WO2008010459A1 (fr) 2006-07-18 2007-07-13 Ingrédient catalyseur au titane solide, catalyseur de polymérisation d'oléfine, et procédé de polymérisation d'oléfine

Country Status (7)

Country Link
US (1) US20090203855A1 (ja)
EP (1) EP2048166B1 (ja)
JP (1) JP5479734B2 (ja)
KR (2) KR20090034984A (ja)
CN (1) CN101490101B (ja)
TW (1) TW200829615A (ja)
WO (1) WO2008010459A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514126A (ja) * 2008-12-31 2012-06-21 ダウ グローバル テクノロジーズ エルエルシー 強化されたプロ触媒組成物及びプロセス
JP2012514125A (ja) * 2008-12-31 2012-06-21 ダウ グローバル テクノロジーズ エルエルシー 置換された1,2−フェニレン芳香族ジエステルの内部供与体を有するプロ触媒組成物及び方法
WO2014065331A1 (ja) 2012-10-25 2014-05-01 株式会社プライムポリマー 微多孔フィルム用ポリプロピレン
US10256041B2 (en) 2015-03-31 2019-04-09 Prime Polymer Co., Ltd. Polypropylene for film capacitor, biaxially stretched film for film capacitor, film capacitor, and process for producing the same
WO2022045232A1 (ja) 2020-08-26 2022-03-03 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体
WO2022138634A1 (ja) 2020-12-21 2022-06-30 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体
WO2024204845A1 (ja) * 2023-03-30 2024-10-03 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPH037703A (ja) 1989-03-02 1991-01-14 Mitsui Petrochem Ind Ltd オレフィンの重合方法およびオレフィン重合用触媒
JPH05170843A (ja) 1991-12-20 1993-07-09 Mitsui Petrochem Ind Ltd プロピレン系ブロック共重合体の製造方法
EP0585869A1 (en) 1992-08-31 1994-03-09 Mitsui Petrochemical Industries, Ltd. Solid titanium catalyst component for olefin polymerization, process for preparing the same, catalyst for olefin polymerization and process for olefin polymerization
JPH06122716A (ja) * 1992-09-01 1994-05-06 Idemitsu Petrochem Co Ltd オレフィン重合体の製造方法
JPH08157521A (ja) * 1994-12-01 1996-06-18 Showa Denko Kk オレフィン重合用固体触媒成分の製造方法、オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2000063261A1 (en) 1999-04-15 2000-10-26 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
WO2001057099A1 (en) 2000-02-02 2001-08-09 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
JP2001354714A (ja) 1990-04-13 2001-12-25 Mitsui Chemicals Inc オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
WO2002030998A1 (en) 2000-10-13 2002-04-18 Basell Technology Company B.V. Catalyst components for the polymerization of olefins
WO2004016662A1 (ja) 2002-08-19 2004-02-26 Ube Industries, Ltd. α−オレフィンの重合又は共重合に用いられるα−オレフィンの重合又は重合用触媒、その触媒成分及びその触媒を用いたα−オレフィン重合方法
JP2005517746A (ja) 2002-02-07 2005-06-16 チャイナ ペトロレウム アンド ケミカル コーポレーション オレフィン重合用の固形触媒成分、それを含んでなる触媒、およびその使用
JP2005531675A (ja) * 2002-07-02 2005-10-20 バセル ポリオレフィン イタリア エス.ピー.エー. オレフィンの重合用触媒系

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385765B1 (en) * 1989-03-02 1995-05-03 Mitsui Petrochemical Industries, Ltd. Process for polymerizing olefins and catalyst for polymerizing olefins
MY125673A (en) * 1996-06-10 2006-08-30 Mitsui Chemicals Inc Solid titanium catalyst component for olefin polymerization,process for preparing the same, olefin plymerization catalyst containing the catalyst component and olefin polymerization process using thecatalyst
JP2001329013A (ja) * 2000-05-24 2001-11-27 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分および触媒
CN1329418C (zh) * 2000-07-03 2007-08-01 三井化学株式会社 丁烯共聚物,其树脂组合物和由其制成的模塑件
US7888437B2 (en) * 2005-01-19 2011-02-15 Mitsui Chemicals, Inc. Process for producing olefin polymer and solid titanium catalyst component

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPH037703A (ja) 1989-03-02 1991-01-14 Mitsui Petrochem Ind Ltd オレフィンの重合方法およびオレフィン重合用触媒
JP2001354714A (ja) 1990-04-13 2001-12-25 Mitsui Chemicals Inc オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JPH05170843A (ja) 1991-12-20 1993-07-09 Mitsui Petrochem Ind Ltd プロピレン系ブロック共重合体の製造方法
EP0585869A1 (en) 1992-08-31 1994-03-09 Mitsui Petrochemical Industries, Ltd. Solid titanium catalyst component for olefin polymerization, process for preparing the same, catalyst for olefin polymerization and process for olefin polymerization
JPH06122716A (ja) * 1992-09-01 1994-05-06 Idemitsu Petrochem Co Ltd オレフィン重合体の製造方法
JPH08157521A (ja) * 1994-12-01 1996-06-18 Showa Denko Kk オレフィン重合用固体触媒成分の製造方法、オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2000063261A1 (en) 1999-04-15 2000-10-26 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
WO2001057099A1 (en) 2000-02-02 2001-08-09 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
WO2002030998A1 (en) 2000-10-13 2002-04-18 Basell Technology Company B.V. Catalyst components for the polymerization of olefins
JP2005517746A (ja) 2002-02-07 2005-06-16 チャイナ ペトロレウム アンド ケミカル コーポレーション オレフィン重合用の固形触媒成分、それを含んでなる触媒、およびその使用
JP2005531675A (ja) * 2002-07-02 2005-10-20 バセル ポリオレフィン イタリア エス.ピー.エー. オレフィンの重合用触媒系
WO2004016662A1 (ja) 2002-08-19 2004-02-26 Ube Industries, Ltd. α−オレフィンの重合又は共重合に用いられるα−オレフィンの重合又は重合用触媒、その触媒成分及びその触媒を用いたα−オレフィン重合方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534063B2 (en) 2008-12-31 2017-01-03 W. R. Grace & Co.—Conn Procatalyst composition with substituted 1,2-phenylene aromatic diester internal donor and method
JP2012514122A (ja) * 2008-12-31 2012-06-21 ダウ グローバル テクノロジーズ エルエルシー ランダムプロピレンコポリマー組成物、製品及び方法
JP2012514125A (ja) * 2008-12-31 2012-06-21 ダウ グローバル テクノロジーズ エルエルシー 置換された1,2−フェニレン芳香族ジエステルの内部供与体を有するプロ触媒組成物及び方法
JP2012514126A (ja) * 2008-12-31 2012-06-21 ダウ グローバル テクノロジーズ エルエルシー 強化されたプロ触媒組成物及びプロセス
US9045570B2 (en) 2008-12-31 2015-06-02 W.R. Grace & Co. - Conn. Procatalyst composition with substituted 1,2-phenylene aromatic diester internal donor and method
JP2016172868A (ja) * 2008-12-31 2016-09-29 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット 強化されたプロ触媒組成物
US9464144B2 (en) 2008-12-31 2016-10-11 W. R. Grace & Co.—Conn. Enhanced procatalyst composition and process
WO2014065331A1 (ja) 2012-10-25 2014-05-01 株式会社プライムポリマー 微多孔フィルム用ポリプロピレン
US10011693B2 (en) 2012-10-25 2018-07-03 Prime Polymer Co., Ltd. Polypropylene for microporous film
US10256041B2 (en) 2015-03-31 2019-04-09 Prime Polymer Co., Ltd. Polypropylene for film capacitor, biaxially stretched film for film capacitor, film capacitor, and process for producing the same
WO2022045232A1 (ja) 2020-08-26 2022-03-03 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体
WO2022138634A1 (ja) 2020-12-21 2022-06-30 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体
WO2024204845A1 (ja) * 2023-03-30 2024-10-03 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法

Also Published As

Publication number Publication date
TW200829615A (en) 2008-07-16
EP2048166A1 (en) 2009-04-15
CN101490101A (zh) 2009-07-22
CN101490101B (zh) 2011-11-02
JPWO2008010459A1 (ja) 2009-12-17
KR20090034984A (ko) 2009-04-08
JP5479734B2 (ja) 2014-04-23
KR20110134522A (ko) 2011-12-14
EP2048166A4 (en) 2013-02-20
US20090203855A1 (en) 2009-08-13
EP2048166B1 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5597283B2 (ja) オレフィン重合体製造用触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP5306225B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
US7888438B2 (en) Catalyst for olefin polymerization and process for olefin polymerization
JP5457835B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP5479734B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法
JP2008024751A (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法
JP2013249445A (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2010111755A (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026685.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008525847

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12309319

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007790753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097003221

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1020117028063

Country of ref document: KR