WO2006075506A1 - Transparent electrode and method for fabricating same - Google Patents
Transparent electrode and method for fabricating same Download PDFInfo
- Publication number
- WO2006075506A1 WO2006075506A1 PCT/JP2005/023700 JP2005023700W WO2006075506A1 WO 2006075506 A1 WO2006075506 A1 WO 2006075506A1 JP 2005023700 W JP2005023700 W JP 2005023700W WO 2006075506 A1 WO2006075506 A1 WO 2006075506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent electrode
- etching
- solution
- transparent conductive
- conductive film
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 21
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 81
- 238000005530 etching Methods 0.000 claims abstract description 71
- 239000011701 zinc Substances 0.000 claims abstract description 43
- 239000011787 zinc oxide Substances 0.000 claims abstract description 38
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 33
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 27
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 13
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 76
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 67
- 239000000243 solution Substances 0.000 claims description 54
- 238000004519 manufacturing process Methods 0.000 claims description 46
- 239000007864 aqueous solution Substances 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 28
- 229910017604 nitric acid Inorganic materials 0.000 claims description 28
- 239000011259 mixed solution Substances 0.000 claims description 26
- 235000006408 oxalic acid Nutrition 0.000 claims description 25
- 239000002253 acid Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 19
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 15
- 238000000059 patterning Methods 0.000 claims description 10
- JZDJWEKMXXNNIM-UHFFFAOYSA-N nitric acid hydrate hydrochloride Chemical compound O.[N+](=O)(O)[O-].Cl JZDJWEKMXXNNIM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- WGTYBPLFGIVFAS-UHFFFAOYSA-N tetramethylazanium;hydrate Chemical compound O.C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-N 0.000 claims description 4
- -1 tetramethylammonium hydride Chemical compound 0.000 claims description 3
- 239000003513 alkali Substances 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 112
- 239000000758 substrate Substances 0.000 description 40
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 20
- 238000005477 sputtering target Methods 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 11
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical group [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 10
- 239000010409 thin film Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 7
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 7
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 229910007717 ZnSnO Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000005340 laminated glass Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 241000652704 Balta Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- WSUTUEIGSOWBJO-UHFFFAOYSA-N dizinc oxygen(2-) Chemical compound [O-2].[O-2].[Zn+2].[Zn+2] WSUTUEIGSOWBJO-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical compound N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- 229910003439 heavy metal oxide Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- DYIZHKNUQPHNJY-UHFFFAOYSA-N oxorhenium Chemical compound [Re]=O DYIZHKNUQPHNJY-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910003449 rhenium oxide Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- OYQCBJZGELKKPM-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O-2].[Zn+2].[O-2].[In+3] OYQCBJZGELKKPM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2211/00—Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
- H01J2211/20—Constructional details
- H01J2211/22—Electrodes
- H01J2211/225—Material of electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80515—Anodes characterised by their shape
Definitions
- the present invention relates to a transparent electrode used for a thin display or the like. More specifically, the present invention relates to a transparent electrode mainly composed of zinc oxide and tin oxide, the electrode having a tapered end, and a method for manufacturing the electrode.
- Liquid crystal display devices are considered promising among thin displays because they have features such as low power consumption and easy full colorization, and in recent years, development relating to enlargement of display screens has been active.
- the active matrix liquid crystal flat panel display that drives ⁇ -Si thin film transistors (TFTs) or p-Si TFTs as switching elements in a matrix for each pixel, and has a high definition of 800 x 600 pixels or more. Since the contrast ratio does not deteriorate even when the display is made, it is attracting attention as a flat display for high-performance color display.
- a transparent electrode such as indium oxide-tin oxide (ITO) is used as a pixel electrode, and an A1-based alloy is used as a gate electrode and a source / drain electrode.
- ITO indium oxide-tin oxide
- A1-based alloy is used as a gate electrode and a source / drain electrode.
- Figure 4 shows a cross section near the Si TFT at the stage where pixel electrode pattern formation was completed in the liquid crystal flat panel display manufacturing process.
- a gate electrode pattern 22 is formed on a translucent glass substrate 21, and then a plasma CVD method is used to form a SiN gate insulating film 23, an a_Si: H (i) film 24, and a channel protective film 25. And ⁇ 2 —Si: H (n) film 26 are continuously formed to form a desired shape pattern. Further, a metal film mainly composed of A1 is deposited by a vacuum evaporation method or a sputtering method, and a source electrode pattern 27 and a drain electrode pattern 28 are formed by a photolithography technique, and an a-Si TFT element portion is completed. In this example, a protective film 30 is formed.
- an ITO film is deposited by a sputtering method to form a pixel electrode pattern 29 electrically connected to the source electrode 27 by a photolithography technique.
- the reason for depositing the film after the A1 film is to prevent deterioration of the electrical contact characteristics between the ⁇ -Si: film and the source and drain electrodes.
- A1 is an indispensable material in the sense that it is inexpensive and has a low specific resistance to prevent deterioration of the display performance of the liquid crystal display due to increased resistance of the gate and source / drain electrode wiring.
- A1 is also an HCl-HNO_H 2 O-based etchant, which is an ITO etchant.
- HN ⁇ in the etchant is thin on the Al surface.
- A1 Oxide film is added to prevent the dissolution of A1.
- IT ⁇ The etching time of the film is long, or defects such as impurities and foreign matter in the A1 film mixed during A1 deposition. In the presence of A, the effect of oxidation of A1 by
- ITO indium tin oxide
- IZO zinc monoxide
- tin oxide has a problem of being difficult to etch even with aqua regia (a mixed acid of nitric acid and hydrochloric acid), which is a strong acid, because chemical stability is too strong.
- aqua regia a mixed acid of nitric acid and hydrochloric acid
- Patent Document 1 JP-A 63-184726
- Patent Document 2 Japanese Patent Laid-Open No. 11 264995
- Patent Document 3 Japanese Patent Laid-Open No. 6-293956
- Patent Document 4 JP-A-9 35535
- Non-Patent Document 1 Japan Society for the Promotion of Science Transparent Oxide Optical / Electronic Materials 166th Edition: Transparent Conductive Film Technology, Ohmsha (1999)
- the present invention has been made in view of the above-mentioned problems, and is a transparent electrode that does not use indium, and has an object to provide a transparent electrode that is excellent in alkali resistance and wet heat stability and has excellent etching power.
- a transparent electrode is formed using a sputtering target mainly composed of zinc oxide's oxide, and the sputtering target is also used.
- a predetermined etching solution As a result, it was found that the end of the electrode can be easily formed into a tapered shape, and the present invention has been completed.
- the following transparent electrode and the manufacturing method thereof can be provided.
- a transparent electrode composed mainly of zinc oxide and tin oxide and having a taper angle of 30 to 89 degrees at the end of the electrode.
- a method for producing a transparent electrode wherein a transparent conductive film containing zinc oxide and tin oxide as a main component is etched so that the taper angle of the electrode end is 30 to 89 degrees.
- Transparent conductive film composed mainly of zinc oxide and tin oxide, with the ratio of zinc atoms to the total amount of zinc atoms and tin atoms (Zn / (Zn + Sn), atomic ratio) being 0.5 to 0.9
- a first step of forming a resist film a second step of forming a resist film on the transparent conductive film, and using the resist film as a resist developer, a 1 to 5 wt% aqueous solution of tetramethylammonium hydride oxide. Then, the third step of patterning the temperature of the aqueous solution in a range of 20 to 50 ° C. and the transparent conductive film are etched using an aqueous solution having a hydrohalic acid concentration of 1 wt% to 40 wt%. And a fourth step of forming a transparent electrode having a taper angle of 30 to 89 degrees,
- Transparent conductive film mainly composed of zinc oxide and tin oxide with a zinc atom ratio (Zn / (Zn + Sn), atomic ratio) to the total amount of zinc and tin atoms of 0.5 to 0.85 And etching the transparent conductive film using an aqueous solution having an oxalic acid concentration of 1 wt% to 10 wt% as an etchant and a temperature of the etchant in the range of 20 to 50 ° C. 4.
- the method for producing a transparent electrode according to 3, comprising a step of patterning.
- the method for producing a transparent electrode according to 3 or 4 comprising a fifth step.
- composition of the above mixed solution is a ternary system of nitric acid-monohydrochloric acid-water, in the ratio of nitric acid: hydrochloric acid: water (A) 2: 2: 96, (B) 2: 2: 96, (C) The method for producing a transparent electrode according to 8, wherein the transparent electrode is within a quadrilateral region surrounded by a composition point of 78: 2: 20 and (D) 78: 20: 2.
- the resist developer used in the third step is a 1 to 5 wt% aqueous solution of tetramethyl ammonium hydroxide, and the resist stripper used in the fifth step contains ethanolamine.
- the manufacturing method of the transparent electrode in any one of.
- a method of etching a transparent conductive film mainly composed of zinc oxide and tin oxide using an aqueous oxalic acid solution is etching a transparent conductive film mainly composed of zinc oxide and tin oxide using an aqueous oxalic acid solution.
- composition of the mixed solution of nitric acid, hydrochloric acid and water is the ratio of nitric acid: hydrochloric acid: water in a ternary system of nitric acid-hydrochloric acid-water (A) 2: 2: 96, (B) 2
- the transparent electrode of the present invention does not use indium, it is inexpensive regardless of the price fluctuation of indium.
- zinc oxide and tin oxide as the main components, it is possible to make the electrode excellent in alkali resistance and moist heat resistance.
- a predetermined etching solution it is possible to prevent the end of the electrode from becoming an inverted trapezoid and to obtain an electrode controlled to have a constant taper angle.
- FIG. 1 is a cross-sectional view of a transparent electrode.
- FIG. 2 is a diagram showing a production process of the transparent electrode of the present invention.
- FIG. 3 is a diagram showing a composition region of a suitable mixed solution of nitric acid: hydrochloric acid: water in the present invention.
- FIG. 4 is a diagram showing an example of a TFT substrate.
- FIG. 1 is a cross-sectional view of the transparent electrode of the present invention.
- the transparent electrode 11 of the present invention is formed on the substrate 10, mainly composed of zinc oxide and tin oxide, and has a taper angle (30) at the electrode end of 30 to 89 degrees.
- “Mainly composed of zinc oxide and tin oxide” means that the proportion (atomic ratio) of zinc and tin oxide in the transparent electrode is 51% or more. In the present invention, the proportion of the oxide is preferably 75% or more, particularly preferably 90% or more.
- Zinc and tin oxide forms include zinc oxide such as ZnO, SnO, SnO
- This amorphous transparent conductive film has excellent etching characteristics not found in zinc oxide-based transparent conductive films and tin oxide-based transparent conductive films.
- the end of the electrode after etching does not easily have an inverted trapezoidal shape, and when the etching characteristics are poor as in the case of tin oxide, it is not possible.
- the transparent electrode of the present invention has a taper angle of 30 to 89 degrees at the electrode end.
- the taper angle is smaller than 30 degrees, the distance between the electrode edges becomes longer, and when the liquid crystal or organic EL is driven, the contrast between the pixel periphery and the inside may be different. If the taper angle exceeds 89 degrees, electrode cracking or peeling at the edge may occur, and in the case of liquid crystals, the alignment film may be defective, or in the case of organic EL, the counter electrode may be disconnected.
- the film thickness of the transparent conductive film (transparent electrode) is preferably 5 to 300 nm force S, more preferably 20 to 150 nm force S, and particularly preferably 30 to 80 nm. If the film thickness is less than 5 nm, the resistance value may be too high, and if it exceeds 300 nm, the taper angle of the electrode end after etching may not be within 30 to 89 degrees.
- the taper angle of the transparent electrode can be controlled.
- the taper angle is controlled by adjusting the composition, concentration, temperature, etc. of the etching solution used when etching the transparent conductive film.
- an oxalic acid aqueous solution, a mixed solution of nitric acid / monochloric acid / water, or a hydrohalic acid aqueous solution can be used as an etching solution.
- the taper angle can be controlled by the concentration of the aqueous oxalic acid solution. Specifically, in order to reduce the taper angle, the concentration of the oxalic acid aqueous solution is adjusted to be low. Conversely, to increase the taper angle, the concentration of the oxalic acid aqueous solution is adjusted to be high.
- the ratio of zinc atoms (Zn / (Zn + Sn), atomic ratio) to the total amount of zinc atoms and tin atoms in the transparent electrode is preferably 0.5 to 0.85. If Zn / (Zn + Sn) is greater than 0.85, control becomes difficult, the taper angle of the electrode end becomes 90 degrees or more, and side etching becomes too large, which may result in electrode thinning or disconnection. is there. In addition, the contact resistance between the transparent electrode and the anisotropic conductive film (ACF) connecting the external circuit may increase, and the contact resistance with the ACF may increase during the durability test (high temperature and high humidity).
- ACF anisotropic conductive film
- Zn / (Zn + Sn) force is less than SO.5, the etching rate may decrease and etching may not be possible.
- Zn / (Zn + Sn) is 0.5 to 0.8, and more preferably 0.7 to 0.8.
- the taper angle can be controlled by adjusting the composition ratio of the mixed solution. Specifically, to reduce the taper angle, increase the ratio of hydrochloric acid. Conversely, to increase the taper angle, decrease the ratio of hydrochloric acid.
- ZnZ (Zn + Sn), atomic ratio the ratio of zinc atoms to the total amount of zinc atoms and tin atoms in the transparent electrode (ZnZ (Zn + Sn), atomic ratio) is 0.5-0. 9 is preferred. The reason for this is the same as in the case of oxalic acid described above. More preferably, Zn / (Zn + Sn) is 0.55 to 0.85, and more preferably 0.57 to 0.8. Particularly preferably, it is 0.60 to 0.77, more preferably 0.64 to 0.74, and most preferably 0.64 to 0.69.
- the taper angle can be controlled by the concentration of the hydrohalic acid or the temperature of the hydrohalic acid aqueous solution. Specifically, to decrease the taper angle, lower the concentration of hydrohalic acid, or lower the temperature of the aqueous solution. Conversely, to increase the taper angle, increase the concentration of hydrohalic acid. What is necessary is just to raise the temperature of aqueous solution.
- the ratio of zinc atoms to the total amount of zinc atoms and tin atoms in the transparent electrode is 0.5 to 0.9. It is preferable that The reason for this is the same as in the case of oxalic acid described above. More preferably ⁇ , ⁇ 11 / (211 + 311) to 0.52 to 0.7, more preferably ⁇ , 0.55 to 0.67, particularly preferably 0.55 to 0.63. is there.
- the transparent conductive film mainly composed of zinc oxide and tin oxide is preferably an amorphous film. If it is not an amorphous film, it is difficult to control the taper angle, and it may not be possible to keep it within 30 to 89 degrees.
- the atomic ratio (Zn / (Zn + Sn), atomic ratio) is a value measured by ICP (high frequency inductively coupled plasma) analysis. Note that the ratio of atoms in the raw material of the sputtering target used for forming the transparent conductive film (transparent electrode) is substantially equal to the ratio of the atoms in the actually obtained transparent conductive film. Therefore, the atomic ratio [Zn / (Zn + Sn)] of the transparent conductive film can be controlled by adjusting the atomic ratio in the raw material of the sputtering target.
- the transparent electrode of the present invention can be produced by etching and patterning a transparent conductive film having an amorphous conductive oxide composed mainly of zinc oxide and tin oxide. This will be described below with reference to the drawings.
- FIG. 2 is a diagram showing a production process of the transparent electrode of the present invention.
- the manufacturing process mainly consists of forming a transparent conductive film (first step, Fig. 2 (a)), forming a resist film (second step, Fig. 2 (b)), and patterning the resist film (third step, Fig. 2). 2 (c)), etching of transparent conductive film (fourth process, Fig. 2 ( d)), peeling of the resist film on the transparent electrode (fifth step, Fig. 2 (e)).
- a transparent conductive film 11 ′ is formed on the substrate 10 on which the transparent electrode is to be formed.
- a transparent resin plate such as a glass plate, polysulfone or polycarbonate which is a transparent substrate can be used.
- Examples of the method for forming the transparent conductive film 11 ′ include vapor deposition, sputtering, CVD, spraying, and dipping. Of these, sputtering is preferably used.
- a sputtering target prepared and sintered using zinc oxide and tin oxide as main raw materials may be used.
- the substrate temperature during sputtering is adjusted to 300 ° C. or lower, or hydrogen is added to the sputtering gas during sputtering (10 ⁇ 1. / ⁇ or less).
- the transparent conductive film 11 ′ amorphous, it becomes possible to easily etch with the above-described etching solution.
- the transparent conductive film is etched and patterned into a desired electrode pattern.
- the patterning can be performed by a method usually used in this technical field, for example, photolithography. That is, a resist film 12 is formed on the transparent conductive film 11 ′ (FIG. 2 (b)), and the resist film 12 is patterned by exposure and development (FIG. 2 (c)). Thereafter, the transparent conductive film 11 ′ is etched using an etching solution to form a desired pattern. Finally, the resist film 12 remaining on the transparent electrode 11 is removed using a stripping solution (FIG. 2 (d)) to form a transparent electrode (FIG. 2 (e)).
- an aqueous oxalic acid solution a mixed solution of nitric acid / monochloric acid / water, or an aqueous hydrohalic acid solution as an etching solution.
- the concentration of oxalic acid in the aqueous oxalic acid solution is preferably lwt% to 10wt%. If the oxalic acid concentration is less than 1 wt%, the etching rate is slow, and if it exceeds 10 wt%, which is not practical, oxalate crystals may be precipitated. More preferably, it is 2 wt% to 7 wt%, and particularly preferably 2 wt% to 5 wt%.
- the composition of the mixed solution is the ratio (volume ratio) of nitric acid: hydrochloric acid: water, (A) 2: 96: 2, (B) 2: 2: 96, (C) 78: 2: 20 and (D) 78 It is preferably within a quadrilateral region surrounded by the composition point of: 20: 2.
- FIG. 3 shows a composition region of a suitable mixed solution of nitric acid, hydrochloric acid and water in the present invention.
- a quadrilateral area (shaded area) formed by the points (A) to (D) is a preferable range. Outside this range, the etching rate may be too fast or too slow, and the taper angle of the electrode may not fall within the range of 30 to 89 degrees.
- the composition of this mixed solution is the ratio of nitric acid: hydrochloric acid: water, ( ⁇ ') 4:48:48, ( ⁇ ') 4: 8: 88, (C ') 78: 8: 14 and (D') It should be within the quadrilateral region surrounded by the composition point of 78:11:11.
- the power of this mixture solution is the ratio of nitric acid: hydrochloric acid: water, (A ") 6:47:47, (B ") 6: 8: 86, (C ,,) 50: 8: 42, and (D ,,) 50:25: It is particularly preferable to be within a quadrilateral region surrounded by composition points.
- Nitric acid is normal concentrated nitric acid (concentration 60%, specific gravity 1.40)
- hydrochloric acid is normal concentrated hydrochloric acid (concentration 35%, specific gravity 1.18).
- a hydrohalic acid aqueous solution for example, HI, HBr, HC1, or HF can be used as the hydrohalic acid.
- HI, HBr, HC1, or HF can be used as the hydrohalic acid.
- it is HC1, HI or HF.
- the concentration of halohydonic acid in the aqueous hydrohalic acid solution is preferably lwt% to 40wt%. If the concentration of halogen hydrohydrogen acid is less than 1 wt%, the etching rate is slow and impractical, and if it exceeds 40 wt%, crystals of halogen hydrohydrogen salt may precipitate. More preferably, it is 2 wt% to 35 wt%, and particularly preferably 3 wt% to 15 wt%.
- the use temperature of the etching solution during etching is preferably 20 to 50 ° C. If it is less than 20 ° C, the etching rate is slow and practical, and if it exceeds 50 ° C, the concentration of the etching solution may fluctuate due to evaporation of water, hydrochloric acid, etc., and it may be difficult to control the concentration of the solution.
- the temperature is preferably 25 ° C to 45 ° C, more preferably 30 ° C to 45 ° C.
- TMAH tetramethylammonium hydride oxide
- the concentration of TMAH is preferably: 5 to 5 wt%. If it is less than lwt%, resist development failure may occur, and the formed transparent electrode is easily short-circuited. If the concentration exceeds 5 wt%, the resist pattern may be thinned or peeled off, and the electrode pattern may be thinned or disconnected. Preferably, it is 2 to 4 wt%.
- Ethanolamine-based amine is preferably used as the resist stripping solution.
- examples of ethanolamine-based amines include monoethanolamine, diethanolamine, and triethanolamine, and diethanolamine is preferably used.
- An aqueous solution may be used, but a mixed solution with a polar solvent can also be used. Examples of such polar solvents include DMF, DMSO, NMP and the like.
- the concentration of ethanolamine-based amine in the resist stripping solution is preferably 10 wt% to 60 wt%, particularly preferably 20 wt% to 40 wt%.
- an inorganic alkali such as NaOH or KOH as the stripping solution because the electrode surface may be melted and uneven.
- the carrier mobility of the transparent electrode thus formed is preferably 10 cm 2 / V'SEC or more. More preferably, it is 20 cm 2 / V ′ SEC or more.
- the response speed may become slow and the image quality of the liquid crystal may be degraded. Resistivity is lower rather is accordance, but in the case of TFT driving, the distance from the TFT element to LCD drive electrode end is not a problem if so very short 10- 2 Omega cm base.
- Carrier mobility is measured by the Hall measurement method (Fundia Po method).
- a third metal can be added within a range that does not affect the carrier mobility.
- a metal oxide having a small refractive index can be added for the purpose of improving the transmittance. Typical examples of these are MgO, B O, G
- an oxide having a small specific resistance can be added for the purpose of reducing the specific resistance of the transparent electrode.
- Typical examples of these include rhenium oxide, iridium oxide, and ruthenium oxide. Can be mentioned. However, since these heavy metal oxides may be colored and caution is required in the amount to be added, they should be added within a range that does not affect the transmittance.
- Zinc oxide powder manufactured by Hakusui Tech Co., Ltd.
- tin oxide powder manufactured by Mitsubishi Materials
- Zn / (Zn + Sn) 0 79 (atomic ratio)
- the obtained mixed slurry was taken out, filtered, dried and granulated.
- This granulated product was molded by a cold isostatic press while applying a pressure of 294 MPa (3 t / cm 2 ).
- This molded body was sintered as follows.
- the sputter surface of the obtained sintered body is polished with a cup grindstone, added to a diameter of 100 mm and a thickness of 5 mm, a backing plate is bonded using an indium alloy, and a sputtering target (sintered target) 1) was produced.
- the density of this target was 5.72 g / cm 3 .
- the form in which Sn is contained in the target may be a form in which Sn oxide such as SnO or SnO is dispersed, but ZnSnO, Zn SnO A form in which the zinc oxide is dispersed in the zinc oxide sintered body in the form of a composite oxide between zinc oxide and tin monoxide is preferable. This is because when Sn is dispersed at the atomic level in the zinc oxide sintered body, the discharge is stabilized in sputtering, and the resulting transparent conductive thin film has a low resistance.
- the average diameter of the crystal particles obtained by the mapping image processing of Sn atom of EPMA (X-ray microanalyzer) of sintered compact target 1 was 3.87 m.
- the Balta resistance (specific resistance) of Target 1 was 360 ⁇ cm, and a target capable of stable RF sputtering was obtained.
- Table 1 shows the properties of the sintered compact target.
- the sintered compact target 1 was attached to the sputtering apparatus. Glass substrate (. Thickness lmm or 1 lmm) was moved into the apparatus, the ultimate vacuum: 5 X 10- 4 Pa, the film formation pressure: 0. LPA, substrate temperature: as 200 ° C, transparent substrate A conductive film (thickness lOOnm) was formed.
- the atomic ratio [Zn / (Zn + Sn)], specific resistance, carrier mobility and light transmittance of this transparent conductive film were evaluated.
- the specific resistance and carrier-one (charge) mobility were obtained by Hall measurement.
- the light transmittance was measured for a light beam having a wavelength of 550 nm with a spectrophotometer.
- the atomic ratio (Zn / (Zn + Sn), atomic ratio) is ICP (high frequency inductive coupling bra Zuma) measured by analytical method,
- Light transmittance Light transmittance at a wavelength of 5500 nm.
- Zinc oxide powder with an average particle size of 1 ⁇ m or less and tin oxide powder with an average particle size of 1 ⁇ m or less are used as raw material powder, and the ratio of zinc atoms to tin atoms is adjusted to the ratio shown in Table 1. Otherwise, a sputtering target (sintered body target 2-7) was produced in the same manner as in Production Example 1, and a substrate on which a transparent conductive film was formed was produced.
- the diameter of the sputtering target was 152 mm and the thickness was 5 mm.
- Tables 1 and 2 show the properties of the sputtering target and the evaluation results of the transparent conductive film.
- a resist film was formed by spin coating using a resist solution (manufactured by Fuji Hunt, HPR204).
- the resist film was exposed and developed using a resist mask having a predetermined pattern.
- the developer is 2.8wt% tetramethylammonium hydride mouth oxide (TMAH) in water. The liquid was used.
- this substrate was treated with an aqueous oxalic acid solution as an etching solution, whereby the transparent conductive film was etched and the transparent electrode was patterned.
- the etching conditions were as follows: the concentration of the aqueous oxalic acid solution was 3.5 wt%, the temperature was 30 ° C., and etching was performed by dubbing. The etching rate under these conditions was evaluated.
- the etching rate was evaluated when the use temperature of the oxalic acid aqueous solution was 40 ° C, and when the concentration of the oxalic acid aqueous solution was 5. Owt% and the use temperature was 35 ° C.
- the resist film remaining on the transparent electrode was removed using a DMSO solution (30 wt%) of diethanolamine as a stripping solution.
- the conditions at this time were 40 ° C and 1 minute immersion.
- a transparent electrode substrate was prepared and evaluated in the same manner as in Example 1 except that the substrate with a transparent conductive film prepared in Production Example 2-7 was used. The results are shown in Table 3.
- Example 6 On the transparent conductive film of the substrate with the transparent conductive film prepared in Production Example 1, a resist film was formed by spin coating using a resist solution (manufactured by Fuji Huntne earth, HPR204).
- TMAH tetramethyl ammonium hydroxide
- the transparent conductive film was etched and the transparent electrode was patterned.
- the liquid was used at a temperature of 30 ° C. and etched by dubbing.
- the etching speed was also evaluated.
- the resist film remaining on the transparent electrode was removed using a DMSO solution of diethanolamine (30 wt%) as a stripping solution.
- the conditions at this time were 40 ° C and 1 minute immersion.
- Example 6 Production Example 1 30.000 25.000 85
- Example 7 Production Example 2 2, 500 5.000 4,000 70
- Example 8 Production Example 3 1.200 2.100 50
- Example 9 Production Example 4 450 1,050 900 45
- Example 10 Production Example 5 50 100 90 40 Comparative Example 3 Production Example 6 200.000 400.000 350, 000 140 Comparative Example 4 Production Example 7 ⁇ ⁇ ⁇ ⁇ Taper angle is mixed solution Ratio (HN0 3 : HC1: 3 ⁇ 40 o) Indicates the angle when o is 25:13:62 and the operating temperature is 30.
- a resist film was formed by spin coating using a resist solution (manufactured by Fuji Huntne earth, HPR204).
- TMAH tetramethyl ammonium hydroxide
- the substrate was treated with an aqueous solution of 35% by weight of hydrogen chloride (HC1) as an etchant to etch the transparent conductive film and pattern the transparent electrode.
- HC1 hydrogen chloride
- the temperature at this time was 30 ° C., and etching was performed by datebing.
- the etching rate was also evaluated when the use temperature of the hydrochloric acid aqueous solution was 40 ° C, and when the concentration of the iodic acid aqueous solution was 5 wt% and the use temperature was 35 ° C.
- the resist film remaining on the transparent electrode was removed using a DMSO solution of diethanolamine (30 wt%) as a stripping solution.
- the conditions at this time were 40 ° C and 1 minute immersion.
- a connection test by the method was conducted to evaluate the connection stability.
- the TCP connection board was stored in an environment of 60 ° C and 90% RH, and the change in connection resistance with time was observed. The results are shown in Tables 6-8.
- connection resistance was evaluated for the substrate after the above-mentioned treatment for reference for the substrate with a transparent electrode.
- a laminated glass substrate with an ITO thin film formed on the A1 film was also produced.
- the transparent conductive film and A1 film are each in the form of a fine line with a line width of 50 ⁇ m, and the A1 fine line and the transparent conductive fine line are orthogonal to each other. (The intersection of both thin wires is in a laminated state).
- the contact resistance at the laminated interface was measured by the Keno Levin probe method. The results are shown in Table 10.
- the transparent electrode of the present invention is inexpensive because it does not use indium. Further, the electrode end portion having good etching characteristics can be formed in a tapered shape. Therefore, it is suitable as a transparent electrode used in thin displays such as liquid crystal display devices, organic electroluminescence display devices, and plasma displays.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Manufacturing Of Electric Cables (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Disclosed is an indium-free transparent electrode which is excellent in alkali resistance, wet heat stability and etching properties. Specifically disclosed is a transparent electrode mainly containing zinc oxide and tin oxide wherein the taper angle at the edge portion of the electrode is 30-89˚. The ratio of zinc atoms to the total of zinc atoms and tin atoms in the transparent electrode (Zn/(Zn + Sn) atomic ratio) is preferably within the range of 0.5-0.9.
Description
明 細 書 Specification
透明電極及びその製造方法 Transparent electrode and manufacturing method thereof
技術分野 Technical field
[0001] 本発明は、薄型ディスプレイ等に使用される透明電極に関する。さらに詳しくは、酸 化亜鉛及び酸化スズを主成分とする透明電極であって、電極端部にテーパーが施さ れた電極、及びその電極の製造方法に関する。 The present invention relates to a transparent electrode used for a thin display or the like. More specifically, the present invention relates to a transparent electrode mainly composed of zinc oxide and tin oxide, the electrode having a tapered end, and a method for manufacturing the electrode.
背景技術 Background art
[0002] 液晶表示装置は、低消費電力、フルカラー化が容易等の特徴を有することから薄 型ディスプレイの中で有望視され、近年表示画面の大型化に関する開発が活発であ る。中でも、各画素毎に α— Si型薄膜トランジスタ(TFT)又は p— Si型 TFTをスイツ チング素子としてマトリックス状に配列し、駆動するアクティブマトリックス方式液晶平 面ディスプレイは、 800 X 600画素以上の高精細化を行っても、コントラスト比が劣化 しないことから、高性能カラー表示用平面ディスプレイとして注目されている。 [0002] Liquid crystal display devices are considered promising among thin displays because they have features such as low power consumption and easy full colorization, and in recent years, development relating to enlargement of display screens has been active. Among them, the active matrix liquid crystal flat panel display that drives α-Si thin film transistors (TFTs) or p-Si TFTs as switching elements in a matrix for each pixel, and has a high definition of 800 x 600 pixels or more. Since the contrast ratio does not deteriorate even when the display is made, it is attracting attention as a flat display for high-performance color display.
[0003] このようなアクティブマトリックス方式液晶平面ディスプレイでは、画素電極として、酸 化インジウム—酸化スズ (ITO)等の透明電極を用レ、、ゲート電極、ソース'ドレイン電 極としては、 A1系合金薄膜を用いることが多レ、。これは、 IT〇のシート抵抗が低ぐ透 過率が高いこと、また、 A1は、容易にパターユングできる上に低抵抗で密着性が高い ためである。 In such an active matrix type liquid crystal flat display, a transparent electrode such as indium oxide-tin oxide (ITO) is used as a pixel electrode, and an A1-based alloy is used as a gate electrode and a source / drain electrode. Many use thin films. This is because the sheet resistance of ITO is low and the permeability is high, and A1 is easy to pattern and has low resistance and high adhesion.
[0004] ここで、 TFT基板の構成例について説明する。図 4は液晶平面ディスプレイの製造 工程において、画素電極のパターン形成が終了した段階のひ一 SiTFT近傍の断面 を示したものである。 Here, a configuration example of the TFT substrate will be described. Figure 4 shows a cross section near the Si TFT at the stage where pixel electrode pattern formation was completed in the liquid crystal flat panel display manufacturing process.
図 4では、透光性ガラス基板 21上にゲート電極パターン 22を形成し、次にプラズマ CVD法を用いて、 SiNゲート絶縁膜 23、 a _ Si : H (i)膜 24、チャンネル保護膜 25 及び α—Si : H (n)膜 26を連続的に形成し、所望の形状パターン化する。さらに、 A1 を主体とする金属膜を真空蒸着法或いはスパッタ法により堆積し、フォトリソグラフィ 技術によりソース電極パターン 27及びドレイン電極パターン 28を形成し、 a - SiTF T素子部分が完成する。尚、本例では保護膜 30を形成してある。
[0005] この上に、 ITO膜をスパッタリング法にて堆積し、フォトリソグラフィ技術によりソース 電極 27と電気的に接続した画素電極パターン 29とする。 ΙΤΟ膜を A1膜の後に堆積 する理由は、 α— Si : Η膜とソース及びドレイン電極との電気的なコンタクト特性を劣 化させないためである。 In FIG. 4, a gate electrode pattern 22 is formed on a translucent glass substrate 21, and then a plasma CVD method is used to form a SiN gate insulating film 23, an a_Si: H (i) film 24, and a channel protective film 25. And α 2 —Si: H (n) film 26 are continuously formed to form a desired shape pattern. Further, a metal film mainly composed of A1 is deposited by a vacuum evaporation method or a sputtering method, and a source electrode pattern 27 and a drain electrode pattern 28 are formed by a photolithography technique, and an a-Si TFT element portion is completed. In this example, a protective film 30 is formed. On this, an ITO film is deposited by a sputtering method to form a pixel electrode pattern 29 electrically connected to the source electrode 27 by a photolithography technique. The reason for depositing the film after the A1 film is to prevent deterioration of the electrical contact characteristics between the α-Si: film and the source and drain electrodes.
A1は安価で比抵抗が低ぐゲート及びソース'ドレイン電極配線の抵抗増大による 液晶ディスプレイの表示性能の低下を防ぐ意味で必須の材料である。 A1 is an indispensable material in the sense that it is inexpensive and has a low specific resistance to prevent deterioration of the display performance of the liquid crystal display due to increased resistance of the gate and source / drain electrode wiring.
[0006] 上記の製造工程において、 A1を主体とするソース'ドレイン電極パターンを形成した 後、 ITO画素電極パターンを HC1— HNO -H〇系エッチング液で加工すると、カロ [0006] In the above manufacturing process, after forming a source / drain electrode pattern mainly composed of A1, if the ITO pixel electrode pattern is processed with an HC1-HNO-H0 etching solution,
3 2 3 2
ェ終了時点で A1パターンが溶出するという問題が頻繁に発生した。 The problem that the A1 pattern elutes frequently occurred at the end of the process.
これは、本来、 A1も ITOエッチング液である HCl— HNO _H O系エッチング液に This is because A1 is also an HCl-HNO_H 2 O-based etchant, which is an ITO etchant.
3 2 3 2
溶解する性質を持っていることに起因する。エッチング液中の HN〇は Al表面に薄 It originates in having the property to melt | dissolve. HN ○ in the etchant is thin on the Al surface.
3 Three
い A1酸化膜を形成し、 A1の溶出を防止する意味で添加されている力 IT〇膜のエツ チング時間が長かったり、 A1堆積中に混入した A1膜中の不純物、異物等の欠陥部 分が存在すると、局部電池反応により、上記の ΗΝΟによる A1の酸化効果が十分に A1 Oxide film is added to prevent the dissolution of A1. IT ○ The etching time of the film is long, or defects such as impurities and foreign matter in the A1 film mixed during A1 deposition. In the presence of A, the effect of oxidation of A1 by
3 Three
作用しないものと考えられる。また、 A1と ΙΤΟが電気的に接合した状態でレジストの現 像液であるテトラメチルアンモニゥムハイド口オキサイド(ΤΜΑΗ)の 2· 38wt%水溶 液中に浸漬した場合、電池反応により A1が溶出するという問題もある。 It is thought that it does not work. In addition, when A1 and ΙΤΟ are electrically joined together and immersed in a 2.38wt% aqueous solution of tetramethylammonium hydride oxide (ΤΜΑΗ), which is the resist image solution, A1 is eluted by the battery reaction. There is also the problem of doing.
[0007] このような A1の溶出を防止するために、 ITO膜を非晶質にすることで、 HC1— HNO [0007] In order to prevent such elution of A1, by making the ITO film amorphous, HC1-HNO
-H O系のエッチング液に対する ITO/A1エッチングレート比を大きくすることが開 It is possible to increase the ITO / A1 etching rate ratio for -H 2 O-based etching solutions.
3 2 3 2
示されている (例えば、特許文献 1参照。)。 (For example, see Patent Document 1).
し力 ながら、 ITO膜を非晶質にしても HC1— HNO — H〇系のエッチング液を用 However, even if the ITO film is made amorphous, an HC1-HNO-H〇-based etchant is used.
3 2 3 2
いるため、 A1の溶出は完全には防止されておらず、高精細な液晶ディスプレイを実 現することはできなかった。 Therefore, the elution of A1 was not completely prevented, and a high-definition liquid crystal display could not be realized.
[0008] この問題に関し、 A1ゲート、ソース'ドレイン電極パターン上における、酸化インジゥ ム—酸化亜鉛からなる透明電極、画素電極のパターン化を、蓚酸系のエッチング液 にて行なうことにより、パターン化を容易にすることが提案されている(例えば、特許文 献 2参照。)。 [0008] With respect to this problem, patterning of the transparent electrode and pixel electrode made of indium oxide-zinc oxide on the A1 gate and source / drain electrode patterns is performed by using an oxalic acid-based etching solution. It has been proposed to make it easier (see eg patent document 2).
[0009] ところで、透明電極として一般に使用されている酸化インジウム一酸化スズ (ITO)
や酸化インジウム一酸化亜鉛 (IZO)は、どちらも酸化インジウムを主成分としている。 近年、インジウムは薄型ディスプレイ用途等に需要が急増しており、その価格は高騰 している。このため、透明電極を作製するために用いるスパッタリングターゲットの価 格も上昇するという問題がある。 By the way, indium tin oxide (ITO), which is generally used as a transparent electrode Both indium oxide and zinc monoxide (IZO) are based on indium oxide. In recent years, the demand for indium has been increasing rapidly for thin display applications, and its price has soared. For this reason, there exists a problem that the price of the sputtering target used in order to produce a transparent electrode also rises.
[0010] このため、酸化インジウムを用いない酸化亜鉛系の透明導電膜や、酸化スズ系の 透明導電膜が提案されている (例えば、非特許文献 1、特許文献 3, 4参照。)。 し力、しながら、酸化亜鉛膜では、その性質上、酸及びアルカリ溶液に弱いため、耐 久性がなく実用的ではないことが知られている。また、酸化亜鉛の成膜においては、 基板近傍の酸化亜鉛は結晶性が低くなり、透明導電膜表面は結晶性が高くなる性 質を有するため、エッチング工程において、基板近傍の膜が表面よりエッチングされ 易ぐエッチングされた電極が逆台形(アンダーカット)になるという問題があった。 For this reason, zinc oxide-based transparent conductive films that do not use indium oxide and tin oxide-based transparent conductive films have been proposed (see, for example, Non-Patent Document 1, Patent Documents 3 and 4). However, it is known that zinc oxide films are not practical because they are weak in acid and alkali solutions due to their properties. In addition, in the formation of zinc oxide, zinc oxide near the substrate has low crystallinity and the surface of the transparent conductive film has high crystallinity. Therefore, in the etching process, the film near the substrate is etched from the surface. There was a problem that the easily etched electrode became an inverted trapezoid (undercut).
[0011] 一方、酸化スズは、化学的な安定性が強すぎるために、強酸である王水(硝酸'塩 酸の混合酸)でもエッチングしずらいとレ、う問題があった。 On the other hand, tin oxide has a problem of being difficult to etch even with aqua regia (a mixed acid of nitric acid and hydrochloric acid), which is a strong acid, because chemical stability is too strong.
特許文献 1 :特開昭 63— 184726号公報 Patent Document 1: JP-A 63-184726
特許文献 2:特開平 11 264995号公報 Patent Document 2: Japanese Patent Laid-Open No. 11 264995
特許文献 3:特開平 6— 293956号公報 Patent Document 3: Japanese Patent Laid-Open No. 6-293956
特許文献 4:特開平 9 35535号公報 Patent Document 4: JP-A-9 35535
非特許文献 1 :日本学術振興会 透明酸化物 光 ·電子材料第 166委員会編:透明 導電膜の技術、オーム社(1999) Non-Patent Document 1: Japan Society for the Promotion of Science Transparent Oxide Optical / Electronic Materials 166th Edition: Transparent Conductive Film Technology, Ohmsha (1999)
[0012] 本発明は上述の問題に鑑みなされたものであり、インジウムを使用しない透明電極 であり、耐アルカリ性や湿熱安定性に優れ、し力もエッチング性に優れた透明電極を 提供することを目的とする。 [0012] The present invention has been made in view of the above-mentioned problems, and is a transparent electrode that does not use indium, and has an object to provide a transparent electrode that is excellent in alkali resistance and wet heat stability and has excellent etching power. And
また、電極端部が逆台形状になりにくい(容易にテーパー状に形成できる)透明電 極の製造方法を提供することを目的とする。 It is another object of the present invention to provide a method for producing a transparent electrode in which the electrode end is less likely to have an inverted trapezoidal shape (can be easily tapered).
発明の開示 Disclosure of the invention
[0013] 本発明者らは、上記課題を解決するために鋭意研究したところ、酸化亜鉛'酸化ス ズを主成分とするスパッタリングターゲットを使用して透明電極を形成すること、また、 このスパッタリングターゲットを使用して透明電極を形成する際、所定のエッチング液
を使用することによって、電極端部を容易にテーパー状に形成できることを見出し、 本発明を完成させた。 [0013] The inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. As a result, a transparent electrode is formed using a sputtering target mainly composed of zinc oxide's oxide, and the sputtering target is also used. When forming a transparent electrode using a predetermined etching solution As a result, it was found that the end of the electrode can be easily formed into a tapered shape, and the present invention has been completed.
本発明によれば、以下の透明電極及びその製造方法等が提供できる。 According to the present invention, the following transparent electrode and the manufacturing method thereof can be provided.
1.酸化亜鉛及び酸化スズを主成分とし、電極端部のテーパー角が 30〜89度である 透明電極。 1. A transparent electrode composed mainly of zinc oxide and tin oxide and having a taper angle of 30 to 89 degrees at the end of the electrode.
2.前記透明電極中の亜鉛原子とスズ原子の総量に対する、亜鉛原子の割合 (ZnZ (Zn + Sn)、原子比)が 0. 5〜0. 9である 1に記載の透明電極。 2. The transparent electrode according to 1, wherein the ratio of zinc atoms to the total amount of zinc atoms and tin atoms in the transparent electrode (ZnZ (Zn + Sn), atomic ratio) is 0.5 to 0.9.
3.酸化亜鉛及び酸化スズを主成分する透明導電膜を、電極端部のテーパー角が 3 0〜89度となるようにエッチングする透明電極の製造方法。 3. A method for producing a transparent electrode, wherein a transparent conductive film containing zinc oxide and tin oxide as a main component is etched so that the taper angle of the electrode end is 30 to 89 degrees.
4.前記透明電極中の亜鉛原子とスズ原子の総量に対する、亜鉛原子の割合 (ZnZ (Zn + Sn)、原子比)が 0. 5〜0. 9である 3に記載の透明電極の製造方法。 4. The method for producing a transparent electrode according to 3, wherein the ratio (ZnZ (Zn + Sn), atomic ratio) of zinc atoms to the total amount of zinc atoms and tin atoms in the transparent electrode is 0.5 to 0.9. .
5.前記ヱツチングに、濃度力 wt%〜40wt%であるハロゲン化水素酸水溶液を用 いる 3又は 4に記載の透明電極の製造方法。 5. The method for producing a transparent electrode according to 3 or 4, wherein a hydrohalic acid aqueous solution having a concentration power of wt% to 40 wt% is used for the plating.
6.亜鉛原子とスズ原子の総量に対する、亜鉛原子の割合 (Zn/ (Zn + Sn)、原子 比)が 0. 5〜0. 9である酸化亜鉛及び酸化スズを主成分とする透明導電膜を形成す る第一工程と、前記透明導電膜上にレジスト膜を形成する第二工程と、前記レジスト 膜を、レジスト現像液としてテトラメチルアンモニゥムハイド口オキサイドの l〜5wt% 水溶液を使用し、この水溶液の温度を 20〜50°Cの範囲でパターユングする第三ェ 程と、前記透明導電膜を、ハロゲン化水素酸の濃度が lwt%〜40wt%である水溶 液を用いてエッチングし、テーパー角を 30〜89度である透明電極を形成する第四 工程と、 6. Transparent conductive film composed mainly of zinc oxide and tin oxide, with the ratio of zinc atoms to the total amount of zinc atoms and tin atoms (Zn / (Zn + Sn), atomic ratio) being 0.5 to 0.9 A first step of forming a resist film, a second step of forming a resist film on the transparent conductive film, and using the resist film as a resist developer, a 1 to 5 wt% aqueous solution of tetramethylammonium hydride oxide. Then, the third step of patterning the temperature of the aqueous solution in a range of 20 to 50 ° C. and the transparent conductive film are etched using an aqueous solution having a hydrohalic acid concentration of 1 wt% to 40 wt%. And a fourth step of forming a transparent electrode having a taper angle of 30 to 89 degrees,
前記透明電極上に残存するレジスト膜を、エタノールアミンを含むレジスト剥離液を 使用して剥離する第五工程と、を含む 3〜5のいずれかに記載の透明電極の製造方 法。 And a fifth step of stripping the resist film remaining on the transparent electrode using a resist stripping solution containing ethanolamine. The method for producing a transparent electrode according to any one of claims 3 to 5.
7.亜鉛原子とスズ原子の総量に対する、亜鉛原子の割合 (Zn/ (Zn + Sn)、原子 比)が 0. 5〜0. 85である酸化亜鉛及び酸化スズを主成分とする透明導電膜を形成 する工程と、前記透明導電膜を、エッチング液として蓚酸濃度が lwt%〜: 10wt%で ある水溶液を用い、エッチング液の温度を 20〜50°Cの範囲においてエッチングし、
パターニングする工程と、を有する 3に記載の透明電極の製造方法。 7. Transparent conductive film mainly composed of zinc oxide and tin oxide with a zinc atom ratio (Zn / (Zn + Sn), atomic ratio) to the total amount of zinc and tin atoms of 0.5 to 0.85 And etching the transparent conductive film using an aqueous solution having an oxalic acid concentration of 1 wt% to 10 wt% as an etchant and a temperature of the etchant in the range of 20 to 50 ° C. 4. The method for producing a transparent electrode according to 3, comprising a step of patterning.
8.酸化亜鉛及び酸化スズを主成分とする透明導電膜を形成する第一工程と、前記 透明導電膜上にレジスト膜を形成する第二工程と、前記レジスト膜をパターニングす る第三工程と、前記透明導電膜を硝酸、塩酸及び水の混合溶液を用いエッチングし 、テーパー角が 30〜89度である透明電極を形成する第四工程と、前記透明電極上 に残存するレジスト膜を剥離する第五工程と、を含む 3又は 4に記載の透明電極の製 造方法。 8. A first step of forming a transparent conductive film mainly composed of zinc oxide and tin oxide, a second step of forming a resist film on the transparent conductive film, and a third step of patterning the resist film, Etching the transparent conductive film with a mixed solution of nitric acid, hydrochloric acid and water to remove the resist film remaining on the transparent electrode, and a fourth step of forming a transparent electrode having a taper angle of 30 to 89 degrees The method for producing a transparent electrode according to 3 or 4, comprising a fifth step.
9.前記混合溶液の組成が、硝酸一塩酸一水の三成分系において、硝酸:塩酸:水 の比率で、(A) 2 : 2 : 96、(B) 2 : 2 : 96、(C) 78: 2: 20及び(D) 78: 20: 2の組成点 で囲まれる四辺形の領域内にある 8に記載の透明電極の製造方法。 9. The composition of the above mixed solution is a ternary system of nitric acid-monohydrochloric acid-water, in the ratio of nitric acid: hydrochloric acid: water (A) 2: 2: 96, (B) 2: 2: 96, (C) The method for producing a transparent electrode according to 8, wherein the transparent electrode is within a quadrilateral region surrounded by a composition point of 78: 2: 20 and (D) 78: 20: 2.
10.前記第四工程における硝酸:塩酸:水の混合溶液の温度が 20〜50°Cである 8 又は 9に記載の透明電極の製造方法。 10. The method for producing a transparent electrode according to 8 or 9, wherein the temperature of the mixed solution of nitric acid: hydrochloric acid: water in the fourth step is 20 to 50 ° C.
11.前記第三工程で使用するレジスト現像液がテトラメチルアンモニゥムハイドロォキ サイドの 1〜 5wt%水溶液であり、前記第五工程で使用するレジスト剥離液がエタノ ールァミンを含む 8〜: 10のいずれかに記載の透明電極の製造方法。 11. The resist developer used in the third step is a 1 to 5 wt% aqueous solution of tetramethyl ammonium hydroxide, and the resist stripper used in the fifth step contains ethanolamine. The manufacturing method of the transparent electrode in any one of.
12.酸化亜鉛及び酸化スズを主成分とする透明導電膜を、蓚酸水溶液を用いてエツ チングする方法。 12. A method of etching a transparent conductive film mainly composed of zinc oxide and tin oxide using an aqueous oxalic acid solution.
13.前記蓚酸水溶液における蓚酸の濃度が 1 wt%〜 10wt%である 12に記載のェ ツチング方法。 13. The etching method according to 12, wherein the concentration of oxalic acid in the oxalic acid aqueous solution is 1 wt% to 10 wt%.
14.酸化亜鉛及び酸化スズを主成分とする透明導電膜を、硝酸、塩酸及び水の混 合溶液を用いてエッチングする方法。 14. A method of etching a transparent conductive film mainly composed of zinc oxide and tin oxide using a mixed solution of nitric acid, hydrochloric acid and water.
15.前記硝酸、塩酸及び水の混合溶液の組成が、硝酸一塩酸一水の三成分系に おいて、硝酸:塩酸:水の比率で、(A) 2 : 2 : 96、 (B) 2 : 2 : 96、 (C) 78: 2: 20及び ( D) 78: 20 : 2の組成点で囲まれる四辺形の領域内にある 14に記載のエッチング方 法。 15. The composition of the mixed solution of nitric acid, hydrochloric acid and water is the ratio of nitric acid: hydrochloric acid: water in a ternary system of nitric acid-hydrochloric acid-water (A) 2: 2: 96, (B) 2 The etching method according to 14, which is in a quadrilateral region surrounded by the composition points of: 2: 96, (C) 78: 2: 20 and (D) 78: 20: 2.
本発明の透明電極は、インジウムを使用しないため、インジウムの価格変動に関係 なく安価である。酸化亜鉛及び酸化スズを主成分に使用することによって、電極の耐 アルカリ性、耐湿熱性を優れたものにできる。
また、所定のエッチング液を使用することにより、電極端部が逆台形状となることを 防止でき、一定のテーパー角に制御した電極を得ることができる。 Since the transparent electrode of the present invention does not use indium, it is inexpensive regardless of the price fluctuation of indium. By using zinc oxide and tin oxide as the main components, it is possible to make the electrode excellent in alkali resistance and moist heat resistance. In addition, by using a predetermined etching solution, it is possible to prevent the end of the electrode from becoming an inverted trapezoid and to obtain an electrode controlled to have a constant taper angle.
図面の簡単な説明 Brief Description of Drawings
[0016] [図 1]透明電極の断面図である。 FIG. 1 is a cross-sectional view of a transparent electrode.
[図 2]本発明の透明電極の製造工程を示す図である。 FIG. 2 is a diagram showing a production process of the transparent electrode of the present invention.
[図 3]本発明における好適な硝酸:塩酸:水の混合液の組成領域を示す図である。 FIG. 3 is a diagram showing a composition region of a suitable mixed solution of nitric acid: hydrochloric acid: water in the present invention.
[図 4]TFT基板の一例を示す図である。 FIG. 4 is a diagram showing an example of a TFT substrate.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の透明電極を具体的に説明する。 Hereinafter, the transparent electrode of the present invention will be specifically described.
図 1は、本発明の透明電極の断面図である。 FIG. 1 is a cross-sectional view of the transparent electrode of the present invention.
本発明の透明電極 11は基板 10上に形成され、酸化亜鉛及び酸化スズを主成分と し、電極端部のテーパー角(ひ )が 30〜89度である。 The transparent electrode 11 of the present invention is formed on the substrate 10, mainly composed of zinc oxide and tin oxide, and has a taper angle (30) at the electrode end of 30 to 89 degrees.
「酸化亜鉛及び酸化スズを主成分とする」とは、透明電極中に占める亜鉛及びスズ の酸化物の占める割合 (原子比)が 51%以上であることを意味する。尚、本発明にお いて、上記酸化物の占める割合は、好ましくは、 75%以上、特に好ましくは 90%以 上である。 “Mainly composed of zinc oxide and tin oxide” means that the proportion (atomic ratio) of zinc and tin oxide in the transparent electrode is 51% or more. In the present invention, the proportion of the oxide is preferably 75% or more, particularly preferably 90% or more.
[0018] 亜鉛及びスズの酸化物の形態としては、 ZnO等の酸化亜鉛の形態、 SnO 、 SnO [0018] Zinc and tin oxide forms include zinc oxide such as ZnO, SnO, SnO
2 等の酸化スズの形態、 ZnSnO 、 Zn SnO等の酸化亜鉛一酸化スズ間の複合酸化 2 Forms of tin oxide such as ZnSnO, Zn SnO, etc. Complex oxidation between zinc oxide and tin monoxide
3 2 4 3 2 4
物の形態があるが、非晶質の形態が好ましい。 Although there are physical forms, amorphous forms are preferred.
この非晶質透明導電膜は、酸化亜鉛系の透明導電膜及び酸化スズ系の透明導電 膜にはない、優れたエッチング特性を有する。即ち、酸化亜鉛系の透明導電膜とは 異なり、エッチング後の電極端部が逆台形状になりにくぐまた、酸化スズ系のように エッチング特性が悪いとレ、うことはなレ、。 This amorphous transparent conductive film has excellent etching characteristics not found in zinc oxide-based transparent conductive films and tin oxide-based transparent conductive films. In other words, unlike zinc oxide-based transparent conductive films, the end of the electrode after etching does not easily have an inverted trapezoidal shape, and when the etching characteristics are poor as in the case of tin oxide, it is not possible.
[0019] 本発明の透明電極は、電極端部のテーパー角が 30〜89度である。テーパー角が 30度より小さい場合、電極エッジ部分の距離が長くなり、液晶や有機 ELを駆動させ た場合、画素周辺部と内部とでコントラストが異なることがある。テーパー角が 89度を 超えると、エッジ部分の電極割れや剥離が起こり、また、液晶の場合には、配向膜の 不良を起こしたり、有機 ELの場合、対向電極の断線を引き起こす場合がある。
[0020] この透明導電膜(透明電極)の膜厚は、 5〜300nm力 S好ましく、 20〜: 150nm力 Sより 好ましぐ 30〜80nmが特に好ましい。膜厚が 5nm未満では、抵抗値が高くなり過ぎ るおそれがあり、 300nmを超えると、エッチング後の電極端部のテーパー角が 30〜 89度に入らないおそれがある。 [0019] The transparent electrode of the present invention has a taper angle of 30 to 89 degrees at the electrode end. When the taper angle is smaller than 30 degrees, the distance between the electrode edges becomes longer, and when the liquid crystal or organic EL is driven, the contrast between the pixel periphery and the inside may be different. If the taper angle exceeds 89 degrees, electrode cracking or peeling at the edge may occur, and in the case of liquid crystals, the alignment film may be defective, or in the case of organic EL, the counter electrode may be disconnected. [0020] The film thickness of the transparent conductive film (transparent electrode) is preferably 5 to 300 nm force S, more preferably 20 to 150 nm force S, and particularly preferably 30 to 80 nm. If the film thickness is less than 5 nm, the resistance value may be too high, and if it exceeds 300 nm, the taper angle of the electrode end after etching may not be within 30 to 89 degrees.
[0021] 本発明では、上述した酸化亜鉛及び酸化スズを主成分とする透明導電膜を使用し ているので、透明電極のテーパー角の制御が可能である。 In the present invention, since the transparent conductive film mainly composed of zinc oxide and tin oxide described above is used, the taper angle of the transparent electrode can be controlled.
テーパー角の制御は、透明導電膜をエッチングカ卩ェする際に使用するエッチング 液の配合、濃度、温度等を調整することによりなされる。具体的にはエッチング液とし て、蓚酸水溶液、硝酸一塩酸一水の混合溶液、ハロゲン化水素酸水溶液が使用で きる。 The taper angle is controlled by adjusting the composition, concentration, temperature, etc. of the etching solution used when etching the transparent conductive film. Specifically, an oxalic acid aqueous solution, a mixed solution of nitric acid / monochloric acid / water, or a hydrohalic acid aqueous solution can be used as an etching solution.
[0022] 蓚酸水溶液を使用する場合、テーパー角は蓚酸水溶液の濃度で制御できる。具体 的に、テーパー角を小さくするには、蓚酸水溶液の濃度を低めに調整し、逆にテー パー角を大きくするには蓚酸水溶液の濃度を高めに調整すればよい。 [0022] When an aqueous oxalic acid solution is used, the taper angle can be controlled by the concentration of the aqueous oxalic acid solution. Specifically, in order to reduce the taper angle, the concentration of the oxalic acid aqueous solution is adjusted to be low. Conversely, to increase the taper angle, the concentration of the oxalic acid aqueous solution is adjusted to be high.
尚、この場合、透明電極中の亜鉛原子とスズ原子の総量に対する、亜鉛原子の割 合(Zn/ (Zn + Sn)、原子比)は、 0. 5〜0. 85であることが好ましい。 Zn/ (Zn + S n)が 0. 85より大きいと制御が困難となり、電極端部のテーパー角が 90度以上となつ たり、サイドエッチングが大きくなりすぎて、電極の細りや断線のおそれがある。また、 透明電極と外部回路を接続する異方導電フィルム (ACF)との接触抵抗が大きくなつ たり、耐久試験(高温、高湿)で ACFとの接触抵抗が大きくなるおそれがある。 In this case, the ratio of zinc atoms (Zn / (Zn + Sn), atomic ratio) to the total amount of zinc atoms and tin atoms in the transparent electrode is preferably 0.5 to 0.85. If Zn / (Zn + Sn) is greater than 0.85, control becomes difficult, the taper angle of the electrode end becomes 90 degrees or more, and side etching becomes too large, which may result in electrode thinning or disconnection. is there. In addition, the contact resistance between the transparent electrode and the anisotropic conductive film (ACF) connecting the external circuit may increase, and the contact resistance with the ACF may increase during the durability test (high temperature and high humidity).
一方、 Zn/ (Zn + Sn)力 SO. 5未満の場合では、エッチング速度が低下し、エツチン グできない場合がある。好ましくは、 Zn/ (Zn+ Sn)は 0. 5〜0· 8であり、より好まし くは、 0. 7〜0. 8である。 On the other hand, if the Zn / (Zn + Sn) force is less than SO.5, the etching rate may decrease and etching may not be possible. Preferably, Zn / (Zn + Sn) is 0.5 to 0.8, and more preferably 0.7 to 0.8.
[0023] エッチング液として硝酸一塩酸一水の混合溶液を使用する場合、テーパー角は混 合溶液の組成比を調整することで制御できる。具体的に、テーパー角を小さくするに は、塩酸の比率を多くし、逆にテーパー角を大きくするには、塩酸の比率を少なくす れは'よレ、。 [0023] When using a mixed solution of nitric acid / hydrochloric acid / water as an etching solution, the taper angle can be controlled by adjusting the composition ratio of the mixed solution. Specifically, to reduce the taper angle, increase the ratio of hydrochloric acid. Conversely, to increase the taper angle, decrease the ratio of hydrochloric acid.
尚、硝酸一塩酸一水の混合溶液でエッチングする場合、透明電極中の亜鉛原子と スズ原子の総量に対する、亜鉛原子の割合 (ZnZ (Zn + Sn)、原子比)は、 0. 5〜0
. 9であることが好ましい。この理由は上述した蓚酸の場合と同じである。より好ましく は、 Zn/ (Zn + Sn)は 0. 55〜0. 85であり、さらに好ましくは、 0. 57〜0. 8である。 特に好ましくは、 0. 60〜0. 77、さらに好ましくは、 0. 64〜0. 74、最も好ましくは、 0 . 64〜0. 69である。 When etching with a mixed solution of nitric acid / hydrochloric acid / water, the ratio of zinc atoms to the total amount of zinc atoms and tin atoms in the transparent electrode (ZnZ (Zn + Sn), atomic ratio) is 0.5-0. 9 is preferred. The reason for this is the same as in the case of oxalic acid described above. More preferably, Zn / (Zn + Sn) is 0.55 to 0.85, and more preferably 0.57 to 0.8. Particularly preferably, it is 0.60 to 0.77, more preferably 0.64 to 0.74, and most preferably 0.64 to 0.69.
[0024] エッチング液としてハロゲン化水素酸水溶液を使用する場合、テーパー角はハロゲ ン化水素酸の濃度又はハロゲン化水素酸水溶液の温度により制御できる。具体的に 、テーパー角を小さくするには、ハロゲン化水素酸の濃度を下げるか、水溶液の温度 を下げればよぐ逆にテーパー角を大きくするには、ハロゲン化水素酸の濃度を上げ るか、水溶液の温度を上げればよい。 [0024] When a hydrohalic acid aqueous solution is used as the etching solution, the taper angle can be controlled by the concentration of the hydrohalic acid or the temperature of the hydrohalic acid aqueous solution. Specifically, to decrease the taper angle, lower the concentration of hydrohalic acid, or lower the temperature of the aqueous solution. Conversely, to increase the taper angle, increase the concentration of hydrohalic acid. What is necessary is just to raise the temperature of aqueous solution.
尚、ハロゲン化水素酸水溶液でエッチングする場合、透明電極中の亜鉛原子とス ズ原子の総量に対する、亜鉛原子の割合 (ZnZ (Zn + Sn)、原子比)は、 0. 5〜0. 9であることが好ましい。この理由は上述した蓚酸の場合と同じである。さらに好ましく ίま、∑11/ (211 + 311)ま0. 52〜0. 7であり、より好ましく ίま、 0. 55〜0. 67、特に好ま しくは、 0. 55〜0. 63である。 When etching with a hydrohalic acid aqueous solution, the ratio of zinc atoms to the total amount of zinc atoms and tin atoms in the transparent electrode (ZnZ (Zn + Sn), atomic ratio) is 0.5 to 0.9. It is preferable that The reason for this is the same as in the case of oxalic acid described above. More preferably ί, ∑11 / (211 + 311) to 0.52 to 0.7, more preferably ί, 0.55 to 0.67, particularly preferably 0.55 to 0.63. is there.
[0025] 尚、本発明において酸化亜鉛'酸化スズを主成分とする透明導電膜は非晶質膜で あることが好ましい。非晶質膜でない場合、テーパー角の制御が難しく 30〜89度に 収めることができなくなることがある。 In the present invention, the transparent conductive film mainly composed of zinc oxide and tin oxide is preferably an amorphous film. If it is not an amorphous film, it is difficult to control the taper angle, and it may not be possible to keep it within 30 to 89 degrees.
また、原子の割合 (Zn/ (Zn + Sn)、原子比)は、 ICP (高周波誘導結合プラズマ) 分析法により測定した値である。尚、透明導電膜 (透明電極)の形成に使用するスパ ッタリングターゲットの原料における原子の割合と、実際に得られる透明導電膜の原 子の割合は、ほぼ等しい。従って、透明導電膜の原子の割合 [Zn/ (Zn+ Sn) ]はス パッタリングターゲットの原料における原子の割合を調整することで制御できる。 The atomic ratio (Zn / (Zn + Sn), atomic ratio) is a value measured by ICP (high frequency inductively coupled plasma) analysis. Note that the ratio of atoms in the raw material of the sputtering target used for forming the transparent conductive film (transparent electrode) is substantially equal to the ratio of the atoms in the actually obtained transparent conductive film. Therefore, the atomic ratio [Zn / (Zn + Sn)] of the transparent conductive film can be controlled by adjusting the atomic ratio in the raw material of the sputtering target.
[0026] 本発明の透明電極は、酸化亜鉛と酸化スズを主成分とする非晶質導電性酸化物 力 なる透明導電膜を、エッチング、パターンィ匕することにより製造できる。以下、図 面を参照しながら説明する。 [0026] The transparent electrode of the present invention can be produced by etching and patterning a transparent conductive film having an amorphous conductive oxide composed mainly of zinc oxide and tin oxide. This will be described below with reference to the drawings.
[0027] 図 2は、本発明の透明電極の製造工程を示す図である。製造工程は主に、透明導 電膜の形成 (第一工程、図 2 (a) )、レジスト膜の形成 (第二工程、図 2 (b) )、レジスト 膜のパターニング (第三工程、図 2 (c) )、透明導電膜のエッチング(第四工程、図 2 (
d) )、透明電極上のレジスト膜の剥離 (第五工程、図 2 (e) )からなる。 FIG. 2 is a diagram showing a production process of the transparent electrode of the present invention. The manufacturing process mainly consists of forming a transparent conductive film (first step, Fig. 2 (a)), forming a resist film (second step, Fig. 2 (b)), and patterning the resist film (third step, Fig. 2). 2 (c)), etching of transparent conductive film (fourth process, Fig. 2 ( d)), peeling of the resist film on the transparent electrode (fifth step, Fig. 2 (e)).
[0028] (1)透明導電膜の形成 [0028] (1) Formation of transparent conductive film
透明電極を形成する基板 10上に透明導電膜 11 'を形成する。 A transparent conductive film 11 ′ is formed on the substrate 10 on which the transparent electrode is to be formed.
基板 10としては、透明基板であるガラス板、ポリスルフォン,ポリカーボネート等の 透明樹脂板等が使用できる。 As the substrate 10, a transparent resin plate such as a glass plate, polysulfone or polycarbonate which is a transparent substrate can be used.
透明導電膜 11 'の成膜方法としては、蒸着法、スパッタ法、 CVD法、スプレー法、 デップ法等が挙げられる。なかでも、スパッタ法が好適に用いられる。 Examples of the method for forming the transparent conductive film 11 ′ include vapor deposition, sputtering, CVD, spraying, and dipping. Of these, sputtering is preferably used.
具体的には、酸化亜鉛及び酸化スズを主原料として調製、焼結したスパッタリング ターゲットを使用すればよい。尚、形成される透明導電膜 11 'を非晶質透明導電膜と するには、スパッタリング中の基板温度を 300°C以下に調整したり、スパッタリング中 のスパッタガス中に水素を添加(10νο1。/ο以下)すればよい。 Specifically, a sputtering target prepared and sintered using zinc oxide and tin oxide as main raw materials may be used. In order to make the formed transparent conductive film 11 ′ an amorphous transparent conductive film, the substrate temperature during sputtering is adjusted to 300 ° C. or lower, or hydrogen is added to the sputtering gas during sputtering (10νο1. / ο or less).
このように、透明導電膜 11 'を非晶質とすることにより、上述したエッチング液にて容 易にエッチングできるようになる。 Thus, by making the transparent conductive film 11 ′ amorphous, it becomes possible to easily etch with the above-described etching solution.
[0029] (2)透明電極の形成 [0029] (2) Formation of transparent electrode
続いて、透明導電膜をエッチングして所望の電極パターンにパターニングする。パ ターニングは本技術分野において通常なされる方法、例えば、フォトリソグラフィによ つてすることができる。即ち、透明導電膜 11 'にレジスト膜 12を形成し(図 2 (b) )、露 光、現像により、レジスト膜 12をパターン化する(図 2 (c) )。その後、エッチング液を用 いて、透明導電膜 11 'をエッチングし、所望のパターンに形成する。最後に、透明電 極 11上に残存しているレジスト膜 12を剥離液を用いて除去することによって(図 2 (d ) )、透明電極を形成する(図 2 (e) )。 Subsequently, the transparent conductive film is etched and patterned into a desired electrode pattern. The patterning can be performed by a method usually used in this technical field, for example, photolithography. That is, a resist film 12 is formed on the transparent conductive film 11 ′ (FIG. 2 (b)), and the resist film 12 is patterned by exposure and development (FIG. 2 (c)). Thereafter, the transparent conductive film 11 ′ is etched using an etching solution to form a desired pattern. Finally, the resist film 12 remaining on the transparent electrode 11 is removed using a stripping solution (FIG. 2 (d)) to form a transparent electrode (FIG. 2 (e)).
[0030] 本発明におレ、ては、エッチング液として蓚酸水溶液、硝酸一塩酸一水の混合溶液 又はハロゲン化水素酸水溶液を使用することが好ましい。 In the present invention, it is preferable to use an aqueous oxalic acid solution, a mixed solution of nitric acid / monochloric acid / water, or an aqueous hydrohalic acid solution as an etching solution.
エッチング液として蓚酸水溶液を使用する場合、蓚酸水溶液における蓚酸の濃度 は、 lwt%〜10wt%であることが好ましレ、。蓚酸濃度が lwt%未満では、エッチング 速度が遅く実用的ではなぐ 10wt%を超えると、蓚酸塩の結晶が析出するおそれが ある。より好ましくは、 2wt%〜7wt%、特に好ましくは、 2wt%〜5wt%である。 When an aqueous oxalic acid solution is used as an etching solution, the concentration of oxalic acid in the aqueous oxalic acid solution is preferably lwt% to 10wt%. If the oxalic acid concentration is less than 1 wt%, the etching rate is slow, and if it exceeds 10 wt%, which is not practical, oxalate crystals may be precipitated. More preferably, it is 2 wt% to 7 wt%, and particularly preferably 2 wt% to 5 wt%.
[0031] エッチング液として、硝酸—塩酸—水の混合溶液を使用する場合、好ましくは、この
混合溶液の組成は、硝酸:塩酸:水の比率 (体積比)で、 (A) 2: 96: 2、(B) 2: 2: 96、 (C) 78:2: 20及び(D) 78:20: 2の組成点で囲まれる四辺形の領域内にあることが 好ましい。 [0031] When a mixed solution of nitric acid-hydrochloric acid-water is used as an etching solution, The composition of the mixed solution is the ratio (volume ratio) of nitric acid: hydrochloric acid: water, (A) 2: 96: 2, (B) 2: 2: 96, (C) 78: 2: 20 and (D) 78 It is preferably within a quadrilateral region surrounded by the composition point of: 20: 2.
図 3は、本発明における好適な硝酸、塩酸及び水の混合液の組成領域を図示した ものである。図 3中、点(A)〜(D)の点で形成される四辺形の領域 (斜線を施した領 域)が好適範囲である。この範囲以外では、エッチング速度が速すぎたり、又は遅す ぎたりして、電極のテーパー角が 30〜89度の範囲に入らなくなるおそれがある。 この混合溶液の組成は、硝酸:塩酸:水の比率で、 (Α' )4:48 :48、(Β')4:8:88、 (C')78:8: 14及び(D' ) 78: 11: 11の組成点で囲まれる四辺形の領域内にあること 力 り好ましぐこの混合溶液の組成は、硝酸:塩酸:水の比率で、 (A")6:47:47、 ( B") 6:8:86、 (C,,) 50:8: 42及び (D,,) 50:25: 25の組成点で囲まれる四辺形の領 域内にあることが特に好ましい。 FIG. 3 shows a composition region of a suitable mixed solution of nitric acid, hydrochloric acid and water in the present invention. In FIG. 3, a quadrilateral area (shaded area) formed by the points (A) to (D) is a preferable range. Outside this range, the etching rate may be too fast or too slow, and the taper angle of the electrode may not fall within the range of 30 to 89 degrees. The composition of this mixed solution is the ratio of nitric acid: hydrochloric acid: water, (Α ') 4:48:48, (Β') 4: 8: 88, (C ') 78: 8: 14 and (D') It should be within the quadrilateral region surrounded by the composition point of 78:11:11. The power of this mixture solution is the ratio of nitric acid: hydrochloric acid: water, (A ") 6:47:47, (B ") 6: 8: 86, (C ,,) 50: 8: 42, and (D ,,) 50:25: It is particularly preferable to be within a quadrilateral region surrounded by composition points.
尚、硝酸とは、通常の濃硝酸 (濃度 60%、比重 1.40)であり、塩酸とは、通常の濃 塩酸 (濃度 35%、比重 1. 18)である。 Nitric acid is normal concentrated nitric acid (concentration 60%, specific gravity 1.40), and hydrochloric acid is normal concentrated hydrochloric acid (concentration 35%, specific gravity 1.18).
[0032] エッチング液としてハロゲン化水素酸水溶液を使用する場合、ハロゲン化水素酸と しては、例えば、 HI、 HBr、 HC1又は HFが使用できる。好ましくは、 HC1, HI又は H Fである。 [0032] When a hydrohalic acid aqueous solution is used as an etching solution, for example, HI, HBr, HC1, or HF can be used as the hydrohalic acid. Preferably, it is HC1, HI or HF.
ハロゲン化水素酸水溶液におけるハロゲンィヒ水素酸の濃度は、 lwt%〜40wt% であることが好ましい。ハロゲンィ匕水素酸濃度が lwt%未満では、エッチング速度が 遅く実用的ではなぐ 40wt%を超えると、ハロゲンィ匕水素酸塩の結晶が析出するお それがある。より好ましくは、 2wt%〜35wt%、特に好ましくは、 3wt%〜15wt%で ある。 The concentration of halohydonic acid in the aqueous hydrohalic acid solution is preferably lwt% to 40wt%. If the concentration of halogen hydrohydrogen acid is less than 1 wt%, the etching rate is slow and impractical, and if it exceeds 40 wt%, crystals of halogen hydrohydrogen salt may precipitate. More preferably, it is 2 wt% to 35 wt%, and particularly preferably 3 wt% to 15 wt%.
[0033] 本発明において、エッチング時におけるエッチング液の使用温度は、 20〜50°Cで あることが好ましい。 20°C未満では、エッチング速度が遅く実用的でなぐ 50°Cを超 えると、水分や塩酸等の蒸発によりエッチング液の濃度が変動し、液の濃度管理が 困難となる場合がある。好ましくは 25°C〜45°C、より好ましくは 30°C〜45°Cである。 [0033] In the present invention, the use temperature of the etching solution during etching is preferably 20 to 50 ° C. If it is less than 20 ° C, the etching rate is slow and practical, and if it exceeds 50 ° C, the concentration of the etching solution may fluctuate due to evaporation of water, hydrochloric acid, etc., and it may be difficult to control the concentration of the solution. The temperature is preferably 25 ° C to 45 ° C, more preferably 30 ° C to 45 ° C.
[0034] レジスト現像液には、テトラメチルアンモニゥムハイド口オキサイド(TMAH)の水溶 液を用いることが好ましい。 TMAH以外のアルカリ成分を用いると、レジストパターン
のずれや溶解が起こり、エッチング上重大なトラブルを発生するおそれがある。また、[0034] It is preferable to use an aqueous solution of tetramethylammonium hydride oxide (TMAH) as the resist developer. If an alkaline component other than TMAH is used, the resist pattern There is a possibility that a shift or dissolution occurs and a serious trouble occurs in etching. Also,
A1と透明導電膜が電気的に接合している場合に、電解質液と接触した場合に電池 反応を起こすことがあり、注意を要することがある。 When A1 and the transparent conductive film are electrically joined, battery reaction may occur when they come into contact with the electrolyte solution, requiring caution.
[0035] TMAHの濃度は、:!〜 5wt%が好ましレ、。 lwt%未満では、レジスト現像不良が起 こりことがあり、形成した透明電極がショートしやすくする。また、 5wt%を超える濃度 では、レジストパターンの線細りや剥離が起こるため、電極パターンの線細りや断線 する場合がある。好ましくは、 2〜4wt%である。 [0035] The concentration of TMAH is preferably: 5 to 5 wt%. If it is less than lwt%, resist development failure may occur, and the formed transparent electrode is easily short-circuited. If the concentration exceeds 5 wt%, the resist pattern may be thinned or peeled off, and the electrode pattern may be thinned or disconnected. Preferably, it is 2 to 4 wt%.
[0036] レジスト剥離液には、エタノールアミン系ァミンを用いることが好ましい。エタノール アミン系ァミンとしては、モノエタノールァミン、ジエタノールァミン、トリエタノールアミ ン等があり、ジエタノールァミンが好適に用いられる。また、水溶液でもよいが、極性 溶媒との混合液でも使用できる。このような極性溶媒としては、 DMF、 DMSO、 NM P等が挙げられる。 [0036] Ethanolamine-based amine is preferably used as the resist stripping solution. Examples of ethanolamine-based amines include monoethanolamine, diethanolamine, and triethanolamine, and diethanolamine is preferably used. An aqueous solution may be used, but a mixed solution with a polar solvent can also be used. Examples of such polar solvents include DMF, DMSO, NMP and the like.
レジスト剥離液におけるエタノールアミン系ァミンの濃度は、 10wt%〜60wt%であ ることが好ましぐ特に、 20wt%〜40wt%であることが好ましい。 The concentration of ethanolamine-based amine in the resist stripping solution is preferably 10 wt% to 60 wt%, particularly preferably 20 wt% to 40 wt%.
尚、剥離液として、 NaOHや KOH等の無機アルカリを使用すると、電極表面が溶 解され凸凹になる場合があるため好ましくない。 Note that it is not preferable to use an inorganic alkali such as NaOH or KOH as the stripping solution because the electrode surface may be melted and uneven.
[0037] こうして形成された透明電極のキヤリヤー移動度は、 10cm2/V' SEC以上であるこ とが好ましい。より好ましくは 20cm2/V' SEC以上である。 TFT駆動 LCDの場合、 1 0cm2/V' SEC未満では、応答速度が遅くなつたりし、液晶の画質を低下させる場 合がある。比抵抗は、低いほうが良レ、が、 TFT駆動の場合、 TFT素子から LCD駆動 電極端部までの距離は非常に短いので 10— 2 Ω cm台であれば問題はない。 [0037] The carrier mobility of the transparent electrode thus formed is preferably 10 cm 2 / V'SEC or more. More preferably, it is 20 cm 2 / V ′ SEC or more. In the case of TFT drive LCD, if it is less than 10 cm 2 / V 'SEC, the response speed may become slow and the image quality of the liquid crystal may be degraded. Resistivity is lower rather is accordance, but in the case of TFT driving, the distance from the TFT element to LCD drive electrode end is not a problem if so very short 10- 2 Omega cm base.
尚、キヤリヤー移動度は、ホール測定法 (ファンディア'ポー法)で測定する。 Carrier mobility is measured by the Hall measurement method (Fundia Po method).
[0038] 本発明の透明電極では、キヤリヤー移動度に影響を与えない範囲で、第三の金属 を添加することができる。第三の金属としては、例えば、透過率を向上させる目的で、 屈折率の小さな金属酸化物を添カ卩できる。これらの代表例としては、 Mg〇、 B O、 G [0038] In the transparent electrode of the present invention, a third metal can be added within a range that does not affect the carrier mobility. As the third metal, for example, a metal oxide having a small refractive index can be added for the purpose of improving the transmittance. Typical examples of these are MgO, B O, G
2 3 a〇、 GeO等が挙げられる。 2 3 aO, GeO, etc.
2 3 2 2 3 2
また、透明電極の比抵抗を下げることを目的として、比抵抗の小さい酸化物を添カロ できる。これらの代表例としては、酸化レニウム、酸化イリジウム、酸化ルテニウム等が
挙げられる。但し、これらの重金属酸化物は着色する可能性があり、添加する量には 注意が必要であるので、透過率に影響しない範囲で添加する。 In addition, an oxide having a small specific resistance can be added for the purpose of reducing the specific resistance of the transparent electrode. Typical examples of these include rhenium oxide, iridium oxide, and ruthenium oxide. Can be mentioned. However, since these heavy metal oxides may be colored and caution is required in the amount to be added, they should be added within a range that does not affect the transmittance.
[実施例] [Example]
[0039] 以下、本発明を実施例によってさらに具体的に説明する。 [0039] The present invention will be described more specifically with reference to examples.
[スパッタリングターゲット及び透明導電膜付き基板の作製] [Preparation of sputtering target and substrate with transparent conductive film]
製造例 1 Production example 1
( 1 )スパッタリングターゲットの作製 (1) Preparation of sputtering target
平均粒径が 1 μ m以下の酸化亜鉛粉末(白水テック社製)、及び平均粒径が 1 μ m 以下の酸化スズ粉末(三菱マテリアルズ社製)を、 Zn/ (Zn + Sn) =0. 79 (原子比) の割合となるように調合して、樹脂製ポットに入れ、さらに純水を加えて、硬質 Zr〇ボ Zinc oxide powder (manufactured by Hakusui Tech Co., Ltd.) with an average particle size of 1 μm or less and tin oxide powder (manufactured by Mitsubishi Materials) with an average particle size of 1 μm or less are Zn / (Zn + Sn) = 0 79 (atomic ratio), mix in a resin pot, add pure water, and add hard Zr
2 ールミルを用いた湿式ボールミル混合を行った。混合時間は 20時間とした。 Wet ball mill mixing was performed using a 2 roll mill. The mixing time was 20 hours.
得られた混合スラリーを取り出し、濾過、乾燥及び造粒を行った。 The obtained mixed slurry was taken out, filtered, dried and granulated.
この造粒物を、 294MPa (3t/cm2)の圧力を掛けて冷間静水圧プレスで成形した This granulated product was molded by a cold isostatic press while applying a pressure of 294 MPa (3 t / cm 2 ).
[0040] この成形体を以下のように焼結した。 [0040] This molded body was sintered as follows.
焼結炉内に、炉内容積 0. lm3当たり 5L/minの割合で、酸素を導入する雰囲気 で、 1500。Cで 5時間焼結した。この際、 1000°C¾ ¾rl°C/min, 1000〜: 1500。C を 3°C/minで昇温した。その後、酸素の導入を止め、 1500°C〜1300°Cを 10°C/ minで降温した。そして、炉内容積 0. lm3当たり 10L/minの割合でアルゴンガスを 導入する雰囲気で、 1300°Cを 3時間保持した後、放冷した。これにより、相対密度 9 0%以上の酸化亜鉛 ·酸化スズ含有焼結体が得られた。 1500, in an atmosphere in which oxygen is introduced into the sintering furnace at a rate of 5 L / min per 0.1 lm 3 of the furnace volume. Sintered at C for 5 hours. In this case, 1000 ° C¾¾rl ° C / min, 1000 ~: 1500. C was heated at 3 ° C / min. Thereafter, the introduction of oxygen was stopped, and the temperature was decreased from 1500 ° C to 1300 ° C at 10 ° C / min. Then, in an atmosphere in which argon gas was introduced at a rate of 10 L / min per 0.1 lm 3 of the furnace, the temperature was kept at 1300 ° C. for 3 hours and then allowed to cool. As a result, a zinc oxide / tin oxide-containing sintered body having a relative density of 90% or more was obtained.
[0041] 得られた焼結体のスパッタ面をカップ砥石で磨き、直径 100mm、厚み 5mmに加 ェし、インジウム系合金を用いてバッキングプレートを貼り合わせて、スパッタリングタ 一ゲット(焼結体ターゲット 1)を作製した。このターゲットの密度は、 5. 72g/cm3で あった。 [0041] The sputter surface of the obtained sintered body is polished with a cup grindstone, added to a diameter of 100 mm and a thickness of 5 mm, a backing plate is bonded using an indium alloy, and a sputtering target (sintered target) 1) was produced. The density of this target was 5.72 g / cm 3 .
[0042] 尚、ターゲットにおいては、酸化スズが分散していること、特に、酸化亜鉛の亜鉛サ イトに置換固溶していることが好ましい。即ち、 Snがターゲット内に含まれる形態は、 SnO、 SnO等の酸化スズの形で分散している形態でもよレ、が、 ZnSnO、 Zn SnO
等の酸化亜鉛一酸化スズ間の複合酸化物の形で、酸化亜鉛焼結体中に分散してい る形態が好ましい。これは、 Snが酸化亜鉛焼結体中に原子レベルで分散している方 、スパッタリングにおいて放電が安定し、得られる透明導電性薄膜を低抵抗にする からである。 [0042] In the target, it is preferable that tin oxide is dispersed, and in particular, it is substituted and dissolved in zinc oxide zinc site. That is, the form in which Sn is contained in the target may be a form in which Sn oxide such as SnO or SnO is dispersed, but ZnSnO, Zn SnO A form in which the zinc oxide is dispersed in the zinc oxide sintered body in the form of a composite oxide between zinc oxide and tin monoxide is preferable. This is because when Sn is dispersed at the atomic level in the zinc oxide sintered body, the discharge is stabilized in sputtering, and the resulting transparent conductive thin film has a low resistance.
[0043] 焼結体ターゲット 1の EPMA(X線マイクロアナライザ)の Sn原子のマッピング画像 処理により求めた平均した結晶粒子の直径は、 3. 87 mであった。また、ターゲット 1のバルタ抵抗(比抵抗)は 360 Ω cmであり、安定した RFスパッタリングができるター ゲットを得た。 [0043] The average diameter of the crystal particles obtained by the mapping image processing of Sn atom of EPMA (X-ray microanalyzer) of sintered compact target 1 was 3.87 m. Moreover, the Balta resistance (specific resistance) of Target 1 was 360 Ωcm, and a target capable of stable RF sputtering was obtained.
焼結体ターゲットの性状を表 1に示す。 Table 1 shows the properties of the sintered compact target.
[0044] [表 1] [0044] [Table 1]
(2)透明導電膜の作製 (2) Production of transparent conductive film
焼結体ターゲット 1を、スパッタリング装置に装着した。ガラス基板 (厚さ lmm又は 1 . lmm)を装置内に移動し、到達真空度: 5 X 10— 4Pa、成膜圧力: 0. lPa、基板温 度: 200°Cとして、基板上に透明導電膜 (厚さ lOOnm)を成膜した。 The sintered compact target 1 was attached to the sputtering apparatus. Glass substrate (. Thickness lmm or 1 lmm) was moved into the apparatus, the ultimate vacuum: 5 X 10- 4 Pa, the film formation pressure: 0. LPA, substrate temperature: as 200 ° C, transparent substrate A conductive film (thickness lOOnm) was formed.
この透明導電膜の原子の割合 [Zn/ (Zn + Sn) ]、比抵抗、キャリアー移動度及び 光線透過率を評価した。尚、比抵抗は及びキャリア一(電荷)移動度は、ホール測定 にて求めた。また、光線透過率は分光光度計にて、波長 550nmの光線について測 定した。また、原子の割合 (Zn/ (Zn + Sn)、原子比)は、 ICP (高周波誘導結合ブラ
ズマ)分析法により測定した , The atomic ratio [Zn / (Zn + Sn)], specific resistance, carrier mobility and light transmittance of this transparent conductive film were evaluated. The specific resistance and carrier-one (charge) mobility were obtained by Hall measurement. The light transmittance was measured for a light beam having a wavelength of 550 nm with a spectrophotometer. In addition, the atomic ratio (Zn / (Zn + Sn), atomic ratio) is ICP (high frequency inductive coupling bra Zuma) measured by analytical method,
測定結果を表 2に示す。 Table 2 shows the measurement results.
[表 2] [Table 2]
光透過率:波長 5 5 0 n mの光線透過率である。 Light transmittance: Light transmittance at a wavelength of 5500 nm.
[0047] 製造例 2— 7 [0047] Production Example 2-7
平均粒径が 1 μ m以下の酸化亜鉛粉末、及び平均粒径が 1 β m以下の酸化スズ粉 末を原料粉末とし、亜鉛原子とスズ原子の比が表 1に示す割合となるように調製した 他は、製造例 1と同様にしてスパッタリングターゲット(焼結体ターゲット 2— 7)を作製 し、透明導電膜を形成した基板を作製した。 Zinc oxide powder with an average particle size of 1 μm or less and tin oxide powder with an average particle size of 1 β m or less are used as raw material powder, and the ratio of zinc atoms to tin atoms is adjusted to the ratio shown in Table 1. Otherwise, a sputtering target (sintered body target 2-7) was produced in the same manner as in Production Example 1, and a substrate on which a transparent conductive film was formed was produced.
尚、スパッタリングターゲットの直径は 152mm、厚さは 5mmであった。 スパッタリングターゲットの性状、透明導電膜の評価結果を表 1及び 2に示す。 The diameter of the sputtering target was 152 mm and the thickness was 5 mm. Tables 1 and 2 show the properties of the sputtering target and the evaluation results of the transparent conductive film.
[0048] [透明電極の作製] [0048] [Preparation of transparent electrode]
実施例 1 Example 1
製造例 1で作製した透明導電膜付き基板の透明導電膜上に、レジスト液(フジハン ト社製、 HPR204)を使用してスピンコートによってレジスト膜を形成した。 On the transparent conductive film of the substrate with a transparent conductive film prepared in Production Example 1, a resist film was formed by spin coating using a resist solution (manufactured by Fuji Hunt, HPR204).
次に、所定パターンのレジストマスクを使用して、レジスト膜の露光'現像を行なった 。現像液にはテトラメチルアンモニゥムハイド口オキサイド(TMAH)の 2. 8wt%水溶
液を使用した。 Next, the resist film was exposed and developed using a resist mask having a predetermined pattern. The developer is 2.8wt% tetramethylammonium hydride mouth oxide (TMAH) in water. The liquid was used.
[0049] 次に、この基板をエッチング液である蓚酸水溶液によって処理することにより、透明 導電膜のエッチングを行ない、透明電極をパターニングした。このときの条件は、蓚 酸水溶液の濃度を 3. 5wt%、温度を 30°Cとし、デイツビングによりエッチングした。 この条件におけるエッチング速度を評価した。 Next, this substrate was treated with an aqueous oxalic acid solution as an etching solution, whereby the transparent conductive film was etched and the transparent electrode was patterned. The etching conditions were as follows: the concentration of the aqueous oxalic acid solution was 3.5 wt%, the temperature was 30 ° C., and etching was performed by dubbing. The etching rate under these conditions was evaluated.
また、蓚酸水溶液の使用温度を 40°Cとした場合、及び蓚酸水溶液の濃度を 5. Ow t%とし、使用温度を 35°Cとした場合のエッチング速度も評価した。 In addition, the etching rate was evaluated when the use temperature of the oxalic acid aqueous solution was 40 ° C, and when the concentration of the oxalic acid aqueous solution was 5. Owt% and the use temperature was 35 ° C.
結果を表 3に示す。 The results are shown in Table 3.
[0050] 最後に、透明電極上に残存するレジスト膜を、剥離液としてジエタノールァミンの D MSO溶液(30wt%)を使用して除去した。このときの条件は、 40°C、 1分の浸漬とし た。 [0050] Finally, the resist film remaining on the transparent electrode was removed using a DMSO solution (30 wt%) of diethanolamine as a stripping solution. The conditions at this time were 40 ° C and 1 minute immersion.
以上により透明電極(幅 90 μ m、ピッチ 110 μ m)を形成した基板を作製した。 得られた透明電極の電極端部のテーパー角を SEM観察より測定した。結果を表 3 に示す。 Thus, a substrate on which transparent electrodes (width 90 μm, pitch 110 μm) were formed was produced. The taper angle of the electrode end of the obtained transparent electrode was measured by SEM observation. The results are shown in Table 3.
[0051] [表 3]
[0051] [Table 3]
[0052] 実施例 2— 5 比較例 1 2 [0052] Example 2-5 Comparative Example 1 2
製造例 2— 7で作製した透明導電膜付き基板を使用した他は、実施例 1と同様にし て透明電極基板を作製し、評価した。結果を表 3に示す。 A transparent electrode substrate was prepared and evaluated in the same manner as in Example 1 except that the substrate with a transparent conductive film prepared in Production Example 2-7 was used. The results are shown in Table 3.
[0053] 実施例 6
製造例 1で作製した透明導電膜付き基板の透明導電膜上に、レジスト液 (フジハン トネ土製、 HPR204)を使用してスピンコートによってレジスト膜を形成した。 [0053] Example 6 On the transparent conductive film of the substrate with the transparent conductive film prepared in Production Example 1, a resist film was formed by spin coating using a resist solution (manufactured by Fuji Huntne earth, HPR204).
次に、所定パターンのレジストマスクを使用して、レジスト膜の露光 ·現像を行なった 。現像液にはテトラメチルアンモニゥムハイド口オキサイド(TMAH)の 2. 8wt%水溶 液を使用した。 Next, the resist film was exposed and developed using a resist mask having a predetermined pattern. A 2.8 wt% aqueous solution of tetramethyl ammonium hydroxide (TMAH) was used as the developer.
[0054] 次に、この基板を、エッチング液である硝酸:塩酸:水の混合溶液 (硝酸:塩酸:水 = Next, the substrate is mixed with a mixed solution of nitric acid: hydrochloric acid: water (nitric acid: hydrochloric acid: water = etching solution) =
25 : 13 : 62)によって処理することにより、透明導電膜のエッチングを行ない、透明電 極をパターユングした。この液の使用温度は 30°Cとし、デイツビングによりエッチング した。 25:13:62), the transparent conductive film was etched and the transparent electrode was patterned. The liquid was used at a temperature of 30 ° C. and etched by dubbing.
この条件にぉレ、て、エッチング速度を評価した。 Under these conditions, the etching rate was evaluated.
尚、上記エッチング液の使用温度を 40°Cとした場合、及び硝酸、塩酸及び水の混 合溶液 (硝酸:塩酸:水 = 25: 25: 50)を使用し、使用温度を 35°Cとした場合のエツ チング速度も評価した。 In addition, when the operating temperature of the above etching solution is 40 ° C, and using a mixed solution of nitric acid, hydrochloric acid and water (nitric acid: hydrochloric acid: water = 25: 25: 50), the operating temperature is 35 ° C. The etching speed was also evaluated.
結果を表 4に示す。 The results are shown in Table 4.
[0055] 最後に、透明電極上に残存するレジスト膜を、剥離液としてジエタノールァミンの D MSO溶液(30wt%)を使用して除去した。このときの条件は、 40°C、 1分の浸漬とし た。 [0055] Finally, the resist film remaining on the transparent electrode was removed using a DMSO solution of diethanolamine (30 wt%) as a stripping solution. The conditions at this time were 40 ° C and 1 minute immersion.
以上により透明電極(幅 90 β m、ピッチ 110 β m)を形成した基板を作製した。 得られた透明電極の電極端部のテーパー角を SEM観察より測定した。結果を表 4 に示す。 Thus, a substrate on which a transparent electrode (width 90 β m, pitch 110 β m) was formed was produced. The taper angle of the electrode end of the obtained transparent electrode was measured by SEM observation. The results are shown in Table 4.
[0056] [表 4]
[0056] [Table 4]
窗。^1。0^ f¥A ¾一 L:n4.- ^ SU M¾室st i0577lo 34l 1 使用した エッチング速度 [AZ分] テーパー角 透明導電膜付 (下櫬:混合溶 S の比 (HN03:HC1:H20) 及び使用温度) [度] き基板 25: 13:62 25: 13:62 25:25: 50 窗. ^ 1.0 ^ f ¥ A ¾1 L: n4.- ^ SU M¾room st i0577lo 34l 1 Etching rate used [AZ min] Taper angle With transparent conductive film (Bottom: Ratio of mixed solution S (HN0 3 : HC1: H 2 0) and operating temperature) [degree] substrate 25: 13:62 25: 13:62 25:25: 50
3 Ot: 40X 35*C 3 Ot: 40X 35 * C
実施例 6 製造例 1 30.000 25.000 85 実施例 7 製造例 2 2, 500 5.000 4, 000 70 実施例 8 製造例 3 1.200 2.100
50 実施例 9 製造例 4 450 1, 050 900 45 実施例 10 製造例 5 50 100 90 40 比較例 3 製造例 6 200.000 400.000 350, 000 140 比較例 4 製造例 7 ― ― ― 氺テーパー角は混合溶液の比 (HN03:HC1:¾0 o) oが 25: 13:62、 使用温度が 30でのときの角度を示す。 Example 6 Production Example 1 30.000 25.000 85 Example 7 Production Example 2 2, 500 5.000 4,000 70 Example 8 Production Example 3 1.200 2.100 50 Example 9 Production Example 4 450 1,050 900 45 Example 10 Production Example 5 50 100 90 40 Comparative Example 3 Production Example 6 200.000 400.000 350, 000 140 Comparative Example 4 Production Example 7 ― ― ― 氺 Taper angle is mixed solution Ratio (HN0 3 : HC1: ¾0 o) Indicates the angle when o is 25:13:62 and the operating temperature is 30.
o o
*比較例 4はエツチング不可であつた * Comparative example 4 is not etchable
o
[0058] 実施例 11 o [0058] Example 11
製造例 1で作製した透明導電膜付き基板の透明導電膜上に、レジスト液 (フジハン トネ土製、 HPR204)を使用してスピンコートによってレジスト膜を形成した。 On the transparent conductive film of the substrate with the transparent conductive film prepared in Production Example 1, a resist film was formed by spin coating using a resist solution (manufactured by Fuji Huntne earth, HPR204).
次に、所定パターンのレジストマスクを使用して、レジスト膜の露光'現像を行なった 。現像液にはテトラメチルアンモニゥムハイド口オキサイド(TMAH)の 2. 8wt%水溶 液を使用した。 Next, the resist film was exposed and developed using a resist mask having a predetermined pattern. A 2.8 wt% aqueous solution of tetramethyl ammonium hydroxide (TMAH) was used as the developer.
[0059] 次に、この基板を、エッチング液である塩ィ匕水素(HC1) 35wt%水溶液によって処 理することにより、透明導電膜のエッチングを行なレ、、透明電極をパターユングした。 このときの温度は 30°Cとし、デイツビングによりエッチングした。 Next, the substrate was treated with an aqueous solution of 35% by weight of hydrogen chloride (HC1) as an etchant to etch the transparent conductive film and pattern the transparent electrode. The temperature at this time was 30 ° C., and etching was performed by datebing.
この条件にぉレ、て、エッチング速度を評価した。 Under these conditions, the etching rate was evaluated.
尚、上記の塩酸水溶液の使用温度を 40°Cとした場合、及びヨウ素酸水溶液の濃度 を 5wt%とし、使用温度を 35°Cとした場合のエッチング速度も評価した。 The etching rate was also evaluated when the use temperature of the hydrochloric acid aqueous solution was 40 ° C, and when the concentration of the iodic acid aqueous solution was 5 wt% and the use temperature was 35 ° C.
結果を表 5に示す。 The results are shown in Table 5.
[0060] 最後に、透明電極上に残存するレジスト膜を、剥離液としてジエタノールァミンの D MSO溶液(30wt%)を使用して除去した。このときの条件は、 40°C、 1分の浸漬とし た。 [0060] Finally, the resist film remaining on the transparent electrode was removed using a DMSO solution of diethanolamine (30 wt%) as a stripping solution. The conditions at this time were 40 ° C and 1 minute immersion.
以上により透明電極(幅 90 β m、ピッチ 110 β m)を形成した基板を作製した。 得られた透明電極の電極端部のテーパー角を SEM観察より測定した。結果を表 5 に示す。 Thus, a substrate on which a transparent electrode (width 90 β m, pitch 110 β m) was formed was produced. The taper angle of the electrode end of the obtained transparent electrode was measured by SEM observation. The results are shown in Table 5.
[0061] [表 5]
[0061] [Table 5]
#テーパー角は、 HC 1 : 35wt%水溶液で使用温度が 30でのとき *比較例 6はエツチング不可であつた„
#Taper angle is HC1: 35wt% aqueous solution and operating temperature is 30 * Comparative Example 6 is not etchable
法 (Tape Carrier Package)による接続試験を行い、接続安定性を評価した。 A connection test by the method (Tape Carrier Package) was conducted to evaluate the connection stability.
TCP接続基板について、 60°C、 90%RHの環境下に保存して、接続抵抗の経時 変化を観察した。結果を表 6〜表 8に示す。 The TCP connection board was stored in an environment of 60 ° C and 90% RH, and the change in connection resistance with time was observed. The results are shown in Tables 6-8.
尚、比較例 2, 4, 6では、透明電極付き基板は得られな力つた力 参考のため上記 処理後の基板について接続抵抗を評価した。 In Comparative Examples 2, 4 and 6, the connection resistance was evaluated for the substrate after the above-mentioned treatment for reference for the substrate with a transparent electrode.
[表 6] [Table 6]
[表 7]
ZD/ (Zn+Sn) TCP接続抵抗 [Ω] [Table 7] ZD / (Zn + Sn) TCP connection resistance [Ω]
[原子比] [Atomic ratio]
接続直後 240時間後 480時間後 960時間後 0066 実施例 6 0. 79 4. 5 4. 9 5. 7 6. 6 実施例 7 0. 75 4. 4 4. 8 5. 8 5. 8 実施例 8 0. 70 4. 7 5. 2 5. 3 5. 4 実施例 9 0. 67 4. 6 4. 8 5. 0 5. 1 実施例 1 0 0. 55 4. 8 5. 2 5. 5 5. 7 比較例 3 0. 97 7. 1 20. 5 36. 5 1 30 比較例 4 0. 40 5. 5 6. 2 6. 8 6. 7
Immediately after connection 240 hours 480 hours 960 hours 0066 Example 6 0. 79 4. 5 4. 9 5. 7 6. 6 Example 7 0. 75 4. 4 4. 8 5. 8 5. 8 Example 8 0. 70 4. 7 5. 2 5. 3 5. 4 Example 9 0. 67 4. 6 4. 8 5. 0 5. 1 Example 1 0 0. 55 4. 8 5. 2 5. 5 5.7 Comparative Example 3 0. 97 7. 1 20. 5 36. 5 1 30 Comparative Example 4 0. 40 5. 5 6. 2 6. 8 6. 7
評価 2 Evaluation 2
ガラス基板上に、純 A1のスパッタリングターゲットをスパッタリング装置に装着し、到 達真空度: 5 X 10— 4Pa、成膜圧力:0. lPa、基板温度:室温として、ガラス基板上に A1の薄膜 (厚さ 200nm)を成膜した。 On a glass substrate, and mounting a sputtering target of pure A1 on a sputtering apparatus, Itaru our vacuum: 5 X 10- 4 Pa, deposition pressure:. 0 LPA, substrate temperature: as room temperature, a thin film of A1 on a glass substrate (Thickness 200 nm) was formed.
得られたガラス基板の面積の 1割をカプトンテープにてシールした。この基板上に、 製造例 1—7で作製したターゲット 1—7を用いて、厚さ lOOnmの薄膜を室温にて成
膜した。その後、カプトンテープを剥がして、 A1膜が一部露出している積層膜付きガ ラス基板を作製した。 Ten percent of the area of the obtained glass substrate was sealed with Kapton tape. On this substrate, a thin film of lOOnm thickness was formed at room temperature using Target 1-7 prepared in Production Example 1-7. Filmed. Thereafter, the Kapton tape was peeled off to produce a glass substrate with a laminated film in which the A1 film was partially exposed.
尚、参考例として、 A1膜上に ITO薄膜を形成した積層膜付きガラス基板も作製した As a reference example, a laminated glass substrate with an ITO thin film formed on the A1 film was also produced.
[0068] これらの積層膜付きガラス基板を、 TMAHの 2. 4wt%水溶液(20°C)中に 2分間 浸漬し、 A1膜の溶解を観察した。結果を表 9に示す。 [0068] These laminated glass-coated glass substrates were immersed in a 2.4 wt% aqueous solution of TMAH (20 ° C) for 2 minutes, and dissolution of the A1 film was observed. The results are shown in Table 9.
[0069] [表 9] [0069] [Table 9]
[0070] 尚、純 A1膜のみを成膜したガラス基板を、この水溶液に浸漬しても、 A1層の溶解は 観測されなかった。従って、本評価にて A1の溶解が観測されたものでは、 A1/透明 導電膜の積層構造によって電池反応が起きていることが確認された。 [0070] Even when a glass substrate on which only a pure A1 film was formed was immersed in this aqueous solution, dissolution of the A1 layer was not observed. Therefore, it was confirmed that the battery reaction occurred due to the laminated structure of A1 / transparent conductive film in the case where dissolution of A1 was observed in this evaluation.
[0071] 評価 3 [0071] Rating 3
製造例 1で得た lOOnmの薄膜付きガラスを、レジスト剥離剤であるジエタノールアミ ン 30vol%、ジメチルスルフオキサイド(DMSO) 70vol%の混合液に、 10vol%の水 を添加して、 45°Cで 5分間浸漬した。その後、薄膜の表面を走査型電子顕微鏡(SE M)にて観察した。その結果、凸凹及び表面の荒れは観察されなかった。 Add 10 vol% of water to the glass with a thin film of lOOnm obtained in Production Example 1 in a mixed solution of 30 vol% diethanolamine and 70 vol% dimethylsulfoxide (DMSO) as a resist remover at 45 ° C. Immerse for 5 minutes. Thereafter, the surface of the thin film was observed with a scanning electron microscope (SEM). As a result, unevenness and surface roughness were not observed.
一方、製造例 6で得た lOOnmの薄膜付きガラスを用いて、同様の操作を行なった 結果、薄膜の表面に凸凹及び表面の荒れが観察され、液晶用又は有機 EL用の電 極としては不適であることが確認された。
[0072] 評価 4 On the other hand, as a result of performing the same operation using the glass with a thin film of lOOnm obtained in Production Example 6, irregularities and roughness of the surface were observed on the surface of the thin film, which is not suitable as an electrode for liquid crystal or organic EL. It was confirmed that. [0072] Rating 4
ガラス基板に、製造例 1 7の透明導電膜及び A1膜を積層した基板を用いて、透 明導電膜及び A1膜をそれぞれ線幅 50 μ mの細線状に、 A1細線と透明導電細線が 直交するように形成した(両細線の交わり部は積層状態となつている)。この積層界面 の接触抵抗をケノレビンプローブ法で測定した。結果を表 10に示す。 Using the substrate obtained by laminating the transparent conductive film and A1 film of Production Example 17 on a glass substrate, the transparent conductive film and A1 film are each in the form of a fine line with a line width of 50 μm, and the A1 fine line and the transparent conductive fine line are orthogonal to each other. (The intersection of both thin wires is in a laminated state). The contact resistance at the laminated interface was measured by the Keno Levin probe method. The results are shown in Table 10.
[0073] [表 10] [0073] [Table 10]
本発明の透明電極は、インジウムを使用していないため安価である。また、エツチン グ特性がよぐ電極端部をテーパー状に形成できる。従って、液晶表示装置、有機ェ レクト口ルミネッセンス表示装置、プラズマディスプレイ等の薄型ディスプレイに使用さ れる透明電極として好適である。
The transparent electrode of the present invention is inexpensive because it does not use indium. Further, the electrode end portion having good etching characteristics can be formed in a tapered shape. Therefore, it is suitable as a transparent electrode used in thin displays such as liquid crystal display devices, organic electroluminescence display devices, and plasma displays.
Claims
[1] 酸化亜鉛及び酸化スズを主成分とし、電極端部のテーパー角が 30〜89度である 透明電極。 [1] A transparent electrode mainly composed of zinc oxide and tin oxide and having a taper angle of 30 to 89 degrees at the end of the electrode.
[2] 前記透明電極中の亜鉛原子とスズ原子の総量に対する、亜鉛原子の割合 (ZnZ ( [2] Ratio of zinc atoms to the total amount of zinc atoms and tin atoms in the transparent electrode (ZnZ (
Zn + Sn)、原子比)が 0. 5〜0. 9である請求項 1に記載の透明電極。 2. The transparent electrode according to claim 1, wherein the atomic ratio) is 0.5 to 0.9.
[3] 酸化亜鉛及び酸化スズを主成分する透明導電膜を、電極端部のテーパー角が 30[3] A transparent conductive film containing zinc oxide and tin oxide as the main component has a taper angle of 30 at the end of the electrode.
〜89度となるようにエッチングする透明電極の製造方法。 A method for producing a transparent electrode, which is etched to be -89 degrees.
[4] 前記透明電極中の亜鉛原子とスズ原子の総量に対する、亜鉛原子の割合 (Zn/ ([4] Ratio of zinc atoms to the total amount of zinc atoms and tin atoms in the transparent electrode (Zn / (
Zn + Sn)、原子比)が 0. 5〜0. 9である請求項 3に記載の透明電極の製造方法。 4. The method for producing a transparent electrode according to claim 3, wherein the Zn + Sn) and the atomic ratio) are 0.5 to 0.9.
[5] 前記エッチングに、濃度力 Slwt%〜40wt%であるハロゲン化水素酸水溶液を用い る請求項 3又は 4に記載の透明電極の製造方法。 5. The method for producing a transparent electrode according to claim 3 or 4, wherein a hydrohalic acid aqueous solution having a concentration power of Slwt% to 40wt% is used for the etching.
[6] 亜鉛原子とスズ原子の総量に対する、亜鉛原子の割合 (Zn/ (Zn + Sn)、原子比) が 0. 5〜0. 9である酸化亜鉛及び酸化スズを主成分とする透明導電膜を形成する 第一工程と、 [6] Transparent conductive mainly composed of zinc oxide and tin oxide with a zinc atom ratio (Zn / (Zn + Sn), atomic ratio) of 0.5 to 0.9 with respect to the total amount of zinc atoms and tin atoms A first step of forming a film;
前記透明導電膜上にレジスト膜を形成する第二工程と、 A second step of forming a resist film on the transparent conductive film;
前記レジスト膜を、レジスト現像液としてテトラメチルアンモニゥムハイド口オキサイド の l〜5wt%水溶液を使用し、この水溶液の温度を 20〜50°Cの範囲でパターニン グする第三工程と、 A third step of patterning the resist film using a 1 to 5 wt% aqueous solution of tetramethylammonium hydride oxide as a resist developer, and the temperature of the aqueous solution in the range of 20 to 50 ° C .;
前記透明導電膜を、ハロゲン化水素酸の濃度が lwt%〜40wt%である水溶液を 用いてエッチングし、テーパー角を 30〜89度である透明電極を形成する第四工程と 前記透明電極上に残存するレジスト膜を、エタノールアミンを含むレジスト剥離液を 使用して剥離する第五工程と、を含む請求項 3〜5のいずれかに記載の透明電極の 製造方法。 Etching the transparent conductive film with an aqueous solution having a hydrohalic acid concentration of lwt% to 40wt% to form a transparent electrode having a taper angle of 30 to 89 degrees; and on the transparent electrode The method for producing a transparent electrode according to any one of claims 3 to 5, further comprising a fifth step of stripping the remaining resist film using a resist stripping solution containing ethanolamine.
[7] 亜鉛原子とスズ原子の総量に対する、亜鉛原子の割合 (Zn/ (Zn + Sn)、原子比) が 0. 5〜0. 85である酸化亜鉛及び酸化スズを主成分とする透明導電膜を形成する 工程と、 [7] Transparent conductivity mainly composed of zinc oxide and tin oxide with a zinc atom ratio (Zn / (Zn + Sn), atomic ratio) to the total amount of zinc and tin atoms of 0.5 to 0.85 Forming a film;
前記透明導電膜を、エッチング液として蓚酸濃度が lwt%〜10wt%である水溶液
を用い、エッチング液の温度を 20〜50°Cの範囲においてエッチングし、パターニン グする工程と、を有する請求項 3に記載の透明電極の製造方法。 An aqueous solution having an oxalic acid concentration of 1 wt% to 10 wt% as an etching solution using the transparent conductive film The method for producing a transparent electrode according to claim 3, further comprising: etching and patterning an etching solution at a temperature of 20 to 50 ° C.
[8] 酸化亜鉛及び酸化スズを主成分とする透明導電膜を形成する第一工程と、 [8] a first step of forming a transparent conductive film mainly composed of zinc oxide and tin oxide;
前記透明導電膜上にレジスト膜を形成する第二工程と、 A second step of forming a resist film on the transparent conductive film;
前記レジスト膜をパターユングする第三工程と、 A third step of patterning the resist film;
前記透明導電膜を硝酸、塩酸及び水の混合溶液を用いエッチングし、テーパー角 力 ¾0〜89度である透明電極を形成する第四工程と、 Etching the transparent conductive film using a mixed solution of nitric acid, hydrochloric acid and water to form a transparent electrode having a taper angle of ¾ to 89 degrees; and
前記透明電極上に残存するレジスト膜を剥離する第五工程と、を含む請求項 3又 は 4に記載の透明電極の製造方法。 5. The method for producing a transparent electrode according to claim 3, further comprising a fifth step of peeling off the resist film remaining on the transparent electrode.
[9] 前記混合溶液の組成が、硝酸—塩酸—水の三成分系におレ、て、硝酸:塩酸:水の 比率で、(A) 2 : 2 : 96、(B) 2 : 2 : 96、 (C) 78: 2: 20及び(D) 78: 20: 2の組成点で 囲まれる四辺形の領域内にある請求項 8に記載の透明電極の製造方法。 [9] The composition of the mixed solution is nitric acid-hydrochloric acid-water ternary system in the ratio of nitric acid: hydrochloric acid: water (A) 2: 2: 96, (B) 2: 2: The method for producing a transparent electrode according to claim 8, wherein the transparent electrode is in a quadrilateral region surrounded by the composition points of 96, (C) 78: 2: 20 and (D) 78: 20: 2.
[10] 前記第四工程における硝酸:塩酸:水の混合溶液の温度が 20〜50°Cである請求 項 8又は 9に記載の透明電極の製造方法。 10. The method for producing a transparent electrode according to claim 8 or 9, wherein the temperature of the mixed solution of nitric acid: hydrochloric acid: water in the fourth step is 20 to 50 ° C.
[11] 前記第三工程で使用するレジスト現像液がテトラメチルアンモニゥムハイド口ォキサ イドの:!〜 5wt%水溶液であり、 [11] The resist developer used in the third step is an aqueous solution of tetramethylammonium hydride:! To 5 wt%.
前記第五工程で使用するレジスト剥離液がエタノールアミンを含む請求項 8〜: 10の いずれかに記載の透明電極の製造方法。 The method for producing a transparent electrode according to claim 8, wherein the resist stripping solution used in the fifth step contains ethanolamine.
[12] 酸化亜鉛及び酸化スズを主成分とする透明導電膜を、蓚酸水溶液を用いてエッチ ングする方法。 [12] A method of etching a transparent conductive film mainly composed of zinc oxide and tin oxide using an aqueous oxalic acid solution.
[13] 前記蓚酸水溶液における蓚酸の濃度力 Slwt%〜: 10wt%である請求項 12に記載 のエッチング方法。 13. The etching method according to claim 12, wherein the concentration power of oxalic acid in the aqueous oxalic acid solution is Slwt% ˜: 10 wt%.
[14] 酸化亜鉛及び酸化スズを主成分とする透明導電膜を、硝酸、塩酸及び水の混合溶 液を用いてエッチングする方法。 [14] A method of etching a transparent conductive film mainly composed of zinc oxide and tin oxide using a mixed solution of nitric acid, hydrochloric acid and water.
[15] 前記硝酸、塩酸及び水の混合溶液の組成が、硝酸一塩酸一水の三成分系におい て、硝酸:塩酸:水の比率で、 (A) 2 : 2 : 96、(B) 2 : 2 : 96、 (C) 78: 2: 20及び(D) 78[15] The composition of the mixed solution of nitric acid, hydrochloric acid and water has a ratio of nitric acid: hydrochloric acid: water in a ternary system of nitric acid-hydrochloric acid-water (A) 2: 2: 96, (B) 2 : 2: 96, (C) 78: 2: 20 and (D) 78
: 20 : 2の組成点で囲まれる四辺形の領域内にある請求項 14に記載のエッチング方 法。
The etching method according to claim 14, wherein the etching method is in a quadrilateral region surrounded by a composition point of 20: 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200580042675.1A CN101076869B (en) | 2005-01-11 | 2005-12-26 | Transparent electrode and method for manufacturing same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-003487 | 2005-01-11 | ||
JP2005003473A JP2006194926A (en) | 2005-01-11 | 2005-01-11 | Method for manufacturing transparent electrode |
JP2005003487A JP2006196201A (en) | 2005-01-11 | 2005-01-11 | Clear electrode and its manufacturing method |
JP2005-003473 | 2005-01-11 | ||
JP2005003477A JP2006196200A (en) | 2005-01-11 | 2005-01-11 | Transparent electrode and its manufacturing method |
JP2005-003477 | 2005-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006075506A1 true WO2006075506A1 (en) | 2006-07-20 |
Family
ID=36677536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/023700 WO2006075506A1 (en) | 2005-01-11 | 2005-12-26 | Transparent electrode and method for fabricating same |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20070093098A (en) |
TW (1) | TW200641490A (en) |
WO (1) | WO2006075506A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013035283A1 (en) * | 2011-09-05 | 2013-03-14 | 富士フイルム株式会社 | Transparent conductive film, manufacturing method for same, flexible organic electronic device, and organic thin film solar cell |
WO2015104962A1 (en) * | 2014-01-07 | 2015-07-16 | 三菱瓦斯化学株式会社 | Etching liquid for oxide containing zinc and tin, and etching method |
US11171301B2 (en) | 2017-05-15 | 2021-11-09 | Boe Technology Group Co., Ltd. | Organic light emitting diode and method for fabricating the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101156771B1 (en) * | 2010-08-26 | 2012-06-18 | 삼성전기주식회사 | Method of manufacturing conductive transparent substrate |
JP6481994B2 (en) * | 2014-10-23 | 2019-03-13 | 東京エレクトロン株式会社 | Pixel electrode pattern forming method and forming system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0874033A (en) * | 1994-09-02 | 1996-03-19 | Asahi Glass Co Ltd | Electrode for liquid crystal display |
JPH0881787A (en) * | 1994-09-14 | 1996-03-26 | Asahi Denka Kogyo Kk | Production of oxide etching product |
JPH08171824A (en) * | 1994-03-27 | 1996-07-02 | Gunze Ltd | Manufacture of transparent conductive film |
JPH08217578A (en) * | 1995-02-08 | 1996-08-27 | Idemitsu Kosan Co Ltd | Patterning method of amorphous conducting film |
JPH10294182A (en) * | 1997-04-18 | 1998-11-04 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
JPH10329257A (en) * | 1997-05-30 | 1998-12-15 | Sumitomo Bakelite Co Ltd | Antistatic film |
JP2000067657A (en) * | 1998-08-26 | 2000-03-03 | Internatl Business Mach Corp <Ibm> | Transparent conductive film excellent in infrared transmission and its manufacture |
JP2000085051A (en) * | 1998-09-11 | 2000-03-28 | Gunze Ltd | Transparent conductive film |
JP2000256060A (en) * | 1999-03-05 | 2000-09-19 | Idemitsu Kosan Co Ltd | Transparent conductive material, transparent conductive glass and transparent conductive film |
JP2004240091A (en) * | 2003-02-05 | 2004-08-26 | Idemitsu Kosan Co Ltd | Method for manufacturing transflective type electrode substrate |
-
2005
- 2005-12-26 WO PCT/JP2005/023700 patent/WO2006075506A1/en not_active Application Discontinuation
- 2005-12-26 KR KR1020077015725A patent/KR20070093098A/en not_active Application Discontinuation
-
2006
- 2006-01-06 TW TW095100652A patent/TW200641490A/en not_active IP Right Cessation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08171824A (en) * | 1994-03-27 | 1996-07-02 | Gunze Ltd | Manufacture of transparent conductive film |
JPH0874033A (en) * | 1994-09-02 | 1996-03-19 | Asahi Glass Co Ltd | Electrode for liquid crystal display |
JPH0881787A (en) * | 1994-09-14 | 1996-03-26 | Asahi Denka Kogyo Kk | Production of oxide etching product |
JPH08217578A (en) * | 1995-02-08 | 1996-08-27 | Idemitsu Kosan Co Ltd | Patterning method of amorphous conducting film |
JPH10294182A (en) * | 1997-04-18 | 1998-11-04 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
JPH10329257A (en) * | 1997-05-30 | 1998-12-15 | Sumitomo Bakelite Co Ltd | Antistatic film |
JP2000067657A (en) * | 1998-08-26 | 2000-03-03 | Internatl Business Mach Corp <Ibm> | Transparent conductive film excellent in infrared transmission and its manufacture |
JP2000085051A (en) * | 1998-09-11 | 2000-03-28 | Gunze Ltd | Transparent conductive film |
JP2000256060A (en) * | 1999-03-05 | 2000-09-19 | Idemitsu Kosan Co Ltd | Transparent conductive material, transparent conductive glass and transparent conductive film |
JP2004240091A (en) * | 2003-02-05 | 2004-08-26 | Idemitsu Kosan Co Ltd | Method for manufacturing transflective type electrode substrate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013035283A1 (en) * | 2011-09-05 | 2013-03-14 | 富士フイルム株式会社 | Transparent conductive film, manufacturing method for same, flexible organic electronic device, and organic thin film solar cell |
WO2015104962A1 (en) * | 2014-01-07 | 2015-07-16 | 三菱瓦斯化学株式会社 | Etching liquid for oxide containing zinc and tin, and etching method |
US9824899B2 (en) | 2014-01-07 | 2017-11-21 | Mitsubishi Gas Chemical Company, Inc. | Etching liquid for oxide containing zinc and tin, and etching method |
US11171301B2 (en) | 2017-05-15 | 2021-11-09 | Boe Technology Group Co., Ltd. | Organic light emitting diode and method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
TWI375099B (en) | 2012-10-21 |
KR20070093098A (en) | 2007-09-17 |
TW200641490A (en) | 2006-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4542008B2 (en) | Display device | |
JP2006196200A (en) | Transparent electrode and its manufacturing method | |
TWI394850B (en) | A display device using a Cu alloy film and a Cu alloy sputtering target | |
KR102546803B1 (en) | Etching solution composition for silver-containing layer and an display substrate using the same | |
TW200830558A (en) | Al alloy film for display device, display device, and sputtering target | |
JP2004140319A (en) | Thin film wiring | |
CN101047145A (en) | Method for preparing metal wire in active drive TFT matrix | |
TWI679308B (en) | Etching solution composition for silver and display substrate using the same | |
KR20140063283A (en) | Etchant composition for ag thin layer and method for fabricating metal pattern using the same | |
KR101168450B1 (en) | Indium Oxide/Cerium Oxide Sputtering Target, Transparent Conductive Film and Process for Producing Transparent Conductive Film | |
TWI636157B (en) | Etching solution composition for silver layer and display substrate using the same | |
TWI375099B (en) | ||
CN110644003A (en) | Silver thin film etching solution composition, etching method using same, and method for forming metal pattern | |
KR20090081546A (en) | Etchant composition for Ag thin layer and method for fabricating metal pattern using the same | |
CN106504987B (en) | Etching solution composition for silver layer, method of fabricating metal pattern using the same, and method of fabricating display substrate using the same | |
TW201303051A (en) | Al alloy film for display devices or semiconductor devices, display device or semiconductor device equipped with al alloy film, and sputtering target | |
JP2006194926A (en) | Method for manufacturing transparent electrode | |
KR101351198B1 (en) | TRANSPARENT CONDUCTIVE FILM LAMINATE CIRCUIT BOARD PROVIDED WITH Al WIRING AND PRODUCTION METHOD THEREFOR, AND OXIDE TRANSPARENT CONDUCTIVE FILM MATERIAL | |
CN101099188B (en) | TFT substrate and method for manufacturing same, transparent conductive film laminated substrate provided with A1 wiring and method for manufacturing same, transparent conductive film laminated circuit substrate provided with A1 wiring and method for manufacturing same, and oxide transparent conductive film material | |
CN105755472B (en) | Silver etchant composition and display substrate using the same | |
JP2007115431A (en) | Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same | |
KR101935131B1 (en) | Etching solution composition for silver-containing layer and manufacturing method for an array substrate for display device using the same | |
JP2006196201A (en) | Clear electrode and its manufacturing method | |
JP4700352B2 (en) | TFT substrate and manufacturing method thereof | |
JP2006210033A (en) | Laminated circuit board having al wiring and coated with transparent conductive film, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 200580042675.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077015725 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05819775 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 5819775 Country of ref document: EP |