WO2006070704A1 - High density information recording/reproducing/erasing method, and medium and apparatus used therein - Google Patents

High density information recording/reproducing/erasing method, and medium and apparatus used therein Download PDF

Info

Publication number
WO2006070704A1
WO2006070704A1 PCT/JP2005/023687 JP2005023687W WO2006070704A1 WO 2006070704 A1 WO2006070704 A1 WO 2006070704A1 JP 2005023687 W JP2005023687 W JP 2005023687W WO 2006070704 A1 WO2006070704 A1 WO 2006070704A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
recording
thin film
information recording
density
Prior art date
Application number
PCT/JP2005/023687
Other languages
French (fr)
Japanese (ja)
Inventor
Kuniko Kimura
Kei Kobayashi
Hirofumi Yamada
Toshihisa Horiuchi
Kenji Ishida
Kazumi Matsushige
Yukiko Mori
Original Assignee
Kyoto University
Kyoto Instruments Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Kyoto Instruments Co., Ltd. filed Critical Kyoto University
Priority to JP2006550734A priority Critical patent/JPWO2006070704A1/en
Publication of WO2006070704A1 publication Critical patent/WO2006070704A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor

Definitions

  • the present invention relates to a high-density recording medium capable of recording information in a minute area of the order of 100 square nanometers, a recording apparatus thereof, and a recording, reproducing, and erasing method thereof.
  • Background art
  • Patent Document 1 applies the STM principle, scans the surface of a polyimide LB film with a probe electrode, and records information at that position by applying a voltage of a predetermined value or more. Describes a device that can read (reproduce) the recorded information according to the strength of the tunnel current measured in.
  • Non-Patent Document 1 applies the principle of AFM, applies a force in the vertical direction to the film surface with the AFM probe while the polymer film is heated, and checks the film surface in a concave shape. Information is recorded. In this case, information is read out by measuring the ruggedness on the film surface using an AFM device.
  • the inventor of the present application has studied a method for controlling the orientation characteristics of fine particles, microcrystals, or molecules in a minute region using an AFM apparatus.
  • force is applied using a member having a sharp tip shape such as (but not limited to) an AFM probe to the entire film during film formation or after film formation or in an arbitrary region in the film.
  • the orientation direction of fine particles or microcrystals and / or molecules constituting the film is controlled.
  • the AFM probe is scanned on the film surface to apply a mechanical force in the scanning direction.
  • the molecular chain can be oriented in a predetermined direction.
  • the result of the orientation control depends on the film temperature when the force is applied.
  • the optimum temperature varies depending on the film material. Furthermore, even if the same film material is used, the optimum temperature is generally different between fine particle or microcrystal orientation control and molecular orientation control.
  • a thin film in which a lamellar microcrystal of a random copolymer of vinylidene fluoride and trifluoroethylene (P_ (VDF_TrFE)) is grown on a substrate so that the lamellar surface is oriented perpendicular to the substrate. Will be described as an example. While the thin film is heated, the force in the above-mentioned running direction can be obtained.
  • the microcrystal When the heating temperature is 80 ° C, the microcrystal is rotated by the force applied by the probe force, and its long axis (perpendicular to the molecular chain axis) is arranged approximately parallel to the scanning direction.
  • the molecular chain In the case of heating temperature force S135 ° C, the molecular chain is stretched in the direction of the tip of the probe and then folded and crystallized while maintaining the direction, so the c-axis (molecular chain axis) is Arrange substantially parallel to the scanning direction.
  • an organic polymer material has been described as an example, but the method described in Patent Document 2 can be applied to an organic low-molecular material such as an oligomer or a liquid crystal material.
  • the present invention can be applied to an inorganic thin film composed of fine particles or microcrystals.
  • the problem to be solved by the present invention is to enable high-density information recording, which is difficult with the prior art, by using a technique for controlling the orientation direction of fine particles or microcrystals and / or molecules in a minute region. It is to provide a new type of rewritable random access high density memory.
  • a high-density information recording method for solving the above problems uses a member having a sharp tip shape in a minute region of a thin film formed on a substrate, and is parallel to the surface of the thin film. By applying force, the orientation direction of fine particles, microcrystals, or molecules in the minute region is changed, and information is recorded.
  • a force parallel to the surface of the thin film for example, a member having a sharp tip shape is in contact with the surface of the thin film regularly or intermittently, and the member is microscopically parallel to the film surface. By moving the distance or vibrating, it is possible to measure the force in the direction parallel to the film surface.
  • the “steady contact state” refers to a state in which the distance between the member and the membrane surface or the contact pressure is controlled to be constant.
  • the “intermittent contact state” refers to a state in which the distance between them or the contact pressure is controlled so as to change periodically or aperiodically. (Hereinafter, “steady or intermittent contact” is used in the above-mentioned meaning in the present specification.) While maintaining the above state, the member is made minute in a direction parallel to the film surface. It shows that the force can be increased along the moving direction with respect to the film by moving the distance. It is also shown that force can be applied to the membrane along the direction of vibration by vibrating the member in a direction parallel to the membrane surface.
  • Each of the above examples is an example that can realize a force parallel to the film surface.
  • the temperature of the minute area may be controlled by the contact pressure between the member and the film.
  • the thin film when the thin film is made of a ferroelectric material, an electric field is applied to the minute region when the recording is performed, and the polarization in the minute region is changed to be superimposed on the information. Information can be recorded. Further, if the thin film is made of a ferromagnetic material, a magnetic field is applied to the minute area when recording is performed, and the magnetization in the minute area is changed to record different information superimposed on the information. You can also.
  • the high-density information recording method it is preferable to record information of three or more values in one information recording area in the minute area of the thin film. According to this technology, multi-value information can be recorded in one information recording area, so that the recording density can be further increased.
  • a recording medium used in the present invention is an information recording medium having at least a substrate and a thin film laminated on the substrate, and records information by the high-density information recording method described above. It is a high-density information recording medium capable of.
  • the thin film laminated on the substrate may be a single layer, or may be composed of a plurality of thin films laminated.
  • a part of a plurality of laminated thin films may include a protective film that does not record information directly.
  • information recording is performed using the above-described “recording method in which a force or heat in a direction parallel to the film surface is applied to a minute region of the thin film” and the above-described electric field or magnetic field.
  • the thin films formed may be the same or may be separate films. In the latter case, one high density information recording medium can be formed by laminating the respective films.
  • laminating a plurality of films recorded using different recording methods as described above it is important to place the film recorded using the above method on the outermost surface of the laminated medium. Is more effective.
  • a member having a sharp tip shape is contacted regularly or intermittently, and the member is minutely moved in a direction parallel to the film surface relative to the thin film. It is characterized in that it includes a step of reading the orientation direction of the fine particles, microcrystals or molecules in the microscopic region by detecting the force generated between the two when the distance is moved and / or vibrated.
  • the direction of vibration in the case of “vibrating the member relative to the thin film” is not necessarily limited to a direction parallel to the film surface, and includes a direction parallel to the film surface and a direction perpendicular to the film surface. Includes all directions in three dimensions. This causes a change in the interaction force acting between the two and detects it.
  • the high-density information recording / reproducing method includes the above-described high-density information recording method as one step of information recording (information recording step), and includes the above-described high-density information reproducing method for information reproduction. It is included as one process (information reproduction process).
  • FIG. 1 is a cross-sectional view showing an embodiment of a high-density information recording apparatus according to the present invention.
  • FIG. 2 (a) is a perspective view showing the operation of the high-density information recording apparatus of this example.
  • FIG. 3 is a cross-sectional view showing one embodiment of a high-density information recording apparatus having heating means.
  • FIG. 5 is a perspective view showing an information recording operation in a high-density information recording apparatus having electric field applying means.
  • FIG. 6 (b) is a cross-sectional view showing another operation of recording information in the high-density information recording apparatus having the electric field applying means.
  • FIG. 7 (b) is a cross-sectional view showing another operation of reproducing information in the high-density information recording apparatus having the electric field applying means.
  • 7 (c)] A cross-sectional view showing another operation of reproducing information in the high-density information recording apparatus having the electric field applying means.
  • FIG. 8 (a) is a view showing an AFM image of a P (VDF-TrFE) film 41 formed on a graphite substrate.
  • 8 (b)] Perspective view schematically showing the P (VDF-TYFE) film 41 formed on the graphite substrate
  • FIG. 9 (a) is a view showing an AFM image of a P (VDF-TrFE) film 42 formed on a glass substrate.
  • FIG. 9 (b) A perspective view schematically showing a P (VDF-TYFE) film 42 formed on a glass substrate.
  • FIG. 10 (a) An AFM image after recording information by moving the recording needle parallel to the surface of the P (VDF-TrFE) film 41 heated to 140-145 ° C.
  • FIG. 10 (b) An AFM image after recording information by moving the recording needle parallel to the surface of the P (VDF_TrFE) film 42 heated to 140-145 ° C.
  • FIG. 11 (a) AFM image immediately after recording of P (VDF-TrFE) film with recorded information.
  • FIG. 11 (b) AFM image of P (VDF-TrFE) film with recorded information after heating to 142 ° C.
  • FIG. 16 (a) AFM image of P (VDF_TrFE) film with recorded information.
  • Vibration mechanism (provides vibration in x_y plane)
  • the tip position of the member does not need to move.
  • a force other than mechanical force for example, an electromagnetic force
  • contact means that the distance between the two is such that an atomic force works.
  • the size of the region largely depends on the size of the tip diameter of the recording member. Therefore, in order to increase the recording density, a recording member having a small tip diameter is used. It is desirable. However, the recording density is not determined only by the tip diameter of the recording member, but also depends on the shape of the tip and the material of the film (recording medium). For example, even if the tip diameter is large, it is possible to apply a force parallel to the film surface to a part of the pole of the member tip by devising its shape. On the other hand, depending on the material of the film (recording medium), the orientation of a region wider than the tip diameter may be controlled by molecular self-organization. Therefore, for example, even when a recording member having a tip diameter of 10 mm is used, the size of the minute recording area can be made sufficiently smaller than the diameter of 10 mm by accurately selecting the tip shape and film material. Is possible.
  • the minimum recording area width is determined by the size of the fine particles or microcrystals.
  • the tip diameter of the recording member is large, there are advantages in terms of speeding up recording and erasing and ease of manufacturing the apparatus. For this reason, the tip diameter of the recording member can be appropriately selected according to the purpose.
  • the ultrasonic frequency, amplitude, elastic constant of the material constituting the recording member, sound speed, etc. By controlling the physical constant, it is possible to control the orientation more precisely.
  • the difference in orientation can be formed, for example, by a difference between a state in which the orientation of fine particles, microcrystals, or molecules is disordered and a state in which the orientation is 1J in a certain direction in the film surface.
  • the orientation of the fine particles, crystallites, or molecules is aligned in the first direction in the film surface and in a second direction different from that in the film surface (for example, a direction rotated 90 ° from the first direction). It can be a difference from the arranged state.
  • a molecular member in a minute region can be oriented perpendicular to the substrate by bringing a recording member heated to a temperature equal to or higher than the melting point into contact with the film surface regularly or intermittently.
  • a force parallel to the film surface cannot be applied during recording.
  • the information recording may be performed using one recording member or a plurality of recording members. When a plurality of recording members are used, higher speed recording is possible.
  • the recorded information can be reproduced using a member (reproduction member) having a sharp tip shape similar to that of the recording member.
  • the same member can be used for recording and reproduction, and different members can be used. Further, reproduction may be performed by using a plurality of members to function simultaneously.
  • An example of the reproduction method is shown below. First, a reproduction method in the case where information is recorded so that anisotropy of the orientation of fine particles, fine crystals, or molecules within the film surface will be described.
  • the reproducing member can be moved to a minute area from which information is to be read, and then the information in the minute area can be read out using the method described above. It is also possible to sequentially read information recorded in the entire area using the above method while scanning the entire surface of the recording medium.
  • the reproduction member is vibrated in one direction in the plane and reproduction is performed only from the response.
  • reproduction is performed by combining information obtained by vibrating in a plurality of different directions in the plane.
  • detection can be performed in parallel using a plurality of reproducing members. It is also possible to perform reproduction in chronological order using a single reproduction member.
  • the recording medium is fixed and the reproducing member is vibrated, but conversely, the recording medium may be vibrated.
  • vibration in a direction perpendicular to the film surface is applied from the back surface of the film by a method of providing a vibration element on a stage for fixing the recording medium.
  • the vibration propagates inside the film and then appears on the surface of the film, but when propagating inside the film, it undergoes changes according to the characteristics of the film. Therefore, the amplitude and phase of the transmitted vibration are measured on the membrane surface by the reproducing member.
  • mechanical vibration is less damped in the polymer chain direction and propagation speed is faster.
  • AFM tips with a tip diameter of 10 are widely available on the market.
  • this AFM probe is used as a recording member, as described above, the size of the minute recording area can be reduced to 10 nm xlOnm or less. That is, the high-density information recording medium according to the present invention can record lbit information in an area of 10 nm ⁇ 10 nm or less using an existing recording member.
  • the recording density is lTbit / cm 2. That's it. Further, the recording density can be further increased by producing a recording needle having a small tip diameter and optimizing the tip shape.
  • the orientation direction of fine particles or microcrystals and / or molecules in one minute recording region can be selectively oriented in a plurality of directions within the film surface. Furthermore, by selecting the material of the recording medium, it becomes possible to perform the alignment in the direction perpendicular to the film surface, and the alignment direction can be selected three-dimensionally. Thereby, the recording density is further improved. If n orientation directions can be selected, the recording density is log2n Tbit / cm 2 . In addition to the above, the recording density is further increased by selecting a ferroelectric material or a ferromagnetic material as the recording medium as described above and superimposing and recording information based on a difference in polarization or a difference in magnetization.
  • the recorded information without using the recording member is erased collectively (memory medium).
  • the orientation of the molecules can be controlled in a certain direction by heating above the melting point, and the regularity of changes in the molecular orientation is canceled and recorded. Information can be deleted at once.
  • the heating method include performing with a heating element provided on a stage holding a recording medium.
  • information recorded by applying an electric field or magnetic field can be overwritten with a single information by applying an electric or magnetic field in a certain direction to at least the recording area, and the information can be erased collectively.
  • erasing the described information is performed by using the member having a sharp tip shape with respect to the entire information recording area of the recording medium and using the information recording method described in at least any one of 4 above. This can also be done by overwriting the information.
  • the applied force, heat, electric field, magnetic field, etc. may be performed individually or sequentially in time series, or a plurality of means may be combined in any combination. You may do it at the same time.
  • erasure of information may be performed using a single member or a plurality of members. When a plurality of members are used, faster erasing is possible.
  • an organic low-molecular material oligomer material, polymer material, or the like
  • materials having anisotropy in their molecular shapes such as liquid crystal materials, are useful.
  • low-molecular materials that have the ability to self-assemble.
  • organic materials not only organic materials but also inorganic crystalline materials, metals, ceramics, etc. can be used.
  • inorganic ferroelectric microcrystals and fine particles, and thin films made of paramagnetic or ferromagnetic metal or ceramic microcrystals or fine particles are useful as recording media for use in the present invention.
  • ferroelectric microcrystals and fine particles for example, inorganic materials such as barium titanate, lead titanate, potassium hydrogen phosphate, Rossier salt, glycine sulfate, sodium nitrate, and thiourea are used. Can.
  • inorganic materials such as barium titanate, lead titanate, potassium hydrogen phosphate, Rossier salt, glycine sulfate, sodium nitrate, and thiourea are used.
  • metals such as nickel, iron, and cobalto are useful.
  • organometallic complexes having magnetism are also useful.
  • Examples of the organic polymer material include polyethylene resin, polypropylene resin, and polyolefin.
  • 4-methylpentene-1 resin which is a phen resin, polybutene-1 resin, polybutyl alcohol, ethylene monovinyl alcohol copolymer, polyataryl nitrinole, polybutadiene, polyisoprene, polyamide resin, polyethylene terephthalate Polyester resin typified by butylene terephthalate, polytetrafluoroethylene, polytrifluoroethylene (PTrFE), polyvinylidene fluoride (PVDF), copolymer of polyvinylidene fluoride and polytrifluoroethylene (P (VDF- TrFE)) fluorinated resins such as polysalt-bulu, polysalt-biurydene, polyatalylate, polymetatalylate, polycarbonate, polystyrene, phenol resin, urea resin, melanin resin, alkyd resin, acrylic
  • Polyarylene vinylene Polyphenylene vinylene, polyacetylene, polyphenylene diamine, polyaminophenol, polyvinyl carbazole, polymer viologen, polyion complex, TTF-TCNQ, and the like.
  • materials composed of organic low molecules or organic oligomers which are constituents of these polymers may be used. Materials such as polymer liquid crystals and oligomer liquid crystals are also useful.
  • a substrate made of a conventionally known substrate material can be used as the substrate of the present invention.
  • the substrate surface on which the thin film is formed be a substrate having a symmetric crystal structure.
  • a substrate having such a surface is, for example, a graphite, My force, sapphire, NaCl, KC1, KBr, SiC
  • the thin film crystal grown on the substrate can be formed by suitably using a conventionally known method such as vapor phase epitaxy, liquid phase epitaxy, molecular beam epitaxy, etc., depending on the material, form, conditions, etc. of the raw material. it can.
  • the orientation of the fine particles, microcrystals or molecules using the recording member is facilitated, and the higher the temperature.
  • Accurate orientation control may be possible.
  • it may be effective to heat the thin film material to a temperature higher than the glass transition temperature.
  • it may be effective to heat to a temperature close to the melting point of the thin film material. Since these conditions vary depending on the characteristics of the materials used as the recording medium, it is important to select the optimum conditions individually.
  • a polymer material having ferroelectricity as a material constituting the thin film.
  • the micro area is controlled.
  • the presence / absence or direction of the polarization of the region can be controlled.
  • information can be recorded by polarization independently of the information recording by orientation control, and information can be recorded at a higher density.
  • the same recording member used for the orientation control may be used as the recording member for recording the polarization information, or a different recording member may be used.
  • recording by molecular or amorphous orientation control and recording by polarization or magnetization state control may be performed independently of each other. Therefore, the micro area where information is recorded by the internal structure of the thin film and the micro area where information is recorded by polarization or magnetization do not have to be the same. For example, the micro area where information is recorded by polarization may be larger than the micro area where information is recorded by the internal structure.
  • Ferroelectric polymer materials include, for example, vinylidene fluoride polymer (PVDF), oligomers, vinylidene fluoride copolymers represented by random copolymers of vinylidene fluoride and trifluoroethylene, nylon 7, An odd number nylon such as nylon 9, nylon 11 and nylon 13, or an alternating polymer of cyanobiridene and butyl acetate can be used.
  • PVDF vinylidene fluoride polymer
  • oligomers vinylidene fluoride copolymers represented by random copolymers of vinylidene fluoride and trifluoroethylene
  • nylon 7 An odd number nylon such as nylon 9, nylon 11 and nylon 13, or an alternating polymer of cyanobiridene and butyl acetate can be used.
  • the present invention includes the above-described high-density information recording method as one step of information recording (information recording step), and the above-described high-density information reproducing method includes one step of information reproduction (information reproducing step).
  • the high-density information recording / reproducing method is included.
  • the high-density information recording / reproducing method includes a case where the information recording process and the information reproducing process are performed at different places and times. For example, the information recording process is performed at a predetermined place and time, and thereafter, the information reproducing process is performed at a place different from the predetermined place with a time interval. It may be broken.
  • the present invention may include a case where the information recording process and the information reproducing process are performed by different entities.
  • the high-density memory device is an information recording / reproducing device for recording information at a high density on an information recording medium including a thin film formed on a substrate and further reproducing the information.
  • only one member may be provided for both recording and reproduction, or a recording member and a reproduction member may be provided separately.
  • the recording member is moved to the position of the minute region of the information recording medium, and the member is in constant or intermittent contact with the film surface at that position.
  • a force that applies a force in a predetermined direction within the film surface or a force that vibrates in a predetermined direction within the film surface is applied to the member.
  • the orientation direction of the fine particles, microcrystals or molecules constituting the film is changed, and information is recorded.
  • an external force is applied to the recording member. Carry out the drive.
  • the apparatus can also control the orientation direction of the crystal or molecule by controlling only the temperature of the minute region using a recording member.
  • the reproducing member In reproducing information, the reproducing member is brought into contact with a minute region of the information recording medium regularly or intermittently, and then the member and / or the recording medium are moved by a minute distance in a direction parallel to the film surface. Alternatively, by oscillating one or both of the two, the force generated between the two is detected, and the orientation direction of the fine particles, microcrystals, or molecules in the minute region is read out.
  • the large-capacity memory realized by the present invention may be a rewritable memory or a random access type memory.
  • FIG. 1 shows a cross-sectional view of one embodiment of a high-density memory device according to the present invention.
  • This high-density memory device includes a stage 11 on which the high-density information recording medium 10 according to the present invention is placed, a stage moving device 12 that moves the stage 11 in the x, y, and z-axis directions, and a sharp tip shape. And a Si panel panel 14 having recording and recording / reproducing needles 13.
  • the X-axis and y-axis directions are directions parallel to the surface of the high-density information recording medium 10
  • the z-axis direction is a direction perpendicular to the high-density information recording medium 10.
  • the stage moving device 12 is composed of a two-stage moving device, a coarse moving device 12a and a fine moving device 12b.
  • the stage moving device 12 is driven by a driver 15.
  • the fine movement device 12b can be used in the X-axis direction, the y-axis direction, and the z-axis It can be vibrated at the required frequency in the direction.
  • the apparatus further includes a cylindrical outer frame 24 that fixes the above-described parts.
  • the outer frame 24 is divided into an upper part 24a and a lower part 24b, and the leaf spring 14 and the detection unit 16 described later are fixed to the upper part 24a, and the stage 11 and the stage moving device 12 are fixed to the lower part 24b.
  • the outer frame 24 includes a mechanism in which the upper part 24a can rotate 360 degrees in the x_y plane with respect to the lower part 24b. With this mechanism, the plate panel 14 can be rotated in any direction within the x_y plane about the recording / reproducing needle 13.
  • the high-density memory device further includes a detection unit 16 for detecting a force acting on the plate panel 14.
  • the driver 15 and the detection unit 16 of the stage moving device 12 are controlled by the control unit 17.
  • the driver 15 changes the relative position between the stage 11 and the recording / reproducing needle 13 and changes the contact pressure between the two by adjusting the distance in the z-axis direction between the two. This contact pressure can be set according to the material of the high-density information recording medium 10.
  • a mechanism 22 that vibrates the recording / reproducing needle 13 in the x_y plane and a mechanism 23 that vibrates in the z direction are provided at the base of the leaf spring 14.
  • each of these unit devices those provided in a normal AFM device can be used as they are.
  • a piezoelectric element can be used for the fine movement device 12b.
  • the detector 16 can be a detector that detects the displacement of the plate panel 14 by an optical method such as an optical lever method or a laser interference method.
  • a cantilever used in AFM or STM can be used as a plate panel with a recording / reproducing member. In this case, by using a self-detection type cantilever such as a piezoelectric type or a piezoresistive type, a detection system such as the above-mentioned optical lever method or laser interference method becomes unnecessary.
  • the film constituting the high-density information recording medium 10 is virtually divided into a large number of minute regions.
  • the recording / reproducing needle 13 is arranged immediately above the micro area 21 by the stage moving device 12. In this way, the stage 11 is moved in the X-axis direction and the y-axis direction (Fig. 2 (a)). Then, the stage 11 is moved in the z-axis direction, and the high-density information recording medium 10 and the recording / reproducing needle 13 are brought into contact with each other regularly or intermittently.
  • the information described in the micro area 21 can be reproduced using the following method.
  • the recording / reproducing needle 13 is disposed immediately above the minute area 21 using the same mechanism as that used for recording.
  • the stage 12 is moved in the ⁇ -axis direction, and the high-density information recording medium 10 and the recording / reproducing needle 13 are brought into contact with each other.
  • the recording / reproducing needle 13 is vibrated in a specific direction parallel to the recording medium surface.
  • the magnitude of the force that the recording / reproducing needle 13 receives from the surface of the recording medium is detected by the detection unit 16 as the magnitude of the twist of the plate panel 14.
  • the recording / reproducing needle 13 is vibrated using the vibration mechanism 22, but even if the recording medium is vibrated using the fine movement device 12 b, it may be detected as the amplitude and phase of the twist of the plate panel 14.
  • the vibration direction described as “specific” in the above can be set to any direction. In addition, it is possible to reproduce information with higher accuracy by using data oscillated in different directions for one minute region.
  • the following method is also effective as another method for detecting the orientation direction of fine particles, microcrystals, or molecules.
  • the recording / reproducing needle 13 is vibrated in the z-axis direction using the vibration mechanism 23, the stage 11 is used to approach the recording medium surface, and the recording / reproducing needle 13 is positioned so as to intermittently contact the recording medium surface.
  • the recording / reproducing needle 13 is torsionally vibrated in a specific direction parallel to the surface of the recording medium using the vibration mechanism 22 or the fine movement device 12b, and the magnitude of the force that the recording / reproducing needle 13 receives from the surface of the recording medium is measured on the plate panel. It is also possible to detect using the detector 16 as a signal of the magnitude and phase of 14 twists.
  • the following method is also effective as another method for detecting the orientation direction of fine particles, microcrystals, or molecules.
  • the stage 11 is moved in the z-axis direction, and the high-density information recording medium 10 and the recording / reproducing needle 13 are brought into contact with each other.
  • the recording / reproducing needle 13 is moved by a minute distance in the direction perpendicular to the long axis of the plate panel 14, the plate panel receives a twisting force.
  • Information can be reproduced by detecting the amplitude information of the torsion signal by the detection unit 16.
  • the orientation information is reproduced using the following method. It can. First, the recording / reproducing needle 13 is arranged immediately above the minute region 21 using the same mechanism as in the above example. Next, the stage 11 is moved in the z-axis direction, and the high-density information recording medium 10 and the recording / reproducing needle 13 are brought into contact with each other. In this state, the recording medium is vibrated in the z-axis direction using the stage 12. After propagating through the recording medium, the amplitude and phase information of the vibration transmitted to the recording / reproducing needle 13 is detected using the detection unit 16. This makes it possible to regenerate whether the orientation direction of the fine particles, microcrystals, or molecules is perpendicular or horizontal to the film surface.
  • the recording / reproducing needle 13 is intermittently brought into contact with the surface of the recording medium by using the stage moving device 12 while vibrating the recording / reproducing needle 13 in the z-axis direction using the vibration mechanism 23. Whether the orientation direction of the fine particles, microcrystals, or molecules is perpendicular to the film surface or horizontal by reading the phase information of the vibration of the plate panel 14 in this state using the detection unit 16 Can also be played.
  • all the recorded minute areas may be moved in the same direction by the recording / reproducing needle 13 so that all the areas are in the same state. Further, the recording state may be changed in the entire area by heating the entire thin film to a predetermined temperature or higher.
  • the same member (recording / reproducing needle 13) is used for both recording and reproduction.
  • a recording needle and a reproducing needle may be separately prepared and used separately.
  • the recording / reproducing needle 13 is further connected to the high-density information recording apparatus of FIG.
  • a heating means (heater) 18 for heating and a thermometer 19 for measuring the temperature of the recording / reproducing needle 13 are provided.
  • the control unit 17 feeds back the measurement result of the thermometer 19 and controls the output of the heater 18 so that the recording / reproducing needle 13 has a temperature suitable for recording and / or erasing.
  • Other configurations and operations are the same as those of the high-density information recording apparatus of FIG.
  • a laser light source for irradiating the recording area with laser light may be used instead of the heater 18 of the present embodiment. Also, like the heater 18 and laser light source, the recording area is localized. Instead of the heating means for heating the medium, a medium for heating the entire high-density information recording medium 10 may be used. In this case, the heating temperature can be easily controlled by only the portion where the force is applied by the recording / reproducing needle 13, and the orientation of the other portions is not changed by the temperature alone. Set to value.
  • an electric field applying means 31 is further provided in the high-density information recording apparatus of FIG.
  • the electric field applying means 31 applies a positive or negative DC voltage corresponding to the value between the recording / reproducing needle 13 and the stage 11 at the time of recording information and an AC voltage at the time of reproducing.
  • this high density information recording apparatus will be described.
  • the recording / reproducing needle 13 is brought into contact with the minute region 21 by the stage moving device 12.
  • the stage 11 is moved in a predetermined direction while applying a positive or negative DC voltage between the recording / reproducing needle 13 and the stage 11.
  • the mechanical force in the direction opposite to the moving direction of the stage 11 (the moving direction when moving the recording / reproducing needle 13 with the minute area 21 fixed) and the DC power
  • the force from the field is applied to the high-density information recording medium 10.
  • fine particles, microcrystals, or molecules change according to the moving direction of the recording / reproducing needle 13, and polarization induced by the applied DC electric field is generated.
  • an electric field is simply applied without applying a mechanical force to the high-density information recording medium 10 (that is, without using the present invention at the time of recording). By doing so, information can also be recorded.
  • a positive or negative value is placed between the stage 11 and the recording / reproducing needle 13 without moving the stage 11. Apply DC voltage.
  • the downward polarization P1 is in the recording area (Fig. 6 (a)).
  • the upward polarization P2 is (Fig. 6 (b)).
  • Each formed 2 Value information is recorded by the direction of polarization. Independently, by applying a mechanical force by the method described in (1-1) or H-2), fine particles or microcrystals and / or molecules constituting the thin film are controlled. Information can also be recorded. That is, in the high-density information recording apparatus according to the present invention, information recording by the dynamic force according to the present invention and information recording using an electric field by a conventional method are performed on the same high-density information recording medium 10. Ability to do it independently.
  • Information can be reproduced by detecting the direction of polarization.
  • the recording / reproducing needle 13 having conductivity is brought into contact with the recording area of the high-density information recording medium 10 regularly or intermittently, and the recording / reproducing needle 13-stage. Apply an AC voltage across 11.
  • application of alternating voltage causes the film thickness to expand and contract due to the piezoelectricity in the film thickness direction.
  • This vibration can be detected as vibration in the z direction of the recording / reproducing needle 13 having conductivity.
  • the frequency of this piezoelectric vibration is the same as the frequency of the applied voltage.
  • Information can be erased by polarizing the entire information recording area in the same direction by the above-described recording method using the recording / reproducing needle 13. Further, the recording force can be erased by applying an electric field in the same direction to at least the entire information recording area of the recording medium without using the recording / reproducing needle 13.
  • a specific method of the latter can be realized by placing a recording medium between two parallel plate electrodes and applying a voltage of a certain value or more between the electrodes.
  • a P (VDF-TrFE) film 41 made of crystals and having a thickness of about lOOnm was obtained.
  • a P (VDF-TrFE) film 42 having a film thickness of about 150 nm was obtained in which the c-axis of the lamellar microcrystal was arranged 1J perpendicular to the film surface.
  • FIGs. 8 (a), 8 (b), 9 (a), and 9 (b) The P (VDF-TrFE) film shown in Figs. 8 (a), 8 (b), 9 (a), and 9 (b) is slightly lower than the melting point (147 ° C). While the film was heated to 140 to 145 ° C., the recording needle was brought into contact with the surface of the film with a needle thickness of 2 nN to 30 nN. In this state, it was moved at a speed of 4 micrometers / second parallel to the film surface, and a horizontal force was applied to control the orientation of the molecules, and information was recorded.
  • Figures 10 (a) and 10 (b) show AFM images (taken at a temperature of 30 ° C) of the film surface after information recording. Here, the recording needle was moved within the minute region 51 in the figure.
  • Fig. 10 (a) P (VDF-TrFE) film 41 and Fig. 10 (b) P (VDF-TrFE) film 42 the c-axis (molecular chain axis) is recorded for the microcrystals in the minute region 51. Allocated in the direction of needle movement. On the other hand, the microcrystals were not arranged in the region 52 where the recording needle was not moved. In this way, the arrangement of the microcrystals can be controlled for each minute region by moving the recording needle, and thus information can be recorded for each minute region.
  • FIG. 11 (a) shows an AFM image of the film surface observed at 30 ° C after recording information.
  • the area surrounded by the dotted line is an area 51 where information is recorded by controlling the molecular orientation by applying a force in the direction of the arrow using a recording needle.
  • Figure 1 Kb) shows the result of AFM observation at 30 ° C after heat-treating this sample at 142 ° C for 1 hour. It can be seen that there is no change from the molecular orientation state immediately after recording (Fig. 11 (a)).
  • the P (VDF-TrFE) film on the graphite substrate can erase the information written in the micro area by this caloric heat, with the c-axis parallel to the film surface and the in-plane directions. It was.
  • the P (VDF-Tr rFE) film on the glass substrate records the information by moving the recording needle and the c-axis is arranged in the moving direction of the recording needle (direction parallel to the film surface). By heating to a temperature (160 ° C) sufficiently higher than the melting point (147 ° C), the c-axis was aligned perpendicular to the film surface, and the information was erased. Also, by setting the entire P (V DF-TYFE) film to a temperature higher than the melting point, all recorded information could be erased at once.
  • Region 53 was scanned and polarized. Further, while applying a voltage of ⁇ 7 V to the recording needle, the region 54 having a size of 300 nm ⁇ 300 nm within the region subjected to the polarization treatment was scanned, and the polarization treatment was performed in the direction opposite to the polarization.
  • Figure 12 (a) shows an AFM image of the area recorded at 30 ° C after the above processing. Thick arrows indicate the direction in which force was applied using the recording needle during the orientation process.
  • the region subjected to polarization treatment is indicated by a dotted line.
  • FIG. 12 (b) shows the result of measuring the polarization information of the above-mentioned regions 53 and 54 by using the technique of the piezoelectric power microscope. It can be seen that the polarization is clean in the + and – directions. Further, in the above operation, it is understood that the information can be rewritten because the -direction polarization is formed in the region 54 where the polarization information in the + direction has already been recorded. In this way, by using the P (VDF_TYFE) film as the high density information recording medium 10 of the high density information recording apparatus shown in FIG. For The recording of information by the polarization control that was performed could be performed independently. As a result, the recording density could be further increased.
  • the direction in which the force is increased using the recording needle is indicated by an arrow.
  • the microcrystals in the film after the movement of the recording needle are arranged with the c-axis facing this direction of movement.
  • a solution prepared by dissolving polybutene in xylene was spin-coated on a graphite substrate, and then heat-treated at 130 ° C.
  • a polybutene crystal in which the c-axis (molecular chain axis) was arranged 1J parallel to the film surface was obtained. These crystals are randomly oriented in the film plane (Fig. 14 (a)). While this polybutene film was heated to 112 ° C, which is slightly lower than its melting point of 115 ° C, the recording needle was brought into contact with the surface of the film with a needle thickness of 2 nN and parallel to the film surface at a speed of 20 nanometer / second. A horizontal force was applied to the membrane surface.
  • Figure 14 (b) shows the AFM image of the film after this treatment.
  • the direction in which the force is increased using the recording needle is indicated by an arrow. Due to the force applied using the recording ⁇ ", the crystallites in the film are aligned so that the c-axis is in this direction of movement.
  • the polybutene film is a P (VDF-TrFE) film. It can be seen that information can be recorded in the same way as with polyethylene film.
  • Example (2-1) A film was formed in the same manner as in Example (2-1) to obtain a P (VDF-TrFE) thin film with a thickness of 25 mm.
  • the recording needle With this film heated to 80 ° C., the recording needle is brought into contact with the film surface and moved in the same manner as in Example (2-1) to apply a horizontal force to the film surface to record information. It was.
  • the results are shown in Fig. 15 (a) as an AFM image observed at 30 ° C.
  • the direction of the force applied using the recording needle is indicated by an arrow. Shown in Here, the lower half of the figure is an area where information is recorded. From this figure, as shown in Fig. 15 (b), the crystallites rotate and the major axis of the crystallites changes as shown in Fig. 15 (b).
  • the needles are neatly oriented in the direction of needle movement.
  • conditions such as temperature, material, and the magnitude of force applied by the recording needle, the orientation direction of not only molecules but also microcrystals can be controlled using the method of the present invention. It is possible to record information.
  • FIG. 16 (a) Information recorded on the information recording medium (Fig. 16 (a)) in which the orientation of the molecules was controlled after P (VDF-TrFE) was produced on the graphite substrate using the same method as in Example (2-1). An example of playing is shown.
  • the lower half of FIG. 16 (a) is the above-described orientation control, that is, an area where information is recorded.
  • the recording medium was vibrated at a frequency of 10 kHz in the y-axis direction using the fine movement device 12b shown in FIG.
  • the molecular force is oriented in the direction of the molecular chain force axis (the long axis of the crystallites is oriented in the X-axis direction), so the frictional force in the molecular chain direction becomes the frictional force perpendicular to the molecular chain. Therefore, the amplitude output of the vibration transmitted to the recording / reproducing needle 13 in contact with the film surface is small with respect to the vibration in the y-axis direction of the recording medium.
  • each microcrystal is oriented in a random direction, so the molecular chain force S x axis direction of these microcrystals ( The crystallites facing the long axis force (Sy axis direction) of the crystallite are brightly displayed in Fig. 16 (b) where the amplitude output is large.
  • the presence or absence of orientation can be detected by the difference in amplitude output, and information recorded on the thin film can be read out.
  • This method can also be used for other than thin films in which information is recorded depending on the presence or absence of orientation.
  • the major axis direction of the microcrystals is parallel to the y axis (0 ° direction), 45 from the y axis.
  • Three types of information arranged in the rotated direction (45 ° direction) and x-axis direction (90 ° direction) are recorded on the thin film.
  • the amplitude output obtained by the above playback method has the minimum value when the orientation is 0 ° (the image is darkest), the maximum value when the orientation is 90 ° (the image is brightest), and the amplitude output when the orientation is 45 °. It becomes the intermediate value.
  • information of three values or more can be recorded and read in one area, and the recording density can be further increased.
  • This method is not limited to P (VDF-TrFE) produced on the above graphite substrate, but also a P (VDF-TrFE) film formed on another substrate such as a glass substrate or a metal substrate,
  • the present invention can also be applied to thin films made of other materials such as polyethylene films and polybutene films.
  • Example (2-4) An example is shown in which recorded information is reproduced on an information recording medium in which the orientation of molecules is controlled after a polyethylene film having a thickness of 300 mm is formed on a graphite substrate using the same method as in Example (2-4). .
  • the recording / reproducing needle 13 is brought into contact with the area where information is recorded, the recording / reproducing needle 13 is vibrated at a frequency of 30 kHz in the y-axis direction by using the vibration mechanism 22 shown in FIG.
  • the amplitude and phase of vibration in the y-axis direction of the recording / reproducing needle 13 are detected using the detection unit 16 and the lock-in amplifier.
  • molecular orientation information can be read as in Example (3-1).
  • the same results can be obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films. Information recorded by control can be read.
  • Example (3-2) An example will be shown in which recorded information is reproduced for a polyethylene film on which information is recorded using the same method as in Example (3-2).
  • the recording / reproducing needle 13 is moved closer to the surface of the recording medium using the stage moving mechanism 12 while vibrating in the z-axis direction at 10 kHz using the vibrating mechanism 23. Then, the position of the recording / reproducing needle 13 in the z-axis direction is determined so that the recording / reproducing needle 13 intermittently contacts the surface of the recording medium.
  • the vibration mechanism 22 shown in FIG. 1 the recording / reproducing needle 13 is vibrated at a frequency of 50 kHz in the y-axis direction.
  • Example (3-2) the orientation information of the molecule can be read as in Example (3-2).
  • glass substrate gold Similar results can be obtained with polyethylene films formed on other substrates such as metal substrates, as well as P (VDF-TrFE) films and polybutene films, and the recorded information can be read by controlling molecular orientation. .
  • Example 2-5 An example of reproducing recorded information using an information recording medium in which the orientation of molecules is controlled after a polybutene film is formed on a graphite substrate using the same method as in Example (2-5) is shown.
  • the magnitude of torsional deformation in the y-axis direction of the leaf spring 14 at this time is detected by the detector 16.
  • the orientation direction of the molecules can be read out.
  • molecular orientation information can be read as in Example (3-2).
  • similar results can be obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films, and recording can be performed by controlling molecular orientation.
  • Information can be read
  • This vibration propagates to the recording / reproducing needle 13 while causing attenuation or phase delay inside the film, and the detection unit 16 detects the amplitude and phase information of the vibration of the recording / reproducing needle 13 in the z-axis direction, and lock-in amplifier.
  • vibration attenuation and phase lag are larger in the film than in the region where molecules are aligned perpendicular to the substrate.
  • the force that is oriented in any parallel direction can be detected.
  • molecular orientation information can be read.
  • the elastic modulus in the 3 ⁇ 4-axis direction is small and the energy loss on the film surface is large, so the elastic modulus in the z- axis direction is small and the phase lag is large. Since a signal is obtained, it is possible to detect a force in which a molecular chain is oriented in a direction perpendicular to or parallel to the substrate from these elastic moduli and phase lag.
  • Similar results were obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films. The recorded information can be read out.
  • Example (3-2) An example will be shown in which recorded information is reproduced for a polyethylene film on which information is recorded using the same method as in Example (3-2).
  • the recording / reproducing needle 13 is moved closer to the surface of the recording medium using the stage moving mechanism 12 while vibrating in the z-axis direction at 10 kHz using the vibrating mechanism 23.
  • the position of the recording / reproducing needle 13 in the z-axis direction is determined so that the recording / reproducing needle 13 intermittently contacts the surface of the recording medium.
  • the recording medium was vibrated at a frequency of 10 kHz in the y-axis direction using the fine movement device 12b shown in FIG.
  • Example 2-5 An example of reproducing recorded information using an information recording medium in which the orientation of molecules is controlled after a polybutene film is formed on a graphite substrate using the same method as in Example (2-5) is shown.
  • the First while the recording / reproducing needle 13 is vibrated in the z-axis direction at 10 kHz using the vibrating mechanism 23, the recording / reproducing needle 13 is moved closer to the recording medium surface using the stage moving mechanism 12. Then, the position of the recording / reproducing needle 13 in the z-axis direction is determined so as to intermittently contact the surface of the recording medium.
  • the recording / reproducing needle 13 After the recording / reproducing needle 13 is intermittently brought into contact with the area where the information is recorded, the recording / reproducing needle 13 is moved in the direction perpendicular to the long axis of the plate panel 14 that supports the stage moving mechanism 12 using the y-axis. Move it a small distance in the direction. As a result, the recording / reproducing needle 13 applies a force in the moving direction to the film surface.
  • the magnitude of torsional deformation in the y-axis direction of the leaf spring 14 at this time is detected by the detector 16. Since the deformation of the plate panel is larger in the region in which the molecules are oriented in the X-axis direction than in the region in which the molecules are oriented in the y-axis direction, the orientation direction of the molecules can be read out.
  • molecular orientation information can be read as in Example (3-2).
  • similar results are obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films.
  • the recorded information can be read.
  • Example (2-1) Using the same method as in Example (2-1), in the area of 100 nm ⁇ 100 nm in the P (VDF-TrFE) thin film formed on the graphite substrate as the recording medium:! -11 Information was recorded by controlling the orientation of molecules in different directions. Next, using the same method as in Example (3-1), information was reproduced as the torsional amplitude of the panel panel 14. The results are shown in Figure 17. In this figure, the horizontal axis represents the angle between the orientation direction of the molecules in the regions 1 to 11 and the minor axis of the leaf spring 14, and the vertical axis represents the magnitude of the torsional amplitude.
  • the solid line shows the magnitude of the torsional amplitude due to friction that is theoretically expected based on the values of 0 ° and 90 ° between the numerator and the plate panel. Show. From the results in Fig. 17, it is understood that information recorded using the method of Example (2-1) in all directions within the recording medium surface can be accurately reproduced using the method of Example (3-1). Karu.
  • the present invention relates to a high-density information recording, reproducing, and erasing method, and a medium and apparatus used therefor. Therefore, it has a wide range of industrial applicability, including the electronics industry using powerful technology.

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

Orientation direction of fine particles, microcrystals and molecules composing a thin film is changed and information is recorded by virtually dividing the thin film into a multitude of fine regions, bringing a recording/reproducing needle having a sharp leading edge shape into contact with one of the fine regions (for instance, a fine region) and by moving the needle parallel to a surface of the thin film. For instance, information of “0” and “1” is recorded in every fine region by changing the internal structure in two states. The information is read by detecting an interaction force generated between the needle and the thin film, in a status where the recording/reproducing needle having the sharp leading edge shape is brought into constant or intermittent contact with the surface of the thin film.

Description

明 細 書  Specification
高密度情報記録、再生、消去方法、並びにそれに使用される媒体及び装 置  High-density information recording, playback, and erasing methods, and media and devices used therefor
技術分野  Technical field
[0001] 本発明は、 100平方ナノメートルオーダーの微小領域に情報を記録することが可能 な高密度記録媒体及びその記録装置、及びその記録、再生、消去方法に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a high-density recording medium capable of recording information in a minute area of the order of 100 square nanometers, a recording apparatus thereof, and a recording, reproducing, and erasing method thereof. Background art
[0002] メモリの分野では常に記録密度の向上が求められる。シリコン半導体メモリや磁気 ディスクでは、記録密度はこれまでほぼムーアの法則に従って向上してきた力 いず れ限界に達すると考えられる。そこで、従来のものとは異なる原理で動作する新しレ、 メモリが求められている。  [0002] In the field of memory, improvement in recording density is always required. For silicon semiconductor memory and magnetic disks, the recording density is expected to reach the limit of the force that has been improved according to Moore's Law. Therefore, there is a need for a new memory that operates on a principle different from the conventional one.
[0003] そのようなメモリの 1つとして、走查型トンネル顕微鏡(Scanning Tunneling Microsco pe : STM)や原子間力顕微鏡 (Atomic Force Microscope : AFM)の原理を応用したメ モリが検討されている。例えば特許文献 1には、 STMの原理を応用して、ポリイミド LB 膜の膜面をプローブ電極で走査しつつ、所定値以上の電圧を印加することによりそ の位置に情報を記録し、その位置において測定されるトンネル電流の強弱により記 録情報を読み出す (再生する)ことができる装置が記載されている。また、非特許文 献 1には、 AFMの原理を応用して、ポリマー膜を加熱した状態で AFMの探針により膜 面に垂直方向の力を印加し、膜表面を凹状にカ卩ェして情報を記録することが記載さ れている。この場合、情報の読み出しは AFM装置を用いて膜表面の凹凸形状を測定 することにより行われる。  [0003] As one of such memories, a memory applying the principle of a scanning tunneling microscope (STM) or an atomic force microscope (AFM) is being studied. For example, Patent Document 1 applies the STM principle, scans the surface of a polyimide LB film with a probe electrode, and records information at that position by applying a voltage of a predetermined value or more. Describes a device that can read (reproduce) the recorded information according to the strength of the tunnel current measured in. Non-Patent Document 1 applies the principle of AFM, applies a force in the vertical direction to the film surface with the AFM probe while the polymer film is heated, and checks the film surface in a concave shape. Information is recorded. In this case, information is read out by measuring the ruggedness on the film surface using an AFM device.
[0004] 一方、本願発明者は、 AFM装置を用いて微小領域における微粒子又は微結晶又 は分子の配向特性を制御する方法について検討を行ってきた。特許文献 2には、製 膜途中又は製膜後の膜全体又は膜内の任意の領域に AFMの探針等(これに限定さ れない)の鋭利な先端形状を有する部材を用いて力を加えることにより、膜を構成す る微粒子又は微結晶及び/又は分子の配向方向を制御することが記載されている。 この文献によれば、例えばポリマー材料では、ポリエチレン薄膜、ポリ三フッ化工チレ ン薄膜、フッ化ビニリデン薄膜等の多くの薄膜において、膜面上で AFM探針を走査 してその走査方向に力学的な力を与えることにより、その力を受けた領域内の微粒子 又は微結晶又は分子鎖を所定の方向に配向させることができる。 On the other hand, the inventor of the present application has studied a method for controlling the orientation characteristics of fine particles, microcrystals, or molecules in a minute region using an AFM apparatus. In Patent Document 2, force is applied using a member having a sharp tip shape such as (but not limited to) an AFM probe to the entire film during film formation or after film formation or in an arbitrary region in the film. In addition, it is described that the orientation direction of fine particles or microcrystals and / or molecules constituting the film is controlled. According to this document, for example, in polymer materials, polyethylene thin film, polytrifluoride steel In many thin films such as silicon thin films and vinylidene fluoride thin films, the AFM probe is scanned on the film surface to apply a mechanical force in the scanning direction. Alternatively, the molecular chain can be oriented in a predetermined direction.
配向制御の結果は力を加える時の膜温度に依存する。また、最適温度は膜材料に よって異なる。更に、同じ膜材料であっても、一般に、微粒子又は微結晶の配向制御 と分子の配向制御では最適温度が異なる。このことについて、基板上にフッ化ビニリ デンと三フッ化工チレンのランダム共重合体(P_(VDF_TrFE))のラメラ型微結晶を、 そのラメラ面が基板に垂直に配向するように成長させた薄膜を例に説明する。この薄 膜を加熱しつつ上記走查方向の力をカ卩える。加熱温度が 80°Cの場合には微結晶が 探針力 受ける力により回転しその長軸 (分子鎖軸に対して垂直方向)が走査方向 に略平行に配列する。それに対して、加熱温度力 S135°Cの場合には分子鎖が探針の 走查方向に引き伸ばされた後、その方向を維持しながら折り畳まれ結晶化するため、 c軸(分子鎖軸)が走査方向に略平行に配列する。なお、ここでは有機のポリマー材 料を例に挙げて説明したが、特許文献 2に記載の方法はオリゴマー又は液晶材料な どの有機低分子材料にも適用可能である。更に、微粒子又は微結晶で構成される無 機薄膜に対しても適用可能である。  The result of the orientation control depends on the film temperature when the force is applied. The optimum temperature varies depending on the film material. Furthermore, even if the same film material is used, the optimum temperature is generally different between fine particle or microcrystal orientation control and molecular orientation control. In this regard, a thin film in which a lamellar microcrystal of a random copolymer of vinylidene fluoride and trifluoroethylene (P_ (VDF_TrFE)) is grown on a substrate so that the lamellar surface is oriented perpendicular to the substrate. Will be described as an example. While the thin film is heated, the force in the above-mentioned running direction can be obtained. When the heating temperature is 80 ° C, the microcrystal is rotated by the force applied by the probe force, and its long axis (perpendicular to the molecular chain axis) is arranged approximately parallel to the scanning direction. On the other hand, in the case of heating temperature force S135 ° C, the molecular chain is stretched in the direction of the tip of the probe and then folded and crystallized while maintaining the direction, so the c-axis (molecular chain axis) is Arrange substantially parallel to the scanning direction. Here, an organic polymer material has been described as an example, but the method described in Patent Document 2 can be applied to an organic low-molecular material such as an oligomer or a liquid crystal material. Furthermore, the present invention can be applied to an inorganic thin film composed of fine particles or microcrystals.
〔特許文献 1〕 [Patent Document 1]
特開平 6-187675号公報(1994年 7月 8日公開)(特に、 [0052]〜[0076],図 4,図?〜 1 0)  Japanese Patent Laid-Open No. 6-187675 (published July 8, 1994) (in particular, [0052] to [0076], FIG. 4, FIG. 10 to 10)
〔特許文献 2〕  [Patent Document 2]
国際公開 WO2004/026459号公報(2004年 4月 1日公開)(第 15頁 26行目〜第 17頁 1 7行目、図 2〜図 6)  International Publication WO2004 / 026459 (April 1, 2004) (Page 15, Line 26 to Page 17, Line 1, Line 7, Figures 2 to 6)
〔非特許文献 1〕 [Non-Patent Document 1]
H. J. Mamin他、アプライド 'フィジックス 'レターズ、(米国)、アメリカン 'インスティテ ユート'ォブ 'フィジックス、 1992年、第 61卷、第 1003ページ( H. J. Mamin et al., "Th ermomechanical writing with an atomic force microscope tip , Applied Physics Lette rs, 1992, vol. 61, p. 1003)  HJ Mamin et al., Applied 'Physics' Letters, (USA), American 'Institut Uto'ob' Physics, 1992, 61st, 1003 (HJ Mamin et al., "Thermomechanical writing with an atomic force microscope tip, Applied Physics Lette rs, 1992, vol. 61, p. 1003)
発明の開示 [0006] 本発明が解決しょうとする課題は、微小領域における微粒子又は微結晶及び/又 は分子の配向方向を制御する技術を用いることにより、従来技術では困難な高密度 情報記録を可能とする新しいタイプの書き換え型ランダムアクセス高密度メモリを提 供することである。 Disclosure of the invention [0006] The problem to be solved by the present invention is to enable high-density information recording, which is difficult with the prior art, by using a technique for controlling the orientation direction of fine particles or microcrystals and / or molecules in a minute region. It is to provide a new type of rewritable random access high density memory.
[0007] 上記課題を解決するために成された本発明に係る高密度情報記録方法は、基板 上に形成された薄膜の微小領域に鋭利な先端形状を有する部材を用いて薄膜表面 に平行な力を加えることにより、該微小領域内の微粒子又は微結晶又は分子の配向 方向を変化させ、情報を記録することを特徴とする。薄膜表面に平行な力を加える方 法としては、例えば、鋭利な先端形状を有する部材を定常的または間欠的に薄膜の 表面に接触させた状態で、該部材を膜面に平行な方向に微小距離移動または振動 させることにより、膜表面に平行な方向の力をカ卩えることが可能である。ここで、「定常 的に接触させた状態」とは部材と膜表面の間の距離または接触圧が一定になるよう に制御された状態をさす。また、「間欠的に接触させた状態」とは両者の間の距離ま たは接触圧が周期的または非周期的に変化するように制御された状態をさす。 (以 下本明細書に於いては「定常的または間欠的に接触」とは何れも上記の意味で使用 される。)上記の状態を保ちながら、該部材を膜面に平行な方向に微小距離移動さ せることにより、膜に対して移動方向に沿って力をカ卩えることが出来ることを示す。ま た、該部材を膜面に平行な方向に振動させることにより膜に対して振動の方向に沿 つて力を加えることが出来ることを示す。上記の例はいずれも膜表面に平行な力を実 現できる一例である。  [0007] A high-density information recording method according to the present invention for solving the above problems uses a member having a sharp tip shape in a minute region of a thin film formed on a substrate, and is parallel to the surface of the thin film. By applying force, the orientation direction of fine particles, microcrystals, or molecules in the minute region is changed, and information is recorded. As a method of applying a force parallel to the surface of the thin film, for example, a member having a sharp tip shape is in contact with the surface of the thin film regularly or intermittently, and the member is microscopically parallel to the film surface. By moving the distance or vibrating, it is possible to measure the force in the direction parallel to the film surface. Here, the “steady contact state” refers to a state in which the distance between the member and the membrane surface or the contact pressure is controlled to be constant. The “intermittent contact state” refers to a state in which the distance between them or the contact pressure is controlled so as to change periodically or aperiodically. (Hereinafter, “steady or intermittent contact” is used in the above-mentioned meaning in the present specification.) While maintaining the above state, the member is made minute in a direction parallel to the film surface. It shows that the force can be increased along the moving direction with respect to the film by moving the distance. It is also shown that force can be applied to the membrane along the direction of vibration by vibrating the member in a direction parallel to the membrane surface. Each of the above examples is an example that can realize a force parallel to the film surface.
[0008] 上記高密度情報記録方法にぉレ、て、微小領域に情報を記録する際に、該部材と 膜との間の接触圧ゃ該微小領域の温度を制御してもよい。  [0008] When the information is recorded in the minute area, the temperature of the minute area may be controlled by the contact pressure between the member and the film.
[0009] 更に、例えば、前記薄膜を強誘電体とした場合、微小領域に前記記録を行う際に 電界を印加して、該微小領域内の分極を変化させることにより前記情報に重畳して 異なる情報を記録することができる。また、前記薄膜を強磁性体とすれば、微小領域 に前記記録を行う際に磁界を印加して、該微小領域内の磁化を変化させることにより 前記情報に重畳して異なる情報を記録することもできる。  [0009] Further, for example, when the thin film is made of a ferroelectric material, an electric field is applied to the minute region when the recording is performed, and the polarization in the minute region is changed to be superimposed on the information. Information can be recorded. Further, if the thin film is made of a ferromagnetic material, a magnetic field is applied to the minute area when recording is performed, and the magnetization in the minute area is changed to record different information superimposed on the information. You can also.
[0010] 一方、上記課題を解決するために成された本発明に係るもう一つの高密度情報記 録方法は、基板上に形成された薄膜の微小領域において、温度制御された鋭利な 先端形状を有する部材を定常的または間欠的に薄膜の表面に接触させ、薄膜表面 の温度を制御することにより該微小領域内の微粒子又は微結晶又は分子の配向方 向を変化させ、情報を記録することを特徴とする。ここでは、薄膜表面に平行な力を 加えることなぐ鋭利な先端形状を有する部材を用いて、薄膜表面の温度を制御する ことのみで該微小領域内の微粒子又は微結晶又は分子の配向方向を制御する情報 を記録する技術を開示している。上述の温度制御により情報を記録する技術と上述 の鋭利な形状で力を印加し情報を記録する技術と組み合わせることで、さらに高密 度なメモリ装置を実現することが可能になる。 On the other hand, another high-density information recording according to the present invention made to solve the above-mentioned problems. In the recording method, in a small region of the thin film formed on the substrate, a temperature-controlled sharp tip shape is brought into contact with the surface of the thin film regularly or intermittently, and the temperature of the thin film surface is controlled. Information is recorded by changing the orientation direction of fine particles, microcrystals, or molecules in the minute region. Here, the orientation direction of the fine particles, microcrystals, or molecules in the minute region is controlled only by controlling the temperature of the thin film surface using a member having a sharp tip shape without applying a force parallel to the thin film surface. The technology to record the information is disclosed. By combining the above-described technology for recording information by temperature control and the above-described technology for recording information by applying force with a sharp shape, it becomes possible to realize a higher-density memory device.
[0011] また、本発明に係る高密度情報記録方法において、前記薄膜の微小領域における 1つの情報記録領域に、 3値以上の情報を記録することが好ましい。力、かる技術によ れば、 1つの情報記録領域に多値情報を記録することができるため、記録密度をさら に高めることができる。  [0011] Further, in the high-density information recording method according to the present invention, it is preferable to record information of three or more values in one information recording area in the minute area of the thin film. According to this technology, multi-value information can be recorded in one information recording area, so that the recording density can be further increased.
[0012] 本発明に用いられる記録媒体は、少なくとも基板と前記基板上に積層された薄膜と を有する情報記録用媒体であって、上述のいずれかに記載の高密度情報記録方法 により情報の記録が可能な高密度情報記録媒体である。ここで、基板上に積層され る薄膜は、単層であってもよいし、複数の薄膜が積層された物で構成されていてもよ レ、。また、積層された複数の薄膜の中の一部に直接情報記録がなされない保護膜の ようなものが含まれていてもよい。  [0012] A recording medium used in the present invention is an information recording medium having at least a substrate and a thin film laminated on the substrate, and records information by the high-density information recording method described above. It is a high-density information recording medium capable of. Here, the thin film laminated on the substrate may be a single layer, or may be composed of a plurality of thin films laminated. In addition, a part of a plurality of laminated thin films may include a protective film that does not record information directly.
[0013] さらに、上述の「薄膜の微小領域に膜表面に平行な方向の力または熱をカ卩える記 録方法」を用いて情報記録された薄膜と上述の電界または磁界を用いて情報記録さ れた薄膜は同一であってもよぐまた、それぞれ別々の膜であってもよい。後者の場 合、それぞれの膜を積層することにより一つの高密度情報記録媒体を形成することが 出来る。上記の様に異なる記録方法を用いて記録がなされた複数の膜を積層する場 合、上述の方法を用いて記録された膜を積層媒体の最表面に配置することが、情報 再生の検出感度においてより効果的である。  Furthermore, information recording is performed using the above-described “recording method in which a force or heat in a direction parallel to the film surface is applied to a minute region of the thin film” and the above-described electric field or magnetic field. The thin films formed may be the same or may be separate films. In the latter case, one high density information recording medium can be formed by laminating the respective films. When laminating a plurality of films recorded using different recording methods as described above, it is important to place the film recorded using the above method on the outermost surface of the laminated medium. Is more effective.
[0014] 本発明に係る高密度情報再生方法は、鋭利な先端形状を有する部材を定常的又 は間欠的に接触させ、該部材を該薄膜に対し相対的に膜表面に平行な方向に微小 距離移動及び又は振動させた際に両者の間に生じる力を検出することにより、該微 小領域内の微粒子又は微結晶又は分子の配向方向を読み出す工程を含むことを特 徴とする。ただし、ここで、「該部材を薄膜に対し相対的に振動させる」場合の振動の 方向は、必ずしも膜表面に平行な方向に限定されず、膜表面に平行な方向、垂直な 方向、を含め 3次元的ににあらゆる方向を含む。これにより該両者の間に働く相互作 用力に変化を生じさせ、それを検出するものである。 [0014] In the high-density information reproducing method according to the present invention, a member having a sharp tip shape is contacted regularly or intermittently, and the member is minutely moved in a direction parallel to the film surface relative to the thin film. It is characterized in that it includes a step of reading the orientation direction of the fine particles, microcrystals or molecules in the microscopic region by detecting the force generated between the two when the distance is moved and / or vibrated. However, here, the direction of vibration in the case of “vibrating the member relative to the thin film” is not necessarily limited to a direction parallel to the film surface, and includes a direction parallel to the film surface and a direction perpendicular to the film surface. Includes all directions in three dimensions. This causes a change in the interaction force acting between the two and detects it.
[0015] また、本発明に係る高密度情報記録再生方法は、上述の高密度情報記録方法を 情報記録の一工程 (情報記録工程)として含み、かつ上述の高密度情報再生方法を 情報再生の一工程 (情報再生工程)として含むものである。  [0015] Further, the high-density information recording / reproducing method according to the present invention includes the above-described high-density information recording method as one step of information recording (information recording step), and includes the above-described high-density information reproducing method for information reproduction. It is included as one process (information reproduction process).
[0016] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わかるであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。  [0016] Still other objects, features, and advantages of the present invention will be fully understood from the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明に係る高密度情報記録装置の一実施例を示す断面図。  FIG. 1 is a cross-sectional view showing an embodiment of a high-density information recording apparatus according to the present invention.
[図 2(a)]本実施例の高密度情報記録装置の動作を示す斜視図。  FIG. 2 (a) is a perspective view showing the operation of the high-density information recording apparatus of this example.
[図 2(b)]本実施例の高密度情報記録装置の他の動作を示す斜視図。  FIG. 2 (b) is a perspective view showing another operation of the high-density information recording apparatus of the present embodiment.
[図 3]加熱手段を有する高密度情報記録装置の一実施例を示す断面図。  FIG. 3 is a cross-sectional view showing one embodiment of a high-density information recording apparatus having heating means.
[図 4]電界印加手段を有する高密度情報記録装置の一実施例を示す断面図。  FIG. 4 is a cross-sectional view showing an embodiment of a high density information recording apparatus having an electric field applying means.
[図 5]電界印加手段を有する高密度情報記録装置における情報の記録の動作を示 す斜視図。  FIG. 5 is a perspective view showing an information recording operation in a high-density information recording apparatus having electric field applying means.
[図 6(a)]電界印加手段を有する高密度情報記録装置における情報の記録の動作を 示す断面図。  FIG. 6 (a) is a cross-sectional view showing an information recording operation in a high-density information recording apparatus having electric field applying means.
[図 6(b)]電界印加手段を有する高密度情報記録装置における情報の記録の他の動 作を示す断面図。  FIG. 6 (b) is a cross-sectional view showing another operation of recording information in the high-density information recording apparatus having the electric field applying means.
[図 7(a)]電界印加手段を有する高密度情報記録装置における情報の再生の動作を 示す断面図。  FIG. 7 (a) is a cross-sectional view showing the operation of reproducing information in a high-density information recording apparatus having electric field applying means.
[図 7(b)]電界印加手段を有する高密度情報記録装置における情報の再生の他の動 作を示す断面図。 園 7(c)]電界印加手段を有する高密度情報記録装置における情報の再生の他の動 作を示す断面図。 FIG. 7 (b) is a cross-sectional view showing another operation of reproducing information in the high-density information recording apparatus having the electric field applying means. 7 (c)] A cross-sectional view showing another operation of reproducing information in the high-density information recording apparatus having the electric field applying means.
園 7(d)]電界印加手段を有する高密度情報記録装置における情報の再生の他の動 作を示す断面図。 7 (d)] A sectional view showing another operation of reproducing information in the high-density information recording apparatus having the electric field applying means.
[図 8(a)]グラフアイト基板上に形成された P(VDF-TrFE)膜 41の AFM像を示す図。 園 8(b)]グラフアイト基板上に形成された P(VDF-TYFE)膜 41を模式的に示す斜視図  FIG. 8 (a) is a view showing an AFM image of a P (VDF-TrFE) film 41 formed on a graphite substrate. 8 (b)] Perspective view schematically showing the P (VDF-TYFE) film 41 formed on the graphite substrate
[図 9(a)]ガラス基板上に形成された P(VDF-TrFE)膜 42の AFM像を示す図。 FIG. 9 (a) is a view showing an AFM image of a P (VDF-TrFE) film 42 formed on a glass substrate.
園 9(b)]ガラス基板上に形成された P(VDF-TYFE)膜 42を模式的に示す斜視図。 9 (b)] A perspective view schematically showing a P (VDF-TYFE) film 42 formed on a glass substrate.
[図 10(a)]P(VDF-TrFE)膜 41を 140〜145°Cに加熱しつつその表面に平行に記録針 を移動させて情報を記録した後の AFM像。 [FIG. 10 (a)] An AFM image after recording information by moving the recording needle parallel to the surface of the P (VDF-TrFE) film 41 heated to 140-145 ° C.
[図 10(b)]P(VDF_TrFE)膜 42を 140〜145°Cに加熱しつつその表面に平行に記録針 を移動させて情報を記録した後の AFM像。  [FIG. 10 (b)] An AFM image after recording information by moving the recording needle parallel to the surface of the P (VDF_TrFE) film 42 heated to 140-145 ° C.
[図 11(a)]情報が記録された P(VDF-TrFE)膜の記録直後の AFM像。  [Fig. 11 (a)] AFM image immediately after recording of P (VDF-TrFE) film with recorded information.
[図 11(b)]情報が記録された P(VDF-TrFE)膜の 142°Cに加熱後の AFM像。  [Fig. 11 (b)] AFM image of P (VDF-TrFE) film with recorded information after heating to 142 ° C.
園 11(c)]情報が記録された P(VDF-TrFE)膜の 148°Cに加熱して情報を消去した後の11 (c)] After the information was erased by heating the P (VDF-TrFE) film on which the information was recorded to 148 ° C
AFM像。 AFM image.
園 12(a)]力の印加と電界の印加により情報が重畳的に記録された P(VDF-TrFE)膜 の AFM像。 [12] (a)] AFM image of P (VDF-TrFE) film in which information is recorded superimposed by applying force and electric field.
園 12(b)]力の印加と電界の印加により情報が重畳的に記録された P(VDF-TrFE)膜 の圧電力顕微鏡像。 En 12 (b)] Piezoelectric power microscope image of P (VDF-TrFE) film in which information is recorded in a superimposed manner by applying force and applying electric field.
園 13(a)]ポリエチレン膜の表面に平行に記録針を移動させて力を印加する前の該表 面の AFM像。 13 (a)] AFM image of the surface before applying force by moving the recording needle parallel to the surface of the polyethylene film.
園 13(b)]ポリエチレン膜の表面に平行に記録針を移動させて力を印加して情報を記 録した後の該表面の AFM像。 13 (b)] AFM image of the surface after recording information was recorded by moving the recording needle parallel to the surface of the polyethylene film.
園 14(a)]ポリブテン膜の表面に平行に記録針を移動させて力を印加する前の該表面 の AFM像。 14 (a)] AFM image of the surface before applying force by moving the recording needle parallel to the surface of the polybutene film.
園 14(b)]ポリブテン膜の表面に平行に記録針を移動させて力を印加して情報を記録 した後の該表面の AFM像。 14 (b)] Records information by applying force by moving the recording needle parallel to the surface of the polybutene film. AFM image of the surface after processing.
園 15(a)]P(VDF_TrFE)膜を 80°Cに加熱しつつその表面に平行に記録針を移動させ て力を印加することにより微結晶の配向を制御して情報記録を行った後の AFM像。 園 15(b)]P(VDF_TrFE)膜を 80°Cに加熱しつつその表面に平行に記録針を移動させ て力を印加することにより微結晶の配向を制御して情報記録を行った後の構造の模 式図。 En 15 (a)] After recording information by controlling the orientation of the microcrystals by applying force by moving the recording needle parallel to the surface while heating the P (VDF_TrFE) film to 80 ° C AFM image. 15 (b)] After recording the information by controlling the orientation of the microcrystals by applying force by moving the recording needle parallel to the surface while heating the P (VDF_TrFE) film to 80 ° C Schematic diagram of the structure.
[図 16(a)]情報が記録された P(VDF_TrFE)膜の AFM像。  [Fig. 16 (a)] AFM image of P (VDF_TrFE) film with recorded information.
園 16(b)]情報が記録された P(VDF-TrFE)膜力も得られた再生情報を画像化した図。 園 17]分子の配向方向と摩擦によるカンチレバーの捩れ振幅の関係を示す図。 〔符号の説明〕 (En 16 (b)] The reproduction information obtained by obtaining the P (VDF-TrFE) film strength in which the information was recorded was imaged. Sono]] A diagram showing the relationship between the orientation direction of molecules and the torsional amplitude of the cantilever due to friction. [Explanation of symbols]
10…高密度情報記録媒体  10 ... High-density information recording medium
11…ステージ 11 ... Stage
12· · 'ステージ移動装置 (x,y,z方向に移動)  12 · 'Stage moving device (moving in x, y, z direction)
12a…粗動装置  12a ... Coarse motion device
12b…微動装置  12b ... Fine movement device
13…記録再生針  13 ... Recording / playback needle
14…板バネ  14 ... leaf spring
15…ドライノく  15 ... Dryino
16…検出部  16 ... Detector
17…制御部  17 Control unit
18…ヒータ  18 ... Heater
19…温度計  19 ... Thermometer
21…微小領域  21 ... micro area
22…振動機構 (x_y平面内の振動を付与)  22 ... Vibration mechanism (provides vibration in x_y plane)
23…振動機構 (z方向の振動を付与) 23… Vibration mechanism (provides vibration in z direction)
24…外枠(24a…上部、 24b…下部) 24 ... Outer frame (24a ... Upper part, 24b ... Lower part)
31…電界印加手段 31 ... Electric field application means
41… P(VDF-TrFE)膜 (c軸が膜面内に等方的に配向) 42· · · P(VDF-TrFE)膜 (c軸が膜面に垂直に配向) 41… P (VDF-TrFE) film (c-axis isotropically oriented in the film surface) 42 ··· P (VDF-TrFE) film (c-axis oriented perpendicular to the film surface)
51 · · ·記録針の移動を行った微小領域  51 · · · Micro area where the recording needle is moved
52…記録針の移動を行わなかった微小領域  52 ... Minute area where the recording needle was not moved
53… +7Vの電圧により分極処理した領域  53… Area polarized by + 7V voltage
54… -7Vの電圧により分極処理した領域  54… Area polarized by -7V voltage
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明の高密度情報記録においては、基板上に形成された有機又は無機薄膜の 微小領域において、微粒子又は微結晶及び/又は分子の配向方向を変化させ、そ の方向により情報を記録する。例えば、 2つの配向状態の間で変化させることにより、 微小領域毎に "0"、〃1"の情報を記録することができる。この薄膜には特許文献 2に記 載の薄膜と同じものを用いることができる。微粒子又は微結晶及び/又は分子鎖の 配向方向は、 AFMの探針に代表される鋭利な先端形状を有する部材 (記録用部材) を薄膜表面に定常的又は間欠的に接触させた状態で、薄膜表面に平行な方向な力 をカ卩えることにより制御することができる。ここで、薄膜表面に平行な力を加える手段 としては、その一例として、前述の様に、鋭利な先端形状を有する部材を膜面内で走 查することによって実現できる。また、一方向の走查ではなぐ膜面内方向に微小振 動させることによつても上記の力をカ卩えることができる。一方、膜面に平行な力を加え る手段として必ずしも該部材を膜面上で移動または振動させる必要はなレ、。例えば、 外部駆動装置を用いて該部材に対して膜面に平行な力を加えた時に、該部材が弾 性変形することによりその先端位置が静止している場合も起こり得る。この場合であつ ても該部材が膜を構成する微粒子又は微結晶または分子に対して膜面に平行な力 をカロえることは可能である。  In the high-density information recording of the present invention, the orientation direction of fine particles or microcrystals and / or molecules is changed in a minute region of an organic or inorganic thin film formed on a substrate, and information is recorded by that direction. To do. For example, by changing between two orientation states, it is possible to record information of “0” and 〃1 for each minute region.This thin film is the same as the thin film described in Patent Document 2. The orientation direction of fine particles or microcrystals and / or molecular chains is determined by contacting a member (recording member) having a sharp tip typified by an AFM probe regularly or intermittently with the thin film surface. In this state, the force can be controlled by increasing the force in the direction parallel to the thin film surface, as an example of means for applying the force parallel to the thin film surface, as described above. This can be achieved by moving a member having a simple tip shape in the membrane plane, and by applying a slight vibration in the in-plane direction, which is different from that in one direction. On the other hand, a means for applying a force parallel to the film surface It is not always necessary to move or vibrate the member on the membrane surface, for example, when a force parallel to the membrane surface is applied to the member using an external driving device, the member is elastically deformed. Even in this case, it is possible that the member can apply a force parallel to the film surface to the fine particles, microcrystals or molecules constituting the film. is there.
[0020] また、別の外部駆動装置を用いて該部材に対して膜面に平行方向に振動する超 音波振動を伝播させるなどの手段によっても上記の力を加えることが可能である。こ の場合も、該部材の先端位置が移動する必要はない。さらに、膜面に平行な力として 力学的以外の力、例えば、電磁気的な力を用いることも可能である。この場合も該部 材の先端位置が移動する必要はない。ここで「接触」とは、両者の間に原子間力が働 く程度の距離に近づけることをいう。 [0021] 微小領域の大きさは特に限定されないが、記録密度を高くするためにはできるだけ 小さい方が望ましい。 [0020] It is also possible to apply the above force by means such as propagating ultrasonic vibration that vibrates in a direction parallel to the film surface to the member using another external driving device. Also in this case, the tip position of the member does not need to move. Furthermore, it is possible to use a force other than mechanical force, for example, an electromagnetic force, as the force parallel to the film surface. In this case as well, the tip position of the member does not need to move. Here, “contact” means that the distance between the two is such that an atomic force works. [0021] The size of the minute area is not particularly limited, but is desirably as small as possible in order to increase the recording density.
[0022] 分子を配向制御する場合、領域の大きさは記録用部材の先端径の大きさに概ね依 存するため、記録密度を高くするためには先端径が小さい記録用部材を用レ、ること が望ましい。ただし、記録密度は記録用部材の先端径のみでは決まるものではなぐ その先端の形状や膜 (記録媒体)の材料にも依存する。例えば、先端径は大きくても 、その形状を工夫することにより、膜面に平行方向の力を部材先端の極一部分に集 中させて印加することも可能である。一方、膜 (記録媒体)の材料によっては、分子の 自己組織化により、先端径よりも広い領域が配向制御される場合もある。そのため、 例えば先端径 10匪の記録用部材を用いた場合においてもその先端形状や膜材料 を的確に選択することにより、その微小記録領域の大きさを直径 10匪よりも十分小さ くすることが可能である。  [0022] When controlling the orientation of molecules, the size of the region largely depends on the size of the tip diameter of the recording member. Therefore, in order to increase the recording density, a recording member having a small tip diameter is used. It is desirable. However, the recording density is not determined only by the tip diameter of the recording member, but also depends on the shape of the tip and the material of the film (recording medium). For example, even if the tip diameter is large, it is possible to apply a force parallel to the film surface to a part of the pole of the member tip by devising its shape. On the other hand, depending on the material of the film (recording medium), the orientation of a region wider than the tip diameter may be controlled by molecular self-organization. Therefore, for example, even when a recording member having a tip diameter of 10 mm is used, the size of the minute recording area can be made sufficiently smaller than the diameter of 10 mm by accurately selecting the tip shape and film material. Is possible.
[0023] 微粒子又は微結晶を配向制御する場合には、最小記録領域幅は微粒子又は微結 晶の大きさで決められる。より小さい結晶からなる膜を用いることにより、更に高密度 の記録が可能になる。  [0023] When the orientation of fine particles or microcrystals is controlled, the minimum recording area width is determined by the size of the fine particles or microcrystals. By using a film made of smaller crystals, higher density recording becomes possible.
[0024] 一方、記録用部材の先端径が大きい場合、記録や消去の高速化、装置作製の容 易さの点では利点がある。そのため、該記録用部材の先端径は目的に応じて適宜選 択すること力 Sできる。  On the other hand, when the tip diameter of the recording member is large, there are advantages in terms of speeding up recording and erasing and ease of manufacturing the apparatus. For this reason, the tip diameter of the recording member can be appropriately selected according to the purpose.
[0025] 上記記録の際に、記録用部材と薄膜の接触圧や微小領域の膜温度を制御すること によって上記の配向制御をより精密に行うことが可能になる。また、記録用部材の移 動速度や振動させる場合にはその振幅や周波数を制御することにより配向制御をよ り精密に行うことが可能になる。また、記録用部材を構成する材料の弾性定数などの 物理定数を制御することにより配向制御をより精密に行うことが可能になる。さらに、 膜面に平行な力として、記録用部材を介して電磁気力を印加する場合には駆動する 電磁気力の振幅および周波数、また、記録用部材を構成する材料の誘電定数、磁 性定数などの物理定数を制御することにより配向制御をより精密に行うことが可能に なる。また、膜面に平行な力として、記録用部材を介して超音波を印加する場合には 、超音波の周波数、振幅および記録用部材を構成する材料の弾性定数、音速など の物理定数を制御することにより配向制御をより精密に行うことが可能になる。 [0025] During the recording, the above-mentioned orientation control can be performed more precisely by controlling the contact pressure between the recording member and the thin film and the film temperature of the minute region. In addition, when the recording member is moved or vibrated, it is possible to control the orientation more precisely by controlling the amplitude and frequency. In addition, the orientation can be controlled more precisely by controlling physical constants such as elastic constants of the material constituting the recording member. Further, when an electromagnetic force is applied through the recording member as a force parallel to the film surface, the amplitude and frequency of the electromagnetic force to be driven, and the dielectric constant, magnetic constant of the material constituting the recording member, etc. By controlling the physical constant, it is possible to control the orientation more precisely. In addition, when applying an ultrasonic wave through a recording member as a force parallel to the film surface, the ultrasonic frequency, amplitude, elastic constant of the material constituting the recording member, sound speed, etc. By controlling the physical constant, it is possible to control the orientation more precisely.
[0026] 配向の違いは、例えば、微粒子又は微結晶や分子の向きが無秩序である状態と膜 面内のある方向に配歹 1Jした状態との違いにより形成することができる。また、微粒子 又は微結晶や分子の向きが膜面内の第 1の方向に配列した状態と、膜面内のそれと は異なる第 2の方向(例えば第 1の方向から 90° 回転した方向)に配列した状態との 違レヽとすることあできる。  [0026] The difference in orientation can be formed, for example, by a difference between a state in which the orientation of fine particles, microcrystals, or molecules is disordered and a state in which the orientation is 1J in a certain direction in the film surface. In addition, the orientation of the fine particles, crystallites, or molecules is aligned in the first direction in the film surface and in a second direction different from that in the film surface (for example, a direction rotated 90 ° from the first direction). It can be a difference from the arranged state.
[0027] 更に、微粒子又は微結晶や分子の向きが膜面内で異なる 3種以上の方向(例えば 第 1の方向と、第 1の方向から 45° 回転した方向と、第 1の方向から 90° 回転した方 向)に配歹 1Jした 3種以上の状態を区別して情報の記録を行うこともできる。これにより、 1つの領域 (情報記録領域)に 3値以上の情報を記録することもできる。それゆえ、本 技術によれば、情報の多値記録が可能となり、記録密度を更に高めることができる。  [0027] Furthermore, the direction of fine particles, microcrystals, or molecules differs in three or more directions within the film plane (for example, the first direction, the direction rotated 45 ° from the first direction, and the first direction 90 It is also possible to record information by distinguishing three or more states arranged 1J in the direction of rotation). As a result, information of three or more values can be recorded in one area (information recording area). Therefore, according to the present technology, multilevel recording of information is possible, and the recording density can be further increased.
[0028] 上記では微粒子又は微結晶や分子の配向方向を膜面内に限って説明したが、膜 面と垂直な方向まで含めると、垂直方向およびそれと 30° 、 60° など任意の角度を 有する方向への配向を考えることができ、膜を構成する材料によっては 3次元的な配 向制御も可能である。実際、ポリエチレンなど多くのポリマー材料では、融点以上の 温度に加熱することでその分子鎖を基板に垂直に配向させることができる。従って、 一例として、融点以上の温度に加熱した記録用部材を膜表面に定常的又は間欠的 に接触させることで微小領域の分子鎖を基板に垂直に配向させることができる。この 場合には記録時に膜面に平行な力をカ卩えない。尚、情報記録は 1つの記録用部材 を用いて行ってもよぐ複数の記録用部材を用いて行ってもよい。複数の記録用部材 を用いた場合、より高速な記録が可能となる。  [0028] In the above description, the orientation direction of the fine particles, microcrystals, or molecules is described only within the film plane. However, including up to the direction perpendicular to the film plane, the vertical direction and any angle such as 30 °, 60 °, etc. Orientation in the direction can be considered, and depending on the material composing the film, three-dimensional orientation control is possible. In fact, in many polymer materials such as polyethylene, the molecular chain can be oriented perpendicular to the substrate by heating to a temperature above the melting point. Therefore, as an example, a molecular member in a minute region can be oriented perpendicular to the substrate by bringing a recording member heated to a temperature equal to or higher than the melting point into contact with the film surface regularly or intermittently. In this case, a force parallel to the film surface cannot be applied during recording. The information recording may be performed using one recording member or a plurality of recording members. When a plurality of recording members are used, higher speed recording is possible.
[0029] 記録された情報の再生は、記録用部材と同様の鋭利な先端形状を有する部材 (再 生用部材)を用いて行うことができる。記録用と再生用に同じ部材を用いることもでき 、異なる部材を用レ、ることも出来る。また、複数の部材を用いて同時に機能させて再 生を行ってもよい。再生方法の一例を以下に示す。まず、膜面内で微粒子又は微結 晶又は分子の配向の異方性が出るように情報が記録されている場合の再生方法に ついて説明する。  [0029] The recorded information can be reproduced using a member (reproduction member) having a sharp tip shape similar to that of the recording member. The same member can be used for recording and reproduction, and different members can be used. Further, reproduction may be performed by using a plurality of members to function simultaneously. An example of the reproduction method is shown below. First, a reproduction method in the case where information is recorded so that anisotropy of the orientation of fine particles, fine crystals, or molecules within the film surface will be described.
[0030] 再生用部材を膜表面に定常的または間欠的に接触させた状態で膜面内の一方向 に微小距離移動させるか、または膜面内またはそれ以外の方向に微小振動させるこ とにより、再生用部材は分子又は微粒子又は微結晶からその振動方向に対する相 互作用力を受ける。そのため、再生用部材は、微小距離移動の場合は捩れの誘起、 また、振動を印加する場合には振動振幅の減衰、位相の遅れ等の影響を受ける。こ れらの物理量を検出することにより、これらの力の方向に対する相互作用力の大きさ の分布を測定できる。本発明は、これらの相互作用力の大きさにより微粒子又は微結 晶又は分子の配向方法を読み出すものである。 [0030] One direction in the film surface with the regeneration member in contact with the film surface constantly or intermittently The reproducing member receives an interaction force in the vibration direction from the molecules, fine particles, or microcrystals by moving the microscopically by a minute distance or microvibrating in the film surface or in other directions. Therefore, the reproducing member is influenced by the induction of torsion when moving a minute distance, and by the attenuation of vibration amplitude and the delay of phase when applying vibration. By detecting these physical quantities, the distribution of the magnitude of the interaction force in the direction of these forces can be measured. The present invention reads out the orientation method of fine particles, microcrystals or molecules based on the magnitude of these interaction forces.
[0031] これらの物理量は、例えば、再生用部材の一部に光を照射してその反射光から再 生用部材の振動の状態をモニタする光テコ法や、再生用部材の一部に圧電性素子 を付加してその出力から再生用部材の振動の状態をモニタする圧電法などで測定 すること力 Sできる。  [0031] These physical quantities are obtained by, for example, an optical lever method in which a part of the reproducing member is irradiated with light and the vibration state of the reproducing member is monitored from the reflected light, or a piezoelectric part is applied to a part of the reproducing member. It is possible to measure with the piezoelectric method that monitors the vibration state of the regenerative member from the output.
[0032] 記録媒体の面内で、情報を読み出したい微小領域に再生用部材を移動し、次に上 記の方法を用いてこの微小領域の情報を読み出すことができる。また、記録媒体全 面を走査しながら同じく上記の方法を用いて全領域に記録されている情報を順次読 み出すこともできる。  [0032] Within the surface of the recording medium, the reproducing member can be moved to a minute area from which information is to be read, and then the information in the minute area can be read out using the method described above. It is also possible to sequentially read information recorded in the entire area using the above method while scanning the entire surface of the recording medium.
[0033] 上記の例では、再生用部材を面内の一方向に振動させてその応答のみから再生 を行うが、面内の異なる複数の方向に振動させて得られる情報を組み合わせて再生 を行うことにより、再生の精度を高めることができる。その場合、複数の再生用部材を 用いて並列に検出することができる。また、一つの再生用部材を用いて時間的に縦 列的に再生を行うこともできる。上記の例では記録媒体を固定して再生用部材を振 動させるとしたが、逆に記録媒体を振動させてもよい。  [0033] In the above example, the reproduction member is vibrated in one direction in the plane and reproduction is performed only from the response. However, reproduction is performed by combining information obtained by vibrating in a plurality of different directions in the plane. Thus, the reproduction accuracy can be improved. In that case, detection can be performed in parallel using a plurality of reproducing members. It is also possible to perform reproduction in chronological order using a single reproduction member. In the above example, the recording medium is fixed and the reproducing member is vibrated, but conversely, the recording medium may be vibrated.
[0034] 次に、微粒子又は微結晶又は分子が膜面に垂直方向に配向するか平行方向に配 向するかの違いで情報記録がなされている場合の再生方法について説明する。この 場合には、例えば、記録媒体を固定するステージに振動素子を設けるなどの方法に より、膜面に垂直な方向の振動を膜の背面から加える。その振動は膜内部を伝播し た後、膜表面に現れるが、膜内部を伝播する際にその膜の特性に応じた変化を受け る。そこで膜表面において再生用部材により、伝播されてくる振動の振幅と位相を測 定する。一般に、機械振動はポリマーの分子鎖方向には減衰が少なく伝播速度も速 レ、ことが知られている。従って、再生用部材が検出する振動の振幅と位相を原振動 のそれらと比較することにより、垂直配向と水平配向の違いを検出することができる。 一方、再生用部材を膜表面に間欠的に接触させた状態で膜表面に垂直方向に振動 させ、その位相変化を測定することによつても垂直配向と水平配向の違いを検出する ことが出来る。 Next, a description will be given of a reproducing method in the case where information recording is performed depending on whether fine particles, microcrystals, or molecules are oriented in a direction perpendicular to or parallel to the film surface. In this case, for example, vibration in a direction perpendicular to the film surface is applied from the back surface of the film by a method of providing a vibration element on a stage for fixing the recording medium. The vibration propagates inside the film and then appears on the surface of the film, but when propagating inside the film, it undergoes changes according to the characteristics of the film. Therefore, the amplitude and phase of the transmitted vibration are measured on the membrane surface by the reproducing member. In general, mechanical vibration is less damped in the polymer chain direction and propagation speed is faster. Les, it is known. Therefore, by comparing the amplitude and phase of the vibration detected by the reproducing member with those of the original vibration, the difference between the vertical alignment and the horizontal alignment can be detected. On the other hand, it is also possible to detect the difference between the vertical alignment and the horizontal alignment by vibrating the reproduction member in a direction perpendicular to the film surface in contact with the film surface and measuring the phase change. .
[0035] 微粒子又は微結晶や分子の配向の違いに重畳して分極の差異による情報記録が なされている場合には、例えば、従来より知られている圧電応答走查型カ顕微鏡 (Pi ezoresponse Scanning Force Microscopyリ 用レヽて肓幸艮を i¾み出すこと力 5さる (圧 電応答走查型カ顕微鏡については、例えば、 Surface science letters, Vol. 302, p. L 284を参照)。また、微粒子又は微結晶や分子の配向の違いに重畳して磁化の差異 による情報記録がなされている場合には、例えば、先端部に磁気抵抗センサを備え た再生用部材を用い、走查型磁気抵抗顕微鏡(Scanning Magnetic Resonance Micro scopy)を用いて情報を読み出すことができる(走査型磁気抵抗顕微鏡については、 例えば、 Applied Physics Letters, Vol. 80, No. 15, pp. 2713-2715 (2002)を参照)。 [0035] In the case where information is recorded due to a difference in polarization superimposed on a difference in orientation of fine particles, microcrystals, or molecules, for example, a conventionally known piezoelectric response scanning microscope (Piezoresponse Scanning) Force Microscopy re-reading power is 5 times (for the piezoelectric response scanning microscope, see, for example, Surface science letters, Vol. 302, p. L 284). Alternatively, when information is recorded by a difference in magnetization superimposed on a difference in orientation of microcrystals or molecules, for example, a reproducing member having a magnetoresistive sensor at the tip is used, and a stray magnetoresistive microscope is used. (Scanning Magnetic Resonance Microscopy) can be used to read out information (For example, see Applied Physics Letters, Vol. 80, No. 15, pp. 2713-2715 (2002) for scanning magnetoresistive microscopes) .
[0036] 先端径 10醒の AFM用探針は広く市販されている。この AFM用探針を記録用部材と して用いた場合には、前述のように、微小記録領域の大きさを 10nm xlOnm以下にす ることが可能である。すなわち、本発明に係る高密度情報記録媒体は、既存の記録 用部材を用いて lbitの情報を 10nm X 10nm以下の領域に記録することができ、この場 合、その記録密度は lTbit/cm2以上となる。更に先端径の小さい記録針を作製する ことや、先端形状を最適化することにより記録密度を更に高くすることができる。また、 前述のように、 1つの微小記録領域の微粒子又は微結晶及び/又は分子の配向方 向を膜面内において複数の方向に選択的に配向できる。更に、記録媒体の材料を 選択することにより膜面に垂直な方向にも配向を行うことができるようになり、配向方 向を三次元的に選択することが可能となる。これにより、記録密度は更に向上する。 仮に、 n個の配向方向を選択可能とするとその記録密度は log2n Tbit/cm2となる。以 上に加えて、記録媒体として前述のように強誘電体又は強磁性体を選択し、分極の 差異又は磁化の差異による情報を重畳して記録することにより記録密度は更に増加 する。 [0037] 記録媒体の少なくとも情報記録領域の全体又は一部に対して加熱、電界印加、磁 界印加などを行うことにより、記録用部材を用いることなぐ記録された情報を一括に 消去 (メモリー媒体の初期化)することが可能になる。例えばポリエチレンや P_(VDF- TrFE)などのポリマーの場合、融点以上に加熱することで分子の配向方向を一定の 方向に制御できたり、また、分子配向の変化の規則性を解除し、記録された情報を 一括消去することが出来る。加熱方法としては、例えば記録媒体を保持するステージ 上に設けられた加熱素子により行うこと等が挙げられる。また、電界印加又は磁界印 加により記録された情報は少なくとも記録領域に一定方向の電界又は磁界を印加す ることにより単一情報を上書きし、情報を一括消去することが出来る。一方、記載され た情報を消去は、記録媒体の情報記録領域全体に対して、鋭利な先端形状を有す る部材を用いて上述の少なくともいずれ力 4に記載の情報記録方法を用いて単一の 情報を上書き記録することによつても行うことが出来る。上記の何れの消去方法に於 レ、ても、印加する力、熱、電界、磁界などの手段はそれぞれ単独、または時系列的に 順次行ってもよぐまた、任意の組み合わせで複数の手段を同時に行ってもよい。さ らに情報の消去は、 1つの部材を用いて行ってもよぐ複数の部材を用いて行っても よい。複数の部材を用いた場合、より高速な消去が可能となる。 [0036] AFM tips with a tip diameter of 10 are widely available on the market. When this AFM probe is used as a recording member, as described above, the size of the minute recording area can be reduced to 10 nm xlOnm or less. That is, the high-density information recording medium according to the present invention can record lbit information in an area of 10 nm × 10 nm or less using an existing recording member. In this case, the recording density is lTbit / cm 2. That's it. Further, the recording density can be further increased by producing a recording needle having a small tip diameter and optimizing the tip shape. Further, as described above, the orientation direction of fine particles or microcrystals and / or molecules in one minute recording region can be selectively oriented in a plurality of directions within the film surface. Furthermore, by selecting the material of the recording medium, it becomes possible to perform the alignment in the direction perpendicular to the film surface, and the alignment direction can be selected three-dimensionally. Thereby, the recording density is further improved. If n orientation directions can be selected, the recording density is log2n Tbit / cm 2 . In addition to the above, the recording density is further increased by selecting a ferroelectric material or a ferromagnetic material as the recording medium as described above and superimposing and recording information based on a difference in polarization or a difference in magnetization. [0037] By performing heating, electric field application, magnetic field application, etc. on at least a part of the information recording area of the recording medium, the recorded information without using the recording member is erased collectively (memory medium). Can be initialized). For example, in the case of polymers such as polyethylene and P_ (VDF-TrFE), the orientation of the molecules can be controlled in a certain direction by heating above the melting point, and the regularity of changes in the molecular orientation is canceled and recorded. Information can be deleted at once. Examples of the heating method include performing with a heating element provided on a stage holding a recording medium. In addition, information recorded by applying an electric field or magnetic field can be overwritten with a single information by applying an electric or magnetic field in a certain direction to at least the recording area, and the information can be erased collectively. On the other hand, erasing the described information is performed by using the member having a sharp tip shape with respect to the entire information recording area of the recording medium and using the information recording method described in at least any one of 4 above. This can also be done by overwriting the information. In any of the above erasing methods, the applied force, heat, electric field, magnetic field, etc. may be performed individually or sequentially in time series, or a plurality of means may be combined in any combination. You may do it at the same time. Further, erasure of information may be performed using a single member or a plurality of members. When a plurality of members are used, faster erasing is possible.
[0038] 本発明の薄膜材料には、有機の低分子材料、オリゴマー材料、高分子材料などを 用いることができる。有機の低分子材料の中では液晶性材料のようにその分子形状 に異方性を有する材料が有用である。また、 自己組織化の能力を有する低分子材料 も有用である。更に、有機材料に限らず、無機の結晶性材料、金属、セラミック等も使 用すること力 Sできる。特に、無機の強誘電性微結晶や微粒子、常磁性又は強磁性を 有する金属又はセラミックの微結晶や微粒子からなる薄膜は本発明に用レ、る記録媒 体として有用である。強誘電性微結晶や微粒子を構成する材料としては、例えば、チ タン酸バリウム、チタン酸鉛、リン酸水素カリウム、ロッシエル塩、硫酸グリシン、硝酸ナ トリウム、チォ尿素等の無機材料を用レ、ることができる。また、強磁性を有する金属又 はセラミックの微結晶や微粒子を構成する材料としては、例えば、ニッケル、鉄、コバ ノレトなどの金属が有用である。更に、磁性を有する有機金属錯体も有用である。  [0038] As the thin film material of the present invention, an organic low-molecular material, oligomer material, polymer material, or the like can be used. Among organic low-molecular materials, materials having anisotropy in their molecular shapes, such as liquid crystal materials, are useful. Also useful are low-molecular materials that have the ability to self-assemble. Furthermore, not only organic materials but also inorganic crystalline materials, metals, ceramics, etc. can be used. In particular, inorganic ferroelectric microcrystals and fine particles, and thin films made of paramagnetic or ferromagnetic metal or ceramic microcrystals or fine particles are useful as recording media for use in the present invention. As materials constituting the ferroelectric microcrystals and fine particles, for example, inorganic materials such as barium titanate, lead titanate, potassium hydrogen phosphate, Rossier salt, glycine sulfate, sodium nitrate, and thiourea are used. Can. In addition, as a material constituting the ferromagnetic metal or ceramic microcrystals or fine particles, for example, metals such as nickel, iron, and cobalto are useful. Further, organometallic complexes having magnetism are also useful.
[0039] 有機高分子材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリオレ フェン樹脂である 4-メチルペンテン- 1樹脂ゃポリブテン- 1樹脂、ポリビュルアルコー ノレ、エチレン一ビエルアルコール共重合体、ポリアタリロニトリノレ、ポリブタジエン、ポリ イソプレン、ポリアミド樹旨、ポリエチレンテレフタラートゃポリブチレンテレフタラートに 代表されるポリエステル樹脂、ポリ四フッ化工チレン,ポリ三フッ化工チレン(PTrFE) , ポリフッ化ビニリデン(PVDF),ポリフッ化ビニリデンとポリ三フッ化工チレンの共重合 体 (P(VDF-TrFE))に代表されるフッ素系樹脂、ポリ塩ィ匕ビュル、ポリ塩ィ匕ビユリデン、 ポリアタリレート、ポリメタタリレート、ポリカーボネート、ポリスチレン、フエノール樹脂、 尿素樹脂、メラニン樹脂、アルキド樹脂、アクリル樹脂、エポキシ樹脂、シリコーン樹 脂、ポリイミド樹脂ゃァラミド樹脂として知られる全芳香性ポリアミド、ポリフエ二レンェ 一テル、ポリフエ二レンスルフイド、ポリアリレート、ポリ- p_フエ二レン、ポリ _p -キシレン[0039] Examples of the organic polymer material include polyethylene resin, polypropylene resin, and polyolefin. 4-methylpentene-1 resin, which is a phen resin, polybutene-1 resin, polybutyl alcohol, ethylene monovinyl alcohol copolymer, polyataryl nitrinole, polybutadiene, polyisoprene, polyamide resin, polyethylene terephthalate Polyester resin typified by butylene terephthalate, polytetrafluoroethylene, polytrifluoroethylene (PTrFE), polyvinylidene fluoride (PVDF), copolymer of polyvinylidene fluoride and polytrifluoroethylene (P (VDF- TrFE)) fluorinated resins such as polysalt-bulu, polysalt-biurydene, polyatalylate, polymetatalylate, polycarbonate, polystyrene, phenol resin, urea resin, melanin resin, alkyd resin, acrylic resin, Epoxy resin, silicone resin, polyimide resin Wholly aromatic polyamide known as Aramido resin, Porifue two Rene one ether, Porifue two Rensurufuido, polyarylate, poly - p_-phenylene, poly _p - xylene
、ポリ- p_フエ二レンビニレン、ポリキノリン、ポリピロール、ポリチォフェン、ポリア二リン, Poly-p-phenylenevinylene, polyquinoline, polypyrrole, polythiophene, polyaniline
、ポリアリレンビニレン、ポリチェ二レンビニレン、ポリアセチレン、ポリフエ二レンジアミ ン、ポリアミノフエノール、ポリビニルカルバゾール、高分子ビオローゲン、ポリイオンコ ンプレックス、 TTF-TCNQ等が挙げられる。また、これらの高分子の構成要素である 有機低分子や有機オリゴマーから成る材料を用いてもよい。高分子液晶、オリゴマー 液晶等材料も有用である。 , Polyarylene vinylene, polyphenylene vinylene, polyacetylene, polyphenylene diamine, polyaminophenol, polyvinyl carbazole, polymer viologen, polyion complex, TTF-TCNQ, and the like. In addition, materials composed of organic low molecules or organic oligomers which are constituents of these polymers may be used. Materials such as polymer liquid crystals and oligomer liquid crystals are also useful.
[0040] また、本発明の基板としては、従来公知の基板材料からなるものを用いることができ [0040] As the substrate of the present invention, a substrate made of a conventionally known substrate material can be used.
、特に限定されるものではないが、特に、薄膜を形成する基板表面が対称性を有す る結晶構造からなる基板であることが好ましい。かかる表面を有する基板は、具体的 には、例えば、一例として、グラフアイト,マイ力,サフアイャ, NaCl, KC1, KBr, SiCAlthough not particularly limited, it is particularly preferable that the substrate surface on which the thin film is formed be a substrate having a symmetric crystal structure. Specifically, a substrate having such a surface is, for example, a graphite, My force, sapphire, NaCl, KC1, KBr, SiC
, ΒΝ, GaN, AIN, GaAs等を挙げることができる。上述のような基板であれば、基板 表面に形成した薄膜の分子や結晶等がェピタキシャル成長しやすいため、その配向 性を精度よく制御することができる。それゆえ、情報を記録する際等に書き込みエラ 一が発生し難いという利点がある。なお、上記基板上に成長させる薄膜結晶は、原料 物質の材料、形態、条件等に応じて、気相エピタキシー、液相エピタキシー、分子線 エピタキシーなど従来公知の手法を好適に利用し形成することができる。 , ΒΝ, GaN, AIN, GaAs and the like. In the case of the above-described substrate, since the thin film molecules and crystals formed on the surface of the substrate are likely to grow epitaxially, the orientation can be controlled with high accuracy. Therefore, there is an advantage that a writing error hardly occurs when information is recorded. The thin film crystal grown on the substrate can be formed by suitably using a conventionally known method such as vapor phase epitaxy, liquid phase epitaxy, molecular beam epitaxy, etc., depending on the material, form, conditions, etc. of the raw material. it can.
[0041] 記録媒体として用いる材料によっては、上記記録の際に薄膜の温度を上げることに より、記録用部材を用いた微粒子又は微結晶又は分子の配向が容易となり、より高 精度の配向制御が可能になる場合がある。特に、微結晶の配向制御性を向上させる ためには、その薄膜材料のガラス転移温度以上に加熱することが有効な場合がある 。また、分子の配向制御性を向上させるためには、その薄膜材料の融点近くの温度 に加熱することが有効な場合もある。これらの条件は記録媒体として用レ、る材料の特 性により異なるため、個々に最適な条件を選択することが重要である。 [0041] Depending on the material used as the recording medium, by increasing the temperature of the thin film during the recording, the orientation of the fine particles, microcrystals or molecules using the recording member is facilitated, and the higher the temperature. Accurate orientation control may be possible. In particular, in order to improve the orientation controllability of the microcrystal, it may be effective to heat the thin film material to a temperature higher than the glass transition temperature. In order to improve the molecular orientation controllability, it may be effective to heat to a temperature close to the melting point of the thin film material. Since these conditions vary depending on the characteristics of the materials used as the recording medium, it is important to select the optimum conditions individually.
[0042] 薄膜を構成する材料として、強誘電性を有するポリマー材料を用いることは特に有 用である。この場合、上記方法で微小領域に情報の記録を行う際に同時に、もしくは 配向制御による記録とは別の時点で電界を印加して、その電界の有無、方向等を制 御すれば、その微小領域の分極の有無、又は方向を制御することができる。これによ り、配向制御による情報の記録に重畳して、それとは独立に分極による情報の記録を 行うことができ、更に高密度に情報を記録することができる。この場合、分極情報を記 録するための記録用部材として配向制御に用いたのと同じ記録用部材を用いてもよ いし、それとは別の記録用部材を用いてもよい。  [0042] It is particularly useful to use a polymer material having ferroelectricity as a material constituting the thin film. In this case, if the electric field is applied at the same time when the information is recorded in the micro area by the above method or at a time different from the recording by the orientation control, and the presence / absence and direction of the electric field are controlled, the micro area is controlled. The presence / absence or direction of the polarization of the region can be controlled. As a result, information can be recorded by polarization independently of the information recording by orientation control, and information can be recorded at a higher density. In this case, the same recording member used for the orientation control may be used as the recording member for recording the polarization information, or a different recording member may be used.
[0043] 同じ薄膜に対して、分子や未結晶の配向制御による記録と、分極や磁化の状態制 御による記録は互いに独立してなされても良い。それゆえ、薄膜の内部構造により情 報が記録される微小領域と、分極や磁化により情報が記録される微小領域は同じも のである必要はない。例えば、内部構造により情報が記録される微小領域よりも分極 により情報が記録される微小領域の方が大きくてもよい。  [0043] For the same thin film, recording by molecular or amorphous orientation control and recording by polarization or magnetization state control may be performed independently of each other. Therefore, the micro area where information is recorded by the internal structure of the thin film and the micro area where information is recorded by polarization or magnetization do not have to be the same. For example, the micro area where information is recorded by polarization may be larger than the micro area where information is recorded by the internal structure.
[0044] 強誘電性のポリマー材料として例えばフッ化ビニリデンポリマー(PVDF)やオリゴマ 一、フッ化ビニリデンと三フッ化工チレンのランダム共重合体に代表されるフッ化ビニ リデン共重合体、ナイロン 7,ナイロン 9,ナイロン 11 ,ナイロン 13等の奇数ナイロン、 シアンィ匕ビ二リデンと酢酸ビュルの交互重合体を用いることができる。  [0044] Ferroelectric polymer materials include, for example, vinylidene fluoride polymer (PVDF), oligomers, vinylidene fluoride copolymers represented by random copolymers of vinylidene fluoride and trifluoroethylene, nylon 7, An odd number nylon such as nylon 9, nylon 11 and nylon 13, or an alternating polymer of cyanobiridene and butyl acetate can be used.
[0045] また、本発明には、上述の高密度情報記録方法を情報記録の一工程 (情報記録ェ 程)として含み、かつ上述の高密度情報再生方法を情報再生の一工程 (情報再生ェ 程)として含む高密度情報記録再生方法も含まれる。ここで、本高密度情報記録再 生方法では、情報記録工程と情報再生工程とが、それぞれ異なる場所と時間で行わ れる場合も含まれる。例えば、情報記録工程が所定の場所と時間で行われ、その後 、前記所定の場所とは異なる場所にて、時間的に隔たりをもって情報再生工程が行 われてもよい。さらに、情報記録工程と情報再生工程とがそれぞれ別の主体によって 行われる場合も本発明に含まれ得る。 Further, the present invention includes the above-described high-density information recording method as one step of information recording (information recording step), and the above-described high-density information reproducing method includes one step of information reproduction (information reproducing step). The high-density information recording / reproducing method is included. Here, the high-density information recording / reproducing method includes a case where the information recording process and the information reproducing process are performed at different places and times. For example, the information recording process is performed at a predetermined place and time, and thereafter, the information reproducing process is performed at a place different from the predetermined place with a time interval. It may be broken. Furthermore, the present invention may include a case where the information recording process and the information reproducing process are performed by different entities.
[0046] ここまでに述べた高密度情報記録方法、再生方法および消去方法を用いる書き換 え可能なランダムアクセスメモリは、次のような装置により実施することができる。すな わち、本発明に係る高密度メモリ装置は、基板上に形成された薄膜を含む情報記録 媒体に情報を高密度で記録し、更に再生するための情報記録再生装置であって、 鋭利な先端形状を有する部材と、メモリの各アドレス位置に前記部材を移動させるた めに必要な記録媒体と前記部材を相対的に移動させる移動機構、さらには、記録媒 体と前記部材の x、 y、 z方向の相対的位置を微細に変化させる微動機構、前記部材 の温度を制御する機構とを備える。ここで、部材は記録用と再生用を兼ねて 1個のみ 設けてもよいし、記録用のものと再生用のものを別個に設けてもよい。  The rewritable random access memory using the high-density information recording method, reproducing method and erasing method described so far can be implemented by the following apparatus. That is, the high-density memory device according to the present invention is an information recording / reproducing device for recording information at a high density on an information recording medium including a thin film formed on a substrate and further reproducing the information. A member having a flexible tip shape, a recording medium necessary for moving the member to each address position in the memory, and a moving mechanism for relatively moving the member, and further, x, a fine movement mechanism for finely changing the relative position in the y and z directions, and a mechanism for controlling the temperature of the member. Here, only one member may be provided for both recording and reproduction, or a recording member and a reproduction member may be provided separately.
[0047] この装置では、前述の様に、情報記録媒体の微小領域の位置に前記記録用部材 を移動させ、その位置において該部材を膜表面に定常的または間欠的に接触させ た状態で、該部材に対して膜面内の所定方向の力を印加する力もしくは膜面内の所 定方向に振動する力を印加する。これにより膜を構成する微粒子又は微結晶又は分 子の配向方向を変化させ、情報を記録する。また、前述の様に、微粒子又は微結晶 又は分子の配向方向を変化させるための力として超音波振動または電磁気力を用 レ、る場合には、前記記録用部材にこれらの力を印加する外部駆動装置を儲けて行う 。また、当該装置は記録用部材を用いて微小領域の温度のみを制御してその結晶ま たは分子の配向方向を制御することも出来る。  [0047] In this apparatus, as described above, the recording member is moved to the position of the minute region of the information recording medium, and the member is in constant or intermittent contact with the film surface at that position. A force that applies a force in a predetermined direction within the film surface or a force that vibrates in a predetermined direction within the film surface is applied to the member. As a result, the orientation direction of the fine particles, microcrystals or molecules constituting the film is changed, and information is recorded. Further, as described above, when ultrasonic vibration or electromagnetic force is used as a force for changing the orientation direction of fine particles, microcrystals, or molecules, an external force is applied to the recording member. Carry out the drive. In addition, the apparatus can also control the orientation direction of the crystal or molecule by controlling only the temperature of the minute region using a recording member.
[0048] 情報の再生は、情報記録媒体の微小領域に前記再生用部材を定常的または間欠 的に接触させた後、該部材およびまたは記録媒体を膜表面に平行な方向に微小距 離移動させるか、または該両者の一方または両方を振動させることにより、該両者の 間に生じる力を検出して、該微小領域内の微粒子又は微結晶又は分子の配向方向 を読み出す。  In reproducing information, the reproducing member is brought into contact with a minute region of the information recording medium regularly or intermittently, and then the member and / or the recording medium are moved by a minute distance in a direction parallel to the film surface. Alternatively, by oscillating one or both of the two, the force generated between the two is detected, and the orientation direction of the fine particles, microcrystals, or molecules in the minute region is read out.
[0049] 薄膜の微粒子又は微結晶又は分子の配向制御による情報の記録と分極による情 報の記録を重畳して行う場合には、上記高密度情報記録装置に更に、薄膜に電界 を印加する電界印加手段を設ける。 [0050] 同様に、膜の配向制御による情報の記録と磁化による情報の記録を重畳して行う 場合には、更に、薄膜に磁界を印加する磁界印加手段を設ける。 [0049] When recording information by controlling the orientation of fine particles, microcrystals, or molecules of a thin film and recording information by polarization are superimposed, an electric field for applying an electric field to the thin film is further added to the high-density information recording apparatus. An application means is provided. [0050] Similarly, when recording information by controlling film orientation and recording information by magnetization are performed in a superimposed manner, magnetic field applying means for applying a magnetic field to the thin film is further provided.
(発明の効果)  (The invention's effect)
本発明に係る高密度情報記録方法、再生方法、消去方法を用いることで、 1Tbitん m2を超える大容量の書き換え可能なランダムアクセスメモリを実現することが出来る。 By using the high-density information recording method, reproducing method, and erasing method according to the present invention, a large-capacity rewritable random access memory exceeding 1 Tbit m 2 can be realized.
[0051] また、強誘電性又は強磁性を有する膜を用いることにより、力学的な力による情報 の記録と強誘電性又は強磁性を用いた情報の記録を重畳して独立に行うことができ るため、情報記録密度を更に高くすることができる。さらに、本発明が実現する大容 量メモリは書き替え可能なメモリであってもよぐまた、ランダムアクセス型メモリであつ てもよい。 [0051] Further, by using a film having ferroelectricity or ferromagnetism, information recording by dynamic force and information recording using ferroelectricity or ferromagnetism can be performed independently and superimposed. Therefore, the information recording density can be further increased. Furthermore, the large-capacity memory realized by the present invention may be a rewritable memory or a random access type memory.
〔実施例〕  〔Example〕
ここではまず、(1)本発明に係る高密度メモリ装置の実施例について説明し、この装 置の動作を説明することにより本発明に係る高密度情報記録方法を説明する。次に 、(2)本発明に係る情報記録方法、消去方法および高密度メモリ(記録媒体)の実施 例について実験結果を基に説明する。更に、(3)本発明に係る情報再生の方法の実 施例として、これらの情報記録媒体を用いて情報記録および再生を行った各種実施 結果を示す。  Here, first, (1) an embodiment of a high-density memory device according to the present invention will be described, and the operation of this device will be described to explain the high-density information recording method according to the present invention. Next, (2) examples of the information recording method, the erasing method, and the high-density memory (recording medium) according to the present invention will be described based on experimental results. Furthermore, (3) As examples of the information reproducing method according to the present invention, various results of information recording and reproduction using these information recording media are shown.
[0052] (1)本発明に係る高密度メモリ装置の実施例  (1) Embodiment of high-density memory device according to the present invention
(1-1)基本的な構成を有する高密度メモリ装置及びその動作  (1-1) High-density memory device having basic configuration and its operation
(1-1-1)高密度メモリ装置の構成  (1-1-1) Configuration of high-density memory device
図 1に、本発明に係る高密度メモリ装置の一実施例の断面図を示す。この高密度メ モリ装置は、本発明に係る高密度情報記録媒体 10を載置するステージ 11と、ステー ジ 11を x, y, z軸方向に移動させるステージ移動装置 12と、鋭利な先端形状を有する 記録および記録再生針 13を有する Si製の板パネ 14とを備える。ここで、 X軸及び y軸 方向は高密度情報記録媒体 10の表面に平行な方向、 z軸方向は高密度情報記録 媒体 10に垂直な方向である。ステージ移動装置 12は粗動装置 12a及び微動装置 1 2bの 2段階の移動装置で構成される。ステージ移動装置 12は、ドライバ 15により駆 動される。ここで、微動装置 12bは必要に応じて、 X軸方向および y軸方向および z軸 方向に必要な周波数で振動させることができる。この装置は更に、上記の各部を固 定する円筒状の外枠 24を備える。この外枠 24は上部 24aと下部 24bに分割され、板 バネ 14及び後述の検出部 16は上部 24aに、ステージ 11及びステージ移動装置 12 は下部 24bに、それぞれ固定される。外枠 24は、上部 24aが下部 24bに対して x_y 平面内で 360度回動可能な機構を備える。この機構により、板パネ 14は記録再生針 13を中心として x_y平面内で任意の方向に回動することが可能である。 FIG. 1 shows a cross-sectional view of one embodiment of a high-density memory device according to the present invention. This high-density memory device includes a stage 11 on which the high-density information recording medium 10 according to the present invention is placed, a stage moving device 12 that moves the stage 11 in the x, y, and z-axis directions, and a sharp tip shape. And a Si panel panel 14 having recording and recording / reproducing needles 13. Here, the X-axis and y-axis directions are directions parallel to the surface of the high-density information recording medium 10, and the z-axis direction is a direction perpendicular to the high-density information recording medium 10. The stage moving device 12 is composed of a two-stage moving device, a coarse moving device 12a and a fine moving device 12b. The stage moving device 12 is driven by a driver 15. Here, the fine movement device 12b can be used in the X-axis direction, the y-axis direction, and the z-axis It can be vibrated at the required frequency in the direction. The apparatus further includes a cylindrical outer frame 24 that fixes the above-described parts. The outer frame 24 is divided into an upper part 24a and a lower part 24b, and the leaf spring 14 and the detection unit 16 described later are fixed to the upper part 24a, and the stage 11 and the stage moving device 12 are fixed to the lower part 24b. The outer frame 24 includes a mechanism in which the upper part 24a can rotate 360 degrees in the x_y plane with respect to the lower part 24b. With this mechanism, the plate panel 14 can be rotated in any direction within the x_y plane about the recording / reproducing needle 13.
[0053] この高密度メモリ装置は更に、板パネ 14に働く力を検出するための検出部 16を備 える。ステージ移動装置 12のドライバ 15と検出部 16は制御部 17により制御される。 ドライバ 15は、ステージ 11と記録再生針 13の相対的な位置を変化させると共に、両 者の z軸方向の距離を調整することにより両者の接触圧を変化させる。この接触圧は 高密度情報記録媒体 10の材料に応じて設定することができる。  The high-density memory device further includes a detection unit 16 for detecting a force acting on the plate panel 14. The driver 15 and the detection unit 16 of the stage moving device 12 are controlled by the control unit 17. The driver 15 changes the relative position between the stage 11 and the recording / reproducing needle 13 and changes the contact pressure between the two by adjusting the distance in the z-axis direction between the two. This contact pressure can be set according to the material of the high-density information recording medium 10.
[0054] 情報再生のための機構として、板バネ 14の根元には記録再生針 13を x_y平面内で 振動させる機構 22および z方向に振動させる機構 23が設けられている。  As a mechanism for reproducing information, a mechanism 22 that vibrates the recording / reproducing needle 13 in the x_y plane and a mechanism 23 that vibrates in the z direction are provided at the base of the leaf spring 14.
[0055] これらの各部装置には、通常の AFM装置が備えているものをそのまま用いることも できる。微動装置 12bには、例えばピエゾ素子を用いることができる。検出部 16には 、例えば光テコ法あるいはレーザ干渉法などの光学的方法で板パネ 14の変位を検 出する検出器を用いることができる。また、記録再生用部材付板パネとして、 AFMや S TMで使用されているカンチレバーを用いることができる。この場合、圧電型又はピエ ゾ抵抗型などの自己検出方式のカンチレバーを用いることにより、前述の光テコ法あ るいはレーザ干渉法などの検出系が不要になる。  [0055] As each of these unit devices, those provided in a normal AFM device can be used as they are. For the fine movement device 12b, for example, a piezoelectric element can be used. The detector 16 can be a detector that detects the displacement of the plate panel 14 by an optical method such as an optical lever method or a laser interference method. In addition, a cantilever used in AFM or STM can be used as a plate panel with a recording / reproducing member. In this case, by using a self-detection type cantilever such as a piezoelectric type or a piezoresistive type, a detection system such as the above-mentioned optical lever method or laser interference method becomes unnecessary.
[0056] (1-1-2)高密度メモリ装置の動作 (記録時)  [0056] (1-1-2) Operation of high density memory device (during recording)
まず、情報を記録する動作について述べる。高密度情報記録媒体 10を構成する膜 は多数の微小領域に仮想的に区切られている。これら多数の微小領域の 1つ(ここで は図中の微小領域 21とする)に情報を記録する際には、ステージ移動装置 12により 、記録再生針 13が微小領域 21の直上に配置されるようにステージ 11を X軸方向及 び y軸方向に移動させる(図 2(a))。そして、ステージ 11を z軸方向に移動させ、高密 度情報記録媒体 10と記録再生針 13を、両者を定常的または間欠的に接触させる。 そして、一例として、ステージ 11を所定の方向に微小距離だけ移動させることにより、 その移動方向とは反対の方向(微小領域 21を固定して記録再生針 13を移動又は振 動させた場合には、その移動方向)の力を高密度情報記録媒体 10に加える(図 2(b) )。これにより、微小領域 21内の膜を構成する微粒子又は微結晶又は分子の配向方 向を変化させ、それにより" (Τ、〃 '等の情報を記録することができる。 First, an operation for recording information will be described. The film constituting the high-density information recording medium 10 is virtually divided into a large number of minute regions. When information is recorded in one of these many micro areas (here, micro area 21 in the figure), the recording / reproducing needle 13 is arranged immediately above the micro area 21 by the stage moving device 12. In this way, the stage 11 is moved in the X-axis direction and the y-axis direction (Fig. 2 (a)). Then, the stage 11 is moved in the z-axis direction, and the high-density information recording medium 10 and the recording / reproducing needle 13 are brought into contact with each other regularly or intermittently. And as an example, by moving the stage 11 in a predetermined direction by a minute distance, A force in the direction opposite to the moving direction (when the recording / reproducing needle 13 is moved or vibrated with the minute area 21 fixed, the moving direction) is applied to the high-density information recording medium 10 (FIG. 2 ( b)). As a result, the orientation direction of the fine particles, microcrystals, or molecules constituting the film in the minute region 21 can be changed, whereby information such as “(Τ, 〃 ′” can be recorded.
[0057] (1_1_3)高密度メモリ装置の動作 (再生時)  [0057] (1_1_3) Operation of high-density memory device (during playback)
微小領域 21に記載された情報は、以下に示す方法を用いて再生することができる 。記録時と同様の機構を用いて、記録再生針 13を微小領域 21の直上に配置する。 次に、ステージ 12を ζ軸方向に移動させ、高密度情報記録媒体 10と記録再生針 13 を接触させる。次いで、例えば、振動機構 22を用いて、記録再生針 13を記録媒体表 面に平行な特定の方向に振動させる。この時に記録再生針 13が記録媒体表面から 受ける力の大きさを板パネ 14の捩れの大きさとして検出部 16を用いて検出する。上 記の例では、振動機構 22を用いて記録再生針 13を振動させたが、微動装置 12bを 用いて記録媒体を振動させた状態で板パネ 14の捩れの振幅および位相として検出 してもよレ、。上記に於いて「特定」と記した振動方向は任意の方向に設定することが できる。また、一つの微小領域に対して異なる方向に振動させたデータを用いて、よ り精度の高レ、情報再生を行うことが可能になる。  The information described in the micro area 21 can be reproduced using the following method. The recording / reproducing needle 13 is disposed immediately above the minute area 21 using the same mechanism as that used for recording. Next, the stage 12 is moved in the ζ-axis direction, and the high-density information recording medium 10 and the recording / reproducing needle 13 are brought into contact with each other. Next, for example, using the vibration mechanism 22, the recording / reproducing needle 13 is vibrated in a specific direction parallel to the recording medium surface. At this time, the magnitude of the force that the recording / reproducing needle 13 receives from the surface of the recording medium is detected by the detection unit 16 as the magnitude of the twist of the plate panel 14. In the above example, the recording / reproducing needle 13 is vibrated using the vibration mechanism 22, but even if the recording medium is vibrated using the fine movement device 12 b, it may be detected as the amplitude and phase of the twist of the plate panel 14. Yo! The vibration direction described as “specific” in the above can be set to any direction. In addition, it is possible to reproduce information with higher accuracy by using data oscillated in different directions for one minute region.
[0058] 更に、微粒子又は微結晶又は分子の配向方向を検出する他の手法として以下の 方法も有効である。振動機構 23を用いて記録再生針 13を z軸方向に振動させながら ステージ 11を用いて記録媒体表面に近づけ、記録再生針 13が間欠的に記録媒体 表面に接触するように位置決めする。この状態において、振動機構 22または微動装 置 12bを用いて記録再生針 13を記録媒体表面に平行な特定方向に捩れ振動させ、 記録再生針 13が記録媒体表面から受ける力の大きさを板パネ 14の捩れの大きさお よび位相の信号として検出部 16を用いて検出することもできる。  Furthermore, the following method is also effective as another method for detecting the orientation direction of fine particles, microcrystals, or molecules. While the recording / reproducing needle 13 is vibrated in the z-axis direction using the vibration mechanism 23, the stage 11 is used to approach the recording medium surface, and the recording / reproducing needle 13 is positioned so as to intermittently contact the recording medium surface. In this state, the recording / reproducing needle 13 is torsionally vibrated in a specific direction parallel to the surface of the recording medium using the vibration mechanism 22 or the fine movement device 12b, and the magnitude of the force that the recording / reproducing needle 13 receives from the surface of the recording medium is measured on the plate panel. It is also possible to detect using the detector 16 as a signal of the magnitude and phase of 14 twists.
[0059] 更に、微粒子又は微結晶又は分子の配向方向を検出する他の手法として以下の 方法も有効である。ステージ 11を z軸方向に移動させ、高密度情報記録媒体 10と記 録再生針 13を接触させる。次レ、で記録再生針 13を板パネ 14の長軸に垂直方向に 微小距離移動させることにより板パネが捩れ方向の力を受ける。この捩れ信号の振 幅の情報を検出部 16で検出することにより情報の再生を行うことができる。 [0060] 微粒子又は微結晶又は分子の配向方向が膜面に垂直であるか水平であるかの違 いにより情報記録がなされている場合には、以下に示す方法を用いて配向情報を再 生できる。まず、前記の例と同様の機構を用いて記録再生針 13を微小領域 21の直 上に配置する。次に、ステージ 11を z軸方向に移動させ、高密度情報記録媒体 10と 記録再生針 13を接触させる。この状態に於いて、ステージ 12を用いて記録媒体を z 軸方向に振動させる。記録媒体内を伝播した後、記録再生針 13に伝わった振動の 振幅および位相情報を検出部 16を用いて検出する。これにより、微粒子又は微結晶 又は分子の配向方向が膜面に垂直であるか水平であるかを再生することができる。 [0059] Furthermore, the following method is also effective as another method for detecting the orientation direction of fine particles, microcrystals, or molecules. The stage 11 is moved in the z-axis direction, and the high-density information recording medium 10 and the recording / reproducing needle 13 are brought into contact with each other. Next, when the recording / reproducing needle 13 is moved by a minute distance in the direction perpendicular to the long axis of the plate panel 14, the plate panel receives a twisting force. Information can be reproduced by detecting the amplitude information of the torsion signal by the detection unit 16. [0060] When information recording is performed depending on whether the orientation direction of fine particles, microcrystals, or molecules is perpendicular or horizontal to the film surface, the orientation information is reproduced using the following method. it can. First, the recording / reproducing needle 13 is arranged immediately above the minute region 21 using the same mechanism as in the above example. Next, the stage 11 is moved in the z-axis direction, and the high-density information recording medium 10 and the recording / reproducing needle 13 are brought into contact with each other. In this state, the recording medium is vibrated in the z-axis direction using the stage 12. After propagating through the recording medium, the amplitude and phase information of the vibration transmitted to the recording / reproducing needle 13 is detected using the detection unit 16. This makes it possible to regenerate whether the orientation direction of the fine particles, microcrystals, or molecules is perpendicular or horizontal to the film surface.
[0061] また、振動機構 23を用いて記録再生針 13を z軸方向に振動させながらステージ移 動装置 12を用いて記録媒体表面に近づけ、記録再生針 13が間欠的に記録媒体の 表面に接触するように位置決めし、この状態における板パネ 14の振動の位相情報を 検出部 16を用いて読み取ることにより、微粒子又は微結晶又は分子の配向方向が 膜面に垂直であるか水平であるかを再生することもできる。  [0061] Further, the recording / reproducing needle 13 is intermittently brought into contact with the surface of the recording medium by using the stage moving device 12 while vibrating the recording / reproducing needle 13 in the z-axis direction using the vibration mechanism 23. Whether the orientation direction of the fine particles, microcrystals, or molecules is perpendicular to the film surface or horizontal by reading the phase information of the vibration of the plate panel 14 in this state using the detection unit 16 Can also be played.
[0062] 微小領域 21に記載された情報を消去するには、記録した微小領域のすべてを記 録再生針 13で同じ方向に移動させることにより、全領域を同じ状態にすればよい。ま た、薄膜全体を所定温度以上に加熱することにより、全領域において記録時の状態 を変化させてもよい。  [0062] In order to erase the information described in the minute area 21, all the recorded minute areas may be moved in the same direction by the recording / reproducing needle 13 so that all the areas are in the same state. Further, the recording state may be changed in the entire area by heating the entire thin film to a predetermined temperature or higher.
[0063] なお、上記実施例では記録時 ·再生時共に同じ部材 (記録再生針 13)を用いたが、 記録用の針と再生用の針を別途用意して使い分けてもよい。  In the above embodiment, the same member (recording / reproducing needle 13) is used for both recording and reproduction. However, a recording needle and a reproducing needle may be separately prepared and used separately.
[0064] (1-2)加熱手段を有する高密度情報記録および再生装置  [0064] (1-2) High-density information recording and reproducing apparatus having heating means
前記のように情報記録時に高密度情報記録媒体 10を加熱する場合には、図 3に示 すように、図 1の高密度情報記録装置に更に、板パネ 14を介して記録再生針 13を加 熱するための加熱手段(ヒータ) 18と、記録再生針 13の温度を測定する温度計 19を 設ける。制御部 17は温度計 19の測定結果をフィードバックしつつ、記録再生針 13が 記録及び/又は消去に適した温度になるようにヒータ 18の出力を制御する。その他 の構成及び動作は、図 1の高密度情報記録装置と同様である。  When the high-density information recording medium 10 is heated at the time of information recording as described above, as shown in FIG. 3, the recording / reproducing needle 13 is further connected to the high-density information recording apparatus of FIG. A heating means (heater) 18 for heating and a thermometer 19 for measuring the temperature of the recording / reproducing needle 13 are provided. The control unit 17 feeds back the measurement result of the thermometer 19 and controls the output of the heater 18 so that the recording / reproducing needle 13 has a temperature suitable for recording and / or erasing. Other configurations and operations are the same as those of the high-density information recording apparatus of FIG.
[0065] 加熱手段には、本実施例のヒータ 18の代わりに、記録領域にレーザ光を照射する レーザ光源を用いてもよい。また、ヒータ 18やレーザ光源のように記録領域を局所的 に加熱する加熱手段の代わりに、高密度情報記録媒体 10の全体を加熱するものを 用いてもよい。この場合には、加熱温度を、記録再生針 13により力を加えられた部分 のみがその力により容易に配向方向を制御でき、それ以外の部分はその温度のみに よっては配向が変化しないような値に設定しておく。 As the heating means, a laser light source for irradiating the recording area with laser light may be used instead of the heater 18 of the present embodiment. Also, like the heater 18 and laser light source, the recording area is localized. Instead of the heating means for heating the medium, a medium for heating the entire high-density information recording medium 10 may be used. In this case, the heating temperature can be easily controlled by only the portion where the force is applied by the recording / reproducing needle 13, and the orientation of the other portions is not changed by the temperature alone. Set to value.
[0066] (1-3)電界印加手段を有する高密度情報記録および再生装置 (1-3) High-density information recording and reproducing apparatus having electric field applying means
高密度情報記録媒体 10の膜を構成する微粒子又は微結晶及び Z又は分子の制 御に加えて、強誘電体の膜力 成る高密度情報記録媒体 10を用いて情報の記録を 電界の印加により行う場合には、図 4に示すように、図 1の高密度情報記録装置に更 に電界印加手段 31を設ける。電界印加手段 31は記録再生針 13 _ステージ 11間に 、情報の記録時にはその値に応じた正又は負の直流電圧を、再生時には交流電圧 を印加するものである。  In addition to the control of fine particles or microcrystals and Z or molecules constituting the film of the high-density information recording medium 10, information is recorded by applying an electric field using the high-density information recording medium 10 having a ferroelectric film force. When performing, as shown in FIG. 4, an electric field applying means 31 is further provided in the high-density information recording apparatus of FIG. The electric field applying means 31 applies a positive or negative DC voltage corresponding to the value between the recording / reproducing needle 13 and the stage 11 at the time of recording information and an AC voltage at the time of reproducing.
[0067] この高密度情報記録装置の動作を説明する。上記と同様に、ステージ移動装置 12 により記録再生針 13を微小領域 21に接触させる。そして、電界印加手段 31と導電 性を有する記録再生針 13を用いて、例えば、記録再生針 13—ステージ 11間に正又 は負の直流電圧を印加しながら、ステージ 11を所定の方向に移動する(図 5)ことに より、ステージ 11の移動方向とは逆の方向(微小領域 21を固定して記録再生針 13を 移動する場合には、その移動方向)の力学的な力と、直流電界による力を高密度情 報記録媒体 10に加える。これにより、微小領域 21の内部は、記録再生針 13の移動 方向に応じて微粒子又は微結晶または分子が変化するとともに、印加した直流電界 によって誘起される分極が生成され、それぞれに起因する情報が独立に記録される  The operation of this high density information recording apparatus will be described. Similarly to the above, the recording / reproducing needle 13 is brought into contact with the minute region 21 by the stage moving device 12. Then, using the electric field applying means 31 and the recording / reproducing needle 13 having conductivity, for example, the stage 11 is moved in a predetermined direction while applying a positive or negative DC voltage between the recording / reproducing needle 13 and the stage 11. (Fig. 5), the mechanical force in the direction opposite to the moving direction of the stage 11 (the moving direction when moving the recording / reproducing needle 13 with the minute area 21 fixed) and the DC power The force from the field is applied to the high-density information recording medium 10. As a result, in the minute region 21, fine particles, microcrystals, or molecules change according to the moving direction of the recording / reproducing needle 13, and polarization induced by the applied DC electric field is generated. Recorded independently
[0068] また、この高密度情報記録装置では、高密度情報記録媒体 10に力学的な力を印 加することなく(すなわち、記録の時点では本発明を利用することなく)、単に電界を 印加することにより情報を記録することもできる。この場合、記録再生針 13を高密度 情報記録媒体 10の領域 (記録領域)に接触又は近接させた後、ステージ 11を移動 することなぐステージ 11と記録再生針 13との間に正又は負の直流電圧を印加する 。正の直流電圧を印加した場合には記録領域内に下向きの分極 P1が(図 6(a))、負 の直流電圧を印加した場合には上向きの分極 P2が(図 6(b))、それぞれ形成され、 2 値情報が分極の向きにより記録される。また、これとは独立に、(1-1)又はひ- 2)で述べ た方法で力学的な力を印加して、薄膜を構成する微粒子又は微結晶及び/又は分 子を制御することにより情報を記録することもできる。すなわち、本発明に係る高密度 情報記録装置では、本発明に係る力学的な力による情報の記録と、従来からの方法 による電界を用いた情報の記録を同じ高密度情報記録媒体 10に対して独立に行う こと力 Sできる。 In this high-density information recording apparatus, an electric field is simply applied without applying a mechanical force to the high-density information recording medium 10 (that is, without using the present invention at the time of recording). By doing so, information can also be recorded. In this case, after the recording / reproducing needle 13 is in contact with or close to the area (recording area) of the high-density information recording medium 10, a positive or negative value is placed between the stage 11 and the recording / reproducing needle 13 without moving the stage 11. Apply DC voltage. When a positive DC voltage is applied, the downward polarization P1 is in the recording area (Fig. 6 (a)). When a negative DC voltage is applied, the upward polarization P2 is (Fig. 6 (b)). Each formed 2 Value information is recorded by the direction of polarization. Independently, by applying a mechanical force by the method described in (1-1) or H-2), fine particles or microcrystals and / or molecules constituting the thin film are controlled. Information can also be recorded. That is, in the high-density information recording apparatus according to the present invention, information recording by the dynamic force according to the present invention and information recording using an electric field by a conventional method are performed on the same high-density information recording medium 10. Ability to do it independently.
[0069] 情報の再生は、分極の方向を検出することにより行うことができる。図 7(a)〜図 7(d) に示すように、導電性を有する記録再生針 13を高密度情報記録媒体 10の記録領域 に定常的または間欠的に接触させ、記録再生針 13—ステージ 11間に交流電圧を印 加する。分極された領域では、交流電圧を印加することにより、膜厚方向の圧電性に 起因して膜厚が伸縮振動する。この振動は導電性を有する記録再生針 13の z方向 の振動として検出することができる。この圧電振動の周波数は印加電圧の周波数と 同じである。この両者の位相を測定することで膜の分極方向を検出することが出来る  [0069] Information can be reproduced by detecting the direction of polarization. As shown in FIG. 7 (a) to FIG. 7 (d), the recording / reproducing needle 13 having conductivity is brought into contact with the recording area of the high-density information recording medium 10 regularly or intermittently, and the recording / reproducing needle 13-stage. Apply an AC voltage across 11. In the polarized region, application of alternating voltage causes the film thickness to expand and contract due to the piezoelectricity in the film thickness direction. This vibration can be detected as vibration in the z direction of the recording / reproducing needle 13 having conductivity. The frequency of this piezoelectric vibration is the same as the frequency of the applied voltage. By measuring the phase of both, the polarization direction of the film can be detected.
[0070] 情報の消去は、記録再生針 13を用いた、上記の記録方法により、情報記録領域全 体を同一の方向に分極することによって行うことが出来る。また、記録再生針 13を用 レ、ることなぐ記録媒体の少なくとも情報記録領域全体に対して同一方向の電界を印 カロすることによつても消去すること力 S出来る。後者の具体的な方法としては、 2枚の平 行平板電極の間に記録媒体を配置し、電極間に一定値以上の電圧を印加すること により実現できる。 Information can be erased by polarizing the entire information recording area in the same direction by the above-described recording method using the recording / reproducing needle 13. Further, the recording force can be erased by applying an electric field in the same direction to at least the entire information recording area of the recording medium without using the recording / reproducing needle 13. A specific method of the latter can be realized by placing a recording medium between two parallel plate electrodes and applying a voltage of a certain value or more between the electrodes.
(2)本発明に係る情報記録方法、消去方法および高密度メモリ(記録媒体)の実施例 次に、本発明に係る高密度メモリとして使用可能な膜の実施例として、ポリフッ化ビ 二リデンとポリ三フッ化工チレンの共重合体 (P(VDF-TrFE))膜、ポリエチレン膜及び ポリブテン膜にっレ、て説明する。  (2) Examples of information recording method, erasing method and high-density memory (recording medium) according to the present invention Next, polyvinylidene fluoride as an example of a film usable as the high-density memory according to the present invention A polytrifluorinated styrene copolymer (P (VDF-TrFE)) film, a polyethylene film, and a polybutene film will be described below.
[0071] (2-1)分子配向制御による情報記録 (P(VDF-TrFE)膜を記録媒体とする) [0071] (2-1) Information recording by molecular orientation control (P (VDF-TrFE) film is used as a recording medium)
P(VDF-TrFE)をメチルェチルケトン(MEK)に溶解させた溶液をグラフアイト基板上 にスピンコートした後、 140°Cで加熱処理した。これにより、図 8(a)AFM像及び図 8(b) 斜視図に示すように、 c軸 (分子鎖軸)が膜面内に等方的に配歹 1Jしたラメラ型の微結 晶からなる膜厚約 lOOnmの P(VDF-TrFE)膜 41が得られた。グラフアイト基板の代わり にガラス基板、更にはアルミニウム、金、白金などの金属基板を用いても、 140°Cで結 晶化させる限りに於いては図 8(a),図 8(b)に示すものと同様の微結晶を有する膜厚 約 150匪の薄膜が得られた。一方、ガラス基板、および金属基板上に形成した膜を 融点 (147°C)よりも十分高い温度(160°C)に加熱すると、図 9(a)AFM像及び図 9(b)斜 視図に示すように、ラメラ型微結晶の c軸が膜面に垂直に配歹 1Jした膜厚約 150nmの P( VDF-TrFE)膜 42が得られた。 A solution prepared by dissolving P (VDF-TrFE) in methyl ethyl ketone (MEK) was spin-coated on a graphite substrate, and then heat-treated at 140 ° C. As a result, as shown in FIG. 8 (a) AFM image and FIG. 8 (b) perspective view, a lamellar microscopic structure in which the c-axis (molecular chain axis) is isotropically arranged 1J within the film surface. As a result, a P (VDF-TrFE) film 41 made of crystals and having a thickness of about lOOnm was obtained. Even if a glass substrate or a metal substrate such as aluminum, gold, or platinum is used instead of the graphite substrate, as long as it is crystallized at 140 ° C, it is shown in Figs. 8 (a) and 8 (b). A thin film having a thickness of about 150 mm having the same microcrystals as shown was obtained. On the other hand, when the glass substrate and the film formed on the metal substrate are heated to a temperature (160 ° C) sufficiently higher than the melting point (147 ° C), Fig. 9 (a) AFM image and Fig. 9 (b) oblique view. As shown in the figure, a P (VDF-TrFE) film 42 having a film thickness of about 150 nm was obtained in which the c-axis of the lamellar microcrystal was arranged 1J perpendicular to the film surface.
[0072] 図 8(a),図 8(b)および図 9(a),図 9(b)に示す P(VDF-TrFE)膜を融点(147°C)よりもわ ずかに低レ、 140〜145°Cになるように膜を加熱しつつ、記録針を膜の表面に 2nN〜30 nNの針厚で接触した。この状態で膜面に平行に 4マイクロメーター /秒の速度で移動 させて水平方向の力を印加して分子を配向制御し、情報を記録した。情報記録後の 膜表面の AFM像(温度 30°Cで撮影)を図 10(a),図 10(b)に示す。ここで、記録針の移 動は図中の微小領域 51内において行った。また、記録時に加えた力の方向を図中 に矢印で示した。図 10(a)P(VDF-TrFE)膜 41及び図 10(b)P(VDF-TrFE)膜 42のいず れも、微小領域 51内の微結晶は c軸(分子鎖軸)が記録針の移動方向に配歹 ljしてい る。一方、記録針の移動を行わなかった領域 52では微結晶は配列しなかった。この ように、記録針の移動により微小領域毎に微結晶の配列を制御することができ、これ により微小領域毎に情報を記録することができた。  [0072] The P (VDF-TrFE) film shown in Figs. 8 (a), 8 (b), 9 (a), and 9 (b) is slightly lower than the melting point (147 ° C). While the film was heated to 140 to 145 ° C., the recording needle was brought into contact with the surface of the film with a needle thickness of 2 nN to 30 nN. In this state, it was moved at a speed of 4 micrometers / second parallel to the film surface, and a horizontal force was applied to control the orientation of the molecules, and information was recorded. Figures 10 (a) and 10 (b) show AFM images (taken at a temperature of 30 ° C) of the film surface after information recording. Here, the recording needle was moved within the minute region 51 in the figure. The direction of the force applied during recording is indicated by arrows in the figure. In both Fig. 10 (a) P (VDF-TrFE) film 41 and Fig. 10 (b) P (VDF-TrFE) film 42, the c-axis (molecular chain axis) is recorded for the microcrystals in the minute region 51. Allocated in the direction of needle movement. On the other hand, the microcrystals were not arranged in the region 52 where the recording needle was not moved. In this way, the arrangement of the microcrystals can be controlled for each minute region by moving the recording needle, and thus information can be recorded for each minute region.
[0073] (2-2)記録情報の消去 (P(VDF-TrFE)膜を記録媒体とする)  [2-2] (2-2) Deletion of recorded information (P (VDF-TrFE) film is used as a recording medium)
グラフアイト基板上に実施例 (2-1)と同様の方法で製膜し、その後、 142°Cに加熱し た状態で実施例 (2-1)と同様の方法を用いて分子配向を行い、情報を記録した。図 1 1(a)に、情報記録後、 30°Cで観察した膜表面の AFM像を示す。点線で囲まれた部分 が、記録針を用いて矢印方向に力を加えて分子の配向を制御し、情報記録を行った 領域 51である。この試料を 142°Cで 1時間加熱処理した後、再び 30°Cで AFM観察し た結果を図 1 Kb)に示す。記録直後の分子配向状態(図 11(a))と変化が無いことが 分かる。更に、この試料を融点以上の 148°Cで 1時間加熱処理した後、再び 30°Cで A FM観察した結果を図 11(c)に示す。配向制御されていた分子の方向が乱れ、微結晶 がばらばらの方向を向いていることがわかる。以上のように、微結晶を配列させた領 域を、 P(VDF-TrFE)膜の融点である 147°C以上に温度を上げた後に冷却することに より微結晶が配歹 1Jしていない元の状態に戻すことができた。即ちグラフアイト基板上の P(VDF-TrFE)膜は、このカロ熱により、 c軸が膜面に平行で面内にはばらばらの方向を 向き、微小領域に書き込んだ情報を消去することができた。ガラス基板上の P(VDF-T rFE)膜は、前述のように、記録針の移動により微結晶は c軸が記録針の移動方向(膜 面に平行な方向)に配列して情報が記録され、融点 (147°C)よりも十分高い温度(160 °C)に加熱することにより、 c軸が膜面に垂直に配列して情報が消去された。また、 P(V DF-TYFE)膜全体を融点以上の温度にすることにより、記録された全ての情報を 1度 に消去することができた。 A film is formed on the graphite substrate by the same method as in Example (2-1), and then molecular orientation is performed using the same method as in Example (2-1) while being heated to 142 ° C. Recorded information. Figure 11 (a) shows an AFM image of the film surface observed at 30 ° C after recording information. The area surrounded by the dotted line is an area 51 where information is recorded by controlling the molecular orientation by applying a force in the direction of the arrow using a recording needle. Figure 1 Kb) shows the result of AFM observation at 30 ° C after heat-treating this sample at 142 ° C for 1 hour. It can be seen that there is no change from the molecular orientation state immediately after recording (Fig. 11 (a)). Furthermore, after heat-treating this sample at 148 ° C above its melting point for 1 hour, the results of AFM observation at 30 ° C again are shown in Fig. 11 (c). It can be seen that the orientation of the molecules whose orientation has been controlled is disturbed, and the microcrystals are oriented in different directions. As described above, the area where microcrystals are arranged By cooling the region after raising the temperature to 147 ° C or higher, which is the melting point of the P (VDF-TrFE) film, it was possible to restore the original state in which the microcrystals were not distributed 1J. In other words, the P (VDF-TrFE) film on the graphite substrate can erase the information written in the micro area by this caloric heat, with the c-axis parallel to the film surface and the in-plane directions. It was. As described above, the P (VDF-Tr rFE) film on the glass substrate records the information by moving the recording needle and the c-axis is arranged in the moving direction of the recording needle (direction parallel to the film surface). By heating to a temperature (160 ° C) sufficiently higher than the melting point (147 ° C), the c-axis was aligned perpendicular to the film surface, and the information was erased. Also, by setting the entire P (V DF-TYFE) film to a temperature higher than the melting point, all recorded information could be erased at once.
(2-3)配向情報に分極情報を重畳した情報記録 (P(VDF-TrFE)膜を記録媒体とする ) P(VDF-TrFE)膜は強誘電性を有することが知られている。まず、実施例 (2-1)の方 法を用いてグラフアイト基板上に膜厚 75匪の P(VDF_TrFE)薄膜を製膜し、 142°Cに 加熱した状態で上記実施例の方法を用いて分子の配向を制御することにより情報記 録を行った。次に、 30°Cにおいて、金属コートされ導電性を有する記録針を膜表面に 接触させ、 +7Vの電圧を印加しながらこの分子配向制御された領域内の、大きさ 700 nm X 700 nmの領域 53を走査し、分極処理を行った。更に、記録針に- 7Vの電圧を 印加しながら上記の分極処理された領域内の大きさ 300 nm x 300nmの領域 54を走 查し、上記分極とは逆方向に分極処理を行った。上記の一連の操作により、分子配 向による情報記録に重畳して分極による情報記録を行ったことになる。以上の処理を 行った後の、 30°Cにおける重畳記録された領域の AFM像を図 12(a)に示す。太い矢 印が配向処理時に記録針を用いて力を加えた方向である。また、分極処理を施され た領域を点線で示した。この図から、分子がきれいに配向制御されていることが分か る。更に、上記領域 53及び 54の分極情報を圧電力顕微鏡の手法を用いて測定した 結果を図 12(b)に示す。 +方向および—方向にきれいに分極処理されていることが わかる。更に、上記操作では、既に +方向の分極情報が記録された領域 54に—方 向の分極を形成していることから、情報の書き換えが可能であることが分かる。このよ うに、 P(VDF_TYFE)膜を図 4に示す高密度情報記録装置の高密度情報記録媒体 10 に用レ、ることにより、膜の微結晶又は分子の配向制御による情報の記録と、電界を用 いた分極制御による情報の記録を重畳して独立に行うことができた。これにより記録 密度をより高めることができた。 (2-3) Information recording in which polarization information is superimposed on orientation information (P (VDF-TrFE) film is used as a recording medium) It is known that a P (VDF-TrFE) film has ferroelectricity. First, using the method of Example (2-1), a P (VDF_TrFE) thin film with a thickness of 75 mm was formed on the graphite substrate and heated to 142 ° C, using the method of the above example. The information was recorded by controlling the orientation of the molecules. Next, at 30 ° C, a metal-coated conductive recording needle was brought into contact with the film surface, and a size of 700 nm X 700 nm in this molecular orientation controlled region was applied while applying a voltage of +7 V. Region 53 was scanned and polarized. Further, while applying a voltage of −7 V to the recording needle, the region 54 having a size of 300 nm × 300 nm within the region subjected to the polarization treatment was scanned, and the polarization treatment was performed in the direction opposite to the polarization. Through the series of operations described above, information recording by polarization was performed in superposition with information recording by molecular orientation. Figure 12 (a) shows an AFM image of the area recorded at 30 ° C after the above processing. Thick arrows indicate the direction in which force was applied using the recording needle during the orientation process. In addition, the region subjected to polarization treatment is indicated by a dotted line. From this figure, it can be seen that the molecules are neatly controlled in orientation. Further, FIG. 12 (b) shows the result of measuring the polarization information of the above-mentioned regions 53 and 54 by using the technique of the piezoelectric power microscope. It can be seen that the polarization is clean in the + and – directions. Further, in the above operation, it is understood that the information can be rewritten because the -direction polarization is formed in the region 54 where the polarization information in the + direction has already been recorded. In this way, by using the P (VDF_TYFE) film as the high density information recording medium 10 of the high density information recording apparatus shown in FIG. For The recording of information by the polarization control that was performed could be performed independently. As a result, the recording density could be further increased.
[0075] (2-4)ポリエチレン膜を記録媒体に用いた例  [0075] (2-4) Example using polyethylene film as recording medium
ポリエチレンをキシレンに溶解させた溶液をグラフアイト基板上にスピンコートした後 After spin-coating a solution of polyethylene in xylene on a graphite substrate
、 165°Cで加熱処理した。これにより、 c軸(分子鎖軸)が膜面に垂直に配列した膜厚 2 00匪のポリエチレン膜が得られた(図 13(a))。このポリエチレン膜をその融点である 1 31°Cよりもわずかに低レ、 125°Cに加熱しつつ記録針を 30 nNの針厚で膜面に接触さ せた。次に、 10 z m/秒の速度で膜の表面に平行に移動させ、膜面に水平方向の力 を印加した。この処理を行った後の膜の AFM像を図 13(b)に示す。ここで、記録針を 用いて力をカ卩えた方向を矢印で示す。記録針の移動後の膜内の微結晶は c軸がこの 移動方向に向いて配列している。以上の結果から、ポリエチレン膜は P(VDF_TrFE) 膜と同様に、分子配向制御により情報の記録を行えることが分かる。 And heat treatment at 165 ° C. As a result, a polyethylene film having a thickness of 200 mm with the c-axis (molecular chain axis) aligned perpendicular to the film surface was obtained (FIG. 13 (a)). While this polyethylene film was heated to 125 ° C, slightly lower than its melting point of 133 ° C, the recording needle was brought into contact with the film surface with a needle thickness of 30 nN. Next, the film was moved in parallel to the film surface at a speed of 10 zm / sec, and a horizontal force was applied to the film surface. The AFM image of the film after this treatment is shown in Fig. 13 (b). Here, the direction in which the force is increased using the recording needle is indicated by an arrow. The microcrystals in the film after the movement of the recording needle are arranged with the c-axis facing this direction of movement. From the above results, it can be seen that the polyethylene film can record information by controlling the molecular orientation in the same way as the P (VDF_TrFE) film.
[0076] (2-5)ポリブテン膜を記録媒体に用いた例  [0076] (2-5) Example of using polybutene film for recording medium
ポリブテンをキシレンに溶解させた溶液をグラフアイト基板上にスピンコートした後、 130°Cで加熱処理した。これにより、 c軸(分子鎖軸)が膜面に平行に配歹 1Jしたポリブテ ン結晶が得られた。これらの結晶は膜面内にランダムに配向している(図 14(a))。この ポリブテン膜をその融点である 115°Cよりもわずかに低い 112°Cに加熱しつつ記録針 を膜の表面に 2nNの針厚で接触させ、 20ナノメートノレ/秒の速度で膜面に平行に移 動させ、膜面に水平方向の力を印加した。この処理を行った後の膜の AFM像を図 14 (b)に示す。ここで、記録針を用いて力をカ卩えた方向を矢印で示す。記録^"を用いて 加えた力により、膜内の微結晶は c軸がこの移動方向に向くように配歹 IJしている。この ことを用いて、ポリブテン膜は P(VDF-TrFE)膜やポリエチレン膜と同様に情報の記録 を行うことができることが分かる。  A solution prepared by dissolving polybutene in xylene was spin-coated on a graphite substrate, and then heat-treated at 130 ° C. As a result, a polybutene crystal in which the c-axis (molecular chain axis) was arranged 1J parallel to the film surface was obtained. These crystals are randomly oriented in the film plane (Fig. 14 (a)). While this polybutene film was heated to 112 ° C, which is slightly lower than its melting point of 115 ° C, the recording needle was brought into contact with the surface of the film with a needle thickness of 2 nN and parallel to the film surface at a speed of 20 nanometer / second. A horizontal force was applied to the membrane surface. Figure 14 (b) shows the AFM image of the film after this treatment. Here, the direction in which the force is increased using the recording needle is indicated by an arrow. Due to the force applied using the recording ^ ", the crystallites in the film are aligned so that the c-axis is in this direction of movement. Using this fact, the polybutene film is a P (VDF-TrFE) film. It can be seen that information can be recorded in the same way as with polyethylene film.
[0077] (2-6)結晶配向制御による情報記録 (P(VDF-TrFE)膜を記録媒体とする)  [2-6] Information recording by controlling crystal orientation (P (VDF-TrFE) film as recording medium)
実施例 (2-1)と同様の方法で製膜し、膜厚 25匪の P(VDF-TrFE)薄膜を得た。この 膜を 80°Cに加熱した状態で実施例 (2-1)と同様の方法で記録針を膜表面に接触させ 、移動させることにより膜面に水平な力を印加して情報記録を行った。その結果を図 15(a)に、 30°Cで観察した AFM像で示す。記録針を用いて印加した力の方向を矢印 に示す。ここで、図の下半分が情報記録された領域である。この図から、実施例 (2-1) のように分子鎖軸の方向に配向してレ、るのではなぐ図 15(b)に示すように微結晶が 回転して微結晶の長軸が針の移動方向にきれいに配向していることが分かる。以上 のように、温度、材料、記録針が印加する力の大きさなどの条件を適切に選択するこ とにより、本発明の方法を用いて、分子だけではなく微結晶の配向方向を制御して情 報記録を行うことが可能である。 A film was formed in the same manner as in Example (2-1) to obtain a P (VDF-TrFE) thin film with a thickness of 25 mm. With this film heated to 80 ° C., the recording needle is brought into contact with the film surface and moved in the same manner as in Example (2-1) to apply a horizontal force to the film surface to record information. It was. The results are shown in Fig. 15 (a) as an AFM image observed at 30 ° C. The direction of the force applied using the recording needle is indicated by an arrow. Shown in Here, the lower half of the figure is an area where information is recorded. From this figure, as shown in Fig. 15 (b), the crystallites rotate and the major axis of the crystallites changes as shown in Fig. 15 (b). It can be seen that the needles are neatly oriented in the direction of needle movement. As described above, by appropriately selecting conditions such as temperature, material, and the magnitude of force applied by the recording needle, the orientation direction of not only molecules but also microcrystals can be controlled using the method of the present invention. It is possible to record information.
[0078] (3)本発明に係る情報再生の方法の実施例  (3) Embodiment of information reproduction method according to the present invention
(3-1)情報再生の実施例 1  (3-1) Example of information reproduction 1
実施例 (2-1)と同様の方法を用いてグラフアイト基板上に P(VDF-TrFE)を作製した 後に分子を配向制御した情報記録媒体 (図 16(a))について、記録された情報を再生 する例を示す。ここで、図 16(a)の下半分が上記の配向制御、即ち情報が記録された 領域である。上記の領域に記録再生針 13を接触させた後、図 1に示す微動装置 12 bを用いて記録媒体を y軸方向に 10kHzの周波数で振動させた。この状態において記 録再生針 13に伝わる y軸方向の振動(ここで板パネ 14の短軸は y軸方向に設置して ある)の振幅を検出部 16およびロックインアンプを用いて検出した。各点における上 記データを画像化したものを図 16(b)に示す。この図において情報が記録された領域 (図の下半分)では検出された振幅出力が小さい(画像が暗い)ことが分かる。情報が 記録された領域では分子鎖力 軸方向に配向(微結晶の長軸が X軸方向に配向)さ れていることから、分子鎖方向の摩擦力が分子鎖に垂直方向の摩擦力に比べて小さ いために、記録媒体の y軸方向の振動に対して、膜面に接触している記録再生針 13 に伝わる振動の振幅出力は小さくなる。それに対して、情報記録がなされていない領 域(図の上半分)では各々の微結晶がランダムな方向を向いてレ、ることから、これらの 微結晶のうち分子鎖力 Sx軸方向(微結晶の長軸力 Sy軸方向)を向いている微結晶は振 幅出力が大きぐ図 16(b)では明るく表示されている。このように振幅出力の違いによ り配向の有無を検出し、それにより薄膜に記録された情報を読み出すことができる。 Information recorded on the information recording medium (Fig. 16 (a)) in which the orientation of the molecules was controlled after P (VDF-TrFE) was produced on the graphite substrate using the same method as in Example (2-1). An example of playing is shown. Here, the lower half of FIG. 16 (a) is the above-described orientation control, that is, an area where information is recorded. After the recording / reproducing needle 13 was brought into contact with the above region, the recording medium was vibrated at a frequency of 10 kHz in the y-axis direction using the fine movement device 12b shown in FIG. In this state, the amplitude of vibration in the y-axis direction (here, the short axis of the panel panel 14 is installed in the y-axis direction) transmitted to the recording / reproducing needle 13 was detected using the detection unit 16 and the lock-in amplifier. Figure 16 (b) shows an image of the above data at each point. In this figure, it can be seen that the detected amplitude output is small (the image is dark) in the area where information is recorded (lower half of the figure). In the area where the information is recorded, the molecular force is oriented in the direction of the molecular chain force axis (the long axis of the crystallites is oriented in the X-axis direction), so the frictional force in the molecular chain direction becomes the frictional force perpendicular to the molecular chain. Therefore, the amplitude output of the vibration transmitted to the recording / reproducing needle 13 in contact with the film surface is small with respect to the vibration in the y-axis direction of the recording medium. On the other hand, in the area where the information is not recorded (upper half of the figure), each microcrystal is oriented in a random direction, so the molecular chain force S x axis direction of these microcrystals ( The crystallites facing the long axis force (Sy axis direction) of the crystallite are brightly displayed in Fig. 16 (b) where the amplitude output is large. Thus, the presence or absence of orientation can be detected by the difference in amplitude output, and information recorded on the thin film can be read out.
[0079] この方法は、配向の有無により情報が記録されている薄膜以外のものにも用いるこ とができる。例えば、微結晶の長軸方向がそれぞれ y軸に平行 (0° 方向)、 y軸から 45 。 回転した方向(45° 方向)、x軸方向(90° 方向)に配列した 3種の情報が薄膜に記 録された場合、上記再生方法により得られる振幅出力は配向が 0° 方向の時に最小 値 (画像が最も暗い)、 90° 方向の時に最大値 (画像が最も明るい)、 45° 方向の時 にその中間値となる。これにより、 1つの領域に 3値以上の情報を記録し読み出すこと ができ、記録密度を更に高めることができる。 [0079] This method can also be used for other than thin films in which information is recorded depending on the presence or absence of orientation. For example, the major axis direction of the microcrystals is parallel to the y axis (0 ° direction), 45 from the y axis. Three types of information arranged in the rotated direction (45 ° direction) and x-axis direction (90 ° direction) are recorded on the thin film. When recorded, the amplitude output obtained by the above playback method has the minimum value when the orientation is 0 ° (the image is darkest), the maximum value when the orientation is 90 ° (the image is brightest), and the amplitude output when the orientation is 45 °. It becomes the intermediate value. As a result, information of three values or more can be recorded and read in one area, and the recording density can be further increased.
[0080] この方法は、上記のグラフアイト基板上に作製した P(VDF-TrFE)に限らず、ガラス基 板、金属基板など他の基板上に形成された P(VDF-TrFE)膜や、ポリエチレン膜、ポリ ブテン膜等の他の材料から成る薄膜に対しても適用することができる。 [0080] This method is not limited to P (VDF-TrFE) produced on the above graphite substrate, but also a P (VDF-TrFE) film formed on another substrate such as a glass substrate or a metal substrate, The present invention can also be applied to thin films made of other materials such as polyethylene films and polybutene films.
[0081] (3-2)情報再生の実施例 2  [0081] (3-2) Example 2 of information reproduction
実施例 (2-4)と同様の方法を用いてグラフアイト基板上に膜厚 300匪のポリエチレン 膜を作製した後に分子を配向制御した情報記録媒体について、記録された情報を 再生する例を示す。情報が記録された領域に記録再生針 13を接触させた後、図 1に 示す振動機構 22を用いて記録再生針 13を y軸方向に 30 kHzの周波数で振動させる 。この状態において記録再生針 13の y軸方向振動の振幅および位相を検出部 16お よびロックインアンプを用いて検出する。各点における上記データを画像化すること により、実施例 (3-1)と同様、分子の配向情報を読み取ることができる。この方法を用 レ、ることにより、ガラス基板、金属基板など他の基板上に形成されたポリエチレン膜、 更には P(VDF-TrFE)膜、ポリブテン膜においても同様の結果が得られ、分子配向制 御により記録された情報を読み出すことができる。  An example is shown in which recorded information is reproduced on an information recording medium in which the orientation of molecules is controlled after a polyethylene film having a thickness of 300 mm is formed on a graphite substrate using the same method as in Example (2-4). . After the recording / reproducing needle 13 is brought into contact with the area where information is recorded, the recording / reproducing needle 13 is vibrated at a frequency of 30 kHz in the y-axis direction by using the vibration mechanism 22 shown in FIG. In this state, the amplitude and phase of vibration in the y-axis direction of the recording / reproducing needle 13 are detected using the detection unit 16 and the lock-in amplifier. By imaging the above data at each point, molecular orientation information can be read as in Example (3-1). By using this method, the same results can be obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films. Information recorded by control can be read.
[0082] (3-3)情報再生の実施例 3  [3-3] Example 3 of information reproduction
実施例 (3-2)と同様の方法を用いて情報記録を行ったポリエチレン膜について、記 録された情報を再生する例を示す。まず、記録再生針 13を、振動機構 23を用いて 1 0kHzで z軸方向に振動させながら、ステージ移動機構 12を用いて記録媒体表面に 近づける。そして、記録再生針 13が間欠的に記録媒体の表面に接触するように記録 再生針 13の z軸方向の位置を決める。次に、図 1に示す振動機構 22を用いて、記録 再生針 13を y軸方向に 50kHzの周波数で振動させる。この状態において記録再生針 13の y軸方向の振動の振幅および位相を検出部 16およびロックインアンプを用いて 検出する。各点における上記データを画像化することにより、実施例 (3-2)と同様、分 子の配向情報を読み取ることができる。この方法を用いることにより、ガラス基板、金 属基板など他の基板上に形成されたポリエチレン膜、更には P(VDF-TrFE)膜、ポリブ テン膜においても同様の結果が得られ、分子配向制御により記録された情報を読み 出すことができる。 An example will be shown in which recorded information is reproduced for a polyethylene film on which information is recorded using the same method as in Example (3-2). First, the recording / reproducing needle 13 is moved closer to the surface of the recording medium using the stage moving mechanism 12 while vibrating in the z-axis direction at 10 kHz using the vibrating mechanism 23. Then, the position of the recording / reproducing needle 13 in the z-axis direction is determined so that the recording / reproducing needle 13 intermittently contacts the surface of the recording medium. Next, using the vibration mechanism 22 shown in FIG. 1, the recording / reproducing needle 13 is vibrated at a frequency of 50 kHz in the y-axis direction. In this state, the amplitude and phase of the vibration in the y-axis direction of the recording / reproducing needle 13 are detected using the detection unit 16 and the lock-in amplifier. By imaging the above data at each point, the orientation information of the molecule can be read as in Example (3-2). By using this method, glass substrate, gold Similar results can be obtained with polyethylene films formed on other substrates such as metal substrates, as well as P (VDF-TrFE) films and polybutene films, and the recorded information can be read by controlling molecular orientation. .
[0083] (3-4)情報再生の実施例 4 [0083] (3-4) Example 4 of information reproduction
実施例 (2-5)と同様の方法を用いてグラフアイト基板上にポリブテン膜を作製した後 に分子を配向制御した情報記録媒体にっレ、て、記録された情報を再生する例を示 す。情報が記録された領域に記録再生針 13を接触させた後、記録再生針 13を、ス テージ移動機構 12を用いてこれを支える板パネ 14の長軸に垂直な方向である y軸 方向に微小距離だけ移動させる。これにより、記録再生針 13は膜表面にその移動方 向の力を加えることになる。この時の板バネ 14の y軸方向の捩れ変形の大きさを検出 部 16で検出する。分子が y軸方向に配向した領域よりも X軸方向に配向した領域の方 が板パネの変形が大きくなることから分子の配向方向を読み出すことができる。各点 における上記データを画像化することにより、実施例 (3-2)と同様、分子の配向情報を 読み取ることができる。この方法を用いることにより、ガラス基板、金属基板など他の 基板上に形成されたポリエチレン膜、更には P(VDF-TrFE)膜、ポリブテン膜において も同様の結果が得られ、分子配向制御により記録された情報を読み出すことができる  An example of reproducing recorded information using an information recording medium in which the orientation of molecules is controlled after a polybutene film is formed on a graphite substrate using the same method as in Example (2-5) is shown. The After the recording / reproducing needle 13 is brought into contact with the area where the information is recorded, the recording / reproducing needle 13 is moved in the y-axis direction, which is perpendicular to the long axis of the plate panel 14 that supports the stage moving mechanism 12. Move only a small distance. As a result, the recording / reproducing needle 13 applies a force in the moving direction to the film surface. The magnitude of torsional deformation in the y-axis direction of the leaf spring 14 at this time is detected by the detector 16. Since the deformation of the plate panel is larger in the region where the molecules are oriented in the X-axis direction than in the region where the molecules are oriented in the y-axis direction, the orientation direction of the molecules can be read out. By imaging the above data at each point, molecular orientation information can be read as in Example (3-2). By using this method, similar results can be obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films, and recording can be performed by controlling molecular orientation. Information can be read
[0084] (3-5)情報再生の実施例 5 [3-5] Example 5 of information reproduction
実施例 (2-1)と同様の方法を用いてガラス基板上に P(VDF-TrFE)を作製した後に、 160°Cに加熱して、図 9(a)に示すように分子鎖を基板に垂直に配向させた膜にっレ、 て、記録された情報を再生する例を示す。情報が記録された領域に記録再生針 13 を接触させた後、図 1に示す微動装置 12bを用いて記録媒体 (P(VDF-TYFE)膜を裏 面から振動数 10kHzで z方向に振動させる。この振動は膜の内部で減衰又は位相遅 れを生じながら記録再生針 13に伝播する。記録再生針 13の z軸方向の振動の振幅 および位相情報を検出部 16で検出し、ロックインアンプで増幅する。分子が基板に 垂直に配向した領域よりも平行に配向した領域の方が膜内部における振動の減衰や 位相遅れが大きいことから、これらの振動や位相から分子鎖が基板に垂直、平行の いずれの方向に配向している力、を検出することができる。各点における上記データを 画像化することにより、分子の配向情報を読み取ることができる。この方法を用いるこ とにより、ガラス基板、金属基板など他の基板上に形成されたポリエチレン膜、更には P(VDF-TrFE)膜、ポリブテン膜においても同様の結果が得られ、分子配向制御により 記録された情報を読み出すことができる。 After producing P (VDF-TrFE) on a glass substrate using the same method as in Example (2-1), heating to 160 ° C, the molecular chain is formed on the substrate as shown in Fig. 9 (a). An example in which the recorded information is reproduced by a film oriented perpendicularly. After bringing the recording / reproducing needle 13 into contact with the area where the information is recorded, the recording medium (P (VDF-TYFE) film is vibrated in the z direction at a frequency of 10 kHz from the back using the fine movement device 12b shown in FIG. This vibration propagates to the recording / reproducing needle 13 while causing attenuation or phase delay inside the film, and the detection unit 16 detects the amplitude and phase information of the vibration of the recording / reproducing needle 13 in the z-axis direction, and lock-in amplifier. In the region where molecules are aligned in parallel to the region perpendicular to the substrate, vibration attenuation and phase lag are larger in the film than in the region where molecules are aligned perpendicular to the substrate. The force that is oriented in any parallel direction can be detected. By imaging, molecular orientation information can be read. By using this method, the same results can be obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films. The recorded information can be read out.
[0085] (3-6)情報再生の実施例 6 [0085] (3-6) Example of information reproduction 6
実施例 (3-5)と同様の方法を用いて得られた分子鎖を基板に垂直に配向させた P(V DF-TYFE)膜について、記録された情報を再生する例を示す。図 1に示す振動機構 2 3を用いて記録再生針 13を 10kHzで z軸方向に振動させながらステージ移動機構 12 を用いて記録媒体表面に近づけ、記録再生針 13が間欠的に記録媒体の表面に接 触するように記録再生針 13の z軸方向の位置を決める。この状態で、再生用部材の z 軸方向の振動の振幅および位相情報を検出部 16およびロックインアンプを用いて検 出する。分子が基板に垂直に配向した領域よりも平行に配向した領域の方力 ¾軸方 向の弾性率が小さく膜表面におけるエネルギーの損失が大きいため z軸方向の弾性 率が小さく位相遅れの大きレ、信号が得られることから、これらの弾性率や位相遅れか ら、分子鎖が基板に垂直、平行のいずれの方向に配向している力を検出することが できる。この方法を用いることにより、ガラス基板、金属基板など他の基板上に形成さ れたポリエチレン膜、更には P(VDF-TrFE)膜、ポリブテン膜においても同様の結果が 得られ、分子配向制御により記録された情報を読み出すことができる。 An example is shown in which recorded information is reproduced for a P (V DF-TYFE) film in which molecular chains obtained by using the same method as in Example (3-5) are oriented perpendicular to the substrate. While the recording / reproducing needle 13 is vibrated in the z-axis direction at 10 kHz using the vibration mechanism 23 shown in FIG. 1, the stage moving mechanism 12 is used to approach the recording medium surface, and the recording / reproducing needle 13 is intermittently moved to the surface of the recording medium. Determine the z-axis position of the recording / playback needle 13 so that In this state, the amplitude and phase information of the vibration in the z-axis direction of the reproduction member is detected using the detection unit 16 and the lock-in amplifier. The direction of the region in which molecules are aligned in parallel to the region aligned perpendicular to the substrate. The elastic modulus in the ¾-axis direction is small and the energy loss on the film surface is large, so the elastic modulus in the z- axis direction is small and the phase lag is large. Since a signal is obtained, it is possible to detect a force in which a molecular chain is oriented in a direction perpendicular to or parallel to the substrate from these elastic moduli and phase lag. By using this method, similar results were obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films. The recorded information can be read out.
[0086] (3-7)情報再生の実施例 7 [0086] (3-7) Example 7 of information reproduction
実施例 (3-2)と同様の方法を用いて情報記録を行ったポリエチレン膜について、記 録された情報を再生する例を示す。まず、記録再生針 13を、振動機構 23を用いて 1 0kHzで z軸方向に振動させながら、ステージ移動機構 12を用いて記録媒体表面に 近づける。そして、記録再生針 13が間欠的に記録媒体の表面に接触するように記録 再生針 13の z軸方向の位置を決める。次に、図 1に示す微動装置 12bを用いて記録 媒体を y軸方向に 10kHzの周波数で振動させた。この状態において記録再生針 13の y軸方向の振動の振幅および位相を検出部 16およびロックインアンプを用いて検出 する。各点における上記データを画像化することにより、実施例 (3-2)と同様、分子の 配向情報を読み取ることができる。この方法を用いることにより、ガラス基板、金属基 板など他の基板上に形成されたポリエチレン膜、更には P(VDF-TrFE)膜、ポリブテン 膜においても同様の結果が得られ、分子配向制御により記録された情報を読み出す こと力 Sできる。 An example will be shown in which recorded information is reproduced for a polyethylene film on which information is recorded using the same method as in Example (3-2). First, the recording / reproducing needle 13 is moved closer to the surface of the recording medium using the stage moving mechanism 12 while vibrating in the z-axis direction at 10 kHz using the vibrating mechanism 23. Then, the position of the recording / reproducing needle 13 in the z-axis direction is determined so that the recording / reproducing needle 13 intermittently contacts the surface of the recording medium. Next, the recording medium was vibrated at a frequency of 10 kHz in the y-axis direction using the fine movement device 12b shown in FIG. In this state, the amplitude and phase of the vibration in the y-axis direction of the recording / reproducing needle 13 are detected using the detection unit 16 and the lock-in amplifier. By imaging the above data at each point, molecular orientation information can be read as in Example (3-2). By using this method, glass substrate, metal substrate Similar results can be obtained for polyethylene films formed on other substrates such as plates, as well as P (VDF-TrFE) films and polybutene films, and the ability to read the information recorded by molecular orientation control can be achieved.
[0087] (3-8)情報再生の実施例 8  [0087] (3-8) Example 8 of information reproduction
実施例 (2-5)と同様の方法を用いてグラフアイト基板上にポリブテン膜を作製した後 に分子を配向制御した情報記録媒体にっレ、て、記録された情報を再生する例を示 す。まず、記録再生針 13を、振動機構 23を用いて 10kHzで z軸方向に振動させなが ら、ステージ移動機構 12を用いて記録媒体表面に近づける。そして、記録再生針 13 力 S間欠的に記録媒体の表面に接触するように記録再生針 13の z軸方向の位置を決 める。情報が記録された領域に記録再生針 13を間欠的に接触させた後、記録再生 針 13を、ステージ移動機構 12を用いてこれを支える板パネ 14の長軸に垂直な方向 である y軸方向に微小距離だけ移動させる。これにより、記録再生針 13は膜表面に その移動方向の力を加えることになる。この時の板バネ 14の y軸方向の捩れ変形の 大きさを検出部 16で検出する。分子が y軸方向に配向した領域よりも X軸方向に配向 した領域の方が板パネの変形が大きくなることから分子の配向方向を読み出すことが できる。各点における上記データを画像化することにより、実施例 (3-2)と同様、分子 の配向情報を読み取ることができる。この方法を用いることにより、ガラス基板、金属 基板など他の基板上に形成されたポリエチレン膜、更には P(VDF-TrFE)膜、ポリブテ ン膜においても同様の結果が得られ、分子配向制御により記録された情報を読み出 すことができる。  An example of reproducing recorded information using an information recording medium in which the orientation of molecules is controlled after a polybutene film is formed on a graphite substrate using the same method as in Example (2-5) is shown. The First, while the recording / reproducing needle 13 is vibrated in the z-axis direction at 10 kHz using the vibrating mechanism 23, the recording / reproducing needle 13 is moved closer to the recording medium surface using the stage moving mechanism 12. Then, the position of the recording / reproducing needle 13 in the z-axis direction is determined so as to intermittently contact the surface of the recording medium. After the recording / reproducing needle 13 is intermittently brought into contact with the area where the information is recorded, the recording / reproducing needle 13 is moved in the direction perpendicular to the long axis of the plate panel 14 that supports the stage moving mechanism 12 using the y-axis. Move it a small distance in the direction. As a result, the recording / reproducing needle 13 applies a force in the moving direction to the film surface. The magnitude of torsional deformation in the y-axis direction of the leaf spring 14 at this time is detected by the detector 16. Since the deformation of the plate panel is larger in the region in which the molecules are oriented in the X-axis direction than in the region in which the molecules are oriented in the y-axis direction, the orientation direction of the molecules can be read out. By imaging the above data at each point, molecular orientation information can be read as in Example (3-2). By using this method, similar results are obtained for polyethylene films formed on other substrates such as glass substrates and metal substrates, as well as P (VDF-TrFE) films and polybutene films. The recorded information can be read.
[0088] (3-9)情報再生の実施例 9  [0088] (3-9) Example 9 of information reproduction
実施例 (2-1)と同様の方法を用いて、記録媒体であるグラフアイト基板上に形成され た P(VDF-TrFE)薄膜内の面積 100 nm x 100 nmの領域:!〜 11において、それぞれ 異なる方向に分子を配向制御して情報を記録した。次に、実施例 (3-1)と同様の方法 を用いて板パネ 14のねじれ振幅の大きさとして情報再生を行った。結果を図 17に示 す。本図では、領域 1〜: 11内の分子の配向方向と板バネ 14の短軸のなす角度を横 軸にとり、ねじれ振幅の大きさを縦軸に表示している。また、分子と板パネのなす角度 0° と 90° の値を基に理論的に期待される摩擦によるねじれ振幅の大きさを実線で 示している。図 17の結果から、記録媒体面内全ての方向において実施例 (2-1)の方 法を用いて記録された情報は実施例 (3-1)の方法を用いて正確に再生できることが 解かる。 Using the same method as in Example (2-1), in the area of 100 nm × 100 nm in the P (VDF-TrFE) thin film formed on the graphite substrate as the recording medium:! -11 Information was recorded by controlling the orientation of molecules in different directions. Next, using the same method as in Example (3-1), information was reproduced as the torsional amplitude of the panel panel 14. The results are shown in Figure 17. In this figure, the horizontal axis represents the angle between the orientation direction of the molecules in the regions 1 to 11 and the minor axis of the leaf spring 14, and the vertical axis represents the magnitude of the torsional amplitude. In addition, the solid line shows the magnitude of the torsional amplitude due to friction that is theoretically expected based on the values of 0 ° and 90 ° between the numerator and the plate panel. Show. From the results in Fig. 17, it is understood that information recorded using the method of Example (2-1) in all directions within the recording medium surface can be accurately reproduced using the method of Example (3-1). Karu.
[0089] なお、発明を実施するための最良の形態の項においてなした具体的な実施態様ま たは実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのよう な具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に 記載する特許請求の範囲内で、いろいろと変更して実施することができるものである  It should be noted that the specific embodiments or examples made in the section of the best mode for carrying out the invention are merely to clarify the technical contents of the present invention, and The present invention is not limited to specific examples and should not be construed in a narrow sense, and can be implemented with various modifications within the scope of the following claims.
産業上の利用の可能性 Industrial applicability
[0090] 以上のように、本発明は、高密度情報記録、再生、消去方法、並びにそれに使用さ れる媒体及び装置に関するものである。それゆえ、力かる技術を用いるエレクトロニク ス産業をはじめとして、広範な産業上の利用可能性がある。 [0090] As described above, the present invention relates to a high-density information recording, reproducing, and erasing method, and a medium and apparatus used therefor. Therefore, it has a wide range of industrial applicability, including the electronics industry using powerful technology.

Claims

請求の範囲 The scope of the claims
[1] 基板上に形成された薄膜の微小領域にぉレ、て、鋭利な先端形状を有する部材を 用いて薄膜の表面に膜面に対し平行な方向の力を加えることにより該微小領域内の 微粒子又は微結晶又は分子の配向方向を変化させ、情報を記録する情報記録工程 と、  [1] Applying a force in a direction parallel to the film surface to the surface of the thin film using a member having a sharp tip shape on the minute area of the thin film formed on the substrate. An information recording step of recording information by changing the orientation direction of the fine particles, microcrystals or molecules;
前記情報記録工程により記録された情報を再生する情報再生工程と、を含み、 前記情報再生工程は、  An information reproduction step of reproducing the information recorded by the information recording step, and the information reproduction step,
前記薄膜に鋭利な先端形状を有する部材を定常的または間欠的に接触させ、該 部材を該薄膜に対し膜表面に平行な方向に微小距離移動及び/又は振動させ、該 両者の間に生じる力を検出することにより該微小領域内の微粒子又は微結晶又は分 子の配向方向を読み出す工程を含むことを特徴とする高密度情報記録再生方法。  A member having a sharp tip shape is contacted with the thin film regularly or intermittently, and the member is moved and / or vibrated by a minute distance in a direction parallel to the film surface with respect to the thin film, and a force generated between the two And a method of reading the orientation direction of the fine particles, microcrystals, or molecules in the minute region by detecting the above.
[2] 基板上に形成された薄膜の微小領域にぉレ、て、温度制御された鋭利な先端形状 を有する部材を薄膜の表面に接触させ、薄膜表面の温度を制御することにより該微 小領域内の微粒子又は微結晶又は分子の配向方向を変化させ、情報を記録する情 報記録工程と、  [2] A microscopic region of the thin film formed on the substrate is contacted with a temperature-controlled member having a sharp tip shape and the surface of the thin film is controlled to control the microscopic surface temperature. An information recording process for recording information by changing the orientation direction of fine particles, microcrystals or molecules in the region;
前記情報記録工程により記録された情報を再生する情報再生工程と、を含み、 前記情報再生工程は、  An information reproduction step of reproducing the information recorded by the information recording step, and the information reproduction step,
前記薄膜に鋭利な先端形状を有する部材を定常的または間欠的に接触させ、該 部材を該薄膜に対し膜表面に平行な方向に微小距離移動及び/又は振動させ、該 両者の間に生じる力を検出することにより該微小領域内の微粒子又は微結晶又は分 子の配向方向を読み出す工程を含むことを特徴とする高密度情報記録再生方法。  A member having a sharp tip shape is contacted with the thin film regularly or intermittently, and the member is moved and / or vibrated by a minute distance in a direction parallel to the film surface with respect to the thin film, and a force generated between the two And a method of reading the orientation direction of the fine particles, microcrystals, or molecules in the minute region by detecting the above.
[3] 前記情報記録工程にぉレ、て、薄膜の微小領域における 1つの情報記録領域に 3値 以上の情報を記録することを特徴とする請求項 1又は 2に記載の高密度情報記録再 生方法。 [3] The high-density information recording / reproducing method according to claim 1 or 2, wherein the information recording step records information of three or more values in one information recording area in a minute area of the thin film. Raw method.
[4] 前記情報記録工程にぉレ、て、前記鋭利な先端形状を有する部材を定常的または 間欠的に前記薄膜の表面に接触させた状態で、膜面に対し平行な方向に微小距離 移動または振動させることにより、情報を記録することを特徴とする請求項 1又は 3に 記載の高密度情報記録再生方法。 [4] In a state where the member having the sharp tip shape is in contact with the surface of the thin film constantly or intermittently in the information recording step, the distance is moved in a direction parallel to the film surface. 4. The high-density information recording / reproducing method according to claim 1, wherein the information is recorded by vibrating.
[5] 基板上に形成された薄膜の微小領域にぉレ、て、鋭利な先端形状を有する部材を 用いて薄膜の表面に膜面に対し平行な方向の力を加えることにより該微小領域内の 微粒子又は微結晶又は分子の配向方向を変化させ、情報を記録することを特徴とす る高密度情報記録方法。 [5] Applying a force in a direction parallel to the film surface to the surface of the thin film using a member having a sharp tip shape on the minute area of the thin film formed on the substrate. A high-density information recording method characterized by recording information by changing the orientation direction of fine particles, microcrystals or molecules.
[6] 基板上に形成された薄膜の微小領域にぉレ、て、温度制御された鋭利な先端形状 を有する部材を薄膜の表面に接触させ、薄膜表面の温度を制御することにより該微 小領域内の微粒子又は微結晶又は分子の配向方向を変化させ、情報を記録するこ とを特徴とする高密度情報記録方法。 [6] A microscopic region of the thin film formed on the substrate is brought into contact with a member having a sharp tip shape whose temperature is controlled, and the surface of the thin film is controlled to control the microscopic surface temperature. A high-density information recording method characterized by recording information by changing the orientation direction of fine particles, microcrystals or molecules in a region.
[7] 前記薄膜の微小領域における 1つの情報記録領域に、 3値以上の情報を記録する ことを特徴とする請求項 5又は 6に記載の高密度情報記録方法。 7. The high-density information recording method according to claim 5 or 6, wherein information of three or more values is recorded in one information recording area in the minute area of the thin film.
[8] 前記鋭利な先端形状を有する部材を定常的または間欠的に前記薄膜の表面に接 触させた状態で、膜面に対し平行な方向に微小距離移動または振動させることにより[8] By moving or vibrating the member having the sharp tip shape in a direction parallel to the film surface in a direction parallel to the film surface while being in contact with the surface of the thin film regularly or intermittently.
、情報を記録することを特徴とする請求項 5又は 7に記載の高密度情報記録方法。 8. The high-density information recording method according to claim 5, wherein information is recorded.
[9] 前記薄膜の微小領域の温度を制御することを特徴とする請求項 5, 7又は 8に記載 の高密度情報記録方法。 [9] The high-density information recording method according to [5], [7] or [8], wherein the temperature of the minute region of the thin film is controlled.
[10] 前記薄膜の微小領域における接触圧を制御することを特徴とする請求項 5〜9のい ずれかに記載の高密度情報記録方法。 10. The high-density information recording method according to any one of claims 5 to 9, wherein a contact pressure in a minute region of the thin film is controlled.
[11] 前記薄膜の微小領域に電界を印加して、該微小領域内の分極を変化させることに より前記情報に重畳して異なる情報を記録することを特徴とする請求項 5〜: 10のい ずれかに記載の高密度情報記録方法。 11. The method according to claim 5, wherein different information is recorded by superimposing the information by applying an electric field to the minute region of the thin film and changing polarization in the minute region. The high-density information recording method described in any one of the above.
[12] 前記薄膜の微小領域に磁界を印加して、該微小領域内の磁化を変化させることに より前記情報に重畳して異なる情報を記録することを特徴とする請求項 5〜: 11のい ずれかに記載の高密度情報記録方法。 12. The method according to claim 5, wherein different information is recorded by being superimposed on the information by applying a magnetic field to the minute region of the thin film and changing the magnetization in the minute region. The high-density information recording method described in any one of the above.
[13] 少なくとも基板と前記基板上に積層された薄膜とを有する情報記録用媒体であって 請求項 5〜: 12のいずれかに記載の高密度情報記録方法により前記薄膜に情報の 記録が可能であることを特徴とする高密度情報記録媒体。 [13] An information recording medium having at least a substrate and a thin film laminated on the substrate, wherein information can be recorded on the thin film by the high-density information recording method according to any one of claims 5 to 12. A high-density information recording medium characterized by the above.
[14] 前記薄膜が複数積層されていることを特徴とする請求項 13に記載の高密度情報記 録媒体。 14. The high-density information storage device according to claim 13, wherein a plurality of the thin films are laminated. Recording media.
[15] 請求項 5〜: 12のいずれかに記載の高密度情報記録方法により記録された情報を 再生する方法であって、  [15] A method for reproducing information recorded by the high-density information recording method according to any one of claims 5 to 12,
前記薄膜に鋭利な先端形状を有する部材を定常的または間欠的に接触させ、該 部材を該薄膜に対し膜表面に平行な方向に微小距離移動及び/又は振動させ、該 両者の間に生じる力を検出することにより該微小領域内の微粒子又は微結晶又は分 子の配向方向を読み出す工程を含むことを特徴とする高密度情報再生方法。  A member having a sharp tip shape is contacted with the thin film regularly or intermittently, and the member is moved and / or vibrated by a minute distance in a direction parallel to the film surface with respect to the thin film, and a force generated between the two And a method of reading out the orientation direction of the fine particles, microcrystals, or molecules in the minute region by detecting the above.
[16] 請求項 5〜: 12のいずれかに記載の高密度情報記録方法により記録された情報を 消去する方法であって、  [16] A method for erasing information recorded by the high-density information recording method according to any one of claims 5 to 12,
請求項 5〜: 12記載の記録方法のうち少なくとも 1つと同様の方法を用いて情報を消 去することを特徴とする高密度情報消去方法。  A high-density information erasing method comprising erasing information using a method similar to at least one of the recording methods according to claim 5.
[17] 請求項 5〜: 12のいずれかに記載の高密度情報記録方法により記録された情報を 消去する方法であって、少なくとも前記薄膜の情報記録領域の温度を制御すること により、情報を一括消去することを特徴とする高密度情報消去方法。  [17] A method of erasing information recorded by the high-density information recording method according to any one of claims 5 to 12, wherein the information is recorded by controlling at least a temperature of an information recording area of the thin film. A high-density information erasing method characterized by performing batch erasure.
[18] 請求項:!〜 4のいずれかに記載の高密度情報記録再生方法及び/又は請求項 5 〜 12のいずれかに記載の高密度情報記録方法及び/又は請求項 15に記載の高 密度情報再生方法及び/又は請求項 16又は 17に記載の高密度情報消去方法を 実行するための装置であって、  [18] Claim: The high-density information recording / reproducing method according to any one of! To 4 and / or the high-density information recording method according to any one of claims 5 to 12 and / or the high-density information according to claim 15. An apparatus for executing the density information reproducing method and / or the high density information erasing method according to claim 16 or 17,
鋭利な先端形状を有する部材と、  A member having a sharp tip shape;
前記薄膜と前記部材を x、 y、 z方向に相対的に移動させる移動機構と、 を備えることを特徴とする高密度メモリ装置。  A high-density memory device comprising: a moving mechanism that relatively moves the thin film and the member in the x, y, and z directions.
[19] 薄膜と前記部材との接触圧を制御する接触圧制御手段を備えることを特徴とする 請求項 18に記載の高密度メモリ装置。 19. The high-density memory device according to claim 18, further comprising contact pressure control means for controlling a contact pressure between the thin film and the member.
[20] 前記部材およびまたは前記薄膜を所定の振動周波数で振動させる振動制御手段 を備えることを特徴とする請求項 18又は 19に記載の高密度メモリ装置。 20. The high-density memory device according to claim 18, further comprising vibration control means for vibrating the member and / or the thin film at a predetermined vibration frequency.
[21] 前記薄膜およびまたは前記部材を所定の温度にする温度制御手段を備えることを 特徴とする請求項 18〜20のいずれかに記載の高密度メモリ装置。 21. The high-density memory device according to claim 18, further comprising temperature control means for setting the thin film and / or the member to a predetermined temperature.
[22] 前記薄膜に対して電界を印加する電界印加手段を備えることを特徴とする請求項 1 8〜21のいずれかに記載の高密度メモリ装置。 22. An electric field applying means for applying an electric field to the thin film is provided. The high density memory device according to any one of 8 to 21.
[23] 前記薄膜に対して磁界を印加する磁界印加手段を備えることを特徴とする請求項 123. A magnetic field applying means for applying a magnetic field to the thin film is provided.
8〜22のいずれかに記載の高密度メモリ装置。 The high-density memory device according to any one of 8 to 22.
[24] 前記薄膜に対して超音波振動を印加する手段を備える請求項 18〜23のいずれか に記載の高密度メモリ装置。 24. The high-density memory device according to claim 18, further comprising means for applying ultrasonic vibration to the thin film.
PCT/JP2005/023687 2004-12-28 2005-12-23 High density information recording/reproducing/erasing method, and medium and apparatus used therein WO2006070704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550734A JPWO2006070704A1 (en) 2004-12-28 2005-12-23 High-density information recording/reproducing/erasing method, medium and device used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004379324 2004-12-28
JP2004-379324 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070704A1 true WO2006070704A1 (en) 2006-07-06

Family

ID=36614821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023687 WO2006070704A1 (en) 2004-12-28 2005-12-23 High density information recording/reproducing/erasing method, and medium and apparatus used therein

Country Status (2)

Country Link
JP (1) JPWO2006070704A1 (en)
WO (1) WO2006070704A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105415A (en) * 2018-12-28 2020-07-09 旭化成株式会社 Thermoplastic resin composition and molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192454A (en) * 1984-10-11 1986-05-10 Mitsubishi Petrochem Co Ltd Optical recording method
JPH06259820A (en) * 1993-03-04 1994-09-16 Canon Inc Recording and reproducing device and method
WO2004026459A1 (en) * 2002-09-12 2004-04-01 Kyoto Instruments Co., Ltd. Thin film and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192454A (en) * 1984-10-11 1986-05-10 Mitsubishi Petrochem Co Ltd Optical recording method
JPH06259820A (en) * 1993-03-04 1994-09-16 Canon Inc Recording and reproducing device and method
WO2004026459A1 (en) * 2002-09-12 2004-04-01 Kyoto Instruments Co., Ltd. Thin film and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105415A (en) * 2018-12-28 2020-07-09 旭化成株式会社 Thermoplastic resin composition and molding
JP7246923B2 (en) 2018-12-28 2023-03-28 旭化成株式会社 Thermoplastic resin composition and molded article

Also Published As

Publication number Publication date
JPWO2006070704A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US5481527A (en) Information processing apparatus with ferroelectric rewritable recording medium
Cho et al. Tbit/inch 2 ferroelectric data storage based on scanning nonlinear dielectric microscopy
Tybell et al. Domain Wall creep in epitaxial ferroelectric P b (Z r 0.2 T i 0.8) O 3 thin films
Tanaka et al. Scanning nonlinear dielectric microscopy nano-science and technology for next generation high density ferroelectric data storage
JPH06187675A (en) Information processor and information processing method using the same
Cho Scanning nonlinear dielectric microscopy
CN1784729A (en) Recording/reproduction head and device
WO2005119204A1 (en) Probe head manufacturing method
US5371728A (en) Information recording/reproducing apparatus using probe
Cho et al. Terabit inch− 2 ferroelectric data storage using scanning nonlinear dielectric microscopy nanodomain engineering system
JP4642236B2 (en) Information medium writing and reading method, and recording medium
Kimura et al. Orientation control of poly (vinylidenefluoride-trifluoroethylene) crystals and molecules using atomic force microscopy
US8023393B2 (en) Method and apparatus for reducing tip-wear of a probe
Lee et al. Fabrication of a ZnO piezoelectric micro cantilever with a high-aspect-ratio nano tip
WO2006070704A1 (en) High density information recording/reproducing/erasing method, and medium and apparatus used therein
Hiranaga et al. Ultrahigh-density ferroelectric data storage using scanning nonlinear dielectric microscopy
Cho Nanoscale ferroelectric information storage based on scanning nonlinear dielectric microscopy
Matsushige et al. Ferroelectric Molecular Films for Nanoscopic Ultrahigh‐Density Memories
KR100623028B1 (en) The Header of Microscope Nano-data-storage packaging Z-axis Operating System using Static Electricity Force
JP3023728B2 (en) Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device
JP2942013B2 (en) Recording and / or playback device
Hiranaga et al. Basic study on high-density ferroelectric data storage using scanning nonlinear dielectric microscopy
El-Hami et al. The use of nanotechnology to fabricate ultra-high density molecular memory in P (VDF/TRFE) copolymer: data storage
Hong et al. Resistive probe storage: read/write mechanism
JP3060143B2 (en) Recording medium and information processing apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006550734

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820202

Country of ref document: EP

Kind code of ref document: A1