WO2006061384A1 - Verfahren zum kaltgasspritzen - Google Patents

Verfahren zum kaltgasspritzen Download PDF

Info

Publication number
WO2006061384A1
WO2006061384A1 PCT/EP2005/056521 EP2005056521W WO2006061384A1 WO 2006061384 A1 WO2006061384 A1 WO 2006061384A1 EP 2005056521 W EP2005056521 W EP 2005056521W WO 2006061384 A1 WO2006061384 A1 WO 2006061384A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
substrate
layer
gas
cold gas
Prior art date
Application number
PCT/EP2005/056521
Other languages
English (en)
French (fr)
Inventor
Ursus KRÜGER
Raymond Ullrich
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP05817506.8A priority Critical patent/EP1834010B1/de
Priority to CN200580041899.0A priority patent/CN101072897B/zh
Priority to US11/721,200 priority patent/US8012601B2/en
Publication of WO2006061384A1 publication Critical patent/WO2006061384A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the invention relates to a method of cold-gas spraying in which particles for producing a layer on a substrate in an unmelted state by means of a jet of gas to the upper ⁇ surface of the substrate are accelerated toward and adhere there by converting their kinetic energy.
  • the device necessary for operating the method has a vacuum chamber in which a substrate can be placed in front of a so-called cold gas spray gun.
  • the vacuum chamber is evacuated and a gas jet means the tole Kaltgasspritzpis ⁇ generated can be fed to the particles for coating the workpiece.
  • the particles can be additionally heated, wherein the heating is limited such that the melt ⁇ is not reached temperature of the particles (this circumstance contributes to the eponymous term cold-gas spraying in).
  • the object of the invention is to demonstrate possibilities for improving the quality of cold-gas sprayed coatings.
  • the substrate has a structural texture and this is transferred to the anhaf ⁇ border particles.
  • the layer formed from the particles in the cold gas jet has as a result thus a structure texture, which is determined by the structure of Sub ⁇ strates on which the layer grows up. Progresses layer structure while the textured substrate for film formation is no longer available for the already applied particles have the desired Ge ⁇ add texture so that these can serve as a substrate for further incident particles and which in turn obtain the desired structured texture.
  • the structural texture of the substrate can also be transferred to the particles involved in the film formation process by means of a cold gas spraying process, although these are not melted due to the process.
  • a cold gas spraying process which is sufficient for the particles to adhere to the substrate, is also responsible for a microstructural change that forces an assumption of the structural texture of the substrate.
  • the introduced into the cold gas jet energy amount mainly the kinetic energy
  • the ser ⁇ sufficient to cause the structural transformation. So can the outfit layer to be generated with special features from ⁇ that leads to an improvement in quality in terms of certain desired properties.
  • the particles of a Solarzellenma ⁇ terials, in particular CIS containing the chemical components and the substrate has a structured texture to that of the corresponding solar larzellen to be generated.
  • solar cells can be produced in the so-called thin-film technology, are coated rial in the corresponding substrates having the solar cell Mate ⁇ .
  • CIS is copper indium diselenite (CIS comes from the English name copper indium diselenite), with this compound being one of the most promising candidates for achieving comparatively high efficiencies. If applied in thin film technology solar cell additionally provided with a structured texture, which also allows production of a single crystal technology, so the We can ⁇ ciency of thin film solar cell advantageously develop stei ⁇ like.
  • An alternative embodiment of the invention provides that the particles (HTSC short in the following) contain the chemical components of a high temperature ⁇ tursupraleiters and the substrate has a structured texture to that of the HTSC corresponds. It has been shown that can be produced by the cold gas spraying the complex microstructure of HTSC as far as the substrate, this structure pretends ⁇ texture. Surprisingly, this texture can also be transferred to the forming coating, if the particles are not melted during the coating process. This can be explained by the fact that the processes occurring due to the kinetic energy of the particles also lead to the formation of a structure texture suitable for HTSL, if this is predetermined by the substrate. This can be HTSL semi-finished, z. B. strip conductor, advantageously in a cost effective way and the method of cold gas spraying is made accessible for superconducting applications ⁇ .
  • the particles are formed from intermediates for the HTSC. These intermediates then result in the impact of the particles on the substrate to a layer composition of the forming coating with the composition required for the formation of the HTSC.
  • the particles as intermediates or Vorstu ⁇ fen (precursor) to produce.
  • Ferti ⁇ can be selected transmission method, which makes the manufacturing process of the film ultimately more economical.
  • suitable mixing of the intermediates can be achieved without having to provide any particular particles for each layer composition.
  • the gas jet is a reactive gas, in particular oxygen, zuge ⁇ sets, which is installed in the layer.
  • the producible layer diversity can be advantageously further increased, since, with the possibility of supplying a re ⁇ active gas advantageously added to another parameter to influence the running process.
  • the intermediates used need not contain the full amount of the relevant chemical element provided by the reactive gas. This ⁇ be indicated, for example, that the intermediate products must not contain Me ⁇ talloxyde, when the production of the elementary particles is less expensive and the oxygen is added as a re ⁇ active gas.
  • nanoparticles are used as particles. This may, in particular, when the Parti ⁇ kel are formed from intermediate products, a good fürmi ⁇ research of the built-in the formed layer of particles ga- antee, so that necessary to form the desired composition of the HTSC diffusion lengths of atoms advantageously low precipitate.
  • the said diffusion process can be advantageously assisted by carrying out a heat treatment of the coated substrate after application of the particles. So far ⁇ the structured texture of the substrate has not been fully transferred to the coating, it can be completed by diffusion processes that are set by the heat treatment in motion. This advantageously further improves the quality of the HTSC layer.
  • HTSC YBCO YBa 2 Cu 3 O 7
  • for the composition ofVENTbaren particle injection process in the cold gas mentioned.
  • YBa 2 Cu 3 O 7 may preferably be Na nop
  • imaginary YBa 2 Cu 3 0 7 powder are sprayed directly on the textile tured substrate.
  • the desired superconducting microstructure is formed at the latest now.
  • a mixture of YBa 2 Cu 3 O 7 or else CuO powder can be carried out by means of the cold gas spraying method, for example.
  • a suitable mixture of Y 2 O 3 -g BaCO 3 and Cu or CuO powder can be used.
  • a suitable mixture of particles of Y, Ba or Cu salts for example, oxides, carbonates, nitrates or Flu ⁇ oride may be used.
  • Suitable mixtures of said intermediates are each composed so that in the formed products from the intermediate layer, the stöcheometrische ⁇ composition of YBa 2 Cu 3 O is achieved. 7
  • oxygen can be supplied as reactive gas during cold gas spraying in each case. so that this component is incorporated into the layer.
  • a subsequent reaction or heat treatment step take place in order to support the diffusion of the components of the HTSC, wherein during treatment step DIE ses the desired structured texture ausbil ⁇ det latest.
  • an oxygen ⁇ supply can take place, which allows a subsequent installation of oxygen atoms in the HTSC layer.
  • a device for cold gas spraying This has a vacuum container 11, in which on the one hand a cold gas spray gun 12 and on ⁇ derer a substrate 13 are arranged (attachment not shown). Through a first conduit 14, a Pro ⁇ zessgas, the cold gas spray gun are supplied to 12th This has, as indicated by the contour, a Laval nozzle, through which the process gas is expanded and accelerated in the form of a gas jet ⁇ (arrow 15) to a surface 16 of the substrate 13 out.
  • the process gas may contain oxygen 17 as a reactive gas.
  • the process gas can be heated in a manner not shown, whereby a required process temperature is established in the vacuum container 12.
  • a second line 18 of the cold gas spray gun 12 can preferably nanoparticulate particles 19 are supplied ⁇ leads, which are accelerated in the gas jet and impinge on the surface 16.
  • the kinetic energy of the particles causes them to adhere to the surface 16, with the oxygen 17 also being incorporated into the forming layer 20.
  • the substrate 13 in the direction of the double arrow 21 in front of the cold ⁇ gas spray gun 12 are moved back and forth. While these This coating process, the vacuum in the vacuum vessel 11 by a vacuum pump 22 is constantly maintained, wherein the process gas is passed through a vacuum through the filter 22 through a filter 23 to filter out particles that were not ge on the surface 16 when hitting the ge ⁇ bound.
  • the substrate has a structural texture 24.
  • the texture structure is 24 bear upon impact of the particles 19 to the surface 16 partially through this ⁇ , wherein it is hereby testifies ⁇ the property of the layer 20 to be high temperature superconducting.
  • ⁇ texture necessary structural constituents are rule products by a suitable mixture of the particles of intermediate and ensures the storage of oxygen 17th Is carried out to complete formation of the texture structure 24 according to the illustrated method step, a dressingbe ⁇ treatment step in the vacuum container 11, which is performed by means of a heating device, indicated 25th

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Kaltgasspritzen. Bei diesem Verfahren wird mittels einer Kaltgas-Spritzpistole (20), ein Gasstrahl (15) erzeugt, in welchen Partikel (19) eingebracht werden. Die kinetische Energie der Partikel (19) führt zu einer Schichtbildung auf einem Substrat (13). Erfindungsgemäß ist vorgesehen, dass das Substrat eine Gefügetextur (24) aufweist, die auf die sich ausbildende Schicht (20) übertragen wird. Durch eine geeignete Zusammensetzung der Partikel (19) lässt sich damit vorteilhaft eine hochtemperatursupraleitende Schicht auf dem Substrat (13) erzeugen. Dieser Prozess lässt sich zusätzlich durch eine Heizeinrichtung (25) in einem nachfolgenden Wärmebehandlungsschritt unterstützen.

Description

Beschreibung
Verfahren zum Kaltgasspritzen
Die Erfindung betrifft ein Verfahren zum Kaltgasspritzen, bei dem Partikel zur Herstellung einer Schicht auf einem Substrat in ungeschmolzenem Zustand mittels eines Gasstrahls zur Ober¬ fläche des Substrates hin beschleunigt werden und dort unter Umwandlung ihrer kinetischen Energie anhaften.
Ein solches Verfahren ist beispielsweise in der US 2004/0037954 Al beschrieben. Die zum Betrieb des Verfahrens notwendige Vorrichtung weist eine Vakuumkammer auf, in der ein Substrat vor einer so genannten Kaltgasspritzpistole platziert werden kann. Zur Durchführung der Beschichtung wird die Vakuumkammer evakuiert und mittels der Kaltgasspritzpis¬ tole ein Gasstrahl erzeugt, in den Partikel zur Beschichtung des Werkstücks eingespeist werden. Diese werden durch den Kaltgasstrahl stark beschleunigt, so dass ein Anhaften der Partikel auf der Oberfläche des zu beschichtenden Substrates durch Umwandlung der kinetischen Energie der Partikel erreicht wird. Die Partikel können zusätzlich erwärmt werden, wobei deren Erwärmung derart begrenzt wird, dass die Schmelz¬ temperatur der Partikel nicht erreicht wird (dieser Umstand trägt namensgebend zum Begriff Kaltgasspritzen bei) .
Die Aufgabe der Erfindung liegt darin, Möglichkeiten für eine Verbesserung der Qualität von kaltgasgespritzten Beschichtun- gen aufzuzeigen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Substrat eine Gefügetextur aufweist und diese auf die anhaf¬ tenden Teilchen übertragen wird. Die aus den im Kaltgasstrahl befindlichen Teilchen gebildete Schicht weist als Ergebnis damit eine Gefügetextur auf, die durch das Gefüge des Sub¬ strates, auf dem die Schicht aufwächst bestimmt ist. Bei fortschreitendem Schichtaufbau steht zwar das texturierte Substrat zur Schichtbildung nicht mehr zur Verfügung, dafür weisen die bereits aufgebrachten Teilchen die gewünschte Ge¬ fügetextur auf, so dass auch diese als Substrat für weitere auftreffende Teilchen dienen können, welche ihrerseits die gewünschte Gefügetextur erhalten.
Es hat sich nämlich überraschenderweise gezeigt, dass sich die Gefügetextur des Substrates auch mit einem Kaltgas- Spritzverfahren auf die am Schichtbildungsprozess beteiligten Teilchen übertragen lässt, obwohl diese verfahrensbedingt nicht aufgeschmolzen werden. Dies lässt sich dadurch erklä- ren, dass die vorrangig kinetische Energie der Teilchen, die ausreicht, dass die Teilchen auf dem Substrat anhaften, auch für eine Gefügeänderung verantwortlich ist, die eine Übernahme der Gefügetextur des Substrates erzwingen. Hierbei muss der in den Kaltgasstrahl eingebrachte Energiebetrag (haupt- sächlich die kinetische Energie) so bemessen sein, dass die¬ ser ausreicht, die Gefügeumwandlung zu bewirken. Damit lässt sich die zu erzeugende Schicht mit besonderen Merkmalen aus¬ statten, die zu einer Verbesserung der Qualität hinsichtlich bestimmter gewünschter Eigenschaften führt.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die Partikel die chemischen Bestandteile eines Solarzellenma¬ terials, insbesondere CIS, enthalten und das Substrat eine Gefügetextur aufweist, die derjenigen der zu erzeugenden So- larzellen entspricht. Mit diesem Verfahren lassen sich also Solarzellen in der so genannten Dünnschichttechnik herstellen, bei der entsprechende Substrate mit dem Solarzellenmate¬ rial beschichtet werden. Bei CIS handelt es sich um Kupfer- Indium-Diselenit (CIS kommt von der englischen Bezeichnung copper indium diselenit) , wobei es sich bei dieser Verbindung um einen der aussichtsreichsten Kandidaten zur Erreichung vergleichsweise hoher Wirkungsgrade handelt. Wird die in Dünnschichttechnologie aufgebrachte Solarzelle zusätzlich mit einer Gefügetextur versehen, die auch eine Erzeugung eines technischen Einkristalles erlaubt, so lässt sich der Wir¬ kungsgrad der Dünnschicht-Solarzelle vorteilhaft weiter stei¬ gern.
Eine alternative Ausgestaltung der Erfindung sieht vor, dass die Partikel die chemischen Bestandteile eines Hochtempera¬ tursupraleiters (im Folgenden kurz HTSL) enthalten und das Substrat eine Gefügetextur aufweist, die derjenigen des HTSL entspricht. Es hat sich nämlich gezeigt, dass mittels des Kaltgasspritzens auch die komplexe Gefügestruktur von HTSL hergestellt werden kann, so weit das Substrat diese Gefüge¬ textur vorgibt. Überraschenderweise kann diese Textur auch dann auf die sich bildende Beschichtung übertragen werden, wenn die Partikel während des Beschichtungsvorganges nicht aufgeschmolzen werden. Dies lässt sich dadurch erklären, dass die aufgrund der kinetischen Energie der Partikel ablaufenden Vorgänge auch zum Ausbilden einer für HTSL geeigneten Gefügetextur führen, wenn diese durch das Substrat vorgegeben wird. Damit lassen sich HTSL-Halbzeuge, z. B. Bandleiter, vorteil- haft auf kostengünstigem Wege herstellen und das Verfahren des Kaltgasspritzens wird für supraleitende Anwendungen zu¬ gänglich gemacht.
Gemäß einer Ausgestaltung der Erfindung ist vorgesehen, dass die Partikel aus Zwischenprodukten für den HTSL gebildet sind. Diese Zwischenprodukte führen dann beim Auftreffen der Partikel auf das Substrat zu einer Schichtzusammensetzung der sich ausbildenden Beschichtung mit der für die Ausbildung des HTSL geforderten Zusammensetzung. Hierdurch ist es vorteil- haft möglich, die Partikel als Zwischenprodukte oder Vorstu¬ fen (Precursor) herzustellen. Für die Herstellung der Zwischenprodukte können vorteilhaft möglichst einfache Ferti¬ gungsverfahren gewählt werden, was den Herstellungsprozess der Schicht letztendlich wirtschaftlicher macht. Weiterhin können durch geeignetes Mischen der Zwischenprodukte unterschiedliche Schichtzusammensetzungen erzielt werden, ohne dass für jede Schichtzusammensetzung besondere Partikel vorgehalten werden müssen.
Eine andere Ausgestaltung der Erfindung sieht vor, dass dem Gasstrahl ein reaktives Gas, insbesondere Sauerstoff, zuge¬ setzt wird, welches in die Schicht eingebaut wird. Damit kann die erzeugbare Schichtvielfalt vorteilhaft weiterhin gestei- gert werden, da mit der Möglichkeit einer Zuführung eines re¬ aktiven Gases vorteilhaft ein weiterer Parameter zur Beeinflussung des ablaufenden Verfahrens hinzukommt. Insbesondere müssen die verwendeten Zwischenprodukte nicht den kompletten Anteil des betreffenden chemischen Elementes enthalten, der durch das reaktive Gas zur Verfügung gestellt wird. Dies be¬ deutet beispielsweise, dass die Zwischenprodukte keine Me¬ talloxyde enthalten müssen, wenn die Herstellung der elementaren Partikel kostengünstiger ist und der Sauerstoff als re¬ aktives Gas beigegeben wird.
Besonders vorteilhaft ist es, wenn als Partikel Nanopartikel verwendet werden. Diese können insbesondere, wenn die Parti¬ kel aus Zwischenprodukten gebildet sind, eine gute Durchmi¬ schung der in die gebildete Schicht eingebauten Partikel ga- rantieren, so dass die zur Ausbildung der gewünschten Zusammensetzung des HTSL notwendigen Diffusionslängen der Atome vorteilhaft gering ausfallen. Der genannte Diffusionsprozess kann vorteilhaft unterstützt werden, indem nach dem Aufbringen der Partikel eine Wärmebehandlung des beschichteten Substrates durchgeführt wird. So¬ weit die Gefügetextur des Substrates noch nicht vollständig auf die Beschichtung übertragen wurde, kann dieser durch Diffusionsprozesse, die durch die Wärmebehandlung in Gang gesetzt werden, abgeschlossen werden. Hierdurch lässt sich vorteilhaft die Qualität der HTSL-Schicht weiter verbessern.
Am Beispiel des HTSL YBCO (YBa2Cu3O7) werden im Folgenden Aus¬ führungsbeispiele für die Zusammensetzung der im Kaltgas- spritzverfahren verwendetbaren Partikel genannt.
Für die direkte Beschichtung mit YBa2Cu3O7 kann bevorzugt Na- nopartikel aufgebildetes YBa2Cu307-Pulver direkt auf das tex- turierte Substrat gespritzt werden. In einem anschließenden Wärmebehandlungsschritt, der ggf. mit einer Sauerstoffzufuhr kombiniert werden kann, wird spätestens nun die gewünschte supraleitende Gefügetextur ausgebildet.
Soll die Beschichtung mit Zwischenprodukten (Precursor) erfolgen, kann mittels der Kaltgasspritzmethode beispielsweise eine Mischung von YBa2Cu3O7- oder auch CuO-Pulver erfolgen. Alternativ kann auch eine geeignete Mischung aus Y2O3-g BaCO3- und Cu- oder auch CuO-Pulver verwendet werden. Zuletzt kann auch eine geeignete Mischung von Partikeln aus Y-, Ba- oder Cu-Salzen (beispielsweise Oxyde, Carbonate, Nitrate oder Flu¬ oride) verwendet werden.
Geeignete Mischungen aus den genannten Zwischenprodukten sind jeweils derart zusammengesetzt, dass in der aus den Zwischen¬ produkten gebildeten Schicht die stöcheometrische Zusammensetzung von YBa2Cu3O7 erreicht wird. Dabei kann jeweils beim Kaltgasspritzen als reaktives Gas Sauerstoff zugeführt wer- den, damit diese Komponente in die Schicht eingebaut wird. Weiterhin kann ein anschließender Reaktions- bzw. Wärmebehandlungsschritt erfolgen, um die Diffusion der Bestandteile des HTSL zu unterstützen, wobei sich spätestens während die- ses Behandlungsschrittes die gewünschte Gefügetextur ausbil¬ det. Auch beim Wärmebehandlungsschritt kann eine Sauerstoff¬ zufuhr erfolgen, die einen nachträglichen Einbau von Sauerstoffatomen in die HTSL-Schicht ermöglicht.
Ein Ausführungsbeispiel des Verfahrens wird weiterhin anhand der einzigen Figur beschrieben. Dargestellt ist eine Vorrichtung zum Kaltgasspritzen. Diese weist einen Vakuumbehälter 11 auf, in dem einerseits eine Kaltgas-Spritzpistole 12 und an¬ dererseits ein Substrat 13 angeordnet sind (Befestigung nicht näher dargestellt) . Durch eine erste Leitung 14 kann ein Pro¬ zessgas der Kaltgas-Spritzpistole 12 zugeführt werden. Diese weist, wie durch die Kontur angedeutet, eine Laval-Düse auf, durch die das Prozessgas entspannt und in Form eines Gas¬ strahls (Pfeil 15) zu einer Oberfläche 16 des Substrats 13 hin beschleunigt wird. Das Prozessgas kann als reaktives Gas Sauerstoff 17 enthalten. Weiterhin kann das Prozessgas in nicht dargestellter Weise erwärmt werden, wodurch sich in dem Vakuumbehälter 12 eine geforderte Prozesstemperatur einstellt.
Durch eine zweite Leitung 18 können der Kaltgas-Spritzpistole 12 bevorzugt nanopartikulär ausgebildete Partikel 19 zuge¬ führt werden, die in dem Gasstrahl beschleunigt werden und auf die Oberfläche 16 auftreffen. Die kinetische Energie der Partikel führt zu einem Anhaften derselben auf der Oberfläche 16, wobei auch der Sauerstoff 17 in die sich ausbildende Schicht 20 eingebaut wird. Zur Ausbildung der Schicht kann das Substrat 13 in Richtung des Doppelpfeils 21 vor der Kalt¬ gas-Spritzpistole 12 hin und her bewegt werden. Während die- ses Beschichtungsprozesses wird das Vakuum im Vakuumbehälter 11 durch eine Vakuumpumpe 22 ständig aufrechterhalten, wobei das Prozessgas vor Durchleitung durch die Vakuumpumpe 22 durch einen Filter 23 geführt wird, um Partikel auszufiltern, die beim Auftreffen auf die Oberfläche 16 nicht an diese ge¬ bunden wurden.
Das Substrat weist eine Gefügetextur 24 auf. Wie schematisch dargestellt, wird die Gefügetextur 24 beim Auftreffen der Partikel 19 auf die Oberfläche 16 teilweise auf diese über¬ tragen, wobei hierdurch die Eigenschaft der Schicht 20 er¬ zeugt wird, hochtemperatursupraleitend zu sein. Die zur Aus¬ bildung dieser Gefügetextur notwendigen Gefügebestandteile werden durch eine geeignete Mischung der Partikel aus Zwi- schenprodukten bzw. die Einlagerung des Sauerstoffs 17 gewährleistet. Zur vollständigen Ausbildung der Gefügetextur 24 erfolgt nach dem dargestellten Verfahrensschritt ein Wärmebe¬ handlungsschritt in dem Vakuumbehälter 11, welcher mittels einer angedeuteten Heizeinrichtung 25 durchgeführt wird.

Claims

Patentansprüche
1. Verfahren zum Kaltgasspritzen, bei dem Partikel (19) zur Herstellung einer Schicht (20) auf einem Substrat (13) im un- geschmolzenen Zustand mittels eines Gasstahls zur Oberfläche des Substrates (13) hin beschleunigt werden und dort unter Umwandlung ihrer kinetischen Energie anhaften, dadurch gekennzeichnet, dass das Substrat eine Gefügetextur aufweist und diese auf die anhaftenden Partikel (19) übertragen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Partikel (19) die mechanischen Bestandteile eines Solarzellenmaterials, insbesondere CIS, enthalten und das
Substrat (13) eine Gefügetextur aufweist, die derjenigen der zu erzeugenden Solarzelle entspricht.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Partikel (19) die chemischen Bestandteile eines Hochtemperatursupraleiters (HTSL) enthalten und das Substrat (13) eine Gefügetextur aufweist, die derjenigen des HTSL ent¬ spricht.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Partikel (19) aus Zwischenprodukten für den HTSL o- der das Solarzellenmaterial gebildet sind.
5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass dem Gasstrahl ein reaktives Gas, insbesondere Sauer¬ stoff, zugesetzt wird, welches in die Schicht eingebaut wird.
6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass als Partikel (19) Nanopartikel verwendet werden.
7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Aufbringen der Partikel (19) eine Wärmebehand¬ lung des beschichteten Substrates (13) durchgeführt wird.
PCT/EP2005/056521 2004-12-08 2005-12-06 Verfahren zum kaltgasspritzen WO2006061384A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05817506.8A EP1834010B1 (de) 2004-12-08 2005-12-06 Verfahren zum kaltgasspritzen
CN200580041899.0A CN101072897B (zh) 2004-12-08 2005-12-06 冷气体喷射方法
US11/721,200 US8012601B2 (en) 2004-12-08 2005-12-06 Cold gas spraying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004059716.2 2004-12-08
DE102004059716A DE102004059716B3 (de) 2004-12-08 2004-12-08 Verfahren zum Kaltgasspritzen

Publications (1)

Publication Number Publication Date
WO2006061384A1 true WO2006061384A1 (de) 2006-06-15

Family

ID=35810858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/056521 WO2006061384A1 (de) 2004-12-08 2005-12-06 Verfahren zum kaltgasspritzen

Country Status (5)

Country Link
US (1) US8012601B2 (de)
EP (1) EP1834010B1 (de)
CN (1) CN101072897B (de)
DE (1) DE102004059716B3 (de)
WO (1) WO2006061384A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460147A (en) * 2008-05-21 2009-11-25 Linde Ag Cold gas spraying of electrical conductor and insulator
DE102008051469A1 (de) * 2008-10-13 2010-04-15 Malibu Gmbh & Co. Kg Verfahren zum Kontaktieren von Dünnschicht-Solarzellen und Dünnschicht-Solarmodul
DE102009037894A1 (de) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Dünnwandiges Strukturbauteil und Verfahren zu seiner Herstellung
DE102009053987A1 (de) 2009-11-23 2011-06-01 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Herstellen einer mehrlagigen Spule
EP2333133A1 (de) 2009-11-23 2011-06-15 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Herstellen einer mehrlagigen Spule

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006243447B2 (en) 2005-05-05 2010-11-18 H.C. Starck Surface Technology and Ceramic Powders GmbH Method for coating a substrate surface and coated product
US8574687B2 (en) * 2006-09-29 2013-11-05 Siemens Aktiengesellschaft Method and device for depositing a non-metallic coating by means of cold-gas spraying
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
DE102008051921B4 (de) * 2007-11-02 2023-02-16 Gfe Fremat Gmbh Schichtsystem und Verfahren zum Erstellen eines Kontaktelements für ein Schichtsystem
US8246903B2 (en) * 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
DE102009033620A1 (de) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Kaltgasspritzen von oxydhaltigen Schutzschichten
EP2337044A1 (de) * 2009-12-18 2011-06-22 Metalor Technologies International S.A. Herstellungsverfahren eines Kontaktplättchens eines elektrischen Kontakts und eines elektrischen Kontakts
CN102747362A (zh) * 2011-04-22 2012-10-24 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
US9120183B2 (en) 2011-09-29 2015-09-01 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets
CN104114746A (zh) * 2011-12-22 2014-10-22 泰光科技有限公司 利用低温喷射的溅射靶的制造方法以及低温喷射装置
US9347126B2 (en) * 2012-01-20 2016-05-24 General Electric Company Process of fabricating thermal barrier coatings
DE102012219890A1 (de) * 2012-10-31 2014-04-30 Robert Bosch Gmbh Geberelement sowie Verfahren zu dessen Herstellung
AT14202U1 (de) 2013-09-06 2015-05-15 Plansee Se Verfahren zur Oberflächenbehandlung mittels Kaltgasspritzen
US20160221014A1 (en) * 2013-09-25 2016-08-04 United Technologies Corporation Simplified cold spray nozzle and gun
CN116809972B (zh) * 2023-01-10 2023-12-01 无锡市栋升高科技材料有限公司 基于真空环境冷喷涂增材制造设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646094A (en) 1990-02-21 1997-07-08 Tallon; Jeffrey Lewis Rare earth substituted thallium-based superconductors
US20020056473A1 (en) 2000-11-16 2002-05-16 Mohan Chandra Making and connecting bus bars on solar cells
US20040026030A1 (en) 2000-10-23 2004-02-12 Hironori Hatono Composite structure body and method and apparatus for manufacturing thereof
US20040037954A1 (en) 2002-06-04 2004-02-26 Linde Aktiengesellschaft Process and device for cold gas spraying
WO2004044672A2 (en) 2002-08-05 2004-05-27 Research Foundation Of The State University Of New York System and method for manufacturing wireless devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806177A1 (de) * 1988-02-26 1989-09-07 Siemens Ag Verfahren zum aufbringen von schichten aus hochtemperatur-supraleitendem material auf substrate
DE3806178A1 (de) * 1988-02-26 1989-09-07 Siemens Ag Verfahren zum aufbringen von schichten aus hochtemperatur-supraleitendem material auf substrate
EP0401259A1 (de) * 1988-02-26 1990-12-12 Siemens Aktiengesellschaft Verfahren und vorrichtung zum aufbringen von schichten aus hochtemperatur-supraleitendem material auf substrate
EP0456600A1 (de) * 1990-05-11 1991-11-13 Plasma-Invent Ag Verfahren zum Herstellen von dünnen Schichten aus supraleitender Mischkeramik
JP2871516B2 (ja) * 1995-03-22 1999-03-17 株式会社移動体通信先端技術研究所 酸化物超伝導薄膜装置
RU2145644C1 (ru) * 1998-11-05 2000-02-20 Дикун Юрий Вениаминович Способ получения покрытия из порошковых материалов и устройство для его осуществления
JP3348154B2 (ja) * 1999-10-12 2002-11-20 独立行政法人産業技術総合研究所 複合構造物及びその作製方法並びに作製装置
US8252376B2 (en) * 2001-04-27 2012-08-28 Siemens Aktiengesellschaft Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646094A (en) 1990-02-21 1997-07-08 Tallon; Jeffrey Lewis Rare earth substituted thallium-based superconductors
US20040026030A1 (en) 2000-10-23 2004-02-12 Hironori Hatono Composite structure body and method and apparatus for manufacturing thereof
US20020056473A1 (en) 2000-11-16 2002-05-16 Mohan Chandra Making and connecting bus bars on solar cells
US20040037954A1 (en) 2002-06-04 2004-02-26 Linde Aktiengesellschaft Process and device for cold gas spraying
WO2004044672A2 (en) 2002-08-05 2004-05-27 Research Foundation Of The State University Of New York System and method for manufacturing wireless devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEMÄSS R. S. LIMA ET AL.: "Microstructural characteristics of cold-sprayed nanostructured WC-Co coatings", THIN SOLID FILMS, 2002, pages 129 - 135
LIMA R S ET AL: "Microstructural characteristics of cold-sprayed nanostructured WC-Co coatings", PREPARATION AND CHARACTERIZATION, ELSEVIER SEQUOIA, NL, vol. 416, no. 1-2, 2 September 2002 (2002-09-02), pages 129 - 135, XP004389743, ISSN: 0040-6090 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460147A (en) * 2008-05-21 2009-11-25 Linde Ag Cold gas spraying of electrical conductor and insulator
DE102008024504A1 (de) 2008-05-21 2009-11-26 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
US20090291851A1 (en) * 2008-05-21 2009-11-26 Matthias Bohn Method and device for cold gas spraying
GB2460147B (en) * 2008-05-21 2011-02-16 Linde Ag Method for cold gas spraying
US8530391B2 (en) 2008-05-21 2013-09-10 Linde Aktiengesellschaft Method and device for cold gas spraying
DE102008051469A1 (de) * 2008-10-13 2010-04-15 Malibu Gmbh & Co. Kg Verfahren zum Kontaktieren von Dünnschicht-Solarzellen und Dünnschicht-Solarmodul
DE102009037894A1 (de) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Dünnwandiges Strukturbauteil und Verfahren zu seiner Herstellung
US9393622B2 (en) 2009-08-18 2016-07-19 Mtu Aero Engines Gmbh Thin-walled structural component, and method for the production thereof
DE102009053987A1 (de) 2009-11-23 2011-06-01 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Herstellen einer mehrlagigen Spule
EP2333133A1 (de) 2009-11-23 2011-06-15 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Herstellen einer mehrlagigen Spule

Also Published As

Publication number Publication date
US8012601B2 (en) 2011-09-06
CN101072897B (zh) 2010-05-12
US20090239754A1 (en) 2009-09-24
CN101072897A (zh) 2007-11-14
EP1834010B1 (de) 2013-12-04
DE102004059716B3 (de) 2006-04-06
EP1834010A1 (de) 2007-09-19

Similar Documents

Publication Publication Date Title
EP1834010B1 (de) Verfahren zum kaltgasspritzen
DD259586A5 (de) Verfahren zur herstellung von gespruehten abreibbaren beschichtungen und nach dem verfahren hergestellte beschichtung
EP2596151B1 (de) Verfahren und anordnung zur herstellung von supraleitenden magnesiumdiboridschichten auf substraten
EP0223104A1 (de) Beschichtung für ein Substrat und Verfahren zu dessen Herstellung
EP2030669B1 (de) Verfahren zum Herstellen einer wasserstoffpermeablen Membran sowie wasserstoffpermeable Membran
DE112005002612B4 (de) Verfahren zur Herstellung einer korrosionsbeständigen Bipolarplatte und Bipolarplatte
EP2981380A1 (de) Verfahren zum herstellen eines metallschaums sowie verfahren zum herstellen von für das vorgenannte verfahren geeigneten partikeln
EP2503018A1 (de) Plasmaspritzverfahren zum Herstellen einer ionenleitenden Membran
DE102008024504A1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen
EP2009132A1 (de) Verfahren zur Herstellung einer funktionalen Schicht, Beschichtungsmaterial, Verfahren zu seiner Herstellung sowie funktionale Schicht
EP2333133B1 (de) Verfahren zur Herstellung einer mehrlagigen Spule
EP2257656B1 (de) Verfahren zum erzeugen einer schicht durch kaltgasspritzen
DE60200562T2 (de) Verfahren zur Herstellung von Schichten aus einem keramischen Verbundwerkstoff und entsprechend hergestellter Verbundwerkstoff
DE3853094T2 (de) Schnelle grossflächige Beschichtung aus Supraleitern mit hoher Sprungtemperatur.
EP2220708A1 (de) Bipolarplatte und verfahren zum herstellen einer schutzschicht an einer bipolarplatte
EP0438627A1 (de) Bogenentladungsverdampfer mit mehreren Verdampfertiegeln
DE69215077T2 (de) Verfahren und Vorrichtung zum Erzeugen von Dünnschichten
DE3886429T2 (de) Verfahren zum Herstellen einer supraleitenden Dünnschicht.
EP2066827B1 (de) Verfahren und vorrichtung zur abscheidung einer nichtmetallischen beschichtung mittels kaltgas-spritzen
DE3806176A1 (de) Verfahren und vorrichtung zum aufbringen von schichten aus hochtemperatur-supraleitendem material auf substrate
EP2232617B1 (de) Bipolarplatte und verfahren zum herstellen einer schutzschicht an einer bipolarplatte
DE19747383A1 (de) Verbinden von Werkstücken
DE102007053075B4 (de) Funktionsschicht für Hochtemperaturbrennstoffzellen und Verfahren zur Herstellung
DE102006040360A1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
DE102005062225B3 (de) Legierungsprodukt vom MCrAIX-Typ und Verfahren zur Herstellung einer Schicht aus diesem Legierungsprodukt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005817506

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580041899.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11721200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005817506

Country of ref document: EP