WO2005109684A1 - Wireless communication system, mobile station, base station control apparatus, and wireless communication method - Google Patents

Wireless communication system, mobile station, base station control apparatus, and wireless communication method Download PDF

Info

Publication number
WO2005109684A1
WO2005109684A1 PCT/JP2005/008120 JP2005008120W WO2005109684A1 WO 2005109684 A1 WO2005109684 A1 WO 2005109684A1 JP 2005008120 W JP2005008120 W JP 2005008120W WO 2005109684 A1 WO2005109684 A1 WO 2005109684A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
power
allocated
base station
tfcs
Prior art date
Application number
PCT/JP2005/008120
Other languages
French (fr)
Japanese (ja)
Inventor
Nahoko Kuroda
Jinsock Lee
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006512972A priority Critical patent/JP4666230B2/en
Publication of WO2005109684A1 publication Critical patent/WO2005109684A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Definitions

  • Radio communication system mobile station, base station control device, and radio communication method
  • the present invention relates to a wireless communication system and a wireless communication method, and in particular, to a CDMA (Code
  • the present invention relates to a wireless communication system and a wireless communication method using a Division Multiple Access (Division Multiple Access) method.
  • a transmitter performs spreading processing of an information signal using a spreading code
  • a receiver performs the same spreading on a received signal.
  • a despreading process is performed using the code.
  • This direct code spreading multiplexing method improves the signal to noise interference ratio (SNIR).
  • the receiving side can restore a desired information signal if the SNIR is equal to or higher than a predetermined quality.
  • multiple lines can be used simultaneously in the same frequency band by the spread Z despreading process.
  • the "spreading code rate" with respect to the "transmission data symbol rate” is called a “spreading factor (SF)".
  • SF spreading factor
  • the lower the spreading factor the greater the number of bits of information that can be transmitted per unit time, and the higher the transmission speed (bit rate).
  • the transmission power required to satisfy the predetermined quality increases. It is preferable that the transmission power is suppressed as much as possible from the viewpoint that a transmission signal on a certain line interferes with a signal on another line. In other words, it is desired to set a transmission speed that can satisfy the required transmission speed of each line and suppress transmission power as much as possible. This is important for improving the line capacity in WCDMA systems.
  • Non-Patent Document 1 3GPP TS25.321 v5.7.0, "3rd veneration Partnership Project; Technical specification roup Radio Access Network; Medium Access Control (MAC) protocol specification (Release 5) “, (200 3-12);
  • Non-Patent Document 2 3GPP TR25.896 v2.0.0" 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;
  • a "transport channel” is defined for Layer 1 to provide services to Layer 2.
  • the transport channel includes a common channel and a “dedicated channel (DCH)”.
  • Layer 1 provides the signal transmission required by Layer 2 using a channel appropriate for its use.
  • “Physical Channel” is defined as a transmission channel between layer 1 wireless nodes (mobile station and base station) in order to realize transmission over this transport channel using an actual wireless transmission path. .
  • a mobile station can transmit data of multiple transport channels on a single physical channel.
  • a transmission format called a transport format is set for each transport channel.
  • This transport format specifies a transport block size, a CRC bit size, an encoding method, a transmission interval (TTI: Transmission Time Interval), and the like.
  • a plurality of transport formats are set for each of a plurality of transport channels corresponding to one physical channel. The combination of these transport formats for one physical channel is called "TFC (Transport Format Combination)".
  • TFC Transmission Format Combination
  • one mobile station can select a TFC to be used for transmission (hereinafter, referred to as “selected TFC”) from a plurality of TFCs.
  • TFCs Transport Format Combination Set
  • TFCS Transport Format Combination Set
  • a mobile station estimates transmission power (required power) required when each of a plurality of TFCs is used, and based on the estimated required power,
  • Each of the multiple TFCs is classified into one of the following three states.
  • FIG. 1 is a conceptual diagram for explaining three states in which a TFC is classified and state transitions of the TFC.
  • the three states are the first state (Supported State), the second state (Excess-Power State), And a third state (Blocked State).
  • the higher the number in the state the higher the estimated power requirement.
  • the mobile station estimates the required power required when each of a plurality of TFCs is used, based on the TFC in use and the transmission power at that time.
  • the TFC is in the second state (Excess- Power State). TFC force belonging to the second state If the second state remains in the second state for a period S2 or more in the past predetermined period T, the TFC is moved to the third state (Blocked State). TFCs belonging to the third state are set to one of the states based on whether or not the above conditions are met. For example, if the required power estimated for the TFC belonging to the third state is less than or equal to the maximum transmission power of the mobile station for more than the period S3 in the past predetermined period T, the TFC becomes the first state ( Supported State).
  • the mobile station observes the states of a plurality of TFCs and selects a selected TFC from TFCs other than the third state (Blocked State). Specifically, the mobile station determines, as the selected TFC, a TFC that has a higher transmission rate as the transport channel has a higher priority. Using the selected TFC determined in this way, the mobile station transmits data on multiple transport channels. As described above, in the WCDMA system, the mobile station determines a transmission format in uplink packet transmission. The status of each TFC is determined based on long-term propagation path fluctuations. Therefore, even when the propagation path fluctuates instantaneously due to fading fluctuation or the like, a TFC that can satisfy the required quality on a long-term average is selected (see Non-Patent Document 1).
  • EDCH Enhanced uplink DCH
  • DCH Downlink High-speed packet transmission scheme
  • file transfer is performed by EDCH.
  • the base station controls the uplink packet transmission method such as the transmission speed. The reason is as follows.
  • a base station determines a ratio between a desired signal and noise power. Measure the “noise rise”.
  • the base station controller controls the number of mobile stations connected and the TFCS so that the noise rise does not exceed a predetermined threshold.
  • the base station selects a plurality of TFCs that allow medium use of the TFCS based on the measured noise rise, and among the plurality of TFCs, the transmission rate is the highest. It is under consideration to promptly instruct a mobile station of a growing TFC (hereinafter referred to as “maximum TFC”). At this time, the mobile station considers the maximum TFC specified by the base station together with the state of each TFC (see FIG. 1) when determining the above-mentioned selected TFC. That is, the mobile station selects, from the TFCS, a TFC belonging to the first state or the second state and having a transmission rate equal to or lower than the maximum TFC transmission rate.
  • the fluctuation range of the noise rise is reduced, and the above-described threshold can be set higher.
  • the number of mobile stations that can be connected increases, and the maximum TFC setting also increases. Therefore, the coverage and capacity of the upstream line are improved.
  • the mobile station transmits data using DCH and EDCH.
  • the TFC selection process needs to be performed for both DCH and EDCH.
  • the respective states of the plurality of TFCs indicated by the TFCS applied to the DCH and the respective states of the plurality of TFCs indicated by the TFCS applied to the EDCH are determined.
  • the TFC used for the EDCH is referred to as “ETFC”
  • a set of a plurality of ETFCs is referred to as “ETFCS”.
  • FIG. 2 shows an example of states of a plurality of TFCs and a plurality of ETFCs in a certain mobile station, and an example of a transmission power level when using them.
  • the transmission rate bit rate
  • the power required to satisfy the specified quality increases, and when the transmission rate is low, the required power increases. The power is lower.
  • the Z-axis shows the transmission rate as well as the power.
  • ETFCS includes ETFC1 to ETFC6, and TFCS includes TFC1 to TFC8.
  • the state of each of the plurality of TFCs and the plurality of ETFCs is determined based on the maximum transmission power P of the mobile station. For example, in FIG.
  • ETFC3 is classified into a first state (Supported State)
  • ETFC4 is classified into a second state (Excess-Power State)
  • ETFC5 and ETFC6 are classified into a third state (Blocked State).
  • TFC1 to TFC5 are classified into a first state
  • TFC6 is classified into a second state (Excess-Power State)
  • TFC7 and TFC8 are classified into a third state.
  • the mobile station selects ETFC4 and TFC6 as the ETFC and TFC used for transmission, respectively.
  • the transmission power required for transmission using ETFC4 is P-EDCH
  • Japanese Patent Laying-Open No. 2002-164871 discloses a decoding device.
  • the decoding device includes a receiving unit, a determining unit, and a decoding unit.
  • the receiving means receives a signal indicating a format of the received data.
  • the determining means limits the format candidates of the received data according to the information notified from the layer higher than the physical layer, and then determines the format of the received data from the candidates using the signal.
  • the decoding means decodes the received data according to the determined format.
  • Japanese Patent Laying-Open No. 2002-246949 discloses a CDMA device.
  • This CDMA apparatus includes TFCI output means, SIR output means, weighted addition means, and determination means.
  • the TFCI output means extracts and outputs, for each frame, a TFCI value indicating a combination of transfer formats from a correlation value obtained by despreading the received baseband signal.
  • the SIR output means generates and outputs an SIR signal indicating the level of the interference wave included in the received baseband signal for each frame based on the correlation value.
  • the weighting and adding means weights the TFCI value by the SIR signal and adds the weighted TFCI value.
  • the deciding means decides format information to be used for decoding the received baseband signal based on the addition result of the weighting and adding means.
  • Japanese Patent Laid-Open Publication No. 2003-8635 discloses a method for scheduling a plurality of data flows in a CDMA system, particularly in a mobile communication system.
  • the method has the steps listed below.
  • D assigning each transport block a respective associated transport format; and
  • E using the assigned respective associated transport format to determine which is to be transmitted by the physical layer.
  • Japanese Patent Application Laid-Open No. 2003-234720 discloses an information multiplexing method in mobile communication.
  • a transmission time interval that is the shortest data time length that can be decoded is selected from a plurality of predetermined types.
  • the multiple pieces of information generated in this way are multiplexed in the same radio frame and transmitted multiple times on the radio link.
  • a transmission format combination identifier indicating the combination of the number of data within the transmission time interval for each of the plurality of pieces of information is inserted into each radio frame and transmitted.
  • the transmission format combination identifier is selected and transmitted such that when the transmission time interval is longer and the number of data within the information transmission time interval changes, the upper bits of the transmission format combination identifier change.
  • Japanese Patent Laying-Open No. 2003-304195 discloses a method of selecting transmission format combination information in a transmission device.
  • This transmission device is used for each transport channel. Selects transmission format combination information that defines combinations of transmission data bit lengths at predetermined time intervals. Then, based on the selected transmission format combination information, the transmission device multiplexes and transmits transmission data of each transport channel. According to the selection method, the transmission format combination information is classified based on the multiplex transmission data amount of each transport channel. Then, the class of the transmission format combination information to be selected is determined based on the transmission power value. Then, transmission format combination information is selected from within the determined class.
  • An object of the present invention is to provide a radio communication system, a mobile station, a base station controller, and a radio communication capable of allocating transmission power resources among a plurality of physical channels so as to satisfy required transmission quality. It is to provide a method.
  • Another object of the present invention is to provide a radio communication system, a mobile station, a base station control device, and a radio communication method that can effectively utilize transmission power resources.
  • Still another object of the present invention is to provide a radio communication system, a mobile station, a base station control device, and a radio communication method that can improve the information processing amount and the service quality. .
  • a radio communication system includes a base station controller, a base station connected to the base station controller, and a base station using the first physical channel and the second physical channel.
  • a mobile station that communicates with the station.
  • the mobile station includes a control unit that controls first transmission using the first physical channel and second transmission using the second physical channel, and a transmission unit connected to the control unit.
  • the base station control device notifies the mobile station via the base station of a plurality of iTFCs (ransport Format and Combination) used in the first transmission as a first TFCS u'ransport Format Combination Set). Further, the base station control device notifies the mobile station via the base station of the plurality of second TFCs used in the second transmission as the second TFCs.
  • the control unit determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission.
  • the control unit selects one first TFC that can be used with the first allocated power from the first TFCS as a first selected TFC.
  • the control unit selects one second TFC that can be used with the second allocated power from the second TFCS as a second selected TFC.
  • the transmitting unit performs a first transmission to the base station using the first selected TFC, and performs a second transmission using the second selected TFC.
  • the respective ratios of the first allocated power and the second allocated power to the power available to the mobile station are represented by y1 and ⁇ 2. These ⁇ 1 and ⁇ 2 are numbers from 0 to 1 inclusive.
  • the control unit determines ⁇ 1 and ⁇ 2 such that the sum of ⁇ 1 and ⁇ 2 becomes 1. Further, based on the determined ⁇ 1 and ⁇ 2, the control unit determines the first allocated power and the second allocated power.
  • the base station control device determines ⁇ 1 and ⁇ 2 so that the sum of ⁇ 1 and ⁇ 2 becomes 1, and moves the determined ⁇ 1 and ⁇ 2 Notify station control
  • the control unit determines the first allocated power and the second allocated power based on the notified ⁇ 1 and ⁇ 2.
  • the control unit determines ⁇ 1 and ⁇ 2 such that the sum of ⁇ 1 and ⁇ 2 is larger than 1 and smaller than 2. Further, based on the determined ⁇ 1 and ⁇ 2, the control unit determines the first allocated power and the second allocated power.
  • the base station control device determines ⁇ 1 and ⁇ 2 such that the sum of ⁇ 1 and ⁇ 2 is greater than 1 and less than 2, and the determined ⁇ 1 And ⁇ 2 to the control unit of the mobile station.
  • the control unit determines the first allocated power and the second allocated power based on the notified ⁇ 1 and ⁇ 2.
  • y 1 is determined to be greater than ⁇ 2.
  • y1 is determined to be larger than ⁇ 2. .
  • y1 is determined to be larger than ⁇ 2.
  • the priority of the first transmission is equal to the priority of the second transmission. If greater, ⁇ 1 is determined to be greater than ⁇ 2.
  • the base station control device determines a range in which ⁇ is determined from 0 to 1, and notifies the mobile station of the determined range.
  • the control unit determines ⁇ 1 from the notified range, and determines ⁇ 2 so that the sum of y 1 and ⁇ 2 becomes 1.
  • the base station control device determines the range so that the size of the range has a correlation with the burstiness of communication.
  • the base station controller determines the range such that the median of the range is given by ⁇ ( ⁇ + ⁇ ). Further, the control unit compares the first data amount transmitted on the first physical channel with the second data amount transmitted on the second physical channel. When the first data amount is larger than the second data amount, the control unit determines ⁇ 1 such that ⁇ 1 is larger than the median value. When the first data amount is smaller than the second data amount, the control unit determines ⁇ 1 such that ⁇ 1 is smaller than the median value. When the first data amount is equal to the second data amount, the control unit determines ⁇ 1 such that ⁇ 1 has a median value.
  • the control unit includes a first transmission power required for the first transmission using the first selected TFC and a second transmission power required for the second transmission using the second selected TFC. Calculate the sum with the appropriate second transmission power. If the sum is greater than the maximum power available to the mobile station, the control unit adjusts at least one of the first transmission power and the second transmission power so that the sum is equal to the maximum power. The transmitting unit performs the first transmission and the second transmission using the adjusted first transmission power and the second transmission power.
  • the mobile station includes: a control unit that controls first transmission using the first physical channel and second transmission using the second physical channel; and a transmission unit connected to the control unit.
  • the control unit receives, from the base station control device, a plurality of first TFCs used in the first transmission as the first TFCS, and receives a plurality of second TFCs used in the second transmission as the second TFCS.
  • the control unit determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission.
  • the control unit selects one first TFC that can be used with the first allocated power from the first TFCs, and selects one second TFC that can be used with the second allocated power from the second TFCS.
  • the transmitter uses the above one TFC to the base station. The first transmission is performed, and the second transmission is performed using the one second TFC.
  • the control unit determines the first allocated power and the second allocated power such that the sum of the first allocated power and the second allocated power is equal to the usable power.
  • the control unit determines the first allocated power and the second allocated power such that the sum of the first allocated power and the second allocated power is larger than the available power.
  • a base station control apparatus includes a TFCS determining unit, a power allocation parameter determining unit, and a transmitting unit connected to the TFCS determining unit and the power allocation parameter determining unit.
  • the TFCS determination unit determines a first TFCS and a second TFCS.
  • the power allocation parameter determination unit determines a ratio of each of the first allocated power and the second allocated power to the power available to the mobile station.
  • the transmitting unit notifies the mobile station via the base station of the determined first TFCS, second TFCS, and ratio.
  • the base station control apparatus transmits the plurality of first TFCs used in the first transmission on the first physical channel to the mobile station via the base station as first TFCs
  • B notifying the mobile station via the base station of the plurality of second TFCs used in the second transmission on the second physical channel as the second TFCs
  • the mobile station determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission; and
  • D the mobile station can use the first allocated power with the first allocated power.
  • transmission power resources are allocated among a plurality of physical channels so as to satisfy required transmission quality. It is possible to do.
  • the mobile station According to the radio communication system, the mobile station, the base station control device, and the radio communication method according to the present invention, it is possible to effectively utilize transmission power resources.
  • the mobile station According to the wireless communication system, the mobile station, the base station control device, and the wireless communication method according to the present invention, it is possible to improve the information processing amount and the service quality.
  • FIG. 1 is a conceptual diagram showing a state transition of a TFC in a WCDMA system.
  • FIG. 2 is a diagram for explaining a wireless communication method in a conventional WCDMA system.
  • FIG. 3 is a conceptual diagram showing a configuration of a wireless communication system according to the present invention.
  • FIG. 4 is a block diagram showing a configuration of a mobile station according to the present invention.
  • FIG. 5 is a block diagram showing a configuration of a base station control device according to the present invention.
  • FIG. 6A is a diagram for explaining the wireless communication method according to the present invention.
  • FIG. 6B is a diagram for explaining the wireless communication method according to the present invention.
  • FIG. 6C is a diagram illustrating a wireless communication method according to the present invention.
  • FIG. 7 is a diagram for explaining a wireless communication method according to the first to third embodiments of the present invention.
  • FIG. 8 is a diagram for explaining a wireless communication method according to the first embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a wireless communication method according to fourth and fifth embodiments of the present invention.
  • FIG. 3 is a conceptual diagram showing a configuration of a wireless communication system according to the present invention.
  • the wireless communication system 10 includes a base station controller 300, a plurality of base stations 200 communicably connected to the base station controller 300, and a plurality of mobile stations 100 connected to each of the plurality of base stations 200.
  • a base station 200A and a base station 200B are connected to the base station controller 300, and each of the base station 200A and the base station 200B has a cell 50A and a cell 50B as communication areas.
  • Mobile stations 100a to 100c are wirelessly connected to base station 200A
  • mobile stations 100d and 100e are wirelessly connected to base station 200B.
  • the base station 200 can perform communication using a plurality of physical channels.
  • base station 200A can perform communication using DCH and EDCH
  • base station 200B can perform communication using DCH.
  • the mobile stations 100a and 100c communicate with the base station 2 OOA using DCH and EDCH.
  • the mobile station 100b communicates with the base station 200A using only the DCH.
  • Mobile stations 100d and 100e communicate with base station 200B using only DCH.
  • the DCH includes a DPDCH (Dedicated Physical Data Channel) for transmitting user information and a DPCCH (Dedicated Physical Control Channel) for transmitting a control signal.
  • DPDCH Dedicated Physical Data Channel
  • DPCCH Dedicated Physical Control Channel
  • FIG. 4 is a block diagram showing a configuration of the mobile station 100 according to the present invention.
  • mobile station 100 includes control section 101 and transmission processing section 140 connected to control section 101.
  • the control unit 101 performs selection processing of TFC and ETFC used for communication, control of transmission power, and the like.
  • Transmission processing section 140 actually transmits data to base station 200 based on the TFC, ETFC, and transmission power determined by control section 101.
  • transmission processing section 140 includes transmission power measuring section 141 for measuring actual transmission power.
  • control section 101 is connected to reception processing section 150 via control signal separation section 160.
  • the reception processing unit 150 receives a signal from the base station 200 and supplies the signal to the control unit 101.
  • Control section 101 includes DCH transmission control section 110, EDCH transmission control section 120, and transmission power control section 130.
  • DCH transmission control section 110 controls transmission using DCH
  • EDCH transmission control section 120 controls transmission using EDCH.
  • the DCH transmission control section 110 includes a TFC selection section 111 for selecting a TFC from the TFCS, and a DCH buffer 115 for storing data transmitted on the DCH.
  • the EDCH transmission control section 120 includes an ETFC selection section 121 for selecting an ETFCS-powered ETFC, and an EDCH buffer 125 for storing data transmitted on the EDCH.
  • Transmission power control section 130 is connected to DCH transmission control section 110 and EDCH transmission control section 120.
  • the transmission power control unit 130 includes a power allocation unit 131 that allocates power to each of the DCH and the EDCH, and an adjustment unit 132 that adjusts the determined transmission power. It has.
  • FIG. 5 is a block diagram showing a configuration of the base station controller 300 according to the present invention.
  • Base station control apparatus 300 includes reception processing section 310, control section 320, power allocation parameter determining section 330, TFCS determining section 340, signal combining section 350, and transmission processing section 360.
  • reception processing section 310 of base station control apparatus 300 receives data from base station 200 and sends the data to control section 320.
  • the control unit 320 sends the received data to a network (not shown).
  • control section 320 controls operations of power allocation parameter determining section 330, TFCS determining section 340, and signal combining section 350.
  • control section 320 extracts information on the type of service that mobile station 100 is communicating with, and sends the information to power allocation parameter determination section 330 and TFCS determination section 340. Examples of this service type include a service having a high burst property such as file transfer by FTP, and a service having a low burst property such as streaming.
  • Power allocation parameter determining section 330 generates a "power allocation parameter".
  • the “power allocation parameter” is a parameter referred to by the power allocating section 131 when the power allocating section 131 of the mobile station 100 allocates power to each of the DCH and the EDCH.
  • the content indicated by the power allocation parameter differs depending on a plurality of embodiments described later.
  • the generated power allocation parameters are output to signal combining section 350.
  • TFCS determining section 340 determines TFCS and ETFCS that mobile station 100 may use, based on information on the type of service sent from control section 320. As described above, this TFCS indicates a plurality of TFCs used for transmission on the DCH, and ETFCS indicates a plurality of ETFCs used for transmission on the EDCH. The determined TFCS and ETFCS are output to signal combining section 350.
  • Signal combining section 350 combines TFCS, ETFCS, and information on power allocation parameters, and sends the combined signal to transmission processing section 360.
  • Transmission processing section 360 transmits the control signal including the combined signal to base station 200 and mobile station 100 using the downlink DCH.
  • Base station 200 measures the noise rise received on the uplink. And that noise line The base station 200 updates the maximum TFC of the EDCH at a predetermined timing so that the time becomes equal to or less than a predetermined threshold. This maximum TFC is reported to the mobile station 100.
  • reception processing section 150 of mobile station 100 receives a signal from base station 200 and sends the received signal to control signal separation section 160.
  • Control signal separation section 160 separates the received signal into user information and a control signal, and sends the user information to an upper layer.
  • the control signal including the “power allocation parameter” as described above is sent to power allocating section 131 of transmission power control section 130.
  • the content indicated by the power allocation parameter differs depending on a plurality of embodiments described later.
  • power allocating section 131 separately allocates allocated power AP-DCH allocated to transmission using DCH and allocated power AP-EDCH allocated to transmission using EDCH. decide.
  • the allocated power AP-DCH and the allocated power AP-EDCH are given by the following equations.
  • P is an allocatable power that can be allocated to transmission by DCH and EDCH.
  • the maximum transmission power P of the mobile station 100 can be mentioned.
  • DCH is defined as the ratio of allocated power ⁇ —DCH to allocatable power ⁇ . Also, the power quota
  • the number ⁇ is defined as the ratio of allocated power ⁇ — EDCH to allocatable power ⁇ .
  • the DCH includes the DPDCH for transmitting user information and the DPCCH for transmitting a control signal
  • the allocated power AP-DCH includes power for both the DPDCH and the DPCCH.
  • power allocating section 131 notifies TFC selecting section 111 of DCH transmission control section 110 of the determined allocated power AP-DCH. Further, power allocating section 131 notifies ETFC selecting section 121 of EDCH transmission control section 120 of the determined allocated power AP-EDCH.
  • allocated power AP-DCH and allocated power AP-EDCH are used as criteria for determining the states of a plurality of TFCs and a plurality of ETFCs, respectively. That is, TFC And ETFC selection process are based on different criteria than common criteria (maximum transmit power P)
  • Transmission power measurement section 141 of transmission processing section 140 measures the actual transmission power for the TFC in use, and notifies TFC selection section 111 of the measured actual transmission power.
  • the TFC selection unit 111 estimates the required power (required power) when each of the plurality of TFCs is used, based on the used TFC and the actual transmission power.
  • the required power means the power required to satisfy a predetermined quality.
  • the TFC selector 111 determines the power requirement based on the estimated power requirement! First, each of the multiple TFCs is classified into one of the three states shown in Fig. 1. Specifically, it is determined whether or not the estimated required power is “greater than the allocated power AP—DCHJ” for a period S or more in the past predetermined period T. Each state of the TFC is determined.
  • FIG. 6A shows an example of a plurality of TFCs (TFCS) in a certain mobile station 100 and an estimated transmission power level when using them.
  • TFCS includes TFC1 to TFC6.
  • Each state of the plurality of TFCs is determined based on the allocated power AP-DCH. For example, in FIG. 6A, TFC1 to TFC3 are classified into a first state (Supported State), and TFC4 is classified into a second state (Supported State).
  • TFC5 and TFC6 are classified into the third state (Blocked State).
  • the states of the plurality of TFCs are stored as TFC state data 112 (see FIG. 4) and updated at a predetermined timing.
  • TFC selecting section 111 selects one TFC (selected TFC) to be used for the DCH from the TFCS specified by base station controller 300 at predetermined transmission intervals. At this time, the selected TFC is selected from TFCs other than the third state (Blocked State) so that the transport channel with a higher priority has a higher transmission rate. As a result, for example, in FIG. 6A, the TFC selection unit 111 selects TFC4 as the selected TFC. In this case, it is assumed that the power required to transmit on the DCH using the selected TFC4 (hereinafter referred to as “temporary transmission power”) is represented by PP—DCH.
  • the transmission power measurement section 141 of the transmission processing section 140 measures the actual transmission power for the ETFC in use, and notifies the ETFC selection section 121 of the measured actual transmission power. I do.
  • the ETFC selection unit 121 estimates the required power (required power) when each of the plurality of ETFCs is used, based on the used ETFC and the actual transmission power.
  • the required power means the power required to satisfy a predetermined quality.
  • ETFC selection section 121 classifies each of the plurality of ETFCs into one of the three types of states shown in FIG. 1 based on the estimated required power. Specifically, it is determined whether or not the estimated required power is greater than “allocated power AP-EDCH” for a period S or more in the past predetermined period T. This determines the status of each of the multiple ETFCs applied to the EDCH.
  • FIG. 6B shows an example of a plurality of ETFCs (ETFCS) in a certain mobile station 100 and an estimated transmission power level when using them.
  • ETFCS includes ETFC1 to ETFC6.
  • Each state of the plurality of ETFCs is determined based on the allocated power AP-EDCH. For example, in FIG. 6B, ETFC1 to ETFC3 are classified into a first state (Supported State), ETFC4 is classified into a second state (Excess-Power State), and ETFC5 and ETFC6 are classified into a third state (Blocked State). )are categorized.
  • the states of the plurality of ETFCs are stored as ETFC state data 122 (see FIG. 4) and are updated at a predetermined timing.
  • the ETFC selection unit 121 selects one ETFC (selected ETFC) to be used for EDCH from the ETFCS specified by the base station control device 300 at a predetermined transmission interval. At this time, the selected ETFC is selected from TFCs other than the third state (Blocked State) so that the transport channel with a higher priority has a higher transmission rate. Further, in the selection of the ETFC, only the ETFC whose transmission speed is equal to or lower than the maximum TFC notified by the base station 200 is selected. As a result, for example, in FIG. 6B, the ETFC selection unit 121 selects ETFC4 as the selected ETFC. In this case, the power required to transmit on the EDCH using the selected ETFC4 is represented by PP-EDCH.
  • the TFC selected by the TFC selection unit 111 and the ETFC selected by the ETFC selection unit 121 are notified to the adjustment unit 132 of the transmission power control unit 130.
  • FIG. 6C is a diagram for explaining the operation of the adjusting unit 132.
  • FIG. 6C If the total power is greater than the maximum transmit power P, as shown in Figure 6C,
  • Adjustment section 132 adjusts temporary transmission power PP— so that the total power becomes equal to maximum transmission power P.
  • the target transmission rate may be achieved even with power smaller than the allocated power. In such a case, unused power can be allocated to a physical channel requiring the power.
  • transmission power P-DCH for DCH and transmission power P-EDCH for EDCH are finally determined. If the total power is less than the maximum transmit power P
  • Transmission processing section 140 executes transmission by DCH by using the selected TFC and transmission power P—DCH, and executes transmission by EDCH by using the selected ETFC and transmission power P—EDCH.
  • the mobile station 100 sets the reference allocated power (AP-DCH, AP-EDCH) in the TFC selection process to each physical Decide for the channel Therefore, the probability that the mobile station 100 can select a TFC and an ETFC satisfying the required transmission quality within the maximum available power P is increased.
  • FIG. 7 is a diagram showing states of a plurality of TFCs and a plurality of ETFCs, and a relationship between allocated power AP-DCH and allocated power AP-EDCH. As shown in equation (2), the allocatable power P is
  • the ET FCS includes ETFC1 to ETFC6, and the TFCS includes TFC1 to TFC6.
  • the state of each of the plurality of ETFs is determined based on the allocated power AP-EDCH. For example, in FIG. 7, ETFC1 to ETFC4 are classified into a first state (Supported State), ETFC5 is classified into a second state (Excess-Power State), and ETFC6 is classified into a third state (Blocked State). Is done.
  • each state of the plurality of TFCs is determined based on the allocated power AP-DCH. For example, in FIG.
  • TFC1 to TFC3 are classified into a first state (Supported State)
  • TFC4 is classified into a second state (Excess-Power State)
  • TFC5 and TFC6 are classified into a third state (Blocked State).
  • the ETFC selector 121 selects ETFC5 as the selected ETFC
  • the TFC selector 111 selects TFC4 as the selected TFC.
  • the total power of provisional transmission power PP—DCH and provisional transmission power PP—EDCH is the allocatable power P
  • Control section 320 of base station control apparatus 300 extracts information on the type of service that mobile station 100 is communicating with. Examples of this service type include file transfer by FTP and high burstiness, and streaming services and low burstiness service.
  • the control unit 320 sends the information on the service type to the power allocation parameter determining unit 330. Further, control section 320 sends information on “the number of transport channels” to power allocation parameter determining section 330. For example, assume that the number of transport channels corresponding to DCH is M (M is a natural number), and the number of transport channels corresponding to EDCH is N (N is a natural number). At this time, these numbers M and N The power allocation parameter determination unit 330 is notified.
  • power allocation parameter determination section 330 specifies a “range” that is an index when power allocation section 131 of mobile station 100 determines parameter ⁇ .
  • FIG. 8 is a diagram for explaining this “range”. As shown in FIG. 8, this “range” is defined by a median 0 and a width ⁇ y from the median ⁇ . Or this
  • the maximum value ⁇ and the minimum value ⁇ are numbers between 0 and 1.
  • the power parameter determination unit 330 sets the median ⁇ to “transport channel
  • power parameter determining section 330 determines width ⁇ such that width ⁇ and the “burst property” of communication have a correlation. That is, the higher the burstiness of the service during communication, the larger the width ⁇ is set. For example, for a service such as file transfer by FTP, the width ⁇ y is set to be larger than the width ⁇ for a service such as streaming.
  • the “range” determined as described above is reported from the base station control device 300 to the mobile station 100. That is, in the present embodiment, the above-described power allocation parameters are the median ⁇ and the width
  • max min max min is transmitted from power allocation parameter determination section 330 of base station control apparatus 300 to power allocation section 131 of mobile station 100.
  • Power allocating section 131 of mobile station 100 selects parameter ⁇ from the "range" notified by base station controller 300, ie, between maximum value ⁇ and minimum value ⁇ (see FIG. 8). ). This
  • the power allocating unit 131 compares the amount of data stored in the DCH buffer 115 with the amount of data stored in the EDCH buffer 125, and based on the comparison result! / ⁇ To determine the parameter ⁇ . Specifically, the amount of data stored in the DCH buffer 115 (hereinafter referred to as DCH transmission data amount) is changed to the amount of data stored in the EDCH buffer 125 (hereinafter referred to as EDCH transmission data amount). Power allocation section 131 sets parameter ⁇ to be larger. Therefore, when the DCH transmission data amount is larger than the EDCH transmission data amount, the parameter ⁇ takes a value between the median value ⁇ and the maximum value ⁇ .
  • the parameter ⁇ is a value between the central value ⁇ and the minimum value ⁇ .
  • DCH transmission data volume is equal to EDCH transmission data volume
  • Power allocating section 131 transmits DCH transmission data.
  • the median ⁇ is
  • the allocated power AP-DCH tends to be larger than the allocated power AP-EDCH.
  • the allocated power AP—EDCH tends to be larger than the allocated power AP—DCH. In this way, a tendency is realized that more allocated power is allocated to a physical channel having a larger number of transport channels. Therefore, it becomes possible to allocate transmission power resources among a plurality of physical channels so as to satisfy required transmission quality.
  • parameter ⁇ can be adjusted within a “range” specified by base station controller 300.
  • Adjustment of this parameter ⁇ is performed by comparing the DCH transmission data amount and the EDCH transmission data amount. That is, more allocated power is allocated to physical channels that require higher transmission rates. As a result, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the range (width ⁇ ) is determined in consideration of the burstiness of the service. In the case of communication including a service with high burstiness, the width ⁇ is set to be large. Thereby, the range of parameter ⁇ that mobile station 100 can select is expanded. As a result, when the burstiness of the service is high, the adjustment of parameter ⁇ described above works more effectively. become.
  • the power parameter determination unit 330 determines the median ⁇ as “the required transmission
  • the transmission rate required for data transmission using DCH is 64 kbps
  • the transmission rate required for data transmission using EDCH is 128 kbps.
  • the median value ⁇ is set to a value smaller than 0.5 so that the probability that the allocated power AP-EDCH becomes higher than the allocated power AP-DCH becomes higher.
  • power parameter determining section 330 sets median ⁇ to ⁇ ( ⁇ + ⁇ )
  • power parameter determining section 330 compares the transmission rates required for the respective physical channels. Then, power parameter determining section 330 determines central value ⁇ such that the probability that the allocated power allocated to the physical channel requiring a high transmission rate increases will be high.
  • the width ⁇ communicates with the width ⁇ similarly to the case of the above-described embodiment.
  • Power allocating section 131 of mobile station 100 determines parameter ⁇ from “range” specified by power parameter determining section 330.
  • transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be used effectively, and the amount of information processing and service quality can be improved.
  • the power parameter determination unit 330 determines the median ⁇ as “the required delay”.
  • the median ⁇ is 0 so that the probability that the allocated power AP—DCH is larger than the allocated power AP—EDCH is high. . Set to a value greater than 5. Note that the power allocation coefficient ⁇ is represented by (1 ⁇ ),
  • the median ⁇ is set to a value smaller than 0.5.
  • power parameter determining section 330 compares the delay time required for each physical channel. Then, power parameter determining section 330 determines median value ⁇ such that the probability that the allocated power allocated to the physical channel requiring a small delay time increases becomes high.
  • the width ⁇ is the same as the width ⁇ as in the case of the above-described embodiment.
  • Power allocating section 131 of mobile station 100 determines parameter ⁇ from “range” specified by power parameter determining section 330.
  • the power parameter determination unit 330 determines the median ⁇ based on “priority”.
  • the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, the median value ⁇ is set to a value larger than 0.5 so that the probability that the allocated power AP-DCH becomes larger than the allocated power AP-EDCH increases.
  • DCH is represented by (, and power allocation coefficient ⁇
  • the median y is set to a value smaller than 0.5.
  • power parameter determination section 330 compares the priorities of data transmission by the respective physical channels. Then, the power parameter determining section 330 calculates the median value so that the probability that the allocated power allocated to the physical channel having the higher priority becomes higher becomes higher.
  • the width ⁇ is similar to the width ⁇ and the communication
  • the "first strike” is determined to have a correlation.
  • Power allocating section 131 of mobile station 100 determines parameter ⁇ from “range” specified by power parameter determining section 330. [0091] As described above, a tendency is realized that more allocated power is allocated to a physical channel having a higher priority. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • parameter ⁇ is directly selected from the range of 0 to 1 by power allocating section 131 of mobile station 100. This is because, in the first embodiment, the maximum values ⁇ and ⁇ power determined by the power allocation parameter determination unit 330 of the base station control device 300
  • the power allocating section 131 of the mobile station 100 determines the allocated power ⁇ —DCH and the allocated power ⁇ —EDCH according to the above equation (2).
  • the allocated power AP—DCH is Power AP—greater than EDCH.
  • the allocated power AP-EDCH tends to be larger than the allocated power AP-DCH. In this way, more allocated power is allocated to a physical channel having a larger number of transport channels. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocating unit 131 determines the parameter ⁇ based on the “required transmission rate”. For example, assume that the transmission rate required for data transmission using DCH is 64 kbps, and the transmission rate required for data transmission using EDCH is 128 kbps. At this time, the parameter ⁇ is set to a value smaller than 0.5 so that the allocated power AP-EDCH becomes larger than the allocated power AP-DCH. When the transmission rate required for data transmission using DCH is ⁇ and the transmission rate required for data transmission using EDCH is ⁇ , power allocation section 131 sets parameter ⁇ to AZ (A + B ) May be set. When the power allocation coefficient ⁇ is represented by (1 ⁇ ) and the power allocation coefficient ⁇ is represented by ⁇ , the parameter ⁇
  • power allocating section 131 compares the transmission rates required for the respective physical channels. Then, power allocating section 131 determines parameter ⁇ such that the allocated power allocated to the physical channel requiring a high transmission rate is increased. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy the required transmission quality. In addition, transmission power resources can be effectively used, and information processing amount and service quality can be improved.
  • the power allocating unit 131 determines the parameter ⁇ based on “the required delay time”. For example, assume that DCH is used for transmitting call data, and EDCH is used for file transfer. At this time, it is desirable that the delay time for call data is shorter than the delay time for file transfer. Therefore, the parameter ⁇ is set to a value larger than 0.5 so that the allocated power AP-DCH is larger than the allocated power AP-EDCH. Note that the power allocation coefficient ⁇ is expressed as (1 ⁇ ), and the power allocation coefficient ⁇ is expressed as ⁇ . In this case, the parameter ⁇ is set to a value smaller than 0.5.
  • power allocating section 131 compares the delay time required for each physical channel. Then, power allocating section 131 determines parameter ⁇ such that the allocated power allocated to the physical channel requiring a small delay time increases. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy the required transmission quality. In addition, transmission power resources can be effectively used, and information processing amount and service quality can be improved.
  • the power allocation unit 131 determines the parameter ⁇ based on “priority”. For example, it is assumed that a transmission rate assurance service is applied to data transmission by DCH, and a best effort service is applied to data transmission by EDCH. At this time, the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, parameter ⁇ is set to a value larger than 0.5 so that the allocated power ⁇ —DCH becomes larger than the allocated power ⁇ —EDCH. Note that the power allocation coefficient ⁇ is
  • the parameter ⁇ is smaller than 0.5.
  • the power allocating unit 131 compares the priorities of data transmission by the respective physical channels. Then, power allocating section 131 determines parameter ⁇ such that the allocated power allocated to the physical channel having the higher priority becomes larger. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be used effectively, and the amount of information processing and service quality can be improved.
  • parameter ⁇ is directly selected from the range of 0 to 1 by power allocation parameter determining section 330 of base station control apparatus 300. That is, the power allocation parameter indicates the parameter ⁇ .
  • Power allocation parameter determining section 330 notifies power allocating section 131 of mobile station 100 of the determined parameter ⁇ . Using the notified parameter ⁇ , power allocating section 131 determines allocated power AP-DCH and allocated power ⁇ EDCH according to equation (2) described above.
  • the allocated power AP—DCH is Power AP—greater than EDCH.
  • the allocated power AP-EDCH tends to be larger than the allocated power AP-DCH. In this way, more allocated power is allocated to a physical channel having a larger number of transport channels. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocation parameter determining unit 330 determines the parameter ⁇ based on the “required transmission rate”. For example, assume that the transmission rate required for data transmission using DCH is 64 kbps, and the transmission rate required for data transmission using EDCH is 128 kbps. At this time, the parameter ⁇ is set to a value smaller than 0.5 so that the allocated power AP-EDCH becomes larger than the allocated power AP-DCH. The transmission rate required for data transmission using DCH is ⁇ , and the transmission rate required for data transmission using EDCH is When the speed is B, the power allocation parameter determination unit 330 may set the parameter ⁇ to AZ (A + B). Note that the power allocation coefficient ⁇ is represented by (1 ⁇ ), and the power allocation coefficient ⁇
  • power allocation parameter determining section 330 compares the transmission rates required for each physical channel. Then, power allocation parameter determining section 330 determines parameter ⁇ such that the allocated power allocated to the physical channel requiring a large transmission rate increases. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocation parameter determining unit 330 determines the parameter ⁇ based on “required delay time”. For example, suppose that DCH is used for transmitting call data, and DCH is used for file transfer. At this time, it is desirable that the delay time for the call data is shorter than the delay time for the file transfer. Therefore, the parameter ⁇ is set to a value larger than 0.5 so that the allocated power AP-DCH is larger than the allocated power AP-EDCH. Note that the power allocation coefficient ⁇ is represented by (1 ⁇ ), and the power allocation coefficient ⁇
  • the parameter ⁇ is set to a value smaller than 0.5.
  • power allocation parameter determining section 330 compares the delay time required for each physical channel. Then, power allocation parameter determination section 330 determines parameter ⁇ such that the allocated power allocated to the physical channel requiring a short delay time increases. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocation parameter determination unit 330 determines the parameter ⁇ based on “priority”. For example, for data transmission by DCH, a transmission rate guarantee service is required. It has been applied, and it is assumed that the EFCH data transmission is applied to the Best F-Auto Service. At this time, the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, the parameter ⁇ is set to a value larger than 0.5 so that the allocated power AP-DCH is larger than the allocated power AP-EDCH.
  • the power allocation coefficient ⁇ For example, for data transmission by DCH, a transmission rate guarantee service is required. It has been applied, and it is assumed that the EFCH data transmission is applied to the Best F-Auto Service. At this time, the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, the parameter ⁇ is set to a value larger than 0.5 so that the allocated power AP-DCH is larger than the allocated power AP-EDCH.
  • the DCH is represented by (1 ⁇ ) and the power allocation coefficient ⁇
  • the parameter ⁇ is set to a value smaller than 0.5.
  • power allocation parameter determining section 330 compares the priorities of data transmission on the respective physical channels. Then, power allocation parameter determining section 330 determines parameter ⁇ such that the allocated power allocated to the physical channel having the higher priority becomes larger. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocation coefficients ⁇ and ⁇ are determined so that ⁇ ) is larger than 1 and smaller than 2.
  • FIG. 9 is a diagram showing states of a plurality of TFCs and a plurality of ETFCs, and a relationship between allocated power AP-DCH and allocated power AP-EDCH.
  • ETFCS includes ETFC1 to ETFC6, and TFCS includes TFC1 to TFC6.
  • the status of each of the plurality of ETFCs is determined based on the allocated power AP—EDCH. For example, in FIG. 9, ETFC1 to ETFC4 are classified into a first state (Supported State), and ETFC5 is classified into a second state (Supported State).
  • each state of the plurality of TFCs is determined based on the allocated power AP-DCH. For example, in FIG. 9, TFC1 to TFC5 are classified into a first state (Supported State), and TFC6 is classified into a second state (Excess-Power State). At this time, the ETFC selector 121 selects ETFC5 as the selected ETFC, and the TFC selector 111 selects TFC6 as the selected TFC.
  • provisional transmission power PP—DCH and provisional transmission power Power PP—Total power with EDCH is greater than allocatable power P. Therefore,
  • the meter power may exceed the maximum transmission power P of the mobile station 100.
  • the total power is
  • Adjusts the transmission power P-DCH and P-EDCH In general, there are times when data is not transmitted when data is not always transmitted. In addition, a target transmission rate may be achieved even with power smaller than the allocated power. In such a case, unused power can be allocated to physical channels that require the power. Therefore, according to the present embodiment, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocating section 131 of the mobile station 100 determines each of the EDCHs.
  • the power allocating unit 131 calculates a power allocation coefficient ⁇
  • the power allocating unit 131 sets the power allocation coefficients ⁇ and ⁇
  • DCH is the power allocation coefficient ⁇
  • the power allocation coefficient ⁇ becomes larger than the power allocation coefficient ⁇ .
  • the power allocation coefficients ⁇ and ⁇ may be determined.
  • the allocated power AP—DCH is Power AP—greater than EDCH.
  • the allocated power AP-EDCH tends to be larger than the allocated power AP-DCH.
  • transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocating unit 131 sets the power allocation coefficients ⁇ and ⁇
  • the power allocation coefficient ⁇ is set so that the allocated power AP—EDCH is larger than the allocated power AP DCH.
  • EDCH is the power allocation coefficient ⁇
  • power allocation section 131 compares the transmission rates required for the respective physical channels. Then, power allocating section 131 sets power allocation coefficient ⁇ such that the allocated power allocated to the physical channel requiring a large transmission rate increases.
  • transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocating unit 131 sets the power allocation coefficients ⁇ and ⁇
  • the power allocation coefficient ⁇ is set so that the allocated power AP—DCH is larger than the allocated power AP—EDCH.
  • power allocating section 131 compares the delay time required for each physical channel. Then, power allocating section 131 determines power allocation coefficients ⁇ and ⁇ such that the allocated power allocated to the physical channel requiring a small delay time increases.
  • transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocation unit 131 sets the power allocation coefficients ⁇ and ⁇
  • the power allocation coefficient ⁇ is larger than the power allocation coefficient ⁇ such that the allocated power AP-DCH is larger than the allocated power AP-EDCH.
  • power allocating section 131 compares the priorities of data transmission by the respective physical channels. Then, power allocating section 131 sets power allocation coefficient ⁇ ⁇ such that the allocated power allocated to the physical channel having the higher priority becomes larger.
  • transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be used effectively, and the amount of information processing and service quality can be improved.
  • the power allocation coefficients are set so that the sum ( ⁇ + ⁇ ) of the power allocation coefficients ⁇ and ⁇ is larger than 1 and smaller than 2.
  • each of the power allocation coefficients ⁇ and ⁇ is determined.
  • the power allocation unit 30 of the mobile station 100 transmits the determined power allocation coefficients ⁇ and ⁇
  • the power allocation unit 131 uses the notified power allocation coefficients ⁇ and ⁇
  • the power allocation parameter determination unit 330 determines the power allocation coefficient ⁇ and
  • the number of the plurality of transport channels obtained is M (M is a natural number) and the number of the plurality of transport channels corresponding to the EDCH is N (N is a natural number). If number M is larger than number N, power allocation coefficient 0 is determined to be larger than power allocation coefficient 0.
  • Force allocation coefficient 0 is set to the same value.
  • the allocated power AP—DCH is Power AP—greater than EDCH.
  • the allocated power AP-EDCH tends to be larger than the allocated power AP-DCH. In this way, more allocated power is allocated to a physical channel having a larger number of transport channels. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocation parameter determination unit 330 determines the power allocation coefficient ⁇ and
  • y is determined based on the "required transmission rate". For example, data using DCH
  • the power allocation coefficient ⁇ is set to be larger than the power allocation coefficient ⁇ such that the allocated power AP-EDCH is larger than the allocated power AP-DCH.
  • DCH EDCH DCH And ⁇ may be determined.
  • power allocation parameter determining section 330 compares the transmission rates required for each physical channel. Then, power allocation parameter determining section 330 determines power allocation coefficients ⁇ and ⁇ such that the allocated power allocated to the physical channel requiring a large transmission rate increases. Therefore, to satisfy the required transmission quality,
  • Transmission power resources can be distributed among a plurality of physical channels. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocation parameter determination unit 330 determines the power allocation coefficient ⁇ and
  • y is determined based on the required delay time!
  • DCH is call data
  • power allocation coefficient ⁇ is determined to be larger than power allocation coefficient ⁇ such that allocated power AP-DCH is larger than allocated power AP-EDCH.
  • power allocation parameter determination section 330 compares the delay times required for the respective physical channels. Then, power allocation parameter determination section 330 determines power allocation coefficients ⁇ and ⁇ such that the allocated power allocated to the physical channel requiring a short delay time increases. Therefore, to satisfy the required transmission quality,
  • Transmission power resources can be distributed among a plurality of physical channels. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the power allocation parameter determination unit 330 determines the power allocation coefficient ⁇ and
  • y is determined based on “priority”. For example, data transmission by DCH
  • power allocation parameter determining section 330 compares the priorities of data transmission by the respective physical channels. Then, power allocation parameter determination section 330 determines power allocation coefficient ⁇ ⁇ such that the allocated power allocated to the physical channel having the higher priority becomes larger.
  • transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
  • the physical channels transmitted by mobile station 100 are not limited to those corresponding to these two channels.
  • the mobile station 100 may perform communication using multiple physical channels!

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The wireless communication system comprises a base station control apparatus, a base station connected thereto, and a mobile station using first and second physical channels to communicate with the base station. The mobile station comprises a control part for controlling a first transmission using the first physical channel and a second transmission using the second physical channel; and a transmitting part connected to the control part. The base station control apparatus notifies a plurality of first TFCs (Transport Format Combinations) used in the first transmission, as a first TFCS (Transport Format Combination Set) to the mobile station. The base station control apparatus also notifies a plurality of second TFCs used in the second transmission, as a second TFCS to the mobile station. The control part decides a first assigned power to be assigned to the first transmission and also decides a second assigned power to be assigned to the second transmission. In addition, the control part selects, from the first TFCS, one first TFC usable with the first assigned power, and also selects, from the second TFCS, one second TFC usable with the second assigned power. The transmitting part uses the selected first TFC to execute the first transmission for the base station, while it uses the selected second TFC to execute the second transmission for the base station.

Description

明 細 書  Specification
無線通信システム、移動局、基地局制御装置、及び無線通信方法 技術分野  Radio communication system, mobile station, base station control device, and radio communication method
[0001] 本発明は、無線通信システム及び無線通信方法に関し、特に、 CDMA (Code The present invention relates to a wireless communication system and a wireless communication method, and in particular, to a CDMA (Code
Division Multiple Access)方式を利用した無線通信システム及び無線通信方法に関 する。 The present invention relates to a wireless communication system and a wireless communication method using a Division Multiple Access (Division Multiple Access) method.
背景技術  Background art
[0002] WCDMA (Wideband CDMA)システムにおいて用いられる直接符号拡散多重方 式によれば、送信側は拡散符号を用いて情報信号の拡散処理を実行し、受信側は 受け取った信号に対して同じ拡散符号を用いて逆拡散処理を実行する。この直接符 号拡散多重方式により、信号対雑音干渉比(SNIR)は向上する。受信側は、この SN IRが所定の品質以上であれば、希望の情報信号を復元することができる。また、拡 散 Z逆拡散処理により、同一の周波数帯域で複数の回線を同時に使用することが可 能となる。  [0002] According to a direct code spread multiplexing method used in a WCDMA (Wideband CDMA) system, a transmitter performs spreading processing of an information signal using a spreading code, and a receiver performs the same spreading on a received signal. A despreading process is performed using the code. This direct code spreading multiplexing method improves the signal to noise interference ratio (SNIR). The receiving side can restore a desired information signal if the SNIR is equal to or higher than a predetermined quality. Also, multiple lines can be used simultaneously in the same frequency band by the spread Z despreading process.
[0003] WCDMAにお!/、て、「送信データのシンボルレート」に対する「拡散符号のレート」 は、「拡散率 (SF: Spreading Factor)」と呼ばれる。一般に、この拡散率が低いほど、 単位時間に送信できる情報のビット数は多くなり、伝送速度 (ビットレート)は高くなる 。し力しながら、逆拡散処理において SNIRが低下するので、所定の品質を満たすた めに必要な送信電力が高くなる。ある回線の送信信号は他の回線の信号に干渉す るという観点力 は、送信電力は可能な限り抑制されることが好適である。つまり、各 回線の要求伝送速度を満たすことができ、且つ、送信電力を可能な限り抑制すること ができる伝送速度を設定することが望まれている。このことは、 WCDMAシステムに おける回線容量を向上させる上で重要である。  [0003] In WCDMA, the "spreading code rate" with respect to the "transmission data symbol rate" is called a "spreading factor (SF)". In general, the lower the spreading factor, the greater the number of bits of information that can be transmitted per unit time, and the higher the transmission speed (bit rate). However, since the SNIR decreases in the despreading process, the transmission power required to satisfy the predetermined quality increases. It is preferable that the transmission power is suppressed as much as possible from the viewpoint that a transmission signal on a certain line interferes with a signal on another line. In other words, it is desired to set a transmission speed that can satisfy the required transmission speed of each line and suppress transmission power as much as possible. This is important for improving the line capacity in WCDMA systems.
[0004] 以下、 3GPPによる仕様書(非特許文献 1 : 3GPP TS25. 321 v5. 7. 0, "3rd veneration Partnership Project; Technical specification roup Radio Access Network; Medium Access Control (MAC) protocol specification (Release 5)", (200 3 - 12); 非特許文献 2 : 3GPP TR25. 896 v2. 0. 0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; [0004] Hereinafter, 3GPP specifications (Non-Patent Document 1: 3GPP TS25.321 v5.7.0, "3rd veneration Partnership Project; Technical specification roup Radio Access Network; Medium Access Control (MAC) protocol specification (Release 5) ", (200 3-12); Non-Patent Document 2: 3GPP TR25.896 v2.0.0" 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;
Feasibility Study for Enhanced Uplink for UTRA FDD (Release 6)", (2004— 03) ) を参照することによって、本明細書で用いられる、 WCDMAシステムにおける一般的 な技術用語及び概念を説明する。 WCDMAシステムにおいて、レイヤ 1がレイヤ 2に サービスを提供するために「トランスポートチャネル」が定義される。トランスポートチヤ ネルは、共通チャネルと、「個別チャネル(DCH: Dedicated Channel)」を含む。レイヤ 1は、レイヤ 2が要求する信号伝送を、その用途に応じたチャネルを使って提供する。 「物理チャネル(Physical Channel)」は、このトランスポートチャネルによる伝送を実際 の無線伝送路を使って実現するために、レイヤ 1の無線ノード (移動局と基地局)間 の伝送チャネルとして定義される。移動局は、複数のトランスポートチャネルのデータ を、単一の物理チャネルで送信することができる。  By referring to the Feasibility Study for Enhanced Uplink for UTRA FDD (Release 6) ", (2004-03)), general technical terms and concepts in a WCDMA system used in this specification are explained. A "transport channel" is defined for Layer 1 to provide services to Layer 2. The transport channel includes a common channel and a “dedicated channel (DCH)”. Layer 1 provides the signal transmission required by Layer 2 using a channel appropriate for its use. “Physical Channel” is defined as a transmission channel between layer 1 wireless nodes (mobile station and base station) in order to realize transmission over this transport channel using an actual wireless transmission path. . A mobile station can transmit data of multiple transport channels on a single physical channel.
[0005] また、各トランスポートチャネルに対して、トランスポートフォーマット(TF: Transport Format)と呼ばれる送信フォーマットが設定される。このトランスポートフォーマットは、 トランスポートブロックのサイズ、 CRCビットサイズ、符号化方法、送信間隔 (TTI: Transmission Time Interval)などを規定する。 1つの物理チャネルに対応する複数の トランスポートチャネルのそれぞれに対して、複数のトランスポートフォーマットが設定 される。 1つの物理チャネルに対するそれら複数のトランスポートフォーマットの組み 合わせは、「TFC (Transport Format Combination)」と呼ばれる。 WCDMAシステム において、 1つの移動局は、複数の TFCの中から、送信に用いる TFC (以下、「選択 TFC」と参照される)を選択することが可能である。この複数の TFCは、「TFCS ( Transport Format Combination Set)」と呼ばれ、基地局制御装置によって各移動局 の物理チャネルごとに許可され指定される。このように、 1つの移動局は、基地局制 御装置力 指示された TFCS (複数の TFC)の中から 1つの選択 TFCを選択する。  [0005] Further, a transmission format called a transport format (TF) is set for each transport channel. This transport format specifies a transport block size, a CRC bit size, an encoding method, a transmission interval (TTI: Transmission Time Interval), and the like. A plurality of transport formats are set for each of a plurality of transport channels corresponding to one physical channel. The combination of these transport formats for one physical channel is called "TFC (Transport Format Combination)". In a WCDMA system, one mobile station can select a TFC to be used for transmission (hereinafter, referred to as “selected TFC”) from a plurality of TFCs. These multiple TFCs are called “TFCS (Transport Format Combination Set)” and are permitted and specified for each physical channel of each mobile station by the base station controller. In this way, one mobile station selects one selected TFC from the TFCS (multiple TFCs) indicated by the base station controller.
[0006] WCDMAシステムにお!/、て、移動局は、複数の TFCのそれぞれを使用する場合 に必要な送信電力 (所要電力)をそれぞれ推定し、推定された所要電力に基づ ヽて 、複数の TFCのそれぞれを以下に示される 3種類の状態のいずれかに分類する。図 1は、 TFCが分類される 3つの状態、及び TFCの状態遷移を説明するための概念図 である。 3つの状態は、第 1状態(Supported State)、第 2状態(Excess- Power State)、 及び第 3状態 (Blocked State)により構成される。状態に冠された数字が大きいほど、 推定された所要電力は大きくなる。具体的には、移動局は、使用中の TFCとその時 の送信電力に基づ!ヽて、複数の TFCのそれぞれを使用する場合に必要な所要電力 を推定する。第 1状態に属する TFCに対して推定された所要電力が、過去の所定期 間 Tのうち期間 S1以上にわたって、移動局の最大送信電力以上であった場合、その TFCは第 2状態(Excess- Power State)に移される。第 2状態に属する TFC力 過去 の所定期間 Tのうち期間 S2以上にわたって第 2状態のままであった場合、その TFC は第 3状態 (Blocked State)に移される。第 3状態に属する TFCは、上記条件に適合 するか否かに基づき、いずれかの状態に設定される。例えば、第 3状態に属する TF Cに対して推定された所要電力が、過去の所定期間 Tのうち期間 S3以上にわたって 、移動局の最大送信電力以下であった場合、その TFCは第 1状態 (Supported State )に戻される。 [0006] In a WCDMA system, a mobile station estimates transmission power (required power) required when each of a plurality of TFCs is used, and based on the estimated required power, Each of the multiple TFCs is classified into one of the following three states. FIG. 1 is a conceptual diagram for explaining three states in which a TFC is classified and state transitions of the TFC. The three states are the first state (Supported State), the second state (Excess-Power State), And a third state (Blocked State). The higher the number in the state, the higher the estimated power requirement. Specifically, the mobile station estimates the required power required when each of a plurality of TFCs is used, based on the TFC in use and the transmission power at that time. If the required power estimated for the TFC belonging to the first state is equal to or greater than the maximum transmission power of the mobile station for the period S1 or more in the past predetermined period T, the TFC is in the second state (Excess- Power State). TFC force belonging to the second state If the second state remains in the second state for a period S2 or more in the past predetermined period T, the TFC is moved to the third state (Blocked State). TFCs belonging to the third state are set to one of the states based on whether or not the above conditions are met. For example, if the required power estimated for the TFC belonging to the third state is less than or equal to the maximum transmission power of the mobile station for more than the period S3 in the past predetermined period T, the TFC becomes the first state ( Supported State).
[0007] 移動局は、以上のように複数の TFCの状態を観測し、第 3状態 (Blocked State)以 外の TFCの中から選択 TFCを選択する。具体的には、移動局は、優先度が高いトラ ンスポートチャネルほど高 、伝送速度となるような TFCを、選択 TFCとして決定する 。このように決定された選択 TFCを使用して、移動局は、複数のトランスポートチヤネ ルでデータを送信する。このように、 WCDMAシステムにおいては、移動局が、上り 回線 (Uplink)のパケット伝送における伝送形式を決定する。各 TFCの状態は、長時 間の伝播路変動を基に決定されている。そのため、フェージング変動などによって瞬 時的には伝搬路が変動している場合でも、長期平均的には要求された品質を満た すことができる TFCが選択される (非特許文献 1参照)。  [0007] As described above, the mobile station observes the states of a plurality of TFCs and selects a selected TFC from TFCs other than the third state (Blocked State). Specifically, the mobile station determines, as the selected TFC, a TFC that has a higher transmission rate as the transport channel has a higher priority. Using the selected TFC determined in this way, the mobile station transmits data on multiple transport channels. As described above, in the WCDMA system, the mobile station determines a transmission format in uplink packet transmission. The status of each TFC is determined based on long-term propagation path fluctuations. Therefore, even when the propagation path fluctuates instantaneously due to fading fluctuation or the like, a TFC that can satisfy the required quality on a long-term average is selected (see Non-Patent Document 1).
[0008] また、 WCDMAシステムのトランスポートチャネルにお!/、て、上述の DCH (  [0008] In addition, the above-mentioned DCH (
Dedicated Channel)に力!]えて、上り回線の高速パケット伝送方式(EDCH : Enhanced uplink DCH)が検討されている(非特許文献 2参照)。例えば、 DCHによって通話デ ータの送信が行われ、 EDCHによってファイルの転送が行われる。この EDCHによ れば、伝送速度等の上り回線のパケット伝送方式を、基地局が制御することが検討さ れている。その理由は以下の通りである。  Dedicated Channel) In addition, an uplink high-speed packet transmission scheme (EDCH: Enhanced uplink DCH) is being studied (see Non-Patent Document 2). For example, call data is transmitted by DCH, and file transfer is performed by EDCH. According to this EDCH, it is being studied that the base station controls the uplink packet transmission method such as the transmission speed. The reason is as follows.
[0009] 一般的に、 WCDMAシステムにおいて、基地局は、希望波と雑音電力の割合であ る「ノイズライズ」を測定する。このノイズライズが所定の閾値を超えないように、基地 局制御装置が、移動局の接続数や TFCSを制御する。しかし、ノイズライズを測定し た基地局から基地局制御装置への情報伝達、及び基地局制御装置から移動局への 情報伝達には所定の時間が必要である。そのため、瞬間的なノイズライズの変動に 対応して、基地局制御装置が、移動局数や TFCSを制御することは難しい。従って、 従来の WCDMAシステムにお!/、ては、ノイズライズの平均値が所定の閾値よりも十 分に小さくなるように、移動局数や TFCSを設定して ヽた。 [0009] Generally, in a WCDMA system, a base station determines a ratio between a desired signal and noise power. Measure the “noise rise”. The base station controller controls the number of mobile stations connected and the TFCS so that the noise rise does not exceed a predetermined threshold. However, it takes a certain time to transmit information from the base station to which the noise rise has been measured to the base station controller and from the base station controller to the mobile station. Therefore, it is difficult for the base station controller to control the number of mobile stations and TFCS in response to instantaneous fluctuations in noise rise. Therefore, in the conventional WCDMA system, the number of mobile stations and the TFCS were set so that the average value of the noise rise was sufficiently smaller than a predetermined threshold.
[0010] そこで、 EDCHに使用される TFCの選択において、基地局は、測定したノイズライ ズに基づいて TFCSの中力 使用を許可する複数の TFCを選び、その複数の TFC のうち伝送速度が最も大きくなる TFC (以下、「最大 TFC」と参照される)を移動局に 高速に指示することが検討されている。この時、移動局は、上述の選択 TFCを決定 する際に、各 TFCの状態(図 1参照)と共に、基地局によって指示された最大 TFCを も考慮に加える。すなわち、移動局は、第 1状態あるいは第 2状態に属する TFCであ り、且つ、最大 TFCによる伝送速度以下になる TFCを、 TFCSから選択する。これに より、ノイズライズの変動幅は低減され、上述の閾値を高く設定することが可能となる。 つまり、接続可能な移動局数が増加し、最大 TFCの設定も高くなる。従って、上り回 線のカバレッジやキャパシティが向上する。  [0010] Therefore, in selecting a TFC to be used for EDCH, the base station selects a plurality of TFCs that allow medium use of the TFCS based on the measured noise rise, and among the plurality of TFCs, the transmission rate is the highest. It is under consideration to promptly instruct a mobile station of a growing TFC (hereinafter referred to as “maximum TFC”). At this time, the mobile station considers the maximum TFC specified by the base station together with the state of each TFC (see FIG. 1) when determining the above-mentioned selected TFC. That is, the mobile station selects, from the TFCS, a TFC belonging to the first state or the second state and having a transmission rate equal to or lower than the maximum TFC transmission rate. As a result, the fluctuation range of the noise rise is reduced, and the above-described threshold can be set higher. In other words, the number of mobile stations that can be connected increases, and the maximum TFC setting also increases. Therefore, the coverage and capacity of the upstream line are improved.
[0011] 上記のように、移動局は、 DCHと EDCHを使用してデータを送信する。この時、 TF C選択処理は、 DCHと EDCHの双方について実行される必要がある。上述の通り、 この TFC選択処理において、推定された所要電力が、過去の所定期間 Tのうち期間 S以上にわたって、移動局の最大送信電力 P より大きいか否かが判定される。こ  [0011] As described above, the mobile station transmits data using DCH and EDCH. At this time, the TFC selection process needs to be performed for both DCH and EDCH. As described above, in this TFC selection process, it is determined whether or not the estimated required power is greater than the maximum transmission power P of the mobile station over the period S of the predetermined period T in the past. This
MAX  MAX
れにより、 DCHに適用される TFCSが示す複数の TFCのそれぞれの状態、及び ED CHに適用される TFCSが示す複数の TFCのそれぞれの状態が決定される。ここで 、区別のため、本明細書においては、 EDCHに使用される TFCは「ETFC」と参照さ れ、複数の ETFCのセットは「ETFCS」と参照されることとする。  As a result, the respective states of the plurality of TFCs indicated by the TFCS applied to the DCH and the respective states of the plurality of TFCs indicated by the TFCS applied to the EDCH are determined. Here, for distinction, in this specification, the TFC used for the EDCH is referred to as “ETFC”, and a set of a plurality of ETFCs is referred to as “ETFCS”.
[0012] 図 2は、ある移動局における複数の TFCと複数の ETFCの状態、及びそれらを使 用する際の送信電力のレベルの 1例を示す。伝送速度 (ビットレート)が高い時、所定 の品質を満たすために必要な所要電力は高くなり、伝送速度が低いとき、その所要 電力は低くなる。従って、図 2において、 Z軸は、電力と共に伝送速度をも示す。図 2 において、 ETFCSは、 ETFC1〜ETFC6を含み、 TFCSは、 TFC1〜TFC8を含 む。従来技術において、複数の TFC及び複数の ETFCのそれぞれの状態は、移動 局の最大送信電力 P を基準として判定される。例えば、図 2において、 ETFC1〜 FIG. 2 shows an example of states of a plurality of TFCs and a plurality of ETFCs in a certain mobile station, and an example of a transmission power level when using them. When the transmission rate (bit rate) is high, the power required to satisfy the specified quality increases, and when the transmission rate is low, the required power increases. The power is lower. Thus, in FIG. 2, the Z-axis shows the transmission rate as well as the power. In FIG. 2, ETFCS includes ETFC1 to ETFC6, and TFCS includes TFC1 to TFC8. In the related art, the state of each of the plurality of TFCs and the plurality of ETFCs is determined based on the maximum transmission power P of the mobile station. For example, in FIG.
MAX MAX
ETFC3は、第 1状態(Supported State)に分類され、 ETFC4は、第 2状態( Excess-Power State)に分類され、 ETFC5、 ETFC6は、第 3状態(Blocked State)に 分類される。同様に、 TFC1〜TFC5は、第 1状態に分類され、 TFC6は、第 2状態( Excess-Power State)に分類され、 TFC7、 TFC8は、第 3状態に分類される。この時 、移動局は、送信に使用する ETFC及び TFCとして、それぞれ ETFC4及び TFC6 を選択する。 ETFC3 is classified into a first state (Supported State), ETFC4 is classified into a second state (Excess-Power State), and ETFC5 and ETFC6 are classified into a third state (Blocked State). Similarly, TFC1 to TFC5 are classified into a first state, TFC6 is classified into a second state (Excess-Power State), and TFC7 and TFC8 are classified into a third state. At this time, the mobile station selects ETFC4 and TFC6 as the ETFC and TFC used for transmission, respectively.
[0013] この場合、 ETFC4を用いて送信するのに必要な送信電力は P— EDCHであり、 T FC6を用いて送信するのに必要な送信電力は P— DCHである。よって、必要な合計 送信電力 P (P =P—EDCH + P— DCH)は、移動局の最大送信電力 P よ  [0013] In this case, the transmission power required for transmission using ETFC4 is P-EDCH, and the transmission power required for transmission using TFC6 is P-DCH. Therefore, the required total transmission power P (P = P—EDCH + P—DCH) is equal to the maximum transmission power P of the mobile station.
ALL ALL MAX  ALL ALL MAX
りも大幅に大きくなる。このような場合、合計送信電力 P  Significantly larger. In such a case, the total transmit power P
ALLが最大送信電力 P  ALL is the maximum transmission power P
MAX以下 となるように、 P— EDCHと P— DCHのいずれか又は両方を削減する必要がある。そ の結果、要求品質を満たすために必要な電力が少なくとも 1つのチャネルに割り当て られず、品質が劣化してしまう。  It is necessary to reduce one or both of P-EDCH and P-DCH so that it is less than MAX. As a result, the power required to meet the required quality is not allocated to at least one channel, and the quality deteriorates.
[0014] 関連する技術として、以下のものが知られている。 [0014] The following are known as related technologies.
[0015] 特開 2002— 164871号公報には、復号ィ匕装置が開示されている。この復号化装 置は、受信手段と、判定手段と、復号手段とを具備する。受信手段は、受信データの フォーマットを示す信号を受信する。判定手段は、物理レイヤより上位のレイヤ力ゝら通 知される情報に従って受信データのフォーマット候補を限定した後、上記信号を用い て上記候補内から受信データのフォーマットを判定する。復号手段は、判定されたフ ォーマットに従って受信データを復号する。  [0015] Japanese Patent Laying-Open No. 2002-164871 discloses a decoding device. The decoding device includes a receiving unit, a determining unit, and a decoding unit. The receiving means receives a signal indicating a format of the received data. The determining means limits the format candidates of the received data according to the information notified from the layer higher than the physical layer, and then determines the format of the received data from the candidates using the signal. The decoding means decodes the received data according to the determined format.
[0016] 特開 2002— 246949号公報には、 CDMA装置が開示されている。この CDMA装 置は、 TFCI出力手段と、 SIR出力手段と、重み付け加算手段と、決定手段とを具備 している。 TFCI出力手段は、受信ベースバンド信号を逆拡散して得られる相関値か ら、転送フォーマットの組み合わせを示す TFCI値をフレーム毎に抽出して出力する 。 SIR出力手段は、相関値に基づいて受信ベースバンド信号に含まれる干渉波のレ ベルを示す SIR信号をフレーム毎に生成し出力する。重み付け加算手段は、 SIR信 号によって TFCI値に重み付けし、重み付けされた TFCI値を加算する。決定手段は 、重み付け加算手段の加算結果に基づいて、受信ベースバンド信号の復号処理に 使用されるフォーマット情報を決定する。 [0016] Japanese Patent Laying-Open No. 2002-246949 discloses a CDMA device. This CDMA apparatus includes TFCI output means, SIR output means, weighted addition means, and determination means. The TFCI output means extracts and outputs, for each frame, a TFCI value indicating a combination of transfer formats from a correlation value obtained by despreading the received baseband signal. . The SIR output means generates and outputs an SIR signal indicating the level of the interference wave included in the received baseband signal for each frame based on the correlation value. The weighting and adding means weights the TFCI value by the SIR signal and adds the weighted TFCI value. The deciding means decides format information to be used for decoding the received baseband signal based on the addition result of the weighting and adding means.
[0017] 特開 2003— 8635号公報には、 CDMAシステム、特に移動体通信システム中で、 複数のデータフローをスケジューリングする方法が開示されている。この方法は、以 下に列挙されるステップを有する。 (A)プロトコルデータユニットを含む各データフロ 一のサービス品質要求条件を受信するステップ;(B)通信チャネル上でのデータ送 信のために供されるプロトコルデータユニットの優先順位を決定するステップ;(C)定 義された優先順位に関して、かつ割り当てられた無線資源制限に依存して、物理レ ィャにより送信されるべきトランスポートブロックをダイナミックに決定することにより、プ ロトコルデータユニットを供するステップ;(D)各トランスポートブロックに、それぞれ関 連するトランスポートフォーマットを割当てるステップ;及び (E)割り当てられたそれぞ れ関連するトランスポートフォーマットを使用することにより、物理レイヤにより送信さ れるべき決定されたトランスポートブロックを有するトランスポートブロックセットを生成 するステップ。 [0017] Japanese Patent Laid-Open Publication No. 2003-8635 discloses a method for scheduling a plurality of data flows in a CDMA system, particularly in a mobile communication system. The method has the steps listed below. (A) receiving a quality of service requirement for each data flow including a protocol data unit; (B) determining a priority of a protocol data unit to be provided for data transmission on a communication channel; ( C) providing a protocol data unit by dynamically determining the transport blocks to be transmitted by the physical layer with respect to defined priorities and dependent on the allocated radio resource limits; (D) assigning each transport block a respective associated transport format; and (E) using the assigned respective associated transport format to determine which is to be transmitted by the physical layer. Transport block with transport block Generating a set.
[0018] 特開 2003— 234720号公報には、移動体通信における情報多重方法が開示され ている。この移動体通信によれば、デコードが可能な最短データ時間長である伝送 時間間隔が、予め定められた複数通りの中からそれぞれ選択される。これにより生成 される複数の情報は、同一無線フレーム内にマルチプレックスされ、無線回線上で多 重伝送される。また、上記複数の情報のそれぞれについての伝送時間間隔内での データ数の組合せを示す伝送フォーマット組合せ識別子力 各無線フレーム内に挿 入され伝送される。上記伝送時間間隔がより長 、情報の伝送時間間隔内でのデータ 数が変わるとき、伝送フォーマット組合せ識別子の上位側のビットが変化するように、 伝送フォーマット組合せ識別子が選定され伝送される。  Japanese Patent Application Laid-Open No. 2003-234720 discloses an information multiplexing method in mobile communication. According to the mobile communication, a transmission time interval that is the shortest data time length that can be decoded is selected from a plurality of predetermined types. The multiple pieces of information generated in this way are multiplexed in the same radio frame and transmitted multiple times on the radio link. Also, a transmission format combination identifier indicating the combination of the number of data within the transmission time interval for each of the plurality of pieces of information is inserted into each radio frame and transmitted. The transmission format combination identifier is selected and transmitted such that when the transmission time interval is longer and the number of data within the information transmission time interval changes, the upper bits of the transmission format combination identifier change.
[0019] 特開 2003— 304195号公報には、送信装置における送信フォーマット組み合わ せ情報の選択方法が開示されている。この送信装置は、各トランスポートチャネルに おける所定時間間隔の送信データビット長の組合わせを規定する送信フォーマット 組み合わせ情報を選択する。そして、送信装置は、該選択された送信フォーマット組 み合わせ情報に基 、て、各トランスポートチャネルの送信データを多重して送信する 。該選択方法によれば、送信フォーマット組み合わせ情報が、各トランスポートチヤネ ルの多重送信データ量に基いてクラス分けされる。そして、送信電力値に基いて、選 択すべき送信フォーマット組み合わせ情報のクラスが決定される。そして、該決定さ れたクラス内より、送信フォーマット組み合わせ情報が選択される。 [0019] Japanese Patent Laying-Open No. 2003-304195 discloses a method of selecting transmission format combination information in a transmission device. This transmission device is used for each transport channel. Selects transmission format combination information that defines combinations of transmission data bit lengths at predetermined time intervals. Then, based on the selected transmission format combination information, the transmission device multiplexes and transmits transmission data of each transport channel. According to the selection method, the transmission format combination information is classified based on the multiplex transmission data amount of each transport channel. Then, the class of the transmission format combination information to be selected is determined based on the transmission power value. Then, transmission format combination information is selected from within the determined class.
発明の開示  Disclosure of the invention
[0020] 本発明の目的は、要求される送信品質を満たすように、複数の物理チャネル間で 送信電力リソースを配分することができる無線通信システム、移動局、基地局制御装 置、及び無線通信方法を提供することにある。  An object of the present invention is to provide a radio communication system, a mobile station, a base station controller, and a radio communication capable of allocating transmission power resources among a plurality of physical channels so as to satisfy required transmission quality. It is to provide a method.
[0021] また、本発明の他の目的は、送信電力リソースを有効に活用することができる無線 通信システム、移動局、基地局制御装置、及び無線通信方法を提供することにある。 Another object of the present invention is to provide a radio communication system, a mobile station, a base station control device, and a radio communication method that can effectively utilize transmission power resources.
[0022] また、本発明の更に他の目的は、情報処理量及びサービス品質を向上させること ができる無線通信システム、移動局、基地局制御装置、及び無線通信方法を提供す ることにめる。 [0022] Still another object of the present invention is to provide a radio communication system, a mobile station, a base station control device, and a radio communication method that can improve the information processing amount and the service quality. .
[0023] 本発明の第 1の観点において、無線通信システムは、基地局制御装置と、その基 地局制御装置に接続された基地局と、第 1物理チャネル及び第 2物理チャネルを用 いて基地局と通信を行う移動局とを備える。この移動局は、第 1物理チャネルを用い る第 1送信と第 2物理チャネルを用いる第 2送信とを制御する制御部と、制御部に接 続された送信部とを備える。基地局制御装置は、上記第 1送信で用いられる複数の iTFCい' ransport Formatし ombination)を第 1TFCS u'ransport Format Combination Set)として、基地局を介して移動局に通知する。また、基地局制御装置 は、上記第 2送信で用いられる複数の第 2TFCを第 2TFCSとして、基地局を介して 移動局に通知する。制御部は、第 1送信に割当てられる第 1割当電力と、第 2送信に 割当てられる第 2割当電力とを決定する。制御部は、第 1割当電力で使用可能な 1つ の第 1TFCを、第 1選択 TFCとして第 1TFCSから選択する。また、制御部は、第 2割 当電力で使用可能な 1つの第 2TFCを、第 2選択 TFCとして第 2TFCSから選択する 。送信部は、基地局に対し、上記第 1選択 TFCを用いて第 1送信を実行し、上記第 2 選択 TFCを用いて第 2送信を実行する。 [0023] In a first aspect of the present invention, a radio communication system includes a base station controller, a base station connected to the base station controller, and a base station using the first physical channel and the second physical channel. A mobile station that communicates with the station. The mobile station includes a control unit that controls first transmission using the first physical channel and second transmission using the second physical channel, and a transmission unit connected to the control unit. The base station control device notifies the mobile station via the base station of a plurality of iTFCs (ransport Format and Combination) used in the first transmission as a first TFCS u'ransport Format Combination Set). Further, the base station control device notifies the mobile station via the base station of the plurality of second TFCs used in the second transmission as the second TFCs. The control unit determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission. The control unit selects one first TFC that can be used with the first allocated power from the first TFCS as a first selected TFC. In addition, the control unit selects one second TFC that can be used with the second allocated power from the second TFCS as a second selected TFC. . The transmitting unit performs a first transmission to the base station using the first selected TFC, and performs a second transmission using the second selected TFC.
[0024] 移動局が使用可能な電力に対する第 1割当電力及び第 2割当電力のそれぞれの 比は、 y 1及び γ 2で表される。これら γ 1及び γ 2は、 0以上 1以下の数である。 [0024] The respective ratios of the first allocated power and the second allocated power to the power available to the mobile station are represented by y1 and γ2. These γ 1 and γ 2 are numbers from 0 to 1 inclusive.
[0025] 本発明に係る無線通信システムにおいて、制御部は、 γ 1と γ 2の和が 1になるよう に γ 1と γ 2を決定する。また、決定された γ 1と γ 2に基づいて、制御部は、第 1割当 電力と第 2割当電力を決定する。 In the wireless communication system according to the present invention, the control unit determines γ 1 and γ 2 such that the sum of γ 1 and γ 2 becomes 1. Further, based on the determined γ 1 and γ 2, the control unit determines the first allocated power and the second allocated power.
[0026] 本発明に係る無線通信システムにおいて、基地局制御装置は、 γ 1と γ 2の和が 1 になるように γ 1と γ 2を決定し、決定された γ 1と γ 2を移動局の制御部に通知するIn the wireless communication system according to the present invention, the base station control device determines γ 1 and γ 2 so that the sum of γ 1 and γ 2 becomes 1, and moves the determined γ 1 and γ 2 Notify station control
。制御部は、通知された γ 1と γ 2に基づいて、第 1割当電力と第 2割当電力を決定 する。 . The control unit determines the first allocated power and the second allocated power based on the notified γ1 and γ2.
[0027] 本発明に係る無線通信システムにおいて、制御部は、 γ 1と γ 2の和が 1より大きく 2 より小さくなるように γ 1と γ 2を決定する。また、決定された γ 1と γ 2に基づいて、制 御部は、第 1割当電力と第 2割当電力を決定する。  In the wireless communication system according to the present invention, the control unit determines γ 1 and γ 2 such that the sum of γ 1 and γ 2 is larger than 1 and smaller than 2. Further, based on the determined γ 1 and γ 2, the control unit determines the first allocated power and the second allocated power.
[0028] 本発明に係る無線通信システムにおいて、基地局制御装置は、 γ 1と γ 2の和が 1 より大きく 2より小さくになるように γ 1と γ 2を決定し、決定された γ 1と γ 2を移動局の 制御部に通知する。制御部は、通知された γ 1と γ 2に基づいて、第 1割当電力と第 2割当電力を決定する。  [0028] In the wireless communication system according to the present invention, the base station control device determines γ1 and γ2 such that the sum of γ1 and γ2 is greater than 1 and less than 2, and the determined γ1 And γ2 to the control unit of the mobile station. The control unit determines the first allocated power and the second allocated power based on the notified γ1 and γ2.
[0029] 本発明に係る無線通信システムにおいて、第 1物理チャネルに対応した複数のトラ ンスポートチャネルの数が、第 2物理チャネルに対応した複数のトランスポートチヤネ ルの数より大きい場合、 y 1は γ 2よりも大きくなるように決定される。  [0029] In the wireless communication system according to the present invention, when the number of the plurality of transport channels corresponding to the first physical channel is larger than the number of the plurality of transport channels corresponding to the second physical channel, y 1 is determined to be greater than γ2.
[0030] 本発明に係る無線通信システムにおいて、第 1送信に要求される伝送速度が、第 2 送信に要求される伝送速度より大きい場合、 y 1は γ 2よりも大きくなるように決定され る。  [0030] In the wireless communication system according to the present invention, if the transmission rate required for the first transmission is higher than the transmission rate required for the second transmission, y1 is determined to be larger than γ2. .
[0031] 本発明に係る無線通信システムにおいて、第 1送信に要求される遅延時間が、第 2 送信に要求される遅延時間より小さい場合、 y 1は γ 2よりも大きくなるように決定され る。  [0031] In the wireless communication system according to the present invention, when the delay time required for the first transmission is smaller than the delay time required for the second transmission, y1 is determined to be larger than γ2. .
[0032] 本発明に係る無線通信システムにおいて、第 1送信の優先度が、第 2送信の優先 度より大きい場合、 γ 1は γ 2よりも大きくなるように決定される。 [0032] In the wireless communication system according to the present invention, the priority of the first transmission is equal to the priority of the second transmission. If greater, γ 1 is determined to be greater than γ 2.
[0033] 本発明に係る無線通信システムにおいて、基地局制御装置は、 γ ΐが決定される 範囲を 0から 1の間で決定し、決定された範囲を移動局に通知する。制御部は、通知 された範囲の中から γ 1を決定し、 y 1と γ 2の和が 1になるように γ 2を決定する。こ こで、基地局制御装置は、範囲の大きさが通信のバースト性と相関を有するように、 上記範囲を決定する。また、第 1物理チャネルに対応した複数のトランスポートチヤネ ルの数が Μで表され (Μは自然数)、第 2物理チャネルに対応した複数のトランスポ ートチャネルの数が Νで表される(Νは自然数)場合、基地局制御装置は、上記範囲 の中央値が ΜΖ (Μ + Ν)で与えられるように、範囲を決定する。更に、制御部は、第 1物理チャネルで送信される第 1データ量と、第 2物理チャネルで送信される第 2デー タ量とを比較する。第 1データ量が第 2データ量より多い場合、制御部は、 γ 1が中央 値より大きくなるように γ 1を決定する。第 1データ量が第 2データ量より少ない場合、 制御部は、 Ί 1が中央値より小さくなるように Ύ 1を決定する。第 1データ量が第 2デ ータ量と等しい場合、制御部は、 γ 1が中央値になるように γ 1を決定する。 [0033] In the radio communication system according to the present invention, the base station control device determines a range in which γΐ is determined from 0 to 1, and notifies the mobile station of the determined range. The control unit determines γ 1 from the notified range, and determines γ 2 so that the sum of y 1 and γ 2 becomes 1. Here, the base station control device determines the range so that the size of the range has a correlation with the burstiness of communication. Also, the number of the plurality of transport channels corresponding to the first physical channel is represented by Μ (Μ is a natural number), and the number of the plurality of transport channels corresponding to the second physical channel is represented by Ν (Ν If is a natural number), the base station controller determines the range such that the median of the range is given by ΜΖ (Μ + Μ). Further, the control unit compares the first data amount transmitted on the first physical channel with the second data amount transmitted on the second physical channel. When the first data amount is larger than the second data amount, the control unit determines γ1 such that γ1 is larger than the median value. When the first data amount is smaller than the second data amount, the control unit determines Ύ1 such that Ί1 is smaller than the median value. When the first data amount is equal to the second data amount, the control unit determines γ1 such that γ1 has a median value.
[0034] 本発明に係る無線通信システムにお 、て、制御部は、第 1選択 TFCを用いた第 1 送信に必要な第 1送信電力と、第 2選択 TFCを用いた第 2送信に必要な第 2送信電 力との合計を計算する。その合計が移動局の使用可能な最大電力より大きい場合、 制御部は、その合計が最大電力に等しくなるように、第 1送信電力と第 2送信電力の うち少なくとも 1つを調整する。送信部は、調整された第 1送信電力及び第 2送信電 力を用いて、第 1送信及び第 2送信を実行する。 [0034] In the wireless communication system according to the present invention, the control unit includes a first transmission power required for the first transmission using the first selected TFC and a second transmission power required for the second transmission using the second selected TFC. Calculate the sum with the appropriate second transmission power. If the sum is greater than the maximum power available to the mobile station, the control unit adjusts at least one of the first transmission power and the second transmission power so that the sum is equal to the maximum power. The transmitting unit performs the first transmission and the second transmission using the adjusted first transmission power and the second transmission power.
[0035] 本発明の第 2の観点において、移動局は、第 1物理チャネルを用いる第 1送信と第 2物理チャネルを用いる第 2送信とを制御する制御部と、制御部に接続された送信部 とを備える。制御部は、基地局制御装置から、第 1送信で用いられる複数の第 1TFC を第 1TFCSとして受け取り、第 2送信で用いられる複数の第 2TFCを第 2TFCSとし て受け取る。制御部は、第 1送信に割当てられる第 1割当電力と、第 2送信に割当て られる第 2割当電力とを決定する。また、制御部は、第 1割当電力で使用可能な 1つ の第 1TFCを第 1TFCSから選択し、又、第 2割当電力で使用可能な 1つの第 2TFC を第 2TFCSから選択する。送信部は、基地局に対し、上記 1つの第 1TFCを用いて 第 1送信を実行し、上記 1つの第 2TFCを用いて第 2送信を実行する。 [0035] In the second aspect of the present invention, the mobile station includes: a control unit that controls first transmission using the first physical channel and second transmission using the second physical channel; and a transmission unit connected to the control unit. Unit. The control unit receives, from the base station control device, a plurality of first TFCs used in the first transmission as the first TFCS, and receives a plurality of second TFCs used in the second transmission as the second TFCS. The control unit determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission. In addition, the control unit selects one first TFC that can be used with the first allocated power from the first TFCs, and selects one second TFC that can be used with the second allocated power from the second TFCS. The transmitter uses the above one TFC to the base station. The first transmission is performed, and the second transmission is performed using the one second TFC.
[0036] 本発明に係る移動局において、制御部は、第 1割当電力と第 2割当電力の合計が 使用可能な電力と等しくなるように、第 1割当電力と第 2割当電力を決定する。あるい は、制御部は、第 1割当電力と第 2割当電力の合計が使用可能な電力より大きくなる ように、第 1割当電力と第 2割当電力を決定する。  [0036] In the mobile station according to the present invention, the control unit determines the first allocated power and the second allocated power such that the sum of the first allocated power and the second allocated power is equal to the usable power. Alternatively, the control unit determines the first allocated power and the second allocated power such that the sum of the first allocated power and the second allocated power is larger than the available power.
[0037] 本発明の第 3の観点において、基地局制御装置は、 TFCS決定部と、電力割当パ ラメータ決定部と、 TFCS決定部及び電力割当パラメータ決定部に接続された送信 部とを備える。 TFCS決定部は、第 1TFCS及び第 2TFCSを決定する。電力割当パ ラメータ決定部は、移動局が使用可能な電力に対する第 1割当電力及び第 2割当電 力のそれぞれの比を決定する。送信部は、決定された第 1TFCS、第 2TFCS、及び 比を、基地局を介して移動局に通知する。  [0037] In a third aspect of the present invention, a base station control apparatus includes a TFCS determining unit, a power allocation parameter determining unit, and a transmitting unit connected to the TFCS determining unit and the power allocation parameter determining unit. The TFCS determination unit determines a first TFCS and a second TFCS. The power allocation parameter determination unit determines a ratio of each of the first allocated power and the second allocated power to the power available to the mobile station. The transmitting unit notifies the mobile station via the base station of the determined first TFCS, second TFCS, and ratio.
[0038] 本発明に係る無線通信方法は、(A)基地局制御装置が、第 1物理チャネルによる 第 1送信で用いられる複数の第 1TFCを、第 1TFCSとして、基地局を介して移動局 に通知するステップと、(B)基地局制御装置が、第 2物理チャネルによる第 2送信で 用いられる複数の第 2TFCを、第 2TFCSとして、基地局を介して移動局に通知する ステップと、(C)移動局が、第 1送信に割当てられる第 1割当電力と、第 2送信に割当 てられる第 2割当電力を決定するステップと、(D)移動局が、第 1割当電力で使用可 能な 1つの第 1TFCを、第 1選択 TFCとして第 1TFCS力 選択するステップと、(E) 移動局が、第 2割当電力で使用可能な 1つの第 2TFCを、第 2選択 TFCとして第 2T FCSカゝら選択するステップと、(F)移動局が、基地局に対し、第 1選択 TFCを用いて 第 1送信を実行し、第 2選択 TFCを用いて第 2送信を実行するステップとを備える。  [0038] In the wireless communication method according to the present invention, (A) the base station control apparatus transmits the plurality of first TFCs used in the first transmission on the first physical channel to the mobile station via the base station as first TFCs (B) notifying the mobile station via the base station of the plurality of second TFCs used in the second transmission on the second physical channel as the second TFCs, and The mobile station determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission; and (D) the mobile station can use the first allocated power with the first allocated power. (E) selecting one first TFC as a first selected TFC as a first TFC; and (E) the mobile station selecting one second TFC available at a second allocated power as a second selected TFC as a second TFC. And (F) the mobile station performs a first transmission to the base station using the first selected TFC. And a step of performing a second transmission using a second selection TFC.
[0039] 本発明に係る無線通信システム、移動局、基地局制御装置、及び無線通信方法に よれば、要求される送信品質を満たすように、複数の物理チャネル間で送信電力リソ ースを配分することが可能となる。  According to the radio communication system, the mobile station, the base station controller, and the radio communication method according to the present invention, transmission power resources are allocated among a plurality of physical channels so as to satisfy required transmission quality. It is possible to do.
[0040] 本発明に係る無線通信システム、移動局、基地局制御装置、及び無線通信方法に よれば、送信電力リソースを有効に活用することが可能となる。  [0040] According to the radio communication system, the mobile station, the base station control device, and the radio communication method according to the present invention, it is possible to effectively utilize transmission power resources.
[0041] 本発明に係る無線通信システム、移動局、基地局制御装置、及び無線通信方法に よれば、情報処理量及びサービス品質を向上させることが可能となる。 図面の簡単な説明 According to the wireless communication system, the mobile station, the base station control device, and the wireless communication method according to the present invention, it is possible to improve the information processing amount and the service quality. Brief Description of Drawings
[0042] [図 1]図 1は、 WCDMAシステムにおける TFCの状態遷移を示す概念図である。  FIG. 1 is a conceptual diagram showing a state transition of a TFC in a WCDMA system.
[図 2]図 2は、従来の WCDMAシステムにおける無線通信方法を説明するための図 である。  FIG. 2 is a diagram for explaining a wireless communication method in a conventional WCDMA system.
[図 3]図 3は、本発明に係る無線通信システムの構成を示す概念図である。  FIG. 3 is a conceptual diagram showing a configuration of a wireless communication system according to the present invention.
[図 4]図 4は、本発明に係る移動局の構成を示すブロック図である。  FIG. 4 is a block diagram showing a configuration of a mobile station according to the present invention.
[図 5]図 5は、本発明に係る基地局制御装置の構成を示すブロック図である。  FIG. 5 is a block diagram showing a configuration of a base station control device according to the present invention.
[図 6A]図 6Aは、本発明に係る無線通信方法を説明するための図である。  FIG. 6A is a diagram for explaining the wireless communication method according to the present invention.
[図 6B]図 6Bは、本発明に係る無線通信方法を説明するための図である。  FIG. 6B is a diagram for explaining the wireless communication method according to the present invention.
[図 6C]図 6Cは、本発明に係る無線通信方法を説明するための図である。  FIG. 6C is a diagram illustrating a wireless communication method according to the present invention.
[図 7]図 7は、本発明の第一乃至第三の実施の形態に係る無線通信方法を説明する ための図である。  FIG. 7 is a diagram for explaining a wireless communication method according to the first to third embodiments of the present invention.
[図 8]図 8は、本発明の第一の実施の形態に係る無線通信方法を説明するための図 である。  FIG. 8 is a diagram for explaining a wireless communication method according to the first embodiment of the present invention.
[図 9]図 9は、本発明の第四及び第五の実施の形態に係る無線通信方法を説明する ための図である。  FIG. 9 is a diagram for explaining a wireless communication method according to fourth and fifth embodiments of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 添付図面を参照して、本発明による無線通信システム及び無線通信方法を説明す る。 With reference to the accompanying drawings, a wireless communication system and a wireless communication method according to the present invention will be described.
[0044] 図 3は、本発明に係る無線通信システムの構成を示す概念図である。無線通信シス テム 10は、基地局制御装置 300と、基地局制御装置 300に通信可能に接続された 複数の基地局 200と、複数の基地局 200の各々に接続された複数の移動局 100を 備える。例えば、図 3において、基地局制御装置 300には、基地局 200Aと基地局 2 00Bが接続されており、基地局 200A及び基地局 200Bのそれぞれは、通信エリアと してセル 50A及びセル 50Bを有する。また、基地局 200Aには、移動局 100a〜100 cが無線で接続されており、基地局 200Bには、移動局 100d、 lOOeが無線で接続さ れている。尚、基地局 200の数、移動局 100の数は、図 3に示されたものに限られな い。 [0045] 本発明に係る無線通信システム 10において、基地局 200は、複数の物理チャネル を使用した通信が可能である。例えば、図 3において、基地局 200Aは、 DCH及び E DCHを使用した通信が可能であり、基地局 200Bは、 DCHを使用した通信が可能 であるとする。また、移動局 100a、 100cは、 DCH及び EDCHを使用して、基地局 2 OOAと通信を行っている。移動局 100bは、 DCHのみを使用して、基地局 200Aと通 信を行っている。移動局 100d、 100eは、 DCHのみを使用して、基地局 200Bと通 信を行っている。また、この DCHは、ユーザ情報を送信するための DPDCH ( Dedicated Physical Data Channel)と、制御信号を送信するための DPCCH ( Dedicated Physical Control Channel)を含む。 FIG. 3 is a conceptual diagram showing a configuration of a wireless communication system according to the present invention. The wireless communication system 10 includes a base station controller 300, a plurality of base stations 200 communicably connected to the base station controller 300, and a plurality of mobile stations 100 connected to each of the plurality of base stations 200. Prepare. For example, in FIG. 3, a base station 200A and a base station 200B are connected to the base station controller 300, and each of the base station 200A and the base station 200B has a cell 50A and a cell 50B as communication areas. Have. Mobile stations 100a to 100c are wirelessly connected to base station 200A, and mobile stations 100d and 100e are wirelessly connected to base station 200B. Note that the number of base stations 200 and the number of mobile stations 100 are not limited to those shown in FIG. [0045] In the wireless communication system 10 according to the present invention, the base station 200 can perform communication using a plurality of physical channels. For example, in FIG. 3, it is assumed that base station 200A can perform communication using DCH and EDCH, and base station 200B can perform communication using DCH. The mobile stations 100a and 100c communicate with the base station 2 OOA using DCH and EDCH. The mobile station 100b communicates with the base station 200A using only the DCH. Mobile stations 100d and 100e communicate with base station 200B using only DCH. The DCH includes a DPDCH (Dedicated Physical Data Channel) for transmitting user information and a DPCCH (Dedicated Physical Control Channel) for transmitting a control signal.
[0046] 図 4は、本発明に係る移動局 100の構成を示すブロック図である。図 4に示されるよ うに、移動局 100は、制御部 101と、制御部 101に接続された送信処理部 140を備 えている。制御部 101は、後に詳しく示されるように、通信に用いられる TFCや ETF Cの選択処理や送信電力の制御などを行う。送信処理部 140は、制御部 101によつ て決定された TFC、 ETFC、及び送信電力に基づいて、実際にデータを基地局 200 に送信する。また、送信処理部 140は、実際の送信電力を測定する送信電力測定部 141を備えている。更に、制御部 101は、制御信号分離部 160を介して受信処理部 150に接続されている。この受信処理部 150は、基地局 200からの信号を受け取り、 その信号を制御部 101に供給する。  FIG. 4 is a block diagram showing a configuration of the mobile station 100 according to the present invention. As shown in FIG. 4, mobile station 100 includes control section 101 and transmission processing section 140 connected to control section 101. As will be described in detail later, the control unit 101 performs selection processing of TFC and ETFC used for communication, control of transmission power, and the like. Transmission processing section 140 actually transmits data to base station 200 based on the TFC, ETFC, and transmission power determined by control section 101. Further, transmission processing section 140 includes transmission power measuring section 141 for measuring actual transmission power. Further, control section 101 is connected to reception processing section 150 via control signal separation section 160. The reception processing unit 150 receives a signal from the base station 200 and supplies the signal to the control unit 101.
[0047] 制御部 101は、 DCH送信制御部 110と、 EDCH送信制御部 120と、送信電力制 御部 130とを備えている。 DCH送信制御部 110は、 DCHを使用した送信を制御し、 EDCH送信制御部 120は、 EDCHを使用した送信を制御する。この DCH送信制御 部 110は、 TFCSから TFCを選択する TFC選択部 111と、 DCHで送信されるデータ が格納される DCHバッファ 115を備える。また、 EDCH送信制御部 120は、 ETFCS 力 ETFCを選択する ETFC選択部 121と、 EDCHで送信されるデータが格納され る EDCHバッファ 125を備えて!/ヽる。  [0047] Control section 101 includes DCH transmission control section 110, EDCH transmission control section 120, and transmission power control section 130. DCH transmission control section 110 controls transmission using DCH, and EDCH transmission control section 120 controls transmission using EDCH. The DCH transmission control section 110 includes a TFC selection section 111 for selecting a TFC from the TFCS, and a DCH buffer 115 for storing data transmitted on the DCH. Further, the EDCH transmission control section 120 includes an ETFC selection section 121 for selecting an ETFCS-powered ETFC, and an EDCH buffer 125 for storing data transmitted on the EDCH.
[0048] 送信電力制御部 130は、 DCH送信制御部 110及び EDCH送信制御部 120に接 続されている。この送信電力制御部 130は、 DCH及び EDCHのそれぞれに対して 電力を割り当てる電力割当部 131と、決定された送信電力を調整する調整部 132と を備えている。 [0048] Transmission power control section 130 is connected to DCH transmission control section 110 and EDCH transmission control section 120. The transmission power control unit 130 includes a power allocation unit 131 that allocates power to each of the DCH and the EDCH, and an adjustment unit 132 that adjusts the determined transmission power. It has.
[0049] 図 5は、本発明に係る基地局制御装置 300の構成を示すブロック図である。基地局 制御装置 300は、受信処理部 310、制御部 320、電力割当パラメータ決定部 330、 TFCS決定部 340、信号合成部 350、及び送信処理部 360を備えている。  FIG. 5 is a block diagram showing a configuration of the base station controller 300 according to the present invention. Base station control apparatus 300 includes reception processing section 310, control section 320, power allocation parameter determining section 330, TFCS determining section 340, signal combining section 350, and transmission processing section 360.
[0050] 次に、図 3〜図 5で示された構成を有する無線通信システム 10の動作を詳細に説 明する。  Next, the operation of the wireless communication system 10 having the configuration shown in FIGS. 3 to 5 will be described in detail.
[0051] 図 5を参照して、基地局制御装置 300の受信処理部 310は、基地局 200からデー タを受け取り、そのデータを制御部 320に送る。制御部 320は、受け取ったデータを ネットワーク(図示されない)に送る。また、制御部 320は、電力割当パラメータ決定部 330、 TFCS決定部 340、信号合成部 350の動作を制御する。例えば、制御部 320 は、移動局 100が通信中のサービスの種類に関する情報を抽出し、その情報を電力 割当パラメータ決定部 330と TFCS決定部 340に送る。このサービスの種類として、 例えば、 FTPによるファイル転送といったバースト性の高いサービスや、ストリーミング と 、つたバースト性の低 、サービスが挙げられる。  Referring to FIG. 5, reception processing section 310 of base station control apparatus 300 receives data from base station 200 and sends the data to control section 320. The control unit 320 sends the received data to a network (not shown). Further, control section 320 controls operations of power allocation parameter determining section 330, TFCS determining section 340, and signal combining section 350. For example, control section 320 extracts information on the type of service that mobile station 100 is communicating with, and sends the information to power allocation parameter determination section 330 and TFCS determination section 340. Examples of this service type include a service having a high burst property such as file transfer by FTP, and a service having a low burst property such as streaming.
[0052] 電力割当パラメータ決定部 330は、「電力割当パラメータ」を生成する。この「電力 割当パラメータ」は、移動局 100の電力割当部 131が DCHと EDCHのそれぞれに 対して電力を割当てる際に、その電力割当部 131によって参照されるパラメータであ る。そして、この電力割当パラメータの指し示す内容は、後に示される複数の実施例 によって異なる。生成された電力割当パラメータは、信号合成部 350に出力される。  [0052] Power allocation parameter determining section 330 generates a "power allocation parameter". The “power allocation parameter” is a parameter referred to by the power allocating section 131 when the power allocating section 131 of the mobile station 100 allocates power to each of the DCH and the EDCH. The content indicated by the power allocation parameter differs depending on a plurality of embodiments described later. The generated power allocation parameters are output to signal combining section 350.
[0053] TFCS決定部 340は、制御部 320から送られるサービスの種類に関する情報に基 づいて、移動局 100が使用してもよい TFCSと ETFCSを決定する。上述のように、こ の TFCSは、 DCHによる送信で用いられる複数の TFCを示し、 ETFCSは、 EDCH による送信で用いられる複数の ETFCを示す。決定された TFCSと ETFCSは、信号 合成部 350に出力される。  [0053] TFCS determining section 340 determines TFCS and ETFCS that mobile station 100 may use, based on information on the type of service sent from control section 320. As described above, this TFCS indicates a plurality of TFCs used for transmission on the DCH, and ETFCS indicates a plurality of ETFCs used for transmission on the EDCH. The determined TFCS and ETFCS are output to signal combining section 350.
[0054] 信号合成部 350は、 TFCSと ETFCS、及び電力割当パラメータの情報を合成し、 その合成信号を送信処理部 360に送る。送信処理部 360は、合成信号を含む制御 信号を、下り回線の DCHを使用して、基地局 200及び移動局 100に送信する。  [0054] Signal combining section 350 combines TFCS, ETFCS, and information on power allocation parameters, and sends the combined signal to transmission processing section 360. Transmission processing section 360 transmits the control signal including the combined signal to base station 200 and mobile station 100 using the downlink DCH.
[0055] 基地局 200は、上り回線で受信するノイズライズを測定する。そして、そのノイズライ ズが所定の閾値以下となるように、基地局 200は、 EDCHの最大 TFCを所定のタイミ ングで更新する。この最大 TFCは、移動局 100に通知される。 [0055] Base station 200 measures the noise rise received on the uplink. And that noise line The base station 200 updates the maximum TFC of the EDCH at a predetermined timing so that the time becomes equal to or less than a predetermined threshold. This maximum TFC is reported to the mobile station 100.
[0056] また、図 4を参照して、移動局 100の受信処理部 150は、基地局 200からの信号を 受け取り、受け取った信号を制御信号分離部 160に送る。制御信号分離部 160は、 受け取った信号をユーザ情報と制御信号に分離し、ユーザ情報を上位レイヤに送る 。一方、上述のように「電力割当てパラメータ」を含む制御信号は、送信電力制御部 1 30の電力割当部 131に送られる。この電力割当パラメータの指し示す内容は、後に 示される複数の実施例によって異なる。  Referring to FIG. 4, reception processing section 150 of mobile station 100 receives a signal from base station 200 and sends the received signal to control signal separation section 160. Control signal separation section 160 separates the received signal into user information and a control signal, and sends the user information to an upper layer. On the other hand, the control signal including the “power allocation parameter” as described above is sent to power allocating section 131 of transmission power control section 130. The content indicated by the power allocation parameter differs depending on a plurality of embodiments described later.
[0057] 本発明に係る移動局 100において、電力割当部 131は、 DCHを使用する送信に 割当てられる割当電力 AP— DCHと、 EDCHを使用する送信に割当てられる割当電 力 AP— EDCHを別々に決定する。この割当電力 AP— DCHと割当電力 AP— ED CHは、以下の式で与えられる。  In mobile station 100 according to the present invention, power allocating section 131 separately allocates allocated power AP-DCH allocated to transmission using DCH and allocated power AP-EDCH allocated to transmission using EDCH. decide. The allocated power AP-DCH and the allocated power AP-EDCH are given by the following equations.
[0058] AP-DCH = y X P  [0058] AP-DCH = y X P
DCH AVL DCH AVL
AP-EDCH= y X P …ひ) AP-EDCH = y X P… hi)
EDCH AVL  EDCH AVL
[0059] ここで、 P は、 DCHと EDCHによる送信に割り当て可能な割当可能電力である。  [0059] Here, P is an allocatable power that can be allocated to transmission by DCH and EDCH.
AVL  AVL
例えば、割当可能電力 P として、移動局 100の最大送信電力 P が挙げられる。  For example, as the allocatable power P, the maximum transmission power P of the mobile station 100 can be mentioned.
AVL MAX  AVL MAX
この式 (以下、式(1)と参照される)に示されるように、電力割当係数 γ  As shown in this equation (hereinafter referred to as equation (1)), the power allocation coefficient γ
DCHは、割当可 能電力 Ρ に対する割当電力 ΑΡ— DCHの比として定義される。また、電力割当係  DCH is defined as the ratio of allocated power ΑΡ—DCH to allocatable power Ρ. Also, the power quota
AVL  AVL
数 γ は、割当可能電力 Ρ に対する割当電力 ΑΡ— EDCHの比として定義され The number γ is defined as the ratio of allocated power ΑΡ— EDCH to allocatable power 電力.
EDCH AVL EDCH AVL
る。これら電力割当係数 γ 及び γ は、 0以上 1以下の数である。尚、上述のよ  The These power allocation coefficients γ and γ are numbers from 0 to 1 inclusive. As mentioned above
DCH EDCH  DCH EDCH
うに、 DCHは、ユーザ情報を送信するための DPDCHと制御信号を送信するための DPCCHとを含み、割当電力 AP— DCHは、 DPDCHと DPCCHの両方に対する電 力を含むものとする。  Thus, the DCH includes the DPDCH for transmitting user information and the DPCCH for transmitting a control signal, and the allocated power AP-DCH includes power for both the DPDCH and the DPCCH.
[0060] 次に、電力割当部 131は、 DCH送信制御部 110の TFC選択部 111に、決定され た割当電力 AP— DCHを通知する。また、電力割当部 131は、 EDCH送信制御部 1 20の ETFC選択部 121に、決定された割当電力 AP— EDCHを通知する。本発明 によれば、複数の TFC及び複数の ETFCの状態を判定する際の基準として、それぞ れ割当電力 AP— DCH及び割当電力 AP— EDCHが使用される。すなわち、 TFC 及び ETFCの選択処理は、共通の基準 (最大送信電力 P )ではなぐ別々の基準 Next, power allocating section 131 notifies TFC selecting section 111 of DCH transmission control section 110 of the determined allocated power AP-DCH. Further, power allocating section 131 notifies ETFC selecting section 121 of EDCH transmission control section 120 of the determined allocated power AP-EDCH. According to the present invention, allocated power AP-DCH and allocated power AP-EDCH are used as criteria for determining the states of a plurality of TFCs and a plurality of ETFCs, respectively. That is, TFC And ETFC selection process are based on different criteria than common criteria (maximum transmit power P)
MAX  MAX
(割当電力 AP— DCH、割当電力 AP— EDCH)に従って実行される。  (Allocated power AP—DCH, Allocated power AP—EDCH).
[0061] 送信処理部 140の送信電力測定部 141は、使用中の TFCに対する実送信電力を 測定して、その測定された実送信電力を TFC選択部 111に通知する。 TFC選択部 1 11は、使用中の TFCと実送信電力に基づ ヽて、複数の TFCのそれぞれを使用した 場合に必要な電力(所要電力)をそれぞれ推定する。ここで、その必要な電力とは、 所定の品質を満たすために必要な電力を意味する。そして、 TFC選択部 111は、推 定された所要電力に基づ!ヽて、複数の TFCのそれぞれを図 1に示された 3種類の状 態のいずれかに分類する。具体的には、推定された所要電力が、過去の所定期間 T のうち期間 S以上にわたって、「割当電力 AP— DCHJより大き 、か否かが判定される 。これにより、 DCHに適用される複数の TFCのそれぞれの状態が決定される。 [0061] Transmission power measurement section 141 of transmission processing section 140 measures the actual transmission power for the TFC in use, and notifies TFC selection section 111 of the measured actual transmission power. The TFC selection unit 111 estimates the required power (required power) when each of the plurality of TFCs is used, based on the used TFC and the actual transmission power. Here, the required power means the power required to satisfy a predetermined quality. Then, the TFC selector 111 determines the power requirement based on the estimated power requirement! First, each of the multiple TFCs is classified into one of the three states shown in Fig. 1. Specifically, it is determined whether or not the estimated required power is “greater than the allocated power AP—DCHJ” for a period S or more in the past predetermined period T. Each state of the TFC is determined.
[0062] 図 6Aは、ある移動局 100における複数の TFC (TFCS)と、それらを使用する際の 推定された送信電力のレベルの 1例を示す。伝送速度 (ビットレート)が高い時、所定 の品質を満たすために必要な所要電力は高くなり、伝送速度が低いとき、その所要 電力は低くなる。従って、図 6Aにおいて、 Z軸は、電力と共に伝送速度をも示す。図 6Aにおいて、 TFCSは、 TFC1〜TFC6を含む。複数の TFCのそれぞれの状態は 、割当電力 AP— DCHを基準として判定される。例えば、図 6Aにおいて、 TFC1〜 TFC3は、第 1状態(Supported State)に分類され、 TFC4は、第 2状態( FIG. 6A shows an example of a plurality of TFCs (TFCS) in a certain mobile station 100 and an estimated transmission power level when using them. When the transmission rate (bit rate) is high, the power required to satisfy the given quality increases, and when the transmission rate is low, the power required decreases. Thus, in FIG. 6A, the Z-axis shows the transmission rate as well as the power. In FIG. 6A, TFCS includes TFC1 to TFC6. Each state of the plurality of TFCs is determined based on the allocated power AP-DCH. For example, in FIG. 6A, TFC1 to TFC3 are classified into a first state (Supported State), and TFC4 is classified into a second state (Supported State).
Excess-Power State)に分類され、 TFC5、 TFC6は、第 3状態(Blocked State)に分 類される。これら複数の TFCの状態は、 TFC状態データ 112 (図 4参照)として記憶 され、所定のタイミングで更新される。  Excess-Power State), and TFC5 and TFC6 are classified into the third state (Blocked State). The states of the plurality of TFCs are stored as TFC state data 112 (see FIG. 4) and updated at a predetermined timing.
[0063] TFC選択部 111は、基地局制御装置 300によって指定された TFCSの中から、 D CHに使用される 1つの TFC (選択 TFC)を、所定の送信間隔ごとに選択する。この 時、その選択 TFCは、第 3状態(Blocked State)以外の TFCの中から、優先度の高 いトランスポートチャネルほど高い伝送速度となるように選択される。その結果、例え ば図 6Aにおいて、 TFC選択部 111は、選択 TFCとして TFC4を選択する。この場合 、選択された TFC4を使用して DCHで送信を行うのに必要な電力(以下、仮送信電 力と参照される)は、 PP— DCHで表されるとする。 [0064] 上記 TFCの場合と同様に、送信処理部 140の送信電力測定部 141は、使用中の ETFCに対する実送信電力を測定して、その測定された実送信電力を ETFC選択 部 121に通知する。 ETFC選択部 121は、使用中の ETFCと実送信電力に基づい て、複数の ETFCのそれぞれを使用した場合に必要な電力(所要電力)をそれぞれ 推定する。ここで、その必要な電力とは、所定の品質を満たすために必要な電力を意 味する。そして、 ETFC選択部 121は、推定された所要電力に基づいて、複数の ET FCのそれぞれを図 1に示された 3種類の状態のいずれかに分類する。具体的には、 推定された所要電力が、過去の所定期間 Tのうち期間 S以上にわたって、「割当電力 AP— EDCH」より大きいか否かが判定される。これにより、 EDCHに適用される複数 の ETFCのそれぞれの状態が決定される。 [0063] TFC selecting section 111 selects one TFC (selected TFC) to be used for the DCH from the TFCS specified by base station controller 300 at predetermined transmission intervals. At this time, the selected TFC is selected from TFCs other than the third state (Blocked State) so that the transport channel with a higher priority has a higher transmission rate. As a result, for example, in FIG. 6A, the TFC selection unit 111 selects TFC4 as the selected TFC. In this case, it is assumed that the power required to transmit on the DCH using the selected TFC4 (hereinafter referred to as “temporary transmission power”) is represented by PP—DCH. As in the case of the TFC, the transmission power measurement section 141 of the transmission processing section 140 measures the actual transmission power for the ETFC in use, and notifies the ETFC selection section 121 of the measured actual transmission power. I do. The ETFC selection unit 121 estimates the required power (required power) when each of the plurality of ETFCs is used, based on the used ETFC and the actual transmission power. Here, the required power means the power required to satisfy a predetermined quality. Then, ETFC selection section 121 classifies each of the plurality of ETFCs into one of the three types of states shown in FIG. 1 based on the estimated required power. Specifically, it is determined whether or not the estimated required power is greater than “allocated power AP-EDCH” for a period S or more in the past predetermined period T. This determines the status of each of the multiple ETFCs applied to the EDCH.
[0065] 図 6Bは、ある移動局 100における複数の ETFC (ETFCS)と、それらを使用する際 の推定された送信電力のレベルの 1例を示す。図 6Bにおいて、 Z軸は、電力と共に 伝送速度をも示す。図 6Bにおいて、 ETFCSは、 ETFC1〜ETFC6を含む。複数の ETFCのそれぞれの状態は、割当電力 AP— EDCHを基準として判定される。例え ば、図 6Bにおいて、 ETFC1〜ETFC3は、第 1状態(Supported State)に分類され、 ETFC4は、第 2状態(Excess- Power State)に分類され、 ETFC5、 ETFC6は、第 3 状態(Blocked State)に分類される。これら複数の ETFCの状態は、 ETFC状態デー タ 122 (図 4参照)として記憶され、所定のタイミングで更新される。  FIG. 6B shows an example of a plurality of ETFCs (ETFCS) in a certain mobile station 100 and an estimated transmission power level when using them. In FIG. 6B, the Z-axis also shows the transmission speed together with the power. In FIG. 6B, ETFCS includes ETFC1 to ETFC6. Each state of the plurality of ETFCs is determined based on the allocated power AP-EDCH. For example, in FIG. 6B, ETFC1 to ETFC3 are classified into a first state (Supported State), ETFC4 is classified into a second state (Excess-Power State), and ETFC5 and ETFC6 are classified into a third state (Blocked State). )are categorized. The states of the plurality of ETFCs are stored as ETFC state data 122 (see FIG. 4) and are updated at a predetermined timing.
[0066] ETFC選択部 121は、基地局制御装置 300によって指定された ETFCSの中から、 EDCHに使用される 1つの ETFC (選択 ETFC)を、所定の送信間隔ごとに選択する 。この時、その選択 ETFCは、第 3状態(Blocked State)以外の TFCの中から、優先 度の高いトランスポートチャネルほど高い伝送速度となるように選択される。更に、 ET FCの選択においては、基地局 200から通知された最大 TFCによる伝送速度以下に なる ETFCのみが選択対象となる。その結果、例えば図 6Bにおいて、 ETFC選択部 121は、選択 ETFCとして ETFC4を選択する。この場合、選択された ETFC4を使用 して EDCHで送信を行うのに必要な電力は、 PP— EDCHで表されるとする。  [0066] The ETFC selection unit 121 selects one ETFC (selected ETFC) to be used for EDCH from the ETFCS specified by the base station control device 300 at a predetermined transmission interval. At this time, the selected ETFC is selected from TFCs other than the third state (Blocked State) so that the transport channel with a higher priority has a higher transmission rate. Further, in the selection of the ETFC, only the ETFC whose transmission speed is equal to or lower than the maximum TFC notified by the base station 200 is selected. As a result, for example, in FIG. 6B, the ETFC selection unit 121 selects ETFC4 as the selected ETFC. In this case, the power required to transmit on the EDCH using the selected ETFC4 is represented by PP-EDCH.
[0067] TFC選択部 111によって選択された TFC、及び ETFC選択部 121によって選択さ れた ETFCは、送信電力制御部 130の調整部 132に通知される。調整部 132は、選 択 TFCに対応した仮送信電力 PP— DCHと選択 ETFCに対応した仮送信電力 PP — EDCHの合計を算出し、その合計電力(=「PP— DCH」 +「PP— EDCH」)と最 大送信電力 P との比較を行う。図 6Cは、この調整部 132の動作を説明するための The TFC selected by the TFC selection unit 111 and the ETFC selected by the ETFC selection unit 121 are notified to the adjustment unit 132 of the transmission power control unit 130. The adjustment unit 132 Calculate the sum of the provisional transmission power PP—DCH and the provisional transmission power PP—EDCH corresponding to the selected TFC, and calculate the total power (= “PP—DCH” + “PP—EDCH”) and the maximum transmission Compare with power P. FIG. 6C is a diagram for explaining the operation of the adjusting unit 132.
MAX  MAX
図である。図 6Cに示されるように、合計電力が最大送信電力 P よりも大きい場合、  FIG. If the total power is greater than the maximum transmit power P, as shown in Figure 6C,
MAX  MAX
調整部 132は、合計電力が最大送信電力 P と等しくなるように、仮送信電力 PP—  Adjustment section 132 adjusts temporary transmission power PP— so that the total power becomes equal to maximum transmission power P.
MAX MAX
DCHと仮送信電力 PP— EDCHのうち少なくとも 1つを調整する。一般的に、データ は常に送信されているわけではなぐデータが送信されない時間がある。また、割当 電力より小さい電力でも、目標となる伝送速度が達成される場合がある。このような時 に、未使用の電力を、その電力を必要とする物理チャネルに割当てることが可能とな る。 DCH and provisional transmit power PP—Adjust at least one of EDCH. In general, there are times when data is not transmitted when data is not always transmitted. Also, the target transmission rate may be achieved even with power smaller than the allocated power. In such a case, unused power can be allocated to a physical channel requiring the power.
[0068] このようにして、最終的に、 DCHのための送信電力 P— DCHと、 EDCHのための 送信電力 P— EDCHが決定される。合計電力が最大送信電力 P よりも小さい場  [0068] In this way, transmission power P-DCH for DCH and transmission power P-EDCH for EDCH are finally determined. If the total power is less than the maximum transmit power P
MAX  MAX
合、仮送信電力 PP— DCH及び PP— EDCH力 そのまま送信電力 P— DCH及び 送信電力 P— EDCHとなる。送信処理部 140は、選択 TFCと送信電力 P— DCHを 使用することによって、 DCHによる送信を実行し、選択 ETFCと送信電力 P— EDC Hを使用することによって、 EDCHによる送信を実行する。  In this case, the provisional transmission power PP-DCH and PP-EDCH power are directly used as transmission power P-DCH and transmission power P-EDCH. Transmission processing section 140 executes transmission by DCH by using the selected TFC and transmission power P—DCH, and executes transmission by EDCH by using the selected ETFC and transmission power P—EDCH.
[0069] 以上に説明されたように、本発明に係る無線通信システム 10において、移動局 10 0は、 TFC選択処理において基準となる割当電力(AP— DCH、 AP-EDCH)を、 各々の物理チャネルに対して決定する。従って、移動局 100が使用可能な最大電力 P 以内で、要求される送信品質を満たす TFC及び ETFCを選択できる確率が向[0069] As described above, in the wireless communication system 10 according to the present invention, the mobile station 100 sets the reference allocated power (AP-DCH, AP-EDCH) in the TFC selection process to each physical Decide for the channel Therefore, the probability that the mobile station 100 can select a TFC and an ETFC satisfying the required transmission quality within the maximum available power P is increased.
MAX MAX
上する。  Up.
[0070] 以下、割当電力 AP— DCH及び割当電力 AP— EDCHの決定方法を、更に詳しく 説明する。  [0070] Hereinafter, a method of determining the allocated power AP-DCH and the allocated power AP-EDCH will be described in more detail.
[0071] (第一の実施の形態) (First Embodiment)
本発明の第一の実施の形態において、 y + y = 1  In the first embodiment of the present invention, y + y = 1
DCH EDCH となるように、電力割当 y  Power allocation y to be DCH EDCH
DCH及び γ  DCH and γ
EDCHが決定される。この時、あるパラメータ γを用いると、電力割当 γ  EDCH is determined. At this time, if a certain parameter γ is used, the power allocation γ
DCHは、 γ = γ  DCH is γ = γ
DCH で与えられ、電力割当係数 γ  Power allocation coefficient γ given by DCH
EDCHは、 γ = 1—γで与  EDCH is given by γ = 1−γ
EDCH  EDCH
えられる。ここで、パラメータ γは、 0以上 1以下の数である。この時、上述の式(1)は 、次の式(2)に変形される。 available. Here, the parameter γ is a number from 0 to 1. At this time, the above equation (1) becomes Is transformed into the following equation (2).
[0072] AP-DCH = γ X P [0072] AP-DCH = γ X P
AVL AVL
AP-EDCH= (l - y ) Χ Ρ · '· (2) AP-EDCH = (l-y) Χ Ρ '(2)
AVL  AVL
[0073] 図 7は、複数の TFCと複数の ETFCの状態、及び割当電力 AP— DCHと割当電力 AP— EDCHの関係を示す図である。式(2)に示されたように、割当可能電力 P は  FIG. 7 is a diagram showing states of a plurality of TFCs and a plurality of ETFCs, and a relationship between allocated power AP-DCH and allocated power AP-EDCH. As shown in equation (2), the allocatable power P is
AVL  AVL
、割当電力 AP— DCHと割当電力 AP— EDCHとに分配される。図 7において、 ET FCSは、 ETFC1〜ETFC6を含み、 TFCSは、 TFC1〜TFC6を含む。複数の ETF Cのそれぞれの状態は、割当電力 AP— EDCHを基準として判定される。例えば、図 7において、 ETFC1〜ETFC4は、第 1状態(Supported State)に分類され、 ETFC5 は、第 2状態(Excess- Power State)に分類され、 ETFC6は、第 3状態(Blocked State )に分類される。また、複数の TFCのそれぞれの状態は、割当電力 AP— DCHを基 準として判定される。例えば、図 7において、 TFC1〜TFC3は、第 1状態(Supported State)に分類され、 TFC4は、第 2状態(Excess- Power State)に分類され、 TFC5、 TFC6は、第 3状態(Blocked State)に分類される。この時、 ETFC選択部 121は、 E TFC5を選択 ETFCとして選択し、 TFC選択部 111は、 TFC4を選択 TFCとして選 択する。本実施の形態において、仮送信電力 PP— DCHと仮送信電力 PP— EDCH との合計電力は、割当可能電力 P  , Allocated power AP—DCH and allocated power AP—EDCH. In FIG. 7, the ET FCS includes ETFC1 to ETFC6, and the TFCS includes TFC1 to TFC6. The state of each of the plurality of ETFs is determined based on the allocated power AP-EDCH. For example, in FIG. 7, ETFC1 to ETFC4 are classified into a first state (Supported State), ETFC5 is classified into a second state (Excess-Power State), and ETFC6 is classified into a third state (Blocked State). Is done. In addition, each state of the plurality of TFCs is determined based on the allocated power AP-DCH. For example, in FIG. 7, TFC1 to TFC3 are classified into a first state (Supported State), TFC4 is classified into a second state (Excess-Power State), and TFC5 and TFC6 are classified into a third state (Blocked State). are categorized. At this time, the ETFC selector 121 selects ETFC5 as the selected ETFC, and the TFC selector 111 selects TFC4 as the selected TFC. In the present embodiment, the total power of provisional transmission power PP—DCH and provisional transmission power PP—EDCH is the allocatable power P
AVLよりも小さくなる。  It is smaller than AVL.
[0074] 次に、本発明の第一の実施の形態における、上述のパラメータ γの具体的な決定 方法につ!、て詳しく説明する。  Next, a specific method for determining the above parameter γ in the first embodiment of the present invention will be described in detail.
[0075] (実施例 1 1)  (Example 11)
基地局制御装置 300の制御部 320は、移動局 100が通信中のサービスの種類に 関する情報を抽出する。このサービスの種類として、例えば、 FTPによるファイル転送 と 、つたバースト性の高 、サービスや、ストリーミングと 、つたバースト性の低 ヽサービ スが挙げられる。制御部 320は、このサービスの種類に関する情報を、電力割当パラ メータ決定部 330に送る。また、制御部 320は、「トランスポートチャネルの数」に関す る情報を、電力割当パラメータ決定部 330に送る。例えば、 DCHに対応した複数のト ランスポートチャネルの数が M (Mは自然数)であり、 EDCHに対応した複数のトラン スポートチャネルの数が N (Nは自然数)であるとする。この時、これら数 M、 N力 電 力割当パラメータ決定部 330に通知される。 Control section 320 of base station control apparatus 300 extracts information on the type of service that mobile station 100 is communicating with. Examples of this service type include file transfer by FTP and high burstiness, and streaming services and low burstiness service. The control unit 320 sends the information on the service type to the power allocation parameter determining unit 330. Further, control section 320 sends information on “the number of transport channels” to power allocation parameter determining section 330. For example, assume that the number of transport channels corresponding to DCH is M (M is a natural number), and the number of transport channels corresponding to EDCH is N (N is a natural number). At this time, these numbers M and N The power allocation parameter determination unit 330 is notified.
[0076] 本発明の第一の実施の形態において、電力割当パラメータ決定部 330は、移動局 100の電力割当部 131が上記パラメータ γを決定する際の指標となる「範囲」を指定 する。図 8は、この「範囲」を説明するための図である。図 8に示されるように、この「範 囲」は、中央値 0 と、その中央値 γ からの幅 Δ yによって規定される。あるいは、こ In the first embodiment of the present invention, power allocation parameter determination section 330 specifies a “range” that is an index when power allocation section 131 of mobile station 100 determines parameter γ. FIG. 8 is a diagram for explaining this “range”. As shown in FIG. 8, this “range” is defined by a median 0 and a width Δy from the median γ. Or this
0 0  0 0
の「範囲」は、最大値 γ と最小値 γ よって規定される。この「範囲」は、 0から 1の  Is defined by a maximum value γ and a minimum value γ. This "range" is between 0 and 1
max min  max min
間に存在する。すなわち、最大値 γ と最小値 γ は、 0以上 1以下の数である。こ  Exists in between. That is, the maximum value γ and the minimum value γ are numbers between 0 and 1. This
max mm  max mm
の時、 γ と γ は、以下の式(3)により与えられる。  At this time, γ and γ are given by the following equation (3).
max min  max min
[0077] y =min( y + Δ γ , 1)  [0077] y = min (y + Δ γ, 1)
max 0  max 0
y =max( y — Δ y , 0) … (3)  y = max (y — Δ y, 0)… (3)
min 0  min 0
[0078] 本実施例において、電力パラメータ決定部 330は、中央値 γ を「トランスポートチヤ  In the present embodiment, the power parameter determination unit 330 sets the median γ to “transport channel
0  0
ネルの数」に基づいて決定する。具体的には、中央値 γ は、上述の数 Μ、 Νを用い  Number of flannels ". Specifically, the median γ is calculated using the numbers Μ and Ν described above.
0  0
て、 γ =ΜΖ (Μ+Ν)により与えられる。尚、電力割当係数 γ を(1 γ )で表し And γ = ΜΖ (Μ + 、). Note that the power allocation coefficient γ is expressed as (1 γ)
0 DCH 0 DCH
、電力割当係数 γ EDCHを γで表す場合、中央値 γ 0は、 γ 0 =ΝΖ (Μ+Ν)により与 えられる。また、電力パラメータ決定部 330は、幅 Δ γと通信の「バースト性」とが相関 を有するように、幅 Δ γを決定する。つまり、通信中のサービスのバースト性が高くな るほど、幅 Δ γは大きく設定される。例えば、 FTPによるファイル転送といったサービ スの場合、幅 Δ yは、ストリーミングといったサービスの場合の幅 Δ γよりも大きく設 定される。  When the power allocation coefficient γ EDCH is represented by γ, the median value γ 0 is given by γ 0 = ΝΖ (Μ + Ν). Further, power parameter determining section 330 determines width Δγ such that width Δγ and the “burst property” of communication have a correlation. That is, the higher the burstiness of the service during communication, the larger the width Δγ is set. For example, for a service such as file transfer by FTP, the width Δy is set to be larger than the width Δγ for a service such as streaming.
[0079] 以上のように決定された「範囲」は、基地局制御装置 300から移動局 100に通知さ れる。つまり、本実施の形態において、上述の電力割当パラメータは、中央値 γ と幅  The “range” determined as described above is reported from the base station control device 300 to the mobile station 100. That is, in the present embodiment, the above-described power allocation parameters are the median γ and the width
0 0
Δ y、あるいは最大値 γ と最小値 γ を示す。例えば、最大値 γ と最小値 γ Δy, or the maximum value γ and the minimum value γ. For example, the maximum value γ and the minimum value γ
max min max mi nが、基地局制御装置 300の電力割当パラメータ決定部 330から、移動局 100の電 力割当部 131に送られる。  max min max min is transmitted from power allocation parameter determination section 330 of base station control apparatus 300 to power allocation section 131 of mobile station 100.
[0080] 移動局 100の電力割当部 131は、基地局制御装置 300が通知した「範囲」の中か ら、つまり最大値 γ と最小値 γ の間で、パラメータ γを選択する(図 8参照)。こ [0080] Power allocating section 131 of mobile station 100 selects parameter γ from the "range" notified by base station controller 300, ie, between maximum value γ and minimum value γ (see FIG. 8). ). This
max min  max min
こで、電力割当部 131は、 DCHバッファ 115に格納されているデータの量と、 EDC Hバッファ 125に格納されて!、るデータの量の比較を行 、、その比較結果に基づ!/ヽ てパラメータ γを決定する。具体的には、 DCHバッファ 115に格納されているデータ の量(以下、 DCH送信データ量と参照される)が、 EDCHバッファ 125に格納されて いるデータの量 (以下、 EDCH送信データ量と参照される)より多いほど、電力割当 部 131は、パラメータ γを大きく設定する。よって、 DCH送信データ量が EDCH送 信データ量より多い場合、パラメータ γは、中央値 γ と最大値 γ の間の値となる。 Here, the power allocating unit 131 compares the amount of data stored in the DCH buffer 115 with the amount of data stored in the EDCH buffer 125, and based on the comparison result! / ヽ To determine the parameter γ. Specifically, the amount of data stored in the DCH buffer 115 (hereinafter referred to as DCH transmission data amount) is changed to the amount of data stored in the EDCH buffer 125 (hereinafter referred to as EDCH transmission data amount). Power allocation section 131 sets parameter γ to be larger. Therefore, when the DCH transmission data amount is larger than the EDCH transmission data amount, the parameter γ takes a value between the median value γ and the maximum value γ.
0 max  0 max
逆に、 DCH送信データ量が EDCH送信データ量より多い場合、ノ ラメータ γは、中 央値 γ と最小値 γ の間の値となる。 DCH送信データ量が EDCH送信データ量と Conversely, when the amount of DCH transmission data is larger than the amount of EDCH transmission data, the parameter γ is a value between the central value γ and the minimum value γ. DCH transmission data volume is equal to EDCH transmission data volume
0 mm 0 mm
等しい場合、ノ ラメータ γは、中央値 γ となる。電力割当部 131は、 DCH送信デー  If they are equal, the parameter γ is the median γ. Power allocating section 131 transmits DCH transmission data.
0  0
タ量と EDCH送信データ量との比を算出し、算出された比に基づいてパラメータ γを 決定してちょい。  Calculate the ratio between the data amount and the EDCH transmission data amount, and determine the parameter γ based on the calculated ratio.
[0081] 以上に説明されたように、本実施例によれば、中央値 γ は、トランスポートチャネル  As explained above, according to the present embodiment, the median γ is
0  0
の数に基づいて決定される。つまり、 DCHで送信されるトランスポートチャネルの数 Μ力 EDCHで送信されるトランスポートチャネルの数 Νより大きい場合、割当電力 A P— DCHは、割当電力 AP— EDCHより大きくなる傾向にある。逆に、 EDCHで送信 されるトランスポートチャネルの数 N力 DCHで送信されるトランスポートチャネルの 数 Mより大きい場合、割当電力 AP— EDCHは、割当電力 AP— DCHより大きくなる 傾向にある。このように、トランスポートチャネルの数が多い物理チャネルほど、多くの 割当電力が割当てられる傾向が実現される。従って、要求される送信品質を満たす ように、複数の物理チャネル間で送信電力リソースを配分することが可能となる。  Is determined based on the number of That is, if the number of transport channels transmitted on the DCH is larger than the number of transport channels transmitted on the EDCH, the allocated power AP-DCH tends to be larger than the allocated power AP-EDCH. Conversely, if the number of transport channels transmitted on the EDCH is greater than the number M of transport channels transmitted on the DCH, the allocated power AP—EDCH tends to be larger than the allocated power AP—DCH. In this way, a tendency is realized that more allocated power is allocated to a physical channel having a larger number of transport channels. Therefore, it becomes possible to allocate transmission power resources among a plurality of physical channels so as to satisfy required transmission quality.
[0082] 更に、パラメータ γは、基地局制御装置 300が指定する「範囲」内で調整され得る。 Further, parameter γ can be adjusted within a “range” specified by base station controller 300.
このパラメータ γの調整は、 DCH送信データ量と EDCH送信データ量とを比較する ことにより行われる。つまり、より高い伝送速度を必要とする物理チャネルに、より多い 割当電力が割当てられるようになる。これにより、送信電力リソースを有効に活用する ことが可能となり、又、情報処理量及びサービス品質を向上させることが可能となる。 ここで、その範囲(幅 Δ γ )は、サービスのバースト性が考慮されて決定される。バー スト性が高いサービスを含む通信の場合、幅 Δ γが大きく設定される。これにより、移 動局 100が選択することができるパラメータ γの範囲が拡大する。その結果、サービ スのバースト性が高い場合に、上述のパラメータ γの調整はより有効に作用すること になる。 Adjustment of this parameter γ is performed by comparing the DCH transmission data amount and the EDCH transmission data amount. That is, more allocated power is allocated to physical channels that require higher transmission rates. As a result, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved. Here, the range (width Δγ) is determined in consideration of the burstiness of the service. In the case of communication including a service with high burstiness, the width Δγ is set to be large. Thereby, the range of parameter γ that mobile station 100 can select is expanded. As a result, when the burstiness of the service is high, the adjustment of parameter γ described above works more effectively. become.
[0083] (実施例 1 2)  (Example 1 2)
本実施例において、電力パラメータ決定部 330は、中央値 γ を「要求される伝送  In the present embodiment, the power parameter determination unit 330 determines the median γ as “the required transmission
0  0
速度」に基づいて決定する。例えば、 DCHを用いたデータ送信に要求される伝送速 度が 64kbpsであり、 EDCHを用いたデータ送信に要求される伝送速度が 128kbps であるとする。この時、割当電力 AP— EDCHが割当電力 AP— DCHより大きくなる 確率が高くなるように、中央値 γ は、 0. 5より小さな値に設定される。 DCHを用いた  Speed ". For example, assume that the transmission rate required for data transmission using DCH is 64 kbps, and the transmission rate required for data transmission using EDCH is 128 kbps. At this time, the median value γ is set to a value smaller than 0.5 so that the probability that the allocated power AP-EDCH becomes higher than the allocated power AP-DCH becomes higher. Using DCH
0  0
データ送信に要求される伝送速度が Αであり、 EDCHを用いたデータ送信に要求さ れる伝送速度が Bである時、電力パラメータ決定部 330は、中央値 γ を ΑΖ (Α+Β)  When the transmission rate required for data transmission is Α and the transmission rate required for data transmission using EDCH is B, power parameter determining section 330 sets median γ to ΑΖ (Α + Β)
0  0
に設定してもよい。尚、電力割当係数 γ を(1— γ )で表し、電力割当係数 γ  May be set. Note that the power allocation coefficient γ is represented by (1−γ), and the power allocation coefficient γ
DCH EDCH  DCH EDCH
を γで表す場合、中央値 γ は、 ΒΖ (Α+Β)で与えられる。  Is represented by γ, the median γ is given by ΒΖ (Α + Β).
0  0
[0084] このように、電力パラメータ決定部 330は、それぞれの物理チャネルに要求される 伝送速度を比較する。そして、電力パラメータ決定部 330は、大きな伝送速度が要求 される物理チャネルに割り当てられる割当電力が大きくなる確率が高くなるように、中 央値 γ を決定する。幅 Δ γは、上述の実施例の場合と同様に、その幅 Δ γと通信 As described above, power parameter determining section 330 compares the transmission rates required for the respective physical channels. Then, power parameter determining section 330 determines central value γ such that the probability that the allocated power allocated to the physical channel requiring a high transmission rate increases will be high. The width Δγ communicates with the width Δγ similarly to the case of the above-described embodiment.
0 0
の「バースト性」が相関を有するように決定される。移動局 100の電力割当部 131は、 電力パラメータ決定部 330が指定した「範囲」から、パラメータ γを決定する。  Are determined to have a correlation. Power allocating section 131 of mobile station 100 determines parameter γ from “range” specified by power parameter determining section 330.
[0085] 以上に説明されたように、要求される伝送速度が多い物理チャネルほど、多くの割 当電力が割当てられる傾向が実現される。従って、要求される送信品質を満たすよう に、複数の物理チャネル間で送信電力リソースを配分することが可能となる。また、送 信電力リソースを有効に活用することが可能となり、情報処理量及びサービス品質を 向上させることが可會 となる。  [0085] As described above, a tendency is realized that more allocated power is allocated to a physical channel that requires a higher transmission rate. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be used effectively, and the amount of information processing and service quality can be improved.
[0086] (実施例 1 3)  [0086] (Example 13)
本実施例において、電力パラメータ決定部 330は、中央値 γ を「要求される遅延  In the present embodiment, the power parameter determination unit 330 determines the median γ as “the required delay”.
0  0
時間」に基づいて決定する。例えば、 DCHが通話データの送信に用いられ、 EDCH 力 Sファイル転送に用いられるとする。この時、通話データに対する遅延時間の方が、 ファイル転送に対する遅延時間よりも小さいことが望まれる。従って、割当電力 AP— DCHが割当電力 AP— EDCHより大きくなる確率が高くなるように、中央値 γ は、 0 . 5より大きな値に設定される。尚、電力割当係数 γ を(1— γ )で表し、電力割当 Time ". For example, suppose that DCH is used for transmitting call data and used for EDCH S file transfer. At this time, it is desired that the delay time for the call data is shorter than the delay time for the file transfer. Therefore, the median γ is 0 so that the probability that the allocated power AP—DCH is larger than the allocated power AP—EDCH is high. . Set to a value greater than 5. Note that the power allocation coefficient γ is represented by (1−γ),
DCH  DCH
係数 γ を γで表す場合、中央値 γ は、 0. 5より小さい値に設定される。  When the coefficient γ is represented by γ, the median γ is set to a value smaller than 0.5.
EDCH 0  EDCH 0
[0087] このように、電力パラメータ決定部 330は、それぞれの物理チャネルに要求される 遅延時間を比較する。そして、電力パラメータ決定部 330は、少ない遅延時間が要 求される物理チャネルに割り当てられる割当電力が大きくなる確率が高くなるように、 中央値 γ を決定する。幅 Δ γは、上述の実施例の場合と同様に、その幅 Δ γと通  [0087] As described above, power parameter determining section 330 compares the delay time required for each physical channel. Then, power parameter determining section 330 determines median value γ such that the probability that the allocated power allocated to the physical channel requiring a small delay time increases becomes high. The width Δγ is the same as the width Δγ as in the case of the above-described embodiment.
0  0
信の「バースト性」が相関を有するように決定される。移動局 100の電力割当部 131 は、電力パラメータ決定部 330が指定した「範囲」から、パラメータ γを決定する。  The "burstiness" of the signal is determined to be correlated. Power allocating section 131 of mobile station 100 determines parameter γ from “range” specified by power parameter determining section 330.
[0088] 以上に説明されたように、少ない遅延時間が要求される物理チャネルほど、多くの 割当電力が割当てられる傾向が実現される。従って、要求される送信品質を満たす ように、複数の物理チャネル間で送信電力リソースを配分することが可能となる。また 、送信電力リソースを有効に活用することが可能となり、情報処理量及びサービス品 質を向上させることが可能となる。  [0088] As described above, a tendency is realized that more allocated power is allocated to a physical channel that requires a smaller delay time. Therefore, it becomes possible to allocate transmission power resources among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0089] (実施例 1 4)  (Example 14)
本実施例において、電力パラメータ決定部 330は、中央値 γ を「優先度」に基づい  In the present embodiment, the power parameter determination unit 330 determines the median γ based on “priority”.
0  0
て決定する。例えば、 DCHによるデータ伝送には伝送速度保証サービスが適用され ており、 EDCHによるデータ伝送にはべストエフオートサービスが適用されているとす る。この時、 DCHによるデータ伝送の優先度は、 EDCHによるデータ伝送の優先度 よりも高く設定される。従って、割当電力 AP— DCHが割当電力 AP— EDCHより大 きくなる確率が高くなるように、中央値 γ は、 0. 5より大きな値に設定される。尚、電  To decide. For example, suppose that a transmission rate guarantee service is applied to data transmission by DCH, and a best-ef-to-auto service is applied to data transmission by EDCH. At this time, the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, the median value γ is set to a value larger than 0.5 so that the probability that the allocated power AP-DCH becomes larger than the allocated power AP-EDCH increases. In addition,
0  0
力割当係数 0 1 γ ) γ  Power allocation coefficient 0 1 γ) γ
DCHを ( で表し、電力割当係数 γ  DCH is represented by (, and power allocation coefficient γ
EDCHを で表す場合、中央値 y は、 0. 5より小さい値に設定される。  When EDCH is represented by, the median y is set to a value smaller than 0.5.
0  0
[0090] このように、電力パラメータ決定部 330は、それぞれの物理チャネルによるデータ伝 送の優先度を比較する。そして、電力パラメータ決定部 330は、高い優先度を有する 物理チャネルに割り当てられる割当電力が大きくなる確率が高くなるように、中央値 As described above, power parameter determination section 330 compares the priorities of data transmission by the respective physical channels. Then, the power parameter determining section 330 calculates the median value so that the probability that the allocated power allocated to the physical channel having the higher priority becomes higher becomes higher.
Ύ を決定する。幅 Δ γは、上述の実施例の場合と同様に、その幅 Δ γと通信の「バΎ Determine. The width Δγ is similar to the width Δγ and the communication
0 0
一スト性」が相関を有するように決定される。移動局 100の電力割当部 131は、電力 パラメータ決定部 330が指定した「範囲」から、パラメータ γを決定する。 [0091] 以上に説明されたように、高い優先度を有する物理チャネルほど、多くの割当電力 が割当てられる傾向が実現される。従って、要求される送信品質を満たすように、複 数の物理チャネル間で送信電力リソースを配分することが可能となる。また、送信電 カリソースを有効に活用することが可能となり、情報処理量及びサービス品質を向上 させることが可會 となる。 The "first strike" is determined to have a correlation. Power allocating section 131 of mobile station 100 determines parameter γ from “range” specified by power parameter determining section 330. [0091] As described above, a tendency is realized that more allocated power is allocated to a physical channel having a higher priority. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0092] (第二の実施の形態)  [0092] (Second embodiment)
本発明の第二の実施の形態において、第一の実施の形態と同様に、 y + y  In the second embodiment of the present invention, as in the first embodiment, y + y
DCH EDC  DCH EDC
= 1となるように、電力割当係数 γ 及び γ が決定される(図 7参照)。この時、 Power allocation coefficients γ and γ are determined such that = 1 (see FIG. 7). At this time,
H DCH EDCH H DCH EDCH
あるパラメータ γを用いると、電力割当係数 γ は、 γ = yで与えられ、電力割  Using a certain parameter γ, the power allocation coefficient γ is given by γ = y,
DCH DCH  DCH DCH
当係数 0 は、 0 = 1— Ύで与えられる(式(2)参照)。ここで、パラメータ γは  The coefficient 0 is given by 0 = 1 1 (see equation (2)). Where the parameter γ is
EDCH EDCH  EDCH EDCH
、 0以上 1以下の数である。  It is a number from 0 to 1.
[0093] 本実施の形態において、パラメータ γは、移動局 100の電力割当部 131によって、 0〜1の範囲から直接選択される。これは、第一の実施の形態において、基地局制御 装置 300の電力割当パラメータ決定部 330が決定する最大値 γ 及び γ 力 そ In the present embodiment, parameter γ is directly selected from the range of 0 to 1 by power allocating section 131 of mobile station 100. This is because, in the first embodiment, the maximum values γ and γ power determined by the power allocation parameter determination unit 330 of the base station control device 300
max min れぞれ 1と 0に固定されることと等価である。これにより、パラメータ γを広い選択範囲 力も選択することが可能となる。移動局 100の電力割当部 131は、ノ メータ γを決 定した後、上述の式(2)に従って割当電力 ΑΡ— DCH及び割当電力 ΑΡ— EDCH を決定する。  max min is equivalent to being fixed to 1 and 0 respectively. As a result, it is possible to select the parameter γ in a wide selection range. After determining the parameter γ, the power allocating section 131 of the mobile station 100 determines the allocated power ΑΡ—DCH and the allocated power ΑΡ—EDCH according to the above equation (2).
[0094] (実施例 2— 1) (Example 2-1)
本実施例において、電力割当部 131は、パラメータ γを「トランスポートチャネルの 数」に基づいて決定する。例えば、 DCHに対応した複数のトランスポートチャネルの 数が Μ (Μは自然数)であり、 EDCHに対応した複数のトランスポートチャネルの数が N (Nは自然数)であるとする。この時、ノ ラメータ γは、 y =MZ (M + N)により与え られる。尚、電力割当係数 γ を(1 γ )で表し、電力割当係数 γ を γで表す  In the present embodiment, the power allocating unit 131 determines the parameter γ based on “the number of transport channels”. For example, assume that the number of transport channels corresponding to DCH is Μ (Μ is a natural number), and the number of transport channels corresponding to EDCH is N (N is a natural number). At this time, the parameter γ is given by y = MZ (M + N). Note that the power allocation coefficient γ is represented by (1 γ), and the power allocation coefficient γ is represented by γ
DCH EDCH  DCH EDCH
場合、パラメータ Ίは、 Ί =NZ (M + N)により与えられる。  In this case, the parameter Ί is given by Ί = NZ (M + N).
[0095] このように、本実施例によれば、 DCHで送信されるトランスポートチャネルの数 Mが 、 EDCHで送信されるトランスポートチャネルの数 Nより大きい場合、割当電力 AP— DCHは、割当電力 AP— EDCHより大きくなる。逆に、数 Nが数 Mより大きい場合、 割当電力 AP— EDCHは、割当電力 AP— DCHより大きくなる傾向にある。このよう に、トランスポートチャネルの数が多い物理チャネルほど、多くの割当電力が割当て られる。従って、要求される送信品質を満たすように、複数の物理チャネル間で送信 電力リソースを配分することが可能となる。また、送信電力リソースを有効に活用する ことが可能となり、情報処理量及びサービス品質を向上させることが可能となる。 As described above, according to the present embodiment, when the number M of transport channels transmitted on the DCH is larger than the number N of transport channels transmitted on the EDCH, the allocated power AP—DCH is Power AP—greater than EDCH. Conversely, if the number N is greater than the number M, The allocated power AP-EDCH tends to be larger than the allocated power AP-DCH. In this way, more allocated power is allocated to a physical channel having a larger number of transport channels. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0096] (実施例 2— 2) (Example 2-2)
本実施例において、電力割当部 131は、パラメータ γを「要求される伝送速度」に 基づいて決定する。例えば、 DCHを用いたデータ送信に要求される伝送速度が 64 kbpsであり、 EDCHを用いたデータ送信に要求される伝送速度が 128kbpsであると する。この時、割当電力 AP— EDCHが割当電力 AP— DCHより大きくなるように、パ ラメータ γは、 0. 5より小さな値に設定される。 DCHを用いたデータ送信に要求され る伝送速度が Αであり、 EDCHを用いたデータ送信に要求される伝送速度が Βであ る時、電力割当部 131は、パラメータ γを AZ (A+B)に設定してもよい。尚、電力割 当係数 γ を(1 γ )で表し、電力割当係数 γ を γで表す場合、パラメータ γ  In the present embodiment, the power allocating unit 131 determines the parameter γ based on the “required transmission rate”. For example, assume that the transmission rate required for data transmission using DCH is 64 kbps, and the transmission rate required for data transmission using EDCH is 128 kbps. At this time, the parameter γ is set to a value smaller than 0.5 so that the allocated power AP-EDCH becomes larger than the allocated power AP-DCH. When the transmission rate required for data transmission using DCH is Α and the transmission rate required for data transmission using EDCH is Β, power allocation section 131 sets parameter γ to AZ (A + B ) May be set. When the power allocation coefficient γ is represented by (1 γ) and the power allocation coefficient γ is represented by γ, the parameter γ
DCH EDCH  DCH EDCH
は、 BZ(A+B)で与えられる。  Is given by BZ (A + B).
[0097] このように、電力割当部 131は、それぞれの物理チャネルに要求される伝送速度を 比較する。そして、電力割当部 131は、大きな伝送速度が要求される物理チャネル に割り当てられる割当電力が大きくなるように、パラメータ γを決定する。従って、要 求される送信品質を満たすように、複数の物理チャネル間で送信電力リソースを配分 することが可能となる。また、送信電力リソースを有効に活用することが可能となり、情 報処理量及びサービス品質を向上させることが可能となる。  [0097] As described above, power allocating section 131 compares the transmission rates required for the respective physical channels. Then, power allocating section 131 determines parameter γ such that the allocated power allocated to the physical channel requiring a high transmission rate is increased. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy the required transmission quality. In addition, transmission power resources can be effectively used, and information processing amount and service quality can be improved.
[0098] (実施例 2— 3)  (Example 2-3)
本実施例において、電力割当部 131は、パラメータ γを「要求される遅延時間」に 基づいて決定する。例えば、 DCHが通話データの送信に用いられ、 EDCHがフアイ ル転送に用いられるとする。この時、通話データに対する遅延時間の方が、ファイル 転送に対する遅延時間よりも小さいことが望まれる。従って、割当電力 AP— DCHが 割当電力 AP— EDCHより大きくなるように、パラメータ γは、 0. 5より大きな値に設 定される。尚、電力割当係数 γ を(1 γ )で表し、電力割当係数 γ を γで表 す場合、パラメータ γは、 0. 5より小さい値に設定される。 In the present embodiment, the power allocating unit 131 determines the parameter γ based on “the required delay time”. For example, assume that DCH is used for transmitting call data, and EDCH is used for file transfer. At this time, it is desirable that the delay time for call data is shorter than the delay time for file transfer. Therefore, the parameter γ is set to a value larger than 0.5 so that the allocated power AP-DCH is larger than the allocated power AP-EDCH. Note that the power allocation coefficient γ is expressed as (1γ), and the power allocation coefficient γ is expressed as γ. In this case, the parameter γ is set to a value smaller than 0.5.
[0099] このように、電力割当部 131は、それぞれの物理チャネルに要求される遅延時間を 比較する。そして、電力割当部 131は、少ない遅延時間が要求される物理チャネル に割り当てられる割当電力が大きくなるように、パラメータ γを決定する。従って、要 求される送信品質を満たすように、複数の物理チャネル間で送信電力リソースを配分 することが可能となる。また、送信電力リソースを有効に活用することが可能となり、情 報処理量及びサービス品質を向上させることが可能となる。  [0099] As described above, power allocating section 131 compares the delay time required for each physical channel. Then, power allocating section 131 determines parameter γ such that the allocated power allocated to the physical channel requiring a small delay time increases. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy the required transmission quality. In addition, transmission power resources can be effectively used, and information processing amount and service quality can be improved.
[0100] (実施例 2— 4)  (Example 2—4)
本実施例において、電力割当部 131は、パラメータ γを「優先度」に基づいて決定 する。例えば、 DCHによるデータ伝送には伝送速度保証サービスが適用されており 、 EDCHによるデータ伝送にはべストエフオートサービスが適用されているとする。こ の時、 DCHによるデータ伝送の優先度は、 EDCHによるデータ伝送の優先度よりも 高く設定される。従って、割当電力 ΑΡ— DCHが割当電力 ΑΡ— EDCHより大きくな るように、パラメータ γは、 0. 5より大きな値に設定される。尚、電力割当係数 γ を  In the present embodiment, the power allocation unit 131 determines the parameter γ based on “priority”. For example, it is assumed that a transmission rate assurance service is applied to data transmission by DCH, and a best effort service is applied to data transmission by EDCH. At this time, the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, parameter γ is set to a value larger than 0.5 so that the allocated power ΑΡ—DCH becomes larger than the allocated power ΑΡ—EDCH. Note that the power allocation coefficient γ is
DCH  DCH
(1— γ )で表し、電力割当係数 γ を γで表す場合、ノ メータ γは、 0. 5より小  When the power allocation coefficient γ is represented by γ, the parameter γ is smaller than 0.5.
EDCH  EDCH
さい値に設定される。  Is set to the default value.
[0101] このように、電力割当部 131は、それぞれの物理チャネルによるデータ伝送の優先 度を比較する。そして、電力割当部 131は、高い優先度を有する物理チャネルに割り 当てられる割当電力が大きくなるように、パラメータ γを決定する。従って、要求され る送信品質を満たすように、複数の物理チャネル間で送信電力リソースを配分するこ とが可能となる。また、送信電力リソースを有効に活用することが可能となり、情報処 理量及びサービス品質を向上させることが可能となる。  [0101] As described above, the power allocating unit 131 compares the priorities of data transmission by the respective physical channels. Then, power allocating section 131 determines parameter γ such that the allocated power allocated to the physical channel having the higher priority becomes larger. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be used effectively, and the amount of information processing and service quality can be improved.
[0102] (第三の実施の形態)  [0102] (Third embodiment)
本発明の第三の実施の形態において、第一の実施の形態と同様に、 y + y  In the third embodiment of the present invention, as in the first embodiment, y + y
DCH EDC  DCH EDC
= 1となるように、電力割当係数 γ 及び γ が決定される(図 7参照)。この時、 Power allocation coefficients γ and γ are determined such that = 1 (see FIG. 7). At this time,
H DCH EDCH H DCH EDCH
あるパラメータ γを用いると、電力割当係数 γ は、 γ = yで与えられ、電力割  Using a certain parameter γ, the power allocation coefficient γ is given by γ = y,
DCH DCH  DCH DCH
当係数 0 は、 0 = 1— Ύで与えられる(式(2)参照)。ここで、パラメータ γは  The coefficient 0 is given by 0 = 1 1 (see equation (2)). Where the parameter γ is
EDCH EDCH  EDCH EDCH
、 0以上 1以下の数である。 [0103] 本実施の形態において、パラメータ γは、基地局制御装置 300の電力割当パラメ ータ決定部 330によって、 0〜1の範囲から直接選択される。つまり、電力割当パラメ ータは、パラメータ γを示す。電力割当パラメータ決定部 330は、決定されたパラメ一 タ γを、移動局 100の電力割当部 131に通知する。電力割当部 131は、通知された パラメータ γを用い、上述の式(2)に従って割当電力 AP— DCH及び割当電力 ΑΡ EDCHを決定する。 It is a number from 0 to 1. In this embodiment, parameter γ is directly selected from the range of 0 to 1 by power allocation parameter determining section 330 of base station control apparatus 300. That is, the power allocation parameter indicates the parameter γ. Power allocation parameter determining section 330 notifies power allocating section 131 of mobile station 100 of the determined parameter γ. Using the notified parameter γ, power allocating section 131 determines allocated power AP-DCH and allocated power ΑΡ EDCH according to equation (2) described above.
[0104] (実施例 3— 1)  (Example 3-1)
本実施例において、電力割当パラメータ決定部 330は、パラメータ γを「トランスポ ートチャネルの数」に基づいて決定する。例えば、 DCHに対応した複数のトランスポ ートチャネルの数が Μ (Μは自然数)であり、 EDCHに対応した複数のトランスポート チャネルの数が Ν (Νは自然数)であるとする。この時、ノ ラメータ γは、 y =M/ (M + N)により与えられる。尚、電力割当係数 γ を(1— γ )で表し、電力割当係数 γ  In the present embodiment, the power allocation parameter determining unit 330 determines the parameter γ based on “the number of transport channels”. For example, assume that the number of transport channels corresponding to DCH is Μ (Μ is a natural number), and the number of transport channels corresponding to EDCH is Ν (Ν is a natural number). At this time, the parameter γ is given by y = M / (M + N). Note that the power allocation coefficient γ is represented by (1−γ), and the power allocation coefficient γ
DCH  DCH
を γで表す場合、パラメータ γは、 γ =ΝΖ (Μ+Ν)により与えられる。  Is represented by γ, the parameter γ is given by γ = ΝΖ (Μ + Ν).
EDCH  EDCH
[0105] このように、本実施例によれば、 DCHで送信されるトランスポートチャネルの数 Mが 、 EDCHで送信されるトランスポートチャネルの数 Nより大きい場合、割当電力 AP— DCHは、割当電力 AP— EDCHより大きくなる。逆に、数 Nが数 Mより大きい場合、 割当電力 AP— EDCHは、割当電力 AP— DCHより大きくなる傾向にある。このよう に、トランスポートチャネルの数が多い物理チャネルほど、多くの割当電力が割当て られる。従って、要求される送信品質を満たすように、複数の物理チャネル間で送信 電力リソースを配分することが可能となる。また、送信電力リソースを有効に活用する ことが可能となり、情報処理量及びサービス品質を向上させることが可能となる。  As described above, according to the present embodiment, when the number M of transport channels transmitted on the DCH is larger than the number N of transport channels transmitted on the EDCH, the allocated power AP—DCH is Power AP—greater than EDCH. Conversely, when the number N is larger than the number M, the allocated power AP-EDCH tends to be larger than the allocated power AP-DCH. In this way, more allocated power is allocated to a physical channel having a larger number of transport channels. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0106] (実施例 3— 2)  (Example 3-2)
本実施例において、電力割当パラメータ決定部 330は、パラメータ γを「要求される 伝送速度」に基づいて決定する。例えば、 DCHを用いたデータ送信に要求される伝 送速度が 64kbpsであり、 EDCHを用いたデータ送信に要求される伝送速度が 128 kbpsであるとする。この時、割当電力 AP— EDCHが割当電力 AP— DCHより大きく なるように、パラメータ γは、 0. 5より小さな値に設定される。 DCHを用いたデータ送 信に要求される伝送速度が Αであり、 EDCHを用いたデータ送信に要求される伝送 速度が Bである時、電力割当パラメータ決定部 330は、パラメータ γを AZ (A+B) に設定してもよい。尚、電力割当係数 γ を(1— γ )で表し、電力割当係数 γ In this embodiment, the power allocation parameter determining unit 330 determines the parameter γ based on the “required transmission rate”. For example, assume that the transmission rate required for data transmission using DCH is 64 kbps, and the transmission rate required for data transmission using EDCH is 128 kbps. At this time, the parameter γ is set to a value smaller than 0.5 so that the allocated power AP-EDCH becomes larger than the allocated power AP-DCH. The transmission rate required for data transmission using DCH is 、, and the transmission rate required for data transmission using EDCH is When the speed is B, the power allocation parameter determination unit 330 may set the parameter γ to AZ (A + B). Note that the power allocation coefficient γ is represented by (1−γ), and the power allocation coefficient γ
DCH EDCH  DCH EDCH
を γで表す場合、ノ ラメータ γは、 ΒΖ (Α+Β)で与えられる。  Is expressed as γ, the parameter γ is given by ΒΖ (Α + Β).
[0107] このように、電力割当パラメータ決定部 330は、それぞれの物理チャネルに要求さ れる伝送速度を比較する。そして、電力割当パラメータ決定部 330は、大きな伝送速 度が要求される物理チャネルに割り当てられる割当電力が大きくなるように、パラメ一 タ γを決定する。従って、要求される送信品質を満たすように、複数の物理チャネル 間で送信電力リソースを配分することが可能となる。また、送信電力リソースを有効に 活用することが可能となり、情報処理量及びサービス品質を向上させることが可能と なる。 [0107] Thus, power allocation parameter determining section 330 compares the transmission rates required for each physical channel. Then, power allocation parameter determining section 330 determines parameter γ such that the allocated power allocated to the physical channel requiring a large transmission rate increases. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0108] (実施例 3— 3)  (Example 3-3)
本実施例において、電力割当パラメータ決定部 330は、パラメータ γを「要求される 遅延時間」に基づいて決定する。例えば、 DCHが通話データの送信に用いられ、 Ε DCHがファイル転送に用いられるとする。この時、通話データに対する遅延時間の 方が、ファイル転送に対する遅延時間よりも小さいことが望まれる。従って、割当電力 AP— DCHが割当電力 AP— EDCHより大きくなるように、パラメータ γは、 0. 5より 大きな値に設定される。尚、電力割当係数 γ を (1— γ )で表し、電力割当係数 γ  In the present embodiment, the power allocation parameter determining unit 330 determines the parameter γ based on “required delay time”. For example, suppose that DCH is used for transmitting call data, and DCH is used for file transfer. At this time, it is desirable that the delay time for the call data is shorter than the delay time for the file transfer. Therefore, the parameter γ is set to a value larger than 0.5 so that the allocated power AP-DCH is larger than the allocated power AP-EDCH. Note that the power allocation coefficient γ is represented by (1−γ), and the power allocation coefficient γ
DCH  DCH
を γで表す場合、パラメータ γは、 0. 5より小さい値に設定される。  Is represented by γ, the parameter γ is set to a value smaller than 0.5.
EDCH  EDCH
[0109] このように、電力割当パラメータ決定部 330は、それぞれの物理チャネルに要求さ れる遅延時間を比較する。そして、電力割当パラメータ決定部 330は、少ない遅延時 間が要求される物理チャネルに割り当てられる割当電力が大きくなるように、パラメ一 タ γを決定する。従って、要求される送信品質を満たすように、複数の物理チャネル 間で送信電力リソースを配分することが可能となる。また、送信電力リソースを有効に 活用することが可能となり、情報処理量及びサービス品質を向上させることが可能と なる。  As described above, power allocation parameter determining section 330 compares the delay time required for each physical channel. Then, power allocation parameter determination section 330 determines parameter γ such that the allocated power allocated to the physical channel requiring a short delay time increases. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0110] (実施例 3— 4)  (Example 3-4)
本実施例において、電力割当パラメータ決定部 330は、パラメータ γを「優先度」に 基づいて決定する。例えば、 DCHによるデータ伝送には伝送速度保証サービスが 適用されており、 EDCHによるデータ伝送にはべストエフオートサービスが適用され ているとする。この時、 DCHによるデータ伝送の優先度は、 EDCHによるデータ伝送 の優先度よりも高く設定される。従って、割当電力 AP— DCHが割当電力 AP— ED CHより大きくなるように、パラメータ γは、 0. 5より大きな値に設定される。尚、電力割 当係数 γ In this embodiment, the power allocation parameter determination unit 330 determines the parameter γ based on “priority”. For example, for data transmission by DCH, a transmission rate guarantee service is required. It has been applied, and it is assumed that the EFCH data transmission is applied to the Best F-Auto Service. At this time, the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, the parameter γ is set to a value larger than 0.5 so that the allocated power AP-DCH is larger than the allocated power AP-EDCH. The power allocation coefficient γ
DCHを(1 γ )で表し、電力割当係数 γ  The DCH is represented by (1γ) and the power allocation coefficient γ
EDCHを γで表す場合、パラメータ γ は、 0. 5より小さい値に設定される。  When EDCH is represented by γ, the parameter γ is set to a value smaller than 0.5.
[0111] このように、電力割当パラメータ決定部 330は、それぞれの物理チャネルによるデ ータ伝送の優先度を比較する。そして、電力割当パラメータ決定部 330は、高い優先 度を有する物理チャネルに割り当てられる割当電力が大きくなるように、パラメータ γ を決定する。従って、要求される送信品質を満たすように、複数の物理チャネル間で 送信電力リソースを配分することが可能となる。また、送信電力リソースを有効に活用 することが可能となり、情報処理量及びサービス品質を向上させることが可能となる。  [0111] As described above, power allocation parameter determining section 330 compares the priorities of data transmission on the respective physical channels. Then, power allocation parameter determining section 330 determines parameter γ such that the allocated power allocated to the physical channel having the higher priority becomes larger. Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0112] (第四の実施の形態)  (Fourth Embodiment)
本発明の第四の実施の形態において、電力割当係数 γ  In the fourth embodiment of the present invention, the power allocation coefficient γ
DCHと γ  DCH and γ
EDCHの和(γ +  Sum of EDCH (γ +
DCH  DCH
Ύ )が 1より大きく 2より小さくなるように、電力割当係数 γ 及び γ が決定さ The power allocation coefficients γ and γ are determined so that Ύ) is larger than 1 and smaller than 2.
EDCH DCH EDCH EDCH DCH EDCH
れる。  It is.
[0113] 図 9は、複数の TFCと複数の ETFCの状態、及び割当電力 AP— DCHと割当電力 AP— EDCHの関係を示す図である。図 9において、 ETFCSは、 ETFC1〜ETFC 6を含み、 TFCSは、 TFC1〜TFC6を含む。複数の ETFCのそれぞれの状態は、割 当電力 AP— EDCHを基準として判定される。例えば、図 9において、 ETFC1〜ET FC4は、第 1状態(Supported State)に分類され、 ETFC5は、第 2状態(  FIG. 9 is a diagram showing states of a plurality of TFCs and a plurality of ETFCs, and a relationship between allocated power AP-DCH and allocated power AP-EDCH. In FIG. 9, ETFCS includes ETFC1 to ETFC6, and TFCS includes TFC1 to TFC6. The status of each of the plurality of ETFCs is determined based on the allocated power AP—EDCH. For example, in FIG. 9, ETFC1 to ETFC4 are classified into a first state (Supported State), and ETFC5 is classified into a second state (Supported State).
Excess-Power State)に分類され、 ETFC6は、第 3状態(Blocked State)に分類され る。また、複数の TFCのそれぞれの状態は、割当電力 AP— DCHを基準として判定 される。例えば、図 9において、 TFC1〜TFC5は、第 1状態(Supported State)に分 類され、 TFC6は、第 2状態(Excess- Power State)に分類される。この時、 ETFC選 択部 121は、 ETFC5を選択 ETFCとして選択し、 TFC選択部 111は、 TFC6を選択 TFCとして選択する。  Excess-Power State), and ETFC6 is classified into the third state (Blocked State). Also, each state of the plurality of TFCs is determined based on the allocated power AP-DCH. For example, in FIG. 9, TFC1 to TFC5 are classified into a first state (Supported State), and TFC6 is classified into a second state (Excess-Power State). At this time, the ETFC selector 121 selects ETFC5 as the selected ETFC, and the TFC selector 111 selects TFC6 as the selected TFC.
[0114] 図 9に示されるように、本実施の形態において、仮送信電力 PP— DCHと仮送信電 力 PP— EDCHとの合計電力は、割当可能電力 P よりも大きくなる。よって、その合 As shown in FIG. 9, in the present embodiment, provisional transmission power PP—DCH and provisional transmission power Power PP—Total power with EDCH is greater than allocatable power P. Therefore,
AVL  AVL
計電力は、移動局 100の最大送信電力 P を超える可能性がある。合計電力が最  The meter power may exceed the maximum transmission power P of the mobile station 100. The total power is
MAX  MAX
大送信電力 P を超える場合、図 6Cに示されたように、移動局 100の調整部 132  If the transmission power exceeds the large transmission power P, as shown in FIG.
MAX  MAX
は送信電力 P— DCH及び P— EDCHの調整を行う。一般的に、データは常に送信 されているわけではなぐデータが送信されない時間がある。また、割当電力より小さ い電力でも、目標となる伝送速度が達成される場合がある。このような時に、未使用 の電力を、その電力を必要とする物理チャネルに割当てることが可能となる。従って、 本実施の形態によれば、送信電力リソースを有効活用することが可能となり、情報処 理量及びサービス品質を向上させることが可能となる。  Adjusts the transmission power P-DCH and P-EDCH. In general, there are times when data is not transmitted when data is not always transmitted. In addition, a target transmission rate may be achieved even with power smaller than the allocated power. In such a case, unused power can be allocated to physical channels that require the power. Therefore, according to the present embodiment, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0115] 本実施の形態において、電力割当係数 γ  [0115] In the present embodiment, power allocation coefficient γ
DCH及び γ  DCH and γ
EDCHのそれぞれを決定するの は、移動局 100の電力割当部 131である。電力割当部 131は、電力割当係数 γ  It is the power allocating section 131 of the mobile station 100 that determines each of the EDCHs. The power allocating unit 131 calculates a power allocation coefficient γ
DCH  DCH
及び γ のそれぞれを決定した後、上述の式(1)に従って割当電力 ΑΡ— DCH After determining each of 、 and γ, the allocated power D— DCH
EDCH EDCH
及び割当電力 AP— EDCHを決定する。  And allocated power AP—determines EDCH.
[0116] (実施例 4 1)  (Example 4 1)
本実施例において、電力割当部 131は、電力割当係数 γ 及び γ を、「トラ  In the present embodiment, the power allocating unit 131 sets the power allocation coefficients γ and γ
DCH EDCH  DCH EDCH
ンスポートチャネルの数」に基づいて決定する。例えば、 DCHに対応した複数のトラ ンスポートチャネルの数が M (Mは自然数)であり、 EDCHに対応した複数のトランス ポートチャネルの数が N (Nは自然数)であるとする。数 Mが数 Nよりも大きい場合、電 力割当係数 γ  Number of transport channels ". For example, assume that the number of transport channels corresponding to DCH is M (M is a natural number), and the number of transport channels corresponding to EDCH is N (N is a natural number). If the number M is larger than the number N, the power allocation coefficient γ
DCHは、電力割当係数 γ  DCH is the power allocation coefficient γ
EDCHよりも大きくなるように決定される。数 Νが 数 Mよりも大きい場合、電力割当係数 γ は、電力割当係数 γ よりも大きくなる  It is determined to be larger than EDCH. When the number よ り is larger than the number M, the power allocation coefficient γ becomes larger than the power allocation coefficient γ.
EDCH DCH  EDCH DCH
ように決定される。数 Nと数 Mが等しい場合、電力割当係数 γ と電力割当係数 γ  Is determined as follows. When the numbers N and M are equal, the power allocation coefficient γ and the power allocation coefficient γ
DCH  DCH
は、同じ値に設定される。例えば、電力割当部 131は、 γ : y =M :Nと Are set to the same value. For example, the power allocating unit 131 determines that γ: y = M: N
EDCH DCH EDCH EDCH DCH EDCH
なるように、電力割当係数 γ 及び γ を決定してもよい。  Thus, the power allocation coefficients γ and γ may be determined.
DCH EDCH  DCH EDCH
[0117] このように、本実施例によれば、 DCHで送信されるトランスポートチャネルの数 Mが 、 EDCHで送信されるトランスポートチャネルの数 Nより大きい場合、割当電力 AP— DCHは、割当電力 AP— EDCHより大きくなる。逆に、数 Nが数 Mより大きい場合、 割当電力 AP— EDCHは、割当電力 AP— DCHより大きくなる傾向にある。このよう に、トランスポートチャネルの数が多い物理チャネルほど、多くの割当電力が割当て られる。従って、要求される送信品質を満たすように、複数の物理チャネル間で送信 電力リソースを配分することが可能となる。また、送信電力リソースを有効に活用する ことが可能となり、情報処理量及びサービス品質を向上させることが可能となる。 As described above, according to the present embodiment, when the number M of transport channels transmitted on the DCH is larger than the number N of transport channels transmitted on the EDCH, the allocated power AP—DCH is Power AP—greater than EDCH. Conversely, when the number N is larger than the number M, the allocated power AP-EDCH tends to be larger than the allocated power AP-DCH. In this way, the greater the number of transport channels, the more allocated power is allocated to a physical channel. Can be Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0118] (実施例 4 2)  (Example 4 2)
本実施例において、電力割当部 131は、電力割当係数 γ 及び γ を、「要求  In the present embodiment, the power allocating unit 131 sets the power allocation coefficients γ and γ
DCH EDCH  DCH EDCH
される伝送速度」に基づいて決定する。例えば、 DCHを用いたデータ送信に要求さ れる伝送速度が 64kbpsであり、 EDCHを用いたデータ送信に要求される伝送速度 力 S 128kbpsであるとする。この時、割当電力 AP— EDCHが割当電力 AP DCHよ り大きくなるように、電力割当係数 γ  Determined transmission rate ". For example, assume that the transmission rate required for data transmission using DCH is 64 kbps and the transmission rate required for data transmission using EDCH is 128 kbps. At this time, the power allocation coefficient γ is set so that the allocated power AP—EDCH is larger than the allocated power AP DCH.
EDCHは、電力割当係数 γ  EDCH is the power allocation coefficient γ
DCHよりも大きくなるよう に決定される。 DCHを用いたデータ送信に要求される伝送速度が Aであり、 EDCH を用いたデータ送信に要求される伝送速度が Bである時、電力割当部 131は、 γ  It is determined to be larger than DCH. When the transmission rate required for data transmission using DCH is A and the transmission rate required for data transmission using EDCH is B, power allocating section 131 assigns γ
DCH  DCH
: y =A: Bとなるように、電力割当係数 γ 及び γ を決定してもよい。  : Power assignment coefficients γ and γ may be determined so that y = A: B.
EDCH DCH EDCH  EDCH DCH EDCH
[0119] このように、電力割当部 131は、それぞれの物理チャネルに要求される伝送速度を 比較する。そして、電力割当部 131は、大きな伝送速度が要求される物理チャネル に割り当てられる割当電力が大きくなるように、電力割当係数 γ  [0119] As described above, power allocation section 131 compares the transmission rates required for the respective physical channels. Then, power allocating section 131 sets power allocation coefficient γ such that the allocated power allocated to the physical channel requiring a large transmission rate increases.
DCH及び γ  DCH and γ
EDCHを決 定する。従って、要求される送信品質を満たすように、複数の物理チャネル間で送信 電力リソースを配分することが可能となる。また、送信電力リソースを有効に活用する ことが可能となり、情報処理量及びサービス品質を向上させることが可能となる。  Determine EDCH. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0120] (実施例 4 3) (Example 4 3)
本実施例において、電力割当部 131は、電力割当係数 γ 及び γ を、「要求  In the present embodiment, the power allocating unit 131 sets the power allocation coefficients γ and γ
DCH EDCH  DCH EDCH
される遅延時間」に基づいて決定する。例えば、 DCHが通話データの送信に用いら れ、 EDCHがファイル転送に用いられるとする。この時、通話データに対する遅延時 間の方が、ファイル転送に対する遅延時間よりも小さいことが望まれる。従って、割当 電力 AP— DCHが割当電力 AP— EDCHより大きくなるように、電力割当係数 γ  Determined delay time ". For example, assume that DCH is used for transmitting call data, and EDCH is used for file transfer. At this time, it is desired that the delay time for the call data is shorter than the delay time for the file transfer. Therefore, the power allocation coefficient γ is set so that the allocated power AP—DCH is larger than the allocated power AP—EDCH.
DCH  DCH
は、電力割当係数 γ  Is the power allocation coefficient γ
EDCHよりも大きくなるように決定される。  It is determined to be larger than EDCH.
[0121] このように、電力割当部 131は、それぞれの物理チャネルに要求される遅延時間を 比較する。そして、電力割当部 131は、少ない遅延時間が要求される物理チャネル に割り当てられる割当電力が大きくなるように、電力割当係数 γ 及び γ を決  [0121] As described above, power allocating section 131 compares the delay time required for each physical channel. Then, power allocating section 131 determines power allocation coefficients γ and γ such that the allocated power allocated to the physical channel requiring a small delay time increases.
DCH EDCH 定する。従って、要求される送信品質を満たすように、複数の物理チャネル間で送信 電力リソースを配分することが可能となる。また、送信電力リソースを有効に活用する ことが可能となり、情報処理量及びサービス品質を向上させることが可能となる。 DCH EDCH Set. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0122] (実施例 4 4)  (Example 4 4)
本実施例にお 、て、電力割当部 131は、電力割当係数 γ 及び γ を、「優先  In the present embodiment, the power allocation unit 131 sets the power allocation coefficients γ and γ
DCH EDCH  DCH EDCH
度」に基づいて決定する。例えば、 DCHによるデータ伝送には伝送速度保証サービ スが適用されており、 EDCHによるデータ伝送にはべストエフオートサービスが適用 されているとする。この時、 DCHによるデータ伝送の優先度は、 EDCHによるデータ 伝送の優先度よりも高く設定される。従って、割当電力 AP— DCHが割当電力 AP— EDCHより大きくなるように、電力割当係数 γ は、電力割当係数 γ よりも大き  Degree ". For example, suppose that a transmission rate guarantee service is applied to data transmission by DCH, and a best-ef-to-auto service is applied to data transmission by EDCH. At this time, the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, the power allocation coefficient γ is larger than the power allocation coefficient γ such that the allocated power AP-DCH is larger than the allocated power AP-EDCH.
DCH EDCH  DCH EDCH
くなるように決定される。  It is determined to be.
[0123] このように、電力割当部 131は、それぞれの物理チャネルによるデータ伝送の優先 度を比較する。そして、電力割当部 131は、高い優先度を有する物理チャネルに割り 当てられる割当電力が大きくなるように、電力割当係数 γ γ  [0123] As described above, power allocating section 131 compares the priorities of data transmission by the respective physical channels. Then, power allocating section 131 sets power allocation coefficient γ γ such that the allocated power allocated to the physical channel having the higher priority becomes larger.
DCH及び EDCHを決定する Determine DCH and EDCH
。従って、要求される送信品質を満たすように、複数の物理チャネル間で送信電力リ ソースを配分することが可能となる。また、送信電力リソースを有効に活用することが 可能となり、情報処理量及びサービス品質を向上させることが可能となる。 . Therefore, transmission power resources can be distributed among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be used effectively, and the amount of information processing and service quality can be improved.
[0124] (第五の実施の形態) [0124] (Fifth Embodiment)
本発明の第五の実施の形態において、第四の実施の形態と同様に、電力割当係 数 γ と γ の和(γ + γ )が 1より大きく 2より小さくなるように、電力割当 In the fifth embodiment of the present invention, similarly to the fourth embodiment, the power allocation coefficients are set so that the sum (γ + γ) of the power allocation coefficients γ and γ is larger than 1 and smaller than 2.
DCH EDCH DCH EDCH DCH EDCH DCH EDCH
係数 τ 及び τ が決定される(図 9参照)。  The coefficients τ and τ are determined (see Figure 9).
DCH EDCH  DCH EDCH
[0125] 本実施の形態において、電力割当係数 γ 及び γ のそれぞれを決定するの  [0125] In the present embodiment, each of the power allocation coefficients γ and γ is determined.
DCH EDCH  DCH EDCH
は、基地局制御装置 300の電力割当パラメータ決定部 330である。つまり、電力割当 パラメータは、電力割当係数 γ 及び γ を示す。電力割当パラメータ決定部 3  Is a power allocation parameter determination unit 330 of the base station controller 300. That is, the power allocation parameter indicates the power allocation coefficients γ and γ. Power allocation parameter determination unit 3
DCH EDCH  DCH EDCH
30は、決定された電力割当係数 γ 及び γ を、移動局 100の電力割当部 13  The power allocation unit 30 of the mobile station 100 transmits the determined power allocation coefficients γ and γ
DCH EDCH  DCH EDCH
1に通知する。電力割当部 131は、通知された電力割当係数 γ 及び γ を用  Notify one. The power allocation unit 131 uses the notified power allocation coefficients γ and γ
DCH EDCH  DCH EDCH
い、上述の式(1)に従って割当電力 AP— DCH及び割当電力 AP— EDCHを決定 する。 [0126] (実施例 5— 1) Then, the allocated power AP-DCH and the allocated power AP-EDCH are determined according to the above equation (1). (Example 5-1)
本実施例において、電力割当パラメータ決定部 330は、電力割当係数 γ 及び  In the present embodiment, the power allocation parameter determination unit 330 determines the power allocation coefficient γ and
DCH  DCH
y を、「トランスポートチャネルの数」に基づいて決定する。例えば、 DCHに対応 Determine y based on the “number of transport channels”. For example, support DCH
EDCH EDCH
した複数のトランスポートチャネルの数が M (Mは自然数)であり、 EDCHに対応した 複数のトランスポートチャネルの数が N (Nは自然数)であるとする。数 Mが数 Nよりも 大きい場合、電力割当係数 0 は、電力割当係数 0 よりも大きくなるように決定  It is assumed that the number of the plurality of transport channels obtained is M (M is a natural number) and the number of the plurality of transport channels corresponding to the EDCH is N (N is a natural number). If number M is larger than number N, power allocation coefficient 0 is determined to be larger than power allocation coefficient 0.
DCH EDCH  DCH EDCH
される。数 Nが数 Mよりも大きい場合、電力割当係数 γ は、電力割当係数 γ  Is done. If the number N is larger than the number M, the power allocation coefficient γ becomes
EDCH DCH  EDCH DCH
よりも大きくなるように決定される。数 Nと数 Mが等しい場合、電力割当係数 γ と電  It is determined to be larger than. If the numbers N and M are equal, the power allocation coefficient γ and the power
DCH  DCH
力割当係数 0 は、同じ値に設定される。例えば、電力割当パラメータ決定部 33  Force allocation coefficient 0 is set to the same value. For example, the power allocation parameter determination unit 33
EDCH  EDCH
0は、 γ : y =M :Nとなるように、電力割当係数 γ 及び γ を決定して 0 determines the power allocation coefficients γ and γ such that γ: y = M: N
DCH EDCH DCH EDCH DCH EDCH DCH EDCH
ちょい。  A little.
[0127] このように、本実施例によれば、 DCHで送信されるトランスポートチャネルの数 Mが 、 EDCHで送信されるトランスポートチャネルの数 Nより大きい場合、割当電力 AP— DCHは、割当電力 AP— EDCHより大きくなる。逆に、数 Nが数 Mより大きい場合、 割当電力 AP— EDCHは、割当電力 AP— DCHより大きくなる傾向にある。このよう に、トランスポートチャネルの数が多い物理チャネルほど、多くの割当電力が割当て られる。従って、要求される送信品質を満たすように、複数の物理チャネル間で送信 電力リソースを配分することが可能となる。また、送信電力リソースを有効に活用する ことが可能となり、情報処理量及びサービス品質を向上させることが可能となる。  As described above, according to the present embodiment, when the number M of transport channels transmitted on the DCH is larger than the number N of transport channels transmitted on the EDCH, the allocated power AP—DCH is Power AP—greater than EDCH. Conversely, when the number N is larger than the number M, the allocated power AP-EDCH tends to be larger than the allocated power AP-DCH. In this way, more allocated power is allocated to a physical channel having a larger number of transport channels. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0128] (実施例 5— 2)  (Example 5-2)
本実施例において、電力割当パラメータ決定部 330は、電力割当係数 γ 及び  In the present embodiment, the power allocation parameter determination unit 330 determines the power allocation coefficient γ and
DCH  DCH
y を、「要求される伝送速度」に基づ!、て決定する。例えば、 DCHを用いたデー y is determined based on the "required transmission rate". For example, data using DCH
EDCH EDCH
タ送信に要求される伝送速度が 64kbpsであり、 EDCHを用いたデータ送信に要求 される伝送速度が 128kbpsであるとする。この時、割当電力 AP— EDCHが割当電 力 AP— DCHより大きくなるように、電力割当係数 γ は、電力割当係数 γ より  It is assumed that the transmission speed required for data transmission is 64 kbps, and the transmission speed required for data transmission using EDCH is 128 kbps. At this time, the power allocation coefficient γ is set to be larger than the power allocation coefficient γ such that the allocated power AP-EDCH is larger than the allocated power AP-DCH.
EDCH DCH  EDCH DCH
も大きくなるように決定される。 DCHを用いたデータ送信に要求される伝送速度が A であり、 EDCHを用いたデータ送信に要求される伝送速度が Bである時、電力割当 ノ メータ決定部 330は、 γ : γ =Α: Βとなるように、電力割当係数 γ 及  Is also determined to be large. When the transmission rate required for data transmission using the DCH is A and the transmission rate required for data transmission using the EDCH is B, the power allocation parameter determination unit 330 determines that γ: γ = Α:電力 and the power allocation coefficient γ and
DCH EDCH DCH び γ を決定してもよい。 DCH EDCH DCH And γ may be determined.
EDCH  EDCH
[0129] このように、電力割当パラメータ決定部 330は、それぞれの物理チャネルに要求さ れる伝送速度を比較する。そして、電力割当パラメータ決定部 330は、大きな伝送速 度が要求される物理チャネルに割り当てられる割当電力が大きくなるように、電力割 当係数 γ 及び γ を決定する。従って、要求される送信品質を満たすように、  [0129] Thus, power allocation parameter determining section 330 compares the transmission rates required for each physical channel. Then, power allocation parameter determining section 330 determines power allocation coefficients γ and γ such that the allocated power allocated to the physical channel requiring a large transmission rate increases. Therefore, to satisfy the required transmission quality,
DCH EDCH  DCH EDCH
複数の物理チャネル間で送信電力リソースを配分することが可能となる。また、送信 電力リソースを有効に活用することが可能となり、情報処理量及びサービス品質を向 上させることが可會 となる。  Transmission power resources can be distributed among a plurality of physical channels. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0130] (実施例 5— 3) (Example 5-3)
本実施例において、電力割当パラメータ決定部 330は、電力割当係数 γ 及び  In the present embodiment, the power allocation parameter determination unit 330 determines the power allocation coefficient γ and
DCH  DCH
y を、「要求される遅延時間」に基づ!、て決定する。例えば、 DCHが通話データ y is determined based on the required delay time! For example, DCH is call data
EDCH EDCH
の送信に用いられ、 EDCHがファイル転送に用いられるとする。この時、通話データ に対する遅延時間の方が、ファイル転送に対する遅延時間よりも小さいことが望まれ る。従って、割当電力 AP— DCHが割当電力 AP— EDCHより大きくなるように、電力 割当係数 γ は、電力割当係数 γ よりも大きくなるように決定される。  EDCH is used for file transfer. At this time, it is desirable that the delay time for call data is shorter than the delay time for file transfer. Therefore, power allocation coefficient γ is determined to be larger than power allocation coefficient γ such that allocated power AP-DCH is larger than allocated power AP-EDCH.
DCH EDCH  DCH EDCH
[0131] このように、電力割当パラメータ決定部 330は、それぞれの物理チャネルに要求さ れる遅延時間を比較する。そして、電力割当パラメータ決定部 330は、少ない遅延時 間が要求される物理チャネルに割り当てられる割当電力が大きくなるように、電力割 当係数 γ 及び γ を決定する。従って、要求される送信品質を満たすように、  [0131] As described above, power allocation parameter determination section 330 compares the delay times required for the respective physical channels. Then, power allocation parameter determination section 330 determines power allocation coefficients γ and γ such that the allocated power allocated to the physical channel requiring a short delay time increases. Therefore, to satisfy the required transmission quality,
DCH EDCH  DCH EDCH
複数の物理チャネル間で送信電力リソースを配分することが可能となる。また、送信 電力リソースを有効に活用することが可能となり、情報処理量及びサービス品質を向 上させることが可會 となる。  Transmission power resources can be distributed among a plurality of physical channels. In addition, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0132] (実施例 5— 4) (Example 5-4)
本実施例において、電力割当パラメータ決定部 330は、電力割当係数 γ 及び  In the present embodiment, the power allocation parameter determination unit 330 determines the power allocation coefficient γ and
DCH  DCH
y を、「優先度」に基づいて決定する。例えば、 DCHによるデータ伝送には伝送 y is determined based on “priority”. For example, data transmission by DCH
EDCH EDCH
速度保証サービスが適用されており、 EDCHによるデータ伝送にはべストエフオート サービスが適用されているとする。この時、 DCHによるデータ伝送の優先度は、 ED CHによるデータ伝送の優先度よりも高く設定される。従って、割当電力 AP— DCH が割当電力 AP— EDCHより大きくなるように、電力割当係数 γ は、電力割当係 It is assumed that the speed guarantee service is applied, and the best F-auto service is applied to data transmission by EDCH. At this time, the priority of data transmission by DCH is set higher than the priority of data transmission by EDCH. Therefore, the allocated power AP—DCH The power allocation coefficient γ is
DCH  DCH
数 γ  Number γ
EDCHよりも大きくなるように決定される。  It is determined to be larger than EDCH.
[0133] このように、電力割当パラメータ決定部 330は、それぞれの物理チャネルによるデ ータ伝送の優先度を比較する。そして、電力割当パラメータ決定部 330は、高い優先 度を有する物理チャネルに割り当てられる割当電力が大きくなるように、電力割当係 数 γ γ  [0133] As described above, power allocation parameter determining section 330 compares the priorities of data transmission by the respective physical channels. Then, power allocation parameter determination section 330 determines power allocation coefficient γ γ such that the allocated power allocated to the physical channel having the higher priority becomes larger.
DCH及び EDCHを決定する。従って、要求される送信品質を満たすように、複数 の物理チャネル間で送信電力リソースを配分することが可能となる。また、送信電力リ ソースを有効に活用することが可能となり、情報処理量及びサービス品質を向上させ ることが可能となる。  Determine DCH and EDCH. Therefore, transmission power resources can be allocated among a plurality of physical channels so as to satisfy required transmission quality. Also, transmission power resources can be effectively used, and the amount of information processing and service quality can be improved.
[0134] 以上の説明において、 DCHと EDCHの 2つのチャネルが示されたが、移動局 100 が送信する物理チャネルはこれら 2つに対応したものに限られない。移動局 100は、 複数の物理チャネルによって通信を実行してもよ!/、。  In the above description, two channels, DCH and EDCH, are shown, but the physical channels transmitted by mobile station 100 are not limited to those corresponding to these two channels. The mobile station 100 may perform communication using multiple physical channels!

Claims

請求の範囲 The scope of the claims
[1] 基地局制御装置と、  [1] a base station controller,
前記基地局制御装置に接続された基地局と、  A base station connected to the base station controller,
第 1物理チャネル及び第 2物理チャネルを用いて前記基地局と通信を行う移動局と を具備し、  A mobile station that communicates with the base station using a first physical channel and a second physical channel,
前記移動局は、  The mobile station comprises:
前記第 1物理チャネルを用いる第 1送信と前記第 2物理チャネルを用いる第 2送 信とを制御する制御部と、  A control unit that controls first transmission using the first physical channel and second transmission using the second physical channel;
前記制御部に接続された送信部と  A transmission unit connected to the control unit;
を備え、  With
前記基地局制御装置は、前記第 1送信で用いられる複数の第 1TFC (Transport Format Combination)を第 ITFCS (Transport Format Combination ¾et)として、 gijgd 基地局を介して前記移動局に通知し、前記第 2送信で用いられる複数の第 2TFCを 第 2TFCSとして、前記基地局を介して前記移動局に通知し、  The base station controller notifies the mobile station via a gijgd base station of a plurality of first TFCs (Transport Format Combination) used in the first transmission as ITFCS (Transport Format Combination get), and notifies the second Notifying the mobile station via the base station of a plurality of second TFCs used for transmission as second TFCs,
前記制御部は、前記第 1送信に割当てられる第 1割当電力と、前記第 2送信に割当 てられる第 2割当電力とを決定し、前記移動局が使用可能な電力に対する前記第 1 割当電力及び前記第 2割当電力のそれぞれの比は γ 1及び γ 2で表され( γ 1及び 7 2は0以上1以下)、  The control unit determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission, and determines the first allocated power and the first allocated power for the power available to the mobile station. The respective ratios of the second allocated power are represented by γ1 and γ2 (γ1 and 72 are 0 or more and 1 or less),
前記制御部は、前記第 1割当電力で使用可能な一の前記第 1TFCを、第 1選択 Τ FCとして前記第 1TFCSから選択し、前記第 2割当電力で使用可能な一の前記第 2 TFCを、第 2選択 TFCとして前記第 2TFCSから選択し、  The control unit selects one of the first TFCs that can be used with the first allocated power from the first TFCs as a first selection Τ FC, and selects one of the second TFCs that can be used with the second allocated power. , A second selected TFC selected from the second TFCS,
前記送信部は、前記基地局に対し、前記第 1選択 TFCを用いて前記第 1送信を実 行し、前記第 2選択 TFCを用いて前記第 2送信を実行する  The transmitting unit executes the first transmission to the base station using the first selected TFC, and executes the second transmission using the second selected TFC.
無線通信システム。  Wireless communication system.
[2] 請求項 1に記載の無線通信システムであって、 [2] The wireless communication system according to claim 1,
前記制御部は、 γ 1と γ 2の和が 1になるように γ 1と γ 2を決定し、決定された γ 1 と γ 2に基づいて前記第 1割当電力と前記第 2割当電力を決定する  The control unit determines γ1 and γ2 so that the sum of γ1 and γ2 becomes 1, and based on the determined γ1 and γ2, determines the first allocated power and the second allocated power. decide
無線通信システム。 Wireless communication system.
[3] 請求項 1に記載の無線通信システムであって、 [3] The wireless communication system according to claim 1,
前記基地局制御装置は、 γ 1と γ 2の和が 1になるように γ 1と γ 2を決定し、決定さ れた γ 1と γ 2を前記移動局の前記制御部に通知し、  The base station controller determines γ1 and γ2 such that the sum of γ1 and γ2 becomes 1, and notifies the determined control unit of the mobile station of the determined γ1 and γ2,
前記制御部は、通知された γ 1と γ 2に基づいて、前記第 1割当電力と前記第 2割 当電力を決定する  The control unit determines the first allocated power and the second allocated power based on the notified γ1 and γ2.
無線通信システム。  Wireless communication system.
[4] 請求項 1に記載の無線通信システムであって、 [4] The wireless communication system according to claim 1,
前記制御部は、 y 1と γ 2の和力^より大きく 2より小さくなるように γ 1と γ 2を決定し 、決定された γ 1と γ 2に基づいて、前記第 1割当電力と前記第 2割当電力を決定す る  The control unit determines γ1 and γ2 so that the sum power of y1 and γ2 is larger than 2 and smaller than 2, and based on the determined γ1 and γ2, the first allocated power and the Determine the second power allocation
無線通信システム。  Wireless communication system.
[5] 請求項 1に記載の無線通信システムであって、 [5] The wireless communication system according to claim 1,
前記基地局制御装置は、 y 1と γ 2の和力^より大きく 2より小さくなるように γ 1と γ 2を決定し、決定された γ 1と γ 2を前記移動局の前記制御部に通知し、  The base station control device determines γ1 and γ2 so that the sum of y1 and γ2 is larger than 2 and smaller than 2, and sends the determined γ1 and γ2 to the control unit of the mobile station. Notify,
前記制御部は、通知された γ 1と γ 2に基づいて、前記第 1割当電力と前記第 2割 当電力を決定する  The control unit determines the first allocated power and the second allocated power based on the notified γ1 and γ2.
無線通信システム。  Wireless communication system.
[6] 請求項 2乃至 5の 、ずれかに記載の無線通信システムであって、 [6] The wireless communication system according to any one of claims 2 to 5, wherein
前記第 1物理チャネルに対応した複数のトランスポートチャネルの数が、前記第 2物 理チャネルに対応した複数のトランスポートチャネルの数より大きい場合、 γ 1は γ 2 よりも大きくなるように決定される  When the number of the plurality of transport channels corresponding to the first physical channel is larger than the number of the plurality of transport channels corresponding to the second physical channel, γ1 is determined to be larger than γ2. To
無線通信システム。  Wireless communication system.
[7] 請求項 2乃至 5の 、ずれかに記載の無線通信システムであって、 [7] The wireless communication system according to any one of claims 2 to 5, wherein
前記第 1送信に要求される伝送速度が、前記第 2送信に要求される伝送速度より大 きい場合、 Ύ 1は 0 2よりも大きくなるように決定される  If the transmission rate required for the first transmission is higher than the transmission rate required for the second transmission, Ύ1 is determined to be greater than 02
無線通信システム。  Wireless communication system.
[8] 請求項 2乃至 5の 、ずれかに記載の無線通信システムであって、 [8] The wireless communication system according to any one of claims 2 to 5, wherein
前記第 1送信に要求される遅延時間が、前記第 2送信に要求される遅延時間より小 さい場合、 Ύ 1は τ 2よりも大きくなるように決定される The delay time required for the first transmission is smaller than the delay time required for the second transmission. In this case, Ύ 1 is determined to be larger than τ 2
無線通信システム。  Wireless communication system.
[9] 請求項 2乃至 5の 、ずれかに記載の無線通信システムであって、  [9] The wireless communication system according to any one of claims 2 to 5, wherein
前記第 1送信の優先度が、前記第 2送信の優先度より大きい場合、 y 1は γ 2よりも 大きくなるように決定される  If the priority of the first transmission is higher than the priority of the second transmission, y 1 is determined to be larger than γ 2
無線通信システム。  Wireless communication system.
[10] 請求項 1に記載の無線通信システムであって、 [10] The wireless communication system according to claim 1,
前記基地局制御装置は、 y 1が決定される範囲を 0から 1の間で決定し、決定され た前記範囲を前記移動局に通知し、  The base station controller determines a range in which y 1 is determined from 0 to 1, notifies the mobile station of the determined range,
前記制御部は、前記範囲の中から γ 1を決定し、 y 1と γ 2の和が 1になるように γ 2 を決定する  The control unit determines γ 1 from the range, and determines γ 2 so that the sum of y 1 and γ 2 becomes 1.
無線通信システム。  Wireless communication system.
[11] 請求項 10に記載の無線通信システムであって、 [11] The wireless communication system according to claim 10, wherein
前記基地局制御装置は、前記範囲の大きさが通信のバースト性と相関を有するよう に、前記範囲を決定する  The base station controller determines the range such that the size of the range has a correlation with the burstiness of communication.
無線通信システム。  Wireless communication system.
[12] 請求項 10又は 11に記載の無線通信システムであって、 [12] The wireless communication system according to claim 10 or 11,
前記第 1物理チャネルに対応した複数のトランスポートチャネルの数が Μで表され( Μは自然数)、前記第 2物理チャネルに対応した複数のトランスポートチャネルの数 力 で表される (Νは自然数)場合、  The number of transport channels corresponding to the first physical channel is represented by 表 (Μ is a natural number), and the number of transport channels corresponding to the second physical channel is represented by 力 (Ν is a natural number) )
前記基地局制御装置は、前記範囲の中央値が ΜΖ (Μ + Ν)で与えられるように、 前記範囲を決定する  The base station control device determines the range such that a median of the range is given by ΜΖ (Μ + Ν).
無線通信システム。  Wireless communication system.
[13] 請求項 12に記載の無線通信システムであって、 [13] The wireless communication system according to claim 12, wherein
前記制御部は、前記第 1物理チャネルで送信される第 1データ量と、前記第 2物理 チャネルで送信される第 2データ量とを比較し、  The control unit compares a first data amount transmitted on the first physical channel with a second data amount transmitted on the second physical channel,
前記制御部は、前記第 1データ量が前記第 2データ量より多い場合、 y 1が前記中 央値より大きくなるように γ 1を決定し、前記第 1データ量が前記第 2データ量より少な い場合、 Ύ 1が前記中央値より小さくなるように τ 1を決定し、前記第 1データ量が前 記第 2データ量と等しい場合、 γ 1が前記中央値になるように γ 1を決定する When the first data amount is larger than the second data amount, the control unit determines γ1 such that y1 is larger than the median value, and the first data amount is larger than the second data amount. Few In this case, τ1 is determined so that Ύ1 is smaller than the median value.If the first data amount is equal to the second data amount, γ1 is determined so that γ1 becomes the median value. Do
無線通信システム。  Wireless communication system.
[14] 請求項 1乃至 13のいずれかに記載の無線通信システムであって、  [14] The wireless communication system according to any one of claims 1 to 13,
前記制御部は、前記第 1選択 TFCを用いた前記第 1送信に必要な第 1送信電力と 、前記第 2選択 TFCを用いた前記第 2送信に必要な第 2送信電力との合計を計算し 前記制御部は、前記合計が前記移動局の使用可能な最大電力より大きい場合、前 記合計が前記最大電力に等しくなるように、前記第 1送信電力と前記第 2送信電力の うち少なくとも 1つを調整し、  The control unit calculates a total of a first transmission power required for the first transmission using the first selected TFC and a second transmission power required for the second transmission using the second selected TFC. The control unit, when the sum is larger than the maximum power available to the mobile station, at least one of the first transmission power and the second transmission power so that the sum is equal to the maximum power. Adjust one,
前記送信部は、調整された前記第 1送信電力及び前記第 2送信電力を用いて、前 記第 1送信及び前記第 2送信を実行する  The transmission unit executes the first transmission and the second transmission using the adjusted first transmission power and the second transmission power.
無線通信システム。  Wireless communication system.
[15] 基地局を介して基地局制御装置に通信可能に接続された移動局であって、  [15] A mobile station communicably connected to the base station controller via the base station,
第 1物理チャネルを用いる第 1送信と第 2物理チャネルを用いる第 2送信とを制御す る制御部と、  A control unit that controls first transmission using the first physical channel and second transmission using the second physical channel;
前記制御部に接続された送信部と  A transmission unit connected to the control unit;
を具備し、  With
前記制御部は、前記基地局制御装置から、前記第 1送信で用いられる複数の第 1 TFC (Transport Format Combination)を ¾¾iTFC;5 (Transport Format Combination The control unit transmits, from the base station controller, a plurality of first TFCs (Transport Format Combinations) used in the first transmission to iTFC; 5 (Transport Format Combination
Set)として受け取り、前記第 2送信で用いられる複数の第 2TFCを第 2TFCSとして 受け取り、 Set), and a plurality of second TFCs used in the second transmission are received as a second TFCS,
前記制御部は、前記第 1送信に割当てられる第 1割当電力と、前記第 2送信に割当 てられる第 2割当電力とを決定し、前記第 1割当電力で使用可能な一の前記第 1TF Cを前記第 1TFCSから選択し、又、前記第 2割当電力で使用可能な一の前記第 2T FCを前記第 2TFCSから選択し、  The control unit determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission, and determines one of the first TFCs available for the first allocated power. Is selected from the first TFCS, and one of the second TFCs available for the second allocated power is selected from the second TFCS,
前記送信部は、前記基地局に対し、前記一の第 1TFCを用いて前記第 1送信を実 行し、前記一の第 2TFCを用いて前記第 2送信を実行する 移動局。 The transmitting unit executes the first transmission to the base station using the one first TFC, and executes the second transmission using the one second TFC. Mobile station.
[16] 請求項 15に記載の移動局であって、  [16] The mobile station according to claim 15, wherein
前記制御部は、前記第 1割当電力と前記第 2割当電力の合計が使用可能な電力と 等しくなるように、前記第 1割当電力と前記第 2割当電力を決定する  The control unit determines the first allocated power and the second allocated power such that the sum of the first allocated power and the second allocated power is equal to available power.
移動局。  Mobile station.
[17] 請求項 15に記載の移動局であって、  [17] The mobile station according to claim 15, wherein
前記制御部は、前記第 1割当電力と前記第 2割当電力の合計が使用可能な電力よ り大きくなるように、前記第 1割当電力と前記第 2割当電力を決定する  The control unit determines the first allocated power and the second allocated power such that the sum of the first allocated power and the second allocated power is larger than available power.
移動局。  Mobile station.
[18] 基地局を介して移動局と通信可能に接続された基地局制御装置であって、前記移 動局は、第 1物理チャネルを用いて第 1送信を実行し、第 2物理チャネルを用いて第 2送信を実行し、前記第 1送信に割当てられる第 1割当電力と、前記第 2送信に割当 てられる第 2割当電力とを決定し、前記第 1割当電力で使用可能であり前記第 1送信 で用 ヽりれ J"Fし u'ransport Format し ombination)を第 1TFCS (Transport Format Combination Set)力も選択し、前記第 2割当電力で使用可能であり前記第 2送信で 用いられる TFCを第 2TFCS力 選択し、  [18] A base station control device communicably connected to a mobile station via a base station, wherein the mobile station performs a first transmission using a first physical channel and uses a second physical channel. Performing a second transmission using the first transmission power, and determining a first allocation power allocated to the first transmission and a second allocation power allocated to the second transmission. In the first transmission, select J "F and u'ransport Format and ombination) as the first TFCS (Transport Format Combination Set) force, and use the TFC that can be used with the second allocated power and used in the second transmission. Select the second TFCS force,
前記基地局制御装置は、  The base station controller,
TFCS決定部と、  A TFCS decision unit,
電力割当パラメータ決定部と、  A power allocation parameter determining unit,
前記 TFCS決定部及び前記電力割当パラメータ決定部に接続された送信部と を具備し、  A transmission unit connected to the TFCS determination unit and the power allocation parameter determination unit,
前記 TFCS決定部は、前記第 1TFCS及び前記第 2TFCSを決定し、  The TFCS determining unit determines the first TFCS and the second TFCS,
前記電力割当パラメータ決定部は、前記移動局が使用可能な電力に対する前記 第 1割当電力及び前記第 2割当電力のそれぞれの比を決定し、  The power allocation parameter determination unit determines a ratio of each of the first allocated power and the second allocated power to power available to the mobile station,
前記送信部は、決定された前記第 1TFCS、前記第 2TFCS、及び前記比を、前記 基地局を介して前記移動局に通知する  The transmitting unit notifies the mobile station of the determined first TFCS, the second TFCS, and the ratio via the base station.
基地局制御装置。  Base station controller.
[19] 基地局制御装置と、前記基地局制御装置に接続された基地局と、第 1物理チヤネ ル及び第 2物理チャネルを用いて前記基地局と通信を行う移動局とを備える無線通 信システムにおける無線通信方法であって、 [19] A base station controller, a base station connected to the base station controller, and a first physical channel. A wireless communication method in a wireless communication system comprising a mobile station that communicates with the base station using a mobile station and a second physical channel.
(A)前記基地局制御装置が、前記第 1物理チャネルによる第 1送信で用いられる複 数の第丄 TFし (Transport Format Combination)を、第 1 fFCS (Transport Format Combination Set)として、前記基地局を介して前記移動局に通知するステップと、 (A) The base station control device, the plurality of first TFs used in the first transmission by the first physical channel (Transport Format Combination), as the first fFCS (Transport Format Combination Set), the base station Notifying the mobile station via
(B)前記基地局制御装置が、前記第 2物理チャネルによる第 2送信で用いられる複 数の第 2TFCを、第 2TFCSとして、前記基地局を介して前記移動局に通知するステ ップと、 (B) a step in which the base station controller notifies the mobile station via the base station of a plurality of second TFCs used in the second transmission on the second physical channel as the second TFCs;
(C)前記移動局が、前記第 1送信に割当てられる第 1割当電力と、前記第 2送信に 割当てられる第 2割当電力とを決定するステップと、  (C) the mobile station determines a first allocated power allocated to the first transmission and a second allocated power allocated to the second transmission,
(D)前記移動局が、前記第 1割当電力で使用可能な一の前記第 1TFCを、第 1選 択 TFCとして前記第 1TFCSから選択するステップと、  (D) the mobile station selects one of the first TFCs that can be used with the first allocated power from the first TFCS as a first selected TFC,
(E)前記移動局が、前記第 2割当電力で使用可能な一の前記第 2TFCを、第 2選 択 TFCとして前記第 2TFCSから選択するステップと、  (E) the mobile station selects one of the second TFCs that can be used with the second allocated power from the second TFCS as a second selected TFC,
(F)前記移動局が、前記基地局に対し、前記第 1選択 TFCを用いて前記第 1送信 を実行し、前記第 2選択 TFCを用いて前記第 2送信を実行するステップと  (F) the mobile station executes the first transmission to the base station using the first selected TFC, and executes the second transmission using the second selected TFC;
を具備する無線通信方法。  A wireless communication method comprising:
PCT/JP2005/008120 2004-05-06 2005-04-28 Wireless communication system, mobile station, base station control apparatus, and wireless communication method WO2005109684A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512972A JP4666230B2 (en) 2004-05-06 2005-04-28 Wireless communication system, mobile station, base station control device, and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004137786 2004-05-06
JP2004-137786 2004-05-06

Publications (1)

Publication Number Publication Date
WO2005109684A1 true WO2005109684A1 (en) 2005-11-17

Family

ID=35320532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008120 WO2005109684A1 (en) 2004-05-06 2005-04-28 Wireless communication system, mobile station, base station control apparatus, and wireless communication method

Country Status (2)

Country Link
JP (1) JP4666230B2 (en)
WO (1) WO2005109684A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530952A (en) * 2008-08-13 2011-12-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Adaptive reference power offset position determination based on system status
JP2012114723A (en) * 2010-11-25 2012-06-14 Sharp Corp Radio transmitter
JP2012518366A (en) * 2009-02-18 2012-08-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and configuration in communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516090A (en) * 1999-12-03 2003-05-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and system for applying bit rate to utilize service area
WO2003043221A1 (en) * 2001-11-13 2003-05-22 Qualcomm Incorporated Transport format combination selection for compressed mode in a w-cdma system
JP2003304195A (en) * 2002-04-10 2003-10-24 Fujitsu Ltd Method for selecting transmission format combination information and mobile terminal device
JP2005064872A (en) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd Communication terminal apparatus, and method for controlling transmission power

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845088B2 (en) * 2001-10-19 2005-01-18 Interdigital Technology Corporation System and method for fast dynamic link adaptation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516090A (en) * 1999-12-03 2003-05-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and system for applying bit rate to utilize service area
WO2003043221A1 (en) * 2001-11-13 2003-05-22 Qualcomm Incorporated Transport format combination selection for compressed mode in a w-cdma system
JP2003304195A (en) * 2002-04-10 2003-10-24 Fujitsu Ltd Method for selecting transmission format combination information and mobile terminal device
JP2005064872A (en) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd Communication terminal apparatus, and method for controlling transmission power

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530952A (en) * 2008-08-13 2011-12-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Adaptive reference power offset position determination based on system status
JP2012518366A (en) * 2009-02-18 2012-08-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and configuration in communication system
JP2012114723A (en) * 2010-11-25 2012-06-14 Sharp Corp Radio transmitter
US9137798B2 (en) 2010-11-25 2015-09-15 Sharp Kabushiki Kaisha Wireless transmission device and wireless transmission method

Also Published As

Publication number Publication date
JPWO2005109684A1 (en) 2008-03-21
JP4666230B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
EP2765716B1 (en) Transport format combination selecting method, wireless communication system, and mobile station
KR100831544B1 (en) Method for scheduling uplink transmissions from user equipments by a base station determining a measure of a quality of service, and corresponding base station, user equipment and communication system
KR101268196B1 (en) Power control for high-speed packet data transmission
US7783295B2 (en) Call admission control device, and call admission control method
KR20030015859A (en) Cell selection
US20060153216A1 (en) Scheduling method for wireless packet data channel
GB2418105A (en) Relative indicators used for scheduling of uplink transmissions
JP4666230B2 (en) Wireless communication system, mobile station, base station control device, and wireless communication method
EP1825629A1 (en) Power step control for high-speed downlink shared channel packet access
WO2006090872A1 (en) Code series transmitting method, radio communication system, transmitter, and receiver

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512972

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase