WO2004015200A1 - Verfahren zur herstellung von papier, pappe und karton - Google Patents

Verfahren zur herstellung von papier, pappe und karton Download PDF

Info

Publication number
WO2004015200A1
WO2004015200A1 PCT/EP2003/008037 EP0308037W WO2004015200A1 WO 2004015200 A1 WO2004015200 A1 WO 2004015200A1 EP 0308037 W EP0308037 W EP 0308037W WO 2004015200 A1 WO2004015200 A1 WO 2004015200A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper stock
microparticle system
cationic
paper
polymers
Prior art date
Application number
PCT/EP2003/008037
Other languages
English (en)
French (fr)
Inventor
Rainer Blum
Ralf Hemel
Norbert Mahr
Rudolf Lorz
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7714828&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004015200(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE2002136252 external-priority patent/DE10236252B4/de
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP03784048A priority Critical patent/EP1529133B1/de
Priority to AU2003250139A priority patent/AU2003250139A1/en
Priority to ES03784048T priority patent/ES2380321T3/es
Priority to AT03784048T priority patent/ATE546587T1/de
Priority to US10/523,417 priority patent/US7306701B2/en
Priority to JP2004526759A priority patent/JP4518492B2/ja
Priority to CA2494648A priority patent/CA2494648C/en
Priority to BR0313051-7A priority patent/BR0313051A/pt
Publication of WO2004015200A1 publication Critical patent/WO2004015200A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • D21H23/06Controlling the addition
    • D21H23/14Controlling the addition by selecting point of addition or time of contact between components
    • D21H23/18Addition at a location where shear forces are avoided before sheet-forming, e.g. after pulp beating or refining
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers

Definitions

  • the invention relates to a process for the production of paper, cardboard and cardboard by shearing the paper stock, adding a microparticle system consisting of a cationic polymer and a finely divided inorganic component to the paper stock after the last shear stage before the headbox, dewatering the paper stock with sheet formation and drying the sheets.
  • EP-A-0 223 223 discloses a process for the production of paper and cardboard by dewatering a paper stock, first adding bentonite to a paper stock with a stock concentration of 2.5 to 5% by weight, then diluting the paper stock , a highly cationic polymer with a charge density of at least 4 meq / g is added and finally a high molecular weight polymer based on 'acrylamide is added and the pulp thus obtained is dewatered after mixing.
  • an essentially linear synthetic cationic polymer with a molecular weight of more than 500,000 in an amount of more than 0.03 is first metered into an aqueous fibrous suspension wt .-%, based on dry paper stock, then subjecting the mixture to the action of a shear field, wherein the initially formed flakes in micro-, 'flakes are broken, which carry a cationic charge, then do- Siert bentonite and dewatered, the pulp thus obtained without further action from shear forces.
  • EP-A-0 335 575 describes a paper production process in which 2 different water-soluble, cationic polymers are added to the pulp, followed by at least one
  • EP-A-0 885 328 describes a process for the production of paper, in which a cationic polymer is first metered into an aqueous fiber suspension, and the mixture is then subjected to the action of a shear field. finally an activated bentonite dispersion is added and the pulp thus obtained is dewatered.
  • EP-A 0 711 371 Another process for the production of paper is known from EP-A 0 711 371.
  • a synthetic, cationic, high molecular polymer is added to a thick cellulose suspension.
  • a coagulant consisting of an inorganic coagulant and / or a second, low-molecular and highly cationic water-soluble polymer is added before dewatering.
  • EP-A-0 910 701 describes a process for the production of paper and cardboard, wherein the paper pulp is followed in succession by a low-molecular or medium-molecular cationic polymer based on polyethyleneimine or polyvinyla and then with a high-molecular cationic polymer such as polyacrylamide , Polyvinylamine or cationic starch. After this pulp has been subjected to at least one shear stage, it is flocked by adding bentonite and the paper stock is dewatered.
  • EP-A-0 608 986 it is known that a cationic retention agent is metered into the thick material in papermaking.
  • a further process for the production of paper and cardboard is known from US-A-5, 393, 381, WO-A-99/66130 and WO-A-99/63159, whereby a microparticle system made of a cationic polymer is also used and bentonite are used.
  • a water-soluble, branched polyacrylic acid is used as the cationic polymer.
  • WO-A-01/34910 describes a process for producing paper in which a polysaccharide or a synthetic, high-molecular polymer is metered into the paper stock suspension. The paper stock must then be sheared mechanically. The reflocculation is carried out by dosing an inorganic component such as silica, bentonite or clay and a water-soluble polymer.
  • an inorganic component such as silica, bentonite or clay and a water-soluble polymer.
  • the present invention has for its object to provide a further process for the production of paper using a microparticle system, wherein in comparison to the known processes, lower amounts of polymers and bentonite are required, and at the same time improved retention and drainage are obtained and papers are obtained that are less prone to yellowing.
  • the object is achieved according to the invention with a process for the production of paper, cardboard and cardboard by shearing the paper stock, adding a microparticle system composed of a cationic polymer and a finely divided inorganic component to the paper stock after the last shear stage before the headbox, dewatering the paper stock below Sheet formation and drying of the sheets if cationic polyacrylamides, polymers containing vinylamine units and / or polydiallyldimethylammonium chloride with an average molecular weight Mw of at least 500,000 daltons and a charge density of at most 4.0 meq./g each are used as cationic polymers of the microparticle system, where the microparticle system used as a retention agent is free of polymers with a charge density of more than 4 meq. / g is.
  • All paper qualities can be produced by the method according to the invention, for example cardboard, single / multi-layer folding boxboard, single / multi-layer liner, corrugated material, papers for newspaper printing, so-called medium-fine writing and printing papers, natural gravure papers and lightweight coating base papers.
  • To produce such papers one can start from wood pulp, thermomechanical material (TMP), chemo-thermo-mechanical material (CTMP), pressure cut (PGW), wood pulp as well as sulphite and sulphate pulp.
  • TMP thermomechanical material
  • CTMP chemo-thermo-mechanical material
  • PGW pressure cut
  • wood pulps can be short-fiber as well as long-fiber.
  • Wood-free grades produced by the process according to the invention, which give bright white paper products.
  • the papers can optionally contain up to 40% by weight, mostly 5 to 35% by weight, of fillers.
  • Suitable fillers are e.g. Titanium dioxide, natural and precipitated chalk, talc, kaolin, satin white, calcium sulfate, barium sulfate, clay or aluminum oxide.
  • the microparticle system consists of a cationic polymer and a fine-particle anionic component.
  • Cationic polymers include cationic polyacrylamides, polymers containing vinylamine units, polydiallyldimethylammonium chlorides or mixtures thereof, each having an average molecular weight Mw of at least 500,000 Daltons and one
  • the polyvinylamines are preferably produced by hydrolysis of homopolymers of vinylformamide, the degree of hydrolysis being, for example, 70 to 95%.
  • Cationic polyacrylamides are, for example, copolymers which are obtained by copolymerizing acrylamide and at least one di-C-bisC-alkylamino-C-bisC 4 -alkyl (meth) acrylate or a basic acrylamide in the form of the free bases, the salts with organic or inorganic acids or of the compounds quaternized with alkyl halides are available.
  • Examples of such compounds are dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyloacrylate, dimethylaminopropyl methacrylate, dirnethylaminopropyl acrylate, diethylaminopropyl methacrylate, diethylaminopropyl acrylate and / or dimethylaminoethyl acrylamide.
  • Further examples of polymers containing cationic polyacrylamides and vinylamine units can be found in the references mentioned in the prior art, such as EP-A-0 910 701 and US-A-6, 103, 065.
  • Both linear and branched polyacrylamides can be used. Such polymers are commercially available products. Branched polymers which can be prepared, for example, by copolymerizing acrylamide or methacrylamide with at least one cationic monomer in the presence of small amounts of crosslinking agents are described, for example, in the prior art References US-A-5, 393, 381, WO-A-99/66130 and OA-99/63159 are described.
  • Suitable cationic polymers are polydiallylclimethylammonium chlorides (PolyDADMAC) with an average molecular weight of at least 500,000 daltons, preferably at least 1 million daltons. Polymers of this type are commercial products.
  • the cationic polymers of the microparticle system are added to the paper stock in an amount of 0.005 to 0.5% by weight, preferably in an amount of 0.01 to 0.2% by weight.
  • Bentonite, colloidal silica, silicates and / or calcium carbonate are examples of inorganic components of the microparticle system.
  • Colloidal silica is to be understood as meaning products based on silicates, for example silica microgel, silica sol, polysilicates, aluminum silicates, borosilicates, polyborosilicates, clay or zeolite.
  • Calcium carbonate can be used, for example, in the form of chalk, calcium carbonate or precipitated calcium carbonate as the inorganic component of the microparticle system.
  • Bentonite is generally understood to mean layered silicates which are swellable in water.
  • clay mineral montmorrillonite and similar clay minerals such as nontronite, hectorite, saponite, sauconite, beidellite, AIlevard.it, II-lit, halloysite, attapulgite and sepiolite.
  • These layered silicates are preferably activated before use, ie converted into a form which is swellable in water, in which the schicrite silicates are treated with an aqueous base, such as aqueous solutions of sodium hydroxide solution, potassium hydroxide solution, soda ash or potash. Bentonite in the form treated with sodium hydroxide solution is preferably used as the inorganic component of the microparticle system.
  • the platelet diameter of the bentonite dispersed in water in the form treated with sodium hydroxide solution is, for example, 1 to 2 ⁇ m, the thickness of the platelets is approximately 1 nm.
  • the bentonite has a specific surface area of 60 to 800 m 2 / g.
  • Typical bentonites are described, for example, in EP-B-0235893.
  • bentonite is typically added to the cellulose suspension in the form of an aqueous bentonite slurry. This bentonite slurry can contain up to 10% by weight of bentonite.
  • the slurries normally contain approx. 3 - 5% by weight bentonite.
  • Aluminum silicates, borosilicates, polyborosilicates or zeolites can be used. These have a specific surface of 50-1000 m 2 / g and an average particle size distribution of 1-250 nm, normally in the range 40-100 nm. The production of such components is described, for example, in EP-A-0041056, EP-A-0185068 and US-A-5176891 ,
  • Clay or kaolin is a water-containing aluminum silicate with a platelet structure.
  • the crystals have a layer structure and an aspect ratio (diameter to thickness ratio) of up to 30: 1.
  • the particle size is at least 50% less than 2 ⁇ m.
  • Natural calcium carbonate ground calcium carbonate, GCC
  • precipitated calcium carbonate precipitated calcium carbonate, PCC
  • GCC is manufactured by grinding and classifying processes using grinding aids. It has a particle size of 40 - 95% less than 2 ⁇ , the specific surface is in the range of 6 - 13 m 2 / g.
  • PCC is made by introducing carbon dioxide into calcium hydroxide solution. The average particle size is in the range of 0.03 - 0.6 ⁇ m, the specific surface can be strongly influenced by the choice of the precipitation conditions. It is in the range of 6 - 13 m 2 / g.
  • the inorganic component of the microparticle system is added to the paper stock in an amount of 0.01 to 1.0% by weight, preferably in an amount of 0.1 to 0.5% by weight.
  • the consistency of the pulp is, for example, 1 to 10 g / 1, preferably 4 to 30 g / 1.
  • the aqueous fiber slurry is subjected to at least one shear step. It goes through at least one cleaning, mixing and / or pumping stage.
  • the pulp can be sheared, for example, in a pulper, sifter or in a refiner.
  • the microparticle system is metered according to the invention.
  • a method of operation is particularly preferred in which the cationic polymer and then the inorganic component of the microparticle system are metered into the paper stock which was sheared beforehand.
  • the process chemicals usually used in paper production can be added to the paper stock in the usual amounts, for example fixatives, dry and wet strength agents, bulk sizes, biocides and / or dyes.
  • First pass retention was determined by determining the ratio of the solids content in the white water to the solids content in the headbox. The information is given in percent.
  • FPA retention (first-pass ash retention) was determined in the same way as FP retention, but only the ash content was taken into account.
  • a paper stock made from a wood-free, bleached cellulose with a consistency of 7 g / 1 and a filler content of 30% calcium carbonate was processed on a Fourdrinier machine with hybrid former to a paper with writing and printing quality.
  • the following arrangement of mixing and shearing devices was used: mixing chest, dilution to 7 g / 1, mixing pump, cleaner, headbox pump, screen and headbox. 32 t of paper were produced per hour.
  • the example was repeated with the exceptions that 410 g / t of the cationic polyacrylamide were metered in before the screen and pump and 3000 g / t of bentonite after the screen before the headbox. These amounts were necessary to achieve the same good formation as in the example.
  • the FP retention was 79.9% and the FPA retention was 59.1%.
  • the saving in polymer was 30% and the saving in bentonite was 17%.
  • an improvement in retention could be achieved in the example according to the invention.
  • the improvement in sieve dewatering was approx. 10%.
  • a wood-containing paper pulp made from pulp and pulp with a consistency of 7 g / 1 and a filler content of 30% of a mixture of clay and calcium carbonate (1: 1) was processed on a paper machine with a gap former to a paper with LWC quality , The following arrangement of mixing and shearing devices was used: mixing chest, dilution, deculator, pump, screen, headbox. 30 tons of paper were produced per hour.
  • Example 2 was repeated with the exception that 280 g / t of the cationic polyacrylamide were metered in before the pump and the screen and 1400 g / t bentonite after the screen before the headbox. This amount was necessary to achieve an equally good retention.
  • the FP retention was 69%, the FPA retention 40%.
  • Example 2 As a comparison of the results of Example 2 with the results of Comparative Example 2 shows, the saving in polymer was approximately 30%. Although a smaller amount of retention aid was used in Example 2 than in Comparative Example 2, it was possible to achieve an equally good formation and paper properties in Example 2.

Landscapes

  • Paper (AREA)

Abstract

Verfahren zur Herstellung von Papier, Pappe und Karton durch Scheren des Papierstoffs, Zugabe eines Mikropartikelsystems aus einem kationischen Polymeren und einer feinteiligen anorganischen Komponente zum Papierstoff nach der letzten Scherstufe vor dem Stoffauflauf, Entwässern des Papierstoffs unter Blattbildung und Trocknen der Blätter, wobei man als kationische Polymere des Mikropartikelsystems kationische Polyacrylamide, Vinylamineinheiten enthaltende Polymere und/oder Polydiallyldimethylammoniumchlorid mit einer mittleren Molmasse Mw von jeweils mindestens 500 000 Dalton und einer Ladungsdichte von jeweils höchstens 4,0 meq./g einsetzt.

Description

Verfahren zur Herstellung von Papier, Pappe und Karton
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Papier, Pappe und Karton durch Scheren des Papierstoffs, Zugabe eines Mikropartikelsystems aus einem kationischen Polymeren und einer feinteiligen anorganischen Komponente zum Papierstoff nach der letzten Scherstufe vor dem Stoffauflauf, Entwässern des Papierstoffs unter Blattbildung und Trocknen der Blätter.
Die Verwendung von Kombinationen aus nichtionischen oder anionischen Polymeren und Bentonit als Retentions ittel bei der Her- Stellung von Papier ist beispielsweise aus der US-A-3 , 052 , 595 und der EP-A-0 017 353 bekannt.
Aus der EP-A-0 223 223 ist ein Verfahren zur Herstellung von Papier und Karton durch Entwässerung eines Papierstoffs bekannt, wobei man zu einem Papierstoff mit einer Stoffkonzentration von 2,5 bis 5 Gew.-% zuerst Bentonit zusetzt, danach den Papierstoff verdünnt, ein hochkationisches Polymer mit einer Ladungsdichte von mind. 4 meq/g zusetzt und schließlich ein hochmolekulares Polymer auf Basis 'Acrylamid zusetzt und die so erhaltene Pulpe nach der Durchmischung entwässert.
Nach dem aus der EP-A-0 235 893 bekannten Verfahren zur Herstellung von Papier dosiert man zu einer wäßrigen Faserstoff- Suspension zunächst ein im wesentlichen lineares synthetisches kationisches Polymer mit einer Molmasse von mehr als 500 000 in einer Menge von mehr als 0,03 Gew.-%, bezogen auf trockenen Papierstoff, unterwirft die Mischung dann der Einwirkung eines Scherfeldes, wobei die zunächst entstandenen Flocken in Mikro- ,' flocken zerteilt werden, die eine kationische Ladung tragen, do- siert dann Bentonit und entwässert die so erhaltene Pulpe ohne weitere Einwirkung von Scherkräften.
EP-A-0 335 575 beschreibt ein Papierherstellverfahren, bei der die Pulpe nacheinander mit 2 verschiedenen wasserlöslichen, kat- ionischen Polymeren versetzt, anschließend mindestens einer
Scherstufe unterworfen und danach durch Zugabe von Bentonit geflockt wird.
In der EP-A-0 885 328 wird ein Verfahren zur Herstellung von Pa- pier beschrieben, wobei man zu einer wäßrigen Faserstoff- suspension zunächst ein kationisches Polymer dosiert, die Mischung dann der Einwirkung eines Scherfeldes unterwirft, an- schließend eine aktivierte Bentonitdispersion zugibt und die so erhaltene Pulpe entwässert.
Aus der EP-A 0 711 371 ist ein weiteres Verfahren zur Herstellung von Papier bekannt. Bei diesem Verfahren wird ein synthetisches, kationisches, hochmolekulares Polymer zu einer Dickstoff-Cellu- lose-Suspension gegeben. Nach dem Verdünnen des flockulierten Dickstoffs wird vor dem Entwässern ein Koagulationsmittel, das aus einem anorganischen Koagulationsmittel und/oder einem zwei- ten, niedermolekularen und hochkationischen wasserlöslichen Polymer besteht, zugegeben.
In der EP-A-0 910 701 wird ein Verfahren zur Herstellung von Papier und Karton beschrieben, wobei man zur Papierpulpe nacheinan- der ein niedrigmolekulares oder mittelmolekulares kationisches Polymer auf Basis Polyethylenimin oder Polyvinyla in und anschließend mit ein hochmolekulares kationisches Polymer wie Poly- acrylamid, Polyvinylamin oder kationische Stärke zusetzt . Nachdem diese Pulpe mindestens einer Scherstufe unterworfen wurde, wird sie durch Zugabe von Bentonit geflockt und der Papierstoff entwässert.
Aus der EP-A-0 608 986 ist bekannt, daß man bei der Papierherstellung ein kationisches Retentionsmittel zum Dickstoff dosiert. Ein weiteres Verfahren zur Herstellung von Papier und Karton ist aus der US-A-5 , 393 , 381, der WO-A-99/66130 und der WO-A-99/63159 bekannt, wobei man ebenfalls ein Mikropartikelsystem aus einem kationischen Polymer und Bentonit verwendet. Als kationisches Polymer wird ein wasserlösliches, verzweigtes Polyacryla id einge- setzt.
In der WO-A-01/34910 wird ein Verfahren zur Herstellung von Papier beschrieben, bei dem zu der PapierstoffSuspension ein Poly- saccharid oder ein synthetisches, hochmolekulares Polymer dosiert wird. Anschließend muß eine mechanische Scherung des Papierstoffs erfolgen. Die Reflockulation erfolgt durch Dosage einer anorganischen Komponente wie Kieselsäure, Bentonit oder Clay und eines wasserlöslichen Polymers.
Aus der US-A-6 , 103 , 065 ist ein Verfahren zur Verbesserung der Retention und der Entwässerung von Papierstoffen bekannt, wobei man zu einem Papierstoff nach dem letzten Scheren ein kationisches Polymer mit einer Molmasse von 100 000 bis 2 Millionen und einer Ladungsdichte von mehr als 4,0 meq./g zusetzt, gleichzeitig oder danach ein Polymer mit einer Molmasse von mindestens 2 Millionen und einer Ladungsdichte von weniger als 4,0 meq./g zugibt und danach Bentonit dosiert. Es ist bei diesem Verfahren nicht erfor- derlich, den Papierstoff nach der Zugabe der Polymeren einer Scherung zu unterwerfen. Nach Zugabe der Polymeren und des Bento- nits kann die Pulpe ohne weitere Einwirkung von Scherkräften unter Blattbildung entwässert werden.
Bei den bekannten Papierherstellverfahren, bei denen man ein Mi- kropartikelsystem als Retentionsmittel verwendet, benötigt man größere Mengen an Polymer und Bentonit. Diejenigen Verfahren, die zwingend die Mitverwendung von kationischen Polymeren mit einer Ladungsdichte von mehr als 4,0 erfordern, ergeben Papiere, die zur Vergilbung neigen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein weiteres Verfahren zur Herstellung von Papier unter Verwendung eines Mikropartikelsystems zur Verfügung zu stellen, wobei man im Vergleich zu den bekannten Verfahren geringere Einsatzmengen an Polymeren und Bentonit benötigt, gleichzeitig eine verbesserte Retention und Entwässerung erzielt und Papiere erhält, die weniger zum Vergilben neigen.
Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton durch Scheren des Papierstoffs, Zugabe eines Mikropartikelsystems aus einem kationischen Polymeren und einer feinteiligen anorganischen Ko po- nente zum Papierstoff nach der letzten Scherstufe vor dem Stoffauflauf, Entwässern des Papierstoffs unter Blattbildung und Trocknen der Blätter, wenn man als kationische Polymere des Mikropartikelsystems kationische Polyacrylamide, Vinylamineinheiten enthaltende Polymere und/oder Polydiallyldimethylammoniumchlorid mit einer mittleren Molmasse Mw von jeweils mindestens 500 000 Dalton und einer Ladungsdichte von jeweils höchstens 4,0 meq./g einsetzt, wobei das als Retentionsmittel eingesetzte Mikroparti- kelsystem frei von Polymeren mit einer Ladungsdichte von mehr als 4 meq. /g ist.
Nach dem erfindungsgemäßen Verfahren können sämtliche Papierqualitäten hergestellt werden, z.B. Karton, ein-/mehrlagiger Faltschachtelkarton, ein-/mehrlagiger Liner, Wellenstoff, Papiere für den Zeitungsdruck, sogenannte mittelfeine Schreib- und Druckpa- piere, Naturtiefdruckpapiere und leichtgewichtige Streichrohpapiere. Um solche Papiere herzustellen, kann man beispielsweise von Holzschliff, thermomechanischem Stoff (TMP) , chemo-thermome- chanischem Stoff (CTMP) , Druckschliff (PGW) , Holzstoff sowie Sulfit- und Sulfatzellstoff ausgehen. Die Zellstoffe können so- wohl kurzfaserig als auch langfaserig sein. Vorzugsweise werden nach dem erfindungsgemäßen Verfahren holzfreie Qualitäten hergestellt, die hochweiße Papierprodukte ergeben.
Die Papiere können gegebenenfalls bis zu 40 Gew.-%, meistens 5 bis 35 Gew.-% Füllstoffe enthalten. Geeignete Füllstoffe sind z.B. Titandioxid, natürliche und pränzipitierte Kreide, Talkum, Kaolin, Satinweiß, Calciumsulfat, Bariumsulfat, Clay oder Aluminiumoxid.
Das MikropartikelSystem besteht erfindungsgemäß aus einem kationischen Polymeren und einer feinteiligen anionischen Komponente. Als kationische Polymere kommen kationische Polyacrylamide, Vinylamineinheiten enthaltende Polymere, Polydiallyldime- thylammoniumchloride oder deren Mischungen mit einer mittleren Molmasse Mw von jeweils mindestens 500 000 Dalton und einer
Ladungsdichte von jeweils höchstens 4,0 meq./g in Betracht. Besonders bevorzugt werden kationische Polyacrylamide mit einer mittleren Molmasse Mw von mindestens 5 Millionen Dalton und einer Ladungsdichte von 0,1 bis 3,5 meq./g und Polyvinylamine, die durch Hydrolyse von Vinylformamideinheiten enthaltenden Polymeren erhältlich sind, wobei der Hydrolysegrad der Vinylformamideinheiten 20 bis 100 mol-% und die mittlere Molmasse der Polyvinylamine mindestens 2 Millionen Dalton beträgt. Die Polyvinylamine werden bevorzugt durch Hydrolyse von Homopolymeren des Vinylform- amids hergestellt, wobei der Hydrolysegrad beispielsweise 70 bis 95% beträgt.
Kationische Polyacrylamide sind beispielsweise Copolymerisate, die durch Copolymerisieren von Acrylamid und mindestens einem Di- Cι-bisC -alkylamino-C-bisC4-alkyl (meth) acrylat oder einem basischen Acrylamid in Form der freien Basen, der Salze mit organischen oder anorganischen Säuren oder der mit Alkylhalogeniden quaternierten Verbindungen erhältlich sind. Beispiele für solche Verbindungen sind Dimethylaminoethylmethacrylat, Diethylamino- ethylmethacrylat, Di ethylaminoethylacrylat, Diethylaminoethyloa- crylyat, Dimethylaminopropylmethacrylat, Dirnethylaminopropyl- acrylat , Diethylaminopropylmethacrylat, Diethylaminopropylacrylat und/oder Dimethylaminoethylacrylamid. Weitere Beispiele für kationische Polyacrylamide und Vinylamineinheiten enthaltende Poly- merisate können den zum Stand der Technik genannten Literaturstellen wie EP-A-0 910 701 und US-A-6, 103 , 065 entnommen werden. Man kann sowohl lineare als auch verzweigte Polyacrylamide verwenden. Solche Polymere sind handelsübliche Produkte. Verzweigte Polymere, die z.B. durch Copolymerisation von Acrylamid oder Methacrylamid mit mindestens einem kationischen Monomer in Gegenwart geringer Mengen an Vernetzern herstellbar sind, werden beispielsweise in den zum Stand der Technik angegebenen Literaturstellen US-A-5, 393, 381, WO-A-99/66130 und O-A- 99/63159 beschrieben.
Weitere geeignete kationische Polymere sind Polydiallylclimethy- lammoniumchloride (PolyDADMAC) mit einer mittleren Molmasse von mindestens 500 000 Dalton, vorzugsweise mindestens 1 Million Dalton. Polymere dieser Art sind Handelsprodukte.
Die kationischen Polymeren des Mikropartikelsystems werden dem Papierstoff in einer Menge von 0,005 bis 0,5 Gew.-%, vorzugsweise in einer Menge von 0,01 bis 0,2 Gew.-% zugesetzt.
Als anorganische Komponente des Mikropartikelsystems kommen beispielsweise Bentonit, kolloidale Kieselsäure, Silikate und/ oder Calciumcarbonat in Betracht. Unter kolloidaler Kieselsäure sollen Produkte verstanden werden, die auf Silikaten basieren, z.B. Silica-Microgel, Silical-Sol, Polysilikate, Aluminium- silikate, Borsilikate, Polyborsilikate, Clay oder Zeolitlie. Calciumcarbonat kann beispielsweise in Form von Kreide, cemahle- nem Calciumcarbonat oder präzipitiertem Calciumcarbonat als anorganische Komponente des Mikropartikelsystems verwendet werden. Unter Bentonit werden allgemein Schichtsilikate verstanden, die in Wasser quellbar sind. Es handelt sich hierbei vor allem um das Tonmineral Montmorrillonit sowie ähnliche Tonmineralien -wie Non- tronit, Hectorit, Saponit, Sauconit, Beidellit, AIlevard.it, II- lit, Halloysit, Attapulgit und Sepiolit. Diese Schichtsilikate werden vorzugsweise vor ihrer Anwendung aktiviert, d.h. in eine in Wasser quellbare Form überführt, in dem man die Schicrit- silikate mit einer wäßrigen Base wie wäßrigen Lösungen von Na- tronlauge, Kalilauge, Soda oder Pottasche behandelt. Vorzugsweise verwendet man als anorganische Komponente des Mikropartikelsystems Bentonit in der mit Natronlauge behandelten Form. Der Plättchendurchmesser des in Wasser dispergierten Bentonits beträgt in der mit Natromlauge behandelten Form beispielsweise 1 bis 2 μm, die Dicke der Plättchen liegt bei etwa lnm. Je nach Typ und Aktivierung hat der Bentonit eine spezifische Oberfläche von 60 bis 800 m2/g. Typische Bentonite werden z.B. in der EP-B-0235893 beschrieben. Im Papierherstellungsprozess wird Bentonit zu der Cellulosesuspension typischerweise in Form einer wässrigen Bentonitslurry zugesetzt. Diese Bentonitslurry kann bis zu 10 Gew.-% Bentonit enthalten. Normalerweise enthalten die Slurries ca. 3 - 5 Gew.-% Bentonit.
Als kollodiale Kieselsäure können Produkte aus der Gruppe von Si- liciumbasierenden Partikel, Silica-Microgele, Silica-Sole,
Aluminiumsilicate, Borosilikate, Polyborosilikate oder Zeolite eingesetzt werden. Diese haben eine spezifische Oberfläche von 50 - 1000 m2/g und eine durchschnittliche Teilchengrößenverteilung von 1 - 250 nm, normalerweise im Bereich 40 - 100 nm. Die Herstellung solcher Komponenten wird z.B. in EP-A-0041056, EP-A-0185068 und US-A-5176891 beschrieben.
Clay oder auch Kaolin ist ein wasserhaltiges Aluminiumsilikat mit plättchenförmiger Struktur. Die Kristalle haben eine Schichtstruktur und ein aspect ratio (Verhältnis Durchmesser zu Dicke) von bis zu 30:1. Die Teilchengröße liegt bei mindestens 50 % kleiner 2 μm.
Als Carbonate, bevorzugt Calciumcarbonat, kann natürliche Calciumcarbonat (ground calcium carbonate, GCC) oder gefälltes Calciumcarbonat (precipitated calcium carbonate, PCC) eingesetzt werden. GCC wird durch Mahl- und Sichtprozesse unter Einsatz von Mahlhilfsmittel hergestellt. Es besitzt eine Teilchengröße von 40 - 95 % kleiner 2 μ , die spezifische Oberfläche liegt im Bereich von 6 - 13 m2/g. PCC wird durch Einleiten von Kohlendioxid in Calciumhydroxidlösung hergestellt. Die durchschnittliche Teilchengröße liegt im Bereich von 0,03 - 0,6 μm, die spezifische Oberfläche kann stark durch den Wahl der Fällungsbedingungen be- einflusst werden. Sie liegt im Bereich von 6 - 13 m2/g.
Die anorganische Komponente des Mikropartikelsystems wird dem Papierstoff in einer Menge von 0,01 bis 1,0 Gew.-%, vorzugsweise in einer Menge von 0,1 bis 0,5 Gew.-% zugesetzt.
Die Stoffdichte der Pulpe beträgt beispielsweise 1 bis 1O0 g/1, vorzugsweise 4 bis 30 g/1. Die wäßrige Faseraufschlämmung- wird mindestens einer Scherstufe unterworfen. Sie durchläuft dabei mindestens eine Reinigungs-, Misch- und/oder Pumpstufe. Das Scheren der Pulpe kann beispielsweise in einem Pulper, Sichter oder in einem Refiner erfolgen. Nach der letzten Scherstufe und vor dem Stoffauflauf auf das Sieb dosiert man erfindungsgemä.ß das Mi- kropartikelsystem. Besonders bevorzugt ist dabei eine Arbeitsweise, bei der man zuerst das kationische Polymer und anschließend die anorganische Komponente des Mikropartikelsystems zum Papierstoff dosiert, der zuvor geschert wurde. Man kann jedoch auch zunächst die anorganische Komponente des Mikropartikielsy- stems und danach das kationische Polymere dosieren oder dem Papierstoff beide Komponenten gleichzeitig zugeben. Danach erfolgt die Entwässerung des Papierstoffs ohne weitere Einwirkung von Scherkräften auf einem Sieb unter Blattbildung. Die Papierblätter werden anschließend getrocknet. Außer dem Mikropartikelsystem kann man dem Papierstoff die üblicherweise bei der Papierherstellung verwendeten Prozeßchemikalien in den üblichen Mengen zusetzen, z.B. Fixiermittel, Trocken- und Naßfestmittel, Masseleimungsmittel, Biozide und/oder Farbstoffe.
Mit dem erfindungsgemäßen Verfahren wird gegenüber den bekannten Verfahren eine Erhöhung der Retention von Fein- und Füllstoffen sowie von Prozeßchemikalien wie Stärke, Farbstoffen und Naßfest- mitteln, und eine Verbesserung der Entwässerungsgeschwindigkeit erzielt, ohne die Formations- und Papiereigenschaften zu verschlechtern. Außerdem erreicht man eine deutliche Verbesserung der Faserrückgewinnung und damit eine Entlastung der Kläranlage.
Die Prozentangaben in den Beispielen bedeuten Gewichtsprozent, sofern aus dem Zusammenhang nichts anderes hervorgeht.
Die First Pass Retention (FP-Retention) wurde durch Bestimmung des Verhältnisses des Feststoffgehaltes im Siebwasser zum Fest- stoffgehalt im Stoffauflauf ermittelt. Die Angabe erfolgt in Prozent .
Die FPA-Retention (First-Pass-Asche-Retention) wurde analog zur FP-Retention bestimmt, jedoch wurde nur der Ascheanteil berück- sichtigt.
Beispiel 1
Ein Papierstoff aus einem holzfreien, gebleichten Zellstoff mit einer Stoffdichte von 7 g/1 und einem Füllstoffanteil von 30% Calciumcarbonat wurde auf einer Fourdriniermaschine mit Hybridformer zu einem Papier mit Schreib- und Druckqualität verarbeitet. Folgende Anordnung von Misch- und Schereinrichtungen wurde verwendet: Mischbütte, Verdünnung auf 7 g/1, Mischpumpe, Cleaner, Stoffauflaufpumpe, Screen und Stoffauflauf . Pro Stunde wurden 32 t Papier hergestellt.
Nach dem Screen (letzte Scherstufe vor dem Stoffauflauf) dosierte man zunächst 270 g/t eines handelsüblichen hochmolekularen, kat- ionischen Polyacrylamids (Polymin PR 8140, mittlere Molmasse Mw 7 Millionen) und danach 2500 g/t Bentonit. Die FP-Retention betrug 81,5%, die FPA-Retention) 60,2%. Vergleichsbeispiel 1
Das Beispiel wurde mit den Ausnahmen wiederholt, daß man 410 g/t des kationischen Polyacrylamids vor Screen und Pumpe und 3000 g/t Bentonit nach Screen vor dem Stoffauflauf dosierte. Diese Mengen waren erforderlich, um eine gleich gute Formation wie im Beispiel zu erzielen. Die FP-Retention betrug hierbei 79,9%, die FPA-Retention 59,1%.
Wie ein Vergleich der Ergebnisse des Beispiels mit den Ergebnissen des Vergleichsbeispiels zeigt, betrug die Einsparung an Polymer 30% und die Einsparung an Bentonit 17%. Bei gleich guter Formation konnte bei dem Beispiel gemäß Erfindung eine Verbesserung der Retention erzielt werden. Die Verbesserung bei der Siebent- Wässerung betrug ca. 10%.
Beispiel 2
Ein holzhaltiger Papierstoff aus Holzschliff und Zellstoff mit einer Stoffdichte von 7 g/1 und einem Füllstoffanteil von 30% einer Mischung aus Clay und Calciumcarbonat (1:1) wurde auf Papiermaschine mit einem Gap-Former zu einem Papier mit LWC-Quali- tät verarbeitet. Folgende Anordnung von Misch- und Schereinrichtungen wurde verwendet: Mischbütte, Verdünnung, Deculator, Pumpe, Screen, Stoffauflauf . Pro Stunde wurden 30 t Papier hergestellt.
Nach dem Screen (letzte Scherstufe vor dem Stoffauflauf) dosierte man zunächst 200 g/t eines handelsüblichen hochmolekularen kationischen Polyacrylamids (Polymin KP 2520, mittlere Molmasse Mw 5 Millionen) und danach 1400 g/1 Bentonit. Die FP-Retention betrug 69%, die FPA-Retention 40%.
Vergleichsbeispiel 2
Das Beispiel 2 wurde mit den Ausnahmen wiederholt, dass man 280 g/t des kationischen Polyacrylamids vor der Pumpe und dem Screen und 1400 g/t Bentonit nach dem Screen vor dem Stoffauflauf dosierte. Diese Menge war erforderlich, um eine gleich gute Retention zu erzielen. Die FP-Retention betrug hierbei 69%, die FPA-Retention 40%.
Wie ein Vergleich der Ergebnisse des Beispiels 2 mit den Ergebnissen des Vergleichbeispiels 2 zeigt, betrug die Einsparung an Polymer ca. 30%. Obwohl im Beispiel 2 eine geringere Menge an Retentionsmittel als im Vergleichsbeispiel 2 eingesetzt wurde, konnte im Beispiel 2 eine gleich gute Formation und Papiereigenschaften erzielt werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Papier, Pappe und Karton durch Scheren des Papierstoffs, Zugabe eines Mikropartikelsystems aus einem kationischen Polymeren und einer feinteiligen anorganischen Komponente zum Papierstoff nach der letzten Scherstufe vor dem Stoffauflauf , Entwässern des Papierstoffs unter Blattbildung und Trocknen der Blätter, dadurch gekennzeich- net, daß man als kationische Polymere des Mikropartikelsystems kationische Polyacrylamide, Vinylamineinheiten enthaltende Polymere und/oder Polydiallyldimethylammoniumchlorid mit einer mittleren Molmasse Mw von jeweils mindestens 500 000 Dalton und einer Ladungsdichte von jeweils höchstens 4,0 meq./g einsetzt, wobei das als Retentionsmittel eingesetzte Mikropartikelsystem frei von Polymeren mit einer Ladungsdichte von mehr als 4 meq./g ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als kationische Polymere des Mikropartikelsystems kationische Polyacrylamide mit einer mittleren Molmasse Mw von mindestens 5 Millionen Dalton und einer Ladungsdichte von 0,1 bis 3,5 meq./g einsetzt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als kationische Polymere des Mikropartikelsystems Polyvinylamine einsetzt, die durch Hydrolyse von Vinylformamidein- heiten enthaltenden Polymeren erhältlich sind, wobei der Hydrolysegrad der Vinylformamideinheiten 20 bis 100 mol-% und die mittlere Molmasse der Polyvinylamine mindestens 2 Millionen Dalton beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das kationische Polymer des Mikropartikelsy- stems dem Papierstoff in einer Menge von 0,005 bis
0,5 Gew.-%, bezogen auf trockenen Papierstoff, zugesetzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, daß das kationische Polymer des Mikropartikelsystems dem Papierstoff in einer Menge von 0,01 bis 0,2 Gew.-%, bezogen auf trockenen Papierstoff zugesetzt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man als anorganische Komponente des Mikropartikelsystems mindestens einen Bentonit, kolloidale Kieselsäure, Silikate und/oder Calciumcarbonat einsetzt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die anorganische Komponente des Mikropartikelsystems dem Papierstoff in einer Menge von 0,01 bis
1,0 Gew.-%, bezogen auf trockenen Papierstoff, zugesetzt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die anorganische Komponente des Mikropartikelsystems dem Papierstoff in einer Menge von 0,1 bis 0,5 Gew.-%, bezogen auf trockenen Papierstoff zugesetzt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man zuerst das kationische Polymer und danach die anorganische Komponente des Mikropartikelsystems zum Papierstoff dosiert.
PCT/EP2003/008037 2002-08-07 2003-07-23 Verfahren zur herstellung von papier, pappe und karton WO2004015200A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP03784048A EP1529133B1 (de) 2002-08-07 2003-07-23 Verfahren zur herstellung von papier, pappe und karton
AU2003250139A AU2003250139A1 (en) 2002-08-07 2003-07-23 Method for the production of paper, paperboard, and cardboard
ES03784048T ES2380321T3 (es) 2002-08-07 2003-07-23 Procedimiento para la fabricación de papel, cartulina y cartón
AT03784048T ATE546587T1 (de) 2002-08-07 2003-07-23 Verfahren zur herstellung von papier, pappe und karton
US10/523,417 US7306701B2 (en) 2002-08-07 2003-07-23 Production of paper, board and cardboard
JP2004526759A JP4518492B2 (ja) 2002-08-07 2003-07-23 紙、厚紙、およびボール紙の製造方法
CA2494648A CA2494648C (en) 2002-08-07 2003-07-23 Method for the production of paper, paperboard, and cardboard
BR0313051-7A BR0313051A (pt) 2002-08-07 2003-07-23 Processo para a produção de papel, papelão e cartolina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10236252.1 2002-08-07
DE2002136252 DE10236252B4 (de) 2002-08-07 2002-08-07 Verfahren zur Herstellung von Papier, Pappe und Karton

Publications (1)

Publication Number Publication Date
WO2004015200A1 true WO2004015200A1 (de) 2004-02-19

Family

ID=7714828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008037 WO2004015200A1 (de) 2002-08-07 2003-07-23 Verfahren zur herstellung von papier, pappe und karton

Country Status (12)

Country Link
US (1) US7306701B2 (de)
EP (1) EP1529133B1 (de)
JP (1) JP4518492B2 (de)
CN (1) CN1291104C (de)
AT (1) ATE546587T1 (de)
AU (1) AU2003250139A1 (de)
BR (1) BR0313051A (de)
CA (1) CA2494648C (de)
DE (1) DE20220979U1 (de)
ES (1) ES2380321T3 (de)
PT (1) PT1529133E (de)
WO (1) WO2004015200A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027242A1 (de) 2004-09-10 2006-03-16 Basf Aktiengesellschaft Verfahren zur herstellung von papier, pappe und karton
WO2007031442A1 (de) * 2005-09-13 2007-03-22 Basf Se Verfahren zur herstellung von papier, pappe und karton
JP2008525654A (ja) * 2004-12-22 2008-07-17 アクゾ ノーベル エヌ.ブイ. 紙材の製造のための方法
US7955473B2 (en) 2004-12-22 2011-06-07 Akzo Nobel N.V. Process for the production of paper
US8273216B2 (en) 2005-12-30 2012-09-25 Akzo Nobel N.V. Process for the production of paper
US8613832B2 (en) 2005-05-16 2013-12-24 Akzo Nobel N.V. Process for the production of paper
WO2014001222A1 (de) * 2012-06-25 2014-01-03 Clariant Produkte (Deutschland) Gmbh Verfahren zur herstellung von gefülltem papier und pappe unter verwendung von koazervaten
US8888957B2 (en) 2005-12-30 2014-11-18 Akzo Nobel N.V. Process for the production of paper
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013007A1 (de) 2004-03-16 2005-10-06 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton
US7473334B2 (en) * 2004-10-15 2009-01-06 Nalco Company Method of preparing modified diallyl-N,N-disubstituted ammonium halide polymers
US20060084771A1 (en) * 2004-10-15 2006-04-20 Wong Shing Jane B Method of preparing modified diallyl-N,N-disubstituted ammonium halide polymers
FI119481B (fi) * 2006-09-05 2008-11-28 M Real Oyj Kationisilla polyelektrolyyteillä modifioidut selluloosahiukkaset, menetelmä niiden valmistamiseksi sekä käyttö paperin ja kartongin valmistuksessa
JP5570004B2 (ja) * 2009-05-28 2014-08-13 ハイモ株式会社 抄紙方法
AT508256B1 (de) * 2009-11-13 2010-12-15 Applied Chemicals Handels Gmbh Verfahren zur herstellung von papier oder dgl.
CN105040517A (zh) * 2009-12-29 2015-11-11 索理思科技开曼公司 用含乙烯胺的聚合物和含丙烯酰胺的聚合物处理提高纸张干强度的方法
JP5661385B2 (ja) * 2010-09-03 2015-01-28 大王製紙株式会社 印刷用紙の製造方法及びこの製造方法により得られる印刷用紙
CN104093902B (zh) * 2012-02-01 2017-09-08 巴斯夫欧洲公司 纸和纸板的制造方法
US9404223B2 (en) 2012-02-01 2016-08-02 Basf Se Process for the manufacture of paper and paperboard
EP2820189B2 (de) 2012-03-01 2024-05-15 Basf Se Verfahren zur herstellung von papier und pappe
CN104903513B (zh) * 2013-01-11 2017-11-17 巴斯夫欧洲公司 生产纸和纸板的方法
EP2943615B1 (de) 2013-01-11 2021-03-10 Solenis Technologies Cayman, L.P. Verfahren zur herstellung von papier und pappe
CN103952940B (zh) * 2014-04-30 2016-08-24 金东纸业(江苏)股份有限公司 纸张的制造方法
JP6179466B2 (ja) 2014-06-20 2017-08-16 王子ホールディングス株式会社 ガラス合紙
CN106868913B (zh) * 2017-03-30 2020-11-17 山鹰国际控股股份公司 二元阳离子助留体系的助滤方法
JP2017218721A (ja) * 2017-09-27 2017-12-14 王子ホールディングス株式会社 段ボール原紙の製造方法
KR20230116828A (ko) 2020-12-04 2023-08-04 에이지씨 케미컬스 아메리카스 인코포레이티드 처리된 물품, 처리된 물품을 제조하는 방법, 및 처리된 물품을 제조하는 데 이용하기 위한 분산액

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052595A (en) * 1955-05-11 1962-09-04 Dow Chemical Co Method for increasing filler retention in paper
EP0017353A1 (de) * 1979-03-28 1980-10-15 Ciba Specialty Chemicals Water Treatments Limited Herstellung von Papier und Pappe
US5015334A (en) * 1988-12-10 1991-05-14 Laporte Industries Limited Colloidal composition and its use in the production of paper and paperboard
US5266164A (en) * 1992-11-13 1993-11-30 Nalco Chemical Company Papermaking process with improved drainage and retention
US6103065A (en) * 1999-03-30 2000-08-15 Basf Corporation Method for reducing the polymer and bentonite requirement in papermaking
US6238521B1 (en) * 1996-05-01 2001-05-29 Nalco Chemical Company Use of diallyldimethylammonium chloride acrylamide dispersion copolymer in a papermaking process

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541163A1 (de) * 1985-11-21 1987-05-27 Basf Ag Verfahren zur herstellung von papier und karton
GB8602121D0 (en) * 1986-01-29 1986-03-05 Allied Colloids Ltd Paper & paper board
US4913775A (en) * 1986-01-29 1990-04-03 Allied Colloids Ltd. Production of paper and paper board
US4964955A (en) * 1988-12-21 1990-10-23 Cyprus Mines Corporation Method of reducing pitch in pulping and papermaking operations
EP0335575B2 (de) 1988-03-28 2000-08-23 Ciba Specialty Chemicals Water Treatments Limited Herstellung von Papier und Pappe
FR2692292B1 (fr) 1992-06-11 1994-12-02 Snf Sa Procédé de fabrication d'un papier ou d'un carton à rétention améliorée.
GB9301451D0 (en) 1993-01-26 1993-03-17 Allied Colloids Ltd Production of filled paper
BR9406395A (pt) 1993-05-10 1996-02-13 Grace W R & Co Processo de produção de papel
US5529699A (en) * 1993-11-12 1996-06-25 W. R. Grace & Co.-Conn. Water-soluble cationic copolymers and their use as flocculants
EP1245734A3 (de) * 1994-05-07 2006-07-26 Arjo Wiggins Fine Papers Limited Herstellung von gemustertem Papier
GB9410920D0 (en) 1994-06-01 1994-07-20 Allied Colloids Ltd Manufacture of paper
US6273998B1 (en) * 1994-08-16 2001-08-14 Betzdearborn Inc. Production of paper and paperboard
BR9608436A (pt) * 1995-04-18 1999-03-09 Betzdearborn Inc Copolímero catiônico solúvel em água e processos de preparação do mesmo e de produto de papel ou papelão a partir de uma suspensão de polpa aquoasa e de floculação de matéria em suspensão coagulada e/ou finamente dividida em sistemas aquosos
GB9604950D0 (en) 1996-03-08 1996-05-08 Allied Colloids Ltd Clay compositions and their use in paper making
DE19627553A1 (de) 1996-07-09 1998-01-15 Basf Ag Verfahren zur Herstellung von Papier und Karton
CN1205119C (zh) * 1997-09-30 2005-06-08 纳尔科化学公司 胶态硼硅酸盐及其在造纸生产中的应用
FR2779452B1 (fr) 1998-06-04 2000-08-11 Snf Sa Procede de fabrication de papier et carton et nouveaux agents de retention et d'egouttage correspondants, et papiers et cartons ainsi obtenus
FR2779752B1 (fr) 1998-06-12 2000-08-11 Snf Sa Procede de fabrication de papier et carton et nouveaux agents de retention correspondants, et papiers et cartons ainsi obtenus
TW483970B (en) 1999-11-08 2002-04-21 Ciba Spec Chem Water Treat Ltd A process for making paper and paperboard
US6379501B1 (en) * 1999-12-14 2002-04-30 Hercules Incorporated Cellulose products and processes for preparing the same
MY140287A (en) * 2000-10-16 2009-12-31 Ciba Spec Chem Water Treat Ltd Manufacture of paper and paperboard

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052595A (en) * 1955-05-11 1962-09-04 Dow Chemical Co Method for increasing filler retention in paper
EP0017353A1 (de) * 1979-03-28 1980-10-15 Ciba Specialty Chemicals Water Treatments Limited Herstellung von Papier und Pappe
US5015334A (en) * 1988-12-10 1991-05-14 Laporte Industries Limited Colloidal composition and its use in the production of paper and paperboard
US5266164A (en) * 1992-11-13 1993-11-30 Nalco Chemical Company Papermaking process with improved drainage and retention
US6238521B1 (en) * 1996-05-01 2001-05-29 Nalco Chemical Company Use of diallyldimethylammonium chloride acrylamide dispersion copolymer in a papermaking process
US6103065A (en) * 1999-03-30 2000-08-15 Basf Corporation Method for reducing the polymer and bentonite requirement in papermaking

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029647B2 (en) 2004-09-10 2011-10-04 Basf Aktiengesellschaft Method for the production of paper, paperboard and cardboard
WO2006027242A1 (de) 2004-09-10 2006-03-16 Basf Aktiengesellschaft Verfahren zur herstellung von papier, pappe und karton
US8308903B2 (en) * 2004-12-22 2012-11-13 Akzo Nobel N.V. Process for the production of paper
US8790493B2 (en) 2004-12-22 2014-07-29 Akzo Nobel N.V. Process for the production of paper
US7955473B2 (en) 2004-12-22 2011-06-07 Akzo Nobel N.V. Process for the production of paper
JP2008525654A (ja) * 2004-12-22 2008-07-17 アクゾ ノーベル エヌ.ブイ. 紙材の製造のための方法
US20110247773A1 (en) * 2004-12-22 2011-10-13 Akzo Nobel N.V. Process for the production of paper
US9562327B2 (en) 2004-12-22 2017-02-07 Akzo Nobel N.V. Process for the production of paper
US8613832B2 (en) 2005-05-16 2013-12-24 Akzo Nobel N.V. Process for the production of paper
US9139958B2 (en) 2005-05-16 2015-09-22 Akzo Nobel N.V. Process for the production of paper
WO2007031442A1 (de) * 2005-09-13 2007-03-22 Basf Se Verfahren zur herstellung von papier, pappe und karton
CN101263263B (zh) * 2005-09-13 2012-11-28 巴斯夫欧洲公司 生产纸、卡片纸板和纸板的方法
US7918965B2 (en) 2005-09-13 2011-04-05 Basf Aktiengesellschaft Method for the production of paper, cardboard and card
US8888957B2 (en) 2005-12-30 2014-11-18 Akzo Nobel N.V. Process for the production of paper
US8273216B2 (en) 2005-12-30 2012-09-25 Akzo Nobel N.V. Process for the production of paper
WO2014001222A1 (de) * 2012-06-25 2014-01-03 Clariant Produkte (Deutschland) Gmbh Verfahren zur herstellung von gefülltem papier und pappe unter verwendung von koazervaten
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement

Also Published As

Publication number Publication date
JP2005534824A (ja) 2005-11-17
CN1675432A (zh) 2005-09-28
BR0313051A (pt) 2005-06-14
US20050247420A1 (en) 2005-11-10
CA2494648C (en) 2011-10-04
US7306701B2 (en) 2007-12-11
ATE546587T1 (de) 2012-03-15
EP1529133A1 (de) 2005-05-11
AU2003250139A1 (en) 2004-02-25
CN1291104C (zh) 2006-12-20
CA2494648A1 (en) 2004-02-19
JP4518492B2 (ja) 2010-08-04
DE20220979U1 (de) 2004-10-14
PT1529133E (pt) 2012-03-30
ES2380321T3 (es) 2012-05-10
EP1529133B1 (de) 2012-02-22

Similar Documents

Publication Publication Date Title
EP1529133B1 (de) Verfahren zur herstellung von papier, pappe und karton
DE68919654T2 (de) Kolloidale Zusammensetzung und ihre Nutzung in der Papier- und Pappeherstellung.
EP0948677B1 (de) Verfahren zur herstellung von papier
DE69616439T2 (de) Verfahren zur Herstellung von Papier
DE69737614T2 (de) Verfahren zur Herstellung von Papier
DE69101427T2 (de) Verfahren zur Herstellung von Zellulosefasern enthaltenden Verbindungen als Blatt oder Gewebe.
DE69206735T2 (de) Verfahren zur Papierherstellung
DE69128563T2 (de) Geladene Mikrokugeln aus organischen Polymeren für die Herstellung von Papier
DE69224063T2 (de) Verfahren zur herstellung von papier
EP1926855B1 (de) Verfahren zur herstellung von papier, pappe und karton
DE60029141T2 (de) Verfahren zur papierherstellung
DE69938565T2 (de) Herstellungsverfahren von stabilen kieselsol mit hoher oberfläche und verbesserter aktivität
DE2516097A1 (de) Papierfuellstoff
US5032227A (en) Production of paper or paperboard
DE60130451T2 (de) Papierfaserstoff und flockungsmittel, die ein saures wässriges aluminumoxidsol enthalten
DE69604365T2 (de) Verfahren zur herstellung von papier
WO2005035872A1 (de) Verfahren zur herstellung von papier, pappe und karton
DE10236252B4 (de) Verfahren zur Herstellung von Papier, Pappe und Karton
EP1831459B1 (de) Verfahren zur herstellung von papier, pappe und karton
DE69328311T3 (de) Verfahren zur papierherstellung
US8906201B2 (en) Use of acidic water in the manufacture of paper
DE20220981U1 (de) Mikropartikelsystem zur Herstellung von Papier, Pappe und Karton
DE20220980U1 (de) Vorrichtung zur Herstellung von Papier, Pappe und Karton
DE102008000811A1 (de) Verfahren zur Herstellung von Papier
DE68906535T2 (de) Verfahren zur herstellung von papier.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003784048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2494648

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10523417

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038189895

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004526759

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003784048

Country of ref document: EP