WO2002047054A1 - Method of forming electrode for flat panel display - Google Patents

Method of forming electrode for flat panel display Download PDF

Info

Publication number
WO2002047054A1
WO2002047054A1 PCT/JP2001/010574 JP0110574W WO0247054A1 WO 2002047054 A1 WO2002047054 A1 WO 2002047054A1 JP 0110574 W JP0110574 W JP 0110574W WO 0247054 A1 WO0247054 A1 WO 0247054A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
flat panel
forming
solvent
panel display
Prior art date
Application number
PCT/JP2001/010574
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyuki Abe
Masaaki Oda
Original Assignee
Ulvac Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Corporation filed Critical Ulvac Corporation
Priority to DE2001618042 priority Critical patent/DE60118042T2/en
Priority to EP20010999931 priority patent/EP1349135B1/en
Priority to US10/432,608 priority patent/US7247341B2/en
Publication of WO2002047054A1 publication Critical patent/WO2002047054A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • C23C20/02Coating with metallic material
    • C23C20/04Coating with metallic material with metals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2217/00Gas-filled discharge tubes
    • H01J2217/38Cold-cathode tubes
    • H01J2217/49Display panels, e.g. not making use of alternating current
    • H01J2217/492Details
    • H01J2217/49207Electrodes

Definitions

  • the present invention relates to a method for forming an electrode of a flat panel display (hereinafter, also referred to as FPD) using an ink for an ink jet printer, which is composed of an independent dispersion liquid of ultrafine metal particles and ultrafine metal particles containing a dispersant.
  • FPD flat panel display
  • ultrafine metal particle dispersions have been used.However, using ultrafine metal particle dispersions as ink and forming FPD electrodes using an inkjet recording method Has not been done to date.
  • FPD liquid crystal display
  • PDP plasma display panel
  • EL organic EL display
  • FED field emission display
  • the manufacturing process will be described using an example of manufacturing a 42-inch high-definition color PDP.
  • the process consists of two types of manufacturing processes, a front plate and a back plate.
  • the electrodes on the front panel are called scan electrodes, and two ITO transparent electrodes are formed on a glass plate for each pixel of 1024 pixels. Since a transparent electrode alone has a high resistance, a metal bus electrode is formed on the transparent electrode.
  • the bus electrode has a width of 50 / m and a thickness of 2 / im.
  • the bus electrode is formed by a screen printing method using a thick Ag It is formed by an electrode pattern forming method using one photolithography method.
  • the electrodes on the back plate are called address electrodes. Three electrodes are formed directly on the glass plate for each pixel of 1024 pixels. It is.
  • the address electrodes have a width of 50 mm and a thickness of 2 m, and are formed by screen printing, sputtering, or one photolithography method, like the scan electrodes.
  • a glass dielectric layer is formed on both the scan electrode and the padless electrode.
  • the PDP panel is completed by bonding the front panel and the rear panel to each other after the subsequent processes.However, this electrode forming process is the most complicated and requires a lot of man-hours in the process. It is an obstacle.
  • the ultrafine metal particle or powder is dispersed with a solvent, a resin, a dispersant, or the like by stirring, application of an ultrasonic wave, a ball mill, a sand mill, or the like, and then the ultrafine particle dispersion Is known, and the dispersion obtained by this method is used in the field of paints and the like.
  • a metal is evaporated in a gas atmosphere and in a gas phase in which a vapor of a solvent coexists, and the evaporated metal is converted into uniform ultrafine particles.
  • a gas-evaporation method that obtains a dispersion by condensing and dispersing in a solvent to obtain a dispersion Japanese Patent No. 2561357
  • a method using an insoluble precipitation reaction or a reduction reaction with a reducing agent are used.
  • those based on the gas evaporation method can stably produce a dispersion in which ultrafine particles having a particle size of 100 nm or less are uniformly dispersed.
  • an ultrafine particle dispersion having a predetermined concentration can be prepared.
  • the conventional metal ultrafine particle dispersion has an ink property that can be used as an inkjet ink. (Viscosity, surface tension, etc.) did not exist.
  • the ultrafine metal particles obtained by the conventional gas evaporation method are agglomerated, and are unlikely to be in a stable state even if they are dispersed in a solvent. Therefore, even when such a dispersion of ultrafine metal particles is used as an ink jet ink, there is a problem that aggregates of ultrafine metal particles may clog the ink jet nozzle.
  • the front panel and the rear panel are manufactured in different processes, respectively, and finally combined to form a panel.
  • the manufacturing process of the front plate will be described.
  • the ITO pattern of the scan electrode is formed by sputtering and photolithography. Since the resistance of the ITO film alone is high, a metal film with a width of 50 m and a thickness of 2 m is formed as a bus electrode on the ITO film.
  • a glass dielectric layer, a black matrix, a sealing layer, and a MgO layer are sequentially formed thereon, and then the assembly is started to be combined with the back plate.
  • the address electrodes are formed.
  • This method like the front plate, uses a screen printing method using a thick-film Ag paste or a laminate of Cr / Cu / Cr. There are two methods: pattern etching of the sputtered film by photolithography.
  • a glass dielectric layer, stripe barrier ribs, phosphor layer, and seal layer are sequentially formed thereon, and then the assembly process for assembling with the front panel is performed. After evacuating and filling with gas, aging is performed to fill the PDP panel.
  • an object of the present invention is to solve the above-mentioned problems of the prior art, and to prepare an ink jet ink comprising an independent dispersion liquid of ultrafine metal particles, which satisfies the ink characteristics for use as an ink for an ink jet. It is another object of the present invention to provide a method of forming an FPD electrode using an ink jet printer. Disclosure of the invention
  • the present inventors have proposed a dispersion liquid in which ultrafine metal particles are dispersed independently, that is, agglomeration of ultrafine particles does not occur and fluidity is maintained.
  • the inventors of the present invention have conducted intensive studies on the formation of PDP electrodes, and have found that a multi-head ink jet printer using an ink composed of an independent dispersion liquid of the metal ultrafine particles capable of being fired at a low temperature of about 300 ° C.
  • an electrode pattern can be drawn in a short time without generating a defective forming position due to a positional deviation or an open defect due to clogging of a screen, and thus completed the present invention.
  • the method for forming an electrode of a flat panel display of the present invention uses a specific ink jet ink, and this ink jet ink is composed of an ultrafine metal particle-independent dispersion liquid containing ultrafine metal particles and a dispersant.
  • the ultrafine particles are individually and uniformly dispersed independently, and the fluidity is maintained.
  • the particle diameter of the ultrafine metal particles is usually 100 nm or less, preferably 10 nm or less.
  • the viscosity of the metal ultrafine particle independent dispersion is from l to 100 mPas, preferably from 1 to 10 mPas, and the surface tension is from 25 to 8 mN / m, preferably from 30 to 6 O mN Zm, which satisfies the ink properties for use as an ink for ink jet.
  • the dispersing agent is one or more selected from alkylamine, carboxylic acid amide, and aminocarboxylic acid salt.
  • alkylamine has a main chain having 4 to 20 carbon atoms, preferably 8 to 18 carbon atoms.
  • the alkylamine is preferably a primary amine.
  • the dispersion liquid contains, as a dispersion medium, a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain, water, and at least one solvent selected from alcohol solvents having 15 or less carbon atoms. Is preferred.
  • the ink jet ink used in the present invention comprises a first step of obtaining a metal ultrafine particle dispersion in which metal ultrafine particles are dispersed in a solvent by evaporating the metal in a gas atmosphere and in the presence of vaporization of the first solvent.
  • the second solvent which is a low molecular weight polar solvent, is added to the dispersion obtained in the first step to precipitate the metal ultrafine particles, and the first solvent is substantially removed by removing the supernatant. It is produced from a second step of removing and a third step of adding a third solvent to the sediment thus obtained to obtain an independent dispersion of ultrafine metal particles.
  • a dispersant is added.
  • the method for producing the ink-jet ink used in the present invention includes the steps of: evaporating a metal in a gas atmosphere and in the presence of a vapor of a first solvent; bringing the vapor of the metal into contact with the vapor of the solvent; Then, a first step of obtaining a metal ultrafine particle dispersion in which the metal ultrafine particles are dispersed in the solvent, and adding a second solvent, which is a low molecular weight polar solvent, to the dispersion obtained in the first step, A second step of substantially removing the first solvent by sedimenting the ultrafine metal particles and removing a supernatant thereof, and adding a third solvent to the sediment obtained in this way to separate the ultrafine metal particles. And a third step of obtaining a dispersion.
  • a metal ultrafine particle dispersion liquid suitable for an ink jet ink can be obtained.
  • the third solvent may be at least one selected from non-polar hydrocarbons having 6 to 20 carbon atoms in the main chain, water, and alcohol (having a carbon number of 15 or less) solvents. In the case of ink, it is preferable.
  • the temperature during normal operation is required. (0 to 50 ° C)
  • its viscosity is 1 to 10 OmPas, preferably 1 to 10 OmPas
  • its surface tension is 25 to 8 OmNZm, preferably 30 to 60 OmN / m
  • the ink-jet ink used in the present invention satisfies the characteristics.
  • the ultrafine metal particles in the present invention can be produced by a gas evaporation method, and according to this method, the particle diameter is 100 nm or less, preferably 10 nm or less.
  • Ultrafine metal particles can be produced. Since such metal ultrafine particles are used as raw materials and solvent replacement is performed to make them suitable for ink jet inks, a dispersant is added to increase the dispersion stability of these ultrafine particles. As a result, a dispersion liquid suitable for an ink jet ink, in which the ultrafine metal particles are individually and uniformly dispersed, and which maintains a fluid state, can be obtained.
  • an intended metal ultrafine particle dispersion is produced using ultrafine metal particles obtained by an in-gas evaporation method
  • first, in the first step, in a vacuum chamber and He or the like The metal is evaporated under an atmosphere in which the pressure of the inert gas is 1 OTorr or less, and when the vapor of the evaporated metal is cooled and collected, one or more types of the first solvent are contained in the vacuum chamber. Vapor is introduced and the surface of the metal is brought into contact with the first solvent vapor at the stage of grain growth to obtain a dispersion in which the obtained primary particles are independently and uniformly colloidally dispersed in the first solvent, In the next second step, the first solvent is removed.
  • the reason why the first solvent is removed is to remove by-products generated by denaturation of the coexisting first solvent when the metal vapor evaporated in the first step is condensed. This is to produce an ultrafine particle independent dispersion dispersed in a low-boiling solvent, water, or an alcohol solvent that is difficult to use in the first step.
  • the second solvent that is a low molecular weight polar solvent is added to the dispersion obtained in the first step to precipitate ultrafine metal particles contained in the dispersion, The supernatant is removed by a static decantation method or the like to remove the first solvent used in the first step.
  • This second step is repeated a plurality of times to substantially remove the first solvent.
  • a new third solvent is added to the sediment obtained in the second step, and the solvent is replaced to obtain a desired ultrafine metal particle dispersion.
  • a dispersant can be added in the first step and / or the third step as needed.
  • a dispersant that does not dissolve in the solvent used in the first step can be used.
  • the dispersant that can be used in the present invention is not particularly limited, and one or more selected from alkylamines, carboxamides, and aminocarboxylates are used.
  • alkylamine an alkylamine having a main skeleton of 4 to 20 carbon atoms is preferable, and an alkylamine having a main skeleton of 8 to 18 carbon atoms is more preferable in terms of stability and handling properties. If the number of carbon atoms in the main chain of the alkylamine is less than 4, the basicity of the amine is too strong, which tends to corrode the metal ultrafine particles, and ultimately dissolves the ultrafine particles.
  • alkylamines of all classes work effectively as dispersants, but primary alkylamines are preferably used in terms of stability and handling.
  • alkylamines that can be used in the present invention include, for example, butylamine, octylamine, dodecylamine, hexadodecylamine, octadecylamine, cocoamine, evening lauamine, hydrogenated taroamine, oleylamine, laurylamine, and stearylamine.
  • Primary amines such as amines, secondary amines such as dicocoamine, dihydrotallowamine, and distearylamine, and dodecyldimethylamine, didodecylmonomethylamine, tetradecyldimethylamine Tertiary such as octadecyldimethylamine, cocodimethylamine, doden, and trioctylamine
  • amines include diamines such as naphthylenediamine, stearylpropylenediamine, octamethylenediamine, and nonandiamine.
  • Specific examples of carboxylic acid amide diaminocarboxylates include, for example, stearine.
  • alkylamines and carboxylic acid amido diamino carboxylate salts can be used, thereby acting as a stable dispersant.
  • the content of alkylamine is approximately based on the weight of the ultrafine metal particles.
  • the ultrafine metal particles do not disperse in an independent state, and agglomerates are generated, resulting in poor dispersion stability. If it exceeds, there is a problem that the viscosity of the obtained dispersion becomes high and a gel-like substance is finally formed.
  • an FPD electrode is formed by using this dispersion as an ink composition, especially as an ink for ink jet in a low-priced, high-performance and remarkably popular ink jet printer as a peripheral device of a personal computer recently.
  • the physical properties such as viscosity and surface tension required as the ink properties of the ink jet ink are as described above.
  • the solvent selection condition is determined by the difference in usage, such as selecting a polar solvent such as water or alcohol, or a non-polar hydrocarbon solvent according to the properties of the substrate such as a glass substrate or plastic substrate to be printed. There is.
  • the first solvent is a solvent for generating ultrafine metal particles used in the gas evaporation method, and has a relatively high boiling point so that it can be easily liquefied when cooling and collecting the ultrafine metal particles. is there.
  • the first solvent include alcohols having 5 or more carbon atoms, for example, solvents containing one or more of terbineol, citroneol, geraniol, and phenethyl alcohol, or organic esters such as benzyl acetate, Ethyl stearate, methyl oleate, ethyl phenylacetate, glyceride, etc. Any solvent containing at least one kind may be used, and can be selected as appropriate depending on the constituent elements of the ultrafine metal particles used or the use of the dispersion.
  • the second solvent may be any as long as it can precipitate ultrafine metal particles contained in the dispersion obtained in the first step and extract and separate the first solvent to remove it. Solvent Aceton and the like.
  • a liquid solvent at room temperature such as a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain, water, or an alcohol having 15 or less carbon atoms
  • a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain water, or an alcohol having 15 or less carbon atoms
  • the third solvent a liquid solvent at room temperature, such as a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain, water, or an alcohol having 15 or less carbon atoms.
  • non-polar hydrocarbons if the number of carbon atoms is less than 6, drying is too fast and there is a problem in the handling of the dispersion, and if the number of carbon atoms exceeds 20, the viscosity of the dispersion increases and calcination occurs. There is a problem that carbon is apt to remain in the use which is performed.
  • alcohol if the number of carbons exceeds 15, there is a problem that the viscosity of the dispersion increases and carbon is apt to remain in the case of firing
  • the third solvent examples include long-chain alkanes such as hexane, heptane, octane, decane, pendecane, dodecane, tridecane, and trimethylpentane; Aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene and dodecylbenzene, and alcohols such as hexanol, heptanol, octanol, decanol, cyclohexanol and terpineol can be used. These solvents may be used alone or in the form of a mixed solvent. For example, it may be a mineral spirit that is a mixture of long-chain alkanes.
  • long-chain alkanes such as hexane, heptane, octane, decane, pendecane, dodecane, tridecane, and trimethylpentane
  • Aromatic hydrocarbons such
  • the present invention is suitable for such a case. It is.
  • the constituent elements of the metal ultrafine particles used in the present invention are not particularly limited as long as they are highly conductive metals, and may be appropriately selected according to the purpose. For example, at least one metal selected from gold, silver, copper, palladium, and many other conductive metals, or an alloy of these metals. Among them, silver and copper are preferable because of their high conductivity.
  • ultrafine metal particles composed of any of these elements one or more of the above-mentioned alkylamines, carboxamides, and aminocarboxylates may be used. Acts as a dispersant, and the expected dispersion liquid of ultrafine metal particles is obtained.
  • the concentration of ultrafine metal particles in the ink jet ink used for forming the FPD electrode is 10% by weight to 70% by weight, preferably 10% by weight to 50% by weight. If it is less than 10% by weight, the ink characteristics such as viscosity and surface tension are sufficiently satisfied, but the electric resistance after firing is not a sufficient value for a conductive circuit, and if it exceeds 70% by weight, the viscosity and surface tension are exceeded. Cannot be used as an ink jet for forming FPD electrodes.
  • ultrafine particles of Ag are produced by a gas evaporation method in which silver (Ag) is evaporated under a helium gas pressure of 0.5 Torr, ⁇ -terbineol is added to the ultrafine particles of Ag during the production process. 20: 1 (volume ratio) vapor with octylamine, cooled, collected and recovered, and the average particle diameter of 0.08 dispersed independently in ⁇ -terbineol solvent.
  • An Ag ultrafine particle independent dispersion liquid containing 25% by weight of Ag ultrafine particles was prepared. Five volumes of acetone were added to one volume of the dispersion, followed by stirring. Ultrafine particles in the dispersion liquid settled out due to the action of polar acetone.
  • a commercially available piezo method was used in which a Cu ultrafine particle independent dispersion was added to the obtained Ag ultrafine particle independent dispersion so that the proportion of Cu in the metal component became 10% by weight as an ink.
  • a thin line with a width of 50 m, a coating thickness of 60 zm and a length of 100 mm was drawn on a borosilicate glass substrate.
  • baking was performed at 300 ° C for 30 minutes using an electric furnace.
  • the electrode wiring did not peel off from the substrate even at a peeling strength of 4.5 kgf / mm 2 , and exhibited high adhesion.
  • 9 screen PDP 42 type panel using a metal ultrafine particle ink as a material, a large XY table with an absolute position accuracy of ⁇ 10 m and a 512 x 510 m pitch interval were used.
  • a scan electrode on the front panel is formed using an ink jet printer equipped with multiple multi-nozzles, and a similar table using an ink jet printer equipped with 512 multi-nozzles with a 900 m pitch interval.
  • the electrode forming process and the panel manufacturing process for forming the address electrodes on the back plate and then forming the PDP panel will be described below.
  • the 42 type with a screen ratio of 16: 9 has a diagonal length of 1060 mm, the number of pixels is 1024 on both the front and back panels, 1024 x 2 scan electrodes on the front panel, and address electrodes on the rear panel. It consists of 1024 X 3 (RGB) books.
  • the electrode pitch is 510 m for the scan electrode and 900; m for the padless electrode.
  • the electrode width is 50 m and the thickness is 2 m. 5 to 6 pL of ink at a frequency of 14.4 KHz from each nozzle Is controlled so that the ink is discharged.
  • As the ink an ink in which the Cu ultrafine particle independent dispersion was added to the Ag ultrafine particle independent dispersion so that the ratio of Cu in the metal component was 10% by weight was used.
  • the ITO electrode has already been formed in the conventional process.
  • the diagonal length is 1060 mm and the horizontal-to-vertical ratio is 16: 9.
  • the gate glass substrate was conveyed to a predetermined position on an XY table of a drawing apparatus by a mouth pot, vacuum-adsorbed on a table, and fixed. After accurate positioning of the glass substrate with reference to the positioning markers pre-printed on the four corners of the glass substrate, spaces for forming lead electrodes are provided on both sides of the glass substrate end face.
  • Drawing was performed in the longitudinal direction of the glass substrate, leaving 15 mm.
  • the ink was ejected from the nozzle, it spread in a circle of about 50 m on the substrate and dried instantaneously.
  • the process of loading the glass substrate into the drawing device, vacuum suction, positioning, drawing the electrodes, drawing the drawn electrodes, and unloading was completed in about 60 seconds. This was one thousandth of the Spaghetti method. From the change in the weight of the cartridge, it was found that the amount of ink used to form the bus electrodes on the front panel was 1.84 g in terms of metal weight. This was about one-fifth of the weight of material used in the sputtering method. In addition, it was confirmed that there were no defective spots in the drawing lines due to sufficient maintenance of the drawing device.
  • a dielectric glass with a thickness of about 40 m is applied to the entire surface from the top of the dry drawing electrode by a screen printer, and placed in a belt furnace in an air atmosphere, and the keeping time at 600 ° C is 3 hours.
  • the firing was performed with the moving speed set to be 0 minutes.
  • An address electrode on the back plate was formed directly on the glass substrate at a pitch of 900 m in the same manner as the scan electrode. The drawing of 512 lines was repeated six times, and the formation of 102 4 X 3 address electrodes was completed in about 13 seconds. In the process of forming the electrodes on the back plate, the process from loading to unloading is completed in about 60 seconds, as with the front plate, and the time required for the process can be reduced to one thousandth of that required by the sputtering method. Was.
  • the front plate and the back plate on which the electrodes were formed as described above were returned to the normal manufacturing process, the two were sealed, evacuated, gas-sealed, and then subjected to aging treatment to form a PDP panel. Assembled.
  • the panel was subjected to a continuous lighting test for 1000 hours, and it was confirmed that the electrodes had sufficient durability. This panel showed no difference in image even when compared to the panel manufactured by the method of the prior art.
  • an FPD electrode is formed by an ink jet printing using an ink jet ink composed of a metal ultrafine particle independent dispersion liquid containing a metal ultrafine particle and a dispersant, so that there is no waste of materials used. Since the manufacturing process can be shortened, the manufacturing cost can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Chemically Coating (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

A method by which an electrode for flat panel displays (FPDs) is formed from an ink-jet ink with an ink-jet printer. The ink-jet ink, which comprises a dispersion having excellent ink properties, is obtained by a process which comprises: a first step in which a metal vapor is contacted with a first-solvent vapor by the gas vaporization method to obtain a dispersion of ultrafine metal particles; a second step in which a second solvent which is a low-molecular polar solvent is added to the dispersion to settle the ultrafine metal particles and the first solvent is removed by extraction; and a third step in which a third solvent is added to the resultant sediment to conduct solvent replacement and obtain a dispersion of ultrafine metal particles, a dispersant being added in the first step and/or the third step. In the ink, the ultrafine metal particles, which have a particle diameter of 100 nm or smaller, are evenly dispersed independently. Using the ink-jet ink, an electrode for an FPD is formed.

Description

明細書 フラッ )電極形成方法 技術分野  Description FLA) Electrode formation method Technical field
本発明は、 金属超微粒子及び分散剤を含む金属超微粒子独立分散液からなるィ ンクジェットプリンタ用インクを用いたフラットパネルディスプレイ (以下、 F PDとも称す。 ) の電極形成方法に関する。  The present invention relates to a method for forming an electrode of a flat panel display (hereinafter, also referred to as FPD) using an ink for an ink jet printer, which is composed of an independent dispersion liquid of ultrafine metal particles and ultrafine metal particles containing a dispersant.
' 背景技術 '' Background technology
従来から、 着色塗料、 導電性塗料などの分野では、 金属超微粒子分散液が用い られているが、 インクとして金属超微粒子分散液を用い、 インクジェット記録方 式を利用して F PDの電極を形成することは今まで行われていない。 FPDには、 液晶ディスプレイ (LCD) 、 プラズマディスプレイパネル (以下、 PDPとも 称す。 ) 、 有機 ELディスプレイ (EL) 、 フィールド ·ェミッション ·デイス プレイ (FED) 等様々あるが、 本発明では、 主に P DPについて代表的に以下 説明する。  Conventionally, in the fields of colored paints and conductive paints, ultrafine metal particle dispersions have been used.However, using ultrafine metal particle dispersions as ink and forming FPD electrodes using an inkjet recording method Has not been done to date. There are various types of FPD such as a liquid crystal display (LCD), a plasma display panel (hereinafter, also referred to as a PDP), an organic EL display (EL), a field emission display (FED), and the like. The PDP is typically described below.
PDPは民生用の大型ディスプレイとして注目されているが、 幅広く普及する ためには、 製造工程の簡略化による大幅なコストダウンが切望されている。 まず、 その製造工程について、 42インチハイビジョン用カラ一 PDPの製造を例にと り説明する。 工程は前面板と背面板の二種類の製造工程からなる。 まず、 前面板 における電極はスキャン電極と呼ばれ、 ガラス板上に I TO透明電極が 1024 画素の各画素毎に 2本形成される。 透明電極だけでは抵抗値が高いので、 透明電 極の上に金属のバス電極を形成する。 バス電極は幅 50 /m、 厚み 2 /imであり、 従来の工程においては、 バス電極は厚膜 Agぺ一ストを使ったスクリーン印刷法、 又はスパッ夕法による全面成膜、 レジスト膜を使ったフォトリソグラフィ一法に よる電極パターン形成法により形成されている。 次に、 背面板における電極はァ ドレス電極と呼ばれ、 ガラス板上に直接に 1024画素の各画素毎に 3本形成さ れる。 アドレス電極は、 幅 5 0 ΠΙ、 厚み 2 mであり、 スキャン電極と同様に、 スクリーン印刷、 又はスパッ夕、 フォトリソグラフィ一法により形成される。 ス キャン電極、 ァドレス電極共にその上からガラス誘電体層が形成される。 Although PDPs are attracting attention as large displays for consumer use, there is an urgent need for significant cost reductions by simplifying the manufacturing process for widespread use. First, the manufacturing process will be described using an example of manufacturing a 42-inch high-definition color PDP. The process consists of two types of manufacturing processes, a front plate and a back plate. First, the electrodes on the front panel are called scan electrodes, and two ITO transparent electrodes are formed on a glass plate for each pixel of 1024 pixels. Since a transparent electrode alone has a high resistance, a metal bus electrode is formed on the transparent electrode. The bus electrode has a width of 50 / m and a thickness of 2 / im.In the conventional process, the bus electrode is formed by a screen printing method using a thick Ag It is formed by an electrode pattern forming method using one photolithography method. Next, the electrodes on the back plate are called address electrodes. Three electrodes are formed directly on the glass plate for each pixel of 1024 pixels. It is. The address electrodes have a width of 50 mm and a thickness of 2 m, and are formed by screen printing, sputtering, or one photolithography method, like the scan electrodes. A glass dielectric layer is formed on both the scan electrode and the padless electrode.
前面板、 背面板共にその後の工程を経た後、 互いに貼り合わせて P D Pパネル が完成されるのであるが、 工程の中でこの電極形成工程が最も煩雑で工数がかか り、 コストダウンのための障害となっている。  The PDP panel is completed by bonding the front panel and the rear panel to each other after the subsequent processes.However, this electrode forming process is the most complicated and requires a lot of man-hours in the process. It is an obstacle.
上記金属超微粒子分散液の製造法としては、 金属超微粒子又は粉末を溶剤、 樹 脂、 分散剤などと共に、 攪拌、 超音波の印加、 ボールミル、 サンドミルなどによ り分散処理して超微粒子分散液を製造する方法が知られており、 また、 この方法 によって得られた分散液が、 塗料などの分野で用いられている。 この製造法のう ち、 例えば、 液相中で直接超微粒子を得る方法として、 ガス雰囲気中でかつ溶剤 の蒸気の共存する気相中で金属を蒸発させ、 蒸発した金属を均一な超微粒子に凝 縮させて溶剤中に分散し、 分散液を得るガス中蒸発法 (特許第 2 5 6 1 5 3 7号 公報) や、 不溶解性沈殿反応又は還元剤による還元反応を利用する方法などがあ る。 これらの金属超微粒子分散液の製法の中でも、 ガス中蒸発法によるものは、 粒径 1 0 0 n m以下の超微粒子が均一に分散された分散液を安定に製造でき、 ま た、 製造の際に液相法におけるよりも少量の分散安定剤又は樹脂成分を使用する だけで、 所定濃度の超微粒子分散液をつくれる。  As a method for producing the above-described ultrafine metal particle dispersion, the ultrafine metal particle or powder is dispersed with a solvent, a resin, a dispersant, or the like by stirring, application of an ultrasonic wave, a ball mill, a sand mill, or the like, and then the ultrafine particle dispersion Is known, and the dispersion obtained by this method is used in the field of paints and the like. In this production method, for example, as a method of obtaining ultrafine particles directly in a liquid phase, a metal is evaporated in a gas atmosphere and in a gas phase in which a vapor of a solvent coexists, and the evaporated metal is converted into uniform ultrafine particles. A gas-evaporation method that obtains a dispersion by condensing and dispersing in a solvent to obtain a dispersion (Japanese Patent No. 2561357), and a method using an insoluble precipitation reaction or a reduction reaction with a reducing agent are used. is there. Among the methods for producing these ultrafine metal particle dispersions, those based on the gas evaporation method can stably produce a dispersion in which ultrafine particles having a particle size of 100 nm or less are uniformly dispersed. By using a smaller amount of dispersion stabilizer or resin component than in the liquid phase method, an ultrafine particle dispersion having a predetermined concentration can be prepared.
上記したように、 インクジ Xット用インクとして金属超微粒子分散液を使用し た例が無かったのは、 従来の金属超微粒子分散液には、 インクジェット用インク として使用可能であるためのインク特性 (粘度、 表面張力など) を満足するもの が存在しなかったからである。 従来のガス中蒸発法により得られる金属超微粒子 は凝集しており、 溶剤中に分散を試みても安定な状態にはなり難い。 従って、 こ のような金属超微粒子分散液をインクジエツト用インクとして使用しても、 金属 超微粒子の凝集体がィンクジエツ卜ノズルを目詰まりさせてしまうという問題が あった。 また、 超微粒子が独立分散した金属超微粒子独立分散液においても、 こ れをィンクジエツト用ィンクとして使用する際には、 ィンク特性を満足するよう な適した溶剤を使用した分散液とすることが必要であるが、 適切な溶剤を選択す ることに対して簡単には対応し難いという問題があった。 また、 従来技術のガス中蒸発法では、 蒸発した金属蒸気が凝縮する際に、 共存 する溶剤が変性されて副生成物を生じ、 それらの量によっては、 分散液の保存経 時、 粘度、 着色などの点で問題が生じる場合がある。 さらに、 後で説明するよう に、 分散液の用途によっては、 このガス中蒸発法の工程では使い難い低沸点溶剤 や水及びアルコール系溶剤などに分散した超微粒子分散液が要求されるという問 題がある。 As described above, there has been no example of using a metal ultrafine particle dispersion as an ink for an ink jet, because the conventional metal ultrafine particle dispersion has an ink property that can be used as an inkjet ink. (Viscosity, surface tension, etc.) did not exist. The ultrafine metal particles obtained by the conventional gas evaporation method are agglomerated, and are unlikely to be in a stable state even if they are dispersed in a solvent. Therefore, even when such a dispersion of ultrafine metal particles is used as an ink jet ink, there is a problem that aggregates of ultrafine metal particles may clog the ink jet nozzle. Also, when using the metal ultrafine particle independent dispersion liquid in which the ultrafine particles are independently dispersed as an ink for an ink jet, it is necessary to use a suitable solvent that satisfies the ink characteristics. However, there was a problem that it was not easy to respond to selecting an appropriate solvent. In addition, in the prior art gas evaporation method, when the evaporated metal vapor condenses, the coexisting solvent is denatured to produce by-products. In some cases, problems may arise. Further, as will be described later, there is a problem that, depending on the use of the dispersion, an ultrafine particle dispersion dispersed in a low-boiling solvent, water, or an alcohol-based solvent which is difficult to use in the gas evaporation method is required. There is.
P D Pの従来の製造工程によれば、 前面板と背面板はそれぞれ別の工程で製造 され、 最終的に組み合わされてパネルとなる。  According to the conventional PDP manufacturing process, the front panel and the rear panel are manufactured in different processes, respectively, and finally combined to form a panel.
まず、 前面板の製造工程について説明する。 ガラス基板受け入れ検査後、 スキ ヤン電極の I T Oパターンをスパッタ法及びフォトリソグラフィ一法により形成 する。 I T O膜だけでは抵抗値が高いので、 I T O膜の上にバス電極として幅 5 0 m, 厚さ 2 mの金属膜を形成するが、 この方法には、 現在の所、 厚膜 A g ペーストを材料としたスクリーン印刷法、 又は C r / C u / C rの積層スパッタ 膜をフォトリソグラフィ一法によりパターンエッチする方法の二つがある。 バス 電極形成後、 その上にガラス誘電体層、 ブラックマトリックス、 シ一ル層、 M g 0層を順次形成し、 次いで背面板と組み合わせるための組み立てに移る。  First, the manufacturing process of the front plate will be described. After the glass substrate acceptance inspection, the ITO pattern of the scan electrode is formed by sputtering and photolithography. Since the resistance of the ITO film alone is high, a metal film with a width of 50 m and a thickness of 2 m is formed as a bus electrode on the ITO film. There are two methods: a screen printing method using the material, and a method of pattern-etching a Cr / Cu / Cr laminated sputtered film by a photolithography method. After the formation of the bus electrode, a glass dielectric layer, a black matrix, a sealing layer, and a MgO layer are sequentially formed thereon, and then the assembly is started to be combined with the back plate.
次に、 背面板の製造工程について説明する。 ガラス基板受け入れ検査後、 アド レス電極を形成するが、 この方法には、 前面板と同様に、 厚膜 A gペーストを材 料としたスクリーン印刷法、 又は C r / C u / C rの積層スパッタ膜をフォトリ ソグラフィ一法によりパターンエッチする方法の二つがある。 アドレス電極形成 後、 その上にガラス誘電体層、 ストライプバリアリブ、 蛍光体層、 シール層を順 次形成し、 次いで前面板と組み合わせるための組み立て工程に移り、 互いのパネ ルを封着し、 排気し、 ガス封入した後、 エージング処理を行って P D Pパネルを 充成 ^る。  Next, the manufacturing process of the back plate will be described. After the acceptance inspection of the glass substrate, the address electrodes are formed.This method, like the front plate, uses a screen printing method using a thick-film Ag paste or a laminate of Cr / Cu / Cr. There are two methods: pattern etching of the sputtered film by photolithography. After the address electrodes are formed, a glass dielectric layer, stripe barrier ribs, phosphor layer, and seal layer are sequentially formed thereon, and then the assembly process for assembling with the front panel is performed. After evacuating and filling with gas, aging is performed to fill the PDP panel.
上記電極を形成する工程で、 スクリーン印刷法においては、 スクリーンの位置 ズレによる形成位置不良発生、 及びスクリーンの目詰まりによるパターン形成不 良によるオーブン欠陥の発生や、 ペーストがスクリーン上に残ることによる材料 ロスの発生の問題がある。 スパッ夕、 フォトリソグラフィ一法は、 真空プロセス であり、 フォトリソによるパターンエッチが必要であることから、 スパッタ、 レ ジスト塗布、 パターン光照射、 現像、 エッチング、 レジストアツシング等の 6〜 7工程を必要とし、 しかも全面に成膜するので材料の使用ロスが大きいという問 題がある。 In the process of forming the above electrodes, in the screen printing method, defects in the formation position due to screen displacement, occurrence of oven defects due to pattern formation failure due to clogging of the screen, and materials due to paste remaining on the screen There is a problem of loss. One method of photolithography is a vacuum process, which requires pattern etching by photolithography. It requires 6 to 7 processes such as dist coating, pattern light irradiation, development, etching, and resist asshing, and has a problem that the material used is large because the film is formed over the entire surface.
従って、 本発明は、 上記従来技術が有する問題点を解消することにあり、 イン クジエツト用インクとして使用可能であるためのインク特性を満足する、 金属超 微粒子独立分散液からなるインクジエツト用インクを作製し、 インクジエツトプ リンタを用いて、 F P Dの電極を形成する方法を提供することを目的としている。 発明の開示  Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to prepare an ink jet ink comprising an independent dispersion liquid of ultrafine metal particles, which satisfies the ink characteristics for use as an ink for an ink jet. It is another object of the present invention to provide a method of forming an FPD electrode using an ink jet printer. Disclosure of the invention
本発明者らは、 前記目的を達成するために、 金属超微粒子が独立状態で分散し ている分散液、 すなわち、 超微粒子の凝集が発生せず、 また流動性も保たれてお り、 インク特性に優れた金属超微粒子独立分散液についての研究 ·開発を行って きたが、 特定の工程を経、 また、 特定の分散剤を使用することにより得られた分 散液が、 従来の問題点を解決することができることを見出した。 また、 本発明者 らは、 P D Pの電極形成について鋭意検討の結果、 3 0 0 °C程度の低温焼成が可 能な上記金属超微粒子の独立分散液からなるインクを用いたマルチへッドインク ジェットプリン夕を用いることにより、 スパッタ法、 スクリーン印刷法等におけ るような材料の無駄がなく、 また、 スパッタ法のような真空バッチ処理を必要と せず、 また、 スクリーン印刷法のようなスクリーンの位置ズレによる形成位置不 良や、 スクリーンの目詰まりによるオープン欠陥を発生せず、 しかも短時間で電 極パ夕一ン描画が可能であることを見出し、 本発明を完成するに至った。  In order to achieve the above object, the present inventors have proposed a dispersion liquid in which ultrafine metal particles are dispersed independently, that is, agglomeration of ultrafine particles does not occur and fluidity is maintained. We have been conducting research and development on metal ultrafine particle independent dispersions with excellent properties.However, dispersions obtained through specific processes and using specific dispersants have been Can be solved. In addition, the inventors of the present invention have conducted intensive studies on the formation of PDP electrodes, and have found that a multi-head ink jet printer using an ink composed of an independent dispersion liquid of the metal ultrafine particles capable of being fired at a low temperature of about 300 ° C. By using the evening, there is no waste of materials as in the sputtering method, the screen printing method, etc., and there is no need for vacuum batch processing as in the sputtering method, and there is no need to use a screen as in the screen printing method. The present inventors have found that an electrode pattern can be drawn in a short time without generating a defective forming position due to a positional deviation or an open defect due to clogging of a screen, and thus completed the present invention.
本発明のフラットパネルディスプレイの電極形成方法は、 特定のインクジエツ ト用インクを用いるものであり、 このインクジェット用インクは、 金属超微粒子 及び分散剤を含む金属超微粒子独立分散液からなるものである。 分散剤を含んだ 金属超微粒子独立分散液は、 この超微粒子が個々に独立して均一に分散しており、 流動性が保たれている。  The method for forming an electrode of a flat panel display of the present invention uses a specific ink jet ink, and this ink jet ink is composed of an ultrafine metal particle-independent dispersion liquid containing ultrafine metal particles and a dispersant. In the metal ultrafine particle independent dispersion liquid containing a dispersant, the ultrafine particles are individually and uniformly dispersed independently, and the fluidity is maintained.
この金属超微粒子の粒径は通常 1 0 0 n m以下、 好ましくは 1 0 n m以下であ る。 金属超微粒子独立分散液の粘度は l〜 1 0 0 m P a ' s、 好ましくは 1〜 1 O m P a · s、 その表面張力は 2 5〜8 O mN/m, 好ましくは 3 0〜6 O mN Zmであり、 このような物性はィンクジエツト用インクとして用いるためのィン ク特性を満足している。 The particle diameter of the ultrafine metal particles is usually 100 nm or less, preferably 10 nm or less. The viscosity of the metal ultrafine particle independent dispersion is from l to 100 mPas, preferably from 1 to 10 mPas, and the surface tension is from 25 to 8 mN / m, preferably from 30 to 6 O mN Zm, which satisfies the ink properties for use as an ink for ink jet.
分散剤はアルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩の中から選 ばれた 1つ若しくは複数のものであり、 特にアルキルアミンはその主鎖の炭素数 が 4〜2 0、 好ましくは 8〜1 8であり、 また、 アルキルアミンは第 1級ァミン であることが好ましい。  The dispersing agent is one or more selected from alkylamine, carboxylic acid amide, and aminocarboxylic acid salt. In particular, alkylamine has a main chain having 4 to 20 carbon atoms, preferably 8 to 18 carbon atoms. And the alkylamine is preferably a primary amine.
前記分散液は、 分散媒として、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及び炭素数が 1 5以下のアルコール系溶剤から選ばれた少なくとも 1種の溶剤を 含んでいることが好ましい。  The dispersion liquid contains, as a dispersion medium, a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain, water, and at least one solvent selected from alcohol solvents having 15 or less carbon atoms. Is preferred.
本発明で用いるインクジエツト用インクは、 ガス雰囲気中でかつ第 1溶剤の蒸 気の存在下で金属を蒸発させることにより溶剤中に金属超微粒子が分散した金属 超微粒子分散液を得る第 1工程と、 該第 1工程で得られた分散液に低分子量の極 性溶剤である第 2溶剤を加えて該金属超微粒子を沈降させ、 その上澄み液を取り 除くことにより該第 1溶剤を実質的に除去する第 2工程と、 このようにして得ら れた沈降物に第 3溶剤を加えて金属超微粒子の独立分散液を得る第 3工程とから 製造されたものである。 第 1工程及びノ又は第 3工程で分散剤が加えられる。 また、 本発明で用いるインクジェット用インクの製法は、 ガス雰囲気中でかつ 第 1溶剤の蒸気の存在下で金属を蒸発させ、 該金属の蒸気と該溶剤の蒸気とを接 触させ、 冷却捕集して、 該溶剤中に金属超微粒子が分散した金属超微粒子分散液 を得る第 1工程と、 該第 1工程で得られた分散液に低分子量の極性溶剤である第 2溶剤を加えて該金属超微粒子を沈降させ、 その上澄み液を取り除くことにより 該第 1溶剤を実質的に除去する第 2工程と、 このようにして得られた沈降物に第 3溶剤を加えて金属超微粒子の独立分散液を得る第 3工程とからなる。 第 1工程 及び/又は第 3工程で分散剤を加えることによりインクジエツト用インクに適し た金属超微粒子分散液が得られる。  The ink jet ink used in the present invention comprises a first step of obtaining a metal ultrafine particle dispersion in which metal ultrafine particles are dispersed in a solvent by evaporating the metal in a gas atmosphere and in the presence of vaporization of the first solvent. The second solvent, which is a low molecular weight polar solvent, is added to the dispersion obtained in the first step to precipitate the metal ultrafine particles, and the first solvent is substantially removed by removing the supernatant. It is produced from a second step of removing and a third step of adding a third solvent to the sediment thus obtained to obtain an independent dispersion of ultrafine metal particles. In the first step and the third or third step, a dispersant is added. Further, the method for producing the ink-jet ink used in the present invention includes the steps of: evaporating a metal in a gas atmosphere and in the presence of a vapor of a first solvent; bringing the vapor of the metal into contact with the vapor of the solvent; Then, a first step of obtaining a metal ultrafine particle dispersion in which the metal ultrafine particles are dispersed in the solvent, and adding a second solvent, which is a low molecular weight polar solvent, to the dispersion obtained in the first step, A second step of substantially removing the first solvent by sedimenting the ultrafine metal particles and removing a supernatant thereof, and adding a third solvent to the sediment obtained in this way to separate the ultrafine metal particles. And a third step of obtaining a dispersion. By adding a dispersant in the first step and / or the third step, a metal ultrafine particle dispersion liquid suitable for an ink jet ink can be obtained.
該第 3溶剤は、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及びアルコール (炭素数が 1 5以下) 系溶剤から選ばれた少なくとも 1種であることが、 インク ジエツト用インクの場合には好ましい。 発明を実施するための最良の形態 The third solvent may be at least one selected from non-polar hydrocarbons having 6 to 20 carbon atoms in the main chain, water, and alcohol (having a carbon number of 15 or less) solvents. In the case of ink, it is preferable. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態を以下に説明する。  An embodiment of the present invention will be described below.
インクジエツト用ィンクに要求されるインク特性に関し、 インクの供給安定性 やインクの液滴形成飛翔安定性やプリン夕へッドの高速応答性などを実現するた めには、 通常の動作時における温度 (0〜5 0 °C) において、 その粘度が 1〜1 0 O m P a · s、 好ましくは 1〜 1 O m P a · s、 その表面張力が 2 5〜8 O m NZm、 好ましくは 3 0〜6 O mN/mであり、 本発明で用いるインクジェット 用インクはその特性を満足する。  Regarding the ink characteristics required for the ink jet ink, in order to achieve the stability of ink supply, the stability of ink droplet formation and flight, and the high-speed response of the print head, the temperature during normal operation is required. (0 to 50 ° C), its viscosity is 1 to 10 OmPas, preferably 1 to 10 OmPas, and its surface tension is 25 to 8 OmNZm, preferably 30 to 60 OmN / m, and the ink-jet ink used in the present invention satisfies the characteristics.
上記したように、 本発明における金属超微粒子は、 ガス中蒸発法で製造され得 るものであり、 この方法によれば粒径 1 0 0 n m以下、 好ましくは 1 0 n m以下 の粒度の揃った金属超微粒子を製造することができる。 このような金属超微粒子 を原料とし、 インクジエツト用インクとしての用途に適したようにするために溶 剤置換を行っているので、 また、 この超微粒子の分散安定性を増すために分散剤 を添加しているので、 金属超微粒子が個々に独立して均一に分散され、 かつ、 流 動性のある状態を保持している、 インクジエツト用ィンクに適した分散液が得ら れる。  As described above, the ultrafine metal particles in the present invention can be produced by a gas evaporation method, and according to this method, the particle diameter is 100 nm or less, preferably 10 nm or less. Ultrafine metal particles can be produced. Since such metal ultrafine particles are used as raw materials and solvent replacement is performed to make them suitable for ink jet inks, a dispersant is added to increase the dispersion stability of these ultrafine particles. As a result, a dispersion liquid suitable for an ink jet ink, in which the ultrafine metal particles are individually and uniformly dispersed, and which maintains a fluid state, can be obtained.
本発明によれば、 ガス中蒸発法により得られた金属超微粒子を用いて所期の金 属超微粒子分散液を製造する場合、 まず、 第 1工程において、 真空室中でかつ H eなどの不活性ガスの圧力を 1 O T o r r以下とする雰囲気の下で金属を蒸発さ せ、 蒸発した金属の蒸気を冷却捕集する際に、 該真空室中に、 1種以上の第 1溶 剤の蒸気を導入し、 金属が粒成長する段階においてその表面を該第 1溶剤蒸気と 接触せしめ、 得られる一次粒子が独立してかつ均一に第 1溶剤中にコロイド状に 分散した分散液を得、 次の第 2工程で第 1溶剤を除去する。 このように第 1溶剤 を除去するのは、 第 1工程において蒸発した金属蒸気が凝縮する際に、 共存する 第 1溶剤が変性されて生じる副生成物を除くためであり、 また、 用途に応じて、 第 1工程で使い難い低沸点溶剤や水、 アルコール系溶剤などに分散した超微粒子 独立分散液を製造するためである。  According to the present invention, when an intended metal ultrafine particle dispersion is produced using ultrafine metal particles obtained by an in-gas evaporation method, first, in the first step, in a vacuum chamber and He or the like, The metal is evaporated under an atmosphere in which the pressure of the inert gas is 1 OTorr or less, and when the vapor of the evaporated metal is cooled and collected, one or more types of the first solvent are contained in the vacuum chamber. Vapor is introduced and the surface of the metal is brought into contact with the first solvent vapor at the stage of grain growth to obtain a dispersion in which the obtained primary particles are independently and uniformly colloidally dispersed in the first solvent, In the next second step, the first solvent is removed. The reason why the first solvent is removed is to remove by-products generated by denaturation of the coexisting first solvent when the metal vapor evaporated in the first step is condensed. This is to produce an ultrafine particle independent dispersion dispersed in a low-boiling solvent, water, or an alcohol solvent that is difficult to use in the first step.
本発明によれば、 第 2工程において、 第 1工程で得られた分散液に低分子量の 極性溶剤である第 2溶剤を加えて該分散液中に含まれた金属超微粒子を沈降させ、 その上澄み液を静置法ゃデカンテ——ンョンなどにより除去して第 1工程で使用し た第 1溶剤を除去する。 この第 2工程を複数回繰り返して、 第 1溶剤を実質的に 除去する。 そして、 第 3工程において、 第 2工程で得られた沈降物に新たな第 3 溶剤を加えて、 溶剤置換を行い、 所期の金属超微粒子分散液を得る。 これにより、 粒径 1 0 0 n m以下の金属超微粒子が独立状態で分散している金属超微粒子独立 分散液が得られる。 According to the present invention, in the second step, the second solvent that is a low molecular weight polar solvent is added to the dispersion obtained in the first step to precipitate ultrafine metal particles contained in the dispersion, The supernatant is removed by a static decantation method or the like to remove the first solvent used in the first step. This second step is repeated a plurality of times to substantially remove the first solvent. Then, in the third step, a new third solvent is added to the sediment obtained in the second step, and the solvent is replaced to obtain a desired ultrafine metal particle dispersion. Thereby, a metal ultrafine particle independent dispersion in which metal ultrafine particles having a particle size of 100 nm or less are dispersed in an independent state is obtained.
本発明によれば、 必要に応じ、 第 1工程及び/又は第 3工程で分散剤を加える ことができる。 第 3工程で添加する場合には、 第 1工程で使用する溶剤に溶解し ないような分散剤でも使用可能である。  According to the present invention, a dispersant can be added in the first step and / or the third step as needed. When added in the third step, a dispersant that does not dissolve in the solvent used in the first step can be used.
本発明で使用可能な分散剤としては、 特に限定されないが、 アルキルァミン、 カルボン酸アミド、 ァミノカルボン酸塩の中から選ばれた 1つ若しくは複数のも のが用いられる。 特にアルキルァミンとしては、 炭素数 4〜 2 0の主骨格を持つ アルキルァミンが好ましく、 炭素数 8〜1 8の主骨格を持つアルキルァミンが安 定性、 ハンドリング性の点からはさらに好ましい。 アルキルァミンの主鎖の炭素 数が 4より短かいと、 ァミンの塩基性が強過ぎて金属超微粒子を腐食する傾向が あり、 最終的にはこの超微粒子を溶かしてしまうという問題がある。 また、 アル キルァミンの主鎖の炭素数が 2 0よりも長いと、 金属超微粒子分散液の濃度を高 くしたときに、 分散液の粘度が上昇してハンドリング性がやや劣るようになると いう問題がある。 また、 全ての級数のアルキルァミンが分散剤として有効に働く が、 第 1級のアルキルァミンが安定性、 ハンドリング性の点からは好適に用いら れる。  The dispersant that can be used in the present invention is not particularly limited, and one or more selected from alkylamines, carboxamides, and aminocarboxylates are used. In particular, as the alkylamine, an alkylamine having a main skeleton of 4 to 20 carbon atoms is preferable, and an alkylamine having a main skeleton of 8 to 18 carbon atoms is more preferable in terms of stability and handling properties. If the number of carbon atoms in the main chain of the alkylamine is less than 4, the basicity of the amine is too strong, which tends to corrode the metal ultrafine particles, and ultimately dissolves the ultrafine particles. Further, if the number of carbon atoms in the main chain of alkylamine is longer than 20, when the concentration of the ultrafine metal particle dispersion is increased, the viscosity of the dispersion is increased and the handling property is slightly deteriorated. There is. Alkylamines of all classes work effectively as dispersants, but primary alkylamines are preferably used in terms of stability and handling.
本発明で使用することができるアルキルァミンの具体例としては、 例えば、 ブ チルァミン、 ォクチルァミン、 ドデシルァミン、 へクサドデシルァミン、 ォクタ デシルァミン、 ココアミン、 夕ロウァミン、 水素化タロウァミン、 ォレイルアミ ン、 ラウリルァミン、 及びステアリルァミンなどのような第 1級ァミン、 ジココ ァミン、 ジ水素化タロウァミン、 及びジステアリルァミンなどのような第 2級ァ ミン、 並びにドデシルジメチルァミン、 ジドデシルモノメチルァミン、 テトラデ シルジメチルァミン、 ォクタデシルジメチルァミン、 ココジメチルァミン、 ドデ ン、 及びトリオクチルァミンなどのような第 3級 アミンゃ、 その他に、 ナフ夕レンジァミン、 ステアリルプロピレンジァミン、 ォ クタメチレンジァミン、 及びノナンジァミンなどのようなジァミンがあり、 カル ボン酸アミドゃァミノカルボン酸塩の具体例としては、 例えば、 ステアリン酸ァ ミド、 パルミチン酸アミド、 ラウリン酸ラウリルアミド、 ォレイン酸アミド、 ォ レイン酸ジエタノールアミド、 ォレイン酸ラウリルアミド、 ステアラニリド、 ォ レイルアミノエチルダリシンなどがある。 これらのアルキルァミン、 カルボン酸 アミドゃァミノカルボン酸塩は、 1種以上を使用することができ、 それにより安 定な分散剤として作用する。 Specific examples of alkylamines that can be used in the present invention include, for example, butylamine, octylamine, dodecylamine, hexadodecylamine, octadecylamine, cocoamine, evening lauamine, hydrogenated taroamine, oleylamine, laurylamine, and stearylamine. Primary amines such as amines, secondary amines such as dicocoamine, dihydrotallowamine, and distearylamine, and dodecyldimethylamine, didodecylmonomethylamine, tetradecyldimethylamine Tertiary such as octadecyldimethylamine, cocodimethylamine, doden, and trioctylamine Examples of amines include diamines such as naphthylenediamine, stearylpropylenediamine, octamethylenediamine, and nonandiamine. Specific examples of carboxylic acid amide diaminocarboxylates include, for example, stearine. Acid amide, palmitic amide, lauryl laurate, oleic amide, diethanolamide oleic, lauryl oleic, stearanilide, oleylaminoethyldaricin, and the like. One or more of these alkylamines and carboxylic acid amido diamino carboxylate salts can be used, thereby acting as a stable dispersant.
本発明によれば、 アルキルァミンの含有量は、 金属超微粒子重量基準でおよそ According to the present invention, the content of alkylamine is approximately based on the weight of the ultrafine metal particles.
0 . ;!〜 1 0重量%、 望ましくは 0 . 2〜7重量%の範囲である。 含有量が 0 . 1重量%未満であると、 金属超微粒子が独立状態で分散せずに、 その凝集体が発 生し、 分散安定性が悪くなるという問題があり、 また、 1 0重量%を超えると、 得られる分散液の粘度が高くなり、 最終的にはゲル状物が形成されるという問題 がある。 0. -10% by weight, preferably 0.2-7% by weight. When the content is less than 0.1% by weight, the ultrafine metal particles do not disperse in an independent state, and agglomerates are generated, resulting in poor dispersion stability. If it exceeds, there is a problem that the viscosity of the obtained dispersion becomes high and a gel-like substance is finally formed.
上記したような金属超微粒子分散液の用途としては F P Dの電極形成が考えら れる。 本発明では、 この分散液を、 インク組成物、 なかでも最近パソコンの周辺 機器としての低価格 ·高性能で普及の著しいインクジエツトプリンタにおけるィ ンクジェット用インクとして用いて、 F P Dの電極を形成することができる。 こ のインクジエツ卜用ィンクのインク特性として要求される粘度や表面張力などの 物性は、 上述した通りである。 また、 印刷するガラス基板やプラスチック基板な どの基体の性質に合わせて、 水、 アルコール系などの極性溶剤や非極性炭化水素 系溶剤を選択するなど、 使い方の違いにより溶剤の選択条件がきまってくる場合 がある。  As an application of the ultrafine metal particle dispersion described above, electrode formation of FPD can be considered. In the present invention, an FPD electrode is formed by using this dispersion as an ink composition, especially as an ink for ink jet in a low-priced, high-performance and remarkably popular ink jet printer as a peripheral device of a personal computer recently. be able to. The physical properties such as viscosity and surface tension required as the ink properties of the ink jet ink are as described above. Also, when the solvent selection condition is determined by the difference in usage, such as selecting a polar solvent such as water or alcohol, or a non-polar hydrocarbon solvent according to the properties of the substrate such as a glass substrate or plastic substrate to be printed. There is.
例えば、 第 1溶剤は、 ガス中蒸発法の際に用いる金属超微粒子生成用の溶剤で あって、 金属超微粒子を冷却捕集する際に容易に液化できるように、 比較的沸点 の高い溶剤である。 この第 1溶剤としては、 炭素数 5以上のアルコール類、 例え ば、 テルビネオ一ル、 シトロネオール、 ゲラニオール、 フエネチルアルコールな どの 1種以上を含有する溶剤、 又は有機エステル類、 例えば、 酢酸ベンジル、 ス テアリン酸ェチル、 ォレイン酸メチル、 フエニル酢酸ェチル、 グリセリドなどの 1種以上を含有する溶剤であれば良く、 使用する金属超微粒子の構成元素、 又は 分散液の用途によつて適時選択できる。 For example, the first solvent is a solvent for generating ultrafine metal particles used in the gas evaporation method, and has a relatively high boiling point so that it can be easily liquefied when cooling and collecting the ultrafine metal particles. is there. Examples of the first solvent include alcohols having 5 or more carbon atoms, for example, solvents containing one or more of terbineol, citroneol, geraniol, and phenethyl alcohol, or organic esters such as benzyl acetate, Ethyl stearate, methyl oleate, ethyl phenylacetate, glyceride, etc. Any solvent containing at least one kind may be used, and can be selected as appropriate depending on the constituent elements of the ultrafine metal particles used or the use of the dispersion.
第 2溶剤は、 第 1工程で得られた分散液中に含まれた金属超微粒子を沈降させ、 第 1溶剤を抽出 ·分離して除去できるものであれば良く、 例えば、 低分子量の極 性溶剤であるァセトンなどがある。  The second solvent may be any as long as it can precipitate ultrafine metal particles contained in the dispersion obtained in the first step and extract and separate the first solvent to remove it. Solvent Aceton and the like.
また、 第 3溶剤としては、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水及び炭 素数が 1 5以下のアルコ一ルなどのような常温で液体のものを選択し使用するこ とができる。 非極性炭化水素の場合、 炭素数が 6未満であると、 乾燥が早すぎて 分散液のハンドリング上で問題があり、 また、 炭素数が 2 0を超えると、 分散液 の粘度の上昇や焼成する用途では炭素が残留し易いという問題がある。 アルコー ルの場合、 炭素数が 1 5を超えると分散液の粘度の上昇や焼成する用途では炭素 が残留しやすいという問題がある。  As the third solvent, a liquid solvent at room temperature, such as a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain, water, or an alcohol having 15 or less carbon atoms, is selected and used. Can be. In the case of non-polar hydrocarbons, if the number of carbon atoms is less than 6, drying is too fast and there is a problem in the handling of the dispersion, and if the number of carbon atoms exceeds 20, the viscosity of the dispersion increases and calcination occurs. There is a problem that carbon is apt to remain in the use which is performed. In the case of alcohol, if the number of carbons exceeds 15, there is a problem that the viscosity of the dispersion increases and carbon is apt to remain in the case of firing.
第 3溶剤としては、 例えば、 へキサン、 ヘプタン、 オクタン、 デカン、 ゥンデ カン、 ドデカン、 トリデカン、 トリメチルペンタンなどの長鎖アルカンや、 シク 口へキサン、 シクロヘプタン、 シクロォク夕ンなどの環状アル力ン、 ベンゼン、 トルエン、 キシレン、 卜リメチルベンゼン、 ドデシルベンゼンなどの芳香族炭化 水素、 へキサノール、 ヘプタノ一ル、 ォクタノール、 デカノール、 シクロへキサ ノール、 テルピネオ一ルなどのアルコールを用いることができる。 これらの溶媒 は、 単独で用いても、 混合溶媒の形で用いても良い。 例えば、 長鎖アルカンの混 合物であるミネラルスピリッ卜であっても良い。  Examples of the third solvent include long-chain alkanes such as hexane, heptane, octane, decane, pendecane, dodecane, tridecane, and trimethylpentane; Aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene and dodecylbenzene, and alcohols such as hexanol, heptanol, octanol, decanol, cyclohexanol and terpineol can be used. These solvents may be used alone or in the form of a mixed solvent. For example, it may be a mineral spirit that is a mixture of long-chain alkanes.
第 3溶剤の場合、 第 1工程で使ったものと異なる (たとえ同一であっても、 純 度が違うなどの) 溶剤を使わねばならない場合があるが、 本発明はそのような場 合に好適である。  In the case of the third solvent, a solvent different from the one used in the first step (even if it is the same, but the purity is different) must be used, but the present invention is suitable for such a case. It is.
本発明で用いる金属超微粒子の構成元素としては、 導電性の高い金属であれば 特に制限はなく、 目的に合わせて適宜選定すれば良い。 例えば、 金、 銀、 銅、 パ ラジウム、 その他の多くの導電性金属から選ばれた少なくとも 1種の金属、 又は これらの金属の合金があげられる。 中でも銀、 銅は導電性が高く好ましい。 これ らのいずれの元素で構成された金属超微粒子においても、 上記アルキルァミン、 カルボン酸アミド、 ァミノカルボン酸塩の中から選ばれた 1つ若しくは複数のも のが分散剤として作用し、 所期の金属超微粒子分散液が得られる。 The constituent elements of the metal ultrafine particles used in the present invention are not particularly limited as long as they are highly conductive metals, and may be appropriately selected according to the purpose. For example, at least one metal selected from gold, silver, copper, palladium, and many other conductive metals, or an alloy of these metals. Among them, silver and copper are preferable because of their high conductivity. In ultrafine metal particles composed of any of these elements, one or more of the above-mentioned alkylamines, carboxamides, and aminocarboxylates may be used. Acts as a dispersant, and the expected dispersion liquid of ultrafine metal particles is obtained.
本発明において、 F P Dの電極形成に使用するインクジエツト用インク中の金 属超微粒子濃度としては、 1 0重量%〜7 0重量%、 好ましくは 1 0重量%〜 5 0重量%である。 1 0重量%未満だと粘度、 表面張力などのインク特性は十分に 満たすが、 焼成後の電気抵抗が導電回路として十分な値ではなく、 また、 7 0重 量%を超えると粘度、 表面張力などのインク特性を満たさなくなるため、 F P D の電極を形成するためのィンクジエツト用ィンクとして使用できない。  In the present invention, the concentration of ultrafine metal particles in the ink jet ink used for forming the FPD electrode is 10% by weight to 70% by weight, preferably 10% by weight to 50% by weight. If it is less than 10% by weight, the ink characteristics such as viscosity and surface tension are sufficiently satisfied, but the electric resistance after firing is not a sufficient value for a conductive circuit, and if it exceeds 70% by weight, the viscosity and surface tension are exceeded. Cannot be used as an ink jet for forming FPD electrodes.
以下、 本発明を実施例に基づいて説明する。 これらの例は単なる例示であって、 本発明を何ら限定するものではない。  Hereinafter, the present invention will be described based on examples. These examples are merely illustrative and do not limit the invention in any way.
(実施例 1 )  (Example 1)
ヘリウムガス圧力 0 . 5 T o r rの条件下で銀 (A g ) を蒸発させるガス中蒸 発法により A gの超微粒子を生成する際に、 生成過程の A g超微粒子に α—テル ビネオールとォクチルァミンとの 2 0 : 1 (容量比) の蒸気を接触させ、 冷却捕 集して回収し、 α—テルビネオ一ル溶剤中に独立した状態で分散している平均粒 子径 0 . 0 0 8 mの A g超微粒子を 2 5重量%含有する A g超微粒子独立分散 液を調製した。 この分散液 1容量に対しアセトンを 5容量加えて攪拌した。 極性 のアセトンの作用により分散液中の超微粒子は沈降した。 2時間静置後、 上澄み を除去し、 再び最初と同じ量のアセトンを加えて攪拌し、 2時間静置後、 上澄み を除去した。 この沈降物に新たに非極性炭化水素であるドデカンを加えて攪拌し た。 沈降していた A g超微粒子は約 8 n mの粒径を持ち、 粒子同士が完全に独立 した状態でドデカン中に分散していたことが確かめられた。 この分散液は非常に 安定であって、 常温で 1ヶ月経過後でも沈降分離は見られなかった。 この分散液 中の A gの含量は 2 3重量%、 分散液粘度は 8 m P a · sであり、 表面張力は 3 5 mNZmであった。  When ultrafine particles of Ag are produced by a gas evaporation method in which silver (Ag) is evaporated under a helium gas pressure of 0.5 Torr, α-terbineol is added to the ultrafine particles of Ag during the production process. 20: 1 (volume ratio) vapor with octylamine, cooled, collected and recovered, and the average particle diameter of 0.08 dispersed independently in α-terbineol solvent. An Ag ultrafine particle independent dispersion liquid containing 25% by weight of Ag ultrafine particles was prepared. Five volumes of acetone were added to one volume of the dispersion, followed by stirring. Ultrafine particles in the dispersion liquid settled out due to the action of polar acetone. After standing for 2 hours, the supernatant was removed, the same amount of acetone as the first was added again, and the mixture was stirred. After standing for 2 hours, the supernatant was removed. To this sediment, dodecane, a non-polar hydrocarbon, was newly added and stirred. The precipitated ultrafine Ag particles had a particle size of about 8 nm, confirming that the particles were dispersed in dodecane in a completely independent state. This dispersion was very stable, and no sedimentation was observed even after one month at room temperature. The Ag content in this dispersion was 23% by weight, the dispersion viscosity was 8 mPa · s, and the surface tension was 35 mNZm.
また、 同様に、 ヘリウムガス圧力 0 . 5 T o r rの条件下で銅 (C u ) を蒸発 させるガス中蒸発法により C uの超微粒子を生成する際に、 生成過程の C u超微 粒子に α—テルビネオールとォクチルァミンとの 2 0 : 1 (容量比) の蒸気を接 触させ、 冷却捕集して回収し、 α—テルビネオ一ル溶剤中に独立した状態で分散 している平均粒子径 0 . 0 0 7 の C u超微粒子を 2 7重量%含有する C u超 微粒子独立分散液を調製した。 この分散液 1容量に対しアセトンを 5容量加えて 攪拌した。 極性のアセトンの作用により分散液中の超微粒子は沈降した。 2時間 静置後、 上澄みを除去し、 再び最初と同じ量のアセトンを加えて攪拌し、 2時間 静置後、 上澄みを除去した。 この沈降物に新たに非極性炭化水素であるドデカン を加えて攪拌した。 沈降していた Cu超微粒子は約 7 nmの粒径を持ち、 粒子同 士が完全に独立した状態でドデカン中に分散していたことが確かめられた。 この 分散液は非常に安定であって、 常温で 1ヶ月経過後でも沈降分離は見られなかつ た。 この分散液中の Cuの含量は 25重量%、 分散液粘度は 9mPa * sであり、 表面張力は 37mNZmであった。 Similarly, when ultrafine Cu particles are generated by the in-gas evaporation method of evaporating copper (Cu) under the condition of a helium gas pressure of 0.5 Torr, Cu ultrafine particles in the generation process are converted to ultrafine Cu particles. The average particle size of α-terbineol and octylamine in contact with a 20: 1 (volume ratio) vapor, collected by cooling and collected, and dispersed independently in α-terbineol solvent 0 More than 0.7% Cu ultrafine particles containing 27% by weight A fine particle independent dispersion was prepared. Five volumes of acetone were added to one volume of this dispersion, followed by stirring. Ultrafine particles in the dispersion liquid settled out due to the action of polar acetone. After standing for 2 hours, the supernatant was removed, the same amount of acetone as the first was added again, and the mixture was stirred. After standing for 2 hours, the supernatant was removed. To this sediment, dodecane, a non-polar hydrocarbon, was newly added and stirred. The precipitated ultrafine particles of Cu had a particle size of about 7 nm, confirming that the particles were dispersed in dodecane in a completely independent state. This dispersion was very stable, and no sedimentation was observed even after one month at room temperature. The content of Cu in the dispersion was 25% by weight, the viscosity of the dispersion was 9 mPa * s, and the surface tension was 37 mNZm.
得られた A g超微粒子独立分散液に対して C u超微粒子独立分散液を加えて、 金属成分中の Cuの割合が 10重量%になるようにしたものをィンクとして用い、 市販のピエゾ方式のシングルノズルを持つインクジエツトプリン夕を使い、 ボロ シリケ一トガラス基板上に幅 50 m、 塗布厚 60 zm、 長さ 100mmの細線 を描画した。 描画後、 電気炉を用いて 300°Cで 30分間の焼成を行った。 その 結果、 幅 50 m、 厚さ 2. 5 mの電極配線を作製でき、 その比抵抗値は、 9. 0 X 10— 6Ω · cmであった。 また、 この電極配線は、 テープテストの結果、 引 き剥がし強度 4. 5 k g f /mm2でも基板から剥離せず、 高い密着力を示した。 次に、 ハイビジョン用の画面比 16 : 9のカラ一 PDP 42型パネルに対し、 金属超微粒子インクを素材として、 絶対位置精度 ± 10 mの大型 X— Yテープ ルに 510 mのピッチ間隔の 512個のマルチノズルを搭載したインクジエツ トプリンタを用いて、 前面板のスキャン電極を形成し、 また、 同様のテーブルに ピッチ間隔 900 mの 512個のマルチノズルを搭載したインクジエツトプリ ン夕を用いて、 背面板のアドレス電極を形成し、 次いで PDPパネルに構成した その電極形成工程及びパネル作製工程について、 以下述べる。 A commercially available piezo method was used in which a Cu ultrafine particle independent dispersion was added to the obtained Ag ultrafine particle independent dispersion so that the proportion of Cu in the metal component became 10% by weight as an ink. Using an inkjet printer with a single nozzle, a thin line with a width of 50 m, a coating thickness of 60 zm and a length of 100 mm was drawn on a borosilicate glass substrate. After drawing, baking was performed at 300 ° C for 30 minutes using an electric furnace. As a result, manufacturing an electrode wiring having a width 50 m, thickness of 2. 5 m, its specific resistance value was 9. 0 X 10- 6 Ω · cm . In addition, as a result of a tape test, the electrode wiring did not peel off from the substrate even at a peeling strength of 4.5 kgf / mm 2 , and exhibited high adhesion. Next, for a high-definition 16: 9 screen PDP 42 type panel, using a metal ultrafine particle ink as a material, a large XY table with an absolute position accuracy of ± 10 m and a 512 x 510 m pitch interval were used. A scan electrode on the front panel is formed using an ink jet printer equipped with multiple multi-nozzles, and a similar table using an ink jet printer equipped with 512 multi-nozzles with a 900 m pitch interval. The electrode forming process and the panel manufacturing process for forming the address electrodes on the back plate and then forming the PDP panel will be described below.
画面比 16 : 9の 42型は、 対角長が 1060 mmで、 画素数は、 前面板、 背 面板共に 1024本であり、 前面板のスキャン電極は 1024 X 2本、 背面板の アドレス電極は 1024 X 3 (RGB) 本から構成されている。 電極ピッチはス キャン電極が 510 m, ァドレス電極が 900; mであり、 電極幅は 50 m、 厚みは 2 mである。 各ノズルからは 14. 4 KHzの周期で 5〜6 p Lのイン クが吐出されるように制御されている。 インクとしては、 Ag超微粒子独立分散 液に対して Cu超微粒子独立分散を加えて、 金属成分中の Cuの割合が 10重量 %になるようにしたものを使用した。 The 42 type with a screen ratio of 16: 9 has a diagonal length of 1060 mm, the number of pixels is 1024 on both the front and back panels, 1024 x 2 scan electrodes on the front panel, and address electrodes on the rear panel. It consists of 1024 X 3 (RGB) books. The electrode pitch is 510 m for the scan electrode and 900; m for the padless electrode. The electrode width is 50 m and the thickness is 2 m. 5 to 6 pL of ink at a frequency of 14.4 KHz from each nozzle Is controlled so that the ink is discharged. As the ink, an ink in which the Cu ultrafine particle independent dispersion was added to the Ag ultrafine particle independent dispersion so that the ratio of Cu in the metal component was 10% by weight was used.
まず、 スキャン電極のバス電極を形成するために、 既に従来の工程で I TO電 極が形成されている対角長 1060mmで横縦の比が 16 : 9の横長の 2. 8m m厚のポロシリゲートガラス基板を、 描画装置の X— Yテ一ブル上の所定の位置 に口ポット搬送し、 テーブル上に真空吸着し、 固定した。 ガラス基板上の四隅に 予め印字されている位置決めマーカー基準でガラス基板の正確な位置出しを行つ た後、 引き出し電極形成のためのスペースをガラス基板端面の両サイドに各々 ι|ι First, in order to form the bus electrode for the scan electrode, the ITO electrode has already been formed in the conventional process. The diagonal length is 1060 mm and the horizontal-to-vertical ratio is 16: 9. The gate glass substrate was conveyed to a predetermined position on an XY table of a drawing apparatus by a mouth pot, vacuum-adsorbed on a table, and fixed. After accurate positioning of the glass substrate with reference to the positioning markers pre-printed on the four corners of the glass substrate, spaces for forming lead electrodes are provided on both sides of the glass substrate end face.
15mm残して、 ガラス基板の長手方向に描画を行った。 インクはノズルから吐 出されると基板上で約 50 ^mの円状に広がり瞬時に乾燥した。 この濃度のイン クを使用して焼成後の膜厚が 2 X mとなるようにするために、 各吐出により描画 された円がヘッドのスキャン方向 (X軸方向) に 2Z3づっ重なるように、 すな わち、 (50 ÷ ?, ) / { ! / 14400) mZ秒 = 239. 9 mm/秒の速度でへ ッドの走査速度を制御した。 X軸方向に走査して 5 12本の描画を終了し、 Y軸 方向に 200 m移動し、 同様に X軸方向に走査して 5 12本の描画を行い、 5 12 X 2本の 51 2画素のペア電極の描画を終了した。 その後、 Y軸方向に約 2 6 lmm移動して、 同様に 512画素のペア電極の描画を行った。 前面板のスキ ヤン電極 1024 X 2本を描画するのに約 1 5秒かかった。 最後に両端面に移動 して、 512本の各ノズルからのインク吐出組み合わせを調整して、 引き出し電 極を約 5秒かかって形成した。 描画装置へのガラス基板の搬入、 真空吸着、 位置 決め、 電極描画、 引き出し電極描画、 搬出までの工程が約 60秒で完了した。 こ れはスパッ夕法の一千分の一であった。 カートリッジの重量変化から、 前面パネ ルのバス電極の形成のためのインクの使用量は金属重量換算で 1. 84 gである ことが分かった。 これは、 スパッタ法での材料使用重量の約五分の一であった。 また、 描画装置を十分に整備することによって描画線に全く不良個所が発生しな いことが確認された。 Drawing was performed in the longitudinal direction of the glass substrate, leaving 15 mm. When the ink was ejected from the nozzle, it spread in a circle of about 50 m on the substrate and dried instantaneously. In order to obtain a film thickness of 2 Xm after firing using this concentration of ink, the circle drawn by each ejection should be overlapped by 2Z3 in the head scanning direction (X-axis direction). That is, the scanning speed of the head was controlled at a speed of (50 mm?,) / {! / 14400) mZ second = 239.9 mm / second. Scan in the X-axis direction to finish the drawing of 5 12 lines, move 200 m in the Y-axis direction, and similarly scan in the X-axis direction to draw 5 12 lines, 5 12 X 2 lines 51 2 The drawing of the paired electrodes of the pixels has been completed. After that, it was moved about 26 lmm in the Y-axis direction, and a 512-pixel pair electrode was similarly drawn. It took about 15 seconds to draw two 1024 X scan electrodes on the front panel. Finally, it moved to both end faces, adjusted the combination of ink ejection from each of the 512 nozzles, and formed the extraction electrode in about 5 seconds. The process of loading the glass substrate into the drawing device, vacuum suction, positioning, drawing the electrodes, drawing the drawn electrodes, and unloading was completed in about 60 seconds. This was one thousandth of the Spaghetti method. From the change in the weight of the cartridge, it was found that the amount of ink used to form the bus electrodes on the front panel was 1.84 g in terms of metal weight. This was about one-fifth of the weight of material used in the sputtering method. In addition, it was confirmed that there were no defective spots in the drawing lines due to sufficient maintenance of the drawing device.
乾燥描画電極の上から全面に約 40 mの厚みで誘電体ガラスをスクリーン印 刷機により塗布し、 大気雰囲気のベルト炉に入れて 600°Cでのキープ時間が 3 0分間となるような移動速度に設定して焼成を行った。 A dielectric glass with a thickness of about 40 m is applied to the entire surface from the top of the dry drawing electrode by a screen printer, and placed in a belt furnace in an air atmosphere, and the keeping time at 600 ° C is 3 hours. The firing was performed with the moving speed set to be 0 minutes.
背面板のァドレス電極については、 ガラス基板の上に直接に 9 0 0 mのピッ チ間隔でスキャン電極と同様に形成した。 5 1 2本の描画を 6回繰り返し、 1 0 2 4 X 3本のアドレス電極の形成を約 1 3秒で終了した。 背面板の電極形成工程 においても、 前面板と同様に搬入から搬出まで約 6 0秒で完了し、 スパッ夕法に 比べ、 工程にかかる時間を一千分の一に短縮することが可能であった。  An address electrode on the back plate was formed directly on the glass substrate at a pitch of 900 m in the same manner as the scan electrode. The drawing of 512 lines was repeated six times, and the formation of 102 4 X 3 address electrodes was completed in about 13 seconds. In the process of forming the electrodes on the back plate, the process from loading to unloading is completed in about 60 seconds, as with the front plate, and the time required for the process can be reduced to one thousandth of that required by the sputtering method. Was.
力一トリッジの重量変化から、 背面板のァドレス電極形成のためのィンク使用 量は金属重量換算で 1 . 6 2 gであることが分かった。 また、 描画線に不良個所 は認められなかった。 得られたアドレス電極の上に、 スキャン電極と同様に誘電 体ガラスを塗布し、 ベルト炉で同様の焼成を行った。  From the change in weight of the force cartridge, it was found that the amount of ink used for forming the back electrode on the back plate was 1.62 g in terms of metal weight. No defective part was found in the drawing line. Dielectric glass was applied on the obtained address electrodes in the same manner as the scan electrodes, and was baked in a belt furnace.
次いで、 上記のようにして電極の形成された前面板、 背面板共に通常の製造ェ 程に戻し、 両者を封着し、 排気し、 ガス封入を行った後、 エージング処理を行い、 P D Pパネルとして組み立てた。 このパネルに対し、 1 0 0 0時間連続の点灯試 験を行ったところ、 電極の耐久性が十分なものであることが確認された。 また、 このパネルは、 従来技術の方法で製造されたパネルと比べても、 画像に差異は認 められなかった。 産業上の利用の可能性  Next, the front plate and the back plate on which the electrodes were formed as described above were returned to the normal manufacturing process, the two were sealed, evacuated, gas-sealed, and then subjected to aging treatment to form a PDP panel. Assembled. The panel was subjected to a continuous lighting test for 1000 hours, and it was confirmed that the electrodes had sufficient durability. This panel showed no difference in image even when compared to the panel manufactured by the method of the prior art. Industrial applicability
本発明によれば、 金属超微粒子及び分散剤を含む金属超微粒子独立分散液から なるインクジエツト用インクを用い、 インクジエツトプリン夕で F P Dの電極形 成を行うので、 使用材料の無駄がなく、 また、 製造工程を短縮できることにより 製造コス卜の低減が可能となる。  According to the present invention, an FPD electrode is formed by an ink jet printing using an ink jet ink composed of a metal ultrafine particle independent dispersion liquid containing a metal ultrafine particle and a dispersant, so that there is no waste of materials used. Since the manufacturing process can be shortened, the manufacturing cost can be reduced.

Claims

請求の範囲 The scope of the claims
1 . 金属超微粒子及び分散剤を含む金属超微粒子独立分散液からなるインクジ エツト用ィンクを用いてフラットパネルディスプレイの電極を形成することを特 徴とするフラットパネルディスプレイの電極形成方法。 1. An electrode forming method for a flat panel display, comprising forming an electrode for a flat panel display using an ink jet ink composed of an independent dispersion liquid of ultrafine metal particles and ultrafine metal particles.
2 . 前記インクジェット用インクとして、 ガス雰囲気中でかつ第 1溶剤の蒸気 の存在下で金属を蒸発させることにより溶剤中に金属超微粒子が分散した金属超 微粒子分散液を得る第 1工程と、 該第 1工程で得られた分散液に低分子量の極性 溶剤である第 2溶剤を加えて該金属超微粒子を沈降させ、 その上澄み液を取り除 くことにより該第 1溶剤を実質的に除去する第 2工程と、 このようにして得られ た沈降物に第 3溶剤を加えて金属超微粒子の独立分散液を得る第 3工程とから製 造された、 金属超微粒子及び分散剤を含む金属超微粒子独立分散液を用いること を特徴とする請求項 1記載のフラットパネルディスプレイの電極形成方法。  2. a first step of obtaining, as the inkjet ink, a metal ultrafine particle dispersion in which metal ultrafine particles are dispersed in a solvent by evaporating the metal in a gas atmosphere and in the presence of vapor of a first solvent; The second solvent, which is a low molecular weight polar solvent, is added to the dispersion obtained in the first step to precipitate the metal ultrafine particles, and the supernatant is removed to substantially remove the first solvent. A metal ultra-fine particle including a metal ultra-fine particle and a dispersant, which is produced from the second step and the third step of adding a third solvent to the sediment thus obtained to obtain an independent dispersion of ultra-fine metal particles, The method for forming an electrode of a flat panel display according to claim 1, wherein an independent dispersion liquid of fine particles is used.
3 . 前記第 1工程、 又は第 3工程、 又は第 1工程と第 3工程との両工程で分散 剤を加えることを特徴とする請求項 2記載のフラットパネルディスプレイの電極 形成方法。  3. The method for forming an electrode of a flat panel display according to claim 2, wherein a dispersant is added in the first step, the third step, or both the first step and the third step.
4 . 前記金属超微粒子が粒径 1 0 0 n m以下であり、 前記金属超微粒子独立分 散液の粘度が:!〜 1 0 O m P a · s、 その表面張力が 2 5〜 8 0 mNZmである ことを特徴とする請求項 1記載のフラットパネルディスプレイの電極形成方法。  4. The metal ultrafine particles have a particle diameter of 100 nm or less, and the viscosity of the metal ultrafine particle independent dispersion is:! The method for forming an electrode of a flat panel display according to claim 1, wherein the surface tension is 25 to 80 mNZm.
5 . 前記金属超微粒子が粒径 1 0 0 n m以下であり、 前記金属超微粒子独立分 散液の粘度が 1〜 1 0 O m P a · s、 その表面張力が 2 5〜8 0 mNZmである ことを特徴とする請求項 2記載のフラッ卜パネルディスプレイの電極形成方法。  5. The ultrafine metal particles have a particle size of 100 nm or less, the viscosity of the metal ultrafine particle independent dispersion is 1 to 10 OmPas, and the surface tension is 25 to 80 mNZm. 3. The method for forming an electrode of a flat panel display according to claim 2, wherein:
6 . 前記分散剤がアルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩の 中から選ばれた 1つ若しくは複数のものであることを特徴とする請求項 1記載の フラットパネルディスプレイの電極形成方法。  6. The method for forming an electrode of a flat panel display according to claim 1, wherein the dispersant is one or more selected from alkylamine, carboxylic acid amide, and aminocarboxylate.
7 . 前記分散剤がアルキルアミン、 カルボン酸アミド、 アミノカルボン酸塩の 中から選ばれた 1つ若しくは複数のものであることを特徴とする請求項 2記載の フラットパネルディスプレイの電極形成方法。 7. The method for forming an electrode of a flat panel display according to claim 2, wherein the dispersant is one or more selected from an alkylamine, a carboxamide, and an aminocarboxylate.
8 . 前記分散剤がアルキルァミン、 カルボン酸アミド、 アミノカルボン酸塩の 中から選ばれた 1つ若しくは複数のものであることを特徴とする請求項 4記載の フラットパネルディスプレイの電極形成方法。 8. The method for forming an electrode of a flat panel display according to claim 4, wherein the dispersant is one or more selected from alkylamine, carboxylic amide, and aminocarboxylate.
9 . 前記アルキルァミンの主鎖の炭素数'が 4〜 2 0であることを特徴とする請 求項 6記載のフラットパネルディスプレイの電極形成方法。  9. The electrode forming method for a flat panel display according to claim 6, wherein the carbon number of the main chain of the alkylamine is 4 to 20.
1 0 . 前記アルキルァミンの主鎖の炭素数が 4〜 2 0であることを特徴とする請 求項 7記載のフラットパネルディスプレイの電極形成方法。  10. The method for forming an electrode of a flat panel display according to claim 7, wherein the main chain of the alkylamine has 4 to 20 carbon atoms.
1 1 . 前記アルキルァミンの主鎖の炭素数が 4〜 2 0であることを特徴とする請 求項 8記載のフラットパネルディスプレイの電極形成方法。  11. The method for forming an electrode of a flat panel display according to claim 8, wherein the main chain of the alkylamine has 4 to 20 carbon atoms.
1 2 . 前記アルキルァミンが第 1級アルキルァミンであることを特徴とする請求 項 6記載のフラットパネルディスプレイの電極形成方法。  12. The method for forming an electrode of a flat panel display according to claim 6, wherein the alkylamine is a primary alkylamine.
1 3 . 前記アルキルァミンが第 1級アルキルァミンであることを特徴とする請求 項 7記載のフラットパネルディスプレイの電極形成方法。  13. The method for forming an electrode of a flat panel display according to claim 7, wherein the alkylamine is a primary alkylamine.
1 4 . 前記アルキルァミンが第 1級アルキルァミンであることを特徴とする請求 項 8記載のフラットパネルディスプレイの電極形成方法。  14. The method for forming an electrode of a flat panel display according to claim 8, wherein the alkylamine is a primary alkylamine.
1 5 . 前記分散液が、 分散媒として、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及び炭素数が 1 5以下のアルコール系溶剤から選ばれた少なくとも 1種の溶 剤を含んでいることを特徴とする請求項 1記載のフラットパネルディスプレイの 電極形成方法。  15. The dispersion comprises, as a dispersion medium, at least one solvent selected from non-polar hydrocarbons having 6 to 20 carbon atoms in the main chain, water, and alcohol solvents having 15 or less carbon atoms. 2. The method for forming an electrode of a flat panel display according to claim 1, comprising:
1 6 . 前記分散液が、 分散媒として、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及び炭素数が 1 5以下のアルコール系溶剤から選ばれた少なくとも 1種の溶 剤を含んでいることを特徴とする請求項 2記載のフラットパネルディスプレイの 電極形成方法。  16. The dispersion comprises, as a dispersion medium, at least one solvent selected from non-polar hydrocarbons having 6 to 20 carbon atoms in the main chain, water, and alcohol solvents having 15 or less carbon atoms. 3. The method for forming an electrode of a flat panel display according to claim 2, comprising:
1 7 . 前記分散液が、 分散媒として、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及び炭素数が 1 5以下のアルコール系溶剤から選ばれた少なくとも 1種の溶 剤を含んでいることを特徴とする請求項 4記載のフラットパネルディスプレイの 電極形成方法。  17. The dispersion liquid comprises, as a dispersion medium, at least one solvent selected from a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain, water, and an alcohol solvent having 15 or less carbon atoms. 5. The method for forming an electrode of a flat panel display according to claim 4, comprising:
1 8 . 前記分散液が、 分散媒として、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及び炭素数が 1 5以下のアルコール系溶剤から選ばれた少なくとも 1種の溶 剤を含んでいることを特徴とする請求項 6記載のフラットパネルディスプレイの 電極形成方法。 18. The dispersion liquid comprises, as a dispersion medium, at least one solvent selected from non-polar hydrocarbons having 6 to 20 carbon atoms in the main chain, water, and alcohol solvents having 15 or less carbon atoms. 7. The method for forming an electrode of a flat panel display according to claim 6, comprising an agent.
1 9 . 前記分散液が、 分散媒として、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及び炭素数が 1 5以下のアルコール系溶剤から選ばれた少なくとも 1種の溶 剤を含んでいることを特徴とする請求項 7記載のフラットパネルディスプレイの 電極形成方法。  19. The dispersion comprises, as a dispersion medium, at least one solvent selected from non-polar hydrocarbons having 6 to 20 carbon atoms in the main chain, water, and an alcohol solvent having 15 or less carbon atoms. 8. The method for forming an electrode of a flat panel display according to claim 7, comprising:
2 0 . 前記分散液が、 分散媒として、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及び炭素数が 1 5以下のアルコール系溶剤から選ばれた少なくとも 1種の溶 剤を含んでいることを特徴とする請求項 9記載のフラットパネルディスプレイの 電極形成方法。  20. The dispersion liquid, as a dispersion medium, at least one solvent selected from a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain, water, and an alcohol solvent having 15 or less carbon atoms. 10. The method for forming an electrode of a flat panel display according to claim 9, comprising:
2 1 . 前記分散液が、 分散媒として、 主鎖の炭素数 6〜2 0の非極性炭化水素、 水、 及び炭素数が 1 5以下のアルコール系溶剤から選ばれた少なくとも 1種の溶 剤を含んでいることを特徵とする請求項 1 2記載のフラットパネルディスプレイ の電極形成方法。  21. The dispersion liquid comprises, as a dispersion medium, at least one solvent selected from a nonpolar hydrocarbon having 6 to 20 carbon atoms in the main chain, water, and an alcohol solvent having 15 or less carbon atoms. 13. The method for forming an electrode of a flat panel display according to claim 12, wherein the method comprises:
PCT/JP2001/010574 2000-12-04 2001-12-04 Method of forming electrode for flat panel display WO2002047054A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2001618042 DE60118042T2 (en) 2000-12-04 2001-12-04 METHOD FOR ELECTRODE FOR A FLAT DISPLAY
EP20010999931 EP1349135B1 (en) 2000-12-04 2001-12-04 Method of forming electrode for flat panel display
US10/432,608 US7247341B2 (en) 2000-12-04 2001-12-04 Method for forming electrodes of flat panel display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-368680 2000-12-04
JP2000368680A JP4677092B2 (en) 2000-12-04 2000-12-04 Electrode forming method for flat panel display

Publications (1)

Publication Number Publication Date
WO2002047054A1 true WO2002047054A1 (en) 2002-06-13

Family

ID=18838851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010574 WO2002047054A1 (en) 2000-12-04 2001-12-04 Method of forming electrode for flat panel display

Country Status (8)

Country Link
US (1) US7247341B2 (en)
EP (1) EP1349135B1 (en)
JP (1) JP4677092B2 (en)
KR (1) KR100813446B1 (en)
CN (1) CN1175312C (en)
DE (1) DE60118042T2 (en)
TW (1) TW548316B (en)
WO (1) WO2002047054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445787A2 (en) * 2003-02-04 2004-08-11 Samsung SDI Co., Ltd. Plasma display panel

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625420B1 (en) * 1997-02-24 2009-12-01 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
US20060159838A1 (en) * 2005-01-14 2006-07-20 Cabot Corporation Controlling ink migration during the formation of printable electronic features
AU2002363192A1 (en) * 2001-11-01 2003-05-12 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ink-jet inks containing metal nanoparticles
US7736693B2 (en) * 2002-06-13 2010-06-15 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
US7566360B2 (en) * 2002-06-13 2009-07-28 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
US7601406B2 (en) * 2002-06-13 2009-10-13 Cima Nanotech Israel Ltd. Nano-powder-based coating and ink compositions
EP1476002B1 (en) 2003-05-08 2018-07-04 Samsung Display Co., Ltd. Method of manufacturing a substrate for organic electroluminescent device
JP4323859B2 (en) * 2003-05-08 2009-09-02 三星モバイルディスプレイ株式會社 Method for manufacturing substrate for organic electroluminescence device
JP4284550B2 (en) 2003-09-12 2009-06-24 独立行政法人産業技術総合研究所 Metal nanoparticle dispersion that can be sprayed in the form of fine droplets
US7488570B2 (en) 2003-12-16 2009-02-10 Samsung Electronics Co., Ltd. Method of forming metal pattern having low resistivity
US7504199B2 (en) 2003-12-16 2009-03-17 Samsung Electronics Co., Ltd. Method of forming metal pattern having low resistivity
SE0303604L (en) * 2003-12-30 2005-11-18 Swedish Lcd Ct Ab A process for manufacturing LCD
CN100362614C (en) * 2004-07-13 2008-01-16 四川世纪双虹显示器件有限公司 A method for making gas discharge display screen
US7557369B2 (en) 2004-07-29 2009-07-07 Samsung Mobile Display Co., Ltd. Display and method for manufacturing the same
DE102004037524A1 (en) * 2004-07-29 2006-03-23 Samsung SDI Co., Ltd., Suwon Display, e.g. liquid crystal display, organic light-emitting display, or plasma display panel, comprises substrate, silane derivative layer, and electrode layer containing conductors
CN101116149A (en) * 2004-09-14 2008-01-30 西玛耐诺技术以色列有限公司 Ink jet printable compositions
US20060135028A1 (en) * 2004-12-07 2006-06-22 Andreas Klyszcz Substrate for a display and method for manufacturing the same
US7824466B2 (en) 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
WO2006076606A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation Optimized multi-layer printing of electronics and displays
WO2006076609A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
TW200642785A (en) * 2005-01-14 2006-12-16 Cabot Corp Metal nanoparticle compositions
US20060190917A1 (en) * 2005-01-14 2006-08-24 Cabot Corporation System and process for manufacturing application specific printable circuits (ASPC'S) and other custom electronic devices
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
US20060163744A1 (en) * 2005-01-14 2006-07-27 Cabot Corporation Printable electrical conductors
WO2006076608A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation A system and process for manufacturing custom electronics by combining traditional electronics with printable electronics
ATE434024T1 (en) 2005-02-28 2009-07-15 Samsung Sdi Germany Gmbh METALLIC INK AND SUBSTRATE FOR A DISPLAY AND THE PRODUCTION METHOD THEREOF
US20060192183A1 (en) * 2005-02-28 2006-08-31 Andreas Klyszcz Metal ink, method of preparing the metal ink, substrate for display, and method of manufacturing the substrate
EP1896634B1 (en) * 2005-06-10 2013-04-17 Cima Nano Tech Israel Ltd. Enhanced transparent conductive coatings and methods for making them
CN101356245B (en) 2005-09-12 2013-02-13 电子影像公司 Metallic ink jet printing system for graphics applications
US8840231B2 (en) * 2005-10-04 2014-09-23 Hewlett-Packard Development Company, L.P. Ink-jet printing methods compositions providing improved image durability
US8764960B2 (en) * 2006-08-07 2014-07-01 Inktec Co., Ltd. Manufacturing methods for metal clad laminates
US7709307B2 (en) * 2006-08-24 2010-05-04 Kovio, Inc. Printed non-volatile memory
US8153195B2 (en) 2006-09-09 2012-04-10 Electronics For Imaging, Inc. Dot size controlling primer coating for radiation curable ink jet inks
JP2008105922A (en) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd Carbide-derived carbon, electron-emitting source for cold cathode, and electron-emitting element
KR100822206B1 (en) * 2006-11-01 2008-04-17 삼성에스디아이 주식회사 Composition for preparing electron emitter, method for preparing the electron emitter utilizing the composition, the electron emitter prepared using the method and electron emission device comprising the electron emitter
US20080278062A1 (en) * 2007-05-10 2008-11-13 Samsung Sdi Co., Ltd. Method of fabricating electron emission source, electron emission device, and electron emission display device including the electron emission device
US7737497B2 (en) * 2007-11-29 2010-06-15 Xerox Corporation Silver nanoparticle compositions
JP4589980B2 (en) * 2008-06-04 2010-12-01 パナソニック株式会社 Method for manufacturing plasma display panel
KR101491064B1 (en) * 2008-10-08 2015-02-06 삼성디스플레이 주식회사 Electro-optic display apparatus
KR100968486B1 (en) * 2010-02-18 2010-07-07 부경엔지니어링주식회사 Fixing appratus for multi-directional shining buried luminaire
JP5623861B2 (en) * 2010-10-14 2014-11-12 株式会社東芝 Metal nanoparticle dispersion composition
JP5739643B2 (en) * 2010-11-01 2015-06-24 理想科学工業株式会社 Non-aqueous pigment ink
WO2012060060A1 (en) * 2010-11-01 2012-05-10 理想科学工業株式会社 Non-acqueous pigment ink
JP2012131910A (en) * 2010-12-22 2012-07-12 Riso Kagaku Corp Nonaqueous inkjet ink
JP5793909B2 (en) * 2011-03-29 2015-10-14 セイコーエプソン株式会社 Non-aqueous ink composition for inkjet and inkjet recording method
JP5793910B2 (en) * 2011-03-29 2015-10-14 セイコーエプソン株式会社 Non-aqueous ink composition for inkjet and inkjet recording method
US20130100390A1 (en) * 2011-10-25 2013-04-25 Yewen Wang Liquid Crystal Substrate and Manufacturing Method thereof, and Liquid Crystal Display Device
KR20140027627A (en) * 2012-08-23 2014-03-07 삼성정밀화학 주식회사 Method for preparing metal nano particles and ink using the same
CN104369541B (en) * 2014-12-01 2017-01-25 京东方科技集团股份有限公司 Ink jet printing equipment
CN110294969A (en) * 2018-03-21 2019-10-01 Tcl集团股份有限公司 Ink and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317152A (en) * 1998-05-01 1999-11-16 Canon Inc Electron beam device, image display device, and manufacture of electron beam device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211207A (en) * 1985-07-09 1987-01-20 Natl Res Inst For Metals Metallic magnetic fluid
JPH02239603A (en) * 1989-03-14 1990-09-21 Cosmo Sogo Kenkyusho:Kk Magnetic fluid composition
JP2561537B2 (en) * 1989-03-30 1996-12-11 真空冶金株式会社 Metal paste and manufacturing method thereof
JP2561567B2 (en) 1991-05-07 1996-12-11 新日本製鐵株式会社 Waste incinerator boiler alloy and multi-layer steel pipe
JP3491101B2 (en) * 1993-10-05 2004-01-26 日立マクセル株式会社 Ink composition and printed matter using this ink composition
AU1743397A (en) * 1995-12-28 1997-07-28 James R. Heath Organically-functionalized monodisperse nanocrystals of metals
US5948512A (en) * 1996-02-22 1999-09-07 Seiko Epson Corporation Ink jet recording ink and recording method
US5922403A (en) * 1996-03-12 1999-07-13 Tecle; Berhan Method for isolating ultrafine and fine particles
CA2260947A1 (en) * 1996-07-19 1998-01-29 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
JPH11273557A (en) * 1998-03-19 1999-10-08 Mitsubishi Electric Corp Manufacture of plasma display panel and ink jet printer apparatus employed the manufacture
DE19821968A1 (en) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Production of transition metal colloid for use e.g. as coating, catalyst, fuel cell component and in ink jet printing, laser etching, information storage and cell labeling and cell separation
US6153348A (en) * 1998-08-07 2000-11-28 Parelec Llc Electrostatic printing of conductors on photoresists and liquid metallic toners therefor
JP2000182889A (en) * 1998-12-16 2000-06-30 Matsushita Electric Ind Co Ltd Manufacture of laminate ceramic electronic component, ink for ink jet used therefor and manufacture thereof
JP3438641B2 (en) * 1999-03-30 2003-08-18 日本電気株式会社 Plasma display panel
WO2001079361A1 (en) * 2000-04-17 2001-10-25 Matsushita Electric Industrial Co., Ltd. Ink for display panel and method for producing plasma display panel using the same
JP5008216B2 (en) * 2000-10-13 2012-08-22 株式会社アルバック Inkjet ink manufacturing method
JP4871443B2 (en) * 2000-10-13 2012-02-08 株式会社アルバック Method for producing metal ultrafine particle dispersion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317152A (en) * 1998-05-01 1999-11-16 Canon Inc Electron beam device, image display device, and manufacture of electron beam device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445787A2 (en) * 2003-02-04 2004-08-11 Samsung SDI Co., Ltd. Plasma display panel
EP1445787A3 (en) * 2003-02-04 2006-09-06 Samsung SDI Co., Ltd. Plasma display panel
US7170227B2 (en) 2003-02-04 2007-01-30 Samsung Sdi Co., Ltd. Plasma display panel having electrodes with specific thicknesses

Also Published As

Publication number Publication date
EP1349135B1 (en) 2006-03-15
JP4677092B2 (en) 2011-04-27
EP1349135A4 (en) 2005-01-12
DE60118042T2 (en) 2006-09-28
DE60118042D1 (en) 2006-05-11
CN1175312C (en) 2004-11-10
EP1349135A1 (en) 2003-10-01
US20040043691A1 (en) 2004-03-04
CN1398390A (en) 2003-02-19
KR100813446B1 (en) 2008-03-13
KR20020080393A (en) 2002-10-23
US7247341B2 (en) 2007-07-24
JP2002169486A (en) 2002-06-14
TW548316B (en) 2003-08-21

Similar Documents

Publication Publication Date Title
WO2002047054A1 (en) Method of forming electrode for flat panel display
JP5008216B2 (en) Inkjet ink manufacturing method
JP5982033B2 (en) Metal fine particle dispersion, copper fine particle dispersion, method for producing copper fine particle dispersion, and method for producing conductive substrate
EP1840244B1 (en) Method for forming metal thin film, and metal thin film
CN100449652C (en) Method for forming transparent conductive film and transparent electrode
JP2009074054A (en) Non-aqueous electroconductive nano ink composition
EP1949403A1 (en) Metallic ink, and method for forming of electrode using the same and substrate
JP4034968B2 (en) Method for forming a conductive pattern on an insulating substrate
JP6036185B2 (en) High purity metal nanoparticle dispersion and method for producing the same
JP4814491B2 (en) Method for forming transparent conductive film and transparent electrode
US9953740B2 (en) Dispersant, metal particle dispersion for electroconductive substrates, and method for producing electroconductive substrate
KR100728910B1 (en) Metallic ink, and method for forming of electrode using the same and substrate
KR100819904B1 (en) Metallic ink, and method for forming of electrode using the same and substrate
JP2004119173A (en) Ultra-fine particle dispersion liquid and its manufacturing method as well as metal thread or metal film
JP5116218B2 (en) Dispersion and method for producing dispersion
CN117659741A (en) Zinc oxide-based nanoparticle, preparation method thereof, ink and electroluminescent device
JP2019210469A (en) Copper oxide ink for inkjet, and manufacturing method of conductive substrate to which conductive pattern is added by using he same
JP6111587B2 (en) Method for manufacturing conductive substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027009722

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018045235

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027009722

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10432608

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001999931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001999931

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001999931

Country of ref document: EP