WO2002018080A1 - Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern - Google Patents

Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern Download PDF

Info

Publication number
WO2002018080A1
WO2002018080A1 PCT/JP2001/006655 JP0106655W WO0218080A1 WO 2002018080 A1 WO2002018080 A1 WO 2002018080A1 JP 0106655 W JP0106655 W JP 0106655W WO 0218080 A1 WO0218080 A1 WO 0218080A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal
conductor
forming
solution composition
Prior art date
Application number
PCT/JP2001/006655
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Kataoka
Yukio Nagasaki
Takeshi Sakura
Original Assignee
Upepo & Maji Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Upepo & Maji Inc. filed Critical Upepo & Maji Inc.
Publication of WO2002018080A1 publication Critical patent/WO2002018080A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing

Definitions

  • the present invention relates to a metal colloid solution composition, an ink for forming a conductor or semiconductor pattern using the same, and a method for forming a conductor or semiconductor pattern.
  • the present invention relates to a metal colloid solution composition and a method for producing an industrial material using the composition. More specifically, a highly dispersed metal or metal oxide colloid solution composition that can be used as a catalyst, an electric material, a magnetic material, an optical material, and the like; The present invention relates to a method for forming a non-conductive substrate. Background art
  • Colloids are fine particles with a size of 1 to 500 nm, and are generally defined as a dispersion uniformly dispersed in a solvent.
  • metal colloids have been actively studied for application as functional materials.
  • Metal colloids unlike bulk metals, have a very large specific surface area and therefore exhibit unique behavior different from ordinary metal atoms. Utilization of such properties of metal colloids is expected to be applied to catalysts, electric materials, magnetic materials, optical materials, sensors, and so on.
  • metal colloid solutions using a water-soluble polymer or a surfactant as a protective agent generally have poor storage stability.
  • the protective agent undergoes dehydration and coagulates, and is therefore unstable.
  • surfactants or polymer compounds are used as protective agents for stabilizing metal colloid solutions. Such a protective agent physically or chemically bonds to the surface of the metal particles and attempts to stabilize the dispersion by sterically repelling the particles.
  • polymers are more effective as protective agents than surfactants, and proteins such as gelatin and albumin and water-soluble polymers such as polyvinyl alcohol and polybierpyrrolidone are used.
  • a method for preparing a metal colloid solution is disclosed, for example, in JP-A-8-27307.
  • all of these disclosed prior art colloid solutions have only a hydrophilic polymer or a hydrophobic polymer bound to the metal surface. For this reason, the solvent is very limited.
  • ordinary polymers have poor physical or chemical adsorptivity of terminal functional groups to metals or metal oxides and poor storage stability.
  • a metal foil is first provided on the entire surface of a substrate, and a photo-curable resin is masked with a photoresist ink on a desired portion, and then immersed in a solution for dissolving the metal. Dissolve and remove the metal foil in the portions that are not present to obtain the desired pattern.
  • a method called an additive method is to form a circuit pattern by electroless plating only on a wiring portion.
  • a method of producing a circuit pattern by an additive method using a photoreaction see Japanese Patent Application Laid-Open Nos. 10-209586, e-SS ?, 48-20065, 48-24250, and 48-24250. 48-24255 and others.
  • Japanese Patent Application Laid-Open No. 10-209586 discloses a method in which a desired pattern area is selectively irradiated with light in the presence of oxygen on a polyorganosilane film, a pattern having an SiO bond in the light irradiated area is formed, and then the SiO bond is formed.
  • the organopolysilane film After dissolving the pattern portion using a solvent that dissolves only the pattern portion having, and leaving only the unirradiated portion of the organopolysilane film on the substrate, the organopolysilane film is irradiated with light in the presence of oxygen. Then, an SiO bond is formed on the surface of the organopolysilane film, and a silver salt is catalytically reduced on the SiO bond to form a silver conductive layer.
  • JP-A-46-827 discloses that the reduction of palladium chloride by photo-oxidation of a reducing metal salt causes the deposition of palladium only in a portion not irradiated with light.
  • JP-A-48-24250 perform electroless plating using a free metal formed by photoreduction of a metal salt as a nucleus.
  • Japanese Patent Application Laid-Open No. 58-222592 discloses a method of attaching a catalyst particle only to a pattern portion and then performing electroless plating.
  • these are not reproducible circuit patterns and There are various drawbacks, such as abnormal deposition in the conductive circuit part, and there are many drawbacks in the printed circuit board manufacturing method, and there is much room for improvement.
  • problems such as low density of the plating, extremely large variation of the plating, and formation of an alloy instead of a pure metal.
  • increasing the amount of noble metal salt raises the cost of the catalyst, lowers the adhesion to the substrate, lowers the strength, and may cause problems such as the occurrence of mid-damage.
  • the conductive wiring pattern can also be formed by printing a paste obtained by kneading a noble metal and a resin binder curable by light, heat or electron beam on the substrate by screen printing or the like, and curing the resin binder. It can be formed.
  • the particles must be highly viscous in order to keep the particles in suspension, and must have a suitable pseudoplastic fluidity and thixotropic fluidity to be screen-printable.
  • mixing the organic and inorganic salt components of the ink requires physical milling and mixing with a roll mill or the like.
  • the particle size of the noble metal milled by such a method is 0.5 to 4 m.
  • the composition thus formed is formed into a thin film, film, or plate, and a mask pattern is adhered to the composition, and by irradiating ultraviolet light or visible light, the oxidizing properties of the light-irradiated portion are lost and the pyrrole is polymerized. It is something that does not. However, this method has the problem that it cannot be used as a metal electron circuit because of its low conductivity.
  • Japanese Patent Application Laid-Open No. H11-243273 discloses a method of providing a metal pattern that can be used as a conductive line by depositing a metal colloid having a protective sheath as a precursor on a substrate as a thin film and then irradiating the surface with spatially selective light irradiation.
  • the present invention provides a method for forming a metal wiring, which comprises decomposing or destroying the outer skin to form a metal thin film, and then removing a metal colloid in an unexposed portion.
  • the tetraalkylammonium salt / ethylene oxide which is the outer skin of the metal, must be destroyed with a laser or the like, and the metals must be fused together.
  • An object of the present invention is to use a metal colloid solution composition having extremely excellent dispersion stability and a micro-discharge technique, thereby eliminating the need for complicated steps such as coating and stripping with a resist, and making it possible to produce a semiconductor or nonconductive substrate with a very low level.
  • An object of the present invention is to provide a method for easily forming a fine conductor or semiconductor wiring pattern with high dimensional accuracy.
  • the present invention relates to a compound represented by the general formula: X-HLS-HBS-Y, X-HBP-Y or X-HLP-Y, wherein HLS is a hydrophilic segment, HBS is a hydrophobic segment, HBP is a hydrophobic segment, HLP Represents a hydrophilic segment, and X and Y represent hydrogen, an alkyl group, a phenyl group, a mercapto group, a silanol group, a metal alkoxy, an alkoxy group, a sulfide group, an acetyl group, an acetal group, an aldehyde group, and a thioaldehyde, respectively.
  • the particle size of the colloidal particles such as metal or metal oxide in the metal colloid solution composition of the present invention has a diameter of l to 1000 nm, preferably l to 500 nm, and more preferably 1 to LOOnm.
  • the method for preparing the metal colloid particles is not particularly limited, and a general chemical method or physical method can be used.
  • Chemical method can prepare fine particles with uniform particle size and form fine wiring Suitable for preparing precursors for The chemical method is to aggregate or crystallize metal atoms after reduction of metal ions.
  • Methods for preparing metal colloid particles by a chemical method include a dry-reduction method in which reduction is performed in a vacuum or gas, and a wet-reduction method in which reduction is performed in a solvent.
  • the wet method is generally preferred because the equipment is simple and the operation is easy.
  • a metal salt can be reduced to obtain a metal having a zero atomic value.
  • Colloids prepared by the wet-reduction method are particularly preferred, as they have a smaller particle size and have a narrower particle size distribution than other methods.
  • a polymer protecting agent may be added after reducing the ions, or the polymer protecting agent may be dissolved in a solvent in advance and coexisted with the polymer protecting agent. May be used to reduce the ions. In the latter case, during the process in which the ions are reduced to metal atoms, the hydrophobic portion of the polymer chain is physically adsorbed or chemisorbed to the particle surface as a train by hydrophobic interaction on the metal atom surface. Due to the steric repulsion of the polymer protecting agent adsorbed on the metal atom, excessive aggregation of the colloid is suppressed, and the solvent-philic portion of the polymer protecting agent spreads and disperses in the solvent.
  • the solvent used in the reduction method is not particularly limited as long as it can dissolve the metal salt in water, alcohol, ether, ester, chlorinated hydrocarbon, amine or the like, or a mixed solvent thereof.
  • water, methanol, ethanol, Lower aliphatic alcohols having mild reducing properties such as 2-propanol are preferably used.
  • water, methanol, and ethanol are preferable, and water, a mixture of water and methanol, or a mixture of water and ethanol are more preferable.
  • a method of preparing a colloid using such a reduction method there is disclosed a method of preparing a colloid using silver, gold, and copper salts and using polybierpipididone or polyvinyl alcohol as a polymer protecting agent ( Journal of Applied Polymer Science 44 p.1003 1992, Chemical Society Japan 59 p.367 1986, Journal Colloid and Interface Science 156 p.240 1993).
  • the metal all metals can be used in principle, but a transition metal is preferable, and a transition metal of Group 8 to 11 of the periodic table is more preferable. preferable.
  • Most preferred are iron, cobalt, nickel, copper, ruthenium, rhodium, iridium, palladium, gold, platinum and silver. Also, rhenium can be preferably used.
  • the type of the metal salt of the colloid compound and the acid of the metal in the present invention are not particularly limited, but they must have high solubility in a solvent, and include halides, nitrates, acetates, acetic anhydrides, sulfates, and the like. Acetate and the like. Of these, nitrates and hydrochlorides are particularly preferably used.
  • Suitable metal salts include, for example, chloroplatinic acid, chloroauric acid, silver nitrate, rhodium chloride, palladium chloride, rubidium chloride, copper chloride, iron chloride, anhydrous palladium acetate, copper sulfate and the like.
  • metal colloids of alloys using a mixture of two or more metal salts.
  • a method for preparing copper / platinum and copper / palladium pimetallic metal colloids is disclosed (JOURNAL OF MACROMOLECULAR SCIENCE CHEMISTRY A p. 1225-1238 1990, CHEMISTY LETTERS p. 1611-1614 1993).
  • Examples of metals capable of forming the core-shell structure include CdSe / ZnS, Au / Pt, Pt / Pd, and Cu / Pd (Chemical Review 87, p.877 1987, Journal of American Chemical Society 112. 1327 1990).
  • the reduction operation of metal salts includes chemical methods, photochemical methods, thermal decomposition methods, electrochemical methods, and ultrasonic methods.
  • the chemical method is carried out by contacting with an appropriate reducing agent.
  • the reducing agent and the metal are mixed in almost stoichiometric amounts.
  • the reducing agent may be an inorganic reducing agent or an organic reducing agent.
  • Examples of the reducing agent include formamide, hydrogen, alcohol, formaldehyde, sodium citrate, hydrazine, alkylborane, boron compounds and urea.
  • alcohols have high solubility of the above salts and can be used as a solvent. It is preferable because it functions.
  • boron compounds include sodium borohydride and lithium borohydride, with sodium borohydride being highly preferred. Reduction is usually performed in the presence of a polymer without the addition of an acid or base.
  • the proportion of total solids in the reducing solution is generally 10-40% by weight, preferably 15-30% by weight, most preferably 15-25% by weight.
  • the colloid solution composition of the present invention contains 0.5 to 50% by weight of metal particles in the solid content. Preferably. More preferably 1 one 30% by weight, particularly preferably 5- 20 by weight 0 /. Metal particles.
  • the proportion of the polymer in the solid content of the composition is generally 50 to 99.5% by weight, preferably 70 to 99% by weight. /. , Most preferably 80-95 weight 0 /. It is.
  • the photochemical reduction method is performed by irradiating the metal salt solution with high-energy radiation, visible light, ⁇ -rays, particularly ultraviolet rays.
  • the preparation of colloids by a physical method is a method in which metal nanoparticles are prepared by, for example, vacuum evaporation, trapped at a low temperature, and then stabilized with a polymer protective agent.
  • metal nanoparticles are prepared by, for example, vacuum evaporation, trapped at a low temperature, and then stabilized with a polymer protective agent.
  • particle size reduction There is a limit to particle size reduction, and the particle size distribution is often wide.
  • gold and platinum which have high malleability and / or ductility and are not easily formed into fine particles by physical pulverization, are preferably prepared by the former chemical method.
  • the above-mentioned polymer protective agent may be added after the metal is finely pulverized, or the polymer protective agent may be dissolved in a solvent in advance and then pulverized.
  • the colloid preparation method includes the above-mentioned chemical method and physical method.
  • the polymer protectant absorbs the hydrophobic part of the polymer chain as a train on the particle surface by hydrophobic interaction, and the solvent-philic part in the polymer chain forms a loop or tail. It spreads in the solvent and can be stably dispersed.
  • the method of preparing a colloidal particle by a chemical method such as a reduction method in the presence of a polymer protecting agent has a small number average particle diameter, a narrow particle size distribution, and It is suitable because of its high dispersion stability.
  • the polymer protecting agent may be added after the ion reducing operation.
  • metal oxide in the metal oxide colloid arsenic one ⁇ 1 2 0 3, ⁇ ⁇ a -A1 2 0 3, - AIOOH, r - AIOOH, - ⁇ 1 ( ⁇ ) 3, ⁇ _ Al (OH) 3 , BeO, CdO, Cd (OH ) 2, Co (OH) 2, Cu (OH) 2, CuO, Cr 2 0 3, Fe (OH) 2, Fe 3 O 4, - Fe 2 0 3, r - Fe 2 0 3, - FeOOH, r - FeOOH, Pb (OH) 2, MgO, Mg (OH) 2, Mn (OH) 2, HgO, NiO, Ni (OH) 2, Pu0 2, SiO, Th0 2, Sn0 2, Ti0 2, W0 3, V 3 0 8, Y 2 0 3, ZnO, Zr0 2, La 2 O 3, Ca ⁇ La ⁇ TaO ⁇ N , and the like.
  • X-HLS-HBS-Y, X-HBP-Y or X-HLP-Y of the present invention is a metal, a composite metal oxide, a solid solution comprising at least two kinds of metals, or a core-shell as a polymer protective agent.
  • the colloid of dispersion-stabilized fine particles adsorbed on the surface of a metal class having a structure can be prepared by the method described above.
  • the hydrophilic segment HLS and the hydrophilic segment HLP in the polymer protective agent are preferably polyethylene glycol, polypropylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, polyvinyl pyridine, polyvinyl pyrrolidone, polyacrylamide, polydimethylacrylamide, poly Methyl vinyl ether, a copolymer thereof or a derivative thereof, and the hydrophobic segment HBS and the hydrophobic segment HBP are preferably polylactide, polyglycolide, poly (butyrolactone), poly (valerolactone), polypropylene glycol, polyglycol.
  • the polymer protecting agent is obtained by bonding an amino group, a mercapto group, a silanol group, an acetyl group, an acetal group or a derivative thereof to one end or both ends of polyethylene dalicol.
  • the polymer protective agent is limited to either hydrophilic or water-phobic, and the solvent for redispersing the prepared metal colloid fine particles during preparation or when preparing the same colloid is used. It is limited to either hydrophilic solvents or hydrophobic solvents.
  • the present invention has devised a method of forming fine wiring having high dimensional accuracy on substrates of various materials using the above-mentioned dispersion-stable colloid composition. That is, according to the present invention, the contained metal, metal oxide, conductive polymer or conductive colloid can be approached or contacted at a distance of several rnn, and non-quantum or quantum electrons can be brought into contact. Conduction due to movement can occur.
  • the size of the colloidal particles prepared by the above method is less than 50 nm or less than 100 nm, and quantum conduction occurs.
  • the conductivity can be optimized by changing the compounding ratio of each compound.
  • the dopant can be added to the solution in advance.
  • a dispersion-stabilized metal colloid solution obtained by bonding the polymer protective agent of the present invention to a metal having zero oxidation number is applied to the substrate by means of an inkjet or other device capable of finely controlling the discharge amount. By coating and depositing on the substrate and curing it together with the precursor of the conductive polymer contained in the colloid solution, it is possible to obtain a wiring having high conductivity and high mechanical strength.
  • metal all metals can be used in principle, but a transition metal is preferable, and a transition metal of Groups 8 to 11 of the periodic table is more preferable. Most preferred are iron, cobalt, nickel, copper, ruthenium, orifice, rhenium, iridium, palladium, gold, platinum and silver.
  • the colloid used for forming the conductor or semiconductor pattern is iron, manganese, chromium, cobalt, nickel, copper, zinc, palladium, molybdenum, tungsten, ruthenium, osmium, iridium, platinum, silver prepared by the method described above.
  • Gold, germanium, tin, gallium, indium, and the like preferably a colloid comprising palladium, gold, silver, nickel or copper.
  • a metal oxide colloid having an oxidation number other than zero as described above may be used. It is well known that even oxides can be reduced by a reducing agent or electrical reduction to reduce the oxidation number to zero.
  • the metal oxide is an oxide of the metal.
  • cadmium sulfide, titanium oxide, and silicon oxide, which are semiconductors, may be used as the metal or metal oxide.
  • Silver is generally known to cause a change in electrical properties due to migration, and thus silver may be used in a mixture with other metals or metal oxides.
  • a colloid composed of an alloy by mixing a plurality of metal colloids or metal oxide colloids, or a colloid composed of a solid solution thereof may be used.
  • the mixture may be sintered to form an alloy or a solid solution.
  • silver Z palladium, silver / platinum, platinum Z gold / silver may be used for the purpose of chemical stability.
  • a single copper microparticle colloid easily reacts with oxygen and is unstable, but becomes stable when alloyed with a noble metal such as palladium.
  • the molecular weight of the polymer protective agent in the colloid solution composition of the present invention can be 100 or more, preferably 100 to: 100,000, more preferably about 200 to 20,000.
  • the colloid solution composition and the conductor or semiconductor pattern forming ink of the present invention contain at least alcohol, surfactant, preservative and chelating agent.
  • One type can be included. Specifically, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, ethylene glycol, propylene glycol, trimethylene glycol, butylene glycol, 1 , 2,6-hexanetriol, hexylene glycol, glycerin, ethylene glycol monomethyl (or ethyl) ether, diethylene glycol monomethyl (or ethyl) ether, triethylene glycol monomethyl (or ethyl) ether, Triethylene glycol dimethyl (or ethyl) ether, tetraethylene glycol dimethyl (or ethyl) ether, etc., 0.1 to 45% by weight of alcohol, preferably Ku may be added 1 to 40% by weight.
  • the solvent of the colloid solution composition of the present invention and the conductor or ink for forming a semiconductor pattern is not particularly limited, and the dispersion of colloid such as water, alcohol, ether, ester, chlorinated hydrocarbon, amine and the like and a mixed solvent thereof is used.
  • a high-performance solvent can be suitably used.
  • the colloid solution composition and the conductor or semiconductor pattern forming ink of the present invention contain a curable compound or a thermoplastic resin which can be cured by irradiating light, heat or electron beam energy to cause a polymerization reaction.
  • a curable compound or a thermoplastic resin which can be cured by irradiating light, heat or electron beam energy to cause a polymerization reaction.
  • a compound that can be cured by irradiation with light, heat or electron beam energy is coated on a semiconductor or non-conductive substrate and then cured by irradiation with light, heat or electron beam energy, and the curable compound is cured. After curing, it becomes a conductive polymer.
  • the colloid solution composition and the conductor or the ink for forming a semiconductor pattern contain a polymerization accelerator of a precursor of a dopant or a polymer cured product for improving the electron conductivity of the conductive polymer. You can also.
  • the colloid solution composition and the conductor or semiconductor pattern forming ink of the present invention can also contain a conductive colloid and a conductive polymer soluble in a solvent.
  • the conductive polymer having solubility in the solvent is an external dopant type. However, it may be a self-punting type. Specifically, the following equation
  • Poly (naphtho [2,3-c] pyrrole-1,3-diyl-2-yl- (sodium 2'-ethanesulfonate)) and the like can be used.
  • the terminal X and Y of the polymer of the polymer protecting agent in the colloid solution composition of the present invention are hydrogen, alkyl group, phenyl group, mercapto group, silanol group, metal alkoxy, alkoxy group, sulfide group, acetyl, Group, acetal group, aldehyde group, thioaldehyde group, oxo group, thioxo group, hydroperoxy group, amino group, imino group, hydrazino group, carpoxy group, thiocarpoxy group, dithiocarpoxy group, sulfo group, sulfino group, sulfeno group Oxypropyl, haloformyl, .99amoyl, hydrazinocarbonyl, amidino, cyano, nitrite, isocyano, cyanate, isocyanato, thiocyanato, isothiocyanato, methyacryloy
  • the metal or metal oxide can be adsorbed by the mercapto group.
  • the metal or metal oxide can be adsorbed by the silanol group, and is preferably palladium, cadmium sulfide, titanium oxide, or calcium oxide. Is prime.
  • the colloid solution is coated by spin coating, dipping, casting, vacuum deposition, Langmuir-Blodgett, or other method. By forming a thin film, a thin film having a function as a photocatalyst can be formed.
  • the physical shape need not be a thin film but may be a linear shape.
  • An ink jet printer that can control a very fine ejection of several pi (picoliter) can be used for forming the fine wire. Further, it is possible to use a discharge device such as that used in a capillary electrophoresis analyzer.
  • a discharge device such as that used in a capillary electrophoresis analyzer.
  • metal particles In order to obtain high conductivity, it is necessary for metal particles to be close to each other, more preferably in contact. To this end, it is desirable to reduce or eliminate the amount of organic compounds that cause a decrease in conductivity with respect to metals. However, if the amount of the organic compound relative to the metal or metal oxide is too small, sufficient mechanical strength cannot be obtained, and the adhesion to the substrate also decreases.
  • the amount ⁇ of the conductive substance relative to the organic compound is greater than the critical volume fraction £ e in the theory of percolation, that is, ⁇
  • the weight of the metal or metal oxide relative to the organic compound remaining after evaporation of the solvent is from 10% to 100% by weight, preferably 40 ° /. ⁇ : 100%.
  • the concentration of the metal or metal oxide fine particles may be at least the critical micelle concentration, and is at least 5%, preferably at least 20%, most preferably at least 50% by weight relative to the solvent.
  • the number of conductive paths can be increased by decomposing or removing some or all of the remaining organic compounds by light, heat or chemical treatment.
  • the percentage by weight is less than 90%, preferably less than 80% and more preferably less than 30%.
  • organic compounds can be reduced or removed by a method such as heating. Heating in an oxygen-free state can prevent the metal from becoming an oxide. The heating is at 200 ° C, preferably 500 ° C, more preferably about 800 ° C or more.
  • the colloid solution composition and the conductor or semiconductor pattern forming ink of the present invention can contain a curable compound or a thermoplastic resin which can be cured by irradiating light, heat or electron beam energy to cause a polymerization reaction.
  • a curable compound an ultraviolet curable resin, a thermosetting resin, an electron beam curable resin, or the like can be used.
  • UV-curable resins include photopolymerizable prepolymers, photopolymerizable monomers, photoinitiators, and sensitizers.
  • the photopolymerizable prepolymer polyester acrylate, polyurethane acrylate, polyester urethane acrylate, epoxy acrylate, polyol acrylate and the like can be used.
  • Photopolymerizable monomers include 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, acrylic acid, isobutyl acrylate, tributyl acrylate, lauryl tridecyl acrylate , Stearyl acrylate, tetrahydrofurfuryl acrylate, cyclohexyl acrylate, benzyl acrylate, 2-hydroxy-3-phenyloxypropyl acrylate, 2-hydroxyethyl acrylate , 2-hydroxypropyl acrylate, 2-methoxyethyl acrylate, phenoxyshetyl acrylate, ethoxydiethylene glycol acrylate, monofunctional acrylate such as methoxydipropylene glycol acrylate, 1,3-butanediol Luziacrylate, Neo Pentyl diol diacrylate, 1,4-butane diol diacrylate, 1,6-hexan
  • photoinitiators examples include acetophenone, benzophenone, Michler's ketone, benzyl, benzoin, benzoin isobutyl ether, benzyl methyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-dimethyl-1-phenylpropane-1- On, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, azobisisobutyl nitrile, benzoyl peroxide, di-tert-butyl peroxide can be used. .
  • sensitizers include benzoin isopropyl ether, n-butylamine, di-n-butylamine, triethylamine, isoamyl P-dimethylaminobenzoate, and ethylaminoethyl methyl acrylate.
  • electron beam-curable resins include polyvinylidene fluoride, terminal bier esters, unsaturated polyester ZN oxohydrocarbon-substituted acrylamide, halogen-containing olefin-type unsaturated polyester, alkyd resin, modified polyester and blend, unsaturated polyester, acrylic Epoxy soybean oil ammine, Epoxyester ester saturated alkyd, Chlorinated paraffin and acrylate, Z acrylate oil, Epoxy, Polyol rubbamate Unsaturated monomer, Polyester type oligo (meth) acrylate, Linear copolymer of glycidol, Aromatic polysulfone , Diacrylates and unsaturated olefins.
  • the electron beam crosslinking resin examples include polyglycidyl methacrylate (PGMA), polyglycidyl methacrylate methacrylate, maleic acid adduct of polyglycidyl methacrylate, chloromethylated polystyrene, polydiaryl orthophthalate, epoxidized polybutadiene, Polyethyl acrylate- ⁇ -chloro acrylonitrile, polystyrenetetrathiofulvalene, polymethylmeth And acrylate acrylates.
  • PGMA polyglycidyl methacrylate
  • maleic acid adduct of polyglycidyl methacrylate chloromethylated polystyrene
  • polydiaryl orthophthalate epoxidized polybutadiene
  • Polyethyl acrylate- ⁇ -chloro acrylonitrile Polystyrenetetrathiofulvalene
  • polymethylmeth And acrylate acrylates examples include polyglycid
  • thermosetting resin epoxy, phenol, polyimide, and urea compounds
  • an appropriate resin may be selected according to the required characteristics such as adhesion to the substrate.
  • thermoplastic resin a general acrylic compound or polyester compound can be used.
  • Figure 1 is a chart showing the results of proton NMR measurement of the polymeric protective agent.
  • Figure 2 is a graph of the UV absorption spectrum of the metal colloid in a THF solution.
  • Figure 3 is a graph of the UV absorption spectrum of the metal colloid after three centrifugation operations.
  • Fig. 4 is a chart showing the measurement results of the zeta potential of the PEG silver fine particles.
  • the polymer (5) shown in the following reaction formula was obtained by reacting with potassium O-ethyl dithiocarbonate at room temperature for 3 hours. Thereafter, a polymer having a mercapto group at the terminal (6) shown in the following reaction formula was obtained by the same reaction with propylamine in THF.
  • This colloidal solution composition was coated on a substrate with a doctor blade and dried and cured in the same manner.
  • the heterobifunctional PEG (1) shown in the following reaction formula is anion-polymerized. Synthesized. Furthermore, the polymer (2) shown in the following reaction formula was obtained by reacting with O-ethyl potassium dithiocarbonate in THF at room temperature for 3 hours. After that, the reaction with propylamine in THF also yielded a heterobifunctional PEG (3) having a mercapto group at the end, as shown in the following reaction formula.
  • FIG. 1 shows the proton NMR measurement results of the polymers (1) to (3) shown in the above reaction formula obtained by the above method.
  • silver nitrate synthesized by the above method 10 g
  • l.Og of sodium borohydride was added to this to prepare a yellow-brown colloidal solution.
  • Excessive Acetal-PEG-SH was removed by centrifugation (gravitational acceleration: 42.000 x 9.8 m / sec 2 , 30 minutes). The solution remaining after centrifugation was dropped onto 3 mL of THF and stirred. The absorption spectra of these samples were taken and their characteristics were analyzed. The results are shown in Fig. 2.
  • the UV-vis spectrum of the silver particles re-dispersed in a THF solution after centrifugation, and the UV spectrum of unmodified silver particles (b) are as follows: It was confirmed that a large absorption peak at a wavelength of 500 nm or more based on the aggregation of particles was exhibited. Acetal-PEG-OH (c) did not have a large peak at a wavelength of 500 nm or more like the UV spectrum of unmodified silver particles, but the overall peak shifted to higher wavelengths and the particle dispersion was somewhat higher. It was confirmed that it had become unstable.
  • the part containing the film was dried with far-infrared rays and cooled to room temperature, and then irradiated with ultraviolet light for 10 minutes using a metal halide lamp MO3-L21 (Lamp output: 80 WZcm 2 ) manufactured by Kyushu Co., Ltd., and photopolymerized to form a conductor wiring pattern. did. The volume resistance value of this conductor wiring pattern was measured.
  • the colloidal solution composition was coated on a substrate with a doctor blade and dried and cured in the same manner.
  • the solution was discharged onto a substrate with a phosphor mixer MJ8000C, and the substrate was covered with a thin cast film composed of the above solution. Next, the part including the cast film on this substrate was dried with far infrared rays to form a conductor wiring pattern. The volume resistance value of this conductor wiring pattern was measured.
  • This colloid solution composition was coated on a substrate with a doctor blade, and dried and cured in the same manner.
  • a wiring pattern was printed on a substrate using a stainless steel 400-mesh screen printing plate made of Nippon Acheson conductive silver paste ink ED975SS, and cured at 135 ° C for 60 minutes.
  • the volume resistance value of the prepared silver paste conductor was measured.
  • the line widths of the wiring patterns of Examples 1 to 4 and Comparative Example 1 were measured with a Keyence Corp. laser-focus displacement meter LT8020.
  • the volume resistance was measured with a digital multimeter tester manufactured by Mitsubishi Chemical Corporation and calculated by converting the film thickness. Table 1 shows the results of these measurements.
  • the metal colloid solution composition of the present invention has extremely excellent dispersibility, particularly when a noble metal is used, has a very small particle size.
  • the conductor or semiconductor pattern forming ink of the present invention comprising this colloid solution composition is: An electronic substrate can be manufactured by easily forming a fine wiring pattern that can be a conductor in which metals come close to or in contact with each other on a semiconductor or nonconductor substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A conductor or a semiconductor pattern formed on a semiconductive or nonconductive substrate by ejecting a solution, serving as a precursor of a conductor or a semiconductor and comprising a metal or composite metal oxide colloid produced by bonding a polymer compound having a function group exhibiting high physical or chemical adsorption to a metal or a metal oxide, as a protective agent, to one terminal or both terminals of a block copolymer comprising a hydrophilic block and a hydrophobic block, a compound curable upon irradiation with light, heat or electron beam energy, and a solvent, onto the surface of the substrate in a desired pattern by means of an ejector which can control ejection of an ink jet printer delicately and then irradiating a part of the substrate coated with the solution with light, heat or electron beam energy thereby hardening that part.

Description

明細書 金属コロイド溶液組成物およびそれを用いた導体または半導体パターン形成 用インクならびに導体または半導体パターン形成方法 技術分野  TECHNICAL FIELD The present invention relates to a metal colloid solution composition, an ink for forming a conductor or semiconductor pattern using the same, and a method for forming a conductor or semiconductor pattern.
本発明は, 金属コロイド溶液組成物と該組成物を用いた工業材料の作製方法 に関する。 さらに詳しくは, 触媒, 電気材料, 磁気材料, 光学材料などに利用 され得る, 高度に分散された金属または金属酸化物コロイド溶液組成物, およ び該組 J¾物により導体または半導体パターンを半導体または不導体基板上に形 成させる方法に関する。 背景技術  The present invention relates to a metal colloid solution composition and a method for producing an industrial material using the composition. More specifically, a highly dispersed metal or metal oxide colloid solution composition that can be used as a catalyst, an electric material, a magnetic material, an optical material, and the like; The present invention relates to a method for forming a non-conductive substrate. Background art
コロイドは l〜500nm の大きさを有する微粒子であり, 一般には溶媒に均 一に分散した分散液として定義される。 近年, 金属コロイドは機能性材料とし ての応用が活発に研究されている。 金属コロイドはバルク金属と異なり比表面 積が著しく大きいため, 通常の金属原子と異なる特異な挙動を示す。 このよう な金属コロイドの性質を利用して触媒, 電気材料, 磁気材料, 光学材料, セン サ一などへの応用が期待されている。  Colloids are fine particles with a size of 1 to 500 nm, and are generally defined as a dispersion uniformly dispersed in a solvent. In recent years, metal colloids have been actively studied for application as functional materials. Metal colloids, unlike bulk metals, have a very large specific surface area and therefore exhibit unique behavior different from ordinary metal atoms. Utilization of such properties of metal colloids is expected to be applied to catalysts, electric materials, magnetic materials, optical materials, sensors, and so on.
しかしながら, 一般に水溶性高分子や界面活性剤を保護剤とする金属コロイ ド溶液は保存安定性が悪く, 特に電解質の存在下では保護剤がデハイドレーシ ヨンを起こし, 凝析するため不安定である。  However, metal colloid solutions using a water-soluble polymer or a surfactant as a protective agent generally have poor storage stability. In particular, in the presence of an electrolyte, the protective agent undergoes dehydration and coagulates, and is therefore unstable.
界面活性剤あるいは高分子化合物が, 金属コロイド溶液を安定化させる保護 剤として用いられることは く知られている。 このような保護剤は金属粒子の 表面に物理的あるいは化学的に結合し, 粒子どうしを立体反発させることによ り分散安定化させようとするものである。 一般に界面活性剤より高分子の方が 保護剤としての効果が優れていることが知られており, ゼラチン, アルブミン などのタンパク質やポリビニルアルコール, ポリビエルピロリ ドンなどの水溶 性高分子などを用いた金属コロイド溶液の調製方法が, 例えば特開平 8-27307 に開示されている。 しかし、 これらの開示されているいずれの従来技術のコロイド溶液も, 親水 性高分子あるいは疎水性高分子のいずれかのみを金属表面に結合せしめたもの である。 このため, 溶媒はごく限られたものとなる。 また, 通常の高分子では 末端の官能基の金属または金属酸化物に対する物理的または化学的吸着性が乏 しく保存安定性が悪い。 It is well known that surfactants or polymer compounds are used as protective agents for stabilizing metal colloid solutions. Such a protective agent physically or chemically bonds to the surface of the metal particles and attempts to stabilize the dispersion by sterically repelling the particles. It is generally known that polymers are more effective as protective agents than surfactants, and proteins such as gelatin and albumin and water-soluble polymers such as polyvinyl alcohol and polybierpyrrolidone are used. A method for preparing a metal colloid solution is disclosed, for example, in JP-A-8-27307. However, all of these disclosed prior art colloid solutions have only a hydrophilic polymer or a hydrophobic polymer bound to the metal surface. For this reason, the solvent is very limited. In addition, ordinary polymers have poor physical or chemical adsorptivity of terminal functional groups to metals or metal oxides and poor storage stability.
近年, 電子工業用基盤の配線の集積化に伴い, 樹脂などの不導体や半導体基 板に非常に寸法精度の高い微細配線を形成させることが非常に重要である。 樹 脂などの不導体表面に配線パターンを形成させる従来技術としては, 以下の方 法がある。  In recent years, with the integration of wiring for electronic industrial substrates, it is very important to form fine wiring with extremely high dimensional accuracy on non-conductors such as resin and semiconductor substrates. Conventional techniques for forming wiring patterns on non-conductive surfaces such as resin include the following methods.
サブトラクティブ法と称される方法は, 基板全面にまず金属箔を設け, 所望 とする部分に光硬化性樹脂をフォトレジストインクでマスクして, 該金属を溶 解する溶液に浸漬してマスクされていない部分の金属箔を溶解除去し所望とす るパターンを得る。  In a method called a subtractive method, a metal foil is first provided on the entire surface of a substrate, and a photo-curable resin is masked with a photoresist ink on a desired portion, and then immersed in a solution for dissolving the metal. Dissolve and remove the metal foil in the portions that are not present to obtain the desired pattern.
また、 アディティブ法と称される方法は, 配線部分だけに無電解メツキして , 回路パターンを形成するものである。例えば, 光反応を利用したアディティ ブ法による回路パターンの作製方法としては, 特開平 10-209586, 特開昭 e- SS?, 特開昭 48-20065, 特開昭 48-24250, 特開昭 48-24255などがある。例え ば, 特開平 10-209586 はポリオルガノシラン膜に酸素存在下で所望とするパ ターン部に選択的に光照射を行い, 光照射部に SiO 結合を持つパターンを形 成し, 次いで SiO 結合を持つパターン部のみを溶解させる溶剤を用いて, 上 記パターン部を溶解し, 上記未照射部のオルガポリノシラン膜のみを基板に残 した後, このオルガノポリシラン膜に酸素存在下に光照射を行って, オルガノ ポリシラン膜の表面に SiO 結合を形成し, これに銀塩を接触還元させて, 銀 導電層を形成させるものである。特開昭 46-827 は, 還元性の金属塩の光酸化 により塩化パラジウムの還元によるパラジウムの析出を光未照射部分にのみ起 こさせるものであり, 特開昭 48-20065, 特開昭 48-24255, 特開昭 48-24250 は, 金属塩の光還元により生成する遊離金属を核として無電解メツキを行うも のである。特開昭 58-222592は, パターン部分にのみ触媒粒子を付着させた後 , 無電解メツキする方法である。しかし, これらは回路パターンの再現性や非 導電回路部での異常析出など種々の欠点があり, プリント基板の製造方法とし ては欠点が多く, 改良の余地が多分にある。また, メツキの緻密性が低く, メ ツキのバラツキが極めて大きい, 純粋な金属ではなく合金が形成される, など の問題がある。 さらには貴金属塩量を増すと触媒コストが高くなる, 基板との 密着性が悪くなる, 強度が低くなる, マイダレ一シヨンが起こるなどの問題が ある。 In addition, a method called an additive method is to form a circuit pattern by electroless plating only on a wiring portion. For example, as a method of producing a circuit pattern by an additive method using a photoreaction, see Japanese Patent Application Laid-Open Nos. 10-209586, e-SS ?, 48-20065, 48-24250, and 48-24250. 48-24255 and others. For example, Japanese Patent Application Laid-Open No. 10-209586 discloses a method in which a desired pattern area is selectively irradiated with light in the presence of oxygen on a polyorganosilane film, a pattern having an SiO bond in the light irradiated area is formed, and then the SiO bond is formed. After dissolving the pattern portion using a solvent that dissolves only the pattern portion having, and leaving only the unirradiated portion of the organopolysilane film on the substrate, the organopolysilane film is irradiated with light in the presence of oxygen. Then, an SiO bond is formed on the surface of the organopolysilane film, and a silver salt is catalytically reduced on the SiO bond to form a silver conductive layer. JP-A-46-827 discloses that the reduction of palladium chloride by photo-oxidation of a reducing metal salt causes the deposition of palladium only in a portion not irradiated with light. -24255, JP-A-48-24250, perform electroless plating using a free metal formed by photoreduction of a metal salt as a nucleus. Japanese Patent Application Laid-Open No. 58-222592 discloses a method of attaching a catalyst particle only to a pattern portion and then performing electroless plating. However, these are not reproducible circuit patterns and There are various drawbacks, such as abnormal deposition in the conductive circuit part, and there are many drawbacks in the printed circuit board manufacturing method, and there is much room for improvement. In addition, there are problems such as low density of the plating, extremely large variation of the plating, and formation of an alloy instead of a pure metal. In addition, increasing the amount of noble metal salt raises the cost of the catalyst, lowers the adhesion to the substrate, lowers the strength, and may cause problems such as the occurrence of mid-damage.
上記のサブストラクティブ法やアディティブ法で述べた, 所望とする部分以 外の未反応の溶液は, 未反応部分のみを溶解させる溶液により洗浄, 除去しな ければならない, という工程が生じる。  As described in the subtractive and additive methods above, a process occurs in which the unreacted solution other than the desired portion must be washed and removed with a solution that dissolves only the unreacted portion.
サブトラクティブ法やアディティブ法以外に, 貴金属と光, 熱または電子線 硬化性の樹脂バインダーを混練したペーストをスクリーン印刷等により基板上 に印刷し, 樹脂バインダ一を硬化させる方法によっても導体配線パターンを形 成することができる。 しかしながら, 導電性ペーストの場合は, 粒子を懸濁状 態に保っために, 高粘性でなければならない, スクリーン印刷できるために適 度なプソィドプラスチック流動性とチクソトロピー流動性を兼ね備えてなけれ ばならず, さらにインクの有機および無機塩の成分を混合するにはロールミル などによる物理的粉砕と混合を必要とし, このような方法で粉碎された該貴金 属の粒子径は 0.5〜4 m であり, 実質的にこれ以上の寸法精度および平滑性 をもつ配線を形成させることは不可能である。実際には, メッシュサイズの大 きさの限界や印刷後の液垂れなどのため, スクリーン印刷では 150〜200 m 以下の細線を印刷することは不可能である。 また, ペーストインクにはチクソ トロピー性があり, 膜厚等などの作製再現性が悪く, さらにはスクリーン刷版 , 印刷機などの装置等が必要である。 有機溶媒を含んでいるため, 作業者の人 体や環境への負荷が大きく, 換気設備なども必要となる。 さらに, 印刷するた めにはアートワークや印刷装置が必要であり, コストが高く, また, アートヮ ークの作製に時間がかかり多品種 ·少量生産には不向きである。  In addition to the subtractive method and the additive method, the conductive wiring pattern can also be formed by printing a paste obtained by kneading a noble metal and a resin binder curable by light, heat or electron beam on the substrate by screen printing or the like, and curing the resin binder. It can be formed. However, in the case of conductive paste, the particles must be highly viscous in order to keep the particles in suspension, and must have a suitable pseudoplastic fluidity and thixotropic fluidity to be screen-printable. In addition, mixing the organic and inorganic salt components of the ink requires physical milling and mixing with a roll mill or the like. The particle size of the noble metal milled by such a method is 0.5 to 4 m. Yes, it is virtually impossible to form wiring with higher dimensional accuracy and smoothness. In practice, it is impossible to print fine lines of 150 to 200 m or less by screen printing because of the size limit of the mesh size and dripping after printing. In addition, paste ink has thixotropic properties, poor reproducibility of film thickness, etc., and requires equipment such as screen printing plates and printing machines. Since it contains organic solvents, it places a heavy burden on workers and the environment, and requires ventilation equipment. Furthermore, artwork and printing equipment are required for printing, and the cost is high. In addition, it takes a long time to create an artwork, which is not suitable for high-mix, low-volume production.
また、 回路基板に導電性高分子やグラフアイト粒子を回路パターン状に付着 させて導電化し, その上に銅を電気メツキする方法 (特開平 7-58439, 特開平 6-280089 など) や導体パネルなどメツキ下地層の回路境界領域にのみレーザ —照射して回路部分を電気的に独立させた上で, 回路部分を電気銅メツキする 方法 (特開平 7-66533) があるが, いずれも特殊な電気メツキ装置を必要とす る。 Also, a method in which conductive polymer or graphite particles are attached to a circuit board in a circuit pattern to make it conductive and copper is electrically plated thereon (Japanese Patent Laid-Open No. 7-58439, Japanese Patent Laid-Open No. 6-280089, etc.) Laser only on circuit boundary area of plating underlayer -There is a method of applying electrical copper plating to the circuit part after irradiating the circuit part electrically independent (Japanese Patent Application Laid-Open No. 7-66533), but all require special electrical plating equipment.
この他, 真空蒸着法, 化学蒸着法, スパッタリングなどの乾式メツキもある が, 十分な電気導電性の膜厚が得られないという欠点がある。  In addition, there are dry plating methods such as vacuum deposition, chemical vapor deposition, and sputtering, but they have the drawback that a sufficient electrical conductive film thickness cannot be obtained.
一方, 従来の金属に代わる導電体として, 種々の導電性高分子が合成され検 討されているが, 不溶不融性のため所望のパターンの配線を形成することが難 しい, あるいはコストが高いという問題があり, 実用化されている例は少ない 。 導電性高分子によって導電性高分子パターンを形成する方法の例は特開平 6-236712 に開示されている。 この方法は, 塩化鉄 (III) などのピロ一ルの酸 化重合触媒となり, かつ光で還元され酸化性が失われる物質を溶液とし他の素 材の表面に塗布するか, ポリマーなどに混合した組成物を薄膜またはフィルム , 板状などに成形し, これにマスクパターンを密着させ, 紫外光または可視光 を照射することによって, 光照射部分の酸化性を消失させ, ピロ一ルを重合さ せなくするものである。 しかし, この方法では導電性が低いため, 金属電子回 路としては用いることができないという問題点がある。  On the other hand, various conductive polymers have been synthesized and studied as conductors to replace conventional metals, but it is difficult to form wiring of the desired pattern due to insolubility and infusibility, or the cost is high. There are few practical examples. An example of a method for forming a conductive polymer pattern using a conductive polymer is disclosed in Japanese Patent Application Laid-Open No. 6-236712. In this method, a substance that becomes an oxidation polymerization catalyst for pyrrole such as iron (III) chloride and is reduced by light and loses oxidative properties is converted into a solution and applied to the surface of another material, or mixed with a polymer or the like. The composition thus formed is formed into a thin film, film, or plate, and a mask pattern is adhered to the composition, and by irradiating ultraviolet light or visible light, the oxidizing properties of the light-irradiated portion are lost and the pyrrole is polymerized. It is something that does not. However, this method has the problem that it cannot be used as a metal electron circuit because of its low conductivity.
特開平 11-243273 は, 導電線路としうる金属パターンを設ける方法におい て, 外皮を保護コロイドとする金属コロイドを前駆体として基体上に薄膜とし て堆積し, 次いでこの表面に空間選択的な光照射を行って該外皮を分解もしく は破壊して金属薄膜とし, 次いで非露光部の金属コロイドを除去することを特 徵とする金属配線の形成方法を提供している。 この方法は当該金属の外皮であ るテトラアルキルアンモニゥム塩ゃエチレンォキシドをレーザ一などにより破 壊せしめ, かつ金属同士を融合させなければならない。 この方法では, 外皮と なる化合物をレーザーなどにより破壊するときに, 金属が酸化されてしまうと いう欠点がある。 さらには, 外皮としてテトラアルキルアンモニゥム塩を用い たコロイドは分散安定性が悪く, 特に電解質の共存下では外皮がデハイドレ一 シヨンされ凝集してしまう。 末端に, 金属に対する吸着性が高い官能基を有し ないエチレンォキシドを用いた場合では, 同様に保存安定性が悪い。 発明の開示 Japanese Patent Application Laid-Open No. H11-243273 discloses a method of providing a metal pattern that can be used as a conductive line by depositing a metal colloid having a protective sheath as a precursor on a substrate as a thin film and then irradiating the surface with spatially selective light irradiation. The present invention provides a method for forming a metal wiring, which comprises decomposing or destroying the outer skin to form a metal thin film, and then removing a metal colloid in an unexposed portion. In this method, the tetraalkylammonium salt / ethylene oxide, which is the outer skin of the metal, must be destroyed with a laser or the like, and the metals must be fused together. This method has the disadvantage that the metal is oxidized when the outer layer is destroyed by a laser or the like. In addition, colloids using tetraalkylammonium salts as the hull have poor dispersion stability, especially in the presence of electrolytes, where the hull dehydrates and aggregates. The use of ethylene oxide, which does not have a functional group that is highly adsorbable to metals at the end, also results in poor storage stability. Disclosure of the invention
本発明の目的は, 非常に分散安定性の優れた金属コロイド溶液組成物と微量 吐出技術を用いることにより, レジストによる被覆や剥離などの煩雑な工程を 不要とし, 半導体または不導体基板に非常に寸法精度の高い微細な導体または 半導体配線パターンを簡便に形成させる方法を提供することである。  An object of the present invention is to use a metal colloid solution composition having extremely excellent dispersion stability and a micro-discharge technique, thereby eliminating the need for complicated steps such as coating and stripping with a resist, and making it possible to produce a semiconductor or nonconductive substrate with a very low level. An object of the present invention is to provide a method for easily forming a fine conductor or semiconductor wiring pattern with high dimensional accuracy.
本発明は、 一般式, X-HLS-HBS-Y, X-HBP-Yまたは X-HLP-Y [式中, HL Sは親水性セグメント, HBSは疎水性セグメント, HBPは疎水性セグメント, HLPは親水性セグメントを表し, X, Yはそれぞれ水素, アルキル基, フエ二 ル基, メルカプト基, シラノール基, 金属アルコキシ, アルコキシ基, スルフ イ ド基, ァセチル基, ァセタール基, アルデヒド基, チォアルデヒド基, ォキ ソ基, チォキソ基, ヒドロペルォキシ基, アミノ基, イミノ基, ヒドラジノ基 , カルポキシ基, チォカルポキシ基, ジチォカルポキシ基, スルホ基, スルフ イノ基, スルフエノ基, ォキシカルポニル基, ハロホルミル基, 力ルバモイル 基, ヒドラジノカルボ二ル基, アミジノ基, シァノ基, 二トリ口基, イソシァ ノ基, シアナト基, イソシアナト基, チオシアナト基, イソチオシアナト基, メ夕クリロイル基, ァリル基を有するアルキル基, 活性エステルアジド基, ピ ォチン基, オリゴ糖, アミノ酸, ビニルベンジル基, メ夕クリロイル基, ァク リロイル基またはこれらの誘導体を表す] で表される高分子保護剤が, 金属, 複合金属酸化物, 少なくとも 2種類の金属からなる固溶体またはコア ·シェル 構造をもつ金属クラスターの表面に吸着してなる分散安定化された微粒子を少 なくとも 1種類含むことを特徴とする金属コロイド溶液組成物に関するもので あり、 また、 本発明の導体または半導体パターン形成用インクは、 前記コロイ ド溶液組成物からなるものである。  The present invention relates to a compound represented by the general formula: X-HLS-HBS-Y, X-HBP-Y or X-HLP-Y, wherein HLS is a hydrophilic segment, HBS is a hydrophobic segment, HBP is a hydrophobic segment, HLP Represents a hydrophilic segment, and X and Y represent hydrogen, an alkyl group, a phenyl group, a mercapto group, a silanol group, a metal alkoxy, an alkoxy group, a sulfide group, an acetyl group, an acetal group, an aldehyde group, and a thioaldehyde, respectively. Group, oxo group, thioxo group, hydroperoxy group, amino group, imino group, hydrazino group, carboxy group, thiocarpoxy group, dithiocarpoxy group, sulfo group, sulfino group, sulfeno group, oxycarbonyl group, haloformyl group, and haloformyl group , Hydrazinocarbonyl group, amidino group, cyano group, nitrite group, isocyano group, cyanate group, isocyanato group Thiocyanato group, isothiocyanato group, methyl acryloyl group, alkyl group having aryl group, active ester azide group, phototin group, oligosaccharide, amino acid, vinyl benzyl group, methyl acryloyl group, acryloyl group or derivatives thereof Represents a solid solution consisting of metals, mixed metal oxides, at least two metals, or dispersion-stabilized fine particles adsorbed on the surface of a metal cluster having a core-shell structure. The present invention relates to a metal colloid solution composition containing at least one kind, and the conductor or semiconductor pattern forming ink of the present invention is composed of the colloid solution composition.
本発明の金属コロイド溶液組成物における金属または金属酸化物などのコロ イド粒子の粒子怪は直径 l〜1000nm, 好ましくは l〜500nm, さらに好まし くは 1〜: LOOnm の範囲である。 金属コロイド粒子を調製する方法は特に限定 されるものではく, 一般的な化学的方法または物理的方法などを用いることが できる。  The particle size of the colloidal particles such as metal or metal oxide in the metal colloid solution composition of the present invention has a diameter of l to 1000 nm, preferably l to 500 nm, and more preferably 1 to LOOnm. The method for preparing the metal colloid particles is not particularly limited, and a general chemical method or physical method can be used.
化学的方法は粒子径の揃った微粒子を調製することができ, 微細配線を形成 するための前駆体を調製するのに適している。 化学的方法は, 金属イオンの還 元後, 金属原子を凝集させるか, あるいは結晶化させる方法である。 化学的方 法による金属コロイド粒子の調製法には, 真空中あるいはガス中で還元する乾 式-還元法, および溶媒中で還元する湿式-還元法がある。 湿式法が一般的には 装置が単純で操作が容易であるため好ましい。 湿式法では金属塩を還元して原 子価零の金属を得ることができる。 Chemical method can prepare fine particles with uniform particle size and form fine wiring Suitable for preparing precursors for The chemical method is to aggregate or crystallize metal atoms after reduction of metal ions. Methods for preparing metal colloid particles by a chemical method include a dry-reduction method in which reduction is performed in a vacuum or gas, and a wet-reduction method in which reduction is performed in a solvent. The wet method is generally preferred because the equipment is simple and the operation is easy. In the wet method, a metal salt can be reduced to obtain a metal having a zero atomic value.
湿式-還元法により調製されたコロイドは, 他の方法のものと比べて粒径が 小さく, また粒径分布も狭い均質な金属コロイド粒子が得られるため, 特に好 ましい方法である。  Colloids prepared by the wet-reduction method are particularly preferred, as they have a smaller particle size and have a narrower particle size distribution than other methods.
還元法を用いてコロイド溶液を調製する場合は, イオンを還元した後に高分 子保護剤を添加してもよく, また高分子保護剤を予め溶媒に溶解させておき高 分子保護剤の共存下でイオンを還元してもよい。 後者の場合, イオンが還元さ れて金属原子となる過程において, 金属原子表面に疎水性相互作用により高分 子鎖の疎水性部分がトレインとして粒子の表面に物理吸着もしくは化学吸着す る。 金属原子に吸着した高分子保護剤の立体反発作用により, コロイドの過剰 な凝集が抑制され, 高分子保護剤の親溶媒性部が溶媒中に広がって分散する。 還元法で用いる溶媒としては, 水, アルコール, エーテル, エステル, 塩化 炭化水素, ァミンなど, またはその混合溶媒で金属塩を溶解しうるものであれ ば特に限定されないが, 例えば水, メタノール, エタノール, 2—プロパノー ル等の温和な還元性を有する低級脂肪族アルコール類が好適に用いられる。 特 に水, メタノール, エタノールが好ましく, さらに好ましくは水, 水とメタノ —ルの混合物, または水とエタノールの混合物等である。 このような還元法を 用いてコロイドを調製する例として, 銀, 金, 銅の塩を用いて, ポリビエルピ 口リドンやポリビニルアルコールを高分子保護剤としてコロイドを調製する方 法が開示されている (Journal of Applied Polymer Science 44 号 p.1003 1992 年, Chemical Society Japan 59 号 p.367 1986 年, Journal Colloid and Interface Science 156号 p.240 1993年) 。 金属としては, 原理的には全ての金属を用いることが許されるが, 好ましく は遷移金属であり, さらに好ましくは, 周期表第 8族一第 11族の遷移金属が 好ましい。 最も好ましくは, 鉄, コバルト, ニッケル, 銅, ルテニウム, ロジ ゥム, イリジウム, パラジウム, 金, 白金, 銀である。 また, レニウムも好ま しく用いることができる。 When preparing a colloid solution using the reduction method, a polymer protecting agent may be added after reducing the ions, or the polymer protecting agent may be dissolved in a solvent in advance and coexisted with the polymer protecting agent. May be used to reduce the ions. In the latter case, during the process in which the ions are reduced to metal atoms, the hydrophobic portion of the polymer chain is physically adsorbed or chemisorbed to the particle surface as a train by hydrophobic interaction on the metal atom surface. Due to the steric repulsion of the polymer protecting agent adsorbed on the metal atom, excessive aggregation of the colloid is suppressed, and the solvent-philic portion of the polymer protecting agent spreads and disperses in the solvent. The solvent used in the reduction method is not particularly limited as long as it can dissolve the metal salt in water, alcohol, ether, ester, chlorinated hydrocarbon, amine or the like, or a mixed solvent thereof. For example, water, methanol, ethanol, Lower aliphatic alcohols having mild reducing properties such as 2-propanol are preferably used. In particular, water, methanol, and ethanol are preferable, and water, a mixture of water and methanol, or a mixture of water and ethanol are more preferable. As an example of preparing a colloid using such a reduction method, there is disclosed a method of preparing a colloid using silver, gold, and copper salts and using polybierpipididone or polyvinyl alcohol as a polymer protecting agent ( Journal of Applied Polymer Science 44 p.1003 1992, Chemical Society Japan 59 p.367 1986, Journal Colloid and Interface Science 156 p.240 1993). As the metal, all metals can be used in principle, but a transition metal is preferable, and a transition metal of Group 8 to 11 of the periodic table is more preferable. preferable. Most preferred are iron, cobalt, nickel, copper, ruthenium, rhodium, iridium, palladium, gold, platinum and silver. Also, rhenium can be preferably used.
本発明におけるコロイド化合物の金属塩および金属の酸の種類は特に限定さ れないが, 溶媒に対する溶解性が高いことが必要であり, ハロゲン化物, 硝酸 塩, 酢酸塩, 無水酢酸塩, 硫酸塩, 酢酸塩などが挙げられる。 このうち, 硝酸 塩, 塩酸塩がとりわけ好ましく用いられる。 適する金属塩は, 例えば塩化白金 酸, 塩化金酸, 硝酸銀, 塩化ロジウム, 塩化パラジウム, 塩化ルビジウム, 塩 化銅, 塩化鉄, 無水酢酸パラジウム, 硫酸銅等が挙げられる。 金属塩を 2 種 以上の混合物として用いて, 合金の金属コロイドを調製することも可能である 。 例えば, 銅/白金, 銅/パラジウムのパイメタリック金属コロイドの調製方 法が開示されている (JOURNAL OF MACROMOLECULAR SCIENCE CHEMISTRY A p.1225一 1238 1990 年, CHEMISTY LETTERS p.1611 - 1614 1993年) 。  The type of the metal salt of the colloid compound and the acid of the metal in the present invention are not particularly limited, but they must have high solubility in a solvent, and include halides, nitrates, acetates, acetic anhydrides, sulfates, and the like. Acetate and the like. Of these, nitrates and hydrochlorides are particularly preferably used. Suitable metal salts include, for example, chloroplatinic acid, chloroauric acid, silver nitrate, rhodium chloride, palladium chloride, rubidium chloride, copper chloride, iron chloride, anhydrous palladium acetate, copper sulfate and the like. It is also possible to prepare metal colloids of alloys using a mixture of two or more metal salts. For example, a method for preparing copper / platinum and copper / palladium pimetallic metal colloids is disclosed (JOURNAL OF MACROMOLECULAR SCIENCE CHEMISTRY A p. 1225-1238 1990, CHEMISTY LETTERS p. 1611-1614 1993).
コア ' シェル構造を形成し得る金属の例としては CdSe/ZnS, Au/Pt, Pt/Pd , Cu/Pdなどがある (Chemical Review 87号 p.877 1987年, Journal of American Chemical Society 112号 .1327 1990年) 。  Examples of metals capable of forming the core-shell structure include CdSe / ZnS, Au / Pt, Pt / Pd, and Cu / Pd (Chemical Review 87, p.877 1987, Journal of American Chemical Society 112. 1327 1990).
金属塩の還元操作は化学的な方法, 光化学的, 熱分解法, 電気化学的方法, 超音波法などがある。 化学的な方法では適当な還元剤と接触させることで行わ れ, 一般的に還元剤と金属は, ほぼ化学量論量で混合して行われる。 還元剤は 無機還元剤であっても有機還元剤であってもよい。 還元剤の例としてはホルム アミド, 水素, アルコール, ホルムアルデヒド, クェン酸ナトリウム, ヒドラ ジン, アルキルボラン, 硼素化合物または尿素などが挙げられ, 特にアルコー ル類は上記の塩の溶解性が高く溶媒としても機能するので好ましい。 硼素化合 物の例としては, 硼化水素ナトリウム, 硼化水素リチウムがあり, 硼化水素ナ トリウムが非常に好ましい。 還元は通常, 酸または塩基の添加を行わず高分子 の存在下で行われる。 還元溶液の全固形物質の割合は, 一般的に 10— 40重量 %, 好ましくは 15— 30重量%, 最も好ましくは 15— 25重量%である。 本発明 のコロイド溶液組成物は, その固形分中に 0.5— 50重量%の金属粒体を含有す ることが好ましい。 より好ましくは 1一 30 重量%, 特に好ましくは 5— 20 重 量0/。の金属粒体を含むものである。 また、 前記組成物の固形分中の高分子の割 合は, 一般的に 50— 99.5重量%, 好ましくは 70— 99重量。/。, 最も好ましくは 80— 95重量0/。である。 The reduction operation of metal salts includes chemical methods, photochemical methods, thermal decomposition methods, electrochemical methods, and ultrasonic methods. The chemical method is carried out by contacting with an appropriate reducing agent. Generally, the reducing agent and the metal are mixed in almost stoichiometric amounts. The reducing agent may be an inorganic reducing agent or an organic reducing agent. Examples of the reducing agent include formamide, hydrogen, alcohol, formaldehyde, sodium citrate, hydrazine, alkylborane, boron compounds and urea. Particularly, alcohols have high solubility of the above salts and can be used as a solvent. It is preferable because it functions. Examples of boron compounds include sodium borohydride and lithium borohydride, with sodium borohydride being highly preferred. Reduction is usually performed in the presence of a polymer without the addition of an acid or base. The proportion of total solids in the reducing solution is generally 10-40% by weight, preferably 15-30% by weight, most preferably 15-25% by weight. The colloid solution composition of the present invention contains 0.5 to 50% by weight of metal particles in the solid content. Preferably. More preferably 1 one 30% by weight, particularly preferably 5- 20 by weight 0 /. Metal particles. The proportion of the polymer in the solid content of the composition is generally 50 to 99.5% by weight, preferably 70 to 99% by weight. /. , Most preferably 80-95 weight 0 /. It is.
光化学的な還元方法は, 高エネルギー放射線, 可視光線, ァ線, 特に紫外線 を金属塩溶液に照射することによって行われる。  The photochemical reduction method is performed by irradiating the metal salt solution with high-energy radiation, visible light, α-rays, particularly ultraviolet rays.
一方, 物理的方法によるコロイドの調製は, 例えば真空蒸着により金属ナノ 粒子をつくり, 低温でトラップした後, 高分子保護剤で安定化して調製バルク 金属を機械的に粉碎じて微粒子化する方法であり, 微粒子化に限度があり, ま た粒子径の分布も広いものとなることが多い。 特に, 展性および/または延性 が高く, 物理粉碎によつて微粒子化しにくい金や白金などは前者の化学的方法 によって調製する方が好ましい。  On the other hand, the preparation of colloids by a physical method is a method in which metal nanoparticles are prepared by, for example, vacuum evaporation, trapped at a low temperature, and then stabilized with a polymer protective agent. There is a limit to particle size reduction, and the particle size distribution is often wide. In particular, gold and platinum, which have high malleability and / or ductility and are not easily formed into fine particles by physical pulverization, are preferably prepared by the former chemical method.
物理的方法によるコロイドの調製においては, 金属を微粒子粉碎した後に前 述の高分子保護剤を添加してもよく, また高分子保護剤を予め溶媒に溶解させ ておき粉碎しても構わない。  In preparing a colloid by a physical method, the above-mentioned polymer protective agent may be added after the metal is finely pulverized, or the polymer protective agent may be dissolved in a solvent in advance and then pulverized.
コロイド調製方法には上記のような化学的方法や物理的方法がある。 そのい ずれにおいても, 高分子保護剤は疎水性相互作用により, 高分子鎖の疎水性部 分がトレインとして粒子の表面に吸着し, 高分子鎖中の親溶媒性部がループま たはテールとなって, 溶媒中に広がって, 安定に分散し得る。  The colloid preparation method includes the above-mentioned chemical method and physical method. In either case, the polymer protectant absorbs the hydrophobic part of the polymer chain as a train on the particle surface by hydrophobic interaction, and the solvent-philic part in the polymer chain forms a loop or tail. It spreads in the solvent and can be stably dispersed.
本発明の実施においては, 一般には還元法などの化学的方法によって高分子 保護剤の共存下で調製する方法は, 生成するコロイド粒子の数平均粒子径が小 さく, 粒径分布が狭く, かつ分散安定性が高いため好適である。 還元操作にお いて高分子保護剤が還元されて, 保護剤としての機能を損なうような場合には , イオンの還元操作後に高分子保護剤を添加しても構わない。  In the practice of the present invention, in general, the method of preparing a colloidal particle by a chemical method such as a reduction method in the presence of a polymer protecting agent has a small number average particle diameter, a narrow particle size distribution, and It is suitable because of its high dispersion stability. In the case where the polymer protecting agent is reduced in the reduction operation and impairs the function as a protecting agent, the polymer protecting agent may be added after the ion reducing operation.
金属酸化物コロイドの金属酸化物の例としては, ひ一 Α1203, Ύ ~ a -A1203 , - AIOOH , r - AIOOH , - Α1(ΟΗ)3 , τ _ Al(OH)3 , BeO , CdO , Cd(OH)2, Co(OH)2, Cu(OH)2, CuO , Cr203, Fe(OH)2, Fe3O4, - Fe203 , r - Fe203 , - FeOOH , r - FeOOH , Pb(OH)2, MgO , Mg(OH)2 , Mn(OH)2, HgO, NiO, Ni(OH)2, Pu02, SiO, Th02, Sn02, Ti02, W03, V308, Y203, ZnO, Zr02, La2O3, Ca^La^TaO^N などが挙げられる。 こ れらのコロイ ド調製方法は Acccounts of Chemical Research 14 号 p.22 1981 年, Advances in colloid and interface science 28 号 p.65 1987 年, Langmuir 2 号 p.12 1986 年, および Colloids and Surfaces 19 号 p.337 1986 年, Journal of Colloid and Interface Science 26号 p.62 1968年, 日本化学会誌 87号 p.118 1966年など に開示されており, 本発明においても同様な方法で調製可能である。 Examples of the metal oxide in the metal oxide colloid, arsenic one Α1 2 0 3, Ύ ~ a -A1 2 0 3, - AIOOH, r - AIOOH, - Α1 (ΟΗ) 3, τ _ Al (OH) 3 , BeO, CdO, Cd (OH ) 2, Co (OH) 2, Cu (OH) 2, CuO, Cr 2 0 3, Fe (OH) 2, Fe 3 O 4, - Fe 2 0 3, r - Fe 2 0 3, - FeOOH, r - FeOOH, Pb (OH) 2, MgO, Mg (OH) 2, Mn (OH) 2, HgO, NiO, Ni (OH) 2, Pu0 2, SiO, Th0 2, Sn0 2, Ti0 2, W0 3, V 3 0 8, Y 2 0 3, ZnO, Zr0 2, La 2 O 3, Ca ^ La ^ TaO ^ N , and the like. These colloid preparation methods are described in Acccounts of Chemical Research 14, p.22 1981, Advances in colloid and interface science 28, p.65 1987, Langmuir 2, p.12 1986, and Colloids and Surfaces 19 p.337 1986, Journal of Colloid and Interface Science 26, p.62 1968, The Chemical Society of Japan 87, p.118 1966, etc., and can be prepared by the same method in the present invention.
半導体 CdS, GaS, InAs, InN, PbS, Ti02および Si02などの半導体化合 物のコロイドは, 例えば高分子保護剤の存在下で, 硝酸カドミウム水溶液に硫 化水素ガスを通し, 例えば下記反応式 Semiconductor CdS, GaS, InAs, InN, colloids PbS, Ti0 2 and Si0 2 semiconductor compound, such as, for example, in the presence of polymeric protective agent, through a hydrogen sulfide gas in cadmium nitrate aqueous solution, for example, the following reaction formula
Cd(N03)2 + H2S→CdS + 2HN03 Cd (N0 3) 2 + H 2 S → CdS + 2HN0 3
に示す反応を用いて調製することが可能である (Chemical Review 87 号 p.877 1987 年) 。 まに, Journal of American Chemical Society 112 号 p.1327 1990 年や Journal of Physical Chemistry 96 号 p.329 1994年に記載の方法を用いてもよい。  It can be prepared using the reaction shown in (Chemical Review 87, p. 877, 1987). Alternatively, the method described in Journal of American Chemical Society 112, p. 1327, 1990 or Journal of Physical Chemistry 96, p. 329, 1994 may be used.
本発明の, X-HLS-HBS-Y, X-HBP-Yまたは X-HLP-Yが高分子保護剤とし て金属, 複合金属酸化物, 少なくとも 2 種類の金属からなる固溶体, または コア ·シェル構造をもつ金属クラス夕一の表面に吸着してなる分散安定化され た微粒子のコロイドは前述の方法で調製することができる。  X-HLS-HBS-Y, X-HBP-Y or X-HLP-Y of the present invention is a metal, a composite metal oxide, a solid solution comprising at least two kinds of metals, or a core-shell as a polymer protective agent. The colloid of dispersion-stabilized fine particles adsorbed on the surface of a metal class having a structure can be prepared by the method described above.
前記高分子保護剤における親水性セグメント HLS および親水性セグメント HLP は, 好ましくはポリエチレングリコール, ポリプロピレングリコール, ポリビニルアルコール, ポリ (メタ) アクリル酸, ポリビニルピリジン, ポリ ビニルピロリ ドン, ポリアクリルアミド, ポリジメチルアクリルアミド, ポリ メチルビニルエーテル, これらの共重合体またはこれらの誘導体であり, また 疎水性セグメント HBSおよび疎水性セグメント HBP は, 好ましくはポリラ クチド, ポリグリコリド, ポリ (プチロラクトン) , ポリ (バレロラクトン) , ポリプロピレングリコール, ポリ (α -アミノ酸) , ポリメチルメタクリレ —ト, ポリェチルメタクリレ一ト, ポリスチレン, ポリ ( α -メチルスチレン ) , ポリイソプレン, ポリブタジエン, ポリエチレン, ポリプロピレン, ポリ 酢酸ビニル, これらの共重合体またはこれらの誘導体である。 また好ましくは 、 前記高分子保護剤がポリエチレンダリコールの片末端または両末端にァミノ 基, メルカプト基, シラノール基, ァセチル基, ァセタール基またはこれらの 誘導体が結合してなるものである。 The hydrophilic segment HLS and the hydrophilic segment HLP in the polymer protective agent are preferably polyethylene glycol, polypropylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, polyvinyl pyridine, polyvinyl pyrrolidone, polyacrylamide, polydimethylacrylamide, poly Methyl vinyl ether, a copolymer thereof or a derivative thereof, and the hydrophobic segment HBS and the hydrophobic segment HBP are preferably polylactide, polyglycolide, poly (butyrolactone), poly (valerolactone), polypropylene glycol, polyglycol. (Α-amino acid), polymethyl methacrylate, polyethyl methacrylate, polystyrene, poly (α-methylstyrene), polyisoprene, polybuta Diene, polyethylene, polypropylene, poly Vinyl acetate, their copolymers or their derivatives. More preferably, the polymer protecting agent is obtained by bonding an amino group, a mercapto group, a silanol group, an acetyl group, an acetal group or a derivative thereof to one end or both ends of polyethylene dalicol.
従来の金属コロイド調製方法においては, 高分子保護剤は親水性あるいは疎 水性のみのいずれかに限定されており, 調製時あるいは調製した金属コロイド 微粒子を再分散させる溶媒は同コロイドを調製したときの親水性溶媒もしくは 疎水性溶媒かのいずれかに限定される。 しかしながら, 本発明においては, 高 分子の親水性および疎水性の各ブロックの重合度を調整するだけで, 様々な溶 媒に対して, 分散安定なコロイド溶液を得ることができるものである。  In the conventional method of preparing metal colloids, the polymer protective agent is limited to either hydrophilic or water-phobic, and the solvent for redispersing the prepared metal colloid fine particles during preparation or when preparing the same colloid is used. It is limited to either hydrophilic solvents or hydrophobic solvents. However, in the present invention, it is possible to obtain a colloidal solution that is dispersion-stable in various solvents only by adjusting the degree of polymerization of each of the high-molecular hydrophilic and hydrophobic blocks.
' 本発明は従来技術の欠点を鑑みて, 上記の分散安定なコロイド組成物を用い て寸法精度が高い微細な配線を様々な材質の基板に形成する方法を考案するに 至った。 すなわち, 本発明によれば, 含まれる金属, 金属酸化物, 導電性高分 子または導電性コロイドを数 rnn距離で接近させる, もしくは接触させること が可能であり, 非量子的あるいは量子的な電子移動による導電性が発生し得る ものとなる。  'In view of the drawbacks of the prior art, the present invention has devised a method of forming fine wiring having high dimensional accuracy on substrates of various materials using the above-mentioned dispersion-stable colloid composition. That is, according to the present invention, the contained metal, metal oxide, conductive polymer or conductive colloid can be approached or contacted at a distance of several rnn, and non-quantum or quantum electrons can be brought into contact. Conduction due to movement can occur.
同重量の金属を用いた場合, 粒子径が小さい方が比表面積は大きくなる。 こ のことによって, 粒子どうしの接触点が多くなり, また同時に接触面積が大き くなる。 また, 上記の方法によって調製.したコロイド粒子のサイズは 50nm ないし lOOnm以下であって量子的な伝導も生じる。 その, 導電性は, 各化合 物の配合比を変化させることにより, 好適にすることができる。 さらに, 必要 であればドーパントを予め溶液中に添加しておくことができる。 酸化数がゼロ の金属に本発明の高分子保護剤が結合してなる分散安定化された金属コロイド 溶液を, インクジェットなどの吐出量を微妙に制御可能な装置により, 該コロ イド溶液を基板上に被覆し堆積させ, 該コロイド溶液に含まれる導電性高分子 の前駆体とともに硬化させるにより導電性が高くかつ力学的強度の高い配線を 得ることができる。  When the same weight of metal is used, the smaller the particle size, the larger the specific surface area. As a result, the number of contact points between particles increases, and at the same time, the contact area increases. In addition, the size of the colloidal particles prepared by the above method is less than 50 nm or less than 100 nm, and quantum conduction occurs. The conductivity can be optimized by changing the compounding ratio of each compound. Furthermore, if necessary, the dopant can be added to the solution in advance. A dispersion-stabilized metal colloid solution obtained by bonding the polymer protective agent of the present invention to a metal having zero oxidation number is applied to the substrate by means of an inkjet or other device capable of finely controlling the discharge amount. By coating and depositing on the substrate and curing it together with the precursor of the conductive polymer contained in the colloid solution, it is possible to obtain a wiring having high conductivity and high mechanical strength.
該コロイド溶液には導電性高分子の前駆体の代わりに特開平 7-165892ゃ特 開平 6-313038のような導電性金属コロイドを用いても高い導電性の配線を得 ることが可能である。 Even if a conductive metal colloid as disclosed in JP-A-7-165892 (JP-A-6-313038) is used in place of the conductive polymer precursor in the colloid solution, a highly conductive wiring can be obtained. It is possible to
金属としては, 原理的には全ての金属を用いることが許されるが, 好ましく は遷移金属であり, さらに好ましくは, 周期律表第 8族—第 11族の遷移金属 が好ましい。 最も好ましくは, 鉄, コバルト, ニッケル, 銅, ルテニウム, 口 ジゥム, レニウム, イリジウム, パラジウム, 金, 白金, 銀である。  As the metal, all metals can be used in principle, but a transition metal is preferable, and a transition metal of Groups 8 to 11 of the periodic table is more preferable. Most preferred are iron, cobalt, nickel, copper, ruthenium, orifice, rhenium, iridium, palladium, gold, platinum and silver.
本発明において導体または半導体パターンの形成に用いるコロイドは前述の 方法などで調製した鉄, マンガン, クロム, コバルト, ニッケル, 銅, 亜鉛, パラジウム, モリブデン, タングステン, ルテニウム, オスミウム, イリジゥ ム, 白金, 銀, 金, ゲルマニウム, 錫, ガリウム, インジウムなどであって, 好ましくはパラジウム, 金, 銀, ニッケルまたは銅からなるコロイドである。 また, 前述のような酸化数がゼロ以外の金属酸化物コロイドであってもよい 。 酸化物であっても, 還元剤または電気的還元により還元し酸化数をゼロにで きることは周知のとおりである。 また, 金属酸化物は前記金属の酸化物である 。 また, 半導体である硫化カドミウム, 酸化チタン, 酸化ケィ素も前記金属あ るいは金属酸化物として用いてもよい。  In the present invention, the colloid used for forming the conductor or semiconductor pattern is iron, manganese, chromium, cobalt, nickel, copper, zinc, palladium, molybdenum, tungsten, ruthenium, osmium, iridium, platinum, silver prepared by the method described above. , Gold, germanium, tin, gallium, indium, and the like, preferably a colloid comprising palladium, gold, silver, nickel or copper. Further, a metal oxide colloid having an oxidation number other than zero as described above may be used. It is well known that even oxides can be reduced by a reducing agent or electrical reduction to reduce the oxidation number to zero. The metal oxide is an oxide of the metal. Further, cadmium sulfide, titanium oxide, and silicon oxide, which are semiconductors, may be used as the metal or metal oxide.
銀は一般的にマイグレーションによる電気物性の変化をきたすことがを知ら れており, このため他の金属あるいは金属酸化物と混合して用いることがある 。 このような態様としては複数の金属コロイドあるいは金属酸化物コロイドを 混合して合金からなるコロイドを用いてもよく, それらの固溶体からなるコロ イドであってもかまわない。 さらに, 混合物を焼結させて, 合金あるいは固溶 体としてもよい。 例えば, 銀 Zパラジウム, 銀/白金, 白金 Z金/銀である。 また, 化学安定性などを目的として合金のコロイドを利用してもよい。 例え ば, 単独の銅微粒子コロイドは酸素と反応しやすく, 不安定であるがパラジゥ ムなどの貴金属と合金化すると安定になる。  Silver is generally known to cause a change in electrical properties due to migration, and thus silver may be used in a mixture with other metals or metal oxides. As such an embodiment, a colloid composed of an alloy by mixing a plurality of metal colloids or metal oxide colloids, or a colloid composed of a solid solution thereof may be used. Furthermore, the mixture may be sintered to form an alloy or a solid solution. For example, silver Z palladium, silver / platinum, platinum Z gold / silver. Further, a colloid of an alloy may be used for the purpose of chemical stability. For example, a single copper microparticle colloid easily reacts with oxygen and is unstable, but becomes stable when alloyed with a noble metal such as palladium.
本発明のコロイド溶液組成物における高分子保護剤の分子量は 100 以上も のを用いることでき, 好ましくは 100〜: 100000, より好ましくは 200〜20000 程度である。  The molecular weight of the polymer protective agent in the colloid solution composition of the present invention can be 100 or more, preferably 100 to: 100,000, more preferably about 200 to 20,000.
また, 本発明のコロイド溶液組成物および導体または半導体パターン形成用 インクには、 アルコール, 界面活性剤, 防腐剤およびキレート剤の少なくとも 1種類を含むことができる。 具体的にはジエチレングリコール, トリエチレン グリコール, テトラエチレングリコ一ル, ジプロピレングリコール, トリプロ ピレングリコ一ル, ポリエチレングリコール, ポリプロピレングリコール, ェ チレングリコ一ル, プロピレングリコ一ル, トリメチレングリコール, ブチレ ングリコール, 1,2,6—へキサントリオ一ル, へキシレンダリコール, グリセ リン, エチレングリコールモノメチル (又はェチル) エーテル, ジエチレング リコールモノメチル (又はェチル) ェ一テル, トリエチレングリコールモノメ チル (又はェチル) エーテル, トリエチレングリコールジメチル (又はェチル ) エーテル, テトラエチレングリコールジメチル (又はェチル) エーテル等で あって, アルコール類を 0.1〜45重量%, 好ましくは 1〜40重量%添加しても よい。 また, 一般にインクに使用される防腐剤, キレート剤を 0.01〜2.0重量 %程度添加してもよい。 防腐剤の例としては, 塩化イソチアゾロンや安息香酸 メチルを用いることができる。 In addition, the colloid solution composition and the conductor or semiconductor pattern forming ink of the present invention contain at least alcohol, surfactant, preservative and chelating agent. One type can be included. Specifically, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, ethylene glycol, propylene glycol, trimethylene glycol, butylene glycol, 1 , 2,6-hexanetriol, hexylene glycol, glycerin, ethylene glycol monomethyl (or ethyl) ether, diethylene glycol monomethyl (or ethyl) ether, triethylene glycol monomethyl (or ethyl) ether, Triethylene glycol dimethyl (or ethyl) ether, tetraethylene glycol dimethyl (or ethyl) ether, etc., 0.1 to 45% by weight of alcohol, preferably Ku may be added 1 to 40% by weight. In addition, preservatives and chelating agents generally used in inks may be added in an amount of about 0.01 to 2.0% by weight. Examples of preservatives include isothiazolone chloride and methyl benzoate.
本発明のコロイド溶液組成物および導体または半導体パターン形成用インク の溶媒は特に限定されるものではなく, 水, アルコール, エーテル, エステル , 塩化炭化水素, ァミンなどおよびそれらの混合溶媒などのコロイドの分散性 の高い溶媒を好適に用いることができる。  The solvent of the colloid solution composition of the present invention and the conductor or ink for forming a semiconductor pattern is not particularly limited, and the dispersion of colloid such as water, alcohol, ether, ester, chlorinated hydrocarbon, amine and the like and a mixed solvent thereof is used. A high-performance solvent can be suitably used.
また、 本発明のコロイド溶液組成物および導体または半導体パターン形成用 インクは、 光, 熱または電子線エネルギ一を照射することにより重合反応を起 こし硬化し得る硬化性化合物または熱可塑性樹脂を含むことができる。 光, 熱 または電子線エネルギーを照射することによって硬化しうる化合物は, 半導体 または不導体基板上に被覆された後に, 光, 熱または電子線エネルギーを照射 することによって硬化し、 前記硬化性化合物が硬化した後, 導電性高分子とな る。 この場合、 コロイド溶液組成物および導体または半導体パターン形成用ィ ンク中には、 前記導電性高分子の電子伝導性を向上させるド一パン卜または重 合硬化物の前駆体の重合促進剤を含むこともできる。  Further, the colloid solution composition and the conductor or semiconductor pattern forming ink of the present invention contain a curable compound or a thermoplastic resin which can be cured by irradiating light, heat or electron beam energy to cause a polymerization reaction. Can be. A compound that can be cured by irradiation with light, heat or electron beam energy is coated on a semiconductor or non-conductive substrate and then cured by irradiation with light, heat or electron beam energy, and the curable compound is cured. After curing, it becomes a conductive polymer. In this case, the colloid solution composition and the conductor or the ink for forming a semiconductor pattern contain a polymerization accelerator of a precursor of a dopant or a polymer cured product for improving the electron conductivity of the conductive polymer. You can also.
また、 本発明のコロイド溶液組成物および導体または半導体パターン形成用 インクは、 導電性コロイドおよび溶媒に可溶な導電性高分子を含むこともでき る。 前記溶媒に可溶な溶解性を有する導電性高分子は外部ドーパント型のもの でも, セルフド一パント型のものであっても良い。 具体的には, 下記式 Further, the colloid solution composition and the conductor or semiconductor pattern forming ink of the present invention can also contain a conductive colloid and a conductive polymer soluble in a solvent. The conductive polymer having solubility in the solvent is an external dopant type. However, it may be a self-punting type. Specifically, the following equation
Figure imgf000015_0001
に示されるポリ (ナフト [2, 3-c] ピロール- 1,3-ジィル -2-ィル- (2'-エタンス ルホン酸ナトリウム) ) などを用いることができる。
Figure imgf000015_0001
Poly (naphtho [2,3-c] pyrrole-1,3-diyl-2-yl- (sodium 2'-ethanesulfonate)) and the like can be used.
本発明のコロイド溶液組成物における高分子保護剤の高分子の末端 X およ び Y は, 水素, アルキル基, フエニル基, メルカプト基, シラノール基, 金 属アルコキシ, アルコキシ基, スルフィ ド基, ァセチル基, ァセタール基, ァ ルデヒド基, チォアルデヒド基, ォキソ基, チォキソ基, ヒドロペルォキシ基 , アミノ基, イミノ基, ヒドラジノ基, カルポキシ基, チォカルポキシ基, ジ チォカルポキシ基, スルホ基, スルフィノ基, スルフエノ基, ォキシ力ルポ二 ル基, ハロホルミル基, 力ルバモイル基, ヒドラジノカルポニル基, アミジノ 基, シァノ基, 二トリ口基, イソシァノ基, シアナト基, イソシアナト基, チ オシアナト基, イソチオシアナト基, メ夕クリロイル基, ァリル基を有するァ ルキル基, 活性エステルアジド基, ピオチン基, オリゴ糖, アミノ酸, ビエル ベンジル基, メ夕クリロイル基, ァクリロイル基, またはこれらの誘導体など であって, 反応を阻害しないコロイドの分散安定性が高い好適なものを選べば よい。  The terminal X and Y of the polymer of the polymer protecting agent in the colloid solution composition of the present invention are hydrogen, alkyl group, phenyl group, mercapto group, silanol group, metal alkoxy, alkoxy group, sulfide group, acetyl, Group, acetal group, aldehyde group, thioaldehyde group, oxo group, thioxo group, hydroperoxy group, amino group, imino group, hydrazino group, carpoxy group, thiocarpoxy group, dithiocarpoxy group, sulfo group, sulfino group, sulfeno group Oxypropyl, haloformyl, halbamoyl, hydrazinocarbonyl, amidino, cyano, nitrite, isocyano, cyanate, isocyanato, thiocyanato, isothiocyanato, methyacryloyl , An alkyl group having an aryl group, If an ester azide group, a biotin group, an oligosaccharide, an amino acid, a bier benzyl group, a methyl acryloyl group, an acryloyl group, or a derivative thereof, and a suitable colloid that does not inhibit the reaction and has a high dispersion stability is selected. Good.
前記金属コロイドを形成する高分子保護剤の片末端がメルカプト基の場合, 金属または金属酸化物はメルカプト基により吸着され得る, 鉄, マンガン, ク ロム, コバルト, ニッケル, アルミニウム, 銅, 亜鉛, パラジウム, モリブデ ン, タングステン, ルテニウム, オスミウム, イリジウム, 白金, 銀, 金, ゲ ルマニウム, 錫, ガリウム, インジウムであって, 好ましくは金, 銀, アルミ ニゥムである。 When one end of the polymer protective agent forming the metal colloid is a mercapto group, the metal or metal oxide can be adsorbed by the mercapto group. Iron, manganese, chromium, cobalt, nickel, aluminum, copper, zinc, palladium , Molybdenum , Tungsten, ruthenium, osmium, iridium, platinum, silver, gold, germanium, tin, gallium, and indium, preferably gold, silver, and aluminum.
また, 前記金属コロイドを形成する高分子保護剤の片末端がシラノール基の 場合, 金属または金属酸化物はシラノール基により吸着され得るものであって , 好ましくはパラジウム, 硫化カドミウム, 酸化チタン, 酸化ケィ素である。 シラノ一ル基に吸着される該金属酸化物として酸化チタンを用いた場合は, 前 記コロイド溶液をスピンコート法, デイツピング法, キャスト法, 真空蒸着法 , ラングミュア一 ·ブロジェット法などの方法により薄膜を形成させることに よって, 光触媒としての機能を有する薄膜を形成させることができる。 前記物 理的形状は薄膜でなくとも線状であっても構わない。  When one end of the polymer protective agent forming the metal colloid is a silanol group, the metal or metal oxide can be adsorbed by the silanol group, and is preferably palladium, cadmium sulfide, titanium oxide, or calcium oxide. Is prime. When titanium oxide is used as the metal oxide adsorbed on the silanol group, the colloid solution is coated by spin coating, dipping, casting, vacuum deposition, Langmuir-Blodgett, or other method. By forming a thin film, a thin film having a function as a photocatalyst can be formed. The physical shape need not be a thin film but may be a linear shape.
細線状の配線の形成には数 pi (ピコリットル) の非常に微妙な吐出制御が 可能なインクジエツトプリンタ一を用いることができる。 さらにはキヤビラリ —電気泳動分析装置に用いられるような吐出装置を用いることも可能である。 高い導電率を得るためには, 金属粒子どうしが接近, さらに好ましくは接触 していることが必要である。 そのためには, 導電性の低下をきたす有機化合物 の金属に対する量を低減あるいは除去することが望ましい。 しかしながら, 金 属あるいは金属酸化物に対する有機化合物の量が少なすぎると十分な機械的強 度が得られず, また基板への密着性も低下する。 導電性物質の有機化合物に対 する量 εは, パ一コレーシヨン理論における臨界体積分率 £ e以上, つまり εAn ink jet printer that can control a very fine ejection of several pi (picoliter) can be used for forming the fine wire. Further, it is possible to use a discharge device such as that used in a capillary electrophoresis analyzer. In order to obtain high conductivity, it is necessary for metal particles to be close to each other, more preferably in contact. To this end, it is desirable to reduce or eliminate the amount of organic compounds that cause a decrease in conductivity with respect to metals. However, if the amount of the organic compound relative to the metal or metal oxide is too small, sufficient mechanical strength cannot be obtained, and the adhesion to the substrate also decreases. The amount ε of the conductive substance relative to the organic compound is greater than the critical volume fraction £ e in the theory of percolation, that is, ε
> £ c であることが好ましい。 > Preferably £ c .
溶媒揮発後に残留する有機化合物に対する金属または金属酸化物の重量は重 量比として, 10%〜: 100%であって, 好ましくは, 40°/。〜: 100%である。  The weight of the metal or metal oxide relative to the organic compound remaining after evaporation of the solvent is from 10% to 100% by weight, preferably 40 ° /. ~: 100%.
また, 前記金属または金属酸化物微粒子の濃度は臨界ミセル濃度以上であれ ばよく, 溶媒に対して重量比で 5%以上, 好ましくは 20%以上, 最も好ましく は 50%以上である。  The concentration of the metal or metal oxide fine particles may be at least the critical micelle concentration, and is at least 5%, preferably at least 20%, most preferably at least 50% by weight relative to the solvent.
必要であれば, 光, 熱または化学処理により, 残存する有機化合物の一部あ るいは, 全てを分解または除去することにより導電性パスの数を増やすことが できる。 例えば, 銀ペーストの代替として用いる場合, 有機化合部物の金属に 対する重量百分率は 90%以下であって, 好ましくは 80%以下であって, さら に好ましくは 30%以下である。 有機化合物は加熱などの方法によって低減あ るいは除去することができることは周知のとおりである。 無酸素状態で加熱す ることにより, 金属が酸化物となるのを防ぐことができる。 加熱は, 200°C , 好ましくは 500°C, さらに好ましくは 800°C程度以上である。 If necessary, the number of conductive paths can be increased by decomposing or removing some or all of the remaining organic compounds by light, heat or chemical treatment. For example, when used as a substitute for silver paste, The percentage by weight is less than 90%, preferably less than 80% and more preferably less than 30%. It is well known that organic compounds can be reduced or removed by a method such as heating. Heating in an oxygen-free state can prevent the metal from becoming an oxide. The heating is at 200 ° C, preferably 500 ° C, more preferably about 800 ° C or more.
本発明のコロイド溶液組成物および導体または半導体パターン形成用ィンク には, 光, 熱または電子線エネルギーを照射することにより重合反応を起こし 硬化し得る硬化性化合物または熱可塑性樹脂を含むことができるが、 前記硬化 性化合物としては, 紫外線硬化性樹脂, 熱硬化性樹脂および電子線硬化性樹脂 などを用いることができる。  The colloid solution composition and the conductor or semiconductor pattern forming ink of the present invention can contain a curable compound or a thermoplastic resin which can be cured by irradiating light, heat or electron beam energy to cause a polymerization reaction. As the curable compound, an ultraviolet curable resin, a thermosetting resin, an electron beam curable resin, or the like can be used.
紫外線硬化樹脂には, 光重合性プレボリマー, 光重合性モノマー, 光開始剤 , 増感剤などが含まれる。 光重合性プレボリマーとしては, ポリエステルァク リレート, ポリウレタンァクリレート, ポリエステルウレタンァクリレート, エポキシァクリレート, ポリオールァクリレートなどを用いることができる。 光重合性モノマーとしては, 2-ェチルへキシルァクリレート, 2-ヒドロキシェ チルァクリレート, 2-ヒドロキシプロピルァクリレート, アクリル酸, イソブ チルァクリレート, トリブチルァクリレート, ラウリル · トリデシルァクリレ —ト, ステアリルァクリレート, テトラヒドロフルフリルァクリレート, シク 口へキシルァクリレート, ベンジルァクリレート, 2-ヒドロキシ -3-フエニル ォキシプロピルァクリレート, 2-ヒドロキシェチルァクリレ一ト, 2-ヒドロキ シプロピルァクリレ一ト, 2-メトキシェチルァクリレート, フエノキシェチル ァクリレート, ェキトシジエチレングリコールァクリレート, メトキシジプロ ピレングリコールァクリレートなどの単官能ァクリレート, 1, 3-ブタンジォ ールジァクリレート, ネオペンチルダリコ一ルジァクリレート, 1, 4-ブタン ジオールジァクリレート, 1, 6-へキサンジオールァクリレート, 1, 9-ノナン ジオールジァクリレート, ジエチレングリコールジァクリレート, トリプロピ レングリコールジァクリレート, テトラエチレングリコ一ルジァクリレート, ポリエチレンダリコールジァクリレート, ヒドロキシピバリン酸エステルネオ ペンチルダリコールジァクリレートなどの二官能ァクリレート, トリメチ口一 ルプロパントリァクリレート, ペンタエリスリ トールトリァクリレート, など の三官能ァクリレート, ジペンタエリスト一ルへキサァクリレート, トリァリ ルイソシァヌァクリレートなどの多官能ァクリレートを用いることができる。 光開始剤としては, ァセトフエノン, ベンゾフエノン, ミヒラーケトン, ベン ジル, ベンゾイン, ベンゾインイソブチルエーテル, ベンジルメチルケタール , 1-ヒドロキシシクロへキシルフェニルケトン, 2-ヒドロキシ -2-ジメチル -1- フエニルプロパン- 1-オン, 1- (4-イソプロピルフエニル) -2-ヒドロキシ -2-メ チルプロパン- 1-オン, ァゾビスイソブチル二トリル, ベンゾィルパ一ォキサ イド, ジ -tert-ブチルバ一オキサイドなどを用いることができる。 増感剤とし ては, ベンゾインイソプロピルエーテル, n-プチルァミン, ジ -n-ブチルアミ ン, トリェチルァミン, P-ジメチルァミノ安息香酸イソァミル, ジェチルアミ ノエチルメ夕クリレートなどを用いることができる。 UV-curable resins include photopolymerizable prepolymers, photopolymerizable monomers, photoinitiators, and sensitizers. As the photopolymerizable prepolymer, polyester acrylate, polyurethane acrylate, polyester urethane acrylate, epoxy acrylate, polyol acrylate and the like can be used. Photopolymerizable monomers include 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, acrylic acid, isobutyl acrylate, tributyl acrylate, lauryl tridecyl acrylate , Stearyl acrylate, tetrahydrofurfuryl acrylate, cyclohexyl acrylate, benzyl acrylate, 2-hydroxy-3-phenyloxypropyl acrylate, 2-hydroxyethyl acrylate , 2-hydroxypropyl acrylate, 2-methoxyethyl acrylate, phenoxyshetyl acrylate, ethoxydiethylene glycol acrylate, monofunctional acrylate such as methoxydipropylene glycol acrylate, 1,3-butanediol Luziacrylate, Neo Pentyl diol diacrylate, 1,4-butane diol diacrylate, 1,6-hexanediol acrylate, 1,9-nonane diol diacrylate, diethylene glycol diacrylate, propylene glycol diacrylate Bifunctional acrylates, such as tetraethylene glycol diacrylate, polyethylene dalicol diacrylate, hydroxypivalate neopentyl dalicol diacrylate, and trimethyl acrylate Trifunctional acrylates such as lupropane triacrylate and pentaerythritol triacrylate, and polyfunctional acrylates such as dipentaerythryl hexyl acrylate and triaryl isocyana acrylate can be used. Examples of photoinitiators include acetophenone, benzophenone, Michler's ketone, benzyl, benzoin, benzoin isobutyl ether, benzyl methyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-dimethyl-1-phenylpropane-1- On, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, azobisisobutyl nitrile, benzoyl peroxide, di-tert-butyl peroxide can be used. . Examples of sensitizers include benzoin isopropyl ether, n-butylamine, di-n-butylamine, triethylamine, isoamyl P-dimethylaminobenzoate, and ethylaminoethyl methyl acrylate.
電子線硬化型樹脂としては, ポリフッ化ビニリデン, 末端ビエルエステル類 , 不飽和ポリエステル ZN ォキソ炭化水素置換アクリルアミド, ハロゲン含 有ォレフィン型不飽和ポリエステル, アルキドレジン, 変性ポリエステルとブ レンド, 不飽和ポリエステル, アクリル化エポキシ大豆油ァミン, エポキシェ ステルエステルノ飽和アルキド, 塩素化パラフィンとァクリレート, アクリル 酸 Z油, エポキシ, ポリオール力ルバメート 不飽和モノマー, ポリエステル 型オリゴ (メタ) ァクリレート, グリシドールのリニアコポリマー, 芳香族ポ リスルホン, ジァクリレート類, 不飽和ォレフィン ウレタン基をもつ不飽和 ォレフィンがある。 線量減少剤としてシリコン力一バイト, 不飽和ホスホリツ クエステル, 金属酸化物や水酸化物を添加してもよい。 不活性雰囲気下でのビ ニルモノマーや重合性ビニルエステルレジンなどの場合には, 2-ォキサゾリン , グァニジンなどを加えてもよい。  Examples of electron beam-curable resins include polyvinylidene fluoride, terminal bier esters, unsaturated polyester ZN oxohydrocarbon-substituted acrylamide, halogen-containing olefin-type unsaturated polyester, alkyd resin, modified polyester and blend, unsaturated polyester, acrylic Epoxy soybean oil ammine, Epoxyester ester saturated alkyd, Chlorinated paraffin and acrylate, Z acrylate oil, Epoxy, Polyol rubbamate Unsaturated monomer, Polyester type oligo (meth) acrylate, Linear copolymer of glycidol, Aromatic polysulfone , Diacrylates and unsaturated olefins. There are unsaturated olefins with urethane groups. Silicon doses, unsaturated phosphoric esters, metal oxides and hydroxides may be added as dose reducing agents. In the case of vinyl monomers or polymerizable vinyl ester resins under an inert atmosphere, 2-oxazoline, guanidine, etc. may be added.
電子線架橋樹脂としては, ポリグリシジルメ夕クリレート (PGMA) , ポ リグリシジルメタクリレ一トジェチルァクリレート, ポリグリシジルメタクリ レートのマレイン酸付加物, クロルメチル化ポリスチレン, ポリジァリルオル ソフタレート, エポキシ化ポリブタジエン, ポリェチルァクリレート- α -クロ 口アクリロニトリル, ポリスチレンテトラチオフルバレン系, ポリメチルメタ クリレートァクリル酸系などがある。 Examples of the electron beam crosslinking resin include polyglycidyl methacrylate (PGMA), polyglycidyl methacrylate methacrylate, maleic acid adduct of polyglycidyl methacrylate, chloromethylated polystyrene, polydiaryl orthophthalate, epoxidized polybutadiene, Polyethyl acrylate-α-chloro acrylonitrile, polystyrenetetrathiofulvalene, polymethylmeth And acrylate acrylates.
さらに、 熱硬化性樹脂としては, エポキシ, フエノール, ポリイミド, ウレ ァ化合物を用いることができ, 基板との密着性などの必要特性に応じて適切な ものを選べばよい。  Furthermore, epoxy, phenol, polyimide, and urea compounds can be used as the thermosetting resin, and an appropriate resin may be selected according to the required characteristics such as adhesion to the substrate.
また, 熱可塑性樹脂としては, 一般的なアクリル系化合物やポリエステル系 化合物を用いることができる。 図面の簡単な説明  As the thermoplastic resin, a general acrylic compound or polyester compound can be used. BRIEF DESCRIPTION OF THE FIGURES
図 1は, 高分子保護剤のプロトン NMRの測定結果を示すチャートである。 図 2は, 金属コロイドの THF溶液中での UV吸収スペクトルのグラフである 図 3は, 3回遠心操作後の金属コロイドの UV吸収スぺクトルのグラフであ る。  Figure 1 is a chart showing the results of proton NMR measurement of the polymeric protective agent. Figure 2 is a graph of the UV absorption spectrum of the metal colloid in a THF solution. Figure 3 is a graph of the UV absorption spectrum of the metal colloid after three centrifugation operations.
図 4は, PEG化銀微粒子のゼ一タ電位測定結果を示すチャートである。 発明を実施するための最良の形態  Fig. 4 is a chart showing the measurement results of the zeta potential of the PEG silver fine particles. BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1)  (Example 1)
アルゴン雰囲気下, 500niL フラスコ中にテトラヒドロフラン (THF) 300mL, 2-メトキシエタノール 0.76mL (lOmmol) およびカリウムナフタレ ンの THF溶液 (2ml/L) 0.6mLを加えて 5分間攪拌した。 この溶液に冷却ェ チレンォキシド 53gを加えて, 25 で 48時間攙拌しながら, 重合させた。 つ いでこの反応溶液に D,L—ラクチド 58gを加えて, 2時間攪拌した。 そして, 塩化メチルスルホニルを 54g加えて, さらに 24 時間攪拌した。 ジチォ炭酸 O-ェチルカリウムと室温で 3 時間反応させることによって下記反応式中に示 すポリマー (5)を得た。 その後, 同じく THF中でプロピルァミンとの反応によ つて下記反応式中に示す, 末端にメルカプト基を有するポリマー (6)を得た。
Figure imgf000020_0001
Under an argon atmosphere, 300 mL of tetrahydrofuran (THF), 0.76 mL (10 mmol) of 2-methoxyethanol, and 0.6 mL of a THF solution of potassium naphthalene (2 ml / L) were added to a 500-niL flask and stirred for 5 minutes. To this solution was added 53 g of cooled ethylenoxide, and the mixture was polymerized while stirring at 25 for 48 hours. Then, 58 g of D, L-lactide was added to the reaction solution and stirred for 2 hours. Then, 54 g of methylsulfonyl chloride was added, and the mixture was further stirred for 24 hours. The polymer (5) shown in the following reaction formula was obtained by reacting with potassium O-ethyl dithiocarbonate at room temperature for 3 hours. Thereafter, a polymer having a mercapto group at the terminal (6) shown in the following reaction formula was obtained by the same reaction with propylamine in THF.
Figure imgf000020_0001
CH3OCH2CH20 ~ HCH2CH2Of "CH0CCH0 -K CH 3 OCH 2 CH 2 0 ~ HCH 2 CH 2 Of "CH0CCH0 -K
O o  O o
Figure imgf000020_0002
Figure imgf000020_0002
前記の方法により合成したポリマ一 (6) (Mn = 3600) 10g および硝酸銀 3.75g を水 Zイソプロピルアルコール混合溶媒 (水 Zイソプロピルアルコール は重量比で 1ノ1) 270gに溶解させ, 25°Cで 5時間攪拌した。 次いで, これに 硼化水素ナトリウム l.Og を添加して, 黄褐色のコロイド溶液を調製した。 遠 心分離 (重力加速度 42,000 X 9.8m/sec2, 30分) して過剰の高分子保護剤を除 去した。 さらに, 中京油脂製硬化性樹脂 K-558を 0.3gおよび K-558用硬化剤 を 0.002g添加した。 これをエプソン製インクジェットプリン夕 MJ8000Cで 基板上に吐出し, 前記溶液からなる細線状のキャストフィルムを該基板上に被 覆させた。 次いでこの基板を 150°C X 15 分間加熱してキャスト膜を硬化させ , 導体配線パターンを形成した。 この導体配線パターンの体積抵抗値を測定し た。 また, このコロイド溶液組成物を基板上にドク夕一ブレードでコ一ティン グして, 同様に乾燥して硬化させた。 Dissolve 10 g of the polymer synthesized by the above method (6) (Mn = 3600) and 3.75 g of silver nitrate in 270 g of a mixed solvent of water and isopropyl alcohol (the weight ratio of water and isopropyl alcohol is 1: 1). Stir for 5 hours. Next, l.Og of sodium borohydride was added to this to prepare a yellow-brown colloidal solution. It was removed by dividing the excess polymer protective agent by centrifugal separation (gravity acceleration 42,000 X 9.8m / sec 2, 30 minutes). In addition, 0.3 g of K-558 curable resin made by Chukyo Yushi and 0.002 g of K-558 curing agent were added. This was ejected onto a substrate using an Epson inkjet printer MJ8000C, and a thin linear cast film made of the solution was covered on the substrate. Then, the substrate was heated at 150 ° C. for 15 minutes to cure the cast film, thereby forming a conductor wiring pattern. The volume resistance value of this conductor wiring pattern was measured. This colloidal solution composition was coated on a substrate with a doctor blade and dried and cured in the same manner.
(実施例 2)  (Example 2)
開始剤に 3, 3-ジェトキシ -1-プロパノール, 停止剤に塩化メチルスルホニル を用いてァセタール基とメチルスルホニル基を有する, 下記反応式中に示すへ テロ二官能性 PEG (1) をァニオン重合により合成した。 さらに, THF 中で ジチォ炭酸 O-ェチルカリウムと室温で 3 時間反応させることによって下記反 応式中に示すポリマー (2) を得た。 その後, 同じく THF 中でプロピルアミ ンとの反応によって末端にメルカプ卜基を有する, 下記反応式中に示すヘテロ 二官能性 PEG (3) を得た。 3,3-Jetoxy-1-propanol as the initiator and methylsulfonyl chloride as the terminator have acetal group and methylsulfonyl group. The heterobifunctional PEG (1) shown in the following reaction formula is anion-polymerized. Synthesized. Furthermore, the polymer (2) shown in the following reaction formula was obtained by reacting with O-ethyl potassium dithiocarbonate in THF at room temperature for 3 hours. After that, the reaction with propylamine in THF also yielded a heterobifunctional PEG (3) having a mercapto group at the end, as shown in the following reaction formula.
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
前記の方法により得られた上記反応式中に示すポリマー(1)〜(3)のプロトン NMRの測定結果を図 1に示した。 FIG. 1 shows the proton NMR measurement results of the polymers (1) to (3) shown in the above reaction formula obtained by the above method.
また、 前記の方法により合成した Acetal-PEG-SH (Mn = 3200) 10gおよ び硝酸銀 3.75gを精製水 270gに溶解させ, 25°Cで 5時間攪拌した。 次いで, これに硼化水素ナトリウム l.Og を添加して, 黄褐色のコロイド溶液を調製し た。 遠心分離 (重力加速度 42.000 X 9.8m/sec2, 30 分) して過剰の Acetal- PEG-SHを除去した。 遠心分離後の残った溶液を THF3mL上に滴下し, 攪拌 した。 これらのサンプルについて吸収スペクトルを取り, 特性解析を行い、 結 果を図 2に示した。 このポリマーを用いた銀粒子の調製においては, 遠心分離 後, THF 溶液に再分散させたときの UV-vis スぺクトルカゝら, 末修飾の銀粒 子の UVスぺクトル (b)は, 粒子の凝集に基づく波長 500nm以上の大きな吸収 ピークを示していることが確認できた。 Acetal— PEG— OH(c)は, 末修飾の銀 粒子の UVスぺクトルのように波長 500nm以上に大きなピークを持たなかつ たものの, 全体的にピークが高波長側へシフトし粒子分散が多少不安定化して いることが確認された。 また, 遠心操作後, pH3 の水溶液中に再分散させた 時も Acetal— PEG— SH(a)のみが非常に安定であり, ベンゼンを用いた凍結乾 燥後の再分散性もよいことが確認できた。 また、 図 3に示すように、 遠心分離 3 回操作では末端修飾のない PEG及び水酸基末端 PEGではその吸光度が減 少していることから, 凝集により溶液から分離されているのに対し, メルカプ ト末端 PEGでは強い強度を保ち, 安定化が確認された。 さらに、 通常の銀微 粒子の水溶液分散系では粒子表面を正に荷電させることによりそのチャージ反 発により分散安定化させているのに対し, 図 4に示すように、 PEG 化銀微粒 子ではその表面に全くチャージがないことがゼ一タ電位測定により確認された このコロイド溶液に水溶性光重合性単量体 (メタ) アクリル酸一 2—ヒドロ キシェチルを 0.3gおよび光重合開始剤 4一 (2—ヒドロキシエトキシ) フエ二 ル (2—ヒドロキシー 2—プロピル) ケトンを O.Olg 加えた。 これをエプソン 製ィンクジエツトプリン夕 MJ8000Cで基板上に吐出し, 前記溶液からなる細 線状のキャストフイルムを基板上に被覆させた。 次いでこの基板上のキャスト 膜を含む部分を遠赤外線にて乾燥せしめて室温まで冷却した後, ックス社製メタルハライドランプ MO3-L21 (ランプ出力 80WZcm2) を用い て 10分間紫外線照射を施し光重合させ, 導体配線パターンを形成した。 この 導体配線パターンの体積抵抗値を測定した。 また, このコロイド溶液組成物を 基板上にドク夕一ブレードでコーティングして, 同様に乾燥して硬化させた。 In addition, 10 g of Acetal-PEG-SH (Mn = 3200) and 3.75 g of silver nitrate synthesized by the above method were dissolved in 270 g of purified water, and stirred at 25 ° C for 5 hours. Next, l.Og of sodium borohydride was added to this to prepare a yellow-brown colloidal solution. Excessive Acetal-PEG-SH was removed by centrifugation (gravitational acceleration: 42.000 x 9.8 m / sec 2 , 30 minutes). The solution remaining after centrifugation was dropped onto 3 mL of THF and stirred. The absorption spectra of these samples were taken and their characteristics were analyzed. The results are shown in Fig. 2. In the preparation of silver particles using this polymer, the UV-vis spectrum of the silver particles re-dispersed in a THF solution after centrifugation, and the UV spectrum of unmodified silver particles (b) are as follows: It was confirmed that a large absorption peak at a wavelength of 500 nm or more based on the aggregation of particles was exhibited. Acetal-PEG-OH (c) did not have a large peak at a wavelength of 500 nm or more like the UV spectrum of unmodified silver particles, but the overall peak shifted to higher wavelengths and the particle dispersion was somewhat higher. It was confirmed that it had become unstable. Also, after re-dispersion in an aqueous solution of pH 3 after centrifugation, only Acetal-PEG-SH (a) was extremely stable, and the redispersibility after freeze-drying with benzene was also confirmed to be good. did it. Also, as shown in Fig. 3, the absorbance of PEG without terminal modification and hydroxyl-terminated PEG was reduced by three times of centrifugation. PEG maintained strong strength and was confirmed to be stable. In addition, in the aqueous dispersion of ordinary silver fine particles, the surface of the particles is positively charged to stabilize the dispersion due to charge repulsion. It was confirmed by zeta potential measurement that there was no charge on the surface. To this colloid solution was added 0.3 g of a water-soluble photopolymerizable monomer (meth) -2-hydroxyhexyl acrylate and a photopolymerization initiator 41 ( 2-Hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone was added to O.Olg. This was ejected onto a substrate using an Epson Inkjet Print MJ8000C, and the substrate was covered with a thin cast film made of the above solution. Then cast on this board The part containing the film was dried with far-infrared rays and cooled to room temperature, and then irradiated with ultraviolet light for 10 minutes using a metal halide lamp MO3-L21 (Lamp output: 80 WZcm 2 ) manufactured by Kyushu Co., Ltd., and photopolymerized to form a conductor wiring pattern. did. The volume resistance value of this conductor wiring pattern was measured. The colloidal solution composition was coated on a substrate with a doctor blade and dried and cured in the same manner.
(実施例 3)  (Example 3)
HAuCl4 660ml (l.68mmol) および実施例 2と同様にして得られた Acetal- PEG-SH 1.5g を精製水 40g に溶解した。クェン酸ナトリウム 1.50g ( 5.11mmol) を添加し 80°Cで 5 時間, 加熱攪拌し金コロイド溶液を調製した。 このコロイド溶液にポリ (ナフト [2, 3-c]ピロ一ル -1,3-ジィル -2-ィル - (2'-ェ タンスルホン酸ナトリウム) ) を O.lg 加えて, エプソン製インクジェットプ リン夕 MJ8000Cで基板上に吐出し, 前記溶液からなる細線状のキャストフィ ルムを該基板上に被覆させた。 次いでこの基板上のキャスト膜を含む部分を遠 赤外線にて乾燥せしめて, 導体配線パターンを形成した。 この導体配線パター ンの体積抵抗値を測定した。 また, このコロイド溶液組成物を基板上にドク夕 一ブレードでコ一ティングして, 同様に乾燥して硬化させた。 660 ml (1.68 mmol) of HAuCl 4 and 1.5 g of Acetal-PEG-SH obtained in the same manner as in Example 2 were dissolved in 40 g of purified water. 1.50 g (5.11 mmol) of sodium citrate was added, and the mixture was heated and stirred at 80 ° C for 5 hours to prepare a gold colloid solution. To this colloid solution, add O.lg of poly (naphtho [2,3-c] pyrrol-1,3-diyl-2-yl- (sodium 2'-ethanesulfonate)), and use Epson inkjet printer. The solution was discharged onto a substrate with a phosphor mixer MJ8000C, and the substrate was covered with a thin cast film composed of the above solution. Next, the part including the cast film on this substrate was dried with far infrared rays to form a conductor wiring pattern. The volume resistance value of this conductor wiring pattern was measured. This colloid solution composition was coated on a substrate with a doctor blade, and dried and cured in the same manner.
(実施例 4)  (Example 4)
白金酸六水和物 lO.Og (l9.3mmol) と硫酸銅五水和物 3.0g (l2.0mmol) を 300g の水 Zエタノール グリセリン混合溶媒 (水:エタノール: グリセリン は重量比で 10: 10: 1) に溶解させ (CH3CH20) Si- (CH2) 5-PEG-COOH ( Mn = 3200) 40gを添加し, 1時間攪拌した。 次いで硼化水素ナトリウム 0.5g を添加し窒素パージしながら 50°Cで 5時間, 加熱攪拌して Pd/Cu合金コ口 イドを調製した。 このコロイド溶液にジエトキジェチルアミノシランを 0.6g 加えて, エプソン製インクジエツトプリン夕 MJ8000Cで半導体基板上に吐出 し, 前記溶液からなる細線状のキャストフィルムを基板上に被覆させた。 24 時間室温にて乾燥させた後, 恒温乾燥機で 40°Cにて 72時間乾燥させ, 導体配 線パターンを形成した。 この導体配線パターンの体積抵抗値を測定した。 また , このコロイド溶液組成物を基板上にドクターブレードでコ一ティングして, 同様に乾燥して硬化させた。 (比較例 1) Platinic acid hexahydrate lO.Og (l9.3 mmol) and copper sulfate pentahydrate 3.0 g (l2.0 mmol) were mixed with 300 g of water Z ethanol / glycerin mixed solvent (water: ethanol: glycerin was 10:10 by weight. : 1) and dissolved in (CH 3 CH 2 0) Si- (CH 2 ) 5 -PEG-COOH (Mn = 3200) 40 g and stirred for 1 hour. Next, 0.5 g of sodium borohydride was added, and the mixture was heated and stirred at 50 ° C for 5 hours while purging with nitrogen to prepare a Pd / Cu alloy coil. To this colloid solution was added 0.6 g of diethoxydiethylaminosilane, and the solution was discharged onto a semiconductor substrate using an ink jet printer manufactured by Epson MJ8000C, and a thin linear cast film made of the solution was coated on the substrate. After drying at room temperature for 24 hours, it was dried in a constant-temperature dryer at 40 ° C for 72 hours to form a conductor wiring pattern. The volume resistance value of this conductor wiring pattern was measured. This colloid solution composition was coated on a substrate with a doctor blade, and dried and cured in the same manner. (Comparative Example 1)
日本アチソン製導電性銀ペーストインク ED975SS をステンレス製 400 メ ッシュのスクリーン刷版を用いて, 基板上に配線パ夕一ンを印刷し, 135°C X 60分硬化させた。 作製した銀ペースト導線の体積抵抗値を測定した。 以上, 実施例 1〜実施例 4および比較例 1の配線パターンの線幅をキーェン ス社製のレーザ一フォーカス変位計 L T 8020 で測定した。 また, 体積抵抗値 は三菱化学製デジタルマルチメータ口テスターで測定して, 膜厚換算して算出 した。 これらの測定結果を表 1に示した。  A wiring pattern was printed on a substrate using a stainless steel 400-mesh screen printing plate made of Nippon Acheson conductive silver paste ink ED975SS, and cured at 135 ° C for 60 minutes. The volume resistance value of the prepared silver paste conductor was measured. As described above, the line widths of the wiring patterns of Examples 1 to 4 and Comparative Example 1 were measured with a Keyence Corp. laser-focus displacement meter LT8020. The volume resistance was measured with a digital multimeter tester manufactured by Mitsubishi Chemical Corporation and calculated by converting the film thickness. Table 1 shows the results of these measurements.
Figure imgf000025_0001
Figure imgf000025_0001
産業上の利用可能性 Industrial applicability
本発明の金属コロイド溶液組成物は、 非常に分散性に優れ, 特に貴金属を用 いた場合は非常に粒子径が小さく, このコロイド溶液組成物からなる本発明の 導体または半導体パターン形成用インクは、 金属同士が接近または接触した導 体となり得る微細な配線パターンを半導体または不導体基板上に簡便に形成し て電子基盤を製造することができる。  The metal colloid solution composition of the present invention has extremely excellent dispersibility, particularly when a noble metal is used, has a very small particle size. The conductor or semiconductor pattern forming ink of the present invention comprising this colloid solution composition is: An electronic substrate can be manufactured by easily forming a fine wiring pattern that can be a conductor in which metals come close to or in contact with each other on a semiconductor or nonconductor substrate.

Claims

請求の範囲 The scope of the claims
1. 一般式, X-HLS-HBS-Y, X-HBP-Yまたは X-HLP-Y [式中, HLSは 親水性セグメント, HBS は疎水性セグメント, HBP は疎水性セグメント, HLP は親水性セグメントを表し, X, Y はそれぞれ水素, アルキル基, フエ ニル基, メルカプト基, シラノール基, 金属アルコキシ, アルコキシ基, スル フイド基, ァセチル基, ァセタール基, アルデヒド基, チォアルデヒド基, ォ キソ基, チォキソ基, ヒドロペルォキシ基, アミノ基, イミノ基, ヒドラジノ 基, カルポキシ基, チォカルポキシ基, ジチォカルポキシ基, スルホ基, スル フイノ基, スルフヱノ基, ォキシカルポニル基, 八口ホルミル基, 力ルバモイ ル基, ヒドラジノカルポニル基, アミジノ基, シァノ基, 二トリ口基, イソシ ァノ基, シアナト基, イソシアナト基, チオシアナト基, イソチオシアナト基 , メタクリロイル基, ァリル基を有するアルキル基, 活性エステルアジド基, ピオチン基, オリゴ糖, アミノ酸, ビニルベンジル基, メ夕クリロイル基, ァ クリロイル基またはこれらの誘導体を表す] で表される高分子保護剤が, 金属 , 複合金属酸化物, 少なくとも 2 種類の金属からなる固溶体またはコア · シ エル構造をもつ金属クラス夕一の表面に吸着してなる分散安定化された微粒子 を少なくとも 1種類含むことを特徴とする金属コロイド溶液組成物。 1. General formula, X-HLS-HBS-Y, X-HBP-Y or X-HLP-Y [where HLS is a hydrophilic segment, HBS is a hydrophobic segment, HBP is a hydrophobic segment, and HLP is hydrophilic. X and Y represent hydrogen, alkyl, phenyl, mercapto, silanol, metal alkoxy, alkoxy, sulfido, acetyl, acetal, aldehyde, thioaldehyde, and oxo, respectively. , Thioxo group, hydroperoxy group, amino group, imino group, hydrazino group, carboxy group, thiocarboxy group, dithiocarboxy group, sulfo group, sulfino group, sulfuno group, oxycarbonyl group, octaformyl group, octaformylol group Carbonyl group, amidino group, cyano group, nitrite group, isocyano group, cyanate group, isocyanato group, thiol group Represents a cyanato group, an isothiocyanato group, a methacryloyl group, an alkyl group having an aryl group, an active ester azide group, a piotin group, an oligosaccharide, an amino acid, a vinylbenzyl group, a methyl acryloyl group, an acryloyl group, or a derivative thereof. The polymer protective agent to be used is at least one of a metal, a composite metal oxide, a solid solution composed of at least two types of metals, and dispersion-stabilized fine particles adsorbed on the surface of a metal class having a core-shell structure. A metal colloid solution composition comprising one type.
2. 前記親水性セグメント HLS および親水性セグメント HLP がポリェ チレングリコール, ポリプロピレングリコール, ポリビニルアルコール, ポリ (メタ) アクリル酸, ポリビニルピリジン, ポリビニルピロリ ドン, ポリアク リルアミド, ポリジメチルアクリルアミド, ポリメチルビ二ルェ一テル, これ らの共重合体またはこれらの誘導体であり, 前記疎水性セグメント HBS およ び疎水性セグメント HBPがポリラクチド, ポリグリコリド, ポリ (プチロラ クトン) , ポリ (バレロラクトン) , ポリプロピレングリコ一ル, ポリ (0! - アミノ酸) , ポリメチルメタクリレート, ポリェチルメタクリレート, ポリス チレン, ポリ (α -メチルスチレン) , ポリイソプレン, ポリブタジエン, ポ リエチレン, ポリプロピレン, ポリ酢酸ビエル, これらの共重合体またはこれ らの誘導体であることを特徴とする請求項 1 記載の金属コロイド溶液組成物 2. The hydrophilic segment HLS and the hydrophilic segment HLP are made of polyethylene glycol, polypropylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, polyvinylpyridine, polyvinylpyrrolidone, polyacrylamide, polydimethylacrylamide, polymethylvinylether, These copolymers or derivatives thereof, wherein the hydrophobic segment HBS and the hydrophobic segment HBP are polylactide, polyglycolide, poly (butyrolactone), poly (valerolactone), polypropylene glycol, poly ( 0!-Amino acid), polymethyl methacrylate, polyethyl methacrylate, polystyrene, poly (α-methylstyrene), polyisoprene, polybutadiene, polyethylene, polypropylene, Li acetate Biel, copolymers thereof or which 2. The metal colloid solution composition according to claim 1, which is a derivative thereof.
3. 前記高分子保護剤がポリエチレングリコールの片末端または両末端に アミノ基, メルカプト基, シラノール基, ァセチル基, ァセタール基またはこ れらの誘導体が結合してなるものであることを特徴とする請求項 1 または請 求項 2記載の金属コロイド溶液組成物。 3. The polymer protective agent is characterized in that an amino group, a mercapto group, a silanol group, an acetyl group, an acetal group or a derivative thereof is bonded to one or both ends of polyethylene glycol. The metal colloid solution composition according to claim 1 or claim 2.
4. アルコール, 界面活性剤, 防腐剤およびキレート剤の少なくとも 1種 類を含むことを特徵とする請求項 1 から請求項 3 のいずれかに記載の金属コ ロイド溶液組成物。 4. The metal colloid solution composition according to any one of claims 1 to 3, comprising at least one of an alcohol, a surfactant, a preservative, and a chelating agent.
5. 光, 熱または電子線エネルギ一を照射することにより重合反応を起こ し硬化し得る硬化性化合物または熱可塑性樹脂を含むことを特徴とする請求項 1から請求項 4のいずれかに記載の金属コロイド溶液組成物。 5. The method according to any one of claims 1 to 4, comprising a curable compound or a thermoplastic resin capable of causing a polymerization reaction by irradiation with light, heat or electron beam energy to be cured. Metal colloid solution composition.
6. 前記硬化性化合物が硬化した後, 導電性高分子となることを特徴とす る請求項 5記載の金属コロイド溶液組成物。 6. The metal colloid solution composition according to claim 5, wherein the curable compound becomes a conductive polymer after being cured.
7. 導電性高分子の電子伝導性を向上させるドーパントまたは重合硬化物 の前駆体の重合促進剤を含むことを特徴とする請求項 6 記載の金属コロイド 溶液組成物。 7. The metal colloid solution composition according to claim 6, further comprising a dopant for improving the electron conductivity of the conductive polymer or a polymerization accelerator for a precursor of a polymerized cured product.
8. 導電性コロイドおよび溶媒に可溶な導電性高分子を含むことを特徴と する請求項 1から請求項 7のいずれかに記載の金属コロイド溶液組成物。 8. The metal colloid solution composition according to any one of claims 1 to 7, comprising a conductive colloid and a conductive polymer soluble in a solvent.
9. 請求項 1から請求項 8のいずれかに記載の金属コロイド溶液組成物か らなることを特徴とする導体または半導体パターン形成用インク。 9. An ink for forming a conductor or semiconductor pattern, comprising the metal colloid solution composition according to any one of claims 1 to 8.
10. 請求項 9 に記載のインクを用いて, 半導体または不導体基板上に, 導体または半導体パタ一ンを形成してなることを特徴とする電子基盤。 10. An electronic substrate, characterized in that a conductor or semiconductor pattern is formed on a semiconductor or nonconductor substrate using the ink according to claim 9.
11. 請求項 9 に記載のインクを用いて, 半導体または不導体基板上に, 導体または半導体パターンを形成することを特徴とする電子基盤の作成方法。 11. A method for producing an electronic substrate, comprising forming a conductor or a semiconductor pattern on a semiconductor or non-conductor substrate using the ink according to claim 9.
12. 半導体または不導体基板上に導体または半導体パターンを形成する 方法であって, 請求項 9 記載のインクを基板上に所望のパターン状に被覆し た後, 光, 熱または電子線エネルギーを照射することにより硬化させることを 特徴とする導体または半導体パターン形成方法。 12. A method for forming a conductor or semiconductor pattern on a semiconductor or non-conductive substrate, comprising applying the ink according to claim 9 in a desired pattern on the substrate and then irradiating light, heat or electron beam energy. A method for forming a conductor or semiconductor pattern, comprising:
13. 半導体または不導体基板上に導体または半導体パターンを形成する 方法であって, 請求項 9 記載のインクを基板上に所望のパターン状に被覆し た後, 光, 熱または化学処理を施してインクに含まれる有機化合物の一部ある いは全てを除去することによって金属粒子同士を接近あるいは接触させること を特徴とする導体または半導体パターン形成方法。 13. A method for forming a conductor or semiconductor pattern on a semiconductor or non-conductive substrate, comprising coating the ink according to claim 9 in a desired pattern on the substrate and then subjecting the ink to light, heat or chemical treatment. A method for forming a conductor or semiconductor pattern, wherein metal particles are brought close to or in contact with each other by removing part or all of an organic compound contained in ink.
14. 請求項 13 に記載のパターン形成方法であって, 光, 熱または化学 処理を施してィンクに含まれる有機化合物の一部あるいは全てを除去すること によって, 金属に対する有機化合物の重量百分率を 80%以下にすることを特 徴とする導体または半導体パ夕ーン形成方法。 14. The pattern forming method according to claim 13, wherein a weight percentage of the organic compound relative to the metal is reduced by performing light, heat or chemical treatment to remove a part or all of the organic compound contained in the ink. % Or less, a method for forming a conductor or semiconductor pattern.
PCT/JP2001/006655 2000-08-03 2001-08-02 Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern WO2002018080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000235299 2000-08-03
JP2000-235299 2000-08-03

Publications (1)

Publication Number Publication Date
WO2002018080A1 true WO2002018080A1 (en) 2002-03-07

Family

ID=18727534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006655 WO2002018080A1 (en) 2000-08-03 2001-08-02 Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern

Country Status (1)

Country Link
WO (1) WO2002018080A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025787A1 (en) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
JP2005097345A (en) * 2003-09-22 2005-04-14 Konica Minolta Medical & Graphic Inc Inkjet ink and ic base made by using the same and having noncontact communication function
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle
JP2005229109A (en) * 2004-02-10 2005-08-25 E I Du Pont De Nemours & Co Thick-film ink composite possible to be printed in ink jet, and method therefor
WO2005080032A1 (en) * 2004-02-20 2005-09-01 Kazunori Kataoka Process for producing iron colloid, and iron-colloid-bearing polymer micelle
WO2005108507A1 (en) * 2004-05-07 2005-11-17 Canon Kabushiki Kaisha Composition, image-forming method employing the composition, and method for forming electroconductive pattern
JP2006009120A (en) * 2004-06-29 2006-01-12 Asahi Kasei Corp Metal particulate-dispersed body
JP2006183092A (en) * 2004-12-27 2006-07-13 Sumitomo Electric Ind Ltd Method for producing alloy particulate, alloy particulate produced by the method, and metal colloidal solution
JP2006278443A (en) * 2005-03-28 2006-10-12 Osaka Prefecture Wiring method of printed board
JP2006332051A (en) * 2005-05-23 2006-12-07 Samsung Electro-Mechanics Co Ltd Conductive ink, preparation method thereof and conductive board
JP2007113060A (en) * 2005-10-19 2007-05-10 Fujifilm Corp Method for producing shape-anisotropic metal particulate, colored composition, photosensitive transfer material, black image-fitted substrate, color filter and liquid crystal display device
JP2008196050A (en) * 2007-01-19 2008-08-28 Mitsubishi Materials Corp Metal film forming method, and metal film obtained by the method
US7445731B2 (en) 2004-03-01 2008-11-04 Sumitomo Electric Industries, Ltd. Metallic colloidal solution and inkjet-use metallic ink
JP2009500802A (en) * 2005-07-01 2009-01-08 ナショナル ユニバーシティー オブ シンガポール Conductive composite material
JP2009152263A (en) * 2007-12-19 2009-07-09 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2010087107A (en) * 2008-09-30 2010-04-15 Fujifilm Corp Method of forming wiring
WO2010062568A2 (en) * 2008-10-28 2010-06-03 Micron Technology, Inc. Methods for selective permeation of self-assembled block copolymers with metal oxides, methods for forming metal oxide structures, and semiconductor structures including same
JP2011058041A (en) * 2009-09-09 2011-03-24 Osaka Municipal Technical Research Institute Silver-copper based mixed powder and joining method using the same
JP2011074496A (en) * 2010-11-16 2011-04-14 Sumitomo Electric Ind Ltd Method for producing alloy particulate, alloy particulate produced by the method, and metal colloidal solution
US7959975B2 (en) 2007-04-18 2011-06-14 Micron Technology, Inc. Methods of patterning a substrate
JP2011134630A (en) * 2009-12-25 2011-07-07 Jsr Corp Conductive paste
JP2011179074A (en) * 2010-03-01 2011-09-15 Utsunomiya Univ Gold nanoparticle, and method for producing the same
JP2011528624A (en) * 2008-07-19 2011-11-24 ナノコ テクノロジーズ リミテッド Method for producing aqueous compatible nanoparticles
JP2011530187A (en) * 2008-08-07 2011-12-15 ナノコ テクノロジーズ リミテッド Surface functionalized nanoparticles
US8294139B2 (en) 2007-06-21 2012-10-23 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
JP2013230416A (en) * 2012-04-27 2013-11-14 Ricoh Co Ltd Particle dispersant, particle dispersion ink, and conductive pattern formation method
US8633112B2 (en) 2008-03-21 2014-01-21 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8642157B2 (en) 2008-02-13 2014-02-04 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8641914B2 (en) 2008-03-21 2014-02-04 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8753738B2 (en) 2007-03-06 2014-06-17 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8785559B2 (en) 2007-06-19 2014-07-22 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US8993088B2 (en) 2008-05-02 2015-03-31 Micron Technology, Inc. Polymeric materials in self-assembled arrays and semiconductor structures comprising polymeric materials
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9142420B2 (en) 2007-04-20 2015-09-22 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US9257256B2 (en) 2007-06-12 2016-02-09 Micron Technology, Inc. Templates including self-assembled block copolymer films
JP2022161919A (en) * 2016-09-01 2022-10-21 Jsr株式会社 Composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858854A1 (en) * 1997-01-29 1998-08-19 Mitsuboshi Belting Ltd. Method for producing metal particulate dispersion and metal particle-carrying substance
JP2000160210A (en) * 1998-11-25 2000-06-13 Mitsuboshi Belting Ltd Production of particulate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858854A1 (en) * 1997-01-29 1998-08-19 Mitsuboshi Belting Ltd. Method for producing metal particulate dispersion and metal particle-carrying substance
JP2000160210A (en) * 1998-11-25 2000-06-13 Mitsuboshi Belting Ltd Production of particulate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WUELFING W.P. ET AL., J. AM. CHEM. SOC., vol. 120, no. 48, 1998, pages 12696 - 12697, XP002947511 *

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740634B1 (en) * 2003-09-12 2007-07-18 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
WO2005025787A1 (en) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
JP2005097345A (en) * 2003-09-22 2005-04-14 Konica Minolta Medical & Graphic Inc Inkjet ink and ic base made by using the same and having noncontact communication function
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle
JP2005229109A (en) * 2004-02-10 2005-08-25 E I Du Pont De Nemours & Co Thick-film ink composite possible to be printed in ink jet, and method therefor
WO2005080032A1 (en) * 2004-02-20 2005-09-01 Kazunori Kataoka Process for producing iron colloid, and iron-colloid-bearing polymer micelle
KR101215119B1 (en) 2004-03-01 2012-12-24 스미토모덴키고교가부시키가이샤 Metallic colloidal solution and inkjet-use metallic ink
US7608203B2 (en) 2004-03-01 2009-10-27 Sumitomo Electric Industries, Ltd. Metallic colloidal solution and inkjet-use metallic ink
US7445731B2 (en) 2004-03-01 2008-11-04 Sumitomo Electric Industries, Ltd. Metallic colloidal solution and inkjet-use metallic ink
WO2005108507A1 (en) * 2004-05-07 2005-11-17 Canon Kabushiki Kaisha Composition, image-forming method employing the composition, and method for forming electroconductive pattern
US7704414B2 (en) 2004-05-07 2010-04-27 Canon Kabushiki Kaisha Image-forming method employing a composition
JP2006009120A (en) * 2004-06-29 2006-01-12 Asahi Kasei Corp Metal particulate-dispersed body
JP2006183092A (en) * 2004-12-27 2006-07-13 Sumitomo Electric Ind Ltd Method for producing alloy particulate, alloy particulate produced by the method, and metal colloidal solution
JP4735939B2 (en) * 2004-12-27 2011-07-27 住友電気工業株式会社 Method for producing alloy fine particles and alloy fine particles and metal colloid solution produced thereby
JP2006278443A (en) * 2005-03-28 2006-10-12 Osaka Prefecture Wiring method of printed board
JP2006332051A (en) * 2005-05-23 2006-12-07 Samsung Electro-Mechanics Co Ltd Conductive ink, preparation method thereof and conductive board
JP4562688B2 (en) * 2005-05-23 2010-10-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Conductive ink, method for producing the same, and conductive substrate
JP2009500802A (en) * 2005-07-01 2009-01-08 ナショナル ユニバーシティー オブ シンガポール Conductive composite material
JP2007113060A (en) * 2005-10-19 2007-05-10 Fujifilm Corp Method for producing shape-anisotropic metal particulate, colored composition, photosensitive transfer material, black image-fitted substrate, color filter and liquid crystal display device
JP2008196050A (en) * 2007-01-19 2008-08-28 Mitsubishi Materials Corp Metal film forming method, and metal film obtained by the method
US8753738B2 (en) 2007-03-06 2014-06-17 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8801894B2 (en) 2007-03-22 2014-08-12 Micron Technology, Inc. Sub-10 NM line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8784974B2 (en) 2007-03-22 2014-07-22 Micron Technology, Inc. Sub-10 NM line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US7959975B2 (en) 2007-04-18 2011-06-14 Micron Technology, Inc. Methods of patterning a substrate
US9276059B2 (en) 2007-04-18 2016-03-01 Micron Technology, Inc. Semiconductor device structures including metal oxide structures
US8956713B2 (en) 2007-04-18 2015-02-17 Micron Technology, Inc. Methods of forming a stamp and a stamp
US9768021B2 (en) 2007-04-18 2017-09-19 Micron Technology, Inc. Methods of forming semiconductor device structures including metal oxide structures
US9142420B2 (en) 2007-04-20 2015-09-22 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US9257256B2 (en) 2007-06-12 2016-02-09 Micron Technology, Inc. Templates including self-assembled block copolymer films
US8785559B2 (en) 2007-06-19 2014-07-22 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8294139B2 (en) 2007-06-21 2012-10-23 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
JP2009152263A (en) * 2007-12-19 2009-07-09 Sanyo Electric Co Ltd Solid electrolytic capacitor
US10828924B2 (en) 2008-02-05 2020-11-10 Micron Technology, Inc. Methods of forming a self-assembled block copolymer material
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US11560009B2 (en) 2008-02-05 2023-01-24 Micron Technology, Inc. Stamps including a self-assembled block copolymer material, and related methods
US10005308B2 (en) 2008-02-05 2018-06-26 Micron Technology, Inc. Stamps and methods of forming a pattern on a substrate
US8642157B2 (en) 2008-02-13 2014-02-04 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8641914B2 (en) 2008-03-21 2014-02-04 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US11282741B2 (en) 2008-03-21 2022-03-22 Micron Technology, Inc. Methods of forming a semiconductor device using block copolymer materials
US8633112B2 (en) 2008-03-21 2014-01-21 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US9315609B2 (en) 2008-03-21 2016-04-19 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US10153200B2 (en) 2008-03-21 2018-12-11 Micron Technology, Inc. Methods of forming a nanostructured polymer material including block copolymer materials
US9682857B2 (en) 2008-03-21 2017-06-20 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids and materials produced therefrom
US8993088B2 (en) 2008-05-02 2015-03-31 Micron Technology, Inc. Polymeric materials in self-assembled arrays and semiconductor structures comprising polymeric materials
KR20160041060A (en) * 2008-07-19 2016-04-15 나노코 테크놀로지스 리미티드 Method for producing aqueous compatible nanoparticles
KR101610850B1 (en) * 2008-07-19 2016-04-08 나노코 테크놀로지스 리미티드 Method for producing aqueous compatible nanoparticles
KR101718498B1 (en) * 2008-07-19 2017-03-21 나노코 테크놀로지스 리미티드 Method for producing aqueous compatible nanoparticles
JP2011528624A (en) * 2008-07-19 2011-11-24 ナノコ テクノロジーズ リミテッド Method for producing aqueous compatible nanoparticles
KR101605394B1 (en) * 2008-08-07 2016-03-23 나노코 테크놀로지스 리미티드 Surface functionalised nanoparticles
KR101700382B1 (en) 2008-08-07 2017-01-26 나노코 테크놀로지스 리미티드 Surface functionalised nanoparticles
CN107266937B (en) * 2008-08-07 2019-11-12 纳米技术有限公司 Surface-functionalized nano particle
CN107266937A (en) * 2008-08-07 2017-10-20 纳米技术有限公司 Surface-functionalized nano particle
KR20160036072A (en) * 2008-08-07 2016-04-01 나노코 테크놀로지스 리미티드 Surface functionalised nanoparticles
JP2011530187A (en) * 2008-08-07 2011-12-15 ナノコ テクノロジーズ リミテッド Surface functionalized nanoparticles
JP2010087107A (en) * 2008-09-30 2010-04-15 Fujifilm Corp Method of forming wiring
US8378227B2 (en) 2008-09-30 2013-02-19 Fujifilm Corporation Method of forming wiring board and wiring board obtained
WO2010062568A3 (en) * 2008-10-28 2010-07-22 Micron Technology, Inc. Methods for selective permeation of self-assembled block copolymers with metal oxides, methods for forming metal oxide structures, and semiconductor structures including same
US8097175B2 (en) 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
WO2010062568A2 (en) * 2008-10-28 2010-06-03 Micron Technology, Inc. Methods for selective permeation of self-assembled block copolymers with metal oxides, methods for forming metal oxide structures, and semiconductor structures including same
JP2011058041A (en) * 2009-09-09 2011-03-24 Osaka Municipal Technical Research Institute Silver-copper based mixed powder and joining method using the same
JP2011134630A (en) * 2009-12-25 2011-07-07 Jsr Corp Conductive paste
JP2011179074A (en) * 2010-03-01 2011-09-15 Utsunomiya Univ Gold nanoparticle, and method for producing the same
JP2011074496A (en) * 2010-11-16 2011-04-14 Sumitomo Electric Ind Ltd Method for producing alloy particulate, alloy particulate produced by the method, and metal colloidal solution
US9431605B2 (en) 2011-11-02 2016-08-30 Micron Technology, Inc. Methods of forming semiconductor device structures
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
JP2013230416A (en) * 2012-04-27 2013-11-14 Ricoh Co Ltd Particle dispersant, particle dispersion ink, and conductive pattern formation method
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US10049874B2 (en) 2013-09-27 2018-08-14 Micron Technology, Inc. Self-assembled nanostructures including metal oxides and semiconductor structures comprised thereof
US11532477B2 (en) 2013-09-27 2022-12-20 Micron Technology, Inc. Self-assembled nanostructures including metal oxides and semiconductor structures comprised thereof
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
JP2022161919A (en) * 2016-09-01 2022-10-21 Jsr株式会社 Composition
JP7497741B2 (en) 2016-09-01 2024-06-11 Jsr株式会社 Composition

Similar Documents

Publication Publication Date Title
WO2002018080A1 (en) Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern
JP5556176B2 (en) Particles and inks and films using them
US8496873B2 (en) Alloy nanoparticles of SN-CU-AG, preparation method thereof and ink or paste using the alloy nanoparticles
US7749300B2 (en) Photochemical synthesis of bimetallic core-shell nanoparticles
TWI399457B (en) Copper conductive film and fabricating method thereof, conductive substrate and fabricating method thereof, copper conductive wire and fabricating method thereof and treating solution for treating layer containing copper oxide
US7850933B2 (en) Nanoparticles, methods of making, and applications using same
US8337726B2 (en) Fine particle dispersion and method for producing fine particle dispersion
KR20040106947A (en) Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube
US11826946B2 (en) Direct metal printing with stereolithography
CN104024351A (en) Conductive material and process
JP2007217794A (en) Metal nanoparticle and method of producing the same
TWI588171B (en) Metal particle dispersion for electrically conductive substrate and method for producing the same, and method for producing electrically conductive substrate
EP2045028A1 (en) Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
KR20100092392A (en) Organoamine stabilized silver nanoparticles and process for producing same
KR101467470B1 (en) Copper nano ink using copper complex compound and prepration method of the same
KR20190024693A (en) Molecular organic reactive inks for conductive silver printing
JP2005281781A (en) Method for producing copper nanoparticle
KR101433639B1 (en) Conductive nano ink using copper nano gel composition and prepration method of the same
Ismail et al. Investigation the parameters affecting on the synthesis of silver nanoparticles by chemical reduction method and printing a conductive pattern
KR20100083391A (en) Method of preparing conductive ink composition for printed circuit board and method of producing printed circuit board
JP6237098B2 (en) Dispersant, metal particle dispersion for conductive substrate, and method for producing conductive substrate
US20190104618A1 (en) Method for solvent-free printing conductors on substrate
JPH11243273A (en) Forming method of metal wiring
JP2007169763A (en) Metal nanoparticle composed of two or more metals and method for forming the same
US20100178434A1 (en) Conductive ink composition for printed circuit board and method of producing printed circuit board

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase