JP2011058041A - Silver-copper based mixed powder and joining method using the same - Google Patents

Silver-copper based mixed powder and joining method using the same Download PDF

Info

Publication number
JP2011058041A
JP2011058041A JP2009208307A JP2009208307A JP2011058041A JP 2011058041 A JP2011058041 A JP 2011058041A JP 2009208307 A JP2009208307 A JP 2009208307A JP 2009208307 A JP2009208307 A JP 2009208307A JP 2011058041 A JP2011058041 A JP 2011058041A
Authority
JP
Japan
Prior art keywords
silver
copper
powder
fine particles
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009208307A
Other languages
Japanese (ja)
Other versions
JP5580562B2 (en
Inventor
Yoshiaki Morisada
好昭 森貞
Toru Nagaoka
亨 長岡
Masao Fukuzumi
真男 福角
Yukiyasu Kashiwagi
行康 柏木
Mari Yamamoto
真理 山本
Masami Nakamoto
昌美 中許
Yukio Yoshida
幸雄 吉田
Hiroyuki Kakiuchi
宏之 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Kagaku Kogyo KK
Osaka Municipal Technical Research Institute
Original Assignee
Daiken Kagaku Kogyo KK
Osaka Municipal Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Kagaku Kogyo KK, Osaka Municipal Technical Research Institute filed Critical Daiken Kagaku Kogyo KK
Priority to JP2009208307A priority Critical patent/JP5580562B2/en
Publication of JP2011058041A publication Critical patent/JP2011058041A/en
Application granted granted Critical
Publication of JP5580562B2 publication Critical patent/JP5580562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material which can exhibit joining strength at a level equal to that of a silver nanoparticle single substance and further has excellent migration resistance. <P>SOLUTION: The silver-copper based mixed powder contains a power composed of silver based fine particles containing organic components and copper based fine particles containing organic components, wherein the average particle diameter of the powder composed of the silver based fine particles is ≤50 nm, and the average particle diameter of the powder composed of the copper based fine particles is ≥50 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、銀−銅系混合粉末及びそれを用いた接合方法に関する。   The present invention relates to a silver-copper mixed powder and a bonding method using the same.

金属ナノ粒子は、粒子径が1〜数百nmの超微粒子であり、表面に存在する原子が非常に不安定であるために自発的に粒子間で融着を起こし、粗大化することが知られている。そのため、通常、金属ナノ粒子は有機保護基を用いて表面を覆うことにより安定化されている。金属ナノ粒子は、バルク金属と異なり、低融点化・低温焼結性といった特異な物性を示し、工学的応用として配線形成用、接合用の導電ペースト等に利用されている。   Metal nanoparticles are ultrafine particles with a particle size of 1 to several hundreds of nanometers, and atoms existing on the surface are extremely unstable, so that they spontaneously cause fusion between particles and become coarse. It has been. Therefore, metal nanoparticles are usually stabilized by covering the surface with an organic protecting group. Unlike bulk metals, metal nanoparticles exhibit unique physical properties such as low melting point and low temperature sinterability, and are used as conductive pastes for wiring formation and bonding as engineering applications.

金属ナノ粒子は、合成法によって分類されることが多い。金属ナノ粒子の合成法は、バルク金属を粉砕して粒子を得る物理的方法と、金属塩や金属錯体等の前駆体からゼロ価の金属原子を生成し、それらを凝集させてナノ粒子を得る化学的方法との2つに大きく分類される。物理的方法のひとつである粉砕法は、ボールミル等の装置を用いて金属をすりつぶすことで微細化し、金属ナノ粒子を得る方法である。しかし、この手法で得られる粒子は粒子径分布が広く、数百nm以下のサイズの粒子を得ることは難しい。一方、化学的方法としては、1)レーザー合成法というCOレーザーで反応ガスを加熱して金属ナノ粒子を合成する方法、2)噴霧熱分解法という金属塩溶液を高温雰囲気中に噴霧して瞬間的な溶液の蒸発と熱分解を起こすことによって金属ナノ粒子を得る方法、3)還元法という金属塩溶液から還元反応により金属ナノ粒子を得る方法等があるが、いずれも大量合成が困難という欠点がある。 Metal nanoparticles are often classified by synthetic methods. The synthesis method of metal nanoparticles is a physical method of pulverizing bulk metal to obtain particles, and generating zero-valent metal atoms from precursors such as metal salts and metal complexes, and aggregating them to obtain nanoparticles There are two major categories: chemical methods. The pulverization method, which is one of the physical methods, is a method of obtaining metal nanoparticles by grinding a metal using an apparatus such as a ball mill. However, particles obtained by this method have a wide particle size distribution, and it is difficult to obtain particles having a size of several hundred nm or less. On the other hand, as chemical methods, 1) a method of synthesizing metal nanoparticles by heating a reaction gas with a CO 2 laser called a laser synthesis method, and 2) a metal salt solution called a spray pyrolysis method is sprayed in a high temperature atmosphere. There are a method for obtaining metal nanoparticles by instantaneous evaporation and thermal decomposition of the solution, and 3) a method for obtaining metal nanoparticles by a reduction reaction from a metal salt solution called a reduction method. There are drawbacks.

これに対し、本発明者らは、このような既存の金属ナノ粒子合成法の問題を解決するため、金属源となる金属錯体を無溶媒で加熱するだけで金属ナノ粒子を合成できる熱分解制御法を先に開発している(特許文献1、特許文献2等)。この熱分解制御法の最大の特徴は、無溶媒で加熱するだけという簡便さであり、そのため大量合成も可能である。さらに、穏やかな還元性を有する有機化合物等を反応系に加えることによって反応条件が穏やかになり、また粒子径や形状、表面保護層の設計等が可能になることを見出している。   On the other hand, in order to solve the problems of the existing method for synthesizing metal nanoparticles, the present inventors have been able to synthesize metal nanoparticles simply by heating the metal complex as a metal source without solvent. The method has been developed first (Patent Document 1, Patent Document 2, etc.). The greatest feature of this thermal decomposition control method is the simplicity of heating without solvent, and therefore, mass synthesis is possible. Furthermore, it has been found that by adding an organic compound or the like having a mild reducing property to the reaction system, the reaction conditions become mild, and the particle diameter and shape, the design of the surface protective layer, and the like can be made.

このような金属ナノ粒子の工業的応用は、様々な分野において活発に検討されているが、その一つに金属ナノ粒子を用いた接合プロセスがある。特に、銀を用いた接合プロセスが盛んに検討されており、鉛−錫はんだ等に匹敵する接合強度が得られることが報告されている(非特許文献1、非特許文献2等)。   Industrial application of such metal nanoparticles has been actively studied in various fields, and one of them is a bonding process using metal nanoparticles. In particular, a joining process using silver has been actively studied, and it has been reported that joining strength comparable to that of lead-tin solder or the like can be obtained (Non-Patent Document 1, Non-Patent Document 2, etc.).

特開2007−63579号JP 2007-63579 A 特開2007−63580号JP 2007-63580 A

E.Ide, S.Angata,, A.Hirose, K.F.Kobayashi, Acta Mater,53 (2005) 2385.E. Ide, S. Angata ,, A. Hirose, K. F. Kobayashi, Acta Mater, 53 (2005) 2385. 井出英一,安形真治,廣瀬明夫,小林紘二郎,“銀ナノ粒子を用いた接合プロセス−Cuとの接合性の検討−”Mate 2004”,Yokohama, (Feb., 2004) 213.Eiichi Ide, Shinji Angata, Akio Hirose, Shinjiro Kobayashi, “Joint Process Using Silver Nanoparticles—Examination of Bondability with Cu—“ Mate 2004 ”, Yokohama, (Feb., 2004) 213.

しかしながら、銀については接合強度等の点では優れるものの、コストが高くなるという問題のほか、高湿度下での使用において、銀がイオン化して回路外で再析出することによって電極間を短路するマイグレーションという現象が非常に起こりやすいことが問題視されている。一方、前記のような従来技術においても、優れた接合強度とともに良好な耐マイグレーション特性を発揮できる具体的な技術については特に開示されていない。   However, although silver is excellent in terms of bonding strength, etc., in addition to the problem of high cost, migration that shortens the path between electrodes by silver ionization and reprecipitation outside the circuit when used under high humidity. It is regarded as a problem that this phenomenon is very likely to occur. On the other hand, even in the conventional techniques as described above, a specific technique that can exhibit good migration resistance as well as excellent bonding strength is not disclosed in particular.

従って、本発明の主な目的は、銀ナノ粒子単体と同等レベルの接合強度を発揮できるとともに耐マイグレーション特性にも優れた材料を提供することにある。   Therefore, a main object of the present invention is to provide a material that can exhibit a bonding strength equivalent to that of a single silver nanoparticle and is excellent in migration resistance.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、有機成分を含む銀系微粒子からなる粉末と有機成分を含む銅系微粒子からなる粉末とを含む混合粉末を適用することにより上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the problems of the prior art, the present inventor applies a mixed powder containing a powder composed of silver-based fine particles containing an organic component and a powder composed of copper-based fine particles containing an organic component. The inventors have found that the above object can be achieved, and have completed the present invention.

すなわち、本発明は、下記の銀−銅系混合粉末及びそれを用いた接合方法に係る。
1. 有機成分を含む銀系微粒子からなる粉末と有機成分を含む銅系微粒子からなる粉末とを含む混合粉末であって、前記銀系微粒子からなる粉末の平均粒子径が50nm以下であり、前記銅系微粒子からなる粉末の平均粒子径が50nm以上であることを特徴とする銀−銅系混合粉末。
2. 前記銀系微粒子からなる粉末と前記銅系微粒子からなる粉末の合計100重量部に対して、前記銀系微粒子からなる粉末が40〜60重量部であり、前記銅系微粒子からなる粉末が60〜40重量部である、前記項1に記載の銀−銅系混合粉末。
3. 前記銀系微粒子の金属含有量が60〜98重量%である、前記項1に記載の銀−銅系混合粉末。
4. 前記銅系微粒子の金属含有量が80〜99重量%である、前記項1に記載の銀−銅系混合粉末。
5. 前記銅系微粒子及び/又は前記銀系微粒子が、金属塩を含む出発材料をアミン化合物の存在下で熱処理することにより得られたものである、前記項1に記載の銀−銅系混合粉末。
6. 接合のために用いる、前記項1に記載の銀−銅系混合粉末。
7. 前記項1に記載の銀−銅系混合粉末と、溶剤及び粘度調整用樹脂の少なくとも1種とを含むペースト。
8. 接合すべき2つの部材の間に前記項1に記載の銀−銅系混合粉末又はそれを含むペーストを介在させた後、150〜400℃で加熱する工程を含む接合方法。
That is, the present invention relates to the following silver-copper mixed powder and a bonding method using the same.
1. A mixed powder comprising a powder composed of silver-based fine particles containing an organic component and a powder composed of copper-based fine particles containing an organic component, wherein the average particle diameter of the powder composed of the silver-based fine particles is 50 nm or less, and the copper-based powder A silver-copper-based mixed powder characterized in that an average particle size of powder composed of fine particles is 50 nm or more.
2. The total amount of powder consisting of the silver-based fine particles and the total amount of powder consisting of the copper-based fine particles is 100 to 60 parts by weight. Item 2. The silver-copper mixed powder according to Item 1, which is 40 parts by weight.
3. Item 2. The silver-copper mixed powder according to Item 1, wherein the metal content of the silver-based fine particles is 60 to 98% by weight.
4). Item 2. The silver-copper mixed powder according to Item 1, wherein the copper-based fine particles have a metal content of 80 to 99% by weight.
5. Item 2. The silver-copper mixed powder according to Item 1, wherein the copper-based fine particles and / or the silver-based fine particles are obtained by heat-treating a starting material containing a metal salt in the presence of an amine compound.
6). Item 2. The silver-copper mixed powder according to Item 1, which is used for bonding.
7). A paste comprising the silver-copper mixed powder according to item 1 and at least one of a solvent and a viscosity adjusting resin.
8). The joining method including the process of heating at 150-400 degreeC, after interposing the silver-copper type mixed powder of said claim | item 1 or the paste containing it between two members which should be joined.

本発明の銀−銅系混合粉末は、有機成分を含む微粒子を用いることを前提として、比較的粒子径の大きな銅系微粒子と、比較的粒子径小さな銀系微粒子とを組合せて用いられているので、銀ナノ粒子単体と同等の接合強度を発揮できるとともに、銀ナノ粒子単体の欠点であった耐マイグレーション特性を改善することができる。   The silver-copper-based mixed powder of the present invention is used in combination of copper-based fine particles having a relatively large particle diameter and silver-based fine particles having a relatively small particle diameter on the premise that fine particles containing an organic component are used. Therefore, it is possible to exhibit the same bonding strength as that of a single silver nanoparticle and to improve the migration resistance, which was a drawback of the single silver nanoparticle.

また、銀ナノ粒子単体を用いる場合に比して、その一部が比較的安価な銅微粒子で置き換えることができるため、それだけコスト的にも有利となる。   Further, compared to the case of using silver nanoparticles alone, a part thereof can be replaced with relatively inexpensive copper fine particles, which is advantageous in terms of cost.

このような特長を有する本発明の銀−銅系混合粉末は、特に接合用材料として好適に用いることができる。例えば、電子材料(プリント配線、導電性材料、光学素子等)、構造材料(遠赤外材料、複合皮膜形成材等)の各種の用途に幅広く用いることが可能である。特に、本発明の混合粉末は、耐マイグレーション性が要求される配線形成用又は高温はんだ代替の接合用としても好適に用いることができる。   The silver-copper mixed powder of the present invention having such features can be suitably used particularly as a bonding material. For example, it can be widely used for various applications of electronic materials (printed wiring, conductive materials, optical elements, etc.) and structural materials (far infrared materials, composite film forming materials, etc.). In particular, the mixed powder of the present invention can be suitably used for wiring formation that requires migration resistance or for joining instead of high-temperature solder.

接合試験に用いたサンプル片(部材)の形状及び配置方法を示す図である。図1(a)は、各部材の形状及びサイズ、両部材の接合方法を示す。図1(b)は、接合体にせん断試験を行うときの状態を示す図である。It is a figure which shows the shape and arrangement | positioning method of the sample piece (member) used for the joining test. Fig.1 (a) shows the shape and size of each member, and the joining method of both members. FIG.1 (b) is a figure which shows a state when performing a shear test to a conjugate | zygote. 接合材料として銀系粉末の含有量と接合強度との関係を示すグラフである。It is a graph which shows the relationship between content of silver type powder as joining material, and joining strength. 各接合体におけるせん断試験後の破断面のSEM写真を示す図である。It is a figure which shows the SEM photograph of the torn surface after the shear test in each joined body. 各接合体の接合層断面のSIM写真を示す図である。It is a figure which shows the SIM photograph of the joining layer cross section of each joined body. 各電極のマイグレーション試験後のサンプル外観を示す図である。It is a figure which shows the sample external appearance after the migration test of each electrode.

1.銀−銅系混合粉末
本発明の銀−銅系混合粉末(本発明粉末)は、有機成分を含む銀系微粒子からなる粉末と有機成分を含む銅系微粒子からなる粉末とを含む混合粉末であって、前記銀系微粒子からなる粉末の平均粒子径が50nm以下であり、前記銅系微粒子からなる粉末の平均粒子径が50nm以上であることを特徴とする。
1. Silver-copper mixed powder The silver-copper mixed powder of the present invention (the present powder) is a mixed powder containing a powder composed of silver-based fine particles containing an organic component and a powder composed of copper-based fine particles containing an organic component. The average particle size of the powder composed of the silver-based fine particles is 50 nm or less, and the average particle size of the powder composed of the copper-based fine particles is 50 nm or more.

銀系微粒子は、有機成分を含む。この有機成分の種類は特に限定されないが、通常は出発原料として用いる有機化合物又はその熱分解生成物から構成されていることが好ましい。この場合、有機成分の含有量も限定的ではないが、銀系微粒子の金属含有量が通常は60〜98重量%、特に75〜95重量%となるように調整することが好ましい。   Silver-based fine particles contain an organic component. Although the kind of this organic component is not specifically limited, It is preferable that it is normally comprised from the organic compound used as a starting material, or its thermal decomposition product. In this case, the content of the organic component is not limited, but it is preferable to adjust the metal content of the silver-based fine particles to usually 60 to 98% by weight, particularly 75 to 95% by weight.

銀系微粒子からなる粉末(銀系粉末)の平均粒子径は、通常50nm以下であり、特に5〜40nm、さらには5〜30nmとすることが好ましい。この範囲内に設定することにより、高い接合強度と良好な耐マイグレーション特性を得ることができる。   The average particle size of the powder composed of silver-based fine particles (silver-based powder) is usually 50 nm or less, preferably 5 to 40 nm, more preferably 5 to 30 nm. By setting within this range, high bonding strength and good migration resistance can be obtained.

銅系微粒子は、有機成分を含む。この有機成分の種類は特に限定されないが、通常は出発原料として用いる有機化合物又はその熱分解生成物から構成されていることが好ましい。この場合、有機成分の含有量も限定的ではないが、銅系微粒子の金属含有量が通常は70〜99重量%、特に80〜99重量%となるように調整することが好ましい。   The copper-based fine particles contain an organic component. Although the kind of this organic component is not specifically limited, Usually, it is preferable to be comprised from the organic compound used as a starting material, or its thermal decomposition product. In this case, the content of the organic component is not limited, but it is preferably adjusted so that the metal content of the copper-based fine particles is usually 70 to 99% by weight, particularly 80 to 99% by weight.

銅系微粒子からなる粉末(銅系粉末)の平均粒子径は、通常50nm以上であり、特に200〜600nm、さらには400〜500nmとすることが好ましい。この範囲内に設定することにより、高い接合強度と良好な耐マイグレーション特性とを得ることができる。   The average particle diameter of the powder (copper powder) composed of copper-based fine particles is usually 50 nm or more, particularly 200 to 600 nm, more preferably 400 to 500 nm. By setting it within this range, high bonding strength and good migration resistance can be obtained.

本発明粉末における銀系粉末と銅系粉末との含有割合は、本発明粉末の用途等に応じて適宜設定することができるが、一般的には銀系粉末及び銅系粉末の合計100重量部に対して、前記銀系微粒子からなる粉末が40〜60重量部(特に45〜55重量部)であり、前記銅系微粒子からなる粉末が60〜40重量部(特に55〜45重量部)とすることが好ましい。かかる範囲内に設定することによって、より高い接合強度とともに良好な耐マイグレーション特性を得ることができる。   The content ratio of the silver-based powder and the copper-based powder in the powder of the present invention can be appropriately set according to the use of the powder of the present invention, but generally 100 parts by weight in total of the silver-based powder and the copper-based powder. On the other hand, the powder composed of the silver-based fine particles is 40 to 60 parts by weight (especially 45 to 55 parts by weight), and the powder composed of the copper-based fine particles is 60 to 40 parts by weight (particularly 55 to 45 parts by weight). It is preferable to do. By setting within such a range, it is possible to obtain good migration resistance with higher joint strength.

また、本発明粉末では、本発明の効果を妨げない範囲内で他の成分が含まれていても良い。例えば、他の成分の含有量は15重量%以下とすることが好ましい。   Moreover, in this invention powder, the other component may be contained in the range which does not inhibit the effect of this invention. For example, the content of other components is preferably 15% by weight or less.

銀系粉末の平均粒子径と銅系粉末の平均粒子径との関係は、前記のように銀系粉末の平均粒子径の方が小さくなれば良いが、特に銅系粉末の平均粒子径が銀系粉末の平均粒子径の2倍以上、特に10倍以上、さらには50倍以上に設定することが望ましい。この場合の上限は限定的ではないが100倍程度とすれば良い。   The relationship between the average particle size of the silver-based powder and the average particle size of the copper-based powder may be as long as the average particle size of the silver-based powder is smaller as described above. It is desirable to set the average particle diameter of the system powder to 2 times or more, particularly 10 times or more, and further 50 times or more. The upper limit in this case is not limited, but may be about 100 times.

本発明の銀系粉末及び銅系粉末は、公知又は市販のものを使用することができる。また、公知の合成方法で製造したものも使用することができる。前記合成方法としては、液相法、固相法又は気相法のいずれであっても良い。   Known or commercially available silver-based powders and copper-based powders of the present invention can be used. Moreover, what was manufactured with the well-known synthesis | combining method can also be used. The synthesis method may be any of a liquid phase method, a solid phase method, and a gas phase method.

本発明では、例えば金属塩を含む出発材料をアミン化合物の存在下で熱処理して得られたものを好適に使用することができる。以下、この方法を代表例として以下に説明する。   In the present invention, for example, a material obtained by heat-treating a starting material containing a metal salt in the presence of an amine compound can be preferably used. This method will be described below as a representative example.

金属塩(Ag塩又はCu塩)としては、例えば硝酸塩、塩化物、炭酸塩、硫酸塩等の無機酸塩;ステアリン酸塩、ミリスチン酸塩等の有機酸塩のほか、金属錯体(錯塩)等も用いることができる。特に、本発明では、(1)金属炭酸塩、(2)脂肪酸塩及び(3)金属錯体の少なくとも1種の金属塩(Ag塩又はCu塩)を好適に使用することができる。   Examples of metal salts (Ag salts or Cu salts) include inorganic acid salts such as nitrates, chlorides, carbonates and sulfates; organic acid salts such as stearates and myristates, and metal complexes (complex salts). Can also be used. In particular, in the present invention, at least one metal salt (Ag salt or Cu salt) of (1) metal carbonate, (2) fatty acid salt, and (3) metal complex can be preferably used.

脂肪酸塩としては、R−COOH又はHOOC−R−COOH(ただし、Rは、炭素数7以上(特に7〜17)であって置換基を有していても良い炭化水素基を示す。)又はHOOC−R−COOH(ただし、Rは、炭素数3以上であって置換基を有していても良い炭化水素基を示す。)で示される脂肪酸の金属塩が好ましい。上記炭化水素基R及びRは、飽和又は不飽和のいずれであっても良い。 As the fatty acid salt, R 1 —COOH or HOOC—R 1 —COOH (where R 1 represents a hydrocarbon group having 7 or more carbon atoms (particularly 7 to 17) which may have a substituent. ) Or HOOC-R 2 —COOH (wherein R 2 represents a hydrocarbon group having 3 or more carbon atoms and optionally having a substituent), a metal salt of a fatty acid is preferred. The hydrocarbon groups R 1 and R 2 may be either saturated or unsaturated.

また、金属錯体としては、カルボキシレート配位子を含む金属錯体が好ましい。このような金属錯体としては、RCOO(ただし、Rは、炭素数7以上であって置換基を有していても良い炭化水素基を示す。)で示される単座配位子又はOOC−R−COO(ただし、Rは、炭化水素基を示す。)で示される二座配位子(キレート配位子を含む。)のいずれであっても良い。単座配位子の場合は直鎖状アルキル基が好ましい。二座配位子の場合は直鎖状メチレン基が好ましい。上記炭化水素基Rは、炭素数7〜30であることが好ましく、炭素数7〜17であることがより好ましい。また、上記炭化水素基Rは、メチレン基等の飽和炭化水素基;フェニル基、プロピレン基、ビニレン基等の不飽和炭化水素基のいずれであっても良い。上記炭化水素基Rの炭素数は限定的でないが、6〜12程度であることが好ましい。 Moreover, as a metal complex, the metal complex containing a carboxylate ligand is preferable. As such a metal complex, a monodentate ligand or OOC represented by R 1 COO (where R 1 represents a hydrocarbon group having 7 or more carbon atoms and optionally having a substituent). Any of bidentate ligands (including chelate ligands) represented by —R 2 —COO (where R 2 represents a hydrocarbon group) may be used. In the case of a monodentate ligand, a linear alkyl group is preferred. In the case of a bidentate ligand, a linear methylene group is preferred. The hydrocarbon group R 1 preferably has 7 to 30 carbon atoms, and more preferably has 7 to 17 carbon atoms. The hydrocarbon group R 2 may be any of a saturated hydrocarbon group such as a methylene group; and an unsaturated hydrocarbon group such as a phenyl group, a propylene group, and a vinylene group. The number of carbon atoms of the hydrocarbon group R 2 is not limited, but is preferably about 6 to 12.

金属錯体は、カルボキシレート配位子を有するものであれば、それ以外にホスフィン配位子等の他の配位子を有していても良い。   As long as the metal complex has a carboxylate ligand, the metal complex may have another ligand such as a phosphine ligand.

本発明における金属錯体としては、例えば下記に示される錯体a)を好ましく用いることができる。
a)M(RP)(OCR’)(ただし、MはAg又はCuを示す。R〜R及びR’は、互いに同一又は別異で、シクロヘキシル基、フェニル基又は炭素数1〜30のアルキル基であって、置換基を有していても良いものを示す。)
上記a)における前記置換基としては、例えばメチル基、エチル基、プロピル基、スルホン基、OH基、ニトロ基、アミノ基、ハロゲン基(Cl、Br等)、メトキシ基、エトキシ基等が挙げられる。また、置換基の位置及び数は特に限定されない。
これらの中でも、M(PPh)(OCC2n+1)(ただし、MはAg又はCuを示す。Phはフェニル基を示す。nは7〜17を示す。)で表わされる金属錯体を好適に用いることができる。
As the metal complex in the present invention, for example, the following complex a) can be preferably used.
a) M (R 1 R 2 R 3 P) (O 2 CR ′) (M represents Ag or Cu. R 1 to R 3 and R ′ are the same as or different from each other, and represent a cyclohexyl group, phenyl, Group or an alkyl group having 1 to 30 carbon atoms, which may have a substituent.)
Examples of the substituent in a) include a methyl group, an ethyl group, a propyl group, a sulfone group, an OH group, a nitro group, an amino group, a halogen group (Cl, Br, etc.), a methoxy group, and an ethoxy group. . The position and number of substituents are not particularly limited.
Among these, a metal complex represented by M (PPh 3 ) (O 2 CC n H 2n + 1 ) (wherein M represents Ag or Cu, Ph represents a phenyl group, and n represents 7 to 17). It can be used suitably.

また、本発明では、必要に応じて、出発材料に他の成分を含有させることもできる。例えば、脂肪酸又はその塩を添加することができる。好ましくは、脂肪酸としては、上記の脂肪酸塩における脂肪酸と同様のものを使用することができる。例えば、金属塩としてオクタン酸銅を用いる場合は、オクタン酸を好適に用いることができる。その含有量等は、用いる出発物材料の種類等に応じて適宜設定することができる。   Moreover, in this invention, another component can also be made to contain in a starting material as needed. For example, a fatty acid or a salt thereof can be added. Preferably, as the fatty acid, the same fatty acid as that in the fatty acid salt can be used. For example, when copper octoate is used as the metal salt, octanoic acid can be suitably used. The content and the like can be appropriately set according to the type of starting material used.

本発明の製造方法では、上記のような金属成分を含む出発材料をアミン化合物の存在下において熱処理する。特に、本発明では、有機溶媒を用いることなく、金属成分を含む出発材料とアミンを反応容器に仕込んで、熱処理するだけでも良い。アミンが固体の場合は、金属成分を含む出発材料とアミンを固体のまま熱処理すれば良い。   In the production method of the present invention, the starting material containing the metal component as described above is heat-treated in the presence of an amine compound. In particular, in the present invention, a starting material containing a metal component and an amine may be charged into a reaction vessel and heat-treated without using an organic solvent. When the amine is solid, the starting material containing the metal component and the amine may be heat-treated while being solid.

上記アミン化合物の種類は、1級アミン、2級アミン又は3級アミンのいずれであっても特に限定されない。   The kind of the amine compound is not particularly limited even if it is any of primary amine, secondary amine, and tertiary amine.

1級アミンとしては、特に一般式RNH(ただし、Rは、炭素数8以上の炭化水素基を示す。)で示されるものが好ましい。例えば、オクチルアミンC17NH、ラウリルアミンC1225NH、ステアリルアミンC1837NH等が挙げられる。 As the primary amine, those represented by the general formula RNH 2 (where R represents a hydrocarbon group having 8 or more carbon atoms) are particularly preferred. For example, octylamine C 8 H 17 NH 2, laurylamine C 12 H 25 NH 2, stearylamine C 18 H 37 NH 2 and the like.

2級アミンとしては、特に一般式RNH(ただし、R及びRは、互いに同一又は別異であって、炭素数2〜8の炭化水素基を示す。)で示されるものが好ましい。例えば、ジエチルアミン(CNH、ジヘキシルアミン(C13NH、ジオクチルアミン(C17NH等が挙げられる。 The secondary amine is particularly represented by the general formula R 1 R 2 NH (wherein R 1 and R 2 are the same or different from each other and represent a hydrocarbon group having 2 to 8 carbon atoms). Is preferred. For example, diethylamine (C 2 H 5) 2 NH , dihexylamine (C 6 H 13) 2 NH , dioctylamine (C 8 H 17) 2 NH, and the like.

3級アミンとしては、特に一般式RN(ただし、R〜Rは、互いに同一又は別異であって、炭素数2〜8の炭化水素基を示す。)で示されるものが好ましい。例えば、トリエチルアミン(CN、トリプロピルアミン(CN、トリオクチルアミン(C17N等が挙げられる。 The tertiary amine is particularly represented by the general formula R 1 R 2 R 3 N (wherein R 1 to R 3 are the same or different from each other and represent a hydrocarbon group having 2 to 8 carbon atoms). Are preferred. Examples thereof include triethylamine (C 2 H 5 ) 3 N, tripropylamine (C 3 H 7 ) 3 N, trioctylamine (C 8 H 17 ) 3 N, and the like.

アミン化合物の使用量は、金属成分を含む出発材料と等モル以上であれば特に限定されない。従って、必要に応じて過剰量を用いても良い。なお、アミン化合物は、あらかじめ適当な有機溶媒に溶解又は分散させた上で使用することもできる。   The usage-amount of an amine compound will not be specifically limited if it is equimolar or more with the starting material containing a metal component. Therefore, an excessive amount may be used as necessary. The amine compound can also be used after being dissolved or dispersed in a suitable organic solvent in advance.

熱処理温度は、金属塩がアミン化合物と反応して所定の金属ナノ粒子が得られる限り特に制限されず、用いる金属塩及びアミン化合物の種類等に応じて適宜決定することができる。一般的には50℃以上の範囲で設定すれば良く、特に、出発材料とアミン化合物との混合物が最終的に液状になる温度以上で、かつ、アミン化合物の沸点未満の温度領域とすることが好ましい。すなわち、上記混合物が最終的にすべて溶融状態になる温度以上での熱処理により、P、N及びOを少なくとも1種を含む物質で構成される金属ナノ粒子の形成をより効果的に進行させることができる。   The heat treatment temperature is not particularly limited as long as the metal salt reacts with the amine compound to obtain predetermined metal nanoparticles, and can be appropriately determined according to the type of metal salt and amine compound used. In general, the temperature may be set in a range of 50 ° C. or higher, and in particular, the temperature may be set to a temperature range above the temperature at which the mixture of the starting material and the amine compound finally becomes liquid and below the boiling point of the amine compound. preferable. That is, the formation of metal nanoparticles composed of a substance containing at least one of P, N, and O can be more effectively advanced by heat treatment at a temperature equal to or higher than the temperature at which the mixture finally becomes a molten state. it can.

熱処理時間は、使用する出発材料の種類、熱処理温度等に応じて適宜設定すれば良いが、通常は1〜10時間程度、好ましくは3〜8時間とすれば良い。   The heat treatment time may be appropriately set according to the type of starting material to be used, the heat treatment temperature, etc., but is usually about 1 to 10 hours, preferably 3 to 8 hours.

熱処理雰囲気は、酸化性雰囲気中、大気中、還元性雰囲気中、不活性ガス中等のいずれであっても良く、例えば金属塩の金属種に応じて適宜設定することができる。また、前記の不活性ガスとしては、例えば窒素、二酸化炭素、アルゴン、ヘリウム等の不活性ガスを使用すれば良い。   The heat treatment atmosphere may be any of an oxidizing atmosphere, air, reducing atmosphere, inert gas, and the like, and can be appropriately set according to, for example, the metal species of the metal salt. Moreover, as said inert gas, what is necessary is just to use inert gas, such as nitrogen, a carbon dioxide, argon, helium, for example.

熱処理が終了した後、必要に応じて精製を行う。精製方法は、公知の精製法も適用でき、例えば洗浄、遠心分離、膜精製、溶媒抽出等により行えば良い。   After the heat treatment is completed, purification is performed as necessary. As a purification method, a known purification method can be applied, and for example, washing, centrifugation, membrane purification, solvent extraction and the like may be performed.

このようにして得られた銀系粉末と銅系粉末とを均一に混合することによって本発明の混合粉末を得ることができる。すなわち、少なくとも有機成分を含む銀系微粒子からなる粉末と有機成分を含む銅系微粒子とを混合することによって本発明の混合粉末を製造することができる。混合方法は、乾式混合であっても良いし、後記に示す溶媒等を用いて湿式混合を実施しても良い。   The mixed powder of the present invention can be obtained by uniformly mixing the thus obtained silver-based powder and copper-based powder. That is, the mixed powder of the present invention can be produced by mixing a powder composed of silver-based fine particles containing at least an organic component and copper-based fine particles containing an organic component. The mixing method may be dry mixing, or wet mixing using a solvent or the like shown below.

本発明粉末は、従来の金属ナノ粒子と同様に様々な用途に使用することができるが、特に接合用として好適に用いることができる。例えば、金属どうしの接合用(例えば、銅系金属−銅系金属、銀系金属−銅系金属等)として好適に用いることができる。より具体的には、本発明粉末又はそれを含むペーストを用いて電気的接合領域を好適に形成することができる。これにより、2つの回路を接合することができる。接合方法は、例えば後記2.の方法に従って実施することができる。   Although this invention powder can be used for various uses like the conventional metal nanoparticle, it can be used suitably especially for joining. For example, it can be suitably used for joining metals (for example, copper-based metal-copper-based metal, silver-based metal-copper-based metal, etc.). More specifically, an electrical junction region can be suitably formed using the powder of the present invention or a paste containing the powder. Thereby, two circuits can be joined. The joining method is, for example, 2. It can carry out according to the method of.

本発明は、本発明に係る銀−銅系混合粉末と、溶剤及び粘度調整用樹脂の少なくとも1種とを含むペーストを包含する。溶剤としては特に限定されず、例えばテルペン系溶剤、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、セロソルブ系溶剤、カルビトール系溶剤等が挙げられる。より具体的には、ターピネオール、メチルエチルケトン、アセトン、イソプロパノール、ブチルカービトール、デカン、ウンデカン、テトラデカン、ベンゼン、トルエン、ヘキサン、ジエチルエーテル、ケロシン等の有機溶剤を例示することができる。また、粘度調整用樹脂としては限定的ではなく、例えばフェノール樹脂、メラミン樹脂、アルキド樹脂等の熱硬化性樹脂、フェノキシ樹脂、アクリル樹脂等の熱可塑性樹脂、エポキシ樹脂等の硬化剤硬化性樹脂等を用いることができる。ペーストとして用いる場合、銀−銅系混合粉末の固形分含有量は20〜90重量%程度の範囲で適宜設定することができる。   The present invention includes a paste containing the silver-copper mixed powder according to the present invention and at least one of a solvent and a viscosity adjusting resin. The solvent is not particularly limited. For example, terpene solvents, ketone solvents, alcohol solvents, ester solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, cellosolve solvents, carbitol solvents. A solvent etc. are mentioned. More specifically, organic solvents such as terpineol, methyl ethyl ketone, acetone, isopropanol, butyl carbitol, decane, undecane, tetradecane, benzene, toluene, hexane, diethyl ether, and kerosene can be exemplified. Further, the viscosity adjusting resin is not limited. For example, a thermosetting resin such as a phenol resin, a melamine resin, or an alkyd resin, a thermoplastic resin such as a phenoxy resin or an acrylic resin, a curing agent curable resin such as an epoxy resin, or the like. Can be used. When used as a paste, the solid content of the silver-copper mixed powder can be appropriately set within a range of about 20 to 90% by weight.

2.接合方法
本発明の接合方法は、接合すべき2つの部材の間に本発明に係る銀−銅系混合粉末又はそれを含むペーストを介在させた後、150〜400℃で熱処理する工程を含む方法である。
2. Bonding method The bonding method of the present invention includes a step of heat-treating at 150 to 400 ° C. after interposing the silver-copper mixed powder according to the present invention or a paste containing the same between two members to be bonded. It is.

上記の銀−銅系混合粉末又はそれを含むペーストとしては、前記1.で説明した粉末又はペーストを使用することができる。   Examples of the silver-copper mixed powder or the paste containing the same include the above 1. The powder or paste described in the above can be used.

また、接合すべき部材としては、金属(合金、金属間化合物も含む。)のほか、セラミックス、プラスチックス、これらの複合材料等を例示できるが、本発明では特に金属(金属どうしの接合)が好ましい。また、部材の形状等も、これらの粉末又はペーストが部材間に適切に配置できる限り、特に限定されない。   Examples of members to be joined include metals (including alloys and intermetallic compounds), ceramics, plastics, composite materials thereof, and the like. In the present invention, metals (joining metals) are particularly used. preferable. Further, the shape of the member is not particularly limited as long as these powders or pastes can be appropriately disposed between the members.

接合すべき部材の間に前記銀−銅系混合粉末又はそれを含むペーストを介在させる。前記銀−銅系混合粉末又はそれを含むペーストの使用量は特に限定されず、接合面全体に亘り均一に介在できる量となるように適宜設定すれば良い。なお、溶剤を含むペーストを用いる場合は、部材間にペーストを介在させた後、熱処理に先立って、その溶剤の一部又は全部を蒸発させるための前処理を実施することが好ましい。前処理の方法としては、例えば100〜150℃程度で加熱する方法等が挙げられる。   The silver-copper mixed powder or a paste containing the same is interposed between members to be joined. The amount of the silver-copper-based mixed powder or the paste containing it is not particularly limited, and may be set as appropriate so as to be an amount that can be uniformly interposed over the entire bonding surface. In addition, when using the paste containing a solvent, after interposing a paste between members, it is preferable to implement the pre-processing for evaporating one part or all part of the solvent prior to heat processing. Examples of the pretreatment method include a method of heating at about 100 to 150 ° C.

次いで、150〜400℃で熱処理を行う。熱処理温度は、例えば用いる混合粉末の種類、所望の接合強度、部材の材質等に応じて適宜設定することができる。熱処理雰囲気は特に限定されず、例えば酸化性雰囲気中、大気中、還元性雰囲気中、不活性ガス中のいずれでも実施することができる。また、熱処理する際は、接合すべき部材どうしを加圧しながら熱処理することが望ましい。その場合の圧力としては、例えば5〜20MPa程度の範囲内で適宜設定することができる。熱処理時間は、熱処理温度等に応じて適宜設定することができるが、通常は1〜60分程度とすれば良い。このようにして、部材どうしの間に本発明粉末の焼成体が介在した状態の接合体を得ることができる。   Next, heat treatment is performed at 150 to 400 ° C. The heat treatment temperature can be appropriately set according to, for example, the type of mixed powder to be used, the desired bonding strength, the material of the member, and the like. The heat treatment atmosphere is not particularly limited, and for example, the heat treatment atmosphere can be performed in any of an oxidizing atmosphere, air, reducing atmosphere, and inert gas. Moreover, when heat-processing, it is desirable to heat-process, pressing the members which should be joined. As a pressure in that case, it can set suitably, for example within the range of about 5-20 MPa. The heat treatment time can be appropriately set according to the heat treatment temperature or the like, but it is usually sufficient to be about 1 to 60 minutes. In this way, it is possible to obtain a joined body in which the fired body of the powder of the present invention is interposed between the members.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。   The features of the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the examples.

なお、本発明微粒子(粉末)の物性は次の方法により測定・分析した。
(1)定性分析
金属成分の同定は、強力X線回折装置「RINT2500V」(リガク社製)を用い、粉末X線回折分析法で行った。
(2)平均粒子径
透過型電子顕微鏡(TEM)「JEM−2100」(日本電子社製)により測定し、任意に選んだ粒子100個の直径の算術平均値を求め、その値をもって平均粒子径とした。
(3)金属成分の含有量
熱分析装置「SSC/5200」(セイコー電子工業)を用い、TG/DTA分析することにより求めた。
(4)有機成分等の分析
金属ナノ粒子におけるP(リン成分)、N(窒素成分)とO(酸素成分)の確認は、X線光電子スペクトル装置「ESCA−700」(アルバックファイ社製)、FT−IR装置「GX I−RO」(パーキンエルマー社製)により行った。有機成分の確認は、FT−NMR装置「JNM−EX270」(日本電子製)、GC/MS(ガスクロマトグラフ質量分析)装置「5973Network MSD」(ヒューレットパッカード社製)を用いて行った。
The physical properties of the fine particles (powder) of the present invention were measured and analyzed by the following method.
(1) Qualitative analysis The metal component was identified by powder X-ray diffraction analysis using a powerful X-ray diffractometer "RINT 2500V" (manufactured by Rigaku Corporation).
(2) Average particle diameter Measured with a transmission electron microscope (TEM) “JEM-2100” (manufactured by JEOL Ltd.), an arithmetic average value of the diameters of 100 arbitrarily selected particles was obtained, and the average particle diameter was obtained from the value. It was.
(3) Content of metal component The content was determined by TG / DTA analysis using a thermal analyzer “SSC / 5200” (Seiko Electronics Co., Ltd.).
(4) Analysis of organic component etc. Confirmation of P (phosphorus component), N (nitrogen component) and O (oxygen component) in metal nanoparticles is performed by X-ray photoelectron spectrum apparatus “ESCA-700” (manufactured by ULVAC-PHI), FT-IR apparatus “GX I-RO” (manufactured by PerkinElmer) was used. The organic component was confirmed using an FT-NMR apparatus “JNM-EX270” (manufactured by JEOL Ltd.) and a GC / MS (gas chromatograph mass spectrometer) apparatus “5973Network MSD” (manufactured by Hewlett-Packard Company).

実施例1
(1)銀系粉末及び銅系粉末の調製
(1−1)銀系粉末1の調製
炭酸銀(41.4g)とオクチルアミン(40.7g)をパイレックス(登録商標)製三つ口フラスコに固体のまま入れ、大気中100℃まで徐々に加熱した。100℃で4時間保持した後、70℃まで放冷し、メタノールを加えて数回洗浄し、生成した粉末を桐山ロートでろ別し、減圧下で乾燥させ、銀系粉末を得た。得られた粉末の平均粒子径は7.9nmであり、金属含有量は72重量%であった。
Example 1
(1) Preparation of silver-based powder and copper-based powder (1-1) Preparation of silver-based powder 1 Silver carbonate (41.4 g) and octylamine (40.7 g) were added to a Pyrex (registered trademark) three-necked flask. The solid was placed and gradually heated to 100 ° C. in the atmosphere. After maintaining at 100 ° C. for 4 hours, the mixture was allowed to cool to 70 ° C., washed with methanol several times, and the produced powder was filtered off with a Kiriyama funnel and dried under reduced pressure to obtain a silver-based powder. The obtained powder had an average particle size of 7.9 nm and a metal content of 72% by weight.

(1−2)銅系粉末1の調製
オクタン酸銅(1.75g)とトリオクチルアミン(3.57g)をパイレックス(登録商標)製三つ口フラスコに固体のまま入れ、窒素雰囲気下で160℃まで徐々に加熱した。160℃で16時間保持した後、70℃まで放冷し、メタノールを加えて数回洗浄し、生成した粉末を桐山ロートでろ別し、減圧下で乾燥させ、銅系粉末を得た。得られた粉末の平均粒子径は4.6nmであり、金属含有量は82.6重量%であった。
(1-2) Preparation of Copper-Based Powder 1 Copper octanoate (1.75 g) and trioctylamine (3.57 g) were placed in a Pyrex (registered trademark) three-necked flask as a solid, and 160 under a nitrogen atmosphere. Heated gradually to ° C. After maintaining at 160 ° C. for 16 hours, the mixture was allowed to cool to 70 ° C., washed with methanol several times, and the produced powder was filtered off with a Kiriyama funnel and dried under reduced pressure to obtain a copper-based powder. The obtained powder had an average particle size of 4.6 nm and a metal content of 82.6% by weight.

(1−3)銅系粉末2の調製
オクタン酸銅(3.54g)とトリオクチルアミン(1.90g)をパイレックス(登録商標)製三つ口フラスコに固体のまま入れ、窒素雰囲気下で160℃まで徐々に加熱した。160℃で24時間保持した後、70℃まで放冷し、メタノールを加えて数回洗浄し、生成した粉末を桐山ロートでろ別し、減圧下で乾燥させ、銅系粉末を得た。得られた粉末の平均粒子径は63.6nmであり、金属含有量は91.0重量%であった。
(1-3) Preparation of Copper-Based Powder 2 Copper octoate (3.54 g) and trioctylamine (1.90 g) were placed in a Pyrex (registered trademark) three-necked flask as a solid, and 160 under a nitrogen atmosphere. Heated gradually to ° C. After maintaining at 160 ° C. for 24 hours, the mixture was allowed to cool to 70 ° C., washed with methanol several times, and the produced powder was filtered off with a Kiriyama funnel and dried under reduced pressure to obtain a copper-based powder. The obtained powder had an average particle size of 63.6 nm and a metal content of 91.0% by weight.

(1−4)銅系粉末3の調製
オクタン酸銅(3.54g)とトリオクチルアミン(1.90g)をパイレックス(登録商標)製三つ口フラスコに固体のまま入れ、窒素雰囲気下で180℃まで徐々に加熱した。180℃で5時間保持した後、70℃まで放冷し、メタノールを加えて数回洗浄し、生成した粉末を桐山ロートでろ別し、減圧下で乾燥させ、銅系粉末を得た。得られた粉末の平均粒子径は498.0nmであり、金属含有量は98.4重量%であった。
(1-4) Preparation of Copper-Based Powder 3 Copper octoate (3.54 g) and trioctylamine (1.90 g) are placed in a Pyrex (registered trademark) three-necked flask as a solid, and 180 in a nitrogen atmosphere. Heated gradually to ° C. After maintaining at 180 ° C. for 5 hours, the mixture was allowed to cool to 70 ° C., methanol was added and washed several times, and the resulting powder was filtered with a Kiriyama funnel and dried under reduced pressure to obtain a copper-based powder. The average particle size of the obtained powder was 498.0 nm, and the metal content was 98.4% by weight.

(2)ペーストの調製
前記(1)で得られた粉末をターピネオールに分散させて固形分濃度約70重量%のペーストをそれぞれ調製した。後記の各試験例において、銀系粉末と銅系粉末とが所定の配合割合となるようにペーストを混合して用いた。
(2) Preparation of Paste The powder obtained in (1) above was dispersed in terpineol to prepare pastes each having a solid content concentration of about 70% by weight. In each test example described later, the paste was mixed and used so that the silver-based powder and the copper-based powder had a predetermined blending ratio.

試験例1
銅系粉末3に対して銀系粉末1の含有割合が10〜70mass%(10%,30%,50%,70%)の範囲となるように変更した混合粉末をそれぞれ調製し、各粉末を用いて接合試験を実施した。また、比較のため、銅系粉末3単体及び銀系粉末1単体についても同様の試験を実施した。
Test example 1
Each mixed powder was prepared so that the content ratio of the silver-based powder 1 to the copper-based powder 3 was in the range of 10 to 70 mass% (10%, 30%, 50%, 70%). A joining test was carried out. For comparison, the same test was conducted on the copper powder 3 alone and the silver powder 1 alone.

接合試験に用いた無酸素銅からなる接合試験片の形状を図1(a)に示す。それぞれの試験片の接合面はRmax=3.2Sとなるように旋盤加工により仕上げ、アセトン中での超音波洗浄と塩酸中での酸洗いを行った後、水洗と乾燥を経て試験に供した。大きい方の円板試験片の接合面に金属ナノ粒子ペーストを一定量塗布し、小さい方の試験片を重ねて軽く圧しつけながらペーストが接合面全体に広がるように接合試験片を調整した。当該試験片を150℃で5分間保持後、250〜350℃の接合温度(熱処理温度)で大気中での接合試験を行なった。接合に際しては、最初から加圧は行なわずに、150℃で5分間の保持後、加圧力10MPaで加圧を行った。試験後は直ちに試験片を装置外に取り出して空冷した。   The shape of a joining test piece made of oxygen-free copper used in the joining test is shown in FIG. The joint surface of each test piece was finished by lathe processing so that Rmax = 3.2S, and after ultrasonic cleaning in acetone and pickling in hydrochloric acid, it was subjected to water washing and drying, and then subjected to the test. . A fixed amount of the metal nanoparticle paste was applied to the joining surface of the larger disk specimen, and the joining specimen was adjusted so that the paste spread over the entire joining surface while being lightly pressed by overlapping the smaller specimen. After holding the test piece at 150 ° C. for 5 minutes, a bonding test in the atmosphere was performed at a bonding temperature (heat treatment temperature) of 250 to 350 ° C. In joining, no pressure was applied from the beginning, and after holding at 150 ° C. for 5 minutes, pressure was applied at a pressure of 10 MPa. Immediately after the test, the test piece was taken out of the apparatus and air-cooled.

接合試験により得られた各接合継手について、インストロン万能材料試験機を用いて図1(b) に示すようにせん断試験を行い、それぞれの接合強度を求めた。図2には、銀系粉末の含有割合と接合強度との関係を示す。なお、図2中、●印が熱処理温度350℃、■が熱処理温度300℃、▲が熱処理温度250℃の結果を示す。   Each joint joint obtained by the joint test was subjected to a shear test using an Instron universal material testing machine as shown in FIG. In FIG. 2, the relationship between the content rate of silver type powder and joining strength is shown. In FIG. 2, the ● marks indicate the results of the heat treatment temperature 350 ° C., the ■ marks indicate the heat treatment temperature 300 ° C., and the triangles indicate the heat treatment temperature 250 ° C.

図2の結果からも明らかなように、銅系粉末3の平均粒子径が比較的大きいため、銅系粉末3単体のみでは、熱処理温度350℃・加圧力10MPaの接合条件でせん断強度が153N(7.8MPa)という低い値にとどまった。これに対し、銅系粉末3に50mass%の銀系粉末1を含む混合粉末の場合は、同じ接合条件でせん断強度が1010N (51.5MPa)にまで上昇し、銀系粉末1単独の場合とほぼ同等の値を示した。すなわち、銀系粉末の平均粒子径の60〜70倍の平均粒子径を有する銅系粉末を併用することにより、高い接合強度が得られることがわかる。   As apparent from the results of FIG. 2, since the average particle diameter of the copper-based powder 3 is relatively large, only the copper-based powder 3 alone has a shear strength of 153 N (joining conditions of a heat treatment temperature of 350 ° C. and a pressure of 10 MPa). 7.8 MPa). On the other hand, in the case of the mixed powder containing 50 mass% of the silver-based powder 1 in the copper-based powder 3, the shear strength increases to 1010 N (51.5 MPa) under the same joining conditions, and the case of the silver-based powder 1 alone and Almost the same value was shown. That is, it turns out that high joint strength is obtained by using together the copper-type powder which has an average particle diameter 60 to 70 times the average particle diameter of silver-type powder.

なお、TG/DTAによって計測された窒素雰囲気中での銅系粉末3の有機保護層(有機成分)分解終了温度が約350℃であり、300℃以下でのせん断強度の低下は有機保護層の残存に起因するものであると考えられる。このように、銅系粉末の有機成分の分解終了温度(上記のような場合では、例えば340〜360℃付近)で熱処理することにより、より高強度で接合できることがわかる。また、このことから、有機成分の分解温度を低下させることにより、接合プロセスのより低温化を図ることも期待できる。   The decomposition end temperature of the organic protective layer (organic component) of the copper-based powder 3 in a nitrogen atmosphere measured by TG / DTA is about 350 ° C., and the decrease in shear strength at 300 ° C. or lower is It is thought that this is due to the residual. Thus, it turns out that it can join with higher intensity | strength by heat-processing at the decomposition | disassembly completion temperature of the organic component of copper-type powder (in the above cases, for example, 340-360 degreeC vicinity). In addition, from this, it can be expected that the temperature of the bonding process can be lowered by lowering the decomposition temperature of the organic component.

図3には、各種金属ナノ粒子ペーストを用いて接合した試験片について、せん断試験後の破断面のSEM写真を示す。1000N(51.0MPa)以上の高いせん断強度を示した試験片(銀系粉末1単独を用いて接合したもの(Ag)、50mass%の銀系粉末1を含む混合粉末を用いて接合したもの(Cu5Ag5))の破面には、伸長ディンプルが明瞭に観察された。これに対し、銅系粉末3のみで接合した試験片(Cu)の破面は多数の空隙(ボイド)を伴っており、銅系粉末3の粒子間の焼成がほとんど進行していない様子が観察された。   In FIG. 3, the SEM photograph of the torn surface after a shear test is shown about the test piece joined using various metal nanoparticle paste. Test pieces exhibiting high shear strength of 1000 N (51.0 MPa) or more (joined using silver powder 1 alone (Ag), joined using mixed powder containing 50 mass% silver powder 1 (Ag) Elongated dimples were clearly observed on the fracture surface of Cu5Ag5)). On the other hand, the fracture surface of the test piece (Cu) joined only with the copper-based powder 3 is accompanied by a large number of voids, and it is observed that the firing between the particles of the copper-based powder 3 hardly proceeds. It was done.

また、FIBを用いて接合層(銅系粉末3単体を用いたもの(Cu)、50mass%の銀系粉末1を含む混合粉末を用いたもの(Cu5Ag5))断面を作製し、SIM(Scanning Ion Microscopy)像を観察した。その結果を図4に示す。銅系粉末3単体(Cu)を用いて焼成した接合層には大小多数の空隙が確認される。これに対し、前記混合粉末を用いた場合(Cu5Ag5)は、被接合材との界面に僅かな剥離が観察されるものの、非常に緻密な接合層が得られることがわかる。   Further, a cross-section of the bonding layer (using copper powder 3 alone (Cu), using a mixed powder containing 50 mass% silver powder 1 (Cu5Ag5)) using FIB is prepared, and SIM (Scanning Ion Microscopy) image was observed. The result is shown in FIG. Large and small voids are confirmed in the bonding layer fired using the copper-based powder 3 alone (Cu). On the other hand, when the mixed powder is used (Cu5Ag5), it is understood that a very dense bonding layer can be obtained although slight peeling is observed at the interface with the material to be bonded.

試験例2
本発明粉末の耐マイグレーション特性について調べた。銀系粉末1単独及び銀系粉末1を50mass%含む混合粉末を用いたペーストによりスクリーン印刷を行って対向電極を印刷後、150℃で5分間乾燥し、次いで350℃で5分間保持して焼成させた。次いで、マイグレーション耐性の評価をウォータードロップ法により行った。具体的には、電極間に水を滴下し、電圧(3〜6V)を印加してから電極間を短絡するまでの時間を計測して評価した。
Test example 2
The migration resistance of the powder of the present invention was examined. Screen printing is performed with a paste using silver powder 1 alone and a mixed powder containing 50 mass% of silver powder 1, and after printing the counter electrode, it is dried at 150 ° C. for 5 minutes, and then held at 350 ° C. for 5 minutes for firing. I let you. Next, migration resistance was evaluated by the water drop method. Specifically, water was dropped between the electrodes, and the time from when the voltage (3 to 6 V) was applied to when the electrodes were short-circuited was measured and evaluated.

その結果、比較のために銀系粉末1単独により作製した銀電極の場合は、3Vの電圧を印加してから短絡するまでの時間が4分27秒であった。これに対し、銅系粉末3に50mass%の銀系粉末1を含む混合粉末を用いたペーストにより作成した電極の場合、15分経過後も電極に変化は認められなかった。加えて、3Vの電圧を15分印加後に電圧を6Vにして10分保持したが、電極からの顕著なマイグレーションは確認できなかった。図5には、耐マイグレーション特性評価後の各サンプルの写真を示す。前記の銀電極(Ag)では、マイグレーションにより短絡していることがわかる。   As a result, for comparison, in the case of a silver electrode made of silver-based powder 1 alone, the time from application of a voltage of 3 V to short-circuiting was 4 minutes and 27 seconds. On the other hand, in the case of an electrode made of a paste using a mixed powder containing 50 mass% of the silver-based powder 1 in the copper-based powder 3, no change was observed in the electrode even after 15 minutes. In addition, a voltage of 3 V was applied for 15 minutes and then the voltage was changed to 6 V and held for 10 minutes. However, significant migration from the electrode could not be confirmed. FIG. 5 shows a photograph of each sample after the evaluation of migration resistance characteristics. It can be seen that the silver electrode (Ag) is short-circuited due to migration.

Claims (8)

有機成分を含む銀系微粒子からなる粉末と有機成分を含む銅系微粒子からなる粉末とを含む混合粉末であって、前記銀系微粒子からなる粉末の平均粒子径が50nm以下であり、前記銅系微粒子からなる粉末の平均粒子径が50nm以上であることを特徴とする銀−銅系混合粉末。 A mixed powder comprising a powder composed of silver-based fine particles containing an organic component and a powder composed of copper-based fine particles containing an organic component, wherein the average particle diameter of the powder composed of the silver-based fine particles is 50 nm or less, and the copper-based powder A silver-copper-based mixed powder characterized in that an average particle size of powder composed of fine particles is 50 nm or more. 前記銀系微粒子からなる粉末と前記銅系微粒子からなる粉末の合計100重量部に対して、前記銀系微粒子からなる粉末が40〜60重量部であり、前記銅系微粒子からなる粉末が60〜40重量部である、請求項1に記載の銀−銅系混合粉末。 The total amount of powder consisting of the silver-based fine particles and the total amount of powder consisting of the copper-based fine particles is 100 to 60 parts by weight. The silver-copper mixed powder according to claim 1, which is 40 parts by weight. 前記銀系微粒子の金属含有量が60〜98重量%である、請求項1に記載の銀−銅系混合粉末。 The silver-copper mixed powder according to claim 1, wherein the metal content of the silver-based fine particles is 60 to 98% by weight. 前記銅系微粒子の金属含有量が80〜99重量%である、請求項1に記載の銀−銅系混合粉末。 The silver-copper mixed powder according to claim 1, wherein the metal content of the copper-based fine particles is 80 to 99% by weight. 前記銅系微粒子及び/又は前記銀系微粒子が、金属塩を含む出発材料をアミン化合物の存在下で熱処理することにより得られたものである、請求項1に記載の銀−銅系混合粉末。 The silver-copper mixed powder according to claim 1, wherein the copper-based fine particles and / or the silver-based fine particles are obtained by heat-treating a starting material containing a metal salt in the presence of an amine compound. 接合のために用いる、請求項1に記載の銀−銅系混合粉末。 The silver-copper mixed powder according to claim 1, which is used for bonding. 請求項1に記載の銀−銅系混合粉末と、溶剤及び粘度調整用樹脂の少なくとも1種とを含むペースト。 A paste comprising the silver-copper mixed powder according to claim 1 and at least one of a solvent and a viscosity adjusting resin. 接合すべき2つの部材の間に請求項1に記載の銀−銅系混合粉末又はそれを含むペーストを介在させた後、150〜400℃で加熱する工程を含む接合方法。 The joining method including the process of heating at 150-400 degreeC after interposing the silver-copper type mixed powder of Claim 1 or the paste containing it between two members which should be joined.
JP2009208307A 2009-09-09 2009-09-09 Silver-copper mixed powder and bonding method using the same Active JP5580562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208307A JP5580562B2 (en) 2009-09-09 2009-09-09 Silver-copper mixed powder and bonding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208307A JP5580562B2 (en) 2009-09-09 2009-09-09 Silver-copper mixed powder and bonding method using the same

Publications (2)

Publication Number Publication Date
JP2011058041A true JP2011058041A (en) 2011-03-24
JP5580562B2 JP5580562B2 (en) 2014-08-27

Family

ID=43945994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208307A Active JP5580562B2 (en) 2009-09-09 2009-09-09 Silver-copper mixed powder and bonding method using the same

Country Status (1)

Country Link
JP (1) JP5580562B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145258A1 (en) 2012-03-30 2013-10-03 株式会社応用ナノ粒子研究所 Composite nanometal paste containing copper filler and bonding method
CN103521945A (en) * 2013-10-16 2014-01-22 哈尔滨工业大学 Nano-silver coated copper powder lower-temperature sintering solder paste and preparation method thereof
CN103639614A (en) * 2013-12-04 2014-03-19 马鑫 Nanoscale/micron size particle mixing type lead-free solder paste with size effect and manufacturing method thereof
JP2014188561A (en) * 2013-03-28 2014-10-06 Nippon Steel & Sumikin Chemical Co Ltd Joint method
EP2858101A3 (en) * 2013-09-10 2016-01-27 Kabushiki Kaisha Toshiba Paste comprising first metal particles and a polar solvent with a second metal dissolved therein, cured product obtained therefrom, and semiconductor device comprising the cured product
JP2016536461A (en) * 2013-08-29 2016-11-24 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. Composite and multilayer silver films for joining electrical and mechanical parts
US9695521B2 (en) 2010-07-19 2017-07-04 Universiteit Leiden Process to prepare metal nanoparticles or metal oxide nanoparticles
JP2017214609A (en) * 2016-05-30 2017-12-07 Dic株式会社 Manufacturing method of joined body
CN107511602A (en) * 2017-08-14 2017-12-26 武汉工程大学 A kind of nanometer Ag Cu soldering paste and preparation method and application
CN114429829A (en) * 2021-12-06 2022-05-03 哈尔滨理工大学 Composite paste for packaging power device and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018080A1 (en) * 2000-08-03 2002-03-07 Upepo & Maji Inc. Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern
WO2004012884A1 (en) * 2002-08-01 2004-02-12 Daiken Chemical Co., Ltd. Metal nanoparticle and process for producing the same
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device
JP2004111253A (en) * 2002-09-19 2004-04-08 Noda Screen:Kk Conductive composition for electrical connection of electronic device, and electron device
JP2007227156A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd Conductive paste, and printed wiring board using it
JP2008214695A (en) * 2007-03-05 2008-09-18 Shoei Chem Ind Co Method for producing ultra-fine particle of silver
JP2009024191A (en) * 2007-07-17 2009-02-05 Nippon Shokubai Co Ltd Dispersion of metallic nanoparticle and metallic coating film
JP2009167436A (en) * 2008-01-10 2009-07-30 Hitachi Ltd Joining material and junction forming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018080A1 (en) * 2000-08-03 2002-03-07 Upepo & Maji Inc. Metal colloidal solution composition and conductor or ink for forming semiconductor pattern comprising it and method for forming conductor or semiconductor pattern
WO2004012884A1 (en) * 2002-08-01 2004-02-12 Daiken Chemical Co., Ltd. Metal nanoparticle and process for producing the same
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device
JP2004111253A (en) * 2002-09-19 2004-04-08 Noda Screen:Kk Conductive composition for electrical connection of electronic device, and electron device
JP2007227156A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd Conductive paste, and printed wiring board using it
JP2008214695A (en) * 2007-03-05 2008-09-18 Shoei Chem Ind Co Method for producing ultra-fine particle of silver
JP2009024191A (en) * 2007-07-17 2009-02-05 Nippon Shokubai Co Ltd Dispersion of metallic nanoparticle and metallic coating film
JP2009167436A (en) * 2008-01-10 2009-07-30 Hitachi Ltd Joining material and junction forming method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9695521B2 (en) 2010-07-19 2017-07-04 Universiteit Leiden Process to prepare metal nanoparticles or metal oxide nanoparticles
WO2013145258A1 (en) 2012-03-30 2013-10-03 株式会社応用ナノ粒子研究所 Composite nanometal paste containing copper filler and bonding method
US9796052B2 (en) 2012-03-30 2017-10-24 Applied Nanoparticle Laboratory Corporation Composite nanometal paste containing copper filler and joining method
JP5398935B1 (en) * 2012-03-30 2014-01-29 株式会社応用ナノ粒子研究所 Copper filler-containing composite nanometal paste and bonding method
CN104203457A (en) * 2012-03-30 2014-12-10 应用纳米粒子研究所株式会社 Composite nanometal paste containing copper filler and bonding method
EP2832472A4 (en) * 2012-03-30 2015-07-29 Applied Nanoparticle Lab Corp Composite nanometal paste containing copper filler and bonding method
JP2014188561A (en) * 2013-03-28 2014-10-06 Nippon Steel & Sumikin Chemical Co Ltd Joint method
JP2016536461A (en) * 2013-08-29 2016-11-24 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. Composite and multilayer silver films for joining electrical and mechanical parts
EP2858101A3 (en) * 2013-09-10 2016-01-27 Kabushiki Kaisha Toshiba Paste comprising first metal particles and a polar solvent with a second metal dissolved therein, cured product obtained therefrom, and semiconductor device comprising the cured product
US10086478B2 (en) 2013-09-10 2018-10-02 Kabushiki Kaisha Toshiba Metallic particle paste, cured product using same, and semiconductor device
CN103521945A (en) * 2013-10-16 2014-01-22 哈尔滨工业大学 Nano-silver coated copper powder lower-temperature sintering solder paste and preparation method thereof
CN103639614A (en) * 2013-12-04 2014-03-19 马鑫 Nanoscale/micron size particle mixing type lead-free solder paste with size effect and manufacturing method thereof
JP2017214609A (en) * 2016-05-30 2017-12-07 Dic株式会社 Manufacturing method of joined body
CN107511602A (en) * 2017-08-14 2017-12-26 武汉工程大学 A kind of nanometer Ag Cu soldering paste and preparation method and application
CN114429829A (en) * 2021-12-06 2022-05-03 哈尔滨理工大学 Composite paste for packaging power device and preparation method thereof
CN114429829B (en) * 2021-12-06 2022-11-18 哈尔滨理工大学 Composite paste for packaging power device and preparation method thereof

Also Published As

Publication number Publication date
JP5580562B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5580562B2 (en) Silver-copper mixed powder and bonding method using the same
JP5620122B2 (en) Joining material and joining method
JP5707134B2 (en) Method for producing copper-based nanoparticles
JP5311147B2 (en) Surface-coated metal nanoparticles, production method thereof, and metal nanoparticle paste including the same
US7648554B2 (en) Metal nanoparticles and method for manufacturing same
JP5858374B2 (en) Method for producing coated copper fine particles
Bhogaraju et al. Die-attach bonding for high temperature applications using thermal decomposition of copper (II) formate with polyethylene glycol
JP6422289B2 (en) Nickel particle composition, bonding material and bonding method
WO2016002741A1 (en) Nickel particle composition, bonding material, and bonding method in which said material is used
US7985398B2 (en) Preparation of iron or iron oxide nanoparticles
JP2006032165A (en) Conductive metal particles and conductive resin composition using them, and conductive adhesive
JP5707133B2 (en) Method for producing composite nanoparticles
JP4662829B2 (en) Silver nanoparticles and method for producing the same
JP6463195B2 (en) Nickel particle composition, bonding material, and bonding method using the same
JP6099160B2 (en) Complex compounds and suspensions
JP6330322B2 (en) Method for producing coated copper nanoparticles
KR20210055037A (en) Silver nanoparticles
JP2007095509A (en) Conductive paste
JP4906301B2 (en) Conductive paste
JP2007095502A (en) Conductive paste
Durairaj et al. Investigation on the morphology of sintered silver nanomaterial for electronic packaging application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140711

R150 Certificate of patent or registration of utility model

Ref document number: 5580562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250