WO2001071349A1 - Improved interface patch clamping - Google Patents
Improved interface patch clamping Download PDFInfo
- Publication number
- WO2001071349A1 WO2001071349A1 PCT/GB2001/001238 GB0101238W WO0171349A1 WO 2001071349 A1 WO2001071349 A1 WO 2001071349A1 GB 0101238 W GB0101238 W GB 0101238W WO 0171349 A1 WO0171349 A1 WO 0171349A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipette
- interface
- cell
- cells
- liquid
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6872—Intracellular protein regulatory factors and their receptors, e.g. including ion channels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/48707—Physical analysis of biological material of liquid biological material by electrical means
- G01N33/48728—Investigating individual cells, e.g. by patch clamp, voltage clamp
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
Definitions
- the present invention provides a novel development of the conventional patch clamp technique. This technique is referred to as the interface patch clamp method.
- Voltage gated ion channels are potential targets for a considerable range of novel treatments in a variety of disease states .
- the development of the patch clamp technique has provided a powerful method for the study of ion channel function and pharmacology in whole cells.
- the patch clamp technique provides a definitive method for the investigation and screening of drugs with potential activity on voltage gated ion channels, the technique is currently highly dependent on the skill of the operator and tends to be very slow for drug screening.
- the present invention provides a method for increasing the rate at which compounds may be screened for ion channel blocking/agonist activity using the patch clamp technique.
- the method can retain the essential features of the conventional patch clamp recording system while facilitating automation of the major time-consuming components of the technique .
- the success of the patch clamp technique is derived from the ability to form "tight" (i.e. high resistance: Giga Ohm) electrical seals between an area of the cell membrane (the Patch) and the tip of a pipette.
- the patch clamp pipette is usually made from glass.
- the formation of the G-seal is dependent on the profile of the top of the pipette, and is enhanced by the application of suction to the interior of the pipette.
- the requirements for the formation of the G-seals are well established and the process is usually monitored electrically by display of the current pulse recorded in response to a small voltage step applied throughout seal formation. After formation of a G-seal, the area of membrane under the pipette may be disrupted to obtain whole cell voltage clamp recording mode.
- the patch pipette is positioned approximately 50 microns above the cell .
- Negative pressure is applied to the interior of the pipette until a G-seal is formed between the pipette tip and the cell membrane.
- Steps two and three are slow and require considerable manual dexterity and a high level of operator skill.
- Visualisation of the cells and the patch pipette requires the use of a high quality microscope and, in order to position the pipette, a high quality three axis micromanipulator with sub-micron resolution in each axis is required.
- WO 00/34776 provides for one or more cell or cells to be suspended in a liquid medium at a liquid/air interface (by virtue of the effect of surface tension at the interface) whereby the cell or cells are accessible at the interface to a microstructure electrode (such as a pipette tip) to which a cell can attach to form an electrical seal, for the purpose of whole cell voltage clamp recording.
- a microstructure electrode such as a pipette tip
- the electrode can be caused to form a high resistance electrical seal with a cell suspended in the liquid at the liquid/air interface without the need to press the cell against a solid support surface.
- any body of liquid or column of liquid which gives rise to a situation in which a cell or cells are located in the liquid at a liquid/air interface, can be used in the invention.
- cells may be suspended in a column of liquid held by surface tension in a capillary tube.
- cells may be suspended in a droplet of liquid, which droplet may itself be suspended from or supported by a support .
- interface patch clamp technique can be operated in "single cell mode" , or could be multiplexed to operate on a matrix of cells with multiple electrodes.
- interface patching can utilise a patch pipette of conventional type.
- Cells are supported on a liquid/air interface at one end of a capillary tube (e.g. made of glass, polyethylene or other suitable material) .
- the axis of the patch pipette is in line with the axis of the tube so that the pipette tip can be manipulated into the opening of the tube where the cells are supported at the air/liquid interface.
- the capillary tube or the patch pipette can be mounted onto a single axis manipulator. Only one manipulator is required and this may be used to move either the patch pipette or the capillary tube.
- Whole cell recording mode is established as follows :
- a layer of cells is established at the interface between the extracellular physiological solution (the liquid in which the cells are suspended) and air by dipping the capillary tube into a suspension of cells.
- the density of cells in the suspension must be sufficient to provide a sufficient number of cells to form a layer of cells at the interface .
- a non-polarizable electrode e.g. an Ag/AgCl wire
- the tube is mounted either to a fixed clamp or single axis manipulator.
- a patch pipette is provided which can be filled with electrolyte solution.
- the patch pipette is mounted concentrically with the capillary tube either via a single axis manipulator or fixed clamp (if the capillary tube is to be moved) .
- the pipette filling solution is connected via the non- polarizable electrode to the headstage of a conventional patch clamp amplifier.
- the pipette holder allows suction to be applied to the pipette interior.
- Cell attached patch mode of recording is established by bringing the pipette tip in contact with the interface by moving the pipette and the capillary tube respectively together along the single mounting axis (e.g. either by moving the pipette towards the tube and interface or vice versa) .
- Initial seal formation between the pipette tip and the cell may also be assisted by the application of gentle suction during entry of the pipette into the interface .
- a G-seal is formed between the patch pipette tip and the cell membrane by the application of further suction to the interior of the pipette and monitoring the pipette resistance.
- pipette current is offset to zero and a holding voltage applied to the pipette (e.g. - 60mV) .
- a whole cell recording is obtained by the application of further suction to the pipette interior until the whole cell recording mode is established in conventional manner .
- the capillary tube should be mounted in an upright orientation (i.e. essentially vertically) with the air/liquid interface at the downward end of the tube .
- the pipette tip may be moved upwardly relative to the air/liquid interface at the tube end (either by moving the pipette or the tube along the single axis) so as to come into contact with a cell in the layer at the interface.
- the relative density or concentration of cells at the interface compared to the density in the bulk of the liquid in the tube ensures a high probability that a cell can be collected on the tip without the need for visualisation of the operation and without the need for multidirectional manipulation of the tip/cell positional relationship.
- G-seal formation between the cell and the pipette can occur without pressing the cell against a solid substrate.
- the pipette should be constructed so as to prevent the filling electrolyte solution flowing out and being lost .
- This may be achieved for example by use of a custom-made mounting assembly and/or by shaping the pipette body to prevent loss of filling solution (e.g by bending the pipette shaft into a U- or J- shape) .
- the invention also provides methods and apparatus employing control logic to allow automation of a patch clamp system employing the Interface Patch Clamp technique described herein.
- the logic described will control one or more electromechanical micromanipulators/translators holding one or more patch clamp pipettes and/or capillary tubes in order to patch clamp cells and apply drugs/compounds in order to screen for activity on membrane ion channels.
- a major advantage of the logic described is that automation is achieved in this system by the use of feedback from signals from the patch clamp amplifier and no image recognition software is required.
- the stability of recording using the interface patch clamp technique may be superior to that of conventional patch clamping.
- the greater stability of interface patch clamping is because the cell is held by the patch pipette alone.
- conventional patch clamp recordings the cell is held by the path pipette and a solid substrate and vibration tends to move the pipette relative to the substrate causing loss of the G-seal.
- the interface patch clamp is, in contrast to conventional patch clamp apparatus, relatively insensitive to vibration during drug application.
- This method of drug application could be applied to a plurality of recording pipettes/capillaries and form the basis for a high throughput electrophysiological assay system.
- the Interface Patch Clamp technique could be used with multiple pipettes and multiple capillaries in a manner in which each pipette enters its respective aligned capillary either individually in sequence or all together.
- a single pipette could be used which is caused to enter more than one capillary sequentially.
- Multiple patch clamp recordings could be made either sequentially or simultaneously, depending on the application.
- a capillary in order to create a column of liquid which gives rise to a liquid/air interface at which cells can be located.
- a droplet or "blob" of liquid may be provided on a support surface. The surface has a hole through it and the droplet covers the hole. Surface tension prevents the liquid from the droplet dropping through the hol3. Within the droplet cells are suspended. This allows access to the droplet and the cells contained therein by a suitable electrode such as a patch pipette.
- Means may be provided for flow of other liquids in to and out of a dish or other container of which the support surface with the hole in it forms a wall .
- other liquids may be introduced into the container either in batch mode or in flow-through mode in order to result in the cell being exposed at its external surface to the surrounding liquid.
- the original liquid and the remaining un-attached cells will tend to be washed away from the area of the electrode/pipette.
- Droplets might be provided on non-perforate support surfaces . The effect of surface tension may be to allow droplets of a suitable liquid to adhere automatically to the underside of a suitable support surface .
- the support surface might for example be a cover slip of glass or other material . Droplets in which cells are suspended provide the air/liquid interface and consequently may be used in a method of interface pathc clamping as described above.
- the arrangement allows for the formation of a matrix of cell suspensions so that multiple electrodes can be multiplexed to take readings either simultaneously or sequentially (as well as singly) .
- a conventional glass "patch pipette” could be replaced by an equivalent electrode.
- the electrode might be either a single region or a matrix of regions on a sheet of material (such as a silicon wafer) which incorporates a microstructure to which a cell can be attached and which would provide the necessary electrical connection.
- Microstructures could be etched on to a silicon wafer (e.g. an oxidised silicon wafer), which microstructures would be designed and adapted to be able to capture a cell from the liquid/air interface of an arrangement according to the present invention.
- the performance and advantage of the invention is not limited to the currently preferred conventional glass patch pipette but would include functionally equivalent means .
- a drug in liquid solution can be applied to the cell in a number of ways .
- the drug could be applied via the capillary if the air interface is formed in a capillary tube.
- the drug can be applied by perfusion into a dish.
- perfusion could be achieved by flowing the drug-containing liquid through a dish or container.
- a further arrangement for drug application is described in WO 00/34776.
- the electrode for example the patch pipette
- the electrode penetrates through the lower wall of a well.
- a suspension of cells is loaded in to a capillary tube as previously described. Attachment of a single cell to each pipette tip follows, as described before. Once cells are attached to the pipette tips the capillary tubes containing the remainder of the cells in suspension can be removed. Subsequently, a drug solution is dispensed into each well and patch clamp measurements can then be carried out on the cell in the environment of the surrounding drug solution.
- the interface patch clamping method and apparatus it may be necessary to optimise certain conditions for patch clamp measurements .
- concentration and packing density of cells in the suspension may need to be optimised.
- the cells and/or solutions may be temperature sensitive and an optimum temperature of operation may need to be determined. Since the technique relies on the formation of a liquid/air interface at which the cells are located, it may be necessary to optimise the osmolarity of the suspending liquid medium in order to achieve the optimum level of surface tension etc.
- the present invention can provide an improved method for operating the Interface Patch Clamp technique generally described in PCT/GB99/04073.
- the Interface Patch Clamp technique is modified in that the step of bringing the microstructure electrode (pipette tip) into contact with the interface is achieved not by relative movement of the parts of the equipment, but by applying a differential pressure across the liquid/air interface to cause the meniscus to be lowered and so to cause the surface of the liquid/air interface to "bulge" towards and into contact with the electrode.
- lower the meniscus means that the radius of curvature of the surface of the liquid droplet becomes greater, and the droplet expands.
- one or more mechanical manipulator may be employed, according to this invention, to bring the respective parts of the patch clamp equipment into close proximity, provided that the final relative movement of the electrode and the interface are cause by the applied pressure differential.
- a part of the equipment holding the electrode may be mated with, attached to or held together with a part of the equipment comprising the interface in any suitable arrangement allowing a small gap between the electrode and interface in the absence of an applied pressure differential .
- pressure differential across the interface means that the hydrostatic pressure in the liquid phase (inside the droplet) differs from the air pressure ambient at the outer surface of the meniscus .
- the internal liquid phase pressure is raised above the external ambient air pressure.
- the same effect can be achieved by a relative lowering of the ambient air pressure.
- the meniscus surface level can be caused to move towards and come into contact with the electrode pipette tip by applying a (small) increase in air pressure (by any suitable means) above the liquid in the capillary.
- the same effect could be achieved by increasing the volume of liquid in the capillary or by driving the liquid down the tube (e.g. by use of a piston or plunger) .
- the invention could be performed by a relative reduction in pressure around the capillary tip; for example by mounting the capillary tip region in a sealed housing having a controllable interior housing pressure.
- the present invention may be employed to make single cell recordings, or may be applied to arrays in which multiple single cells are attached to multiple electrodes.
- An advantage of the present invention is that once the equipment has been set up with the interface near to the electrode (e.g. by mechanical or physical manipulation and positioning) , the actual step of making contact with the interface (and hence with a cell) by the electrode involves no moving parts and can be sensitively pressure-controlled. This is especially useful for patch clamping in large arrays for High Throughput Screening.
- the technique can employ a means for overall pressure-control and may be designed to allow pressure-control of individual elements of an array.
- FIG. 201 Aerial view of plexiglass multiwell plate (201) showing the position of 1 of the 18 wells (202) .
- Figure +2 Aerial view of plexiglass multiwell plate (201) showing the position of 1 of the 18 wells (202) .
- Cross section of cell application system wherein cells are applied via a disposable pipette tip (1) and recording chamber (2) also showing position of recording pipette (3) , pipette holder (4) , overflow channel (5) and earth wire access port (6) .
- A) Cell applicator consisting of pressure line (8) , earth wire (9) , suspension of cells (10) , driven syringe in starting position (11) , syringe in active position (12) , stepper motor (13) , serial communication line to computer (14) .
- FIG. 6 Suction control system showing starting position of driven syringe (11) , active position of driven syringe (12) , stepper motor (13), serial communication line to computer (14) and pressure/vacuum line to patch-pipette holder (8) .
- Figure +7 Suction control system showing starting position of driven syringe (11) , active position of driven syringe (12) , stepper motor (13), serial communication line to computer (14) and pressure/vacuum line to patch-pipette holder (8) .
- Figure +7 Suction control system showing starting position of driven syringe (11) , active position of driven syringe (12) , stepper motor (13), serial communication line to computer (14) and pressure/vacuum line to patch-pipette holder (8) .
- the configuration used for the cell applicator was as illustrated in Figure +3.
- Kvl .1 potassium channels were expressed in a Chinese hamster ovary cells and recordings made using standard patch-pipette filled with (in mM) : lOOKgluconate, 20KC1, lCaCl 2 , lMgCl 2 , lOHEPES, 11EGTA-KOH, 5ATP-Na 2 , 2GSH, pH 7.2 and a cell bathing solution consisting of (in mM) : 140NaCl, 2.5KC1, 2MgCl 2 , 2CaCl 2 , lOHEPES, lOglucose, sucrose to 320mOsm, pH7.4.
- Top superimposed series of voltage steps used to activate the Kvl .1 channel.
- Bottom superimposed whole-cell Kvl.l currents recorded in response to voltage steps .
- the cell applicator comprises a suitably shaped adaptor containing a length of small-bore tubing and a silver/silver chloride reference electrode fashioned into an integrated leakproof assembly.
- the other end of the tubing is connected to a gas tight syringe which can be driven by a computer controlled motor such as a stepper motor ( Figure +5)
- the tip of the cell applicator is placed into a suspension of cells and a sample of said cells is aspirated by withdrawal of the piston. 3.
- the cell applicator is placed into position above and concentric with the tip of the patch pipette ( Figure +3) .
- Cell suspension can also be applied directly into a channel in the top plate as in Figure +4.
- the suction device is commanded to provide a small amount of suction to the interior of the patch electrode.
- the piston in the cell applicator is advanced manually or automatically in such a manner that the interface of the cell-containing saline solution approaches slowly towards the patch pipette ( Figure +5B) .
- Automatic operation of the cell applicator would be analogous to the suction control operation below.
- the suction device is computer controlled and utilises an RS-232 serial communications protocol to operate the linear motion stepper motor. Solenoid valve speed and distance of stepper motor movements are established by sending appropriate command strings from the computer to the interface electronics assembly ( Figure +6) . 2. On first use, the suction device is initialised by sending commands to obtain the following sequence : a) open the solenoid valve and to drive the stepper motor until the end of travel of the piston air displacement system is reached. b) close the solenoid valve and drive the stepper motor to the first (lowest suction) position.
- the degree of suction may subsequently be varied by sending the appropriate command strings from the computer to the suction control device such that the air displacement piston is moved to varying degrees from the position reached at the end of the initialisation process.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biophysics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Stored Programmes (AREA)
- Supports For Pipes And Cables (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001240923A AU2001240923A1 (en) | 2000-03-21 | 2001-03-21 | Improved interface patch clamping |
CA002404136A CA2404136A1 (en) | 2000-03-21 | 2001-03-21 | Improved interface patch clamping |
US10/239,046 US20030139336A1 (en) | 2000-03-21 | 2001-03-21 | Interface patch clamping |
EP01912005A EP1274995A1 (en) | 2000-03-21 | 2001-03-21 | Improved interface patch clamping |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0006748A GB0006748D0 (en) | 2000-03-21 | 2000-03-21 | Improved interface patch clamping |
GB0006748.8 | 2000-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001071349A1 true WO2001071349A1 (en) | 2001-09-27 |
Family
ID=9888044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2001/001238 WO2001071349A1 (en) | 2000-03-21 | 2001-03-21 | Improved interface patch clamping |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1274995A1 (en) |
AU (1) | AU2001240923A1 (en) |
CA (1) | CA2404136A1 (en) |
GB (1) | GB0006748D0 (en) |
WO (1) | WO2001071349A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003047738A2 (en) * | 2001-11-30 | 2003-06-12 | Bristol-Myers Squibb Company | Liquid interface configurations for automated patch clamp recording |
DE10202887A1 (en) * | 2002-01-25 | 2003-08-14 | Advalytix Ag | Cell analysis method comprises applying single cell in drop of solution to functionalized position connected to contact and measuring electrical parameters between contact and second contact on patch pipette |
WO2004011937A1 (en) * | 2002-07-30 | 2004-02-05 | Amersham Biosiciences Uk Limited | Device for examining cells using the patch clamp method |
ES2208082A1 (en) * | 2002-05-29 | 2004-06-01 | Jose Luis Bardasano Rubio | Device is for measuring potential of transmembrane action in cellular preparations under action of electromagnetic fields of variable frequency and intensity |
US6936462B1 (en) | 1998-06-12 | 2005-08-30 | Xention Discovery Limited | High throughput screen |
US7384733B1 (en) | 1998-12-05 | 2008-06-10 | Xention Discovery Limited | Interface patch clamping |
US7494622B2 (en) | 2002-08-28 | 2009-02-24 | Commissariat A L'energie Atomique | Device for measuring the electrical activity of biological elements and its applications |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI1000060B1 (en) | 2010-01-04 | 2017-12-26 | Embrapa - Empresa Brasileira De Pesquisa Agropecuária. | DENSITY SENSOR TO ASSESS VOLTAGE, POTENTIAL AND ACTIVITY OF LIQUIDS |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09211010A (en) * | 1996-02-06 | 1997-08-15 | Bunshi Bio Photonics Kenkyusho:Kk | Electrophyiological characteristic measuring device |
WO1998050791A1 (en) * | 1997-05-01 | 1998-11-12 | Neurosearch A/S | An automatic electrode positioning apparatus |
DE19744649A1 (en) * | 1997-10-09 | 1999-04-15 | Fraunhofer Ges Forschung | Patch clamp cell measurement apparatus, has an array of micro dishes containing cells, and an assembly of micro pipettes with relative movements between them |
WO2000034776A1 (en) * | 1998-12-05 | 2000-06-15 | Cenes Limited | Interface patch clamping |
-
2000
- 2000-03-21 GB GB0006748A patent/GB0006748D0/en not_active Ceased
-
2001
- 2001-03-21 AU AU2001240923A patent/AU2001240923A1/en not_active Abandoned
- 2001-03-21 EP EP01912005A patent/EP1274995A1/en not_active Withdrawn
- 2001-03-21 CA CA002404136A patent/CA2404136A1/en not_active Abandoned
- 2001-03-21 WO PCT/GB2001/001238 patent/WO2001071349A1/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09211010A (en) * | 1996-02-06 | 1997-08-15 | Bunshi Bio Photonics Kenkyusho:Kk | Electrophyiological characteristic measuring device |
WO1998050791A1 (en) * | 1997-05-01 | 1998-11-12 | Neurosearch A/S | An automatic electrode positioning apparatus |
DE19744649A1 (en) * | 1997-10-09 | 1999-04-15 | Fraunhofer Ges Forschung | Patch clamp cell measurement apparatus, has an array of micro dishes containing cells, and an assembly of micro pipettes with relative movements between them |
WO2000034776A1 (en) * | 1998-12-05 | 2000-06-15 | Cenes Limited | Interface patch clamping |
Non-Patent Citations (2)
Title |
---|
HAMILL O P ET AL: "Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches", PFLÜGERS ARCHIV, vol. 391, 1981, ISSN 0031-6768, pages 85 - 100, XP000196663 * |
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 12 25 December 1997 (1997-12-25) * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10006902B2 (en) | 1998-06-12 | 2018-06-26 | Sophion Bioscience A/S | High throughput screen |
US6936462B1 (en) | 1998-06-12 | 2005-08-30 | Xention Discovery Limited | High throughput screen |
US7384733B1 (en) | 1998-12-05 | 2008-06-10 | Xention Discovery Limited | Interface patch clamping |
US7241565B2 (en) | 2001-11-30 | 2007-07-10 | Bristol-Myers Squibb Company | Liquid interface configurations for automated patch clamp recording |
WO2003047738A3 (en) * | 2001-11-30 | 2003-11-13 | Bristol Myers Squibb Co | Liquid interface configurations for automated patch clamp recording |
WO2003047738A2 (en) * | 2001-11-30 | 2003-06-12 | Bristol-Myers Squibb Company | Liquid interface configurations for automated patch clamp recording |
DE10202887A1 (en) * | 2002-01-25 | 2003-08-14 | Advalytix Ag | Cell analysis method comprises applying single cell in drop of solution to functionalized position connected to contact and measuring electrical parameters between contact and second contact on patch pipette |
DE10202887B4 (en) * | 2002-01-25 | 2004-05-06 | Advalytix Ag | Cell analysis method |
ES2208082A1 (en) * | 2002-05-29 | 2004-06-01 | Jose Luis Bardasano Rubio | Device is for measuring potential of transmembrane action in cellular preparations under action of electromagnetic fields of variable frequency and intensity |
WO2004011937A1 (en) * | 2002-07-30 | 2004-02-05 | Amersham Biosiciences Uk Limited | Device for examining cells using the patch clamp method |
GB2406653B (en) * | 2002-07-30 | 2006-04-19 | Amersham Biosciences Uk Ltd | Device for examining cells using the patch clamp method |
US7905996B2 (en) * | 2002-07-30 | 2011-03-15 | Ge Healthcare Uk Limited | Interface patch clamping |
GB2406653A (en) * | 2002-07-30 | 2005-04-06 | Amersham Biosciences Uk Ltd | Device for examining cells using the patch clamp method |
US7494622B2 (en) | 2002-08-28 | 2009-02-24 | Commissariat A L'energie Atomique | Device for measuring the electrical activity of biological elements and its applications |
Also Published As
Publication number | Publication date |
---|---|
GB0006748D0 (en) | 2000-05-10 |
AU2001240923A1 (en) | 2001-10-03 |
CA2404136A1 (en) | 2001-09-27 |
EP1274995A1 (en) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7611861B2 (en) | Method and apparatus for patch-clamp measurements on cells | |
KR100736059B1 (en) | Interface patch clamping | |
US6984297B2 (en) | Device for taking measurements of cells which are contained in a liquid environment | |
JP3887679B2 (en) | Apparatus and method for making electrical contact with biological cells suspended in a liquid | |
JP3688713B2 (en) | Patch fastening apparatus and method having high throughput and low fluid volume requirements | |
US20030139336A1 (en) | Interface patch clamping | |
US20030180965A1 (en) | Micro-fluidic device and method of manufacturing and using the same | |
US20030121778A1 (en) | Apparatus for and method of making electrical measurements on an object | |
US20030129581A1 (en) | Patch-clamping method and apparatus | |
WO2001071349A1 (en) | Improved interface patch clamping | |
WO2002103354A1 (en) | An apparatus and method for determining and/or monitoring electrophysiological properties of ion channels | |
US7465558B2 (en) | Perfusion system and apparatus for automated multi-channel patch-clamp recordings utilizing inside-out whole-cell configuration | |
US20100041093A1 (en) | Devices and method for electrophysical cell analyses | |
JPWO2003044512A1 (en) | Measuring device and measuring method for measuring an electrical signal emitted from a biological sample | |
MXPA06012574A (en) | Fast perfusion system and patch clamp technique utilizing an interface chamber system having high throughput and low volume requirements. | |
AU2001282048B2 (en) | Method and apparatus for patch-clamp measurements on cells | |
AU2001282048A1 (en) | Method and apparatus for patch-clamp measurements on cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001240923 Country of ref document: AU Ref document number: 2404136 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001912005 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10239046 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2001912005 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001912005 Country of ref document: EP |