USRE29028E - Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing anhydrides - Google Patents

Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing anhydrides Download PDF

Info

Publication number
USRE29028E
USRE29028E US05/651,164 US65116476A USRE29028E US RE29028 E USRE29028 E US RE29028E US 65116476 A US65116476 A US 65116476A US RE29028 E USRE29028 E US RE29028E
Authority
US
United States
Prior art keywords
weight
per cent
component
glycidyl
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/651,164
Inventor
Themistoklis Katsimbas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US474529A external-priority patent/US3919347A/en
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to US05/651,164 priority Critical patent/USRE29028E/en
Application granted granted Critical
Publication of USRE29028E publication Critical patent/USRE29028E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3209Epoxy compounds containing three or more epoxy groups obtained by polymerisation of unsaturated mono-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof

Definitions

  • One objective is that it should be possible to manufacture the pulverulent coating agent by simple mixing, homogenising fusion and conjoint grinding of the requisite components.
  • the pulverulent coating agent manufactured by thorough mixing, homogenising fusion and grinding should be storage-stable at the customary storage temperatures between about -40 and +40° C.
  • the coating agent should, after application, give very glossy, non-yellowing coatings of good levelling characteristics and freedom from blisters and craters, merely by stoving for about 15 to 30 minutes at about 150° to 180° C.
  • the stoved films should not yellow and should not only exhibit excellent weathering resistance but also substantially improved resistance to organic solvents and chemicals, the comparison of these properties being with powder lacquers which are formulated on the basis of acrylate copolymers.
  • the subject of the invention is a pulverulent coating agent of a mixture of
  • A a copolymer of relatively low molecular weight, which contains glycidyl groups and is a copolymer of several ethylenically unsaturated compounds
  • a flow control agent in an amount of at least 0.05 per cent by weight of the mixture, which agent is a polymer of molecular weight (M n ) of at least 1,000 and has a glass transition temperature which is at least 50° C lower than the glass transition temperature of the copolymer (A), characterised in that the component (A) consists of 84 to 94 per cent by weight of copolymers containing epoxide groups and hydroxyl groups, which copolymers have Durran softening points of about 90°-120° C and are soluble in organic solvents and comprise:
  • the component (B) consisting of 6-16 per cent by weight of at least one dicarboxylic acid anhydride with melting points of about 60°-140° C
  • the component (C) consisting of 0.5-1.8 per cent by weight of N',N'-bis-(dimethylaminoisobutylidene)-melamine
  • the optional component (D) consisting of a flow control agent and other customary additives.
  • a special embodiment of the present invention relates to a pulverulent coating agent according to claim 1, characterised in that component (A) consists of a copolymer formed of:
  • a special embodiment of the present invention relates to the use of the pulverulent coating agent according to one of the claims 1 to 6 as powder lacquer being storage stable between -40° C and +40° C and which gives highly glossy and not yellowing coatings having no blisters and no craters after stoving of the coatings at 150° C to 180° C for about 15 to 30 minutes.
  • component (a) it is possible to use ethylenically unsaturated epoxy monomers with 6-12 carbon atoms, of the general formula ##STR2## wherein
  • glycidyl acrylate glycidyl methacrylate
  • allyl glycidyl ether methallyl glycidyl ether
  • glycidyl crotonate vinyl glycidyl ether
  • allyl glycidyl maleate allyl glycidyl phthalate
  • butadiene monoxide butadiene monoxide
  • component (b) it is possible to use hydroxyalkyl esters of acrylic acid or methacrylic acid, such as hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate and hydroxybutyl acrylate.
  • component (d) it is possible to use other acrylic acid esters or methacrylic acid esters of aliphatic saturated monoalcohols with 1-8 carbon atoms, for example methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate and butyl methacrylate.
  • Ethyl acrylate or butyl methacrylate are used preferentially.
  • copolymers are manufactured according to known processes of bulk polymerisation, solution polymerisation or dispersion polymerisation, preferably by solution polymerisation. Such processes are described, for example, in the book “Methoden der Organischen Chemie” (Methods of Organic Chemistry), Houben-Weyl, 4th edition, volume 14/1, pages 24 to 556 (1961).
  • solvents such as methylene chloride, ethanol, isopropanol, n-propanol, n-butanol, iso-butanol, tert.-butanol, acetic acid methyl ester to butyl ester, acetone, methyl ethyl ketone, benzene, toluene and others can be employed.
  • the polymerisation is carried out at temperatures of 40° to about 120° C.
  • initiators it is possible to employ, for example, percarbonates, per-esters, such as tert.-butyl perpivalate or peroctoate, benzoyl peroxide, o-methoxybenzoyl peroxide, dichlorobenzoyl peroxide or azodiisobutyrodinitrile, in amounts of 0.5 to 8% by weight based on monomers.
  • percarbonates such as tert.-butyl perpivalate or peroctoate
  • benzoyl peroxide o-methoxybenzoyl peroxide
  • dichlorobenzoyl peroxide dichlorobenzoyl peroxide
  • azodiisobutyrodinitrile azodiisobutyrodinitrile
  • customary molecular weight regulators such as n-dodecylmercaptan or tert.-dodecylmercaptan, can be co-used.
  • the copolymer solution is freed from the solvent by distilling the latter off in vacuo, or in suitable apparatus, preferably evaporator screws, at temperatures of about 90° to 160° C, and the residue is cooled, granulated and ground.
  • the product can also be isolated in accordance with other processes, say by spray drying, removal of the solvent with steam and simultaneous dispersion in water, or precipitation by means of water from a water-miscible solvent.
  • dicarboxylic acid anhydrides component B
  • phthalic anhydride p-chlorophthalic anhydride, tetrabromophthalic anhydride, cyclohexane-1,2-dicarboxylic acid anhydride, 4-methylhexane-1,2-dicarboxylic acid anhydride, cyclopentane-1,2-dicarboxylic acid anhydride, dodecylsuccinic anhydride, succinic anhydride, maleic anhydride, methylsuccinic anhydride and polyazelaic anhydride.
  • anhydrides having a melting point in the range of 60° to 140° C are preferred.
  • N',N'-bis-(Dimethylaminoisobutylidene)-melamine is used as component (C).
  • the manufacture of this compound is described in German Offenlegungsschrift No. 1,620,178, on page 5, in Example 1. Further, this compound has been described by the same applicant, in German Offenlegungsschrift No. 1,645,190, as a curing agent for epoxide resins. According to this prior description, this curing agent is used together with epoxide compounds, in amounts of 2 to 25 per cent by weight, preferably 2 to 10 per cent by weight, relative to the amount of the epoxide compound, for the purpose of a curing agent.
  • the flow control agent (D) it is possible to use, in the pulverulent coating agent, an acrylic polymer having a glass transition temperature which is at least 50° C lower than the glass transition temperature of the copolymer used in the mixture.
  • Preferred acrylic polymers which can be used as flow control agents are polylauryl acetate, polybutyl acrylate, poly-(2-ethylhexyl acrylate), polylauryl methacrylte and polyisodecyl methacrylate.
  • the flow control agent can also be a fluorinated polymer which at the stoving temperature of the powder mixture has a lower surface tension than has the copolymer used in the mixture. If a fluorinated polymer is used as the flow control agent, esters of polyethylene glycol or polypropylene glycol and fluorinated fatty acids are preferred.
  • An example of a suitable flow control agent is an ester of polyethylene glycol, of molecular weight greater than 2,500 but no more than 20,000, and perfluorooctanoic acid.
  • levelling agents such as silicones, polyesters, ketone resins, epoxide resins and cellulose derivatives can be added to the melts. It is also possible to add pigments, levelling agents and other additives customary in such coating agents.
  • the solvent-free, optionally pigmented components which are brittle in the non-crosslinked state, are ground to a particle size of about 100 to 300 ⁇ , fused at about 95°-110°C with good mixing or kneading, cooled, again ground, after solidification, to a particle size of 30 to 120 ⁇ , and optionally screened according to particle size.
  • the pulverulent coating agents to be used according to the invention are still free-flowing at temperatures of at least 30°-40° C, preferably 40° C, have flow temperatures of approx. 80° to 120° C and are stoved at temperatures above 130° C, preferably at 160° to 180° C. whereupon crosslinking occurs.
  • the pulverulent coating agents are applied to suitable substrates, especially metals, in accordance with known methods, for example the electrostatic powder spraying process.
  • the stoved films of the pulverulent coating agents used according to the invention have excellent adhesion and hardness coupled with elasticity. Furthermore, they are distinguished by high gloss, excellent weathering resistance and good resistance to wash liquors.
  • the powders are used for coating household utensils, metal parts used in car manufacture, metal parts which are exposed to weathering factors, such as facade panels, pipes, wire braids, equipment used in forestry and agriculture and other metal articles for interior architecture.
  • toluene 226 g of toluene are introduced into a 1-liter stirring pot equipped with a reflux condenser, thermometer and two dropping funnels.
  • the toluene is brought to the reflux temperature by heating to about 112° C and two monomeric mixtures, namely
  • 300 g of the resulting solid resin are ground together with 32 g of a mixture of dicarboxylic acid anhydride and curing accelerator, consisting of 92% by weight of phthalic anhydride and 8% by weight of N',N'-bis-(dimethylaminoisobutylidene)-melamine, and an added pigment, namely 132 g of titanium dioxide (of the rutile type) of particle size about 80-200 ⁇ .
  • the powder mixture is then mixed for 4 minutes in an extruder at 100° C, the melt is shockchilled to room temperature and the product is ground to give particles of approx. 80 ⁇ .
  • the pulverulent coating is applied by means of an electro-spray gun onto degreased phosphatised galvanised steel sheets and then stoved for 30 minutes at 180° C.
  • Example 1 The procedure followed is as in Example 1, but a copolymer is produced by using the following monomer mixture: 128 g of methyl methacrylate, 152 g of butyl methacrylate, 64 g of hydroxyethyl methacrylate and 56 g of glycidyl methacrylate. This copolymer is converted to a pulverulent coating agent in accordance with the instructions of Example 1.
  • the stoved coatings have similar properties to the coatings which have been produced in accordance with Example 1.
  • This copolymer is converted to a pulverulent coating agent in accordance with the instructions of Example 1.
  • the obtained coating agent shows good lacquer properties.
  • the pulverulent copolymer has excellent storage stability.
  • Example 1 The procedure followed is as in Example 1 with the modification of employing the following monomer mixture: 300 g of methyl methacrylate, 40 g of hydroxyethyl methacrylate and 60 g of glycidyl methacrylate.
  • the obtained copolymer is converted to a pulverulent coating agent in accordance with instructions of Example 1.
  • This coating agent shows good lacquer properties.
  • the pulverulent copolymer has excellent storage stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

The invention relates to heat-curable pulverulent coating agents, frequently also called powder lacquers, which are suitable for applying a coherent coating which possesses excellent properties after heat-curing.

Description

BACKGROUND OF THE INVENTION
It is already known to manufacture heat-curable pulverulent coating agents based on copolymers which contain glycidyl groups, and to use such coating agents. However, such known products suffer from the disadvantage that they must be stoved at temperatures above 200° in order to obtain resistant films. If attempts are made to lower the stoving temperatures of such known pulverulent coating agents by addition of accelerators, the effect is inadequate or the resulting films yellow already during the stoving process, and at times the adhesion is also interfered with.
Such known pulverulent coating agents are described in German Offenlegungsschriften No. 2,240,312, 2,240,314, 2,240,315, 2,057,577, 2,064,916, 2,214,650 and 2,122,313.
1. It is the task of the present invention to provide a heat-curable pulverulent coating agent which shows simultaneous improvements in various directions compared to the known pulverulent coating agents. One objective is that it should be possible to manufacture the pulverulent coating agent by simple mixing, homogenising fusion and conjoint grinding of the requisite components.
2. The pulverulent coating agent manufactured by thorough mixing, homogenising fusion and grinding should be storage-stable at the customary storage temperatures between about -40 and +40° C.
3. The coating agent should, after application, give very glossy, non-yellowing coatings of good levelling characteristics and freedom from blisters and craters, merely by stoving for about 15 to 30 minutes at about 150° to 180° C.
4. The stoved films should not yellow and should not only exhibit excellent weathering resistance but also substantially improved resistance to organic solvents and chemicals, the comparison of these properties being with powder lacquers which are formulated on the basis of acrylate copolymers.
SUMMARY
The subject of the invention is a pulverulent coating agent of a mixture of
A. a copolymer of relatively low molecular weight, which contains glycidyl groups and is a copolymer of several ethylenically unsaturated compounds,
B. at least one dicarboxylic acid anhydride in an amount corresponding to 0.4-1.0 anhydride groups per epoxy group (glycidyl groups) of the copolymer and
C. a curing accelerator in the form of an organic base,
D. a flow control agent in an amount of at least 0.05 per cent by weight of the mixture, which agent is a polymer of molecular weight (Mn) of at least 1,000 and has a glass transition temperature which is at least 50° C lower than the glass transition temperature of the copolymer (A), characterised in that the component (A) consists of 84 to 94 per cent by weight of copolymers containing epoxide groups and hydroxyl groups, which copolymers have Durran softening points of about 90°-120° C and are soluble in organic solvents and comprise:
a. 6-24 per cent by weight of ethylenically unsaturated epoxide monomers with 6-12 carbon atoms, of the general formula ##STR1## wherein
R.sub.1 and R.sub.2 =H-- or --CH.sub.3 ##SPC1##
b. 4-20 per cent by weight of hydroxyalkyl esters of acrylic acid or methacrylic acid, with the hydroxyalkyl ester group being saturated and containing 2-4 C atoms,
c. 25-50 per cent by weight of methyl methacrylate and
d. 25-45 per cent by weight of other acrylic acid esters or methacrylic acid esters of aliphatic saturated monoalcohols with 1 to 8 carbon atoms, the component (B) consisting of 6-16 per cent by weight of at least one dicarboxylic acid anhydride with melting points of about 60°-140° C, the component (C) consisting of 0.5-1.8 per cent by weight of N',N'-bis-(dimethylaminoisobutylidene)-melamine and the optional component (D) consisting of a flow control agent and other customary additives.
A preferred embodiment of the invention comprises:
a. 12 to 16 per cent by weight of glycidyl methacrylate,
b. 14 to 18 per cent by weight of hydroxyethyl methacrylate,
c. 34 to 44 per cent by weight of methyl methacrylate and
d. 25 to 35 per cent by weight of ethyl acrylate.
A special embodiment of the present invention relates to a pulverulent coating agent according to claim 1, characterised in that component (A) consists of a copolymer formed of:
a. 12 to 16 per cent by weight of glycidyl methacrylate,
b. 14 to 18 per cent by weight of hydroxyethyl methacrylate,
c. 34 to 44 per cent by weight of methyl methacrylate and
d. 30 to 40 per cent by weight of butyl methacrylate.
A special embodiment of the present invention relates to the use of the pulverulent coating agent according to one of the claims 1 to 6 as powder lacquer being storage stable between -40° C and +40° C and which gives highly glossy and not yellowing coatings having no blisters and no craters after stoving of the coatings at 150° C to 180° C for about 15 to 30 minutes.
As component (a) it is possible to use ethylenically unsaturated epoxy monomers with 6-12 carbon atoms, of the general formula ##STR2## wherein
R.sub.1 and R.sub.2 = H-- or --CH.sub.3 ##SPC2##
these include: glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, methallyl glycidyl ether, glycidyl crotonate, vinyl glycidyl ether, allyl glycidyl maleate, allyl glycidyl phthalate and butadiene monoxide.
As component (b) it is possible to use hydroxyalkyl esters of acrylic acid or methacrylic acid, such as hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate and hydroxybutyl acrylate.
As component (d) it is possible to use other acrylic acid esters or methacrylic acid esters of aliphatic saturated monoalcohols with 1-8 carbon atoms, for example methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate and butyl methacrylate. Ethyl acrylate or butyl methacrylate are used preferentially.
The copolymers are manufactured according to known processes of bulk polymerisation, solution polymerisation or dispersion polymerisation, preferably by solution polymerisation. Such processes are described, for example, in the book "Methoden der Organischen Chemie" (Methods of Organic Chemistry), Houben-Weyl, 4th edition, volume 14/1, pages 24 to 556 (1961).
If the polymerisation is carried out in solution, solvents such as methylene chloride, ethanol, isopropanol, n-propanol, n-butanol, iso-butanol, tert.-butanol, acetic acid methyl ester to butyl ester, acetone, methyl ethyl ketone, benzene, toluene and others can be employed.
The polymerisation is carried out at temperatures of 40° to about 120° C.
As initiators it is possible to employ, for example, percarbonates, per-esters, such as tert.-butyl perpivalate or peroctoate, benzoyl peroxide, o-methoxybenzoyl peroxide, dichlorobenzoyl peroxide or azodiisobutyrodinitrile, in amounts of 0.5 to 8% by weight based on monomers.
Further, customary molecular weight regulators, such as n-dodecylmercaptan or tert.-dodecylmercaptan, can be co-used.
The copolymer solution is freed from the solvent by distilling the latter off in vacuo, or in suitable apparatus, preferably evaporator screws, at temperatures of about 90° to 160° C, and the residue is cooled, granulated and ground. However, the product can also be isolated in accordance with other processes, say by spray drying, removal of the solvent with steam and simultaneous dispersion in water, or precipitation by means of water from a water-miscible solvent.
As dicarboxylic acid anhydrides (component B) it is possible to use phthalic anhydride, p-chlorophthalic anhydride, tetrabromophthalic anhydride, cyclohexane-1,2-dicarboxylic acid anhydride, 4-methylhexane-1,2-dicarboxylic acid anhydride, cyclopentane-1,2-dicarboxylic acid anhydride, dodecylsuccinic anhydride, succinic anhydride, maleic anhydride, methylsuccinic anhydride and polyazelaic anhydride. In general, anhydrides having a melting point in the range of 60° to 140° C are preferred.
N',N'-bis-(Dimethylaminoisobutylidene)-melamine is used as component (C). The manufacture of this compound is described in German Offenlegungsschrift No. 1,620,178, on page 5, in Example 1. Further, this compound has been described by the same applicant, in German Offenlegungsschrift No. 1,645,190, as a curing agent for epoxide resins. According to this prior description, this curing agent is used together with epoxide compounds, in amounts of 2 to 25 per cent by weight, preferably 2 to 10 per cent by weight, relative to the amount of the epoxide compound, for the purpose of a curing agent. However, it was not known, and also not to be expected, that this known curing agent would, when used in amounts of less than 2 per cent by weight, together with dicarboxylic acid anhydrides, exert an accelerating action on the anhydride curing of the epoxide resins.
As the flow control agent (D) it is possible to use, in the pulverulent coating agent, an acrylic polymer having a glass transition temperature which is at least 50° C lower than the glass transition temperature of the copolymer used in the mixture. Preferred acrylic polymers which can be used as flow control agents are polylauryl acetate, polybutyl acrylate, poly-(2-ethylhexyl acrylate), polylauryl methacrylte and polyisodecyl methacrylate.
The flow control agent can also be a fluorinated polymer which at the stoving temperature of the powder mixture has a lower surface tension than has the copolymer used in the mixture. If a fluorinated polymer is used as the flow control agent, esters of polyethylene glycol or polypropylene glycol and fluorinated fatty acids are preferred. An example of a suitable flow control agent is an ester of polyethylene glycol, of molecular weight greater than 2,500 but no more than 20,000, and perfluorooctanoic acid. Furthermore, levelling agents such as silicones, polyesters, ketone resins, epoxide resins and cellulose derivatives can be added to the melts. It is also possible to add pigments, levelling agents and other additives customary in such coating agents.
The solvent-free, optionally pigmented components, which are brittle in the non-crosslinked state, are ground to a particle size of about 100 to 300μ, fused at about 95°-110°C with good mixing or kneading, cooled, again ground, after solidification, to a particle size of 30 to 120μ, and optionally screened according to particle size.
The pulverulent coating agents to be used according to the invention are still free-flowing at temperatures of at least 30°-40° C, preferably 40° C, have flow temperatures of approx. 80° to 120° C and are stoved at temperatures above 130° C, preferably at 160° to 180° C. whereupon crosslinking occurs.
The pulverulent coating agents are applied to suitable substrates, especially metals, in accordance with known methods, for example the electrostatic powder spraying process.
The stoved films of the pulverulent coating agents used according to the invention have excellent adhesion and hardness coupled with elasticity. Furthermore, they are distinguished by high gloss, excellent weathering resistance and good resistance to wash liquors.
The powders are used for coating household utensils, metal parts used in car manufacture, metal parts which are exposed to weathering factors, such as facade panels, pipes, wire braids, equipment used in forestry and agriculture and other metal articles for interior architecture.
The examples which follow describe the manufacture of the powders and their use as electrostatically sprayable powders. The parts and percentages quoted in the examples are by weight, unless stated otherwise.
EXAMPLE 1
226 g of toluene are introduced into a 1-liter stirring pot equipped with a reflux condenser, thermometer and two dropping funnels. The toluene is brought to the reflux temperature by heating to about 112° C and two monomeric mixtures, namely
(a)
120 g of ethyl acrylate,
64 g of hydroxyethyl methacrylate,
64 g of glycidyl methacrylate and
152 g of methyl methacrylate
and
(b)
32 g of tert.-butyl peroctoate and
40 g of toluene
are simultaneously added dropwise thereto over the course of about 4 hours. The mixture is then kept under reflux for a further hour and during this time an additional 4 g of tert.-butyl peroctoate are added dropwise. The mixture is then after-polymerised for a further 2 hours under reflux at about 118°-120° C. The resulting copolymer has a Gardner-Holdt viscosity of S-T measured as a 50% strength solution in toluene at 20° C. After addition of 3.2 g of a flow control agent (Modaflow of Messrs. Monsanto Chemicals), the toluene is distilled off by heating up to 160° C and under reduced pressure at 40 mm Hg, giving a brittle clear solid resin which can readily be powdered.
300 g of the resulting solid resin are ground together with 32 g of a mixture of dicarboxylic acid anhydride and curing accelerator, consisting of 92% by weight of phthalic anhydride and 8% by weight of N',N'-bis-(dimethylaminoisobutylidene)-melamine, and an added pigment, namely 132 g of titanium dioxide (of the rutile type) of particle size about 80-200μ. The powder mixture is then mixed for 4 minutes in an extruder at 100° C, the melt is shockchilled to room temperature and the product is ground to give particles of approx. 80μ.
The pulverulent coating is applied by means of an electro-spray gun onto degreased phosphatised galvanised steel sheets and then stoved for 30 minutes at 180° C.
Coatings having the following properties are obtained;
______________________________________                                    
Coating thickness, μ:                                                  
                   44-48                                                  
Levelling, assessed visually:                                             
                   0-1      (0 means "very                                
Folding test:      0-1       good" and                                    
Yellowing:         0-1       5 means "bad")                               
Xylene resistance, 2 hours:                                               
                   0                                                      
Pencil hardness:   H.sub.4                                                
Erichsen deep-drawing value:                                              
                   7.2 mm                                                 
Gloss by Lange's method:                                                  
                   108                                                    
Grid-cut test:     0                                                      
______________________________________                                    
EXAMPLE 2
The procedure followed is as in Example 1, but a copolymer is produced by using the following monomer mixture: 128 g of methyl methacrylate, 152 g of butyl methacrylate, 64 g of hydroxyethyl methacrylate and 56 g of glycidyl methacrylate. This copolymer is converted to a pulverulent coating agent in accordance with the instructions of Example 1.
The stoved coatings have similar properties to the coatings which have been produced in accordance with Example 1.
EXAMPLE 3
The procedure followed is as in Example 1 with the modification of using the following monomer mixture:
150 g of methyl methacrylate,
130 g of butyl methacrylate,
60 g of hydroxyethyl methacrylate and
60 g of glycidyl methacrylate.
This copolymer is converted to a pulverulent coating agent in accordance with the instructions of Example 1. The obtained coating agent shows good lacquer properties. The pulverulent copolymer has excellent storage stability.
EXAMPLE 4
The procedure followed is as in Example 1 with the modification of employing the following monomer mixture: 300 g of methyl methacrylate, 40 g of hydroxyethyl methacrylate and 60 g of glycidyl methacrylate. The obtained copolymer is converted to a pulverulent coating agent in accordance with instructions of Example 1. This coating agent shows good lacquer properties. The pulverulent copolymer has excellent storage stability.

Claims (6)

What is claimed is:
1. Pulverulent coating agent of a mixture of
A. a copolymer of relatively low molecular weight, which contains glycidyl groups and is a copolymer of several ethylenically unsaturated compounds,
B. at least one dicarboxylic acid anhydride in an amount corresponding to 0.4-1.0 anhydride groups per epoxy group (glycidyl group) of the copolymer and
C. a curing accelerator in the form of an organic base,
D. a flow control agent in an amount of at least 0.05 per cent by weight of the mixture, which agent is a polymer of molecular weight (Mn) of at least 1,000 and has a glass transition temperature which is at least 50° C lower than the glass transition temperature of the copolymer (A), characterised in that the component (A) consists of 84 to 94 per cent by weight of copolymers containing epoxide groups and hydroxyl groups, which copolymers have Duran softening points of about 90°-120° C and are soluble in organic solvents and consist essentially of:
a. 6-24 per cent by weight of ethylenically unsaturated epoxide monomers with 6-12 carbon atoms, of the general formula ##EQU1## wherein
R.sub.1 and R.sub.2 = H-- or --CH.sub.3 ##SPC3##
b. 4-20 per cent by weight of hydroxyalkyl esters of acrylic acid or methacrylic acid, with the hydroxyalkyl ester group being saturated and containing 2-4 C atoms,
c. 25-50 per cent by weight of methyl methacrylate and
d. 25-45 per cent by weight of other acrylic acid esters or methacrylic acid esters of aliphatic saturated monoalcohols with 1 to 8 carbon atoms,
the component (B) consisting of 6-16 per cent by weight of at least one dicarboxylic acid anhydride with melting points of about 60°-140° C, the component (C) .[.consisting of 0.15-1.8 per cent by weight of N',N'-bis-.]. .Iadd.consisting of 0.5-1.8 per cent by weight of N',N'-bis-.Iaddend.(dimethylaminoisobutylidene)-melamine and the optional component (D) consisting of a flow control agent and other customary additives.
2. Pulverulent coating agent according to claim 1, characterised in that the component (A) consists of a copolymer formed of:
a. 12 to 16 per cent by weight of glycidyl methacrylate,
b. 14 to 18 per cent by weight of hydroxyethyl methacrylate,
c. 34 to 44 per cent by weight of methyl methacrylate and
d. 25 to 35 per cent by weight of ethyl acrylate.
3. Pulverulent coating agent according to claim 1, characterised in that component (A) consists of a copolymer formed of
a. 12 to 16 per cent by weight of glycidyl methacrylate,
b. 14 to 18 per cent by weight of hydroxyethyl methacrylate,
c. 34 to 44 per cent by weight of methyl methacrylate and
d. 30 to 40 per cent by weight of butyl methacrylate.
4. A pulverulent coating agent according to claim 1 wherein the copolymer component (A) contains as ethylenically unsaturated epoxide monomer (a) a compound selected from the group consisting of glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, methallyl glycidyl ether, glycidyl crotonate, vinyl glycidyl ether, allyl glycidyl maleate, allyl glycidyl phthalate and butadiene monoxide.
5. A pulverulent coating agent mixture according to claim 1 wherein the copolymer component (A) contains as hydroxy alkyl ester component (b) a compound selected from the group consisting of hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate and hydroxybutyl acrylate.
6. A pulverulent coating agent according to claim 1 wherein the copolymer component (A) contains as component (d) a C1 to C8 -aliphatically saturated monoalcohol ester of acrylic or methacrylic acid selected from the group consisting of methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2 ethylhexylmethacrylate, isobutyl acrylate and butyl methacrylate.
US05/651,164 1973-06-26 1976-01-21 Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing anhydrides Expired - Lifetime USRE29028E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/651,164 USRE29028E (en) 1973-06-26 1976-01-21 Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing anhydrides

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH931473 1973-06-26
CH9314/73 1973-06-26
US474529A US3919347A (en) 1973-06-26 1974-05-30 Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing accelerators
US05/651,164 USRE29028E (en) 1973-06-26 1976-01-21 Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing anhydrides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US474529A Reissue US3919347A (en) 1973-06-26 1974-05-30 Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing accelerators

Publications (1)

Publication Number Publication Date
USRE29028E true USRE29028E (en) 1976-11-02

Family

ID=27176193

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/651,164 Expired - Lifetime USRE29028E (en) 1973-06-26 1976-01-21 Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing anhydrides

Country Status (1)

Country Link
US (1) USRE29028E (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142018A (en) 1976-01-30 1979-02-27 Mitsui Toatsu Chemicals, Inc. Process for forming metallic finish coatings
US4511682A (en) 1983-06-28 1985-04-16 Union Carbide Corporation Water-dispersible coating compositions and process
US5013806A (en) * 1990-03-23 1991-05-07 Eastman Kodak Company Butadiene monoepoxide/maleic anhydride copolymers
US5071931A (en) * 1990-03-23 1991-12-10 Eastman Kodak Company Butadiene monoepoxide/maleic anhydride copolymers
US5071932A (en) * 1990-03-23 1991-12-10 Eastman Kodak Company Butadiene monoepoxide/maleic anhydride copolymers
US5071930A (en) * 1990-03-23 1991-12-10 Eastman Kodak Company Butadiene monoepoxide/maleic anhydride copolymers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541055A (en) * 1967-08-22 1970-11-17 Bayer Ag Crosslinkable lacquer resins
US3730930A (en) * 1971-08-16 1973-05-01 Ford Motor Co Compositions for powder coatings containing acrylate polymers or esters of fluorinated fatty acids as flow control agents
US3752870A (en) * 1971-08-16 1973-08-14 Ford Motor Co Powder coating compositions containing polymer of ethylenically unsaturated glycidyl esters dicarboxylic acids and flow control agents
US3758632A (en) * 1971-08-16 1973-09-11 Ford Motor Co Polymer and a flow control agent powdered coating composition of unsaturated glycidyl and anhydride co
US3770848A (en) * 1971-08-16 1973-11-06 Ford Motor Co Self-crosslinking powder containing carboxy and epoxy groups admixed with a flow control agent
US3781379A (en) * 1971-08-16 1973-12-25 Ford Motor Co Powdered coating compositions containing glycidyl methacrylate copolymers with anhydride crosslinking agents and flow control agent
US3781380A (en) * 1971-08-16 1973-12-25 Ford Motor Co Powder coating compositions containing glycidyl ester copolymers,carboxy terminated polymeric crosslinking agents,and flow control agents
US3787521A (en) * 1972-02-22 1974-01-22 Ford Motor Co Method of preparing a powder coating composition containing glycidyl acrylate copolymers and dicarboxylic acid crosslinking agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541055A (en) * 1967-08-22 1970-11-17 Bayer Ag Crosslinkable lacquer resins
US3730930A (en) * 1971-08-16 1973-05-01 Ford Motor Co Compositions for powder coatings containing acrylate polymers or esters of fluorinated fatty acids as flow control agents
US3752870A (en) * 1971-08-16 1973-08-14 Ford Motor Co Powder coating compositions containing polymer of ethylenically unsaturated glycidyl esters dicarboxylic acids and flow control agents
US3758632A (en) * 1971-08-16 1973-09-11 Ford Motor Co Polymer and a flow control agent powdered coating composition of unsaturated glycidyl and anhydride co
US3770848A (en) * 1971-08-16 1973-11-06 Ford Motor Co Self-crosslinking powder containing carboxy and epoxy groups admixed with a flow control agent
US3781379A (en) * 1971-08-16 1973-12-25 Ford Motor Co Powdered coating compositions containing glycidyl methacrylate copolymers with anhydride crosslinking agents and flow control agent
US3781380A (en) * 1971-08-16 1973-12-25 Ford Motor Co Powder coating compositions containing glycidyl ester copolymers,carboxy terminated polymeric crosslinking agents,and flow control agents
US3787521A (en) * 1972-02-22 1974-01-22 Ford Motor Co Method of preparing a powder coating composition containing glycidyl acrylate copolymers and dicarboxylic acid crosslinking agent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142018A (en) 1976-01-30 1979-02-27 Mitsui Toatsu Chemicals, Inc. Process for forming metallic finish coatings
US4511682A (en) 1983-06-28 1985-04-16 Union Carbide Corporation Water-dispersible coating compositions and process
US5013806A (en) * 1990-03-23 1991-05-07 Eastman Kodak Company Butadiene monoepoxide/maleic anhydride copolymers
US5071931A (en) * 1990-03-23 1991-12-10 Eastman Kodak Company Butadiene monoepoxide/maleic anhydride copolymers
US5071932A (en) * 1990-03-23 1991-12-10 Eastman Kodak Company Butadiene monoepoxide/maleic anhydride copolymers
US5071930A (en) * 1990-03-23 1991-12-10 Eastman Kodak Company Butadiene monoepoxide/maleic anhydride copolymers

Similar Documents

Publication Publication Date Title
US3925507A (en) Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing accelerators
US5098955A (en) Powder coating composition low Tg and high Tg polymers with acid groups
DE3876173T2 (en) METHOD FOR COATING OBJECTS WITH A PIGMENTED LAYER AND A CLEAR LAYER FROM COATING COMPOSITIONS WITH A HIGH SOLID CONTENT BASED ON AN EPOXY RESIN, AND A COPOLYMER OF ALPHA OLEFINEN AND OIL FINE OIL FINE.
US4703101A (en) Liquid crosslinkable compositions using polyepoxides and polyacids
US4988767A (en) Thermosetting powder coating composition containing a mixture of low Tg and high Tg polymers with acid functional groups
US3959405A (en) Powder coating compositions comprising a blend of coreactive polymers - III
US4732790A (en) Color plus clear application of thermosetting high solids coating composition of hydroxy-functional epoxies and anhydrides
US4732791A (en) Color plus clear application of thermosetting high solids coating composition of epoxies, polyols and anhydrides
US4374954A (en) Powder paint with epoxy and hydroxy copolymer and anhydride
US3541055A (en) Crosslinkable lacquer resins
US3919347A (en) Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing accelerators
US5202382A (en) Thermosetting powder coating composition containing a mixture of low Tg and high Tg polymers with acid functional groups
US4092373A (en) Powder paint with epoxy copolymer with anhydride and hydroxy acids
US3622651A (en) Novel polymer having pendent ester groups for low temperature bake coatings
US3969327A (en) Thermosetting acrylic powders
US3702836A (en) Polymer dispersions
US3991133A (en) Powder paint with epoxy and hydroxy copolymer with anhydride and hydroxy acids
US4359554A (en) Powder paint with epoxy and hydroxy copolymer and dicarboxylic acids
US3935138A (en) Pulverulent binders
USRE29028E (en) Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing glycidyl groups, dicarboxylic acid anhydrides and curing anhydrides
US3919346A (en) Heat-curable pulverulent coating agent consisting of a mixture of copolymers containing anhydrides and curing accelerators
US3947528A (en) Additives for powder resins
CA1340156C (en) Coating compositions based on polyepoxides and polyacid curing agents
US3975456A (en) Powder paint with epoxy and amide copolymer and anhydride
US3900435A (en) Pulverulent acrylic resin binder mixtures containing triglycidyl isocyanurate and cellulose acetobutyrate