US7023957B2 - Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner - Google Patents
Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner Download PDFInfo
- Publication number
- US7023957B2 US7023957B2 US10/717,051 US71705103A US7023957B2 US 7023957 B2 US7023957 B2 US 7023957B2 US 71705103 A US71705103 A US 71705103A US 7023957 B2 US7023957 B2 US 7023957B2
- Authority
- US
- United States
- Prior art keywords
- information
- prescanner
- computed tomography
- metal
- scan data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000002591 computed tomography Methods 0.000 claims abstract description 113
- 239000002184 metal Substances 0.000 claims abstract description 62
- 229910052751 metal Inorganic materials 0.000 claims abstract description 62
- 238000012937 correction Methods 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims 2
- 239000000463 material Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 239000002360 explosive Substances 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 230000009977 dual effect Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/083—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
- G01N23/087—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays using polyenergetic X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/22—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
- G01V5/224—Multiple energy techniques using one type of radiation, e.g. X-rays of different energies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/22—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
- G01V5/226—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/402—Imaging mapping distribution of elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/419—Imaging computed tomograph
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/421—Imaging digitised image, analysed in real time (recognition algorithms)
Definitions
- the present invention is directed to the field of X-ray detection systems.
- X-ray scanners computed tomography (CT) scanners, or other imaging devices to detect concealed objects.
- CT scanner computed tomography
- X-ray scanner which performs a “prescanning” function to determine initial information on the contents of an article of baggage.
- Existing X-ray based systems provide differing degrees of sophistication in terms of their ability to analyze baggage based on the X-ray data obtained. Some, for example, balance the speed of the baggage screening with the accuracy and reliability with which contraband is detected. While the prescanning function discussed above may increase the accuracy and reliability with which contraband is detected, there exists a need for improved systems and methods of screening baggage.
- One embodiment of the invention is directed to a method or apparatus for analyzing an object in which a dual energy X-ray prescanner performs a prescan of the object to determine prescan information about the object. Then, a CT scanner performs a CT scan on at least one plane of the object based on the prescan information. If the CT scan of the object includes or is in the vicinity of metal, then metal artifact correction of a reconstructed image from the CT scan may be performed using the prescan and CT scan information.
- Another embodiment of the invention is directed to a method or apparatus for analyzing an object in which a prescanner, which need not be a dual energy prescanner, performs a prescan of the object to determine prescan information. Then, a CT scanner performs a CT scan of the object to determine CT information. A processor analyzes the CT information and the prescan information to determine whether to update the prescan information based on the CT information.
- CT scanner While the description and claims herein recite use of a CT scanner, such term is intended to cover any device that measures at least density of an object scanned by the device.
- FIG. 1 is a block diagram of an apparatus for transmitting information from a prescanner device to a CT scanner device according to one embodiment of the invention
- FIG. 2 is a block diagram of an apparatus for transmitting information from a CT scanner device to a prescanner device according to one embodiment of the invention
- FIG. 3 is a block diagram of an apparatus for transmitting information between a CT scanner device and a prescanner device according to one embodiment of the invention
- FIG. 4 is a flow diagram illustrating a method for transmitting information between a CT scanner device and a prescanner device according to one embodiment of the invention
- FIG. 5 is a diagram illustrating a grid for performing CT scans at intervals
- FIG. 6 is a diagram illustrating reference coordinates for a scanned item.
- FIG. 7 is a flow diagram illustrating a method for obtaining a CT image and predicting and correcting metal artifacts of the CT image according to one embodiment of the invention.
- the present invention relates to a system or method in which a prescanner X-ray device and a downstream (of the prescanner) computed tomography (CT) device scan an object.
- the object may be located within a piece of baggage, a manufactured product, the human body, or some other item penetrable by X-rays.
- Information collected on the object may be transmitted from the prescanner to the CT scanner and/or from the CT scanner to the prescanner.
- FIG. 1 One embodiment of the present invention, illustrated in FIG. 1 , is directed to a method and apparatus for transmitting information from a prescanner device 1 to a downstream CT scanner device 3 . This can be accomplished in any of numerous ways, and the present invention is not limited to any particular one of such ways.
- information from prescanner device 1 is transmitted from prescanner device 1 to a processor 5 via a data link 7 .
- Data link 7 and any other data link described herein, is not limited to any particular type of link and may be implemented using any suitable means for transmitting information, such as an Ethernet link.
- Processor 5 may process the information transmitted from the prescanner device, and transmit the processed information, or a control signal with instructions based on the processed information, to CT scanner device 3 via a data link 9 .
- Processor 5 may be located external or internal to CT scanner device.
- FIG. 1 illustrates both a direct communication link, such as data link 11 , and an indirect communication link via a processor, such as data links 7 and 9 , both communications links are not required.
- Prescanner device 1 may be any of numerous multiple energy X-ray devices.
- prescanner device 1 may be a single or multi-view dual energy line scanning X-ray device, a dual energy CT scanner device, or any other device capable of measuring effective atomic number characteristics of an object, the significance of which will be appreciated from the forthcoming discussion.
- U.S. Pat. No. 5,838,758 (Krug), which is hereby incorporated by reference, teaches dual energy X-ray inspection systems, any of which may be employed as the prescanner device according to an embodiment of the invention.
- CT scanner device 3 may be any of numerous devices for performing computed tomography or, more generally, may be any device capable of measuring density characteristics of an object.
- Prescanner device 1 and CT scanner device 3 may be implemented as separate units, as shown in FIG. 1 , or as a single unit having both prescanning and CT scanning functionalities.
- Target objects may include, but are not limited to, concealed objects (e.g., explosive devices or other weapons) inside a container (e.g., baggage), defects (e.g., cracks, air bubbles, or impurities) in articles of manufacture (e.g., commercial products), and areas of interest (e.g., tumors or other masses, including masses located near bone, metal, or another high-density material from which artifacts may result) within the body.
- concealed objects e.g., explosive devices or other weapons
- defects e.g., cracks, air bubbles, or impurities
- articles of manufacture e.g., commercial products
- areas of interest e.g., tumors or other masses, including masses located near bone, metal, or another high-density material from which artifacts may result
- the invention described herein may be used, for example, in settings such as airports, manufacturing plants, and hospitals, and other settings in the travel, commercial, and medical industries.
- Certain characteristics of target objects discussed above can be determined mathematically based on the absorption of X-ray radiation by the object.
- the absorption of X-ray radiation by a material in an item is proportional to the degree of X-ray attenuation and is dependent on the energy of the X-ray radiation and the following material parameters: thickness, density, and atomic number.
- X-ray absorption by a material is dependent on the thickness, density, and atomic number of the material, absorption and attenuation may be most accurately determined when all three parameters of a material are known.
- the scanning devices described herein can accurately determine the thickness, density, and/or atomic number of an object, and these parameters may be used to determine whether an object is a target object.
- prescanner device 1 performs an initial scan of an item, and CT scanner device 3 then may perform a subsequent scan of one or more areas of interest within the item, which are determined based on the initial scan.
- Prescanner device 1 may “feedforward” information relating to possible target object areas determined during the initial prescan to the CT scanner device 3 so that CT scanner device 3 scans only those slices that are located in regions where target objects may exist.
- This method reduces the number of slices necessary to be taken by the CT scanner, including the number of slices taken through metal, to detect a target object and increases the accuracy with which target objects are detected.
- a CT scanner device employed alone to scan an item performs CT scans of planes (or “slices”) of the item and provides information on the three dimensional spatial configurations of objects therein. While this technique is useful in identifying target objects within the scanned item, each CT scan is time consuming and has a limited image quality. Numerous of these time-consuming scans are required to ensure no target area is missed.
- prescanner device 1 upstream of the CT scanner according to one embodiment of the present invention, possible target objects and their two-dimensional locations are determined in a quick (relative to a CT scan) prescan.
- a significant advantage lies in reducing the number of slices, and thereby reducing the scan time, for an item.
- the feeding forward of information from prescanner device 1 to CT scanner device 3 may increase the accuracy of the CT scan images.
- the fedforward information can be used to perform metal artifact correction, thereby increasing the accuracy of any reconstructed image from the CT scan and ability to detect target objects.
- FIG. 2 Another embodiment of the present invention, illustrated in FIG. 2 , is directed to a method or apparatus for transmitting information from CT scanner device 3 to prescanner device 1 .
- information relating to a potential target object scanned by CT scanner device 3 is transmitted (“fedback”) to a processor to determine whether to update information collected by prescanner device 1 relating to the potential target object.
- information collected by the prescanner device relating to the effective atomic number and mass of a potential target object, may be inaccurate for areas of the scan where the potential target object overlaps with another object or objects.
- a CT scan of a region including the potential target object by obtaining density information through scans of slices in different orientations, can distinguish the potential target object from background objects, and thereby determine the precise boundaries of the target object.
- This fedback information is analyzed by the processor to determine whether to update and improve the accuracy of the information (e.g., effective atomic number and mass) collected by prescanner device 1 .
- the processor is located internal to prescanner device 1 , and information from CT scanner device 3 is transmitted to the processor in prescanner device 1 .
- the information may be transmitted in any of numerous ways, and the present invention is not limited to any particular one of such ways.
- information from CT scanner device 3 may be transmitted from CT scanner device 3 to a processor 5 via data link 11 .
- Processor 5 may process the information transmitted from CT scanner device 3 , and transmit the processed information to prescanner device 1 via a data link 13 .
- information may be transmitted directly from CT scanner device 3 to prescanner device 1 via a data link 15 .
- the information from CT scanner device 3 is not transmitted to prescanner device 1 , but rather is transmitted to a processor located external to prescanner device 1 .
- information may be transmitted to a processor located in CT scanner device 3 or to a processor in an external computing system.
- FIG. 3 Another embodiment of the present invention, illustrated in FIG. 3 , is directed to transmitting information from prescanner device 1 to CT scanner device 3 , referred to as the “feedforward mode”, and from CT scanner device 3 to prescanner device 1 , referred to as the “feedbackwards mode.”
- This embodiment combines the embodiments of FIGS. 1 and 2 , above.
- information relating to a two-dimensional location of a potential target object is transferred from prescanner device 1 to CT scanner device 3 (or a processor coupled to CT scanner 3 ) to determine locations for CT slices to be performed, thereby reducing the CT scan time.
- prescanner device 1 information relating to the effective atomic number and mass of potential target objects is transferred from prescanner device 1 to CT scanner device 3 (or a processor coupled to CT scanner 3 ) to increase the accuracy of the CT images, particularly for those slices that are in the vicinity of metal.
- density information collected by CT scanner device 3 is transmitted to prescanner 1 (or a processor coupled to prescanner 1 ) to enable the prescanner to update and improve the accuracy of the effective atomic number and mass information collected by prescanner device 1 .
- information from prescanner device 1 is transmitted to CT scanner device 3 via data link 17
- information from CT scanner device 3 is transmitted to prescanner device 1 via a data link 19
- Data link 17 and data link 19 may be separate data paths or may be implemented as a single data path, such that information is transmitted for both of the data links via a single medium.
- data link 17 and data link 19 may be direct links or may pass through another device, such as a processor.
- Data processing may occur in an external processor, or may occur internal to each of prescanner device 1 and CT scanner device 3 .
- prescanner device 1 and CT scanner device 3 are illustrated separately in FIG. 3 , it is not necessary that each be implemented as a separate unit. Rather, prescanner device 1 and CT scanner device 3 may be implemented as a single unit having both prescanning and CT scanning functionalities.
- FIG. 4 is a flow diagram according to one embodiment in which information may be transmitted from prescanner device 1 to CT scanner device 3 in the feedforward mode, and from CT scanner device 3 to prescanner device 1 in the feedbackwards mode. It should be appreciated that, as discussed above, the feedforward and feedbackwards modes need not be implemented in the same screening system and that each may be implemented independently in a separate system.
- the flow diagram of FIG. 4 shows both information (i.e., data) flow (in phantom lines) and process flow (in solid lines).
- an item e.g., an article of baggage
- the item is scanned and analyzed using the prescanner device 1 .
- the prescanner device 1 may be a line scanner, such as one of the VIS series offered by PerkinElmer Detection Systems, the assignee herein.
- the item is initially loaded into the prescanner device 1 for scanning. For example, a human operator may place the item on a conveyor which, with the aid of a motion controller, moves the item through prescanner device 1 .
- prescanner device 1 has at least two X-ray sources for generating X-ray beams and may have one or more X-ray detectors for receiving X-ray beams.
- the X-ray image resulting from the scan consists of a two-dimensional array of pixels representing a view of the three-dimensional item from one angle.
- a processor either internal or external to prescanner device 1 , calculates the attenuation of the generated X-rays penetrating the item for each pixel.
- alternate pulses of high energy X-rays e.g., 150 kV
- low energy X-rays e.g., 75 kV
- the processor calculates the attenuation for each pixel of the image resulting from the respective high energy and low energy beams.
- a table (Table A) is generated containing atomic number and mass characteristics for each object.
- Table A may be stored electronically by a memory (not shown) coupled to a processor. Both the processor and the memory may be either internal or external to prescanner device 1 .
- An object may be defined as any region having similar atomic number and mass characteristics.
- the calculated attenuation of the high energy and low energy beam pulses for each pixel of the scanned item are used to determine the effective atomic number of all objects. To derive the effective atomic number of each object based on the attenuation, the attenuation of X-rays at each different energy level is analyzed. One method for doing so is described in U.S. Pat. No.
- the effective atomic number of each object may be determined by analyzing the attenuation of low and high energy X-rays by each pixel. To determine the effective atomic number for a particular object, all pixels within the object are compared to pixels surrounding the object and a histogram is created, where the mode (peak of the histogram) represents the effective atomic number.
- Table A may also contain mass information for each object.
- the mass for each pixel may also be determined based on the X-ray attenuation of both the high and low energy X-rays.
- the relationship between X-ray attenuation and material mass (i.e., thickness) is logarithmic; X-ray radiation decreases logarithmically as the material thickness increases.
- mass may be estimated by analyzing the attenuation of X-rays of all energies by materials within an item. To determine the mass for a particular object, mass values for all pixels within an object are added.
- Table A also contains confidence values for the effective atomic number and mass values for each object. Confidence values for the effective atomic number and mass values represent a probability or range of probabilities that the atomic number and mass data are correct. To determine a confidence level for the effective atomic number value or mass value of a particular object, a feature vector denoting properties such as compactness, connectiveness, gradients, histogram spread and other features may be used.
- Machine vision technology includes: (1) segmenting a group of picture elements from their background, (2) describing that group of picture elements by a set of features, and (3) using the resulting feature vector to classify the picture elements.
- a target object such as an explosive
- a particular range of mass values will be characteristic of a target object.
- a list of objects warranting further study i.e., objects of interest
- the atomic number characteristics of Table A can be used to differentiate potential target objects from the background, since different objects will generally have different effective atomic numbers.
- a potential target object may comprise a collection of pixels in close proximity having atomic number values that fall within a certain range.
- a weapon or explosive may comprise a collection of pixels having high effective atomic number values that fall within a particular range.
- two-dimensional coordinates e.g., x 1 –x 2 , z 1 –z 2 in FIG. 6 ) of a potential target object based on effective atomic number and mass information.
- the list of objects warranting further study and two-dimensional coordinates associated with each object may be generated automatically, it is also possible that a human operator may manually determine the information. For example, an operator may view an X-ray image to determine objects of interest and their respective locations in two dimensions.
- the prescan analysis may be performed automatically or manually, and the invention is not limited to either method of analysis.
- a CT scan of the object or region of interest may be performed.
- Locations of slices i.e., two-dimensional planes
- Some target objects such as explosives, are typically found near metal objects (e.g., wires, batteries).
- Metal due in part to its high density, may cause artifacts in an image in the region surrounding the metal.
- a potential target object is located near metal, it is preferable to choose a slice that includes the target object, but that is not in the vicinity of the metal.
- a metal artifact correction is performed to correct for the image artifacts, as will be described in step 35 .
- a decision may be made as to an appropriate course of action, based on the prescan information ( FIG. 4 , step 27 ). For example, an operator of an X-ray system in an airport may decide to return the baggage to the passenger, search the baggage by hand, or call the bomb squad. Alternatively, an algorithm may be used to automatically determine an appropriate course of action.
- the item e.g., baggage
- the CT scanner device for example via the conveyor.
- the item may or may not be transferred to the CT scanner device.
- the item may be transferred to the CT scanner device when no objects warranting further study have been detected so that undetected objects (e.g., sheet explosives) may be screened for.
- CT images are generated for the item cross-sections identified in step 25 , if any.
- a finely collimated beam of radiation is passed through the item in the desired slice plane, and the attenuation is measured.
- the process is repeated and a set of projections is acquired as the X-ray beam is passed through the object at different angles.
- a reconstructed image of the two-dimensional distribution of the linear attenuation coefficient, ⁇ (x,y) may be obtained from these projections.
- the result would be a continuous set of projections. Displayed as a two-dimensional function, the continuous set of projections is referred to as the sinogram.
- An image may be reconstructed from the sinogram by implementing any of a number of well-known reconstruction techniques including, but not limited to, back projection, iteration, Fourier transform, and filtered back projection.
- a CT image of a slice results in a two-dimensional image of a cross-sectional plane of the scanned item.
- the image consists of an array of pixels (e.g., 900 pixels ⁇ 512 pixels).
- CT scanner device 3 performs scans at locations along a grid 61 , such that slices are imaged at predetermined intervals 63 a–c along the length of the item. For example, an article of baggage may be imaged every distance x along its length.
- a first slice 65 is imaged at z 1 cm
- Performing scans according to a grid pattern ensures that potential target objects that may not have been identified as warranting further investigation in step 25 are imaged.
- sheet explosives may evade identification by the prescanner device because they are thin in profile and minimally attenuate X-rays.
- the CT scanner may image a number of planes transecting the sheet explosive, and thus may more readily detect the sheet explosive.
- the imaging points on the grid coincide with the objects warranting further study identified in step 25 .
- the first and third slices in FIG. 5 intersect objects 70 a,b . If not all objects of interest are accommodated by the grid, additional slices may be taken. Further, the grid is preferably positioned to avoid taking slices of metal objects, for the reasons discussed previously.
- step 33 it is determined whether any imaged object of interest is in the vicinity of a metal object. Additionally, it may be determined whether the image of the object of interest is likely to be distorted by metal artifacts caused by the metal object. For example, although a metal object is in close proximity to the object of interest, it may be determined that the size of the metal object relative to the object of interest renders it unlikely that the metal object will have a significant negative effect on the image of the object of interest (e.g., if the metal object is much smaller than the object of interest).
- a metal artifact correction is performed on the slice containing the metal artifacts, according to one aspect (feedforward mode) of the invention described herein.
- step 33 If it is determined in step 33 that a potential target object is in the vicinity of a metal object, information fed forward from the prescanner device is used to predict the type and shape of metal responsible for the metal artifacts in step 35 .
- the mass information and effective atomic number information from Table A are used to identify the metal type and perform a metal artifact correction specific to the type and shape of the metal.
- the metal artifact correction algorithm is described in detail below in connection with FIG. 7 .
- the scanned CT images are analyzed.
- the density, area, and three-dimensional coordinates are determined for each target object, for example using image processing algorithms (e.g., region growing).
- the area of each target object is specified by a range of two-dimensional (e.g., x 1 –x 2 , y 1 –y 2 in FIG. 6 ) coordinates that delimit a region where the density of each pixel falls within a certain range.
- a confidence level is determined for the density and area values associated with each pixel. Each confidence level represents a probability that the density or area data corresponding to that pixel is correct.
- a table (Table B) is generated containing the density, area, and three-dimensional coordinates for each target object, and a confidence level for each characteristic of each target object.
- Table B may be stored electronically by a memory (not shown) coupled to a processor and may, along with or separate from the processor, be either internal or external to CT scanner device 3 .
- the three-dimensional coordinates for each target object are transmitted (“fed back”) to prescanner device 1 in step 41 .
- this information from Table B may be used to augment Table A.
- the processor coupled to the memory that stores Table A, considers the fedback information and the information in Table A in determining whether to update any of the information in Table A.
- prescanner device 1 images the item from only one view, the prescanner device may not be able to discern whether an identified object is a single object or a plurality of objects, as objects that overlap when imaged from a particular perspective may appear as a single merged object. If the prescanner device cannot differentiate a plurality of overlapping objects, it may determine a mass value for an object that is actually the mass values of two or more objects combined.
- the three-dimensional coordinate information provided in Table B can be used to differentiate objects, and thereby correct erroneous effective atomic number values and mass values of Table A. If the mass of an object changes, the object may no longer be of interest or, conversely, may become interesting.
- the mass value will be erroneously high, and may fall within the range corresponding to a target object.
- the individual objects may no longer be of interest if the mass value falls below a minimum mass associated with potential target objects.
- the information fedback from Table B by the CT scanner device allows for more accurate determinations of the effective atomic number and mass of each object, as listed in Table A, by the prescanner device.
- superior detection by the prescanner device and a lower false alarm rate may be achieved by feeding back information from the CT scanner device to the prescanner device.
- multiple feedforward/feedbackwards loops are possible, whereby information generated by the prescanner device 1 and CT scanner device 3 is alternately transmitted between the two devices.
- the information from Table B need not be transmitted to the prescanner device. Rather, the CT scanner device or an external computer may implement an algorithm, similar to that which may be implemented by the prescanner, to augment Table A based on the Table B information.
- a decision is made based on the information in Tables A and B as to an appropriate course of action.
- possible actions include returning the baggage to the passenger, searching the baggage by hand, or calling the bomb squad.
- An algorithm may be used to synthesize the information of the two tables to determine an appropriate action.
- the algorithm may consider the effective atomic number, density, and associated confidence levels for each, as well as the thickness of the potential target object and the proximity of the potential target object to metal. Based on the information, a likelihood is determined that an identified object is a target object.
- the likelihood is derived from a histogram representing, for example, the probability that an object having a given effective atomic number, density, thickness, mass, and proximity to metal is a target object, and may be represented as a probability that the object is a target object or as an absolute indication that the object is/is not a target object. It should be appreciated that any of the automated decisions or actions described above may alternatively be performed by a human operator.
- FIG. 7 illustrates by flow diagram a method for obtaining a CT image and predicting and correcting metal artifacts of the CT image, most steps of which, as illustrated, correspond to step 35 described above in connection with FIG. 4 .
- the flow diagram of FIG. 7 shows both information (i.e., data) flow (in phantom lines) and process flow (in solid lines).
- a CT image is generated.
- Uncorrected CT images may contain metal artifacts when a scan is performed within a certain proximity to metal, which may result in inaccuracies.
- beam hardening artifacts cause inaccuracies in the estimation of attenuation coefficients for pixels associated with x-rays that traverse highly attenuating structures.
- Streaky shadows or star patterns of streaks may result near high density objects in regions of pixels where essentially no attenuation information exists.
- Scatter artifacts may result from the dispersion of X-ray photons by the atoms within the item, and may cause noise in the CT image.
- step 45 the image is clipped so that the image contains only the metal that accounts for the artifacts of the image.
- the region to be clipped is identified by considering the effective atomic number information of Table A. Each pixel in the image of the metal will have an effective atomic number that falls within a range corresponding to the effective atomic number of the metal.
- the clipped image contains only the image of the metal, and does not contain the object of interest or artifacts.
- step 47 the type of metal and thickness of the metal in the image are identified based on the information in Table A.
- the effective atomic number information of Table A is used to identify the type of metal and the mass information of Table A is used to determine the thickness of the metal.
- a sinogram of the clipped image is generated in step 49 .
- a single sinogram contains the information about a particular slice from all angles, with the information from each angle in its own row.
- a table (Table C) is generated that contains beam hardening, noise, and scatter correction parameters.
- the correction parameters are determined according to algorithms well-known in the art for compensating for beam hardening, noise, and scatter, based on the type and thickness of metal responsible for the artifacts.
- step 53 artifacts are introduced into the sinogram of the clipped image using the table (Table C) generated in step 51 .
- the sinogram is corrupted using beam hardening and scatter effects based on the shape and type of the metal responsible for the artifacts, determined in step 47 .
- the sinogram of the image of the metal and artifacts is reconstructed in step 55 .
- step 57 the reconstructed artifact image generated in step 55 is subtracted from the sum of the original CT image generated in step 43 and the clipped image generated in step 45 .
- the result of the image subtraction is a metal artifact corrected image 59 .
- the image will result in a more accurate determination as to whether the object of interest represents a target object.
- the artifact image may also used as a map for determining whether the CT values read in the image are accurate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Geophysics (AREA)
- Analytical Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- Pulmonology (AREA)
- Radiology & Medical Imaging (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
I x =I 0 exp[−(μ/ρ)x] (1)
where, Ix is the intensity of the X-ray radiation after passing through a material, I0 is the intensity of the X-ray radiation before passing through a material, μ/ρ is the mass attenuation coefficient; and x is obtained by multiplying the thickness of the material by its density. It should be appreciated that since X-ray absorption by a material is dependent on the thickness, density, and atomic number of the material, absorption and attenuation may be most accurately determined when all three parameters of a material are known. The scanning devices described herein can accurately determine the thickness, density, and/or atomic number of an object, and these parameters may be used to determine whether an object is a target object.
- 1. Machine Vision: Theory, Algorithms, Practicalities (Signal Processing and its Applications Series), by E. R. Davies;
- 2. Computer Vision and Image Processing: A Practical Approach Using CVIPTools (BK/CD-ROM), by Scott E. Umbaugh;
- 3. Algorithms for Image Processing and Computer Vision, by James R. Parker; and
- 4. Feature Extraction in Computer Vision and Image Processing, by Mark Nixon and Alberto Aguado.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/717,051 US7023957B2 (en) | 2002-02-06 | 2003-11-19 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/068,459 US6816571B2 (en) | 2002-02-06 | 2002-02-06 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US10/717,051 US7023957B2 (en) | 2002-02-06 | 2003-11-19 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/068,459 Continuation US6816571B2 (en) | 2002-02-06 | 2002-02-06 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050053184A1 US20050053184A1 (en) | 2005-03-10 |
US7023957B2 true US7023957B2 (en) | 2006-04-04 |
Family
ID=27659041
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/068,459 Expired - Lifetime US6816571B2 (en) | 2002-02-06 | 2002-02-06 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US10/702,362 Expired - Fee Related US6788761B2 (en) | 2002-02-06 | 2003-11-06 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US10/702,814 Expired - Fee Related US6944264B2 (en) | 2002-02-06 | 2003-11-06 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US10/717,360 Abandoned US20040101098A1 (en) | 2002-02-06 | 2003-11-19 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US10/717,051 Expired - Lifetime US7023957B2 (en) | 2002-02-06 | 2003-11-19 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US11/018,078 Expired - Fee Related US7308077B2 (en) | 2002-02-06 | 2004-12-20 | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/068,459 Expired - Lifetime US6816571B2 (en) | 2002-02-06 | 2002-02-06 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US10/702,362 Expired - Fee Related US6788761B2 (en) | 2002-02-06 | 2003-11-06 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US10/702,814 Expired - Fee Related US6944264B2 (en) | 2002-02-06 | 2003-11-06 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US10/717,360 Abandoned US20040101098A1 (en) | 2002-02-06 | 2003-11-19 | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/018,078 Expired - Fee Related US7308077B2 (en) | 2002-02-06 | 2004-12-20 | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
Country Status (6)
Country | Link |
---|---|
US (6) | US6816571B2 (en) |
EP (2) | EP1472524A4 (en) |
AU (1) | AU2003212956B2 (en) |
CA (1) | CA2467567A1 (en) |
IL (2) | IL162409A0 (en) |
WO (1) | WO2003067770A2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050111619A1 (en) * | 2002-02-06 | 2005-05-26 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
US20070025505A1 (en) * | 2004-03-01 | 2007-02-01 | Paul Bjorkholm | Dual energy radiation scanning of contents of an object |
US20080014643A1 (en) * | 2006-07-12 | 2008-01-17 | Paul Bjorkholm | Dual angle radiation scanning of objects |
US20080298544A1 (en) * | 2007-05-29 | 2008-12-04 | Peter Dugan | Genetic tuning of coefficients in a threat detection system |
US20090010382A1 (en) * | 2003-04-25 | 2009-01-08 | Edward James Morton | X-Ray Monitoring |
US20090060135A1 (en) * | 2005-12-16 | 2009-03-05 | Edward James Morton | X-Ray Tomography Inspection Systems |
US20090106275A1 (en) * | 2007-10-22 | 2009-04-23 | Liyun Zhang | Method and system for screening items for transport |
US7684538B2 (en) | 2003-04-25 | 2010-03-23 | Rapiscan Systems, Inc. | X-ray scanning system |
US20100303329A1 (en) * | 2003-04-25 | 2010-12-02 | Edward James Morton | Imaging, Data Acquisition, Data Transmission, and Data Distribution Methods and Systems for High Data Rate Tomographic X-Ray Scanners |
US20100303287A1 (en) * | 2003-04-25 | 2010-12-02 | Edward James Morton | X-Ray Tomographic Inspection Systems for the Identification of Specific Target Items |
US20110019797A1 (en) * | 2003-04-25 | 2011-01-27 | Edward James Morton | X-Ray Tomographic Inspection System for the Identification of Specific Target Items |
US20110075800A1 (en) * | 2009-09-30 | 2011-03-31 | Paul Bjorkholm | Dual energy radiation scanning of contents of an object based on contents type |
US7949101B2 (en) | 2005-12-16 | 2011-05-24 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US20120093279A1 (en) * | 2010-10-13 | 2012-04-19 | Toshiba Medical Systems Corporation | Medical image processing apparatus, x-ray computed tomography apparatus, and medical image processing method |
US8243876B2 (en) | 2003-04-25 | 2012-08-14 | Rapiscan Systems, Inc. | X-ray scanners |
US8837669B2 (en) | 2003-04-25 | 2014-09-16 | Rapiscan Systems, Inc. | X-ray scanning system |
US9052403B2 (en) | 2002-07-23 | 2015-06-09 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
DE102014200679A1 (en) * | 2014-01-16 | 2015-07-16 | Smiths Heimann Gmbh | Method and X-ray inspection system, in particular for nondestructive inspection of objects |
US9113839B2 (en) | 2003-04-25 | 2015-08-25 | Rapiscon Systems, Inc. | X-ray inspection system and method |
US9218933B2 (en) | 2011-06-09 | 2015-12-22 | Rapidscan Systems, Inc. | Low-dose radiographic imaging system |
US9223052B2 (en) | 2008-02-28 | 2015-12-29 | Rapiscan Systems, Inc. | Scanning systems |
US9223049B2 (en) | 2002-07-23 | 2015-12-29 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
US9223050B2 (en) | 2005-04-15 | 2015-12-29 | Rapiscan Systems, Inc. | X-ray imaging system having improved mobility |
US9285498B2 (en) | 2003-06-20 | 2016-03-15 | Rapiscan Systems, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US9332624B2 (en) | 2008-05-20 | 2016-05-03 | Rapiscan Systems, Inc. | Gantry scanner systems |
US9429530B2 (en) | 2008-02-28 | 2016-08-30 | Rapiscan Systems, Inc. | Scanning systems |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
Families Citing this family (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050536B1 (en) * | 1998-11-30 | 2006-05-23 | Invision Technologies, Inc. | Nonintrusive inspection system |
US6721391B2 (en) * | 2001-04-03 | 2004-04-13 | L-3 Communications Security And Detection Systems | Remote baggage screening system, software and method |
IL158190A0 (en) * | 2001-04-03 | 2004-03-28 | L 3 Comm Security & Detection | X-ray inspection system |
US6721387B1 (en) * | 2001-06-13 | 2004-04-13 | Analogic Corporation | Method of and system for reducing metal artifacts in images generated by x-ray scanning devices |
US20060274916A1 (en) * | 2001-10-01 | 2006-12-07 | L-3 Communications Security And Detection Systems | Remote data access |
US8031903B2 (en) * | 2001-10-01 | 2011-10-04 | L-3 Communications Security And Detection Systems, Inc. | Networked security system |
DE10149254B4 (en) * | 2001-10-05 | 2006-04-20 | Smiths Heimann Gmbh | Method and device for detecting a specific material in an object by means of electromagnetic radiation |
US9958569B2 (en) | 2002-07-23 | 2018-05-01 | Rapiscan Systems, Inc. | Mobile imaging system and method for detection of contraband |
US7486768B2 (en) | 2002-07-23 | 2009-02-03 | Rapiscan Security Products, Inc. | Self-contained mobile inspection system and method |
US8503605B2 (en) | 2002-07-23 | 2013-08-06 | Rapiscan Systems, Inc. | Four sided imaging system and method for detection of contraband |
US7369643B2 (en) | 2002-07-23 | 2008-05-06 | Rapiscan Security Products, Inc. | Single boom cargo scanning system |
US7783004B2 (en) | 2002-07-23 | 2010-08-24 | Rapiscan Systems, Inc. | Cargo scanning system |
US7322745B2 (en) | 2002-07-23 | 2008-01-29 | Rapiscan Security Products, Inc. | Single boom cargo scanning system |
US6928142B2 (en) * | 2002-10-18 | 2005-08-09 | Koninklijke Philips Electronics N.V. | Non-invasive plaque detection using combined nuclear medicine and x-ray system |
US7031425B2 (en) * | 2002-11-27 | 2006-04-18 | Ge Medical Systems Global Technology Company, Llc | Methods and apparatus for generating CT scout images |
WO2004065990A1 (en) * | 2003-01-23 | 2004-08-05 | Reveal Imaging Technologies, Inc. | System and method for ct scanning of baggage |
US7529341B2 (en) * | 2003-02-24 | 2009-05-05 | Koninklijke Philips Electronics N.V. | Automatic material discrimination by using computer tomography |
WO2004090576A2 (en) * | 2003-04-02 | 2004-10-21 | Reveal Imaging Technologies, Inc. | System and method for detection of explosives in baggage |
US20050058242A1 (en) | 2003-09-15 | 2005-03-17 | Peschmann Kristian R. | Methods and systems for the rapid detection of concealed objects |
US7856081B2 (en) | 2003-09-15 | 2010-12-21 | Rapiscan Systems, Inc. | Methods and systems for rapid detection of concealed objects using fluorescence |
US20050080576A1 (en) * | 2003-10-10 | 2005-04-14 | Dickerson Robert T. | Method and system for frequency domain time correlation |
WO2005050405A2 (en) * | 2003-11-19 | 2005-06-02 | L-3 Communications Security and Detection Systems Corporation | Security system with distributed computing |
US8180019B2 (en) * | 2003-11-24 | 2012-05-15 | Passport Systems, Inc. | Methods and systems for computer tomography of nuclear isotopes using nuclear resonance fluorescence |
US7120226B2 (en) * | 2003-11-24 | 2006-10-10 | Passport Systems, Inc. | Adaptive scanning of materials using nuclear resonance fluorescence imaging |
US7609807B2 (en) * | 2004-02-17 | 2009-10-27 | General Electric Company | CT-Guided system and method for analyzing regions of interest for contraband detection |
US20060022140A1 (en) * | 2004-05-27 | 2006-02-02 | L-3 Communications Security And Detection Systems, Inc. | Methods and apparatus for detection of contraband using terahertz radiation |
US7324625B2 (en) * | 2004-05-27 | 2008-01-29 | L-3 Communications Security And Detection Systems, Inc. | Contraband detection systems using a large-angle cone beam CT system |
EP1766380B1 (en) * | 2004-07-08 | 2020-06-10 | Passport Systems, Inc. | Methods and systems for determining the average atomic number and mass of materials |
CA2575923C (en) * | 2004-08-02 | 2011-10-11 | Michael C. Levine | Security screening system and method |
US7254211B2 (en) * | 2004-09-14 | 2007-08-07 | Hitachi, Ltd. | Method and apparatus for performing computed tomography |
US7991243B2 (en) * | 2005-02-03 | 2011-08-02 | Koninklijke Philips Electronics N.V. | Radial adaptive filter for metal artifact correction |
US7847260B2 (en) | 2005-02-04 | 2010-12-07 | Dan Inbar | Nuclear threat detection |
US8173970B2 (en) * | 2005-02-04 | 2012-05-08 | Dan Inbar | Detection of nuclear materials |
US7820977B2 (en) | 2005-02-04 | 2010-10-26 | Steve Beer | Methods and apparatus for improved gamma spectra generation |
EP1861700A4 (en) * | 2005-02-22 | 2011-09-28 | Passport Systems Inc | Use of nearly monochromatic and tunable photon sources with nuclear resonance fluorescence in non-intrusive inspection of containers for material detection and imaging |
GB2423687B (en) | 2005-02-25 | 2010-04-28 | Rapiscan Security Products Ltd | X-ray security inspection machine |
DE102005011054A1 (en) * | 2005-03-10 | 2006-09-14 | Smiths Heimann Gmbh | Method and device for checking carry-on luggage and other items carried along |
DE102005020567A1 (en) * | 2005-04-30 | 2006-11-09 | Katz, Elisabeth | Method and apparatus for the on-line determination of the ash content of a substance promoted on a bait and apparatus for conducting an on-line analysis |
US20070083414A1 (en) * | 2005-05-26 | 2007-04-12 | Lockheed Martin Corporation | Scalable, low-latency network architecture for multiplexed baggage scanning |
CN101305343A (en) * | 2005-11-09 | 2008-11-12 | 护照系统公司 | Methods and systems for active non-intrusive inspection and verification of cargo and goods |
US7983457B2 (en) * | 2005-11-23 | 2011-07-19 | General Electric Company | Method and system for automatically determining regions in a scanned object |
US8213570B2 (en) | 2006-02-27 | 2012-07-03 | Rapiscan Systems, Inc. | X-ray security inspection machine |
US20070237287A1 (en) * | 2006-03-28 | 2007-10-11 | Predrag Sukovic | Ct scanner with automatic determination of volume of interest |
WO2007131157A2 (en) * | 2006-05-04 | 2007-11-15 | Xoran Technologies, Inc. | Medical imaging exchange network |
US7526064B2 (en) | 2006-05-05 | 2009-04-28 | Rapiscan Security Products, Inc. | Multiple pass cargo inspection system |
JP2007300964A (en) * | 2006-05-08 | 2007-11-22 | Ge Medical Systems Global Technology Co Llc | Radiographic equipment and radiography method |
CN101071110B (en) * | 2006-05-08 | 2011-05-11 | 清华大学 | Cargo safety inspection method based on spiral scanning stereo imaging |
JP4855141B2 (en) * | 2006-05-19 | 2012-01-18 | 富士フイルム株式会社 | Medical image part recognition device and medical image part recognition program |
GB0611767D0 (en) * | 2006-06-14 | 2006-07-26 | Sec Dep For Home Affairs The | Method and apparatus for computed tomography |
EP2052282A2 (en) * | 2006-08-11 | 2009-04-29 | Philips Intellectual Property & Standards GmbH | System and method for acquiring image data |
EP2078188A2 (en) * | 2006-10-09 | 2009-07-15 | Koninklijke Philips Electronics N.V. | Imaging of a turbid medium |
US20080135772A1 (en) * | 2006-12-07 | 2008-06-12 | General Electric Company | Method and system for special nuclear material detection |
EP2102819B1 (en) * | 2007-01-04 | 2014-04-02 | Koninklijke Philips N.V. | Apparatus, method and computer program for producing a corrected image of a region of interest from acquired projection data |
JP4784943B2 (en) * | 2007-05-23 | 2011-10-05 | 本田技研工業株式会社 | Control device for premixed compression ignition engine |
US7809103B2 (en) * | 2007-05-31 | 2010-10-05 | General Electric Company | Method for detecting the presence of high atomic number elements |
US7742568B2 (en) * | 2007-06-09 | 2010-06-22 | Spectrum San Diego, Inc. | Automobile scanning system |
JP5274812B2 (en) * | 2007-11-12 | 2013-08-28 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | X-ray CT apparatus and image processing apparatus |
CN101470082B (en) | 2007-12-27 | 2011-03-30 | 同方威视技术股份有限公司 | Article detection apparatus and detection method thereof |
US7839971B2 (en) * | 2007-12-31 | 2010-11-23 | Morpho Detection, Inc. | System and method for inspecting containers for target material |
GB0803640D0 (en) | 2008-02-28 | 2008-04-02 | Rapiscan Security Products Inc | Scanning systems |
US12061309B2 (en) | 2008-02-28 | 2024-08-13 | Rapiscan Systems, Inc. | Drive-through scanning systems |
GB0803642D0 (en) | 2008-02-28 | 2008-04-02 | Rapiscan Security Products Inc | Drive-through scanning systems |
US9036779B2 (en) | 2008-02-28 | 2015-05-19 | Rapiscan Systems, Inc. | Dual mode X-ray vehicle scanning system |
GB0803643D0 (en) | 2008-02-28 | 2008-04-02 | Rapiscan Security Products Inc | Mobile scanning systems |
EP2269162B1 (en) * | 2008-04-03 | 2019-01-23 | L-3 Communications Security and Detection Systems, Inc. | Generating a representation of an object of interest |
US8633445B2 (en) * | 2008-05-19 | 2014-01-21 | Varian Medical Systems, Inc. | Multi-energy X-ray imaging |
GB0809109D0 (en) | 2008-05-20 | 2008-06-25 | Rapiscan Security Products Inc | Scanner systems |
GB0809107D0 (en) | 2008-05-20 | 2008-06-25 | Rapiscan Security Products Inc | Scannign systems |
US8963094B2 (en) | 2008-06-11 | 2015-02-24 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
GB0810638D0 (en) | 2008-06-11 | 2008-07-16 | Rapiscan Security Products Inc | Photomultiplier and detection systems |
DE102008037347A1 (en) | 2008-08-12 | 2010-02-25 | Siemens Aktiengesellschaft | Method and control device for controlling a sectional image recording system |
US20100135564A1 (en) * | 2008-11-28 | 2010-06-03 | Brian William Thomsen | Apparatus for and method of selecting material triplets for a multi-material decomposition |
US8311181B2 (en) * | 2008-11-28 | 2012-11-13 | General Electric Company | Apparatus and method of visualizing multi-energy imaging data |
US9459216B2 (en) * | 2009-01-05 | 2016-10-04 | En'urga, Inc. | Method for characterizing flame and spray structures in windowless chambers |
US9310323B2 (en) | 2009-05-16 | 2016-04-12 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
US8416919B2 (en) * | 2009-08-20 | 2013-04-09 | Varian Medical Systems, Inc. | Apparatus to facilitate capturing samples as pertain to an object to be imaged and corresponding method |
US8363917B2 (en) * | 2009-10-14 | 2013-01-29 | General Electric Company | System and method of image artifact reduction in fast kVp switching CT |
US8314394B1 (en) | 2009-11-04 | 2012-11-20 | Science Applications International Corporation | System and method for three-dimensional imaging using scattering from annihilation coincidence photons |
US8903046B2 (en) | 2011-02-08 | 2014-12-02 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
WO2012110898A2 (en) * | 2011-02-18 | 2012-08-23 | Smiths Heimann Gmbh | System and method for multi-scanner x-ray inspection |
GB2501661B (en) * | 2011-02-22 | 2017-04-12 | Rapiscan Systems Inc | X-ray inspection system and method |
WO2012163367A1 (en) * | 2011-05-27 | 2012-12-06 | Ge Sensing & Inspection Technologies Gmbh | Computed tomography method, computer software, computing device and computed tomography system for determining a volumetric representation of a sample |
CN110208295A (en) | 2011-09-07 | 2019-09-06 | 拉皮斯坎系统股份有限公司 | Integrate shipping bill data and imaging/detection processing X-ray inspection system |
DE102012201406A1 (en) * | 2012-02-01 | 2013-08-01 | Smiths Heimann Gmbh | X-ray inspection system for the detection of certain materials in a test object |
EP3358597A1 (en) | 2012-02-03 | 2018-08-08 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
US10670740B2 (en) | 2012-02-14 | 2020-06-02 | American Science And Engineering, Inc. | Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors |
DE102012216003A1 (en) * | 2012-09-10 | 2014-03-13 | Siemens Aktiengesellschaft | Flexible inspection of components using X-rays |
CN103901489B (en) * | 2012-12-27 | 2017-07-21 | 清华大学 | Check method, display methods and the equipment of object |
EP2941775A4 (en) | 2013-01-07 | 2016-08-24 | Rapiscan Systems Inc | X-ray scanner with partial energy discriminating detector array |
GB201308876D0 (en) * | 2013-05-16 | 2013-07-03 | Ibex Innovations Ltd | X-Ray imaging apparatus and methods |
WO2015012850A1 (en) * | 2013-07-25 | 2015-01-29 | Analogic Corporation | Generation of diffraction signature of item within object |
FR3015681B1 (en) * | 2013-12-20 | 2016-04-22 | Commissariat Energie Atomique | METHOD OF MEASURING THE EFFECTIVE ATOMIC NUMBER OF A MATERIAL |
US9557427B2 (en) | 2014-01-08 | 2017-01-31 | Rapiscan Systems, Inc. | Thin gap chamber neutron detectors |
CN105277578B (en) * | 2014-06-09 | 2018-06-12 | 北京君和信达科技有限公司 | A kind of method and system for improving dual-energy radiation system material recognition capability |
JP6746603B2 (en) | 2015-03-20 | 2020-08-26 | ラピスカン システムズ、インコーポレイテッド | Handheld portable backscatter inspection system |
CN106353828B (en) * | 2015-07-22 | 2018-09-21 | 清华大学 | The method and apparatus that checked property body weight is estimated in safe examination system |
US10345479B2 (en) | 2015-09-16 | 2019-07-09 | Rapiscan Systems, Inc. | Portable X-ray scanner |
JP6797920B2 (en) | 2015-12-15 | 2020-12-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Streak artifact prediction |
WO2017146930A1 (en) | 2016-02-22 | 2017-08-31 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
JP6780948B2 (en) * | 2016-03-28 | 2020-11-04 | キヤノンメディカルシステムズ株式会社 | X-ray CT device |
KR200491390Y1 (en) * | 2016-10-28 | 2020-03-31 | 칼 짜이스 엑스-레이 마이크로스코피, 인크. | Apparatus for segmentation and spectrum based metal artifact reduction and ct system |
US10761038B2 (en) * | 2016-11-29 | 2020-09-01 | Laitram, L.L.C. | Multi-energy x-ray absorption imaging for detecting foreign objects on a conveyor |
US10585206B2 (en) | 2017-09-06 | 2020-03-10 | Rapiscan Systems, Inc. | Method and system for a multi-view scanner |
GB2590561B (en) | 2018-06-20 | 2021-12-08 | American Science & Eng Inc | Wavelength-shifting sheet-coupled scintillation detectors |
US11039808B2 (en) * | 2019-02-13 | 2021-06-22 | Analogic Corporation | Scanning systems configured to inspect conveyed objects and related systems and methods |
US11212902B2 (en) | 2020-02-25 | 2021-12-28 | Rapiscan Systems, Inc. | Multiplexed drive systems and methods for a multi-emitter X-ray source |
US11175245B1 (en) | 2020-06-15 | 2021-11-16 | American Science And Engineering, Inc. | Scatter X-ray imaging with adaptive scanning beam intensity |
US11340361B1 (en) | 2020-11-23 | 2022-05-24 | American Science And Engineering, Inc. | Wireless transmission detector panel for an X-ray scanner |
EP4298433A1 (en) | 2021-02-23 | 2024-01-03 | Rapiscan Systems, Inc. | Systems and methods for eliminating cross-talk in scanning systems having multiple x-ray sources |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4020346A (en) | 1973-03-21 | 1977-04-26 | Dennis Donald A | X-ray inspection device and method |
US4064440A (en) | 1976-06-22 | 1977-12-20 | Roder Frederick L | X-ray or gamma-ray examination device for moving objects |
US4217641A (en) | 1978-04-28 | 1980-08-12 | U.S. Philips Corporation | Correction for polychromatic X-ray distortion in CT images |
US4247774A (en) | 1978-06-26 | 1981-01-27 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Simultaneous dual-energy computer assisted tomography |
US4539648A (en) | 1982-09-29 | 1985-09-03 | The United States Of America As Represented By The Secretary Of Agriculture | Detection of agricultural contraband in baggage |
US4580219A (en) | 1983-05-02 | 1986-04-01 | General Electric Company | Method for reducing image artifacts due to projection measurement inconsistencies |
US4590558A (en) | 1981-12-30 | 1986-05-20 | General Electric Company | Method and apparatus for removing objects from CT images |
US4709333A (en) | 1986-01-03 | 1987-11-24 | General Electric Company | Method and apparatus for imaging in the presence of multiple high density objects |
US4759047A (en) | 1985-08-29 | 1988-07-19 | Heimann Gmbh | Baggage inspection system |
US4788704A (en) | 1985-03-04 | 1988-11-29 | Heimann Gmbh | X-ray scanner & detector signal processing system |
US4941162A (en) | 1988-06-22 | 1990-07-10 | The State Of Israel, Atomic Energy Commission, Soreq Nuclear Research Center | Method and system for detection of nitrogenous explosives by using nuclear resonance absorption |
US4957250A (en) | 1988-08-11 | 1990-09-18 | Messerschmitt-Boelkow-Blohm Gmbh | Device for intercepting and retaining of cargo in a transport cabin |
US5070519A (en) | 1990-10-04 | 1991-12-03 | Hologic, Inc. | Selective equalization radiography |
US5109691A (en) | 1989-12-08 | 1992-05-05 | Research Corporation Technologies, Inc. | Explosive detection screening system |
US5125015A (en) | 1990-01-26 | 1992-06-23 | The State Of Israel Atomic Energy Commission, Soreq Nuclear Research Center | Method and system for determining a lower-bound density of a body |
US5162652A (en) | 1991-08-07 | 1992-11-10 | Pcp, Inc. | Method and apparatus for rapid detection of contraband and toxic materials by trace vapor detection using ion mobility spectrometry |
US5182764A (en) | 1991-10-03 | 1993-01-26 | Invision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5243664A (en) * | 1991-09-16 | 1993-09-07 | Picker International, Inc. | Post-processing technique for reducing metallic clip artifacts in CT images |
US5319547A (en) | 1990-08-10 | 1994-06-07 | Vivid Technologies, Inc. | Device and method for inspection of baggage and other objects |
US5323004A (en) | 1989-05-08 | 1994-06-21 | Scientific Innovations, Inc. | Nuclear resonances in activation analysis, and particularly, its application to detection of nitrogen based explosives in luggage |
US5367552A (en) * | 1991-10-03 | 1994-11-22 | In Vision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5600700A (en) | 1995-09-25 | 1997-02-04 | Vivid Technologies, Inc. | Detecting explosives or other contraband by employing transmitted and scattered X-rays |
US5600303A (en) | 1993-01-15 | 1997-02-04 | Technology International Incorporated | Detection of concealed explosives and contraband |
US5642393A (en) | 1995-09-26 | 1997-06-24 | Vivid Technologies, Inc. | Detecting contraband by employing interactive multiprobe tomography |
US5661774A (en) | 1996-06-27 | 1997-08-26 | Analogic Corporation | Dual energy power supply |
US5666391A (en) | 1995-06-26 | 1997-09-09 | Siemens Aktiengesellschaft | X-ray examination system with identification of and compensation for subject-produced scattered radiation to reduce image artifacts |
US5805660A (en) | 1993-07-30 | 1998-09-08 | Europ Scan S.A. | Method and device for carrying out detection of at least one non-visible object containing a given material |
US5905809A (en) * | 1993-11-10 | 1999-05-18 | U.S. Philips Corporation | Method of and apparatus for computed tomography |
US5933471A (en) | 1997-02-26 | 1999-08-03 | International Business Machines Corporation | System and method for reducing reconstruction artifacts in computed tomography images |
US5953444A (en) | 1997-10-22 | 1999-09-14 | University Of Pennsylvania | Method for improved correction of spectrum hardening artifacts in computed tomography images |
US6018562A (en) | 1995-11-13 | 2000-01-25 | The United States Of America As Represented By The Secretary Of The Army | Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography |
US6026143A (en) | 1998-02-11 | 2000-02-15 | Analogic Corporation | Apparatus and method for detecting sheet objects in computed tomography data |
US6076400A (en) | 1998-02-11 | 2000-06-20 | Analogic Corporation | Apparatus and method for classifying objects in computed tomography data using density dependent mass thresholds |
US6088423A (en) | 1998-06-05 | 2000-07-11 | Vivid Technologies, Inc. | Multiview x-ray based system for detecting contraband such as in baggage |
US6094472A (en) | 1998-04-14 | 2000-07-25 | Rapiscan Security Products, Inc. | X-ray backscatter imaging system including moving body tracking assembly |
US6094467A (en) * | 1997-09-15 | 2000-07-25 | Marconi Medical Systems Israel Ltd. | Method for improving CT images having high attenuation objects |
US6118850A (en) | 1997-02-28 | 2000-09-12 | Rutgers, The State University | Analysis methods for energy dispersive X-ray diffraction patterns |
US6125193A (en) | 1998-06-01 | 2000-09-26 | Kabushiki Kaisha Toshiba | Method and system for high absorption object artifacts reduction and superposition |
US6163591A (en) | 1996-07-18 | 2000-12-19 | The Imperial College Of Science | Screening apparatus and method |
US6198795B1 (en) | 1998-03-19 | 2001-03-06 | Heimann Systems Gmbh | Method of processing images for material recognition by X-rays |
US6218943B1 (en) | 1998-03-27 | 2001-04-17 | Vivid Technologies, Inc. | Contraband detection and article reclaim system |
US6256404B1 (en) | 1997-10-10 | 2001-07-03 | Analogic Corporation | Computed tomography scanning apparatus and method using adaptive reconstruction window |
US6272230B1 (en) | 1998-02-11 | 2001-08-07 | Analogic Corporation | Apparatus and method for optimizing detection of objects in computed tomography data |
US6345113B1 (en) | 1999-01-12 | 2002-02-05 | Analogic Corporation | Apparatus and method for processing object data in computed tomography data using object projections |
US6359961B1 (en) | 1999-03-16 | 2002-03-19 | General Electric Company | Apparatus and methods for stereo radiography including remote control via a network |
US20020172324A1 (en) | 2001-04-03 | 2002-11-21 | Ellengogen Michael P. | X-ray inspection system |
US20020176531A1 (en) | 2001-04-03 | 2002-11-28 | Mcclelland Keith M. | Remote baggage screening system, software and method |
US20030085163A1 (en) | 2001-10-01 | 2003-05-08 | Chan Chin F. | Remote data access |
US6600801B2 (en) | 2000-10-17 | 2003-07-29 | Siemens Aktiengesellschaft | Method for correcting for beam hardening in a CT image |
US20040076262A1 (en) * | 2002-10-18 | 2004-04-22 | Lingxiong Shao | Non-invasive plaque detection using combined nuclear medicine and x-ray system |
US20050111619A1 (en) | 2002-02-06 | 2005-05-26 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4029963A (en) * | 1976-07-30 | 1977-06-14 | The Board Of Trustees Of Leland Stanford Junior University | X-ray spectral decomposition imaging system |
WO1993018751A1 (en) * | 1992-03-23 | 1993-09-30 | Georgetown University | Liposome encapsulated taxol and a method of using the same |
US5440056A (en) * | 1992-04-17 | 1995-08-08 | Abbott Laboratories | 9-deoxotaxane compounds |
FR2697752B1 (en) * | 1992-11-10 | 1995-04-14 | Rhone Poulenc Rorer Sa | Antitumor compositions containing taxane derivatives. |
US5919816A (en) * | 1994-11-14 | 1999-07-06 | Bionumerik Pharmaceuticals, Inc. | Formulations and methods of reducing toxicity of antineoplastic agents |
US5763625A (en) * | 1995-04-25 | 1998-06-09 | Wisconsin Alumni Research Foundation | Synthesis and use of β-lapachone analogs |
US6245807B1 (en) * | 1995-08-24 | 2001-06-12 | Dana-Farber Cancer Institute | Treatment of human prostate disease |
US5807888A (en) * | 1995-12-13 | 1998-09-15 | Xechem International, Inc. | Preparation of brominated paclitaxel analogues and their use as effective antitumor agents |
US5760072A (en) * | 1995-12-29 | 1998-06-02 | Pharmachemie B.V. | Paclitaxel prodrugs, method for preparation as well as their use in selective chemotherapy |
US5824700A (en) * | 1996-02-20 | 1998-10-20 | Wisconsin Alumni Research Foundation | Ortho-quinone derivatives novel synthesis therefor and their use in the inhibition of neoplastic cell growth |
US5773461A (en) * | 1996-06-06 | 1998-06-30 | Bristol-Myers Squibb Company | 7-deoxy-6-substituted paclitaxels |
EP0825457A3 (en) * | 1996-08-19 | 2002-02-13 | Analogic Corporation | Multiple angle pre-screening tomographic systems and methods |
CA2245029A1 (en) * | 1998-03-13 | 1999-09-13 | University Of British Columbia | Granulatimide compounds as g2 checkpoint inhibitors |
US6298112B1 (en) * | 1998-07-01 | 2001-10-02 | Ge Medical Systems Global Technology Co. Llc | Methods and apparatus for helical multi-frame image reconstruction in a computed tomography fluoro system including data communications over a network |
AU1747300A (en) * | 1998-11-30 | 2000-06-19 | Gerhard Fenkart | A nonintrusive inspection system |
DE60031268T2 (en) * | 1999-04-14 | 2007-05-24 | Dana-Farber Cancer Institute, Inc., Boston | METHOD AND COMPOSITION FOR THE TREATMENT OF CANCER |
US6437656B1 (en) * | 1999-10-25 | 2002-08-20 | Electro-Tec Corp. | Broadband high data rate analog and digital communication link |
US6418189B1 (en) * | 2000-01-24 | 2002-07-09 | Analogic Corporation | Explosive material detection apparatus and method using dual energy information of a scan |
CA2428425A1 (en) * | 2000-11-07 | 2002-08-01 | Dana-Farber Cancer Institute, Inc. | Method of treating hematologic tumors and cancers |
US6458974B1 (en) * | 2001-01-25 | 2002-10-01 | Cyclis Pharmaceuticals, Inc. | Synthesis of β-lapachone and its intermediates |
US6890950B2 (en) * | 2002-04-23 | 2005-05-10 | Case Western Reserve University | Lapachone delivery systems, compositions and uses related thereto |
US6735272B1 (en) * | 2002-10-18 | 2004-05-11 | Ge Medical Systems Global Technology Company, Llc | Method and system for a customized patient report in imaging systems |
-
2002
- 2002-02-06 US US10/068,459 patent/US6816571B2/en not_active Expired - Lifetime
-
2003
- 2003-02-06 WO PCT/US2003/003721 patent/WO2003067770A2/en not_active Application Discontinuation
- 2003-02-06 EP EP03708999A patent/EP1472524A4/en not_active Withdrawn
- 2003-02-06 IL IL16240903A patent/IL162409A0/en unknown
- 2003-02-06 EP EP12175383A patent/EP2508872A1/en not_active Withdrawn
- 2003-02-06 AU AU2003212956A patent/AU2003212956B2/en not_active Ceased
- 2003-02-06 CA CA002467567A patent/CA2467567A1/en not_active Abandoned
- 2003-11-06 US US10/702,362 patent/US6788761B2/en not_active Expired - Fee Related
- 2003-11-06 US US10/702,814 patent/US6944264B2/en not_active Expired - Fee Related
- 2003-11-19 US US10/717,360 patent/US20040101098A1/en not_active Abandoned
- 2003-11-19 US US10/717,051 patent/US7023957B2/en not_active Expired - Lifetime
-
2004
- 2004-06-08 IL IL162409A patent/IL162409A/en not_active IP Right Cessation
- 2004-12-20 US US11/018,078 patent/US7308077B2/en not_active Expired - Fee Related
Patent Citations (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4020346A (en) | 1973-03-21 | 1977-04-26 | Dennis Donald A | X-ray inspection device and method |
US4064440A (en) | 1976-06-22 | 1977-12-20 | Roder Frederick L | X-ray or gamma-ray examination device for moving objects |
US4217641A (en) | 1978-04-28 | 1980-08-12 | U.S. Philips Corporation | Correction for polychromatic X-ray distortion in CT images |
US4247774A (en) | 1978-06-26 | 1981-01-27 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Simultaneous dual-energy computer assisted tomography |
US4590558A (en) | 1981-12-30 | 1986-05-20 | General Electric Company | Method and apparatus for removing objects from CT images |
US4539648A (en) | 1982-09-29 | 1985-09-03 | The United States Of America As Represented By The Secretary Of Agriculture | Detection of agricultural contraband in baggage |
US4580219A (en) | 1983-05-02 | 1986-04-01 | General Electric Company | Method for reducing image artifacts due to projection measurement inconsistencies |
US4788704A (en) | 1985-03-04 | 1988-11-29 | Heimann Gmbh | X-ray scanner & detector signal processing system |
US4759047A (en) | 1985-08-29 | 1988-07-19 | Heimann Gmbh | Baggage inspection system |
US4709333A (en) | 1986-01-03 | 1987-11-24 | General Electric Company | Method and apparatus for imaging in the presence of multiple high density objects |
US4941162A (en) | 1988-06-22 | 1990-07-10 | The State Of Israel, Atomic Energy Commission, Soreq Nuclear Research Center | Method and system for detection of nitrogenous explosives by using nuclear resonance absorption |
US4957250A (en) | 1988-08-11 | 1990-09-18 | Messerschmitt-Boelkow-Blohm Gmbh | Device for intercepting and retaining of cargo in a transport cabin |
US5323004A (en) | 1989-05-08 | 1994-06-21 | Scientific Innovations, Inc. | Nuclear resonances in activation analysis, and particularly, its application to detection of nitrogen based explosives in luggage |
US5109691A (en) | 1989-12-08 | 1992-05-05 | Research Corporation Technologies, Inc. | Explosive detection screening system |
US5125015A (en) | 1990-01-26 | 1992-06-23 | The State Of Israel Atomic Energy Commission, Soreq Nuclear Research Center | Method and system for determining a lower-bound density of a body |
US5319547A (en) | 1990-08-10 | 1994-06-07 | Vivid Technologies, Inc. | Device and method for inspection of baggage and other objects |
US5490218A (en) | 1990-08-10 | 1996-02-06 | Vivid Technologies, Inc. | Device and method for inspection of baggage and other objects |
US5838758A (en) * | 1990-08-10 | 1998-11-17 | Vivid Technologies | Device and method for inspection of baggage and other objects |
US5070519A (en) | 1990-10-04 | 1991-12-03 | Hologic, Inc. | Selective equalization radiography |
US5162652A (en) | 1991-08-07 | 1992-11-10 | Pcp, Inc. | Method and apparatus for rapid detection of contraband and toxic materials by trace vapor detection using ion mobility spectrometry |
US5243664A (en) * | 1991-09-16 | 1993-09-07 | Picker International, Inc. | Post-processing technique for reducing metallic clip artifacts in CT images |
US5182764A (en) | 1991-10-03 | 1993-01-26 | Invision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5367552A (en) * | 1991-10-03 | 1994-11-22 | In Vision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5600303A (en) | 1993-01-15 | 1997-02-04 | Technology International Incorporated | Detection of concealed explosives and contraband |
US5805660A (en) | 1993-07-30 | 1998-09-08 | Europ Scan S.A. | Method and device for carrying out detection of at least one non-visible object containing a given material |
US5905809A (en) * | 1993-11-10 | 1999-05-18 | U.S. Philips Corporation | Method of and apparatus for computed tomography |
US5666391A (en) | 1995-06-26 | 1997-09-09 | Siemens Aktiengesellschaft | X-ray examination system with identification of and compensation for subject-produced scattered radiation to reduce image artifacts |
US5600700A (en) | 1995-09-25 | 1997-02-04 | Vivid Technologies, Inc. | Detecting explosives or other contraband by employing transmitted and scattered X-rays |
US5642393A (en) | 1995-09-26 | 1997-06-24 | Vivid Technologies, Inc. | Detecting contraband by employing interactive multiprobe tomography |
US6018562A (en) | 1995-11-13 | 2000-01-25 | The United States Of America As Represented By The Secretary Of The Army | Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography |
US5661774A (en) | 1996-06-27 | 1997-08-26 | Analogic Corporation | Dual energy power supply |
US6163591A (en) | 1996-07-18 | 2000-12-19 | The Imperial College Of Science | Screening apparatus and method |
US5933471A (en) | 1997-02-26 | 1999-08-03 | International Business Machines Corporation | System and method for reducing reconstruction artifacts in computed tomography images |
US6118850A (en) | 1997-02-28 | 2000-09-12 | Rutgers, The State University | Analysis methods for energy dispersive X-ray diffraction patterns |
US6094467A (en) * | 1997-09-15 | 2000-07-25 | Marconi Medical Systems Israel Ltd. | Method for improving CT images having high attenuation objects |
US6256404B1 (en) | 1997-10-10 | 2001-07-03 | Analogic Corporation | Computed tomography scanning apparatus and method using adaptive reconstruction window |
US5953444A (en) | 1997-10-22 | 1999-09-14 | University Of Pennsylvania | Method for improved correction of spectrum hardening artifacts in computed tomography images |
US6272230B1 (en) | 1998-02-11 | 2001-08-07 | Analogic Corporation | Apparatus and method for optimizing detection of objects in computed tomography data |
US6076400A (en) | 1998-02-11 | 2000-06-20 | Analogic Corporation | Apparatus and method for classifying objects in computed tomography data using density dependent mass thresholds |
US6026143A (en) | 1998-02-11 | 2000-02-15 | Analogic Corporation | Apparatus and method for detecting sheet objects in computed tomography data |
US6198795B1 (en) | 1998-03-19 | 2001-03-06 | Heimann Systems Gmbh | Method of processing images for material recognition by X-rays |
US6218943B1 (en) | 1998-03-27 | 2001-04-17 | Vivid Technologies, Inc. | Contraband detection and article reclaim system |
US6094472A (en) | 1998-04-14 | 2000-07-25 | Rapiscan Security Products, Inc. | X-ray backscatter imaging system including moving body tracking assembly |
US6125193A (en) | 1998-06-01 | 2000-09-26 | Kabushiki Kaisha Toshiba | Method and system for high absorption object artifacts reduction and superposition |
US6088423A (en) | 1998-06-05 | 2000-07-11 | Vivid Technologies, Inc. | Multiview x-ray based system for detecting contraband such as in baggage |
US6345113B1 (en) | 1999-01-12 | 2002-02-05 | Analogic Corporation | Apparatus and method for processing object data in computed tomography data using object projections |
US6359961B1 (en) | 1999-03-16 | 2002-03-19 | General Electric Company | Apparatus and methods for stereo radiography including remote control via a network |
US6600801B2 (en) | 2000-10-17 | 2003-07-29 | Siemens Aktiengesellschaft | Method for correcting for beam hardening in a CT image |
US20020186862A1 (en) | 2001-04-03 | 2002-12-12 | Mcclelland Keith M. | Remote baggage screening system, software and method |
US20020176531A1 (en) | 2001-04-03 | 2002-11-28 | Mcclelland Keith M. | Remote baggage screening system, software and method |
US20020172324A1 (en) | 2001-04-03 | 2002-11-21 | Ellengogen Michael P. | X-ray inspection system |
US6707879B2 (en) * | 2001-04-03 | 2004-03-16 | L-3 Communications Security And Detection Systems | Remote baggage screening system, software and method |
US20040120456A1 (en) | 2001-04-03 | 2004-06-24 | Ellenbogen Michael P. | X-ray inspection system |
US20050008119A1 (en) | 2001-04-03 | 2005-01-13 | L-3 Communications Security And Detections Systems | Remote baggage screening system, software and method |
US20050031076A1 (en) | 2001-04-03 | 2005-02-10 | L-3 Communications Security And Detections System | Remote baggage screening method |
US20030085163A1 (en) | 2001-10-01 | 2003-05-08 | Chan Chin F. | Remote data access |
US20050111619A1 (en) | 2002-02-06 | 2005-05-26 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
US20040076262A1 (en) * | 2002-10-18 | 2004-04-22 | Lingxiong Shao | Non-invasive plaque detection using combined nuclear medicine and x-ray system |
Non-Patent Citations (5)
Title |
---|
I. D. Jupp et al, "The Non-Invasive Inspection of Baggage Using Coherent X-ray Scattering," IEEE Transactions on Nuclear Science, vol. 47, No. 6, Dec. 2000, pp. 1987-1994. |
Michael J. Barrientos, "Screener Threat Detection Performance With Three Dimensional X-ray Imaging," International Carnahan Conference on Security Technology, 2000, Proc. IEEE 34<SUP>th </SUP>Annual 2000, pp. 178-191. |
Office of Technology Assessment, Congressional Board of the 102d Congress, publicly released Feb. 26, 1991, entitled "Technology Against Terrorism, The Federal Effort". |
Roder, Fredrick L., "Explosives Detection By Dual-Energy Computed Tomography," Proc. SPIE, Apr. 19-20, 1979, pp. 171-178. |
S.P. Beevor et al., "Non-Invasive Inspection Of Baggage Using Coherent X-ray Scattering," European Convention On Security and Detection, 1995. |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050111619A1 (en) * | 2002-02-06 | 2005-05-26 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
US7308077B2 (en) * | 2002-02-06 | 2007-12-11 | L-3 Communications Security and Detection Systems Corporation | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
US10670769B2 (en) | 2002-07-23 | 2020-06-02 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US10007019B2 (en) | 2002-07-23 | 2018-06-26 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US9223049B2 (en) | 2002-07-23 | 2015-12-29 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
US9052403B2 (en) | 2002-07-23 | 2015-06-09 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US8837669B2 (en) | 2003-04-25 | 2014-09-16 | Rapiscan Systems, Inc. | X-ray scanning system |
US9442082B2 (en) | 2003-04-25 | 2016-09-13 | Rapiscan Systems, Inc. | X-ray inspection system and method |
US11796711B2 (en) | 2003-04-25 | 2023-10-24 | Rapiscan Systems, Inc. | Modular CT scanning system |
US20090010382A1 (en) * | 2003-04-25 | 2009-01-08 | Edward James Morton | X-Ray Monitoring |
US10901112B2 (en) | 2003-04-25 | 2021-01-26 | Rapiscan Systems, Inc. | X-ray scanning system with stationary x-ray sources |
US10591424B2 (en) | 2003-04-25 | 2020-03-17 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
US10175381B2 (en) | 2003-04-25 | 2019-01-08 | Rapiscan Systems, Inc. | X-ray scanners having source points with less than a predefined variation in brightness |
US9747705B2 (en) | 2003-04-25 | 2017-08-29 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US9675306B2 (en) | 2003-04-25 | 2017-06-13 | Rapiscan Systems, Inc. | X-ray scanning system |
US9618648B2 (en) | 2003-04-25 | 2017-04-11 | Rapiscan Systems, Inc. | X-ray scanners |
US7684538B2 (en) | 2003-04-25 | 2010-03-23 | Rapiscan Systems, Inc. | X-ray scanning system |
US7724868B2 (en) | 2003-04-25 | 2010-05-25 | Rapiscan Systems, Inc. | X-ray monitoring |
US20100303329A1 (en) * | 2003-04-25 | 2010-12-02 | Edward James Morton | Imaging, Data Acquisition, Data Transmission, and Data Distribution Methods and Systems for High Data Rate Tomographic X-Ray Scanners |
US8451974B2 (en) | 2003-04-25 | 2013-05-28 | Rapiscan Systems, Inc. | X-ray tomographic inspection system for the identification of specific target items |
US20110019797A1 (en) * | 2003-04-25 | 2011-01-27 | Edward James Morton | X-Ray Tomographic Inspection System for the Identification of Specific Target Items |
US9020095B2 (en) | 2003-04-25 | 2015-04-28 | Rapiscan Systems, Inc. | X-ray scanners |
US7929663B2 (en) | 2003-04-25 | 2011-04-19 | Rapiscan Systems, Inc. | X-ray monitoring |
US8885794B2 (en) | 2003-04-25 | 2014-11-11 | Rapiscan Systems, Inc. | X-ray tomographic inspection system for the identification of specific target items |
US9183647B2 (en) | 2003-04-25 | 2015-11-10 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US9113839B2 (en) | 2003-04-25 | 2015-08-25 | Rapiscon Systems, Inc. | X-ray inspection system and method |
US20100303287A1 (en) * | 2003-04-25 | 2010-12-02 | Edward James Morton | X-Ray Tomographic Inspection Systems for the Identification of Specific Target Items |
US8804899B2 (en) | 2003-04-25 | 2014-08-12 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US8223919B2 (en) | 2003-04-25 | 2012-07-17 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
US8243876B2 (en) | 2003-04-25 | 2012-08-14 | Rapiscan Systems, Inc. | X-ray scanners |
US9285498B2 (en) | 2003-06-20 | 2016-03-15 | Rapiscan Systems, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US8263938B2 (en) * | 2004-03-01 | 2012-09-11 | Varian Medical Systems, Inc. | Dual energy radiation scanning of objects |
US7257188B2 (en) | 2004-03-01 | 2007-08-14 | Varian Medical Systems Technologies, Inc. | Dual energy radiation scanning of contents of an object |
US7636417B2 (en) | 2004-03-01 | 2009-12-22 | Varian Medical Systems, Inc. | Dual energy radiation scanning of contents of an object |
US20070210255A1 (en) * | 2004-03-01 | 2007-09-13 | Paul Bjorkholm | Dual energy radiation scanning of objects |
US20070025505A1 (en) * | 2004-03-01 | 2007-02-01 | Paul Bjorkholm | Dual energy radiation scanning of contents of an object |
US20080205594A1 (en) * | 2004-03-01 | 2008-08-28 | Paul Bjorkholm | Dual energy radiation scanning of contents of an object |
US9223050B2 (en) | 2005-04-15 | 2015-12-29 | Rapiscan Systems, Inc. | X-ray imaging system having improved mobility |
US10295483B2 (en) | 2005-12-16 | 2019-05-21 | Rapiscan Systems, Inc. | Data collection, processing and storage systems for X-ray tomographic images |
US8625735B2 (en) | 2005-12-16 | 2014-01-07 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US20090060135A1 (en) * | 2005-12-16 | 2009-03-05 | Edward James Morton | X-Ray Tomography Inspection Systems |
US9638646B2 (en) | 2005-12-16 | 2017-05-02 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US9048061B2 (en) | 2005-12-16 | 2015-06-02 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US10976271B2 (en) | 2005-12-16 | 2021-04-13 | Rapiscan Systems, Inc. | Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images |
US8958526B2 (en) | 2005-12-16 | 2015-02-17 | Rapiscan Systems, Inc. | Data collection, processing and storage systems for X-ray tomographic images |
US8135110B2 (en) | 2005-12-16 | 2012-03-13 | Rapiscan Systems, Inc. | X-ray tomography inspection systems |
US7949101B2 (en) | 2005-12-16 | 2011-05-24 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US20080014643A1 (en) * | 2006-07-12 | 2008-01-17 | Paul Bjorkholm | Dual angle radiation scanning of objects |
US8137976B2 (en) | 2006-07-12 | 2012-03-20 | Varian Medical Systems, Inc. | Dual angle radiation scanning of objects |
US8551785B2 (en) | 2006-07-12 | 2013-10-08 | Varian Medical Systems, Inc. | Dual angle radiation scanning of objects |
US20090003699A1 (en) * | 2007-05-29 | 2009-01-01 | Peter Dugan | User guided object segmentation recognition |
US8094874B2 (en) | 2007-05-29 | 2012-01-10 | Lockheed Martin Corporation | Material context analysis |
US20080298544A1 (en) * | 2007-05-29 | 2008-12-04 | Peter Dugan | Genetic tuning of coefficients in a threat detection system |
US20090052622A1 (en) * | 2007-05-29 | 2009-02-26 | Peter Dugan | Nuclear material detection system |
US20090052762A1 (en) * | 2007-05-29 | 2009-02-26 | Peter Dugan | Multi-energy radiographic system for estimating effective atomic number using multiple ratios |
US20090052732A1 (en) * | 2007-05-29 | 2009-02-26 | Peter Dugan | Material context analysis |
US20090106275A1 (en) * | 2007-10-22 | 2009-04-23 | Liyun Zhang | Method and system for screening items for transport |
US11768313B2 (en) | 2008-02-28 | 2023-09-26 | Rapiscan Systems, Inc. | Multi-scanner networked systems for performing material discrimination processes on scanned objects |
US9429530B2 (en) | 2008-02-28 | 2016-08-30 | Rapiscan Systems, Inc. | Scanning systems |
US11275194B2 (en) | 2008-02-28 | 2022-03-15 | Rapiscan Systems, Inc. | Scanning systems |
US10585207B2 (en) | 2008-02-28 | 2020-03-10 | Rapiscan Systems, Inc. | Scanning systems |
US9223052B2 (en) | 2008-02-28 | 2015-12-29 | Rapiscan Systems, Inc. | Scanning systems |
US10098214B2 (en) | 2008-05-20 | 2018-10-09 | Rapiscan Systems, Inc. | Detector support structures for gantry scanner systems |
US9332624B2 (en) | 2008-05-20 | 2016-05-03 | Rapiscan Systems, Inc. | Gantry scanner systems |
US8290120B2 (en) | 2009-09-30 | 2012-10-16 | Varian Medical Systems, Inc. | Dual energy radiation scanning of contents of an object based on contents type |
US20110075800A1 (en) * | 2009-09-30 | 2011-03-31 | Paul Bjorkholm | Dual energy radiation scanning of contents of an object based on contents type |
US20120093279A1 (en) * | 2010-10-13 | 2012-04-19 | Toshiba Medical Systems Corporation | Medical image processing apparatus, x-ray computed tomography apparatus, and medical image processing method |
US8705688B2 (en) * | 2010-10-13 | 2014-04-22 | Kabushiki Kaisha Toshiba | Medical image processing apparatus, X-ray computed tomography apparatus, and medical image processing method |
US9218933B2 (en) | 2011-06-09 | 2015-12-22 | Rapidscan Systems, Inc. | Low-dose radiographic imaging system |
US10317566B2 (en) | 2013-01-31 | 2019-06-11 | Rapiscan Systems, Inc. | Portable security inspection system |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
US11550077B2 (en) | 2013-01-31 | 2023-01-10 | Rapiscan Systems, Inc. | Portable vehicle inspection portal with accompanying workstation |
US10338269B2 (en) | 2014-01-16 | 2019-07-02 | Smiths Heimann Gmbh | Method and X-ray inspection system, in particular for non-destructively inspecting objects |
DE102014200679A1 (en) * | 2014-01-16 | 2015-07-16 | Smiths Heimann Gmbh | Method and X-ray inspection system, in particular for nondestructive inspection of objects |
Also Published As
Publication number | Publication date |
---|---|
CA2467567A1 (en) | 2003-08-14 |
US7308077B2 (en) | 2007-12-11 |
US20030147489A1 (en) | 2003-08-07 |
US20050111619A1 (en) | 2005-05-26 |
US6816571B2 (en) | 2004-11-09 |
US6788761B2 (en) | 2004-09-07 |
IL162409A (en) | 2010-11-30 |
EP1472524A4 (en) | 2010-03-24 |
WO2003067770A3 (en) | 2004-06-10 |
WO2003067770A2 (en) | 2003-08-14 |
US20040101098A1 (en) | 2004-05-27 |
AU2003212956B2 (en) | 2009-01-29 |
IL162409A0 (en) | 2005-11-20 |
US20050094765A1 (en) | 2005-05-05 |
US20050053184A1 (en) | 2005-03-10 |
EP1472524A2 (en) | 2004-11-03 |
US20040101102A1 (en) | 2004-05-27 |
EP2508872A1 (en) | 2012-10-10 |
AU2003212956A1 (en) | 2003-09-02 |
US6944264B2 (en) | 2005-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7023957B2 (en) | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner | |
US9772426B2 (en) | Systems and methods for automated, rapid detection of high-atomic-number materials | |
US7020241B2 (en) | Method and device for detecting a given material in an object using electromagnetic rays | |
US9915752B2 (en) | Inspection systems with two X-ray scanners in a first stage inspection system | |
US7224763B2 (en) | Method of and system for X-ray spectral correction in multi-energy computed tomography | |
US7738687B2 (en) | Method of registration in a contraband detection system | |
US7366282B2 (en) | Methods and systems for rapid detection of concealed objects using fluorescence | |
US20050058242A1 (en) | Methods and systems for the rapid detection of concealed objects | |
US7539337B2 (en) | Method of and system for splitting compound objects in multi-energy computed tomography images | |
EP1875276B1 (en) | Energy distribution reconstruction in ct | |
US8009883B2 (en) | Method of and system for automatic object display of volumetric computed tomography images for fast on-screen threat resolution | |
US7801348B2 (en) | Method of and system for classifying objects using local distributions of multi-energy computed tomography images | |
KR20140096049A (en) | Method and apparatus pertaining to non-invasive identification of materials | |
US7474786B2 (en) | Method of and system for classifying objects using histogram segment features of multi-energy computed tomography images | |
US20140078257A1 (en) | Method for visualization of three-dimensional objects on a person | |
JP2024071997A (en) | X-ray device, and material classification method using x-rays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BIJJANI, RICHARD R.;EILBERT, RICHARD F.;SHI, SHUNGHE;REEL/FRAME:034652/0988 Effective date: 20020625 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |
|
REFU | Refund |
Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: R1553) |
|
FEPP | Fee payment procedure |
Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1556) |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |
|
AS | Assignment |
Owner name: L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS, INC., MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS CORPORATION DELAWARE;REEL/FRAME:051947/0182 Effective date: 20040628 Owner name: L3 SECURITY & DETECTION SYSTEMS, INC., MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS, INC.;REEL/FRAME:051947/0263 Effective date: 20171218 |
|
AS | Assignment |
Owner name: L3 SECURITY & DETECTION SYSTEMS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBERS 62/869,350, 62/924,077 PREVIOUSLY RECORDED AT REEL: 051947 FRAME: 0263. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS, INC.;REEL/FRAME:055817/0808 Effective date: 20171218 |
|
AS | Assignment |
Owner name: LEIDOS SECURITY DETECTION AND AUTOMATION INC., MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:L3 SECURITY AND DETECTION SYSTEMS, INC.;REEL/FRAME:056944/0462 Effective date: 20200504 |