US5367552A - Automatic concealed object detection system having a pre-scan stage - Google Patents
Automatic concealed object detection system having a pre-scan stage Download PDFInfo
- Publication number
- US5367552A US5367552A US08/006,828 US682893A US5367552A US 5367552 A US5367552 A US 5367552A US 682893 A US682893 A US 682893A US 5367552 A US5367552 A US 5367552A
- Authority
- US
- United States
- Prior art keywords
- data
- container
- scanning
- radiation attenuation
- prescanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 title claims description 24
- 238000002591 computed tomography Methods 0.000 claims abstract description 152
- 238000000034 method Methods 0.000 claims description 69
- 230000005855 radiation Effects 0.000 claims description 26
- 230000007246 mechanism Effects 0.000 claims description 15
- 238000000333 X-ray scattering Methods 0.000 claims 2
- 239000002360 explosive Substances 0.000 abstract description 25
- 238000004458 analytical method Methods 0.000 abstract description 12
- 238000013459 approach Methods 0.000 abstract description 7
- 239000003814 drug Substances 0.000 abstract description 7
- 229940079593 drug Drugs 0.000 abstract description 7
- 238000002441 X-ray diffraction Methods 0.000 abstract description 4
- 230000000007 visual effect Effects 0.000 abstract 1
- 230000009977 dual effect Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 8
- 238000007689 inspection Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229960003920 cocaine Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000002247 constant time method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/22—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
- G01V5/226—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30112—Baggage; Luggage; Suitcase
Definitions
- the present invention relates generally to the detection of concealed objects in closed containers. More particularly, the present invention relates to an efficient method and apparatus for detecting concealed objects by using computerized tomography.
- CT X-ray Computed Tomography
- Screening luggage for concealed items is of vital importance. Such monitoring is necessary to avoid smuggling of drugs and to detect explosives planted in luggage by terrorists.
- Present techniques for screening luggage include manual inspection. Manual inspection is a time consuming and therefore expensive operation. Moreover, manual inspection is not particularly effective unless suspicious items such as transistor radios are routinely disassembled and checked for hidden items.
- TAA Thermal Neutron Activation
- Another common baggage inspection device is the X-ray line scanner ("concourse scanner") used in practically all public airports.
- Such systems are deficient in several respects. First, they are merely imaging devices without the capability of automatically identifying target materials like explosives. They also form a cluttered image in which items in a container are projected together and overlaid on each other. These systems require an operator to study and interpret the projection images. Operator fatigue and distraction augment the imperfect nature of the projection method itself.
- an apparatus for detecting concealed objects such as explosives, drugs, or other contraband.
- the apparatus uses CT scanning to identify concealed objects with a density corresponding to the density of a target object such as explosives or drugs.
- a number of prescanning approaches are disclosed. Based upon the prescan data, selected locations for CT scanning are identified. CT scanning is then undertaken only at the selected locations. The resultant CT scan data is subjected to CT reconstruction, the reconstruction is utilized to automatically identify objects of interest.
- an X-ray analytical technique involving energy dispersive radiation detection may be used to positively and automatically confirm or rule out a threat.
- FIG. 1 (shown as FIG. 1--1 and FIG. 1-2)is a block diagram of the individual hardware components of the present invention, with their logical connections.
- FIG. 1A is a block diagram of individual hardware components of an alternate embodiment of the present invention.
- FIG. 2 is a flow chart depicting the major steps in carrying out the present invention.
- FIG. 3A depicts the parameters associated with identifying sheet-like objects in accordance with one embodiment of the invention.
- FIG. 3B depicts representative data derived from sino projection data accumulated in accordance with one embodiment of the present invention.
- FIG. 4 is a schematic representation of a dual CT-slice gantry apparatus which may be used in accordance with one embodiment of the invention.
- FIG. 5 depicts angularly offset X-ray devices which may be used in accordance with the embodiment of FIG. 4.
- FIG. 6 is a schematic representation of an energy dispersion apparatus which may be used in accordance with another embodiment of the invention.
- FIG. 7 is a flow chart depicting the block/standard-deviation technique of the invention.
- FIG. 8 depicts data values which may be processed in accordance with the block/standard-deviation technique of the invention.
- FIG. 9 depicts a simplified histogram constructed in accordance with the block/standard-deviation technique of the invention.
- a CT object detector 10 in accordance with the present invention is depicted.
- the CT object detector 10 may be used to identify an item in a concealed container.
- explosives, drugs, and other contraband may be identified in accordance with the CT object detector 10.
- the present invention is disclosed in relation to the detection of explosives in luggage.
- teachings of the present invention are equally applicable to the detection of essentially any item in essentially any container.
- the CT object detector 10 may be viewed as including a number of major components.
- a conveyor 20 is provided for moving luggage through a CT gantry system 24.
- the conveyor 20 is controlled by conveyor motion controller 22 which moves the conveyor forward and backward to discrete positions, as required.
- luggage moves along the conveyor 20 and through the CT gantry system 24, allowing the CT system to accumulate scanned data corresponding to cross-sectional views of the luggage.
- the conveyor motion will be stopped during acquisition of CT slice data.
- This data is conveyed to an object detection system 26.
- the object detection system 26 calculates density distribution within the scanned cross sectional images of the luggage. This density information is utilized to identify objects with a target density of interest.
- other acquired information such as texture (for instance, "granularity" of a powder) may be used to corroborate the identification of the object.
- an object reconstruction system 28 may be invoked to provide a reconstruction of the object that is easily recognizable for a human operator.
- adjacent CT cross sections can be performed and an additional pseudo three dimensional display can be used by an operator to look at the object. Based upon this reconstruction, a determination can be made as to whether a target item has in fact been found. At the same time, information may be available which could be useful to plan the next step of bomb disposal or defusing.
- the prescan step operates to identify those regions of the luggage which should be CT scanned and those regions which may be disregarded.
- the pre-scan step reduces the scanning time and total inspection time required for each scanned item, therefore increasing throughput and making CT technology a feasible component of the invention.
- novel data processing techniques have reduced the required data processing time while increasing the probability of finding a target object.
- the conveyor 20 is preferably coupled to an input sensor 30.
- the input sensor 30 is coupled through object detection system 26 to conveyor motion controller 22. Luggage is initially sensed by input sensor 30.
- the exact position of the luggage on the conveyor 20 may be determined through data derived from the input sensor 30, the conveyor 20, and the conveyor motion controller 22, utilizing known techniques.
- the luggage may be conveyed to the CT system 24 so that the luggage may be CT scanned only at desired locations, thereby saving time by eliminating the necessity of CT scanning the entire bag.
- Line scanner 32 may be a concourse scanner of the type presently used in airports for scanning of luggage.
- Line scanner 32 includes a high voltage power supply 34 coupled to an x-ray tube 36.
- the x-ray tube 36 provides an x-ray beam 38 which travels through the baggage on the conveyor 20.
- the attenuation of the x-ray beam 38 is a function of the density of the object through which it travels.
- the detector 40 picks up the x-ray beam 38 and its attenuated components.
- a data acquisition system 42 is coupled to the detector 40 to receive the detected x-ray data.
- the output of such a line scanner is displayed as an X-ray projection image on an image display monitor.
- An operator studies the image and attempts to decipher whether the image includes a target object.
- the present invention eliminates the necessity of this human operator function.
- the data from the line scanner 32 referred to herein as projection data, is not used to display an image on a monitor for operator viewing, rather it is used to identify CT scan locations. The next scanning operation is undertaken by CT system 24.
- the CT system 24 includes components analogous to the line scanner 32.
- the CT system 24 includes a rotating module 43.
- the rotating module 43 includes a high voltage power supply 44 coupled to an x-ray tube 46 which creates an x-ray fan beam 48 (for display purposes, the orientation of the detector 50 and of the fan 48 are shown rotated by 90 degrees).
- the x-ray fan beam 48 travels through an opening in the rotating module 43 through which luggage on the conveyor 20 is moved.
- On the opposite side of the opening within the rotating module 43 is an array of detectors 50 which intercept the x-ray fan beam 48, attenuated by the scanned objects.
- the detector array 50 is connected to a data acquisition system 52 which converts all detector measurements into a suitable digital format.
- the data acquisition system 52 also exchanges control signals with a rotating control module 54.
- CT data scanning may be generated using a stationary CT system in combination with rotational motion of the object to be scanned.
- the rotating module 43 is electrically coupled to the non-rotating portion of the CT object detector 24 via an electromechanical device called a slip ring 58.
- a slip ring 58 Through this slip ring, electrical input power is transferred to the rotating power supplies 44; digital data signals and control signals are also transferred to and from the rotating gantry 43 through the slip ring 58.
- CT scanners have their rotating modules connected to the stationary part via cables, using winding/unwinding mechanisms.
- the gantry can rotate continuously and CT scan frequency may be increased, thereby facilitating throughput of scanned containers.
- the slip ring 58 is coupled through a slip ring bus 59 to a stationary control module 60.
- the stationary control module 60 provides control signals to the CT system 24 and the conveyor motion controller 22.
- the CT scan data accumulated by the CT system 24 is delivered to object detection system 26 through stationary control module 60.
- the CT scan data provides cross-sectional data regarding selected portions of the luggage on the conveyor 20.
- This cross-sectional data is analyzed in accordance with the present invention, as will be more fully described below. Suitable components for this analysis are depicted in relation to object detection system 26 of FIG. 1.
- Object detection system 26 includes a workstation 64.
- the workstation 64 is coupled to a color monitor 66.
- Interactive functions with the workstation 64 are achieved through a keyboard 68 and a mouse 70.
- Disc memory 72 and tape drives 74 are also provided.
- the workstation 64 is also preferably coupled to a real time, e.g. VME, computer 76 which provides additional mathematical computing power.
- VME real time
- Computers with a VME-bus configuration are known in the art.
- the VME computer 76 preferably includes disc memory 78.
- a back projector 80 is provided in conjunction with the VME computer 76.
- the back projector 80 a known device traditionally used in medical CT scanning, performs a major step of the process of CT reconstruction of CT data into image data.
- the reconstructed CT image data may be displayed on monitor 66.
- the Direct Fourier Reconstruction method may be used. As is known in the art, such a method does not require a back projector 80, instead, standard array processors are used.
- An S bus driver 82 is preferably coupled to the VME computer 76.
- the workstation 64 is preferably provided with a standard ethernet network connection. This connection may be used to transmit the images to a remote display station, or to an expert operator who can sequentially look at images from any number of inspection systems.
- an object reconstruction system 28 Such construction of target items is accomplished by an object reconstruction system 28. That is, after an object of interest has been automatically identified, the object reconstruction system 28 may be used to reconstruct and display the object to a human operator for additional interpretation. The display resembles the container as if it was open.
- the object reconstruction system 28 may utilize a personal computer (PC) 84 coupled to a monitor 86, keyboard 68, and mouse 90. Supplemental disc memory 92 may also be provided.
- the PC 84 is coupled to a three dimensional reconstruction computer 94, such as the "Voxelflinger" from the Reality Imaging Company.
- Such a machine provides the computing power to process and display on monitor 86 the three dimensional CT scan data in various ways, including single CT slices, cross-sections at oblique angles, and as three dimensional renderings of user selectable or pre-programmed view angles.
- the reconstruction computer 94 may be directly coupled to workstation 64, thereby eliminating the necessity of additional hardware.
- a prescan is undertaken (block 100).
- the purpose of the prescan is to reduce the time required for CT scanning. That is, through the prescan, a determination is made as to which regions of the luggage need not be scanned. By reducing the amount of CT scanning, throughput is increased.
- One method of realizing a prescan is to employ the line scanner 32.
- the luggage or other container is placed on conveyor 20 which carries the container through the X-ray beam 38.
- the intensity of the X-ray beam 38 is continuously measured by detector 40. These intensity values are converted to digital values, corrected for detector gain and offset, and then stored.
- the linear X-ray attenuation coefficient mu is proportional to the density.
- the logarithm of the relative intensity of the X-ray beam 38 is proportional to the integral of the density of the material within the beam. This is in turn proportional, with a factor k, to the total mass of the material within the beam. This relationship is termed the mass equation:
- the resultant lines of projection image data show the attenuation of X-rays by the container and its contents.
- the current practice for airport scanners is to have an operator visually inspect this image and attempt to discern items which may be threats.
- CT scan locations are determined by assuming that any X-ray passing through an object of interest will have a minimum attenuation T.
- T reflects the minimum expected attenuation through the object and the contents which surround the object.
- the projected image data is grouped into connected regions of points with attenuation values greater than T. These regions are characterized by: (1) each point within a region having an attenuation value greater than T; (2) each point with an attenuation value greater than T being connectable to other points in the region via a path of adjacent points; and (3) each point in the region being connectable to any other point in the region by such a path.
- the total mass of each connected region is calculated. This may be done by converting each attenuation value into a corresponding mass value.
- the mass values may be derived from the previously defined mass equation.
- CT scans are placed so that within the region no object of mass M can fail to be intersected by a CT scan.
- the projection image data provided by the line scanner 32 may be utilized to determine objects or groups of objects within the luggage with a mass greater than the target mass.
- the workstation 64 may be used to calculate the attenuations, the connected regions, the mass of objects, and to determine the CT scan locations.
- the next step associated with the present invention is to take CT scans at the predetermined locations (block 104). That is, CT scans are taken at those locations in the luggage or container which correspond to an object with a mass of interest.
- the location of the luggage, and more particularly the location of specific objects in the luggage may be positionally tracked on the conveyor 20. Once the proper position on the conveyor 20 is established in relation to the CT system 24, CT scanning commences and CT data is produced. The conveyor 20 is then moved to the next position.
- Each complete data set for a CT scan consists of hundreds of attenuation measurements taken from different angles. CT image data may be reconstructed from these attenuation measurements.
- Each point in a CT image represents the CT density of the items at the position of the CT cross section.
- the system can also be calibrated to show physical density instead of CT density.
- CT scans are not necessary (block 102). That is, the data from the prescan (block 100) may indicate that there are no objects of interest and therefore CT scanning is not necessary. Consequently, the luggage on the conveyor 20 would be quickly moved through the CT gantry system 24 without the delay of CT scanning. Consequently, throughput may be increased by eliminating the necessity of CT scanning every piece of luggage.
- the next step associated with the present invention is to identify target objects within the CT image (block 106). Of course, this step and the remaining steps are not necessary if through prescanning it is determined that CT scans are not necessary.
- Target objects within CT image data are defined as connected regions with physical density within a preset range. These regions are characterized by: (1) each point within a region having a density within a set range; (2) each point in the image with the density in the set range being connectable to other points in the region via a path of adjacent points; and (3) any point in the region being connectable to any other point in the region by such a path.
- Each such region found in the CT image is given an identifying number and the following information is stored for that region: (1) the coordinates of the enclosing rectangle of the region; (2) the area of the region; and (3) the mass. If a connected region is below a preset size, then it may be considered insignificant and not considered as being a target object.
- a target object After a target object has been detected in a cross sectional CT image, it may be desirable to further characterize the size, shape, and mass of the object. This is accomplished by taking additional CT scans at positions near the original mass. Each mass is inspected. If a target object is found in a next CT scan with positions consistent with the previous scan, then the object is considered a continuation of the same object.
- This identification of objects within a preset density and mass range may be achieved without human intervention.
- the identity of the object may be confirmed through the use of additional data. For instance if an object with a target density is identified, the texture of the object may be analyzed to determine whether it is consistent with the anticipated texture of an explosive. Other information may also be used, for instance, the shape of the object.
- the identity of an object may be verified through additional data as described.
- a verification step may be optionally employed. For instance, to verify an object's identity, target objects may be highlighted (block 108). Objects may be highlighted by assigning a color, for instance red, the density range interest. Therefore, when CT data is projected on monitor 66, those areas highlighted in red will represent the objects of interest. Highlighting therefore provides a method by which the attention of an operator can be directed to critical objects.
- objects with a defined density may be located automatically or with the assistance of a highlighting step. If the luggage does not include an object of interest, the conveyor 20 may move the luggage to another conveyor (not shown) for further handling. On the other hand, if the luggage appears to include an object of interest, the conveyor 20 may move the baggage to a temporary holding location (not shown).
- the baggage may be inspected by hand; two, the objects of interest may be further investigated in conjunction with the object reconstruction system 28 (block 110). If an object is to be reconstructed, the data associated with the object is conveyed from the object detection system 26 to the object reconstruction system 28.
- the object reconstruction system 28 therefore allows closer scrutiny of an object of interest while allowing another piece of baggage to be processed by the other elements of the CT object detector 10.
- the object reconstruction system 28 allows an operator to display reconstructed CT data in different ways.
- the CT data may be displayed as oblique cuts at user selected angles or it may be displayed as three dimensional renderings. It is thereby possible to get a view of the density distribution of the container and its contents without the necessity of actually opening and searching the container and disassembling the contained items.
- the prescan step may be accomplished without the use of a separate line scanner 32.
- FIG. 1A depicts a configuration for prescanning without the use of a separate line scanner 32.
- the CT system 24 may be used to gather scan projection data if the rotating module 43 is held stationary.
- the conveyor 20 moves the luggage forward through the stationary CT system 24 to produce a projection scan.
- the luggage then moves backwards through the CT system 24, the rotating module 43 begins moving, the luggage begins forward movement on the conveyor, and CT scans are taken at the appropriate locations, as previously described.
- One advantage of using sino projection for this purpose is that a dedicated scan projection system is not required. Another advantage is that the quality of the X-ray tube, the X-ray detector, and the data acquisition system used for a CT system is a much higher quality than the components of a scan projection system. Consequently, the information content in the sino projection data is larger than the information content in the scan projection data. This additional information is useful for selecting CT scan locations and thereby reducing the number of necessary CT scans.
- CT reconstruction of sino projection data is a fast method of detecting sheet-like objects such as sheet explosives.
- the sino projection data will, if displayed as a sinogram and without the necessity of CT reconstruction, generate a wedge-shaped band with an intensity approximating the function exp ⁇ -Mu ⁇ D/sine(alpha) ⁇ where D/sine(alpha) is the effective attenuation length, D is the sheet explosive thickness, Mu is the linear attenuation coefficient, and alpha is the angle between the x-ray beam considered and the sheet explosive.
- D/sine(alpha) is the effective attenuation length
- D is the sheet explosive thickness
- Mu the linear attenuation coefficient
- alpha is the angle between the x-ray beam considered and the sheet explosive.
- FIG. 3B depicts the signal produced by sheet explosives with sino projection data.
- the sino projection data can automatically be inspected for the presence of such a characteristic wedge shaped intensity distribution.
- objects may be identified by their density, in accordance with the present invention.
- the confidence of this identification may be automatically augmented through additional practical considerations.
- a known innocuous item with a particular density may also correspond to the density of a target item.
- the object detection system 26 may increase the probability that a target item, not an innocuous item, has been found if it is known that the innocuous item would not have the mass presently considered.
- an innocuous object such as a bottle of woman's make-up may have a density corresponding to a target object, if the detected object has a mass of more than a typical bottle of make-up, the object detection system 26 will have increased confidence that the object is a target object, not merely an innocuous object.
- Another technique for increasing the confidence of the identification of a target object is to compare the shape of the object against a list of characteristics corresponding to the target object. For instance, if the shape of the object has a large central area and a small cap-like feature at one end, this shape corresponds to the shape of an explosive with a detonator cap.
- expected features in the CT image of a target object may be used to increase the confidence that a target object has been identified.
- Dual energy information can be obtained by generating two sets of CT data: one set is obtained at a first voltage setting used to energize the X-ray tube 46 (for example 100 kilovolts) and another set is obtained at a higher voltage (for example 200 kilovolts). The two voltages generate X-rays with two different average energies. If CT reconstruction based on data obtained at two different X-ray energies are compared, their difference can be attributed to the presence of materials with different average atomic numbers.
- a narcotic such as cocaine can be detected with increased confidence by the added dual energy signature caused by a common admixture, calcium sulfate, which is commonly used to dilute cocaine.
- the dual energy CT data is compared against known dual energy signatures for target objects, or known dual energy signatures for innocuous objects, so that an innocuous object is not confused with a target object.
- texture information Another technique for increasing object recognition confidence is to use texture information. For example, when identifying drugs, the CT cross section through a bag of densely packed pills will show a unique density distribution pattern. Such a pattern may be automatically recognized. An automatic inspection procedure may look for maximum values of the spatial frequency spectrum in the range given by the size of the pills. It is also possible to low-pass filter the CT image and to determine the standard deviation. The standard deviation attains maximum values for textures which have spatial frequencies near the low pass frequency. Image processing steps involved in the automated inspection of textures are known to those skilled in the art of digital image processing.
- a prescreening step may be employed prior to the prescan step to find non-threatening luggage.
- prescreening may be accomplished by thermo neutron activation (TNA) measurements.
- TAA thermo neutron activation
- nitrogen nuclei upon excitation by thermal neutrons, nitrogen nuclei will emit a nitrogen signal which may be used to detect the presence of nitrogen containing objects, and in particular explosives.
- Other prescreening techniques may also be utilized.
- vapor sniffing, acoustical vibration analysis, mechanical vibration analysis and other techniques will provide the requisite prescreening information.
- the processing rate of the described apparatus may be improved by utilizing a dual CT-slice apparatus in accordance with another embodiment of the invention.
- the dual CT-slice apparatus of the invention utilizes a second X-ray tube and detector on the rotating gantry. This approach is advantageous because it eliminates some of the overhead associated with adjusting the position of the conveyor 20. That is, two CT-slices of data can be obtained during one conveyor stop.
- the conveyor positions a container for a first CT slice, and a secondary slice positional mechanism moves the second X-ray tube and detector to a predetermined location displaced from the first slice location. Since the CT-slices are taken in pairs, the number of conveyor movements is substantially reduced, typically in half. This results in increased container throughput.
- CT data can be collected at two different X-ray energies. This may render a dual energy analysis of the type previously described.
- one of the detector systems can be constructed to contain a larger number of detectors in its array. This will result in CT data with higher resolution, allowing the resolution of smaller details in the objects scanned. Higher resolution facilitates the detection of items which are difficult to identify, such as sheet explosives.
- the number of detectors used in a particular array may be altered by using a conventional switched network circuit.
- the offset CT acquisition systems can be used during the sino projection step previously described.
- the projection data can be from two different angles, thereby generating nonredundant information about the mass or object distribution in the suitcase.
- FIG. 4 depicts a side view of a dual CT-slice apparatus 24A in accordance with the invention.
- the apparatus is similar to the CT system of FIG. 1, but includes means for obtaining an additional CT-slice during a single conveyor stop. Note that the detector 50 and fan beam 48 are rotated 90 degrees for display purposes. In an actual device, the orientation of the detector 50 and fan beam 48 would be normal to the page.
- the apparatus 24A includes a high voltage power supply 44 coupled to an X-ray tube 46; a corresponding detector 50 is provided to receive the X-rays generated by the X-ray tube 46.
- a data acquisition system 52 receives the data from the detector 50 and conveys it to a rotating control module 54A, as previously described.
- the apparatus 24A departs from the apparatus of FIG. 1 in that a second X-ray system is provided.
- the second X-ray system includes an X-ray tube 46A which is powered by high voltage power supply 44A to generate X-rays which are detected by detector 50A.
- the output of the detector 50A is conveyed to a data acquisition system 52A, which conveys the data to the rotating control module 54A.
- the power supply 44A and the second X-ray tube 46A are coupled to a track 120 and drive mechanism 122 which move the components along the axis of the conveyor 20.
- the detector 50A is coupled to a track 124 and drive mechanism 126 to receive the output from the X-ray tube 46A.
- the drive mechanisms 122 and 126 receive control signals from the rotating control module 54A, which, in turn, is controlled by the stationary control module 60A.
- the stationary control module 60A provides positioning information for the second CT-slice.
- the stationary control module 60A defines both a conveyor position and an offset position for the second X-ray system. Typically, the offset position will be between 0 and 6 inches from the position of the first CT-slice.
- the position for the second CT-slice is determined through the prescanning techniques previously described.
- FIG. 5 depicts that the X-ray systems may be angularly offset from one another to prevent unwanted interaction between the respective systems.
- the second X-ray system is offset approximately 60° from the first system.
- the detector 50A includes approximately twice as many detectors 128 as in detector 50. Thus, detector 50A may be used to obtain high resolution images, as previously discussed.
- object verification steps (blocks 108 and 110) are described.
- the verification steps entail utilization of an object reconstruction system 28 to display reconstructed CT data in different ways.
- An alternate verification step in accordance with another embodiment of the invention is to utilize an X-ray analytical method based on energy dispersive or X-ray spectral measurements.
- X-ray analytical methods are known in the art. This technique evaluates the scattering of X-rays generated by an object within the original path of the X-rays. The angle of scattering is a function of the molecular structures of the object through which the X-rays travel. As a result, the detected X-rays include essential information on the identity of the object examined.
- the X-ray analytical method may be utilized in accordance with the present invention.
- the energy dispersion method may be employed to verify the identity of an object.
- the energy dispersion method is practical in this context because objects of interest have already been quickly identified. In the absence of the preliminary steps described, the technique would not be practical because the entire container would need to be processed.
- FIG. 6 depicts an apparatus which may be used in accordance with the X-ray analytical embodiment of the invention.
- An X-ray analysis apparatus 128 is provided.
- a container on conveyor 20 is automatically positioned within the apparatus 128 through operation of the stationary control module 60 (not shown).
- the apparatus 128 includes a high voltage power supply 44B and an X-ray tube 46B.
- the generated X-rays are conveyed through a collimator 130.
- the resultant collimated X-ray beam 132 is intercepted by object 134, causing dispersion of the X-rays.
- An X-ray block 136 absorbs a majority of the X-rays, while the detector 50B absorbs the dispersed X-rays.
- the dispersed X-rays are processed by a conventional data acquisition system 52B and the resultant data is conveyed to object detection system 26A.
- the object detection system 26A includes workstation 64 which is coupled to a pattern library 138.
- the pattern library 138 which may be stored on disc 72 or tape drives 74, includes dispersion pattern data on objects of interest. The accumulated data is compared with the pattern library to identify objects of interest.
- the object detection system 26A also includes an x/y position command generator 140.
- the command generator 140 relies upon the positional information for the objects to be identified, already acquired through previous processing steps, to establish actuator commands to position the X-ray tube 46B and the detector 50B.
- the conveyor 20 provides one positional coordinate, say the z-axis position, running left to right on the page.
- the x-axis may be considered to project through the page, and the y-axis may be considered to run from the top of the page to the bottom of the page.
- the power supply 44B, X-ray tube 46B, and collimator 130 may be positioned by an x-coordinate drive mechanism 142 and a y-coordinate drive mechanism 144 which move the elements over a grid 146.
- the detector 50B may be positioned by an x-coordinate drive mechanism 146 and a y-coordinate drive mechanism 148 to position it on a grid 150.
- the y-coordinate may be established by the y-coordinate drive mechanism 142 and y-coordinate drive mechanism 148 may be fixed. Note that the y-coordinate positioning scheme allows the accumulation of dispersion data for a particular y-coordinate location within the container 134. Any number of known positioning techniques may be used to locate the X-ray equipment.
- the energy dispersion technique provides a number of benefits. First, it provides an automatic alternate mechanism to the operator dependent image interpretation approach. It also provides a mechanism for precise object identification. Since the energy dispersion apparatus 128 may be added to the existing object detection elements, it may facilitate container throughput.
- Another embodiment of the invention relates to an alternate method of identifying where to position CT slices.
- the placement of CT slices is dependent upon the total mass of a region which is compared to a target mass equal to the critical mass to be identified. If the total mass of the region is greater than the target mass, a CT slice is placed through the mass to obtain further information about the object.
- the mass information provided by the prescan data may include mass information for a number of layered objects.
- the CT slice can provide mass information on individual objects in the container, not merely the cumulative mass information for layered objects associated with the projected image data obtained through the prescan.
- the mass division approach of the described prescan method results in an average number of CT-cuts per container equal to the average container weight divided by the critical mass. To increase throughput, it would be advantageous to reduce the number of required CT-slices.
- a reduction in the number of required CT-slices may be obtained with the "block/standard-deviation" approach associated with an alternate embodiment of the present invention.
- This technique is disclosed in relation to FIG. 7.
- the "block/standard-deviation” technique is an alternate method of determining the placement of CT slices. With this technique, we split a projection or pre-scan image in two "segments". One segment of the image will contain all those portions of the image which have largely uniform attenuation. The other segment contains the remainder of the image, representing those portions of the image without uniform attenuation.
- the uniform areas are caused by individual objects in the container.
- the CT scans can now be placed to go through each object only once, and thereby characterize the entire object or quasi-object, even if its mass is a multiple of the critical mass screened for.
- the cutting by mass is then independently applied to the remaining non-uniform image segment. This method is especially successful in minimizing the number of necessary CT scans for containers exhibiting scan projection images which are relatively uncluttered and show a relatively small number of large quasi-objects.
- the first step associated with the technique is to prescan a container (block 100) and thereby accumulate projection image prescan data which includes a set of attenuation values.
- the next step of the method is to divide the prescan image data into data blocks formed by a raster (block 160). This step is illustrated in relation to FIG. 8 which identifies 16 sequentially numbered data blocks.
- each data block in FIG. 8 includes an average attenuation value ("A"--in bold) and a standard deviation value "SD --in italics). Based upon this information, the data blocks can be identified as either uniform or non-uniform blocks (block 164). A "uniform" block will have a low standard deviation value, for instance, less than 1, while a "non-uniform” block will have a high standard deviation value, for instance, greater than 1. Thus, in the example of FIG. 8, data blocks 1, 2, 3, 5, 9, 10, 11, 13, 14, and 15 would be characterized as uniform blocks.
- FIG. 9 depicts a histogram corresponding to the data of FIG. 8. The histogram reflects that there are four data blocks with an attenuation value of one, one data block with an attenuation value of two, three data blocks with an attenuation value of three, two data blocks with an attenuation value of five, etc.
- Physical objects may be identified from the resultant histogram (block 168).
- each inflection point in the histogram corresponds to a uniform object.
- the inflection points 170, 72, 174, and 176 correspond to uniform objects within the prescan data.
- the foregoing steps may be used to group objects within the prescan data.
- the next step associated with the block/standard-deviation technique is to identify required CT-slice locations (block 180).
- a CT-slice will be required through every object which has an average attenuation value over a given threshold.
- the block/standard-deviation method has the potential for reducing the number of required CT slices since only one CT slice is required per object.
- the density information obtained from the CT slice and the CT slice cross section area can be combined with the area information from the block/standard-deviation technique to calculate the mass of the object.
- the block/standard-deviation method also provides a mechanism for readily determining regions within the container which do not require a CT slice. For example, objects with a low attenuation value may be dismissed if one is searching luggage for explosives. In such a case, the low attenuation value probably corresponds to clothing or books, and otherwise does not represent a threat of being an explosive.
- the low attenuation values of data blocks 1, 5, 9, and 13 allow that region of the container to avoid further processing with a CT slice. Even if a CT slice is required for a different region of the container, the block/standard-deviation data may be used to ignore certain portions of the data slice which are known to include low attenuation values.
- Non-uniform regions of a container are processed in a separate fashion.
- Non-uniform regions generally correspond to a number of objects in a small area or correspond to the edges of uniform regions.
- the required CT-slice positions in these areas are determined by mass (block 182). This process is similar to the process previously described for determining CT-slice placement. Namely, the mass of a region is accumulated until it reaches a target mass, when the target mass is reached, a CT slice is made.
- the non-uniform segment may be attributable to an artifact such as a button on clothing.
- the CT-slice positions are preferably modified to avoid these regions.
- a minimum attenuation value is subtracted from the measured attenuation value (I) obtained during the prescanning step.
- the subtracted attenuation value should correspond to the attenuation attributable to the walls of the container being scanned. While the attenuation attributable to a container will vary widely from container to container, subtracting an attenuation value of 1/e or 0.37 from the measured attenuation value (I) has been successful.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
log (I/Io)=-∫μ(x)dx
log (I/Io)=K* mass
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/006,828 US5367552A (en) | 1991-10-03 | 1993-01-21 | Automatic concealed object detection system having a pre-scan stage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/770,552 US5182764A (en) | 1991-10-03 | 1991-10-03 | Automatic concealed object detection system having a pre-scan stage |
US08/006,828 US5367552A (en) | 1991-10-03 | 1993-01-21 | Automatic concealed object detection system having a pre-scan stage |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/770,552 Continuation-In-Part US5182764A (en) | 1991-10-03 | 1991-10-03 | Automatic concealed object detection system having a pre-scan stage |
Publications (1)
Publication Number | Publication Date |
---|---|
US5367552A true US5367552A (en) | 1994-11-22 |
Family
ID=46247093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/006,828 Expired - Lifetime US5367552A (en) | 1991-10-03 | 1993-01-21 | Automatic concealed object detection system having a pre-scan stage |
Country Status (1)
Country | Link |
---|---|
US (1) | US5367552A (en) |
Cited By (304)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996013839A1 (en) * | 1994-10-31 | 1996-05-09 | Lockheed Martin Specialty Components, Inc. | Inspection system and spatial resolution technique for detecting explosives using combined neutron interrogation and x-ray imaging |
WO1997004374A2 (en) * | 1995-07-17 | 1997-02-06 | Billings Roger E | Distributed data processing network |
US5661774A (en) * | 1996-06-27 | 1997-08-26 | Analogic Corporation | Dual energy power supply |
US5668342A (en) * | 1995-12-07 | 1997-09-16 | Discher; Stephen R. W. | Apparatus and method for detection and neutralization of concealed explosives |
US5699400A (en) * | 1996-05-08 | 1997-12-16 | Vivid Technologies, Inc. | Operator console for article inspection systems |
EP0825457A2 (en) * | 1996-08-19 | 1998-02-25 | Analogic Corporation | Multiple angle pre-screening tomographic systems and methods |
US5740221A (en) * | 1996-10-29 | 1998-04-14 | Morton International, Inc. | Airbag inflator x-ray inspection apparatus with rotating entry and exit doors |
US5754617A (en) * | 1995-03-28 | 1998-05-19 | Hitachi, Ltd. | X-ray CT inspection equipment for container and method of inspecting container using x-ray CT inspection |
DE19721980A1 (en) * | 1997-05-26 | 1998-10-01 | Siemens Ag | X-ray luggage examination system |
US5818897A (en) * | 1996-06-27 | 1998-10-06 | Analogic Corporation | Quadrature transverse CT detection system |
WO1999019713A1 (en) | 1997-10-10 | 1999-04-22 | Analogic Corporation | Area detector array for computed tomography scanning system |
USRE36415E (en) * | 1994-02-08 | 1999-11-30 | Analogic Corporation | X-ray tomography system with gantry pivot and translation control |
US6094472A (en) * | 1998-04-14 | 2000-07-25 | Rapiscan Security Products, Inc. | X-ray backscatter imaging system including moving body tracking assembly |
US6185272B1 (en) | 1999-03-15 | 2001-02-06 | Analogic Corporation | Architecture for CT scanning system |
US6195444B1 (en) * | 1999-01-12 | 2001-02-27 | Analogic Corporation | Apparatus and method for detecting concealed objects in computed tomography data |
FR2801104A1 (en) * | 1999-11-13 | 2001-05-18 | Heimann Systems Gmbh & Co | X-ray baggage scanner, has separate coarse and fine scan units speeds location of explosives |
US6236709B1 (en) | 1998-05-04 | 2001-05-22 | Ensco, Inc. | Continuous high speed tomographic imaging system and method |
US6272230B1 (en) * | 1998-02-11 | 2001-08-07 | Analogic Corporation | Apparatus and method for optimizing detection of objects in computed tomography data |
US6292529B1 (en) | 1999-12-15 | 2001-09-18 | Analogic Corporation | Two-dimensional X-ray detector array for CT applications |
US6345113B1 (en) * | 1999-01-12 | 2002-02-05 | Analogic Corporation | Apparatus and method for processing object data in computed tomography data using object projections |
US20020071524A1 (en) * | 1998-11-30 | 2002-06-13 | Gerhard Renkart | Nonintrusive inspection system |
WO2002082306A1 (en) * | 2001-04-03 | 2002-10-17 | L-3 Communications Security & Detection Systems | A remote baggage screening system, software and method |
WO2002082125A1 (en) * | 2001-04-03 | 2002-10-17 | L-3 Communications Security & Detection Systems | X-ray inspection system |
WO2003027653A2 (en) * | 2000-12-27 | 2003-04-03 | Rapiscan Security Products Inc. | Method and apparatus for discrimination of objects by physical characteristics using a limited-view three-dimensional reconstitution |
WO2003029844A2 (en) * | 2001-10-01 | 2003-04-10 | L-3 Communications Security & Detection Systems | Remote data access |
US6556653B2 (en) | 2000-05-25 | 2003-04-29 | University Of New Brunswick | Non-rotating X-ray system for three-dimensional, three-parameter imaging |
US20030085163A1 (en) * | 2001-10-01 | 2003-05-08 | Chan Chin F. | Remote data access |
US20030142784A1 (en) * | 2000-04-06 | 2003-07-31 | Makoto Suzuki | X-ray inspection system |
US20030147489A1 (en) * | 2002-02-06 | 2003-08-07 | Bijjani Richard R. | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US20030190011A1 (en) * | 2001-10-05 | 2003-10-09 | Knut Beneke | Method and device for detecting a given material in an object using electromagnetic rays |
US20040017888A1 (en) * | 2002-07-24 | 2004-01-29 | Seppi Edward J. | Radiation scanning of objects for contraband |
US20040022356A1 (en) * | 2002-02-15 | 2004-02-05 | Nikola Subotic | Multi-phenomenology, decision-directed baggage scanning apparatus and method |
US20040057554A1 (en) * | 2002-07-19 | 2004-03-25 | Paul Bjorkholm | Radiation sources and compact radiation scanning systems |
US20040066890A1 (en) * | 2000-12-15 | 2004-04-08 | Dalmijn Wijnand Ludo | Method and apparatus for analysing and sorting a flow of material |
US20040077849A1 (en) * | 2002-10-16 | 2004-04-22 | Orchid Chemicals & Pharmaceuticals Limited | Process for the preparation of cefadroxil |
US20040090359A1 (en) * | 2001-03-16 | 2004-05-13 | Mcmakin Douglas L. | Detecting concealed objects at a checkpoint |
US20040096030A1 (en) * | 2002-11-19 | 2004-05-20 | Banchieri Andrew J. | X-ray technique-based nonintrusive inspection apparatus |
US20040101097A1 (en) * | 2002-11-25 | 2004-05-27 | Kyoichiro Wakayama | Apparatus and method for detecting threats |
US20040109532A1 (en) * | 2002-12-04 | 2004-06-10 | John Ford | Radiation scanning units including a movable platform |
US20040120454A1 (en) * | 2002-10-02 | 2004-06-24 | Michael Ellenbogen | Folded array CT baggage scanner |
US20040140924A1 (en) * | 2001-03-16 | 2004-07-22 | Keller Paul E. | Detection of a concealed object |
US6778681B2 (en) * | 2001-05-09 | 2004-08-17 | Invision Technologies, Inc. | Analysis and presentation of internal features of logs |
WO2004072685A1 (en) * | 2003-02-13 | 2004-08-26 | Philips Intellectual Property & Standards Gmbh | Method and device for examining an object |
WO2004074871A1 (en) * | 2003-02-24 | 2004-09-02 | Philips Intellectual Property & Standards Gmbh | Automatic material discrimination by using computer tomography |
US20040199684A1 (en) * | 2002-09-27 | 2004-10-07 | Leblanc Wilf | Method and system for an adaptive multimode media queue |
US20040200693A1 (en) * | 2003-04-14 | 2004-10-14 | Siemens Aktiengesellschaft | Transport system for articles, in particular containers for baggage pieces |
WO2004090576A2 (en) * | 2003-04-02 | 2004-10-21 | Reveal Imaging Technologies, Inc. | System and method for detection of explosives in baggage |
US20040263379A1 (en) * | 2003-06-26 | 2004-12-30 | Keller Paul E. | Concealed object detection |
US6837422B1 (en) * | 2000-09-01 | 2005-01-04 | Heimann Systems Gmbh | Service unit for an X-ray examining device |
US20050008118A1 (en) * | 2003-01-23 | 2005-01-13 | Michael Ellenbogen | System and method for CT scanning of baggage |
US20050058242A1 (en) * | 2003-09-15 | 2005-03-17 | Peschmann Kristian R. | Methods and systems for the rapid detection of concealed objects |
EP1522878A1 (en) * | 2003-10-06 | 2005-04-13 | YXLON International Security GmbH | Method for determining the displacement of luggage in order to scan a suspicious region in the luggage |
US20050114690A1 (en) * | 2003-11-20 | 2005-05-26 | International Business Machines Corporation | Security screening of electronic devices by device identifier |
US20050117700A1 (en) * | 2003-08-08 | 2005-06-02 | Peschmann Kristian R. | Methods and systems for the rapid detection of concealed objects |
US20050135560A1 (en) * | 2003-12-17 | 2005-06-23 | Ehud Dafni | Portable computed tomography scanner and methods thereof |
US20050157842A1 (en) * | 2002-07-23 | 2005-07-21 | Neeraj Agrawal | Single boom cargo scanning system |
US20050169422A1 (en) * | 2002-10-02 | 2005-08-04 | L-3 Communications Security & Detection | Computed tomography system |
US20050180542A1 (en) * | 2004-02-17 | 2005-08-18 | General Electric Company | CT-Guided system and method for analyzing regions of interest for contraband detection |
US20050195939A1 (en) * | 2004-02-11 | 2005-09-08 | Scheinman Elan D. | Contraband detection systems and methods |
US20050198513A1 (en) * | 2004-03-04 | 2005-09-08 | International Business Machines Corporation | Security screening of electronic devices by device-reported data |
US20050198226A1 (en) * | 2003-11-19 | 2005-09-08 | Delia Paul | Security system with distributed computing |
US20050206514A1 (en) * | 2004-03-19 | 2005-09-22 | Lockheed Martin Corporation | Threat scanning machine management system |
US20050232459A1 (en) * | 2004-04-14 | 2005-10-20 | Rowe Richard L | Multi-source surveillance portal |
US20050230604A1 (en) * | 2004-04-14 | 2005-10-20 | Rowe Richard L | Multi-sensor surveillance portal |
US20050231421A1 (en) * | 2004-04-14 | 2005-10-20 | Michael Fleisher | Enhanced surveilled subject imaging |
US20050231417A1 (en) * | 2004-04-14 | 2005-10-20 | Michael Fleisher | Surveilled subject privacy imaging |
US20050232487A1 (en) * | 2004-04-14 | 2005-10-20 | Safeview, Inc. | Active subject privacy imaging |
US20050231415A1 (en) * | 2004-04-14 | 2005-10-20 | Michael Fleisher | Surveilled subject imaging with object identification |
US20050231416A1 (en) * | 2004-04-14 | 2005-10-20 | Rowe Richard L | Relational millimeter-wave interrogating |
US20050248450A1 (en) * | 2004-05-04 | 2005-11-10 | Lockheed Martin Corporation | Passenger and item tracking with system alerts |
US20050259781A1 (en) * | 2004-05-21 | 2005-11-24 | Zhengrong Ying | Method of and system for computing effective atomic number images in multi-energy computed tomography |
US20050271293A1 (en) * | 2004-06-04 | 2005-12-08 | Zhengrong Ying | Method of and system for destreaking the photoelectric image in multi-energy computed tomography |
WO2005119297A2 (en) * | 2004-05-27 | 2005-12-15 | L-3 Communications Security And Detection Systems, Inc. | Contraband detection systems using a large-angle cone beam ct system |
US20050276468A1 (en) * | 2004-06-09 | 2005-12-15 | Zhengrong Ying | Method of and system for extracting 3D bag images from continuously reconstructed 2D image slices in computed tomography |
US20060002585A1 (en) * | 2004-07-01 | 2006-01-05 | Larson Gregory L | Method of and system for sharp object detection using computed tomography images |
US20060008051A1 (en) * | 2002-11-11 | 2006-01-12 | Lockheed Martin Corporation | Detection methods and system using sequenced technologies |
US20060023844A1 (en) * | 2004-07-27 | 2006-02-02 | Ram Naidu | Method of and system for X-ray spectral correction in multi-energy computed tomography |
US20060023835A1 (en) * | 2002-12-04 | 2006-02-02 | Seppi Edward J | Radiation scanning units with reduced detector requirements |
US20060039599A1 (en) * | 2004-08-18 | 2006-02-23 | Anton Deykoon | Method of and system for detecting anomalies in projection images generated by computed tomography scanners |
US20060043310A1 (en) * | 2004-08-27 | 2006-03-02 | Arsenault Paul J | X-ray scatter image reconstruction by balancing of discrepancies between detector responses, and apparatus therefor |
US20060056586A1 (en) * | 2004-09-15 | 2006-03-16 | Naohito Uetake | Method and equipment for detecting explosives, etc. |
US20060056584A1 (en) * | 2002-07-23 | 2006-03-16 | Bryan Allman | Self-contained mobile inspection system and method |
US20060066469A1 (en) * | 2004-09-24 | 2006-03-30 | Foote Harlan P | Three-dimensional surface/contour processing based on electromagnetic radiation interrogation |
US20060072703A1 (en) * | 2004-10-05 | 2006-04-06 | Ram Naidu | Method of and system for stabilizing high voltage power supply voltages in multi-energy computed tomography |
US20060078161A1 (en) * | 2004-10-08 | 2006-04-13 | Ge Security Germany Gmbh | Method for determining the change in position of an object in an item of luggage |
EP1653253A1 (en) | 2004-11-02 | 2006-05-03 | GILARDONI S.p.A. | Electronic system and method for the recognition of materials |
EP1653252A2 (en) | 2004-11-02 | 2006-05-03 | GILARDONI S.p.A. | Versatile device for effecting safety controles via x-rays |
US20060098773A1 (en) * | 2003-09-15 | 2006-05-11 | Peschmann Kristian R | Methods and systems for rapid detection of concealed objects using fluorescence |
US20060104414A1 (en) * | 2002-01-30 | 2006-05-18 | Mayo William E | Combinatorial contraband detection using energy dispersive x-ray diffraction |
US20060104480A1 (en) * | 2004-11-12 | 2006-05-18 | Safeview, Inc. | Active subject imaging with body identification |
US7050536B1 (en) * | 1998-11-30 | 2006-05-23 | Invision Technologies, Inc. | Nonintrusive inspection system |
WO2006056134A1 (en) * | 2004-11-26 | 2006-06-01 | Tsinghua University | Ct security inspection method for liquid by radiation source and its device |
US7062011B1 (en) | 2002-12-10 | 2006-06-13 | Analogic Corporation | Cargo container tomography scanning system |
US20060126772A1 (en) * | 2004-11-26 | 2006-06-15 | Nuctech Company Limited | Container inspection system with CT tomographic scanning function |
US20060164285A1 (en) * | 2005-01-21 | 2006-07-27 | Safeview, Inc. | Depth-based surveillance imaging |
US20060164286A1 (en) * | 2005-01-21 | 2006-07-27 | Safeview, Inc. | Frequency-based surveillance imaging |
US20060164287A1 (en) * | 2005-01-21 | 2006-07-27 | Safeview, Inc. | Depth-based surveillance image reconstruction |
US20060165217A1 (en) * | 2003-11-12 | 2006-07-27 | Sondre Skatter | System and method for detecting contraband |
US20060227932A1 (en) * | 2005-03-29 | 2006-10-12 | Surescan Corporation | Imaging inspection apparatus |
US20060243071A1 (en) * | 2004-09-10 | 2006-11-02 | Sagi-Dolev Alysia M | Multi-threat detection system |
US20060262901A1 (en) * | 2002-11-11 | 2006-11-23 | Lockheed Martin Corporation | Detection methods and systems using sequenced technologies |
US20060274891A1 (en) * | 2005-06-01 | 2006-12-07 | Endicott Interconnect Technologies, Inc. | Imaging inspection apparatus with improved cooling |
US20060274916A1 (en) * | 2001-10-01 | 2006-12-07 | L-3 Communications Security And Detection Systems | Remote data access |
US20060274066A1 (en) * | 2005-06-01 | 2006-12-07 | Zhengrong Ying | Method of and system for 3D display of multi-energy computed tomography images |
US20060291623A1 (en) * | 2005-06-14 | 2006-12-28 | L-3 Communications Security And Detection Systems, Inc. | Inspection system with material identification |
US20070009084A1 (en) * | 2005-06-01 | 2007-01-11 | Endicott Interconnect Technologies, Inc. | Imaging inspection apparatus with directional cooling |
US20070014472A1 (en) * | 2005-07-18 | 2007-01-18 | Zhengrong Ying | Method of and system for classifying objects using local distributions of multi-energy computed tomography images |
US20070014471A1 (en) * | 2005-07-18 | 2007-01-18 | Sergey Simanovsky | Method of and system for splitting compound objects in multi-energy computed tomography images |
US20070029165A1 (en) * | 2003-10-29 | 2007-02-08 | Bender Tonya K | Material handling system and method of use |
US20070031036A1 (en) * | 2005-08-04 | 2007-02-08 | Ram Naidu | Method of and system for classifying objects using histogram segment features of multi-energy computed tomography images |
US7197172B1 (en) | 2003-07-01 | 2007-03-27 | Analogic Corporation | Decomposition of multi-energy scan projections using multi-step fitting |
US20070133742A1 (en) * | 2005-12-09 | 2007-06-14 | Gatten Ronald A | Apparatus and method for providing a shielding means for an x-ray detection system |
US20070133743A1 (en) * | 2005-12-09 | 2007-06-14 | Tait Johnson | Security scanner with bin return device |
US20070140414A1 (en) * | 2005-12-07 | 2007-06-21 | Walter Garms | Apparatus and method for providing a near-parallel projection from helical scan data |
US20070140415A1 (en) * | 2005-12-07 | 2007-06-21 | Garms Walter I | Apparatus and method for providing an orthographic projection from helical scan data |
US20070147581A1 (en) * | 2003-10-02 | 2007-06-28 | Reveal Imaging Technologies, Inc. | Folded array CT baggage scanner |
US20070172024A1 (en) * | 2003-04-25 | 2007-07-26 | Morton Edward J | X-ray scanning system |
US20070172023A1 (en) * | 2003-04-25 | 2007-07-26 | Cxr Limited | Control means for heat load in x-ray scanning apparatus |
WO2007089362A2 (en) * | 2005-11-07 | 2007-08-09 | Sommer Jr Edward J | Method and apparatus for improving identification and control of articles passing through a scanning system |
US20070211853A1 (en) * | 2006-03-07 | 2007-09-13 | General Electric Company | Systems and methods for estimating presence of a material within a volume of interest using x-ray |
US20070217572A1 (en) * | 2002-07-23 | 2007-09-20 | Andreas Kotowski | Single boom cargo scanning system |
US7277577B2 (en) | 2004-04-26 | 2007-10-02 | Analogic Corporation | Method and system for detecting threat objects using computed tomography images |
US20070230657A1 (en) * | 2006-04-04 | 2007-10-04 | Walter Garms | Apparatus and method for controlling start and stop operations of a computed tomography imaging system |
US20070237293A1 (en) * | 2006-04-07 | 2007-10-11 | Satpal Singh | Laminographic system for 3D imaging and inspection |
US20070262275A1 (en) * | 2004-09-23 | 2007-11-15 | Nelson Mitchell C | System, device, and method for detecting and characterizing explosive devices and weapons at safe standoff distances |
US20070263907A1 (en) * | 2006-05-15 | 2007-11-15 | Battelle Memorial Institute | Imaging systems and methods for obtaining and using biometric information |
WO2007131348A1 (en) * | 2006-05-11 | 2007-11-22 | Optosecurity Inc. | Method and apparatus for providing threat image projection (tip) in a luggage screening system, and luggage screening system implementing same |
US20070269007A1 (en) * | 2006-05-05 | 2007-11-22 | Alan Akery | Multiple pass cargo inspection system |
US20070280417A1 (en) * | 2006-05-08 | 2007-12-06 | Kejun Kang | Cargo security inspection method and system based on spiral scanning |
US20070286338A1 (en) * | 2006-03-31 | 2007-12-13 | Sykes Bradley T | Method and system of inspecting baggage |
US20070297560A1 (en) * | 2006-03-03 | 2007-12-27 | Telesecurity Sciences, Inc. | Method and system for electronic unpacking of baggage and cargo |
US20080056444A1 (en) * | 2006-08-31 | 2008-03-06 | Sondre Skatter | System and method for integrating explosive detection systems |
WO2008031313A1 (en) * | 2006-09-08 | 2008-03-20 | Tsinghua University | Multiple dr/ct detection device of containers |
US20080071559A1 (en) * | 2006-09-19 | 2008-03-20 | Juha Arrasvuori | Augmented reality assisted shopping |
US20080101681A1 (en) * | 2006-11-01 | 2008-05-01 | Armin Uwe Schmiegel | Methods for determining a position and shape of a bag placed in a baggage handling container using x-ray image analysis |
US20080123895A1 (en) * | 2006-11-27 | 2008-05-29 | Todd Gable | Method and system for fast volume cropping of three-dimensional image data |
US20080144774A1 (en) * | 2003-04-25 | 2008-06-19 | Crx Limited | X-Ray Tubes |
US20080174401A1 (en) * | 2004-04-14 | 2008-07-24 | L-3 Communications Security And Detection Systems, Inc | Surveillance of subject-associated items with identifiers |
US20080196518A1 (en) * | 2004-09-10 | 2008-08-21 | Qylur Security Systems, Inc. | Apparatus for efficient resource sharing |
US20080205598A1 (en) * | 2005-01-12 | 2008-08-28 | Koninklijke Philips Electronics, N.V. | Coherent Scatter Computer Tomography Material Identification |
US20080253509A1 (en) * | 2005-10-06 | 2008-10-16 | Koninklijke Philips Electronics, N.V. | Acquisition Parameter Optimization For Csct |
US20080253653A1 (en) * | 2007-04-12 | 2008-10-16 | Todd Gable | Systems and methods for improving visibility of scanned images |
WO2009003346A1 (en) * | 2007-06-29 | 2009-01-08 | Tsinghua University | Method for inspecting the drug concealed in a liquid article and its device |
US20090086906A1 (en) * | 2007-09-28 | 2009-04-02 | Clayton James E | Radiation scanning with photon tagging |
WO2009043233A1 (en) * | 2007-10-05 | 2009-04-09 | Tsinghua University | Method and device for detecting liquid article |
WO2009043232A1 (en) * | 2007-10-05 | 2009-04-09 | Tsinghua University | Method and device for detecting liquid article |
US20090116614A1 (en) * | 2002-07-23 | 2009-05-07 | Andreas Kotowski | Cargo Scanning System |
US20090161825A1 (en) * | 2003-06-20 | 2009-06-25 | James Carver | Relocatable X-Ray Imaging System and Method for Inspecting Commercial Vehicles and Cargo Containers |
US20090168949A1 (en) * | 2007-12-31 | 2009-07-02 | Joseph Bendahan | System and method for inspecting containers for target material |
US20090168968A1 (en) * | 2007-12-27 | 2009-07-02 | Andrew John Banchieri | Collimator and method for fabricating the same |
US20090168959A1 (en) * | 2007-12-27 | 2009-07-02 | Zhiqiang Chen | Article detection apparatus and a detecting method |
US20090232277A1 (en) * | 2008-03-14 | 2009-09-17 | General Electric Company | System and method for inspection of items of interest in objects |
US20090274277A1 (en) * | 2003-04-25 | 2009-11-05 | Edward James Morton | X-Ray Sources |
US20090322873A1 (en) * | 2004-04-14 | 2009-12-31 | L-3 Communications Security And Detection Systems, Inc | Surveillance systems and methods with subject-related screening |
US20100059665A1 (en) * | 2005-11-01 | 2010-03-11 | The Regents Of The Universtiy Of California | Contraband detection system |
US7684421B2 (en) | 2005-06-09 | 2010-03-23 | Lockheed Martin Corporation | Information routing in a distributed environment |
US7702069B2 (en) | 2005-02-25 | 2010-04-20 | Rapiscan Security Products, Inc. | X-ray security inspection machine |
US7724868B2 (en) | 2003-04-25 | 2010-05-25 | Rapiscan Systems, Inc. | X-ray monitoring |
US7734102B2 (en) | 2005-05-11 | 2010-06-08 | Optosecurity Inc. | Method and system for screening cargo containers |
US20100166285A1 (en) * | 2006-08-11 | 2010-07-01 | Koninklijke Philips Electronics N.V. | System and method for acquiring image data |
US20100189226A1 (en) * | 2002-07-23 | 2010-07-29 | Andreas Kotowski | Rotatable boom cargo scanning system |
US20100230242A1 (en) * | 2009-03-11 | 2010-09-16 | Samit Kumar Basu | Systems and method for scanning a continuous stream of objects |
US7826589B2 (en) | 2007-12-25 | 2010-11-02 | Rapiscan Systems, Inc. | Security system for screening people |
WO2010086636A3 (en) * | 2009-01-27 | 2010-11-25 | Durham Scientific Crystals Limited | Prescan of an object with the object in motion and subsequent localized scan of the object with the object at rest |
US7856081B2 (en) * | 2003-09-15 | 2010-12-21 | Rapiscan Systems, Inc. | Methods and systems for rapid detection of concealed objects using fluorescence |
US7899232B2 (en) | 2006-05-11 | 2011-03-01 | Optosecurity Inc. | Method and apparatus for providing threat image projection (TIP) in a luggage screening system, and luggage screening system implementing same |
US7903789B2 (en) | 2003-04-25 | 2011-03-08 | Rapiscan Systems, Inc. | X-ray tube electron sources |
US20110064192A1 (en) * | 2002-07-23 | 2011-03-17 | Edward James Morton | Four Sided Imaging System and Method for Detection of Contraband |
US7929664B2 (en) | 2007-02-13 | 2011-04-19 | Sentinel Scanning Corporation | CT scanning and contraband detection |
US20110091013A1 (en) * | 2008-04-18 | 2011-04-21 | Muenster Matthias | Method and apparatus for detecting a particular material in an object by means of electromagnetic radiation |
US7949101B2 (en) | 2005-12-16 | 2011-05-24 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US20110135060A1 (en) * | 2008-05-20 | 2011-06-09 | Edward James Morton | High Energy X-Ray Inspection System Using a Fan-Shaped Beam and Collimated Backscatter Detectors |
US20110167936A1 (en) * | 2004-09-10 | 2011-07-14 | Qylur Security Systems, Inc. | Multi-threat detection portal |
US7991242B2 (en) | 2005-05-11 | 2011-08-02 | Optosecurity Inc. | Apparatus, method and system for screening receptacles and persons, having image distortion correction functionality |
US8003949B2 (en) | 2007-11-01 | 2011-08-23 | Rapiscan Systems, Inc. | Multiple screen detection systems |
US8009883B2 (en) | 2007-02-09 | 2011-08-30 | Analogic Corporation | Method of and system for automatic object display of volumetric computed tomography images for fast on-screen threat resolution |
US8031903B2 (en) | 2001-10-01 | 2011-10-04 | L-3 Communications Security And Detection Systems, Inc. | Networked security system |
US8094784B2 (en) | 2003-04-25 | 2012-01-10 | Rapiscan Systems, Inc. | X-ray sources |
EP2405260A1 (en) | 2010-07-09 | 2012-01-11 | Alta Lab S.r.l. | Method and apparatus for performing non-invasive x-ray inspections of objects |
US20120029878A1 (en) * | 2010-07-30 | 2012-02-02 | Carpenter Michael D | Data Processing Device |
US8135112B2 (en) | 2007-02-01 | 2012-03-13 | Rapiscan Systems, Inc. | Personnel security screening system with enhanced privacy |
US8135110B2 (en) | 2005-12-16 | 2012-03-13 | Rapiscan Systems, Inc. | X-ray tomography inspection systems |
US8171810B1 (en) | 2011-08-25 | 2012-05-08 | Qylur Security Systems, Inc. | Multi-threat detection system |
US8199996B2 (en) | 2007-06-21 | 2012-06-12 | Rapiscan Systems, Inc. | Systems and methods for improving directed people screening |
US8213570B2 (en) | 2006-02-27 | 2012-07-03 | Rapiscan Systems, Inc. | X-ray security inspection machine |
US8223919B2 (en) | 2003-04-25 | 2012-07-17 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
US8243876B2 (en) | 2003-04-25 | 2012-08-14 | Rapiscan Systems, Inc. | X-ray scanners |
US8270566B2 (en) * | 2008-05-08 | 2012-09-18 | L-3 Communications Security And Detection Systems, Inc. | Adaptive scanning in an imaging system |
US8275091B2 (en) | 2002-07-23 | 2012-09-25 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
CN102095666B (en) * | 2007-10-05 | 2012-12-12 | 清华大学 | Method and equipment for checking liquid object |
US8340245B2 (en) | 2009-06-05 | 2012-12-25 | Sentinel Scanning Corporation | Transportation container inspection system and method |
US8350747B2 (en) | 2004-04-14 | 2013-01-08 | L-3 Communications Security And Detection Systems, Inc. | Surveillance with subject screening |
US8389941B2 (en) | 2008-06-11 | 2013-03-05 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
CN102095664B (en) * | 2007-10-05 | 2013-03-27 | 清华大学 | Method and device for checking liquid article |
US8423125B2 (en) | 2004-11-09 | 2013-04-16 | Spectrum Dynamics Llc | Radioimaging |
CN102095665B (en) * | 2007-10-05 | 2013-04-17 | 清华大学 | Method and equipment for inspecting liquid substances |
US8433036B2 (en) | 2008-02-28 | 2013-04-30 | Rapiscan Systems, Inc. | Scanning systems |
US8451974B2 (en) | 2003-04-25 | 2013-05-28 | Rapiscan Systems, Inc. | X-ray tomographic inspection system for the identification of specific target items |
US20130156156A1 (en) * | 2010-02-16 | 2013-06-20 | Kristofer J. Roe | Adaptive modular cargo screening |
US8489176B1 (en) | 2000-08-21 | 2013-07-16 | Spectrum Dynamics Llc | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US8494210B2 (en) | 2007-03-30 | 2013-07-23 | Optosecurity Inc. | User interface for use in security screening providing image enhancement capabilities and apparatus for implementing same |
US8492725B2 (en) | 2009-07-29 | 2013-07-23 | Biosensors International Group Ltd. | Method and system of optimized volumetric imaging |
US20130216100A1 (en) * | 2010-10-29 | 2013-08-22 | Andrew Litvin | Object identification using sparse spectral components |
US8521253B2 (en) | 2007-10-29 | 2013-08-27 | Spectrum Dynamics Llc | Prostate imaging |
GB2501025A (en) * | 2009-05-26 | 2013-10-09 | Rapiscan Systems Inc | Detecting narcotics using tomographic X-ray images |
US8565860B2 (en) | 2000-08-21 | 2013-10-22 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system |
US8571881B2 (en) | 2004-11-09 | 2013-10-29 | Spectrum Dynamics, Llc | Radiopharmaceutical dispensing, administration, and imaging |
US8576982B2 (en) | 2008-02-01 | 2013-11-05 | Rapiscan Systems, Inc. | Personnel screening system |
US8576989B2 (en) | 2010-03-14 | 2013-11-05 | Rapiscan Systems, Inc. | Beam forming apparatus |
US8579506B2 (en) | 2008-05-20 | 2013-11-12 | Rapiscan Systems, Inc. | Gantry scanner systems |
US8586932B2 (en) | 2004-11-09 | 2013-11-19 | Spectrum Dynamics Llc | System and method for radioactive emission measurement |
US8606349B2 (en) | 2004-11-09 | 2013-12-10 | Biosensors International Group, Ltd. | Radioimaging using low dose isotope |
US8610075B2 (en) | 2006-11-13 | 2013-12-17 | Biosensors International Group Ltd. | Radioimaging applications of and novel formulations of teboroxime |
US8615405B2 (en) | 2004-11-09 | 2013-12-24 | Biosensors International Group, Ltd. | Imaging system customization using data from radiopharmaceutical-associated data carrier |
US8620046B2 (en) | 2000-08-21 | 2013-12-31 | Biosensors International Group, Ltd. | Radioactive-emission-measurement optimization to specific body structures |
US8644910B2 (en) | 2005-07-19 | 2014-02-04 | Biosensors International Group, Ltd. | Imaging protocols |
US8644453B2 (en) | 2008-02-28 | 2014-02-04 | Rapiscan Systems, Inc. | Scanning systems |
US8654922B2 (en) | 2009-11-18 | 2014-02-18 | Rapiscan Systems, Inc. | X-ray-based system and methods for inspecting a person's shoes for aviation security threats |
US8676292B2 (en) | 2004-01-13 | 2014-03-18 | Biosensors International Group, Ltd. | Multi-dimensional image reconstruction |
US20140175298A1 (en) * | 2012-12-21 | 2014-06-26 | Kumsal Deniz Sezen | 3d mapping with two orthogonal imaging views |
US20140177934A1 (en) * | 2012-06-20 | 2014-06-26 | Toshiba Medical Systems Corporation | Image diagnosis device and control method thereof |
WO2014101621A1 (en) * | 2012-12-27 | 2014-07-03 | 清华大学 | Object inspection method, display method and device |
US8804899B2 (en) | 2003-04-25 | 2014-08-12 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US8824637B2 (en) | 2008-09-13 | 2014-09-02 | Rapiscan Systems, Inc. | X-ray tubes |
US8837793B2 (en) | 2005-07-19 | 2014-09-16 | Biosensors International Group, Ltd. | Reconstruction stabilizer and active vision |
US8837669B2 (en) | 2003-04-25 | 2014-09-16 | Rapiscan Systems, Inc. | X-ray scanning system |
US8840303B2 (en) | 2008-05-20 | 2014-09-23 | Rapiscan Systems, Inc. | Scanner systems |
US20140310629A1 (en) * | 2013-04-12 | 2014-10-16 | The Boeing Company | Nonconformance Visualization System |
US8894974B2 (en) | 2006-05-11 | 2014-11-25 | Spectrum Dynamics Llc | Radiopharmaceuticals for diagnosis and therapy |
US8909325B2 (en) | 2000-08-21 | 2014-12-09 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US20150030125A1 (en) * | 2013-07-23 | 2015-01-29 | Rapiscan Systems, Inc. | Methods for Improving Processing Speed For Object Inspection |
US8963094B2 (en) | 2008-06-11 | 2015-02-24 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
US8971485B2 (en) | 2008-02-28 | 2015-03-03 | Rapiscan Systems, Inc. | Drive-through scanning systems |
US8995619B2 (en) | 2010-03-14 | 2015-03-31 | Rapiscan Systems, Inc. | Personnel screening system |
US20150121523A1 (en) * | 2013-10-25 | 2015-04-30 | MSA Security, Inc. | Systems and methods for facilitating remote security threat detection |
US20150121528A1 (en) * | 2013-10-25 | 2015-04-30 | MSA Security, Inc. | Systems and methods for facilitating remote security threat detection |
US9036779B2 (en) | 2008-02-28 | 2015-05-19 | Rapiscan Systems, Inc. | Dual mode X-ray vehicle scanning system |
US9040016B2 (en) | 2004-01-13 | 2015-05-26 | Biosensors International Group, Ltd. | Diagnostic kit and methods for radioimaging myocardial perfusion |
US9057679B2 (en) | 2012-02-03 | 2015-06-16 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
US9068920B2 (en) * | 2009-01-14 | 2015-06-30 | John Eric Churilla | System and method for scanning and processing printed media |
US9113839B2 (en) | 2003-04-25 | 2015-08-25 | Rapiscon Systems, Inc. | X-ray inspection system and method |
US9158027B2 (en) | 2008-02-28 | 2015-10-13 | Rapiscan Systems, Inc. | Mobile scanning systems |
US9208988B2 (en) | 2005-10-25 | 2015-12-08 | Rapiscan Systems, Inc. | Graphite backscattered electron shield for use in an X-ray tube |
US9218933B2 (en) | 2011-06-09 | 2015-12-22 | Rapidscan Systems, Inc. | Low-dose radiographic imaging system |
US9223052B2 (en) | 2008-02-28 | 2015-12-29 | Rapiscan Systems, Inc. | Scanning systems |
US9223050B2 (en) | 2005-04-15 | 2015-12-29 | Rapiscan Systems, Inc. | X-ray imaging system having improved mobility |
US9263225B2 (en) | 2008-07-15 | 2016-02-16 | Rapiscan Systems, Inc. | X-ray tube anode comprising a coolant tube |
US9275451B2 (en) | 2006-12-20 | 2016-03-01 | Biosensors International Group, Ltd. | Method, a system, and an apparatus for using and processing multidimensional data |
US9285325B2 (en) | 2007-02-01 | 2016-03-15 | Rapiscan Systems, Inc. | Personnel screening system |
US9292180B2 (en) | 2013-02-28 | 2016-03-22 | The Boeing Company | Locator system for three-dimensional visualization |
US9310323B2 (en) | 2009-05-16 | 2016-04-12 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
US9316743B2 (en) | 2004-11-09 | 2016-04-19 | Biosensors International Group, Ltd. | System and method for radioactive emission measurement |
CN105527654A (en) * | 2015-12-29 | 2016-04-27 | 中检科威(北京)科技有限公司 | Examination device for inspection and quarantine |
US9340304B2 (en) | 2013-02-28 | 2016-05-17 | The Boeing Company | Aircraft comparison system |
CN105628006A (en) * | 2015-11-06 | 2016-06-01 | 同方威视技术股份有限公司 | Collimation device and ray inspection device |
US20160196628A1 (en) * | 2013-10-25 | 2016-07-07 | MSA Security, Inc. | Systems and methods for facilitating remote security threat detection |
US9420677B2 (en) | 2009-01-28 | 2016-08-16 | Rapiscan Systems, Inc. | X-ray tube electron sources |
RU2599596C1 (en) * | 2014-05-14 | 2016-10-10 | Ньюктек Компани Лимитед | Image display method |
US9470801B2 (en) | 2004-01-13 | 2016-10-18 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
US9492900B2 (en) | 2013-03-15 | 2016-11-15 | The Boeing Company | Condition of assembly visualization system based on build cycles |
US9500601B2 (en) | 2013-03-16 | 2016-11-22 | Lawrence Livermore National Security, Llc | Adaptive CT scanning system |
US9557427B2 (en) | 2014-01-08 | 2017-01-31 | Rapiscan Systems, Inc. | Thin gap chamber neutron detectors |
US9612725B1 (en) | 2013-02-28 | 2017-04-04 | The Boeing Company | Nonconformance visualization system |
US9632206B2 (en) | 2011-09-07 | 2017-04-25 | Rapiscan Systems, Inc. | X-ray inspection system that integrates manifest data with imaging/detection processing |
US9632205B2 (en) | 2011-02-08 | 2017-04-25 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
DE102008046416B4 (en) * | 2007-09-05 | 2017-05-24 | Nuctech Co. Ltd. | Device for inspection for contraband in air cargo containers |
WO2017101514A1 (en) * | 2015-12-16 | 2017-06-22 | 清华大学 | Method, system and apparatus for checking cargoes |
DE102016200779A1 (en) * | 2016-01-21 | 2017-07-27 | MTU Aero Engines AG | Examination method for a serviceable hollow component of a turbomachine |
US9726619B2 (en) | 2005-10-25 | 2017-08-08 | Rapiscan Systems, Inc. | Optimization of the source firing pattern for X-ray scanning systems |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
US9823383B2 (en) | 2013-01-07 | 2017-11-21 | Rapiscan Systems, Inc. | X-ray scanner with partial energy discriminating detector array |
US9870444B2 (en) | 2013-03-05 | 2018-01-16 | The Boeing Company | Shop order status visualization system |
US9880694B2 (en) | 2013-05-09 | 2018-01-30 | The Boeing Company | Shop order status visualization system |
US9891314B2 (en) | 2014-03-07 | 2018-02-13 | Rapiscan Systems, Inc. | Ultra wide band detectors |
DE102008046417B4 (en) | 2007-09-05 | 2018-03-15 | Nuctech Co. Ltd. | Device for inspection for contraband in air cargo containers |
US9943274B2 (en) | 2004-11-09 | 2018-04-17 | Spectrum Dynamics Medical Limited | Radioimaging using low dose isotope |
US9958569B2 (en) | 2002-07-23 | 2018-05-01 | Rapiscan Systems, Inc. | Mobile imaging system and method for detection of contraband |
CN108254397A (en) * | 2017-12-12 | 2018-07-06 | 北京航星机器制造有限公司 | A kind of luggage and articles safety inspection device and its inspection method |
US10061481B2 (en) | 2013-02-28 | 2018-08-28 | The Boeing Company | Methods and devices for visually querying an aircraft based on an area of an image |
US10067650B2 (en) | 2013-06-20 | 2018-09-04 | The Boeing Company | Aircraft comparison system with synchronized displays |
US10134254B2 (en) | 2014-11-25 | 2018-11-20 | Rapiscan Systems, Inc. | Intelligent security management system |
JP2019020355A (en) * | 2017-07-21 | 2019-02-07 | 日本信号株式会社 | Imaging device |
EP3290912A4 (en) * | 2015-12-29 | 2019-02-20 | Nuctech Company Limited | Examination system for inspection and quarantine and method thereof |
US10229328B2 (en) | 2014-06-26 | 2019-03-12 | Mcmaster University | On-body concealed weapon detection system |
US10302807B2 (en) | 2016-02-22 | 2019-05-28 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
US10331295B2 (en) | 2013-03-28 | 2019-06-25 | The Boeing Company | Visualization of an object using a visual query system |
US10345479B2 (en) | 2015-09-16 | 2019-07-09 | Rapiscan Systems, Inc. | Portable X-ray scanner |
US20190265383A1 (en) * | 2013-07-25 | 2019-08-29 | Analogic Corporation | Generation of diffraction signature of item within object |
US10416857B2 (en) | 2013-05-09 | 2019-09-17 | The Boeing Company | Serial number control visualization system |
US10483077B2 (en) | 2003-04-25 | 2019-11-19 | Rapiscan Systems, Inc. | X-ray sources having reduced electron scattering |
US10685147B2 (en) | 2016-02-29 | 2020-06-16 | The Boeing Company | Non-conformance mapping and visualization |
US10720300B2 (en) | 2016-09-30 | 2020-07-21 | American Science And Engineering, Inc. | X-ray source for 2D scanning beam imaging |
US10964075B2 (en) | 2004-01-13 | 2021-03-30 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
JPWO2021085019A1 (en) * | 2019-10-31 | 2021-05-06 | ||
US11175245B1 (en) | 2020-06-15 | 2021-11-16 | American Science And Engineering, Inc. | Scatter X-ray imaging with adaptive scanning beam intensity |
US11280898B2 (en) | 2014-03-07 | 2022-03-22 | Rapiscan Systems, Inc. | Radar-based baggage and parcel inspection systems |
US11300703B2 (en) | 2015-03-20 | 2022-04-12 | Rapiscan Systems, Inc. | Hand-held portable backscatter inspection system |
US11340361B1 (en) | 2020-11-23 | 2022-05-24 | American Science And Engineering, Inc. | Wireless transmission detector panel for an X-ray scanner |
US11525930B2 (en) | 2018-06-20 | 2022-12-13 | American Science And Engineering, Inc. | Wavelength-shifting sheet-coupled scintillation detectors |
US11551903B2 (en) | 2020-06-25 | 2023-01-10 | American Science And Engineering, Inc. | Devices and methods for dissipating heat from an anode of an x-ray tube assembly |
US11579327B2 (en) | 2012-02-14 | 2023-02-14 | American Science And Engineering, Inc. | Handheld backscatter imaging systems with primary and secondary detector arrays |
US11796489B2 (en) | 2021-02-23 | 2023-10-24 | Rapiscan Systems, Inc. | Systems and methods for eliminating cross-talk signals in one or more scanning systems having multiple X-ray sources |
DE102009061736B3 (en) | 2008-04-17 | 2024-05-29 | Tsinghua University | Linear scanning imaging system and method therefor |
US12061309B2 (en) | 2008-02-28 | 2024-08-13 | Rapiscan Systems, Inc. | Drive-through scanning systems |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751722A (en) * | 1984-02-25 | 1988-06-14 | U.S. Philips Corporation | X-ray apparatus |
US4788704A (en) * | 1985-03-04 | 1988-11-29 | Heimann Gmbh | X-ray scanner & detector signal processing system |
US4907152A (en) * | 1986-09-25 | 1990-03-06 | The Boeing Company | Method of improving CT resolution |
US4941162A (en) * | 1988-06-22 | 1990-07-10 | The State Of Israel, Atomic Energy Commission, Soreq Nuclear Research Center | Method and system for detection of nitrogenous explosives by using nuclear resonance absorption |
US5032990A (en) * | 1989-05-30 | 1991-07-16 | General Electric Company | Translate rotate scanning method for x-ray imaging |
US5070519A (en) * | 1990-10-04 | 1991-12-03 | Hologic, Inc. | Selective equalization radiography |
US5125015A (en) * | 1990-01-26 | 1992-06-23 | The State Of Israel Atomic Energy Commission, Soreq Nuclear Research Center | Method and system for determining a lower-bound density of a body |
US5182764A (en) * | 1991-10-03 | 1993-01-26 | Invision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5212717A (en) * | 1990-06-27 | 1993-05-18 | Kabushiki Kaisha Toshiba | Computed tomography scanner apparatus |
US5218623A (en) * | 1990-11-14 | 1993-06-08 | Kabushiki Kaisha Toshiba | Method and apparatus for specifying slice planes in x-ray computed tomography |
US5260982A (en) * | 1991-05-31 | 1993-11-09 | Kabushiki Kaisha Toshiba | Scattered radiation imaging apparatus |
-
1993
- 1993-01-21 US US08/006,828 patent/US5367552A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751722A (en) * | 1984-02-25 | 1988-06-14 | U.S. Philips Corporation | X-ray apparatus |
US4788704A (en) * | 1985-03-04 | 1988-11-29 | Heimann Gmbh | X-ray scanner & detector signal processing system |
US4907152A (en) * | 1986-09-25 | 1990-03-06 | The Boeing Company | Method of improving CT resolution |
US4941162A (en) * | 1988-06-22 | 1990-07-10 | The State Of Israel, Atomic Energy Commission, Soreq Nuclear Research Center | Method and system for detection of nitrogenous explosives by using nuclear resonance absorption |
US5032990A (en) * | 1989-05-30 | 1991-07-16 | General Electric Company | Translate rotate scanning method for x-ray imaging |
US5125015A (en) * | 1990-01-26 | 1992-06-23 | The State Of Israel Atomic Energy Commission, Soreq Nuclear Research Center | Method and system for determining a lower-bound density of a body |
US5212717A (en) * | 1990-06-27 | 1993-05-18 | Kabushiki Kaisha Toshiba | Computed tomography scanner apparatus |
US5070519A (en) * | 1990-10-04 | 1991-12-03 | Hologic, Inc. | Selective equalization radiography |
US5218623A (en) * | 1990-11-14 | 1993-06-08 | Kabushiki Kaisha Toshiba | Method and apparatus for specifying slice planes in x-ray computed tomography |
US5260982A (en) * | 1991-05-31 | 1993-11-09 | Kabushiki Kaisha Toshiba | Scattered radiation imaging apparatus |
US5182764A (en) * | 1991-10-03 | 1993-01-26 | Invision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
Cited By (655)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE36415E (en) * | 1994-02-08 | 1999-11-30 | Analogic Corporation | X-ray tomography system with gantry pivot and translation control |
WO1996013839A1 (en) * | 1994-10-31 | 1996-05-09 | Lockheed Martin Specialty Components, Inc. | Inspection system and spatial resolution technique for detecting explosives using combined neutron interrogation and x-ray imaging |
US5754617A (en) * | 1995-03-28 | 1998-05-19 | Hitachi, Ltd. | X-ray CT inspection equipment for container and method of inspecting container using x-ray CT inspection |
WO1997004374A2 (en) * | 1995-07-17 | 1997-02-06 | Billings Roger E | Distributed data processing network |
WO1997004374A3 (en) * | 1995-07-17 | 1997-04-10 | Roger E Billings | Distributed data processing network |
US5668342A (en) * | 1995-12-07 | 1997-09-16 | Discher; Stephen R. W. | Apparatus and method for detection and neutralization of concealed explosives |
US5699400A (en) * | 1996-05-08 | 1997-12-16 | Vivid Technologies, Inc. | Operator console for article inspection systems |
US5870449A (en) * | 1996-05-08 | 1999-02-09 | Vivid Technologies, Inc. | Operator console for article inspection systems |
EP0897535A1 (en) * | 1996-05-08 | 1999-02-24 | Vivid Technologies, Inc. | Operator console for article inspection systems |
EP0897535A4 (en) * | 1996-05-08 | 2002-11-06 | Vivid Tech Inc | Operator console for article inspection systems |
US5661774A (en) * | 1996-06-27 | 1997-08-26 | Analogic Corporation | Dual energy power supply |
US5818897A (en) * | 1996-06-27 | 1998-10-06 | Analogic Corporation | Quadrature transverse CT detection system |
EP0816873B1 (en) * | 1996-06-27 | 2002-10-09 | Analogic Corporation | Quadrature transverse computed tomography detection system |
EP0825457A2 (en) * | 1996-08-19 | 1998-02-25 | Analogic Corporation | Multiple angle pre-screening tomographic systems and methods |
US5796802A (en) * | 1996-08-19 | 1998-08-18 | Analogic Corporation | Multiple angle pre-screening tomographic systems and methods |
EP0825457A3 (en) * | 1996-08-19 | 2002-02-13 | Analogic Corporation | Multiple angle pre-screening tomographic systems and methods |
US5740221A (en) * | 1996-10-29 | 1998-04-14 | Morton International, Inc. | Airbag inflator x-ray inspection apparatus with rotating entry and exit doors |
DE19721980A1 (en) * | 1997-05-26 | 1998-10-01 | Siemens Ag | X-ray luggage examination system |
WO1999019713A1 (en) | 1997-10-10 | 1999-04-22 | Analogic Corporation | Area detector array for computed tomography scanning system |
US6272230B1 (en) * | 1998-02-11 | 2001-08-07 | Analogic Corporation | Apparatus and method for optimizing detection of objects in computed tomography data |
US6094472A (en) * | 1998-04-14 | 2000-07-25 | Rapiscan Security Products, Inc. | X-ray backscatter imaging system including moving body tracking assembly |
US6236709B1 (en) | 1998-05-04 | 2001-05-22 | Ensco, Inc. | Continuous high speed tomographic imaging system and method |
US6430255B2 (en) | 1998-11-30 | 2002-08-06 | Invision Technologies, Inc. | Nonintrusive inspection system |
US7050536B1 (en) * | 1998-11-30 | 2006-05-23 | Invision Technologies, Inc. | Nonintrusive inspection system |
US6590956B2 (en) | 1998-11-30 | 2003-07-08 | Invision Technologies, Inc. | Nonintrusive inspection system |
US6690766B2 (en) | 1998-11-30 | 2004-02-10 | Invision Technologies, Inc. | Collimator for a detector array and a nonintrusive inspection apparatus including a collimator |
US20020071524A1 (en) * | 1998-11-30 | 2002-06-13 | Gerhard Renkart | Nonintrusive inspection system |
US6647091B2 (en) | 1998-11-30 | 2003-11-11 | Invision Technologies, Inc. | Nonintrusive inspection apparatus |
US6195444B1 (en) * | 1999-01-12 | 2001-02-27 | Analogic Corporation | Apparatus and method for detecting concealed objects in computed tomography data |
US6345113B1 (en) * | 1999-01-12 | 2002-02-05 | Analogic Corporation | Apparatus and method for processing object data in computed tomography data using object projections |
US6185272B1 (en) | 1999-03-15 | 2001-02-06 | Analogic Corporation | Architecture for CT scanning system |
FR2801104A1 (en) * | 1999-11-13 | 2001-05-18 | Heimann Systems Gmbh & Co | X-ray baggage scanner, has separate coarse and fine scan units speeds location of explosives |
NL1016472C2 (en) * | 1999-11-13 | 2004-09-16 | Heimann Systems Gmbh & Co | Method and device for detecting inadmissible objects and travel luggage. |
US6839406B2 (en) * | 1999-11-13 | 2005-01-04 | Smiths Heimann Gmbh | Apparatus and method for detecting items in objects |
DE19954662B4 (en) * | 1999-11-13 | 2004-06-03 | Smiths Heimann Gmbh | Apparatus and method for detecting unauthorized luggage items |
DE19954662A1 (en) * | 1999-11-13 | 2001-06-07 | Heimann Systems Gmbh & Co | Device and method for detecting illegal baggage items |
US20030169843A1 (en) * | 1999-11-13 | 2003-09-11 | Hermann Ries | Apparatus and method for detecting items in objects |
US6292529B1 (en) | 1999-12-15 | 2001-09-18 | Analogic Corporation | Two-dimensional X-ray detector array for CT applications |
US6876722B2 (en) * | 2000-04-06 | 2005-04-05 | Hamamatsu Photonics K.K. | X-ray inspection system |
US20030142784A1 (en) * | 2000-04-06 | 2003-07-31 | Makoto Suzuki | X-ray inspection system |
US7356117B2 (en) | 2000-04-06 | 2008-04-08 | Hamamatsu Photonics K.K. | X-ray inspection system |
US20050100130A1 (en) * | 2000-04-06 | 2005-05-12 | Hamamatsu Photonics K.K. | X-ray inspection system |
US6556653B2 (en) | 2000-05-25 | 2003-04-29 | University Of New Brunswick | Non-rotating X-ray system for three-dimensional, three-parameter imaging |
US9370333B2 (en) | 2000-08-21 | 2016-06-21 | Biosensors International Group, Ltd. | Radioactive-emission-measurement optimization to specific body structures |
US8620046B2 (en) | 2000-08-21 | 2013-12-31 | Biosensors International Group, Ltd. | Radioactive-emission-measurement optimization to specific body structures |
US8909325B2 (en) | 2000-08-21 | 2014-12-09 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US8565860B2 (en) | 2000-08-21 | 2013-10-22 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system |
US8489176B1 (en) | 2000-08-21 | 2013-07-16 | Spectrum Dynamics Llc | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US7000827B2 (en) | 2000-09-01 | 2006-02-21 | Heimann Systems Gmbh | Operator unit for an X-ray examining apparatus |
US6837422B1 (en) * | 2000-09-01 | 2005-01-04 | Heimann Systems Gmbh | Service unit for an X-ray examining device |
US20040066890A1 (en) * | 2000-12-15 | 2004-04-08 | Dalmijn Wijnand Ludo | Method and apparatus for analysing and sorting a flow of material |
WO2003027653A2 (en) * | 2000-12-27 | 2003-04-03 | Rapiscan Security Products Inc. | Method and apparatus for discrimination of objects by physical characteristics using a limited-view three-dimensional reconstitution |
WO2003027653A3 (en) * | 2000-12-27 | 2003-11-20 | Rapiscan Security Products Inc | Method and apparatus for discrimination of objects by physical characteristics using a limited-view three-dimensional reconstitution |
US7365672B2 (en) | 2001-03-16 | 2008-04-29 | Battelle Memorial Institute | Detection of a concealed object |
US20040090359A1 (en) * | 2001-03-16 | 2004-05-13 | Mcmakin Douglas L. | Detecting concealed objects at a checkpoint |
US20090140907A1 (en) * | 2001-03-16 | 2009-06-04 | Battelle Memorial Institute | Detection of a concealed object |
US7834802B2 (en) | 2001-03-16 | 2010-11-16 | Battelle Memorial Institute | Detection of a concealed object |
US7405692B2 (en) | 2001-03-16 | 2008-07-29 | Battelle Memorial Institute | Detecting concealed objects at a checkpoint |
US20040140924A1 (en) * | 2001-03-16 | 2004-07-22 | Keller Paul E. | Detection of a concealed object |
AU2002307053B2 (en) * | 2001-04-03 | 2007-07-05 | L-3 Communications Security And Detection Systems | X-ray inspection system |
US6707879B2 (en) * | 2001-04-03 | 2004-03-16 | L-3 Communications Security And Detection Systems | Remote baggage screening system, software and method |
WO2002082306A1 (en) * | 2001-04-03 | 2002-10-17 | L-3 Communications Security & Detection Systems | A remote baggage screening system, software and method |
WO2002082125A1 (en) * | 2001-04-03 | 2002-10-17 | L-3 Communications Security & Detection Systems | X-ray inspection system |
US20040120456A1 (en) * | 2001-04-03 | 2004-06-24 | Ellenbogen Michael P. | X-ray inspection system |
US7139406B2 (en) * | 2001-04-03 | 2006-11-21 | L-3 Communications Security And Detection Systems | Remote baggage screening system, software and method |
US20070195994A1 (en) * | 2001-04-03 | 2007-08-23 | L-3 Communications Security And Detection Systems | Remote baggage screening system, software and method |
US20020186862A1 (en) * | 2001-04-03 | 2002-12-12 | Mcclelland Keith M. | Remote baggage screening system, software and method |
US6968034B2 (en) | 2001-04-03 | 2005-11-22 | L-3 Communications Security And Detection Systems, Inc. | X-ray inspection system |
AU2002303207B2 (en) * | 2001-04-03 | 2009-01-22 | L-3 Communications Security And Detection Systems, Inc. | A remote baggage screening system, software and method |
US6856667B2 (en) | 2001-04-03 | 2005-02-15 | L-3 Communications Security And Detection Systems Corporation Delaware | X-ray inspection system |
US20050031076A1 (en) * | 2001-04-03 | 2005-02-10 | L-3 Communications Security And Detections System | Remote baggage screening method |
US20050008120A1 (en) * | 2001-04-03 | 2005-01-13 | L-3 Communications Security And Detection Systems Corporation Delaware | X-ray inspection system |
US20050008119A1 (en) * | 2001-04-03 | 2005-01-13 | L-3 Communications Security And Detections Systems | Remote baggage screening system, software and method |
US6721391B2 (en) | 2001-04-03 | 2004-04-13 | L-3 Communications Security And Detection Systems | Remote baggage screening system, software and method |
US7020242B2 (en) * | 2001-04-03 | 2006-03-28 | L-3 Communications Security And Detection Systems, Inc. | X-ray inspection system |
US6778681B2 (en) * | 2001-05-09 | 2004-08-17 | Invision Technologies, Inc. | Analysis and presentation of internal features of logs |
WO2003029844A2 (en) * | 2001-10-01 | 2003-04-10 | L-3 Communications Security & Detection Systems | Remote data access |
WO2003029844A3 (en) * | 2001-10-01 | 2003-10-30 | L 3 Comm Security & Detection | Remote data access |
US20030085163A1 (en) * | 2001-10-01 | 2003-05-08 | Chan Chin F. | Remote data access |
US20060274916A1 (en) * | 2001-10-01 | 2006-12-07 | L-3 Communications Security And Detection Systems | Remote data access |
US8031903B2 (en) | 2001-10-01 | 2011-10-04 | L-3 Communications Security And Detection Systems, Inc. | Networked security system |
US7020241B2 (en) * | 2001-10-05 | 2006-03-28 | Heimann Systems Gmbh | Method and device for detecting a given material in an object using electromagnetic rays |
US20030190011A1 (en) * | 2001-10-05 | 2003-10-09 | Knut Beneke | Method and device for detecting a given material in an object using electromagnetic rays |
US20060104414A1 (en) * | 2002-01-30 | 2006-05-18 | Mayo William E | Combinatorial contraband detection using energy dispersive x-ray diffraction |
US7308077B2 (en) | 2002-02-06 | 2007-12-11 | L-3 Communications Security and Detection Systems Corporation | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
US20050094765A1 (en) * | 2002-02-06 | 2005-05-05 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a ct scanner |
US20030147489A1 (en) * | 2002-02-06 | 2003-08-07 | Bijjani Richard R. | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US6944264B2 (en) | 2002-02-06 | 2005-09-13 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US20050053184A1 (en) * | 2002-02-06 | 2005-03-10 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US6788761B2 (en) | 2002-02-06 | 2004-09-07 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US20040101102A1 (en) * | 2002-02-06 | 2004-05-27 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
WO2003067770A3 (en) * | 2002-02-06 | 2004-06-10 | L 3 Comm Security & Detection | Method and apparatus for transmitting information about a target object between a prescanner and a ct scanner |
EP2508872A1 (en) * | 2002-02-06 | 2012-10-10 | L-3 Communications Security & Detection Systems | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US7023957B2 (en) * | 2002-02-06 | 2006-04-04 | L-3 Communications Security And Detection Systems, Inc. | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US6816571B2 (en) * | 2002-02-06 | 2004-11-09 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US20040101098A1 (en) * | 2002-02-06 | 2004-05-27 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US20050111619A1 (en) * | 2002-02-06 | 2005-05-26 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for target transmitting information about a target object between a prescanner and a CT scanner |
US20040022356A1 (en) * | 2002-02-15 | 2004-02-05 | Nikola Subotic | Multi-phenomenology, decision-directed baggage scanning apparatus and method |
US7162005B2 (en) | 2002-07-19 | 2007-01-09 | Varian Medical Systems Technologies, Inc. | Radiation sources and compact radiation scanning systems |
US20040057554A1 (en) * | 2002-07-19 | 2004-03-25 | Paul Bjorkholm | Radiation sources and compact radiation scanning systems |
US10976465B2 (en) | 2002-07-23 | 2021-04-13 | Rapiscan Systems, Inc. | Two-sided, multi-energy imaging system and method for the inspection of cargo |
US20090202037A1 (en) * | 2002-07-23 | 2009-08-13 | Bryan Allman | Self-Contained Mobile Inspection System and Method |
US8687765B2 (en) | 2002-07-23 | 2014-04-01 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
US7486768B2 (en) * | 2002-07-23 | 2009-02-03 | Rapiscan Security Products, Inc. | Self-contained mobile inspection system and method |
US7720195B2 (en) | 2002-07-23 | 2010-05-18 | Rapiscan Security Products, Inc. | Self-contained mobile inspection system and method |
US20100189226A1 (en) * | 2002-07-23 | 2010-07-29 | Andreas Kotowski | Rotatable boom cargo scanning system |
US11143783B2 (en) | 2002-07-23 | 2021-10-12 | Rapiscan Systems, Inc. | Four-sided imaging system and method for detection of contraband |
US7783004B2 (en) | 2002-07-23 | 2010-08-24 | Rapiscan Systems, Inc. | Cargo scanning system |
US7322745B2 (en) * | 2002-07-23 | 2008-01-29 | Rapiscan Security Products, Inc. | Single boom cargo scanning system |
US8929509B2 (en) | 2002-07-23 | 2015-01-06 | Rapiscan Systems, Inc. | Four-sided imaging system and method for detection of contraband |
US7817776B2 (en) | 2002-07-23 | 2010-10-19 | Rapiscan Systems, Inc. | Cargo scanning system |
US8668386B2 (en) | 2002-07-23 | 2014-03-11 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US20070217572A1 (en) * | 2002-07-23 | 2007-09-20 | Andreas Kotowski | Single boom cargo scanning system |
US10670769B2 (en) | 2002-07-23 | 2020-06-02 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US7876880B2 (en) | 2002-07-23 | 2011-01-25 | Rapiscan Systems, Inc. | Single boom cargo scanning system |
US7519148B2 (en) | 2002-07-23 | 2009-04-14 | Rapiscan Security Products, Inc. | Single boom cargo scanning system |
US20110064192A1 (en) * | 2002-07-23 | 2011-03-17 | Edward James Morton | Four Sided Imaging System and Method for Detection of Contraband |
US10007019B2 (en) | 2002-07-23 | 2018-06-26 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US9958569B2 (en) | 2002-07-23 | 2018-05-01 | Rapiscan Systems, Inc. | Mobile imaging system and method for detection of contraband |
US9020096B2 (en) | 2002-07-23 | 2015-04-28 | Rapiscan Systems, Inc. | Self contained mobile inspection system and method |
US7517149B2 (en) | 2002-07-23 | 2009-04-14 | Rapiscan Security Products, Inc. | Cargo scanning system |
US8503605B2 (en) | 2002-07-23 | 2013-08-06 | Rapiscan Systems, Inc. | Four sided imaging system and method for detection of contraband |
US20110116597A1 (en) * | 2002-07-23 | 2011-05-19 | Neeraj Agrawal | Cargo Scanning System |
US7963695B2 (en) | 2002-07-23 | 2011-06-21 | Rapiscan Systems, Inc. | Rotatable boom cargo scanning system |
US9025731B2 (en) | 2002-07-23 | 2015-05-05 | Rapiscan Systems, Inc. | Cargo scanning system |
US7995705B2 (en) | 2002-07-23 | 2011-08-09 | Rapiscan Security Products, Inc. | Self-contained mobile inspection system and method |
US8491189B2 (en) | 2002-07-23 | 2013-07-23 | Rapiscan Systems, Inc. | Radiation source apparatus |
US20080075232A1 (en) * | 2002-07-23 | 2008-03-27 | Neeraj Agrawal | Cargo Scanning System |
US20080165926A1 (en) * | 2002-07-23 | 2008-07-10 | Andreas Kotowski | Single Boom Cargo Scanning System |
US20090245462A1 (en) * | 2002-07-23 | 2009-10-01 | Neeraj Agrawal | Cargo Scanning System |
US8059781B2 (en) | 2002-07-23 | 2011-11-15 | Rapiscan Systems, Inc. | Cargo scanning system |
US20050157842A1 (en) * | 2002-07-23 | 2005-07-21 | Neeraj Agrawal | Single boom cargo scanning system |
US8275091B2 (en) | 2002-07-23 | 2012-09-25 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US20090116614A1 (en) * | 2002-07-23 | 2009-05-07 | Andreas Kotowski | Cargo Scanning System |
US9223049B2 (en) | 2002-07-23 | 2015-12-29 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
US20060056584A1 (en) * | 2002-07-23 | 2006-03-16 | Bryan Allman | Self-contained mobile inspection system and method |
US9052403B2 (en) | 2002-07-23 | 2015-06-09 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US7369643B2 (en) | 2002-07-23 | 2008-05-06 | Rapiscan Security Products, Inc. | Single boom cargo scanning system |
US8385501B2 (en) | 2002-07-23 | 2013-02-26 | Rapiscan Systems, Inc. | Self contained mobile inspection system and method |
US8356937B2 (en) | 2002-07-23 | 2013-01-22 | Rapiscan Systems, Inc. | Rotatable boom cargo scanning system |
US7103137B2 (en) * | 2002-07-24 | 2006-09-05 | Varian Medical Systems Technology, Inc. | Radiation scanning of objects for contraband |
US20040017888A1 (en) * | 2002-07-24 | 2004-01-29 | Seppi Edward J. | Radiation scanning of objects for contraband |
US20080205583A1 (en) * | 2002-07-24 | 2008-08-28 | Seppi Edward J | Radiation scanning of objects for contraband |
US7369640B2 (en) * | 2002-07-24 | 2008-05-06 | Varian Medical Systems Technologies, Inc. | Radiation scanning of objects for contraband |
US20070003003A1 (en) * | 2002-07-24 | 2007-01-04 | Seppi Edward J | Radiation scanning of objects for contraband |
US7672422B2 (en) | 2002-07-24 | 2010-03-02 | Varian Medical Systems, Inc. | Radiation scanning of objects for contraband |
US8000436B2 (en) | 2002-07-24 | 2011-08-16 | Varian Medical Systems, Inc. | Radiation scanning units including a movable platform |
WO2004010127A1 (en) * | 2002-07-24 | 2004-01-29 | Varian Medical Systems Inc. | Radiation scanning of objects for contraband |
US20040199684A1 (en) * | 2002-09-27 | 2004-10-07 | Leblanc Wilf | Method and system for an adaptive multimode media queue |
JP2006502386A (en) * | 2002-10-02 | 2006-01-19 | リビール イメージング テクノロジーズ, インコーポレイテッド | Folded array CT luggage scanner |
US20050169423A1 (en) * | 2002-10-02 | 2005-08-04 | L-3 Communications Security & Detection Systems, Inc. | Folded array CT baggage scanner |
US7224765B2 (en) | 2002-10-02 | 2007-05-29 | Reveal Imaging Technologies, Inc. | Computed tomography system |
WO2004031755A3 (en) * | 2002-10-02 | 2004-07-29 | Reveal Imaging Technologies In | Folded array ct baggage scanner |
US20050249330A1 (en) * | 2002-10-02 | 2005-11-10 | L-3 Communications Security And Detection Systems, Inc. | Folded array CT baggage scanner |
US20040120454A1 (en) * | 2002-10-02 | 2004-06-24 | Michael Ellenbogen | Folded array CT baggage scanner |
AU2003282723B2 (en) * | 2002-10-02 | 2009-04-23 | Reveal Imaging Technologies, Inc. | Folded array CT baggage scanner |
JP2009258117A (en) * | 2002-10-02 | 2009-11-05 | Reveal Imaging Technologies Inc | Folding array computer tomography (ct) baggage scanner |
US7164747B2 (en) | 2002-10-02 | 2007-01-16 | Reveal Imaging Technologies, Inc. | Folded array CT baggage scanner |
US20050169422A1 (en) * | 2002-10-02 | 2005-08-04 | L-3 Communications Security & Detection | Computed tomography system |
US7123681B2 (en) | 2002-10-02 | 2006-10-17 | L-3 Communications Security And Detection Systems, Inc. | Folded array CT baggage scanner |
US7016459B2 (en) | 2002-10-02 | 2006-03-21 | L-3 Communications Security And Detection Systems, Inc. | Folded array CT baggage scanner |
US20040077849A1 (en) * | 2002-10-16 | 2004-04-22 | Orchid Chemicals & Pharmaceuticals Limited | Process for the preparation of cefadroxil |
US7023956B2 (en) | 2002-11-11 | 2006-04-04 | Lockheed Martin Corporaiton | Detection methods and system using sequenced technologies |
US20060262901A1 (en) * | 2002-11-11 | 2006-11-23 | Lockheed Martin Corporation | Detection methods and systems using sequenced technologies |
US20060008051A1 (en) * | 2002-11-11 | 2006-01-12 | Lockheed Martin Corporation | Detection methods and system using sequenced technologies |
US7461032B2 (en) | 2002-11-11 | 2008-12-02 | Lockheed Martin Corporation | Detection methods and systems using sequenced technologies |
US7409039B2 (en) | 2002-11-19 | 2008-08-05 | Ge Homeland Protection, Inc. | X-ray technique-based nonintrusive inspection apparatus |
US6859518B2 (en) | 2002-11-19 | 2005-02-22 | Invision Technologies, Inc. | X-ray technique-based nonintrusive inspection apparatus |
US20040096030A1 (en) * | 2002-11-19 | 2004-05-20 | Banchieri Andrew J. | X-ray technique-based nonintrusive inspection apparatus |
US20050013405A1 (en) * | 2002-11-19 | 2005-01-20 | Banchieri Andrew J. | X-ray technique-based nonintrusive inspection apparatus |
US20040101097A1 (en) * | 2002-11-25 | 2004-05-27 | Kyoichiro Wakayama | Apparatus and method for detecting threats |
US7260173B2 (en) | 2002-11-25 | 2007-08-21 | Hitachi, Ltd. | Apparatus and method for detecting threats |
US20060023835A1 (en) * | 2002-12-04 | 2006-02-02 | Seppi Edward J | Radiation scanning units with reduced detector requirements |
WO2004051311A2 (en) | 2002-12-04 | 2004-06-17 | Varian Medical Systems Technologies, Inc. | Radiation scanning units including a movable platform |
US7672426B2 (en) | 2002-12-04 | 2010-03-02 | Varian Medical Systems, Inc. | Radiation scanning units with reduced detector requirements |
US7356115B2 (en) | 2002-12-04 | 2008-04-08 | Varian Medical Systems Technology, Inc. | Radiation scanning units including a movable platform |
US20040109532A1 (en) * | 2002-12-04 | 2004-06-10 | John Ford | Radiation scanning units including a movable platform |
US7062011B1 (en) | 2002-12-10 | 2006-06-13 | Analogic Corporation | Cargo container tomography scanning system |
US20050008118A1 (en) * | 2003-01-23 | 2005-01-13 | Michael Ellenbogen | System and method for CT scanning of baggage |
US7333589B2 (en) * | 2003-01-23 | 2008-02-19 | Reveal Imaging Technologies | System and method for CT scanning of baggage |
US7046761B2 (en) | 2003-01-23 | 2006-05-16 | Reveal Imaging Technologies, Inc. | System and method for CT scanning of baggage |
JP2009271080A (en) * | 2003-01-23 | 2009-11-19 | Reveal Imaging Technologies Inc | System and method for ct scanning of hand baggage |
JP2006517030A (en) * | 2003-01-23 | 2006-07-13 | リビール イメージング テクノロジーズ, インコーポレイテッド | CT scan system and CT scan method for baggage |
US20060198495A1 (en) * | 2003-01-23 | 2006-09-07 | Reveal Imaging Technologies | System and method for CT scanning of baggage |
US20060203960A1 (en) * | 2003-02-13 | 2006-09-14 | Koninklijke Philips Electronics N.V. | Method and device for examining an object |
WO2004072685A1 (en) * | 2003-02-13 | 2004-08-26 | Philips Intellectual Property & Standards Gmbh | Method and device for examining an object |
US7263160B2 (en) * | 2003-02-13 | 2007-08-28 | Koninklijke Philips Electronics N.V. | Method and device for examining an object |
CN1327249C (en) * | 2003-02-13 | 2007-07-18 | 皇家飞利浦电子股份有限公司 | Method and device for examining an object |
US20060083346A1 (en) * | 2003-02-24 | 2006-04-20 | Koninklijke Philips Electronics N.V. | Automatic material discrimination by using computer tomography |
JP2006518849A (en) * | 2003-02-24 | 2006-08-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Automatic substance identification by using computer tomography |
US7529341B2 (en) | 2003-02-24 | 2009-05-05 | Koninklijke Philips Electronics N.V. | Automatic material discrimination by using computer tomography |
CN100339727C (en) * | 2003-02-24 | 2007-09-26 | 皇家飞利浦电子股份有限公司 | Automatic material discrimination by using computer tomography |
WO2004074871A1 (en) * | 2003-02-24 | 2004-09-02 | Philips Intellectual Property & Standards Gmbh | Automatic material discrimination by using computer tomography |
WO2004090576A2 (en) * | 2003-04-02 | 2004-10-21 | Reveal Imaging Technologies, Inc. | System and method for detection of explosives in baggage |
WO2004090576A3 (en) * | 2003-04-02 | 2005-03-03 | Reveal Imaging Technologies In | System and method for detection of explosives in baggage |
US20040258199A1 (en) * | 2003-04-02 | 2004-12-23 | Michael Ellenbogen | System and method for resolving threats in automated explosives detection in baggage and other parcels |
US20070121783A1 (en) * | 2003-04-02 | 2007-05-31 | Reveal Imaging Technologies | System and method for resolving threats in automated explosives detection in baggage and other parcels |
US7116751B2 (en) | 2003-04-02 | 2006-10-03 | Reveal Imaging Technologies, Inc. | System and method for resolving threats in automated explosives detection in baggage and other parcels |
US7092788B2 (en) * | 2003-04-14 | 2006-08-15 | Siemens Aktiengesellschaft | Transport system for articles, in particular containers for baggage pieces |
US20040200693A1 (en) * | 2003-04-14 | 2004-10-14 | Siemens Aktiengesellschaft | Transport system for articles, in particular containers for baggage pieces |
US20090274277A1 (en) * | 2003-04-25 | 2009-11-05 | Edward James Morton | X-Ray Sources |
US8223919B2 (en) | 2003-04-25 | 2012-07-17 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
US9442082B2 (en) | 2003-04-25 | 2016-09-13 | Rapiscan Systems, Inc. | X-ray inspection system and method |
US8837669B2 (en) | 2003-04-25 | 2014-09-16 | Rapiscan Systems, Inc. | X-ray scanning system |
US9618648B2 (en) | 2003-04-25 | 2017-04-11 | Rapiscan Systems, Inc. | X-ray scanners |
US7664230B2 (en) | 2003-04-25 | 2010-02-16 | Rapiscan Systems, Inc. | X-ray tubes |
US7724868B2 (en) | 2003-04-25 | 2010-05-25 | Rapiscan Systems, Inc. | X-ray monitoring |
US9675306B2 (en) | 2003-04-25 | 2017-06-13 | Rapiscan Systems, Inc. | X-ray scanning system |
US9747705B2 (en) | 2003-04-25 | 2017-08-29 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US7929663B2 (en) | 2003-04-25 | 2011-04-19 | Rapiscan Systems, Inc. | X-ray monitoring |
US8804899B2 (en) | 2003-04-25 | 2014-08-12 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US8885794B2 (en) | 2003-04-25 | 2014-11-11 | Rapiscan Systems, Inc. | X-ray tomographic inspection system for the identification of specific target items |
US9001973B2 (en) | 2003-04-25 | 2015-04-07 | Rapiscan Systems, Inc. | X-ray sources |
US8094784B2 (en) | 2003-04-25 | 2012-01-10 | Rapiscan Systems, Inc. | X-ray sources |
US20070172024A1 (en) * | 2003-04-25 | 2007-07-26 | Morton Edward J | X-ray scanning system |
US20070172023A1 (en) * | 2003-04-25 | 2007-07-26 | Cxr Limited | Control means for heat load in x-ray scanning apparatus |
US10175381B2 (en) | 2003-04-25 | 2019-01-08 | Rapiscan Systems, Inc. | X-ray scanners having source points with less than a predefined variation in brightness |
US7903789B2 (en) | 2003-04-25 | 2011-03-08 | Rapiscan Systems, Inc. | X-ray tube electron sources |
US9020095B2 (en) | 2003-04-25 | 2015-04-28 | Rapiscan Systems, Inc. | X-ray scanners |
US10483077B2 (en) | 2003-04-25 | 2019-11-19 | Rapiscan Systems, Inc. | X-ray sources having reduced electron scattering |
US20080144774A1 (en) * | 2003-04-25 | 2008-06-19 | Crx Limited | X-Ray Tubes |
US7684538B2 (en) | 2003-04-25 | 2010-03-23 | Rapiscan Systems, Inc. | X-ray scanning system |
US10591424B2 (en) | 2003-04-25 | 2020-03-17 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
US8451974B2 (en) | 2003-04-25 | 2013-05-28 | Rapiscan Systems, Inc. | X-ray tomographic inspection system for the identification of specific target items |
US11796711B2 (en) | 2003-04-25 | 2023-10-24 | Rapiscan Systems, Inc. | Modular CT scanning system |
US10901112B2 (en) | 2003-04-25 | 2021-01-26 | Rapiscan Systems, Inc. | X-ray scanning system with stationary x-ray sources |
US8243876B2 (en) | 2003-04-25 | 2012-08-14 | Rapiscan Systems, Inc. | X-ray scanners |
US20090316855A1 (en) * | 2003-04-25 | 2009-12-24 | Edward James Morton | Control Means for Heat Load in X-Ray Scanning Apparatus |
US7564939B2 (en) | 2003-04-25 | 2009-07-21 | Rapiscan Systems, Inc. | Control means for heat load in X-ray scanning apparatus |
US8085897B2 (en) | 2003-04-25 | 2011-12-27 | Rapiscan Systems, Inc. | X-ray scanning system |
US9113839B2 (en) | 2003-04-25 | 2015-08-25 | Rapiscon Systems, Inc. | X-ray inspection system and method |
US20100172476A1 (en) * | 2003-04-25 | 2010-07-08 | Edward James Morton | X-Ray Tubes |
US20100195788A1 (en) * | 2003-04-25 | 2010-08-05 | Edward James Morton | X-Ray Scanning System |
US9183647B2 (en) | 2003-04-25 | 2015-11-10 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
US7769133B2 (en) | 2003-06-20 | 2010-08-03 | Rapiscan Systems, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US20090161825A1 (en) * | 2003-06-20 | 2009-06-25 | James Carver | Relocatable X-Ray Imaging System and Method for Inspecting Commercial Vehicles and Cargo Containers |
US7991113B2 (en) | 2003-06-20 | 2011-08-02 | Rapiscan Security Products, Inc. | Relocatable x-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US9285498B2 (en) | 2003-06-20 | 2016-03-15 | Rapiscan Systems, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US6876322B2 (en) | 2003-06-26 | 2005-04-05 | Battelle Memorial Institute | Concealed object detection |
US20040263379A1 (en) * | 2003-06-26 | 2004-12-30 | Keller Paul E. | Concealed object detection |
US7197172B1 (en) | 2003-07-01 | 2007-03-27 | Analogic Corporation | Decomposition of multi-energy scan projections using multi-step fitting |
US9042511B2 (en) * | 2003-08-08 | 2015-05-26 | Rapiscan Systems, Inc. | Methods and systems for the rapid detection of concealed objects |
US20050117700A1 (en) * | 2003-08-08 | 2005-06-02 | Peschmann Kristian R. | Methods and systems for the rapid detection of concealed objects |
US9915752B2 (en) | 2003-08-08 | 2018-03-13 | Rapiscan Systems, Inc. | Inspection systems with two X-ray scanners in a first stage inspection system |
EP1526392A2 (en) * | 2003-09-15 | 2005-04-27 | Rapiscan Security Products Inc. | Methods and systems for the rapid detection of concealed objects |
US7856081B2 (en) * | 2003-09-15 | 2010-12-21 | Rapiscan Systems, Inc. | Methods and systems for rapid detection of concealed objects using fluorescence |
US8138770B2 (en) | 2003-09-15 | 2012-03-20 | Rapiscan Systems, Inc. | Methods and systems for the rapid detection of concealed objects |
US8674706B2 (en) | 2003-09-15 | 2014-03-18 | Rapiscan Systems, Inc. | Methods and systems for the rapid detection of concealed objects |
US20060098773A1 (en) * | 2003-09-15 | 2006-05-11 | Peschmann Kristian R | Methods and systems for rapid detection of concealed objects using fluorescence |
EP1526392A3 (en) * | 2003-09-15 | 2007-01-24 | Rapiscan Security Products Inc. | Methods and systems for the rapid detection of concealed objects |
US9268058B2 (en) | 2003-09-15 | 2016-02-23 | Rapiscan Systems, Inc. | Methods and systems for the rapid detection of concealed objects |
US7366282B2 (en) * | 2003-09-15 | 2008-04-29 | Rapiscan Security Products, Inc. | Methods and systems for rapid detection of concealed objects using fluorescence |
US8428217B2 (en) | 2003-09-15 | 2013-04-23 | Rapiscan Systems, Inc. | Methods and systems for rapid detection of concealed objects |
US20050058242A1 (en) * | 2003-09-15 | 2005-03-17 | Peschmann Kristian R. | Methods and systems for the rapid detection of concealed objects |
US7440537B2 (en) | 2003-10-02 | 2008-10-21 | Reveal Imaging Technologies, Inc. | Folded array CT baggage scanner |
US20070147581A1 (en) * | 2003-10-02 | 2007-06-28 | Reveal Imaging Technologies, Inc. | Folded array CT baggage scanner |
EP1522878A1 (en) * | 2003-10-06 | 2005-04-13 | YXLON International Security GmbH | Method for determining the displacement of luggage in order to scan a suspicious region in the luggage |
US7406192B2 (en) | 2003-10-06 | 2008-07-29 | Ge Homeland Protection, Inc. | Method for determining the change in position of an item of luggage in order to examine a suspect region in this item of luggage |
US20050123217A1 (en) * | 2003-10-06 | 2005-06-09 | Yxlon International Security Gmbh, Incorporation | Method for determining the change in position of an item of luggage in order to examine a suspect region in this item of luggage |
US7270227B2 (en) | 2003-10-29 | 2007-09-18 | Lockheed Martin Corporation | Material handling system and method of use |
US20070029165A1 (en) * | 2003-10-29 | 2007-02-08 | Bender Tonya K | Material handling system and method of use |
US20080191858A1 (en) * | 2003-11-12 | 2008-08-14 | Sondre Skatter | System for detecting contraband |
US7366281B2 (en) * | 2003-11-12 | 2008-04-29 | Ge Invision Inc. | System and method for detecting contraband |
US20060165217A1 (en) * | 2003-11-12 | 2006-07-27 | Sondre Skatter | System and method for detecting contraband |
US7881429B2 (en) | 2003-11-12 | 2011-02-01 | Morpho Detection, Inc. | System for detecting contraband |
US7734066B2 (en) * | 2003-11-19 | 2010-06-08 | L-3 Communications Security And Detection Systems, Inc. | Security system with distributed computing |
US20050198226A1 (en) * | 2003-11-19 | 2005-09-08 | Delia Paul | Security system with distributed computing |
US20080005804A1 (en) * | 2003-11-20 | 2008-01-03 | International Business Machines Corporation | Security screening of electronic devices by device identifier |
US7856663B2 (en) | 2003-11-20 | 2010-12-21 | International Business Machines Corporation | Security screening of electronic devices by device identifier |
US7290287B2 (en) * | 2003-11-20 | 2007-10-30 | International Business Machines Corporation | Security screening of electronic devices by device identifier |
US20050114690A1 (en) * | 2003-11-20 | 2005-05-26 | International Business Machines Corporation | Security screening of electronic devices by device identifier |
US20050135560A1 (en) * | 2003-12-17 | 2005-06-23 | Ehud Dafni | Portable computed tomography scanner and methods thereof |
US9470801B2 (en) | 2004-01-13 | 2016-10-18 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
US9040016B2 (en) | 2004-01-13 | 2015-05-26 | Biosensors International Group, Ltd. | Diagnostic kit and methods for radioimaging myocardial perfusion |
US10964075B2 (en) | 2004-01-13 | 2021-03-30 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
US8676292B2 (en) | 2004-01-13 | 2014-03-18 | Biosensors International Group, Ltd. | Multi-dimensional image reconstruction |
US20050195939A1 (en) * | 2004-02-11 | 2005-09-08 | Scheinman Elan D. | Contraband detection systems and methods |
US7702068B2 (en) * | 2004-02-11 | 2010-04-20 | Reveal Imaging Technologies, Inc. | Contraband detection systems and methods |
WO2005095931A3 (en) * | 2004-02-11 | 2006-05-18 | Reveal Imaging Technologies In | Contraband detection systems and methods |
US20070147586A1 (en) * | 2004-02-11 | 2007-06-28 | Reveal Imaging Technologies, Inc. | Contraband detection systems and methods |
WO2005095931A2 (en) * | 2004-02-11 | 2005-10-13 | Reveal Imaging Technologies, Inc. | Contraband detection systems and methods |
US7440544B2 (en) | 2004-02-11 | 2008-10-21 | Reveal Imaging Technologies, Inc. | Contraband detection systems and methods |
US7609807B2 (en) * | 2004-02-17 | 2009-10-27 | General Electric Company | CT-Guided system and method for analyzing regions of interest for contraband detection |
US20050180542A1 (en) * | 2004-02-17 | 2005-08-18 | General Electric Company | CT-Guided system and method for analyzing regions of interest for contraband detection |
US20050198513A1 (en) * | 2004-03-04 | 2005-09-08 | International Business Machines Corporation | Security screening of electronic devices by device-reported data |
US7574608B2 (en) | 2004-03-04 | 2009-08-11 | International Business Machines Corporation | Security screening of electronic devices by device-reported data |
US20050206514A1 (en) * | 2004-03-19 | 2005-09-22 | Lockheed Martin Corporation | Threat scanning machine management system |
US7183906B2 (en) | 2004-03-19 | 2007-02-27 | Lockheed Martin Corporation | Threat scanning machine management system |
US7205926B2 (en) | 2004-04-14 | 2007-04-17 | Safeview, Inc. | Multi-source surveillance system |
US7973697B2 (en) | 2004-04-14 | 2011-07-05 | L-3 Communications Security And Detection Systems, Inc. | Surveillance systems and methods with subject-related screening |
US8350747B2 (en) | 2004-04-14 | 2013-01-08 | L-3 Communications Security And Detection Systems, Inc. | Surveillance with subject screening |
US20050231417A1 (en) * | 2004-04-14 | 2005-10-20 | Michael Fleisher | Surveilled subject privacy imaging |
US20050230604A1 (en) * | 2004-04-14 | 2005-10-20 | Rowe Richard L | Multi-sensor surveillance portal |
US7123185B2 (en) | 2004-04-14 | 2006-10-17 | Safeview, Inc. | Enhanced surveilled subject imaging |
US20050232487A1 (en) * | 2004-04-14 | 2005-10-20 | Safeview, Inc. | Active subject privacy imaging |
US7528763B2 (en) | 2004-04-14 | 2009-05-05 | Safeview, Inc. | Millimeter-wave interrogation relating features |
US7180441B2 (en) | 2004-04-14 | 2007-02-20 | Safeview, Inc. | Multi-sensor surveillance portal |
US7265709B2 (en) | 2004-04-14 | 2007-09-04 | Safeview, Inc. | Surveilled subject imaging with object identification |
US20090322873A1 (en) * | 2004-04-14 | 2009-12-31 | L-3 Communications Security And Detection Systems, Inc | Surveillance systems and methods with subject-related screening |
US20080043102A1 (en) * | 2004-04-14 | 2008-02-21 | Safeview, Inc. | Multi-source surveillance system |
US8345918B2 (en) | 2004-04-14 | 2013-01-01 | L-3 Communications Corporation | Active subject privacy imaging |
US20050232459A1 (en) * | 2004-04-14 | 2005-10-20 | Rowe Richard L | Multi-source surveillance portal |
US20050231415A1 (en) * | 2004-04-14 | 2005-10-20 | Michael Fleisher | Surveilled subject imaging with object identification |
US20050231421A1 (en) * | 2004-04-14 | 2005-10-20 | Michael Fleisher | Enhanced surveilled subject imaging |
US20050231416A1 (en) * | 2004-04-14 | 2005-10-20 | Rowe Richard L | Relational millimeter-wave interrogating |
US20060279451A1 (en) * | 2004-04-14 | 2006-12-14 | Safeview, Inc. | Millimeter-wave interrogation relating features |
US7202808B2 (en) | 2004-04-14 | 2007-04-10 | Safeview, Inc. | Surveilled subject privacy imaging |
US20080174401A1 (en) * | 2004-04-14 | 2008-07-24 | L-3 Communications Security And Detection Systems, Inc | Surveillance of subject-associated items with identifiers |
US7277577B2 (en) | 2004-04-26 | 2007-10-02 | Analogic Corporation | Method and system for detecting threat objects using computed tomography images |
US7212113B2 (en) | 2004-05-04 | 2007-05-01 | Lockheed Martin Corporation | Passenger and item tracking with system alerts |
US20050248450A1 (en) * | 2004-05-04 | 2005-11-10 | Lockheed Martin Corporation | Passenger and item tracking with system alerts |
US7190757B2 (en) | 2004-05-21 | 2007-03-13 | Analogic Corporation | Method of and system for computing effective atomic number images in multi-energy computed tomography |
US20050259781A1 (en) * | 2004-05-21 | 2005-11-24 | Zhengrong Ying | Method of and system for computing effective atomic number images in multi-energy computed tomography |
WO2005119297A3 (en) * | 2004-05-27 | 2006-05-11 | Inc L 3 Comm Security And Dete | Contraband detection systems using a large-angle cone beam ct system |
US7324625B2 (en) | 2004-05-27 | 2008-01-29 | L-3 Communications Security And Detection Systems, Inc. | Contraband detection systems using a large-angle cone beam CT system |
US20050276376A1 (en) * | 2004-05-27 | 2005-12-15 | L-3 Communications Security And Detection Systems, Inc. | Contraband detection systems using a large-angle cone beam CT system |
WO2005119297A2 (en) * | 2004-05-27 | 2005-12-15 | L-3 Communications Security And Detection Systems, Inc. | Contraband detection systems using a large-angle cone beam ct system |
US9943278B2 (en) | 2004-06-01 | 2018-04-17 | Spectrum Dynamics Medical Limited | Radioactive-emission-measurement optimization to specific body structures |
US20050271293A1 (en) * | 2004-06-04 | 2005-12-08 | Zhengrong Ying | Method of and system for destreaking the photoelectric image in multi-energy computed tomography |
US7415147B2 (en) | 2004-06-04 | 2008-08-19 | Analogic Corporation | Method of and system for destreaking the photoelectric image in multi-energy computed tomography |
US7327853B2 (en) | 2004-06-09 | 2008-02-05 | Analogic Corporation | Method of and system for extracting 3D bag images from continuously reconstructed 2D image slices in computed tomography |
US20050276468A1 (en) * | 2004-06-09 | 2005-12-15 | Zhengrong Ying | Method of and system for extracting 3D bag images from continuously reconstructed 2D image slices in computed tomography |
US20060002585A1 (en) * | 2004-07-01 | 2006-01-05 | Larson Gregory L | Method of and system for sharp object detection using computed tomography images |
US7302083B2 (en) | 2004-07-01 | 2007-11-27 | Analogic Corporation | Method of and system for sharp object detection using computed tomography images |
US7224763B2 (en) | 2004-07-27 | 2007-05-29 | Analogic Corporation | Method of and system for X-ray spectral correction in multi-energy computed tomography |
US20060023844A1 (en) * | 2004-07-27 | 2006-02-02 | Ram Naidu | Method of and system for X-ray spectral correction in multi-energy computed tomography |
US20060039599A1 (en) * | 2004-08-18 | 2006-02-23 | Anton Deykoon | Method of and system for detecting anomalies in projection images generated by computed tomography scanners |
US7388983B2 (en) | 2004-08-18 | 2008-06-17 | Analogic Corporation | Method of and system for detecting anomalies in projection images generated by computed tomography scanners |
US7203276B2 (en) | 2004-08-27 | 2007-04-10 | University Of New Brunswick | X-ray scatter image reconstruction by balancing of discrepancies between detector responses, and apparatus therefor |
US20060043310A1 (en) * | 2004-08-27 | 2006-03-02 | Arsenault Paul J | X-ray scatter image reconstruction by balancing of discrepancies between detector responses, and apparatus therefor |
US8196482B2 (en) | 2004-09-10 | 2012-06-12 | Qylur Security Systems, Inc. | Apparatus for efficient resource sharing |
US20110167936A1 (en) * | 2004-09-10 | 2011-07-14 | Qylur Security Systems, Inc. | Multi-threat detection portal |
US7337686B2 (en) | 2004-09-10 | 2008-03-04 | Qylur Security Systems, Inc. | Multi-threat detection system |
US20060243071A1 (en) * | 2004-09-10 | 2006-11-02 | Sagi-Dolev Alysia M | Multi-threat detection system |
US8113071B2 (en) | 2004-09-10 | 2012-02-14 | Qylur Security Systems, Inc. | Multi-threat detection portal |
US20080196518A1 (en) * | 2004-09-10 | 2008-08-21 | Qylur Security Systems, Inc. | Apparatus for efficient resource sharing |
US20060056586A1 (en) * | 2004-09-15 | 2006-03-16 | Naohito Uetake | Method and equipment for detecting explosives, etc. |
US20070262275A1 (en) * | 2004-09-23 | 2007-11-15 | Nelson Mitchell C | System, device, and method for detecting and characterizing explosive devices and weapons at safe standoff distances |
WO2006137883A3 (en) * | 2004-09-23 | 2008-12-31 | Mitchell C Nelson | System, device, and method for detecting and characterizing explosive devices and weapons at safe standoff distances |
US7319233B2 (en) * | 2004-09-23 | 2008-01-15 | Material Intelligence, Llc | System, device, and method for detecting and characterizing explosive devices and weapons at safe standoff distances |
US7253766B2 (en) | 2004-09-24 | 2007-08-07 | Battelle Memorial Institute | Three-dimensional surface/contour processing based on electromagnetic radiation interrogation |
US20060066469A1 (en) * | 2004-09-24 | 2006-03-30 | Foote Harlan P | Three-dimensional surface/contour processing based on electromagnetic radiation interrogation |
US7136451B2 (en) | 2004-10-05 | 2006-11-14 | Analogic Corporation | Method of and system for stabilizing high voltage power supply voltages in multi-energy computed tomography |
US20060072703A1 (en) * | 2004-10-05 | 2006-04-06 | Ram Naidu | Method of and system for stabilizing high voltage power supply voltages in multi-energy computed tomography |
US20060078161A1 (en) * | 2004-10-08 | 2006-04-13 | Ge Security Germany Gmbh | Method for determining the change in position of an object in an item of luggage |
US7840030B2 (en) * | 2004-10-08 | 2010-11-23 | Morpho Detection, Inc. | Method for determining the change in position of an object in an item of luggage |
EP1653253A1 (en) | 2004-11-02 | 2006-05-03 | GILARDONI S.p.A. | Electronic system and method for the recognition of materials |
EP1653252A3 (en) * | 2004-11-02 | 2006-08-02 | GILARDONI S.p.A. | Versatile device for effecting safety controls via x-rays |
EP1653252A2 (en) | 2004-11-02 | 2006-05-03 | GILARDONI S.p.A. | Versatile device for effecting safety controles via x-rays |
US8615405B2 (en) | 2004-11-09 | 2013-12-24 | Biosensors International Group, Ltd. | Imaging system customization using data from radiopharmaceutical-associated data carrier |
US8606349B2 (en) | 2004-11-09 | 2013-12-10 | Biosensors International Group, Ltd. | Radioimaging using low dose isotope |
US8620679B2 (en) | 2004-11-09 | 2013-12-31 | Biosensors International Group, Ltd. | Radiopharmaceutical dispensing, administration, and imaging |
US8586932B2 (en) | 2004-11-09 | 2013-11-19 | Spectrum Dynamics Llc | System and method for radioactive emission measurement |
US9943274B2 (en) | 2004-11-09 | 2018-04-17 | Spectrum Dynamics Medical Limited | Radioimaging using low dose isotope |
US8423125B2 (en) | 2004-11-09 | 2013-04-16 | Spectrum Dynamics Llc | Radioimaging |
US8571881B2 (en) | 2004-11-09 | 2013-10-29 | Spectrum Dynamics, Llc | Radiopharmaceutical dispensing, administration, and imaging |
US9316743B2 (en) | 2004-11-09 | 2016-04-19 | Biosensors International Group, Ltd. | System and method for radioactive emission measurement |
US10136865B2 (en) | 2004-11-09 | 2018-11-27 | Spectrum Dynamics Medical Limited | Radioimaging using low dose isotope |
US7386150B2 (en) | 2004-11-12 | 2008-06-10 | Safeview, Inc. | Active subject imaging with body identification |
US20060104480A1 (en) * | 2004-11-12 | 2006-05-18 | Safeview, Inc. | Active subject imaging with body identification |
US8748826B2 (en) | 2004-11-17 | 2014-06-10 | Biosensor International Group, Ltd. | Radioimaging methods using teboroxime and thallium |
US20060239402A1 (en) * | 2004-11-26 | 2006-10-26 | Haifeng Hu | CT method and apparatus for liquid safety-detection with a radiation source |
WO2006056134A1 (en) * | 2004-11-26 | 2006-06-01 | Tsinghua University | Ct security inspection method for liquid by radiation source and its device |
US20060126772A1 (en) * | 2004-11-26 | 2006-06-15 | Nuctech Company Limited | Container inspection system with CT tomographic scanning function |
GB2420683B (en) * | 2004-11-26 | 2009-03-18 | Univ Tsinghua | A computer tomography method and apparatus for identifying a liquid article based on the density of the liquid article |
US7508908B2 (en) | 2004-11-26 | 2009-03-24 | Tsinghua University | CT method and apparatus for liquid safety-detection with a radiation source |
US20080205598A1 (en) * | 2005-01-12 | 2008-08-28 | Koninklijke Philips Electronics, N.V. | Coherent Scatter Computer Tomography Material Identification |
US7145506B2 (en) | 2005-01-21 | 2006-12-05 | Safeview, Inc. | Depth-based surveillance image reconstruction |
US7119731B2 (en) | 2005-01-21 | 2006-10-10 | Safeview, Inc. | Depth-based surveillance imaging |
US20060164285A1 (en) * | 2005-01-21 | 2006-07-27 | Safeview, Inc. | Depth-based surveillance imaging |
US20060164286A1 (en) * | 2005-01-21 | 2006-07-27 | Safeview, Inc. | Frequency-based surveillance imaging |
US20060164287A1 (en) * | 2005-01-21 | 2006-07-27 | Safeview, Inc. | Depth-based surveillance image reconstruction |
US7702069B2 (en) | 2005-02-25 | 2010-04-20 | Rapiscan Security Products, Inc. | X-ray security inspection machine |
US20060227932A1 (en) * | 2005-03-29 | 2006-10-12 | Surescan Corporation | Imaging inspection apparatus |
US7177391B2 (en) | 2005-03-29 | 2007-02-13 | Surescan Corporation | Imaging inspection apparatus |
US9223050B2 (en) | 2005-04-15 | 2015-12-29 | Rapiscan Systems, Inc. | X-ray imaging system having improved mobility |
US7991242B2 (en) | 2005-05-11 | 2011-08-02 | Optosecurity Inc. | Apparatus, method and system for screening receptacles and persons, having image distortion correction functionality |
US7734102B2 (en) | 2005-05-11 | 2010-06-08 | Optosecurity Inc. | Method and system for screening cargo containers |
US7510324B2 (en) | 2005-06-01 | 2009-03-31 | Endicott Interconnect Technologies, Inc. | Method of inspecting articles using imaging inspection apparatus with directional cooling |
US20060274066A1 (en) * | 2005-06-01 | 2006-12-07 | Zhengrong Ying | Method of and system for 3D display of multi-energy computed tomography images |
US7692650B2 (en) * | 2005-06-01 | 2010-04-06 | Analogic Corporation | Method of and system for 3D display of multi-energy computed tomography images |
US20080170670A1 (en) * | 2005-06-01 | 2008-07-17 | Endicott Interconnect Technologies , Inc. | Method of inspecting articles using imaging inspection apparatus with directional cooling |
US20070009084A1 (en) * | 2005-06-01 | 2007-01-11 | Endicott Interconnect Technologies, Inc. | Imaging inspection apparatus with directional cooling |
US20060274891A1 (en) * | 2005-06-01 | 2006-12-07 | Endicott Interconnect Technologies, Inc. | Imaging inspection apparatus with improved cooling |
US7354197B2 (en) | 2005-06-01 | 2008-04-08 | Endicott Interconnect Technologies, Inc. | Imaging inspection apparatus with improved cooling |
US7261466B2 (en) | 2005-06-01 | 2007-08-28 | Endicott Interconnect Technologies, Inc. | Imaging inspection apparatus with directional cooling |
US20080144768A1 (en) * | 2005-06-01 | 2008-06-19 | Endicott Interconnect Technologies, Inc. | Method of making an imaging inspection apparatus with improved cooling |
US7490984B2 (en) | 2005-06-01 | 2009-02-17 | Endicott Interconnect Technologies, Inc. | Method of making an imaging inspection apparatus with improved cooling |
US7684421B2 (en) | 2005-06-09 | 2010-03-23 | Lockheed Martin Corporation | Information routing in a distributed environment |
US20060291623A1 (en) * | 2005-06-14 | 2006-12-28 | L-3 Communications Security And Detection Systems, Inc. | Inspection system with material identification |
US7519152B2 (en) | 2005-06-14 | 2009-04-14 | L-3 Communications Security And Detection Systems, Inc. | Inspection system with material identification |
US7653176B2 (en) | 2005-06-14 | 2010-01-26 | L-3 Communications Security and Detection Systems Inc. | Inspection system with material identification |
US20060291622A1 (en) * | 2005-06-14 | 2006-12-28 | L-3 Communications Security And Detection Systems, Inc. | Inspection system with material identification |
US20070014471A1 (en) * | 2005-07-18 | 2007-01-18 | Sergey Simanovsky | Method of and system for splitting compound objects in multi-energy computed tomography images |
US7539337B2 (en) | 2005-07-18 | 2009-05-26 | Analogic Corporation | Method of and system for splitting compound objects in multi-energy computed tomography images |
US20070014472A1 (en) * | 2005-07-18 | 2007-01-18 | Zhengrong Ying | Method of and system for classifying objects using local distributions of multi-energy computed tomography images |
US7801348B2 (en) * | 2005-07-18 | 2010-09-21 | Analogic Corporation | Method of and system for classifying objects using local distributions of multi-energy computed tomography images |
US8644910B2 (en) | 2005-07-19 | 2014-02-04 | Biosensors International Group, Ltd. | Imaging protocols |
US8837793B2 (en) | 2005-07-19 | 2014-09-16 | Biosensors International Group, Ltd. | Reconstruction stabilizer and active vision |
US7474786B2 (en) | 2005-08-04 | 2009-01-06 | Analogic Corporation | Method of and system for classifying objects using histogram segment features of multi-energy computed tomography images |
US20070031036A1 (en) * | 2005-08-04 | 2007-02-08 | Ram Naidu | Method of and system for classifying objects using histogram segment features of multi-energy computed tomography images |
US20080253509A1 (en) * | 2005-10-06 | 2008-10-16 | Koninklijke Philips Electronics, N.V. | Acquisition Parameter Optimization For Csct |
US9726619B2 (en) | 2005-10-25 | 2017-08-08 | Rapiscan Systems, Inc. | Optimization of the source firing pattern for X-ray scanning systems |
US9208988B2 (en) | 2005-10-25 | 2015-12-08 | Rapiscan Systems, Inc. | Graphite backscattered electron shield for use in an X-ray tube |
US20100059665A1 (en) * | 2005-11-01 | 2010-03-11 | The Regents Of The Universtiy Of California | Contraband detection system |
US7558370B2 (en) * | 2005-11-07 | 2009-07-07 | Sommer Jr Edward J | Method and apparatus for improving identification and control of articles passing through a scanning system |
WO2007089362A2 (en) * | 2005-11-07 | 2007-08-09 | Sommer Jr Edward J | Method and apparatus for improving identification and control of articles passing through a scanning system |
WO2007089362A3 (en) * | 2005-11-07 | 2008-11-20 | Jr Edward J Sommer | Method and apparatus for improving identification and control of articles passing through a scanning system |
US20080260096A1 (en) * | 2005-11-07 | 2008-10-23 | Sommer Edward J | Method and Apparatus for Improving Identification and Control of Articles Passing Through a Scanning System |
US7492856B2 (en) | 2005-12-07 | 2009-02-17 | Ge Security, Inc. | Apparatus and method for providing an orthographic projection from helical scan data |
US7515675B2 (en) * | 2005-12-07 | 2009-04-07 | Ge Security, Inc. | Apparatus and method for providing a near-parallel projection from helical scan data |
US20070140415A1 (en) * | 2005-12-07 | 2007-06-21 | Garms Walter I | Apparatus and method for providing an orthographic projection from helical scan data |
US20070140414A1 (en) * | 2005-12-07 | 2007-06-21 | Walter Garms | Apparatus and method for providing a near-parallel projection from helical scan data |
US7415094B2 (en) | 2005-12-09 | 2008-08-19 | Ge Security, Inc. | Security scanner with bin return device |
US7384194B2 (en) | 2005-12-09 | 2008-06-10 | Ge Security, Inc. | Apparatus and method for providing a shielding means for an X-ray detection system |
US20070133742A1 (en) * | 2005-12-09 | 2007-06-14 | Gatten Ronald A | Apparatus and method for providing a shielding means for an x-ray detection system |
US7614788B2 (en) | 2005-12-09 | 2009-11-10 | Ge Security, Inc. | Apparatus and method for providing a shielding means for an x-ray detection system |
US20070133743A1 (en) * | 2005-12-09 | 2007-06-14 | Tait Johnson | Security scanner with bin return device |
US7949101B2 (en) | 2005-12-16 | 2011-05-24 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US8135110B2 (en) | 2005-12-16 | 2012-03-13 | Rapiscan Systems, Inc. | X-ray tomography inspection systems |
US20120230463A1 (en) * | 2005-12-16 | 2012-09-13 | Rapiscan Systems, Inc. | Data collection, processing and storage systems for x-ray tomographic images |
US9048061B2 (en) | 2005-12-16 | 2015-06-02 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US9638646B2 (en) | 2005-12-16 | 2017-05-02 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US10976271B2 (en) | 2005-12-16 | 2021-04-13 | Rapiscan Systems, Inc. | Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images |
US8625735B2 (en) | 2005-12-16 | 2014-01-07 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US10295483B2 (en) | 2005-12-16 | 2019-05-21 | Rapiscan Systems, Inc. | Data collection, processing and storage systems for X-ray tomographic images |
US8958526B2 (en) * | 2005-12-16 | 2015-02-17 | Rapiscan Systems, Inc. | Data collection, processing and storage systems for X-ray tomographic images |
US8213570B2 (en) | 2006-02-27 | 2012-07-03 | Rapiscan Systems, Inc. | X-ray security inspection machine |
US9310322B2 (en) | 2006-02-27 | 2016-04-12 | Rapiscan Systems, Inc. | X-ray security inspection machine |
US20070297560A1 (en) * | 2006-03-03 | 2007-12-27 | Telesecurity Sciences, Inc. | Method and system for electronic unpacking of baggage and cargo |
US20070211853A1 (en) * | 2006-03-07 | 2007-09-13 | General Electric Company | Systems and methods for estimating presence of a material within a volume of interest using x-ray |
US7471768B2 (en) * | 2006-03-07 | 2008-12-30 | General Electric Company | Systems and methods for estimating presence of a material within a volume of interest using x-ray |
US20070286338A1 (en) * | 2006-03-31 | 2007-12-13 | Sykes Bradley T | Method and system of inspecting baggage |
US7492860B2 (en) | 2006-04-04 | 2009-02-17 | Ge Security, Inc. | Apparatus and method for controlling start and stop operations of a computed tomography imaging system |
US20070230657A1 (en) * | 2006-04-04 | 2007-10-04 | Walter Garms | Apparatus and method for controlling start and stop operations of a computed tomography imaging system |
US7319737B2 (en) * | 2006-04-07 | 2008-01-15 | Satpal Singh | Laminographic system for 3D imaging and inspection |
US20070237293A1 (en) * | 2006-04-07 | 2007-10-11 | Satpal Singh | Laminographic system for 3D imaging and inspection |
US20070269007A1 (en) * | 2006-05-05 | 2007-11-22 | Alan Akery | Multiple pass cargo inspection system |
US8457275B2 (en) | 2006-05-05 | 2013-06-04 | Rapiscan Systems, Inc. | Multiple pass cargo inspection system |
US9279901B2 (en) | 2006-05-05 | 2016-03-08 | Rapiscan Systems, Inc. | Cargo inspection system |
US7526064B2 (en) | 2006-05-05 | 2009-04-28 | Rapiscan Security Products, Inc. | Multiple pass cargo inspection system |
US7860213B2 (en) | 2006-05-05 | 2010-12-28 | Rapiscan Systems, Inc. | Multiple pass cargo inspection system |
US8837670B2 (en) | 2006-05-05 | 2014-09-16 | Rapiscan Systems, Inc. | Cargo inspection system |
US8170177B2 (en) | 2006-05-05 | 2012-05-01 | Rapiscan Systems, Inc. | Multiple pass cargo inspection system |
US20110127426A1 (en) * | 2006-05-05 | 2011-06-02 | Alan Akery | Multiple Pass Cargo Inspection System |
GB2439413A (en) * | 2006-05-08 | 2007-12-27 | Univ Tsinghua | Cargo Security Inspection Method Based On Spiral Scanning |
GB2439413B (en) * | 2006-05-08 | 2011-01-12 | Univ Tsinghua | Cargo security inspection method based on spiral scanning |
US20070280417A1 (en) * | 2006-05-08 | 2007-12-06 | Kejun Kang | Cargo security inspection method and system based on spiral scanning |
US7570737B2 (en) | 2006-05-08 | 2009-08-04 | Tsinghua University | Cargo security inspection method and system based on spiral scanning |
WO2007131348A1 (en) * | 2006-05-11 | 2007-11-22 | Optosecurity Inc. | Method and apparatus for providing threat image projection (tip) in a luggage screening system, and luggage screening system implementing same |
US8894974B2 (en) | 2006-05-11 | 2014-11-25 | Spectrum Dynamics Llc | Radiopharmaceuticals for diagnosis and therapy |
US7899232B2 (en) | 2006-05-11 | 2011-03-01 | Optosecurity Inc. | Method and apparatus for providing threat image projection (TIP) in a luggage screening system, and luggage screening system implementing same |
US7844081B2 (en) | 2006-05-15 | 2010-11-30 | Battelle Memorial Institute | Imaging systems and methods for obtaining and using biometric information |
US20070263907A1 (en) * | 2006-05-15 | 2007-11-15 | Battelle Memorial Institute | Imaging systems and methods for obtaining and using biometric information |
US20100166285A1 (en) * | 2006-08-11 | 2010-07-01 | Koninklijke Philips Electronics N.V. | System and method for acquiring image data |
US7548606B2 (en) * | 2006-08-31 | 2009-06-16 | Ge Homeland Protection, Inc. | System and method for integrating explosive detection systems |
US20080056444A1 (en) * | 2006-08-31 | 2008-03-06 | Sondre Skatter | System and method for integrating explosive detection systems |
WO2008031313A1 (en) * | 2006-09-08 | 2008-03-20 | Tsinghua University | Multiple dr/ct detection device of containers |
US20080071559A1 (en) * | 2006-09-19 | 2008-03-20 | Juha Arrasvuori | Augmented reality assisted shopping |
US20080101681A1 (en) * | 2006-11-01 | 2008-05-01 | Armin Uwe Schmiegel | Methods for determining a position and shape of a bag placed in a baggage handling container using x-ray image analysis |
US8610075B2 (en) | 2006-11-13 | 2013-12-17 | Biosensors International Group Ltd. | Radioimaging applications of and novel formulations of teboroxime |
US20080123895A1 (en) * | 2006-11-27 | 2008-05-29 | Todd Gable | Method and system for fast volume cropping of three-dimensional image data |
US9275451B2 (en) | 2006-12-20 | 2016-03-01 | Biosensors International Group, Ltd. | Method, a system, and an apparatus for using and processing multidimensional data |
US9285325B2 (en) | 2007-02-01 | 2016-03-15 | Rapiscan Systems, Inc. | Personnel screening system |
US9182516B2 (en) | 2007-02-01 | 2015-11-10 | Rapiscan Systems, Inc. | Personnel screening system |
US8135112B2 (en) | 2007-02-01 | 2012-03-13 | Rapiscan Systems, Inc. | Personnel security screening system with enhanced privacy |
US9291741B2 (en) | 2007-02-01 | 2016-03-22 | Rapiscan Systems, Inc. | Personnel screening system |
US8009883B2 (en) | 2007-02-09 | 2011-08-30 | Analogic Corporation | Method of and system for automatic object display of volumetric computed tomography images for fast on-screen threat resolution |
US7929664B2 (en) | 2007-02-13 | 2011-04-19 | Sentinel Scanning Corporation | CT scanning and contraband detection |
US8254517B2 (en) | 2007-02-13 | 2012-08-28 | Sentinel Scanning Corporation | CT scanning and contraband detection |
US8494210B2 (en) | 2007-03-30 | 2013-07-23 | Optosecurity Inc. | User interface for use in security screening providing image enhancement capabilities and apparatus for implementing same |
US20080253653A1 (en) * | 2007-04-12 | 2008-10-16 | Todd Gable | Systems and methods for improving visibility of scanned images |
US8774362B2 (en) | 2007-06-21 | 2014-07-08 | Rapiscan Systems, Inc. | Systems and methods for improving directed people screening |
US8199996B2 (en) | 2007-06-21 | 2012-06-12 | Rapiscan Systems, Inc. | Systems and methods for improving directed people screening |
WO2009003346A1 (en) * | 2007-06-29 | 2009-01-08 | Tsinghua University | Method for inspecting the drug concealed in a liquid article and its device |
CN101334369B (en) * | 2007-06-29 | 2010-04-14 | 清华大学 | Method and apparatus for checking liquid article hidden drug |
DE102008046416B4 (en) * | 2007-09-05 | 2017-05-24 | Nuctech Co. Ltd. | Device for inspection for contraband in air cargo containers |
DE102008046417B4 (en) | 2007-09-05 | 2018-03-15 | Nuctech Co. Ltd. | Device for inspection for contraband in air cargo containers |
US20090086906A1 (en) * | 2007-09-28 | 2009-04-02 | Clayton James E | Radiation scanning with photon tagging |
US7630474B2 (en) | 2007-09-28 | 2009-12-08 | Varian Medical Systems, Inc. | Radiation scanning with photon tagging |
US20100284514A1 (en) * | 2007-10-05 | 2010-11-11 | Li Zhang | Method and device for inspection of liquid articles |
CN102095664B (en) * | 2007-10-05 | 2013-03-27 | 清华大学 | Method and device for checking liquid article |
US8036337B2 (en) | 2007-10-05 | 2011-10-11 | Tsinghua University | Method and device for inspection of liquid articles |
DE102008050306B4 (en) | 2007-10-05 | 2019-09-05 | Tsinghua University | Method and device for testing liquid articles |
DE102008050305B4 (en) | 2007-10-05 | 2019-09-05 | Tsinghua University | Method and device for testing liquid articles |
US9121811B2 (en) | 2007-10-05 | 2015-09-01 | Tsinghua University | Method and device for inspection of liquid articles |
US7945017B2 (en) | 2007-10-05 | 2011-05-17 | Tsinghua University | Method and device for inspection of liquid articles |
US8320523B2 (en) | 2007-10-05 | 2012-11-27 | Tshinghua University | Method and device for inspection of liquid articles |
CN102095666B (en) * | 2007-10-05 | 2012-12-12 | 清华大学 | Method and equipment for checking liquid object |
US20110211671A1 (en) * | 2007-10-05 | 2011-09-01 | Zhiqiang Chen | Method and device for inspection of liquid articles |
US20090092220A1 (en) * | 2007-10-05 | 2009-04-09 | Zhiqiang Chen | Method and device for inspection of liquid articles |
US8494114B2 (en) * | 2007-10-05 | 2013-07-23 | Tsinghua University | Method and device for inspection of liquid articles |
WO2009043233A1 (en) * | 2007-10-05 | 2009-04-09 | Tsinghua University | Method and device for detecting liquid article |
WO2009043232A1 (en) * | 2007-10-05 | 2009-04-09 | Tsinghua University | Method and device for detecting liquid article |
CN102095665B (en) * | 2007-10-05 | 2013-04-17 | 清华大学 | Method and equipment for inspecting liquid substances |
US8521253B2 (en) | 2007-10-29 | 2013-08-27 | Spectrum Dynamics Llc | Prostate imaging |
US8401147B2 (en) | 2007-11-01 | 2013-03-19 | Rapiscan Systems, Inc. | Multiple screen detection systems |
US8148693B2 (en) | 2007-11-01 | 2012-04-03 | Rapiscan Systems, Inc. | Multiple screen detection systems |
US8003949B2 (en) | 2007-11-01 | 2011-08-23 | Rapiscan Systems, Inc. | Multiple screen detection systems |
US7826589B2 (en) | 2007-12-25 | 2010-11-02 | Rapiscan Systems, Inc. | Security system for screening people |
US20090168959A1 (en) * | 2007-12-27 | 2009-07-02 | Zhiqiang Chen | Article detection apparatus and a detecting method |
US7869573B2 (en) | 2007-12-27 | 2011-01-11 | Morpho Detection, Inc. | Collimator and method for fabricating the same |
US7991112B2 (en) | 2007-12-27 | 2011-08-02 | Nuctech Company Limited | Article detection apparatus and a detecting method |
US20090168968A1 (en) * | 2007-12-27 | 2009-07-02 | Andrew John Banchieri | Collimator and method for fabricating the same |
US20090168949A1 (en) * | 2007-12-31 | 2009-07-02 | Joseph Bendahan | System and method for inspecting containers for target material |
US7839971B2 (en) | 2007-12-31 | 2010-11-23 | Morpho Detection, Inc. | System and method for inspecting containers for target material |
US8576982B2 (en) | 2008-02-01 | 2013-11-05 | Rapiscan Systems, Inc. | Personnel screening system |
US8971485B2 (en) | 2008-02-28 | 2015-03-03 | Rapiscan Systems, Inc. | Drive-through scanning systems |
US9158027B2 (en) | 2008-02-28 | 2015-10-13 | Rapiscan Systems, Inc. | Mobile scanning systems |
US10816691B2 (en) | 2008-02-28 | 2020-10-27 | Rapiscan Systems, Inc. | Multi-element detector systems |
US8644453B2 (en) | 2008-02-28 | 2014-02-04 | Rapiscan Systems, Inc. | Scanning systems |
US9121958B2 (en) | 2008-02-28 | 2015-09-01 | Rapiscan Systems, Inc. | Scanning systems |
US9036779B2 (en) | 2008-02-28 | 2015-05-19 | Rapiscan Systems, Inc. | Dual mode X-ray vehicle scanning system |
US9429530B2 (en) | 2008-02-28 | 2016-08-30 | Rapiscan Systems, Inc. | Scanning systems |
US8774357B2 (en) | 2008-02-28 | 2014-07-08 | Rapiscan Systems, Inc. | Scanning systems |
US12061309B2 (en) | 2008-02-28 | 2024-08-13 | Rapiscan Systems, Inc. | Drive-through scanning systems |
US11768313B2 (en) | 2008-02-28 | 2023-09-26 | Rapiscan Systems, Inc. | Multi-scanner networked systems for performing material discrimination processes on scanned objects |
US10007021B2 (en) | 2008-02-28 | 2018-06-26 | Rapiscan Systems, Inc. | Scanning systems |
US9835756B2 (en) | 2008-02-28 | 2017-12-05 | Rapiscan Systems, Inc. | Dual mode X-ray vehicle scanning system |
US10754058B2 (en) | 2008-02-28 | 2020-08-25 | Rapiscan Systems, Inc. | Drive-through scanning systems |
US9223052B2 (en) | 2008-02-28 | 2015-12-29 | Rapiscan Systems, Inc. | Scanning systems |
US10585207B2 (en) | 2008-02-28 | 2020-03-10 | Rapiscan Systems, Inc. | Scanning systems |
US11275194B2 (en) | 2008-02-28 | 2022-03-15 | Rapiscan Systems, Inc. | Scanning systems |
US11579328B2 (en) | 2008-02-28 | 2023-02-14 | Rapiscan Systems, Inc. | Drive-through scanning systems |
US8433036B2 (en) | 2008-02-28 | 2013-04-30 | Rapiscan Systems, Inc. | Scanning systems |
US9817151B2 (en) | 2008-02-28 | 2017-11-14 | Rapiscan Systems, Inc. | Drive-through scanning systems |
US20090232277A1 (en) * | 2008-03-14 | 2009-09-17 | General Electric Company | System and method for inspection of items of interest in objects |
DE102009061736B3 (en) | 2008-04-17 | 2024-05-29 | Tsinghua University | Linear scanning imaging system and method therefor |
US20110091013A1 (en) * | 2008-04-18 | 2011-04-21 | Muenster Matthias | Method and apparatus for detecting a particular material in an object by means of electromagnetic radiation |
US9128200B2 (en) * | 2008-04-18 | 2015-09-08 | Smiths Heimann Gmbh | Method and apparatus for detecting a particular material in an object by means of electromagnetic radiation |
US8270566B2 (en) * | 2008-05-08 | 2012-09-18 | L-3 Communications Security And Detection Systems, Inc. | Adaptive scanning in an imaging system |
US9348040B2 (en) | 2008-05-08 | 2016-05-24 | L-3 Communications Security And Detection Systems, Inc. | Adaptive scanning in an imaging system |
US9031196B2 (en) | 2008-05-08 | 2015-05-12 | L-3 Communications Security And Detection Systems, Inc. | Adaptive scanning in an imaging system |
US9688517B2 (en) | 2008-05-20 | 2017-06-27 | Rapiscan Systems, Inc. | Scanner systems |
US8579506B2 (en) | 2008-05-20 | 2013-11-12 | Rapiscan Systems, Inc. | Gantry scanner systems |
US8840303B2 (en) | 2008-05-20 | 2014-09-23 | Rapiscan Systems, Inc. | Scanner systems |
US8831176B2 (en) | 2008-05-20 | 2014-09-09 | Rapiscan Systems, Inc. | High energy X-ray inspection system using a fan-shaped beam and collimated backscatter detectors |
US10098214B2 (en) | 2008-05-20 | 2018-10-09 | Rapiscan Systems, Inc. | Detector support structures for gantry scanner systems |
US9332624B2 (en) | 2008-05-20 | 2016-05-03 | Rapiscan Systems, Inc. | Gantry scanner systems |
US20110135060A1 (en) * | 2008-05-20 | 2011-06-09 | Edward James Morton | High Energy X-Ray Inspection System Using a Fan-Shaped Beam and Collimated Backscatter Detectors |
US9329285B2 (en) | 2008-06-11 | 2016-05-03 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
US8993970B2 (en) | 2008-06-11 | 2015-03-31 | Rapiscan Systems, Inc. | Photomultiplier and detection systems |
US8389941B2 (en) | 2008-06-11 | 2013-03-05 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
US8389942B2 (en) | 2008-06-11 | 2013-03-05 | Rapiscan Systems, Inc. | Photomultiplier and detection systems |
US8735833B2 (en) | 2008-06-11 | 2014-05-27 | Rapiscan Systems, Inc | Photomultiplier and detection systems |
US8963094B2 (en) | 2008-06-11 | 2015-02-24 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
US9263225B2 (en) | 2008-07-15 | 2016-02-16 | Rapiscan Systems, Inc. | X-ray tube anode comprising a coolant tube |
US8824637B2 (en) | 2008-09-13 | 2014-09-02 | Rapiscan Systems, Inc. | X-ray tubes |
US9068920B2 (en) * | 2009-01-14 | 2015-06-30 | John Eric Churilla | System and method for scanning and processing printed media |
US9086495B2 (en) | 2009-01-27 | 2015-07-21 | Kromek Limited | Object scanning protocol |
CN102301226B (en) * | 2009-01-27 | 2015-02-11 | 克罗梅克有限公司 | Object prescanning when the object moves and subsequent local scanning when the object stays still |
WO2010086636A3 (en) * | 2009-01-27 | 2010-11-25 | Durham Scientific Crystals Limited | Prescan of an object with the object in motion and subsequent localized scan of the object with the object at rest |
US9420677B2 (en) | 2009-01-28 | 2016-08-16 | Rapiscan Systems, Inc. | X-ray tube electron sources |
US20100230242A1 (en) * | 2009-03-11 | 2010-09-16 | Samit Kumar Basu | Systems and method for scanning a continuous stream of objects |
US9625606B2 (en) | 2009-05-16 | 2017-04-18 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
US9310323B2 (en) | 2009-05-16 | 2016-04-12 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
GB2501025B (en) * | 2009-05-26 | 2014-02-12 | Rapiscan Systems Inc | X-Ray tomographic inspection systems for the identification of specific target items |
GB2501025A (en) * | 2009-05-26 | 2013-10-09 | Rapiscan Systems Inc | Detecting narcotics using tomographic X-ray images |
US8340245B2 (en) | 2009-06-05 | 2012-12-25 | Sentinel Scanning Corporation | Transportation container inspection system and method |
US8748827B2 (en) | 2009-07-29 | 2014-06-10 | Biosensors International Group, Ltd. | Method and system of optimized volumetric imaging |
US8492725B2 (en) | 2009-07-29 | 2013-07-23 | Biosensors International Group Ltd. | Method and system of optimized volumetric imaging |
US8654922B2 (en) | 2009-11-18 | 2014-02-18 | Rapiscan Systems, Inc. | X-ray-based system and methods for inspecting a person's shoes for aviation security threats |
US10228334B2 (en) * | 2010-02-16 | 2019-03-12 | Smiths Detection Group Limited | Adaptive modular cargo screening |
US20130156156A1 (en) * | 2010-02-16 | 2013-06-20 | Kristofer J. Roe | Adaptive modular cargo screening |
US8576989B2 (en) | 2010-03-14 | 2013-11-05 | Rapiscan Systems, Inc. | Beam forming apparatus |
US8995619B2 (en) | 2010-03-14 | 2015-03-31 | Rapiscan Systems, Inc. | Personnel screening system |
US9058909B2 (en) | 2010-03-14 | 2015-06-16 | Rapiscan Systems, Inc. | Beam forming apparatus |
EP2405260A1 (en) | 2010-07-09 | 2012-01-11 | Alta Lab S.r.l. | Method and apparatus for performing non-invasive x-ray inspections of objects |
US20120029878A1 (en) * | 2010-07-30 | 2012-02-02 | Carpenter Michael D | Data Processing Device |
US20130216100A1 (en) * | 2010-10-29 | 2013-08-22 | Andrew Litvin | Object identification using sparse spectral components |
US9299001B2 (en) * | 2010-10-29 | 2016-03-29 | Analogic Corporation | Object identification using sparse spectral components |
US11822041B2 (en) | 2011-02-08 | 2023-11-21 | Rapiscan Systems, Inc. | Systems and methods for improved atomic-number based material discrimination |
US10942291B2 (en) | 2011-02-08 | 2021-03-09 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US9632205B2 (en) | 2011-02-08 | 2017-04-25 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US10408967B2 (en) | 2011-02-08 | 2019-09-10 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US11307325B2 (en) | 2011-02-08 | 2022-04-19 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US9218933B2 (en) | 2011-06-09 | 2015-12-22 | Rapidscan Systems, Inc. | Low-dose radiographic imaging system |
US8171810B1 (en) | 2011-08-25 | 2012-05-08 | Qylur Security Systems, Inc. | Multi-threat detection system |
US11099294B2 (en) | 2011-09-07 | 2021-08-24 | Rapiscan Systems, Inc. | Distributed analysis x-ray inspection methods and systems |
US10509142B2 (en) | 2011-09-07 | 2019-12-17 | Rapiscan Systems, Inc. | Distributed analysis x-ray inspection methods and systems |
US10422919B2 (en) | 2011-09-07 | 2019-09-24 | Rapiscan Systems, Inc. | X-ray inspection system that integrates manifest data with imaging/detection processing |
US9632206B2 (en) | 2011-09-07 | 2017-04-25 | Rapiscan Systems, Inc. | X-ray inspection system that integrates manifest data with imaging/detection processing |
US10830920B2 (en) | 2011-09-07 | 2020-11-10 | Rapiscan Systems, Inc. | Distributed analysis X-ray inspection methods and systems |
US9057679B2 (en) | 2012-02-03 | 2015-06-16 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
US11371948B2 (en) | 2012-02-03 | 2022-06-28 | Rapiscan Systems, Inc. | Multi-view imaging system |
US9823201B2 (en) | 2012-02-03 | 2017-11-21 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
US10746674B2 (en) | 2012-02-03 | 2020-08-18 | Rapiscan Systems, Inc. | Combined scatter and transmission multi-view imaging system |
US11579327B2 (en) | 2012-02-14 | 2023-02-14 | American Science And Engineering, Inc. | Handheld backscatter imaging systems with primary and secondary detector arrays |
US20140177934A1 (en) * | 2012-06-20 | 2014-06-26 | Toshiba Medical Systems Corporation | Image diagnosis device and control method thereof |
US9240045B2 (en) * | 2012-06-20 | 2016-01-19 | Kabushiki Kaisha Toshiba | Image diagnosis device and control method thereof |
US9091628B2 (en) * | 2012-12-21 | 2015-07-28 | L-3 Communications Security And Detection Systems, Inc. | 3D mapping with two orthogonal imaging views |
US20140175298A1 (en) * | 2012-12-21 | 2014-06-26 | Kumsal Deniz Sezen | 3d mapping with two orthogonal imaging views |
WO2014101621A1 (en) * | 2012-12-27 | 2014-07-03 | 清华大学 | Object inspection method, display method and device |
US10353109B2 (en) | 2013-01-07 | 2019-07-16 | Rapiscan Systems, Inc. | X-ray scanner with partial energy discriminating detector array |
US9823383B2 (en) | 2013-01-07 | 2017-11-21 | Rapiscan Systems, Inc. | X-ray scanner with partial energy discriminating detector array |
US10782440B2 (en) | 2013-01-07 | 2020-09-22 | Rapiscan Systems, Inc. | X-ray scanner with partial energy discriminating detector array |
US11550077B2 (en) | 2013-01-31 | 2023-01-10 | Rapiscan Systems, Inc. | Portable vehicle inspection portal with accompanying workstation |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
US10317566B2 (en) | 2013-01-31 | 2019-06-11 | Rapiscan Systems, Inc. | Portable security inspection system |
US10061481B2 (en) | 2013-02-28 | 2018-08-28 | The Boeing Company | Methods and devices for visually querying an aircraft based on an area of an image |
US9340304B2 (en) | 2013-02-28 | 2016-05-17 | The Boeing Company | Aircraft comparison system |
US9292180B2 (en) | 2013-02-28 | 2016-03-22 | The Boeing Company | Locator system for three-dimensional visualization |
US9612725B1 (en) | 2013-02-28 | 2017-04-04 | The Boeing Company | Nonconformance visualization system |
US9870444B2 (en) | 2013-03-05 | 2018-01-16 | The Boeing Company | Shop order status visualization system |
US9492900B2 (en) | 2013-03-15 | 2016-11-15 | The Boeing Company | Condition of assembly visualization system based on build cycles |
US9500601B2 (en) | 2013-03-16 | 2016-11-22 | Lawrence Livermore National Security, Llc | Adaptive CT scanning system |
US10331295B2 (en) | 2013-03-28 | 2019-06-25 | The Boeing Company | Visualization of an object using a visual query system |
US20140310629A1 (en) * | 2013-04-12 | 2014-10-16 | The Boeing Company | Nonconformance Visualization System |
US10481768B2 (en) * | 2013-04-12 | 2019-11-19 | The Boeing Company | Nonconformance identification and visualization system and method |
US10416857B2 (en) | 2013-05-09 | 2019-09-17 | The Boeing Company | Serial number control visualization system |
US9880694B2 (en) | 2013-05-09 | 2018-01-30 | The Boeing Company | Shop order status visualization system |
US10067650B2 (en) | 2013-06-20 | 2018-09-04 | The Boeing Company | Aircraft comparison system with synchronized displays |
US9880314B2 (en) * | 2013-07-23 | 2018-01-30 | Rapiscan Systems, Inc. | Methods for improving processing speed for object inspection |
US20150030125A1 (en) * | 2013-07-23 | 2015-01-29 | Rapiscan Systems, Inc. | Methods for Improving Processing Speed For Object Inspection |
US20190265383A1 (en) * | 2013-07-25 | 2019-08-29 | Analogic Corporation | Generation of diffraction signature of item within object |
US20150121523A1 (en) * | 2013-10-25 | 2015-04-30 | MSA Security, Inc. | Systems and methods for facilitating remote security threat detection |
US9306970B2 (en) * | 2013-10-25 | 2016-04-05 | MSA Security, Inc. | Systems and methods for facilitating remote security threat detection |
US20150121528A1 (en) * | 2013-10-25 | 2015-04-30 | MSA Security, Inc. | Systems and methods for facilitating remote security threat detection |
US20160196628A1 (en) * | 2013-10-25 | 2016-07-07 | MSA Security, Inc. | Systems and methods for facilitating remote security threat detection |
US9922386B2 (en) * | 2013-10-25 | 2018-03-20 | Michael Stapleton Associates, LTD | Systems and methods for facilitating remote security threat detection |
US9557427B2 (en) | 2014-01-08 | 2017-01-31 | Rapiscan Systems, Inc. | Thin gap chamber neutron detectors |
US11280898B2 (en) | 2014-03-07 | 2022-03-22 | Rapiscan Systems, Inc. | Radar-based baggage and parcel inspection systems |
US9891314B2 (en) | 2014-03-07 | 2018-02-13 | Rapiscan Systems, Inc. | Ultra wide band detectors |
RU2599596C1 (en) * | 2014-05-14 | 2016-10-10 | Ньюктек Компани Лимитед | Image display method |
US10229328B2 (en) | 2014-06-26 | 2019-03-12 | Mcmaster University | On-body concealed weapon detection system |
US10134254B2 (en) | 2014-11-25 | 2018-11-20 | Rapiscan Systems, Inc. | Intelligent security management system |
US10713914B2 (en) | 2014-11-25 | 2020-07-14 | Rapiscan Systems, Inc. | Intelligent security management system |
US11300703B2 (en) | 2015-03-20 | 2022-04-12 | Rapiscan Systems, Inc. | Hand-held portable backscatter inspection system |
US11561320B2 (en) | 2015-03-20 | 2023-01-24 | Rapiscan Systems, Inc. | Hand-held portable backscatter inspection system |
US10345479B2 (en) | 2015-09-16 | 2019-07-09 | Rapiscan Systems, Inc. | Portable X-ray scanner |
CN105628006A (en) * | 2015-11-06 | 2016-06-01 | 同方威视技术股份有限公司 | Collimation device and ray inspection device |
CN106885813A (en) * | 2015-12-16 | 2017-06-23 | 清华大学 | Check the mthods, systems and devices of goods |
CN106885813B (en) * | 2015-12-16 | 2019-06-07 | 清华大学 | Check the mthods, systems and devices of cargo |
WO2017101514A1 (en) * | 2015-12-16 | 2017-06-22 | 清华大学 | Method, system and apparatus for checking cargoes |
US10416344B2 (en) | 2015-12-29 | 2019-09-17 | Cints Co. Ltd. | Inspection devices for quarantine |
EP3290912A4 (en) * | 2015-12-29 | 2019-02-20 | Nuctech Company Limited | Examination system for inspection and quarantine and method thereof |
CN105527654A (en) * | 2015-12-29 | 2016-04-27 | 中检科威(北京)科技有限公司 | Examination device for inspection and quarantine |
EP3187904A1 (en) * | 2015-12-29 | 2017-07-05 | Cints Co. Ltd. | Inspection devices for quarantine |
US10436932B2 (en) | 2015-12-29 | 2019-10-08 | Nuctech Company Limited | Inspection systems for quarantine and methods thereof |
DE102016200779A1 (en) * | 2016-01-21 | 2017-07-27 | MTU Aero Engines AG | Examination method for a serviceable hollow component of a turbomachine |
US10302807B2 (en) | 2016-02-22 | 2019-05-28 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
US10768338B2 (en) | 2016-02-22 | 2020-09-08 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
US11287391B2 (en) | 2016-02-22 | 2022-03-29 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
US10685147B2 (en) | 2016-02-29 | 2020-06-16 | The Boeing Company | Non-conformance mapping and visualization |
US10720300B2 (en) | 2016-09-30 | 2020-07-21 | American Science And Engineering, Inc. | X-ray source for 2D scanning beam imaging |
JP2019020355A (en) * | 2017-07-21 | 2019-02-07 | 日本信号株式会社 | Imaging device |
CN108254397A (en) * | 2017-12-12 | 2018-07-06 | 北京航星机器制造有限公司 | A kind of luggage and articles safety inspection device and its inspection method |
US11525930B2 (en) | 2018-06-20 | 2022-12-13 | American Science And Engineering, Inc. | Wavelength-shifting sheet-coupled scintillation detectors |
JPWO2021085019A1 (en) * | 2019-10-31 | 2021-05-06 | ||
US20220381706A1 (en) * | 2019-10-31 | 2022-12-01 | Eyetech Co., Ltd. | System for non-destructively inspecting baggage, method for nondestructively inspecting baggage, program, and recording medium |
US11175245B1 (en) | 2020-06-15 | 2021-11-16 | American Science And Engineering, Inc. | Scatter X-ray imaging with adaptive scanning beam intensity |
US11551903B2 (en) | 2020-06-25 | 2023-01-10 | American Science And Engineering, Inc. | Devices and methods for dissipating heat from an anode of an x-ray tube assembly |
US11340361B1 (en) | 2020-11-23 | 2022-05-24 | American Science And Engineering, Inc. | Wireless transmission detector panel for an X-ray scanner |
US11726218B2 (en) | 2020-11-23 | 2023-08-15 | American Science arid Engineering, Inc. | Methods and systems for synchronizing backscatter signals and wireless transmission signals in x-ray scanning |
US11796489B2 (en) | 2021-02-23 | 2023-10-24 | Rapiscan Systems, Inc. | Systems and methods for eliminating cross-talk signals in one or more scanning systems having multiple X-ray sources |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5367552A (en) | Automatic concealed object detection system having a pre-scan stage | |
US5182764A (en) | Automatic concealed object detection system having a pre-scan stage | |
US7116751B2 (en) | System and method for resolving threats in automated explosives detection in baggage and other parcels | |
DE69629707T2 (en) | LOCATION OF CONTRACTS BY USING INTERACTIVE MULTI-PROBE TOMOGRAPHY | |
US7702068B2 (en) | Contraband detection systems and methods | |
US7529341B2 (en) | Automatic material discrimination by using computer tomography | |
US7046761B2 (en) | System and method for CT scanning of baggage | |
RU2400735C2 (en) | Method of inspecting cargo using translucence at different angles | |
US7263160B2 (en) | Method and device for examining an object | |
US5796802A (en) | Multiple angle pre-screening tomographic systems and methods | |
US20070286339A1 (en) | Combined X-Ray CT/Neutron Material Identification System | |
US8180139B2 (en) | Method and system for inspection of containers | |
AU2008340164A2 (en) | Improved security system for screening people | |
JPH11500229A (en) | Apparatus and method for automatic recognition of hidden objects using multiple energy computed tomography | |
EP3187904B1 (en) | Inspection devices for quarantine | |
US20240044812A1 (en) | Rotational X-ray Inspection System and Method | |
US20080175456A1 (en) | Methods for explosive detection with multiresolution computed tomography data | |
Smith et al. | CT technologies | |
Frosio et al. | Optimized acquisition geometry for X-ray inspection | |
CN111386552A (en) | Image reconstruction method and system | |
US20220260745A1 (en) | High-energy x-ray imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IN VISION TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PESCHMANN, KRISTIAN R.;REEL/FRAME:006489/0718 Effective date: 19930311 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:INVISION TECHNOLOGIES, INC.;REEL/FRAME:008376/0896 Effective date: 19970220 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: RELEASE OF INTERESTS IN PATENT;ASSIGNOR:INVISION TECHNOLOGIES, INC.;REEL/FRAME:009168/0131 Effective date: 19980415 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC, Free format text: MERGER;ASSIGNOR:IMATRON INC.;REEL/FRAME:012822/0326 Effective date: 20011219 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:INVISION TECHNOLOGIES, INC.;REEL/FRAME:013362/0574 Effective date: 20020719 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: INVISION TECHNOLOGIES, INC., CALIFORNIA Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:019084/0472 Effective date: 20070319 Owner name: INVISION TECHNOLOGIES, INC., CALIFORNIA Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:019094/0483 Effective date: 20070319 |
|
AS | Assignment |
Owner name: GE INVISION, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:INVISION TECHNOLOGIES, INC.;REEL/FRAME:019181/0763 Effective date: 20041206 |
|
AS | Assignment |
Owner name: GE HOMELAND PROTECTION, INC., CALIFORNIA Free format text: MERGER;ASSIGNORS:GE ION TRACK, INC.;GE INVISION, INC.;REEL/FRAME:019224/0333 Effective date: 20060731 |
|
AS | Assignment |
Owner name: MORPHO DETECTION, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:GE HOMELAND PROTECTION, INC.;REEL/FRAME:024879/0227 Effective date: 20091001 |