US3828766A - Disposable medical electrode - Google Patents
Disposable medical electrode Download PDFInfo
- Publication number
- US3828766A US3828766A US00280350A US28035072A US3828766A US 3828766 A US3828766 A US 3828766A US 00280350 A US00280350 A US 00280350A US 28035072 A US28035072 A US 28035072A US 3828766 A US3828766 A US 3828766A
- Authority
- US
- United States
- Prior art keywords
- electrode
- pad
- support member
- monitoring electrode
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/251—Means for maintaining electrode contact with the body
- A61B5/257—Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/263—Bioelectric electrodes therefor characterised by the electrode materials
- A61B5/265—Bioelectric electrodes therefor characterised by the electrode materials containing silver or silver chloride
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/263—Bioelectric electrodes therefor characterised by the electrode materials
- A61B5/266—Bioelectric electrodes therefor characterised by the electrode materials containing electrolytes, conductive gels or pastes
Definitions
- ABSTRACT A disposable medical electrode comprising a support member made of a closed cell plastic material having an adhesive surface. A centrally located contact element is embedded therein so as to leave an exposed portion thereof at the adhesive side of the support member. A smaller pad member made up of an open cell plastic material is adhered to the adhesive surface of the support member at a position opposite to and in contact with the exposed portion of the contact element. In use, the pad member has a conductive gel dispersed throughout so that when the electrode is placed against the skin of a patient a good conductive path is present from the skin through the gelled pad to the contact element.
- FIG. IA 25 DISPOSABLE MEDICAL ELECTRODE DISCLOSURE OF THE INVENTION ble between the skin area which is being monitored and the metallic contact element of the electrode so that a maximum electrical signal can be obtained for use in the monitoring equipment.
- An improtant further characteristic of such electrodes is that they be so designed as to minimize the discomfort which a patient will suffer, especially when such electrode may be required to be used over a prolonged period of time, sometimes for several days.
- Such electrodes provide maximum signal strength with minimal discomfort for more sensitive patients, such as adults with sensitive skin and children or infants whose skin is apt to be more tender than that of adults.
- the comfort factor may be particularly important when used with extremely small infants, less than 30 days old, in the growing field of neo-natalogy.
- a conventionally structured electrode presently available for use in the medical field is a type which utilizes a conductive gel between the skin area which is being contacted and the metallic contact element of the electrode to which the monitoring circuit is connected.
- the metal contact element is normally affixed to a rigid plastic base member of the electrode, the contact element being in the form of a snap fastener assembly having a first side to which a monitoring circuit is snap connected and a second oppositely disposed side which is in contact with a pad member made of an open cell plastic material permeated with a conductive gel.
- the pad is in turn in pressure contact with the skin, the conductive gel thereby assuring that a good conductive path is present from the skin to the metal contact element for the signal which is being monitored.
- the gel pad is freely nested in a recessed region of the electrode which is formed by a solid ridged portion of the rigid plastic body member, the outer surface of the'ridge coming into pressure contact with the skin adjacent the outer perimeterof the gel pad when the electrode is in use.
- the ridged body member containing the snap fastener contact element is attached to a circularly shaped open cell plastic foam material one side of which has an adhesive thereon so that the electrode can adhere to the skin.
- the protruding ridge is thereby between the open cell adhesive foam material and the open cell-gel pad foam material to form a barrier therebetween so as to prevent the conductive gel in the gel pad from being .2 absorbed'by and dispersed throughout the open cell adhesive foam portion of the overall electrode.
- the presence of the ridge tends to cause excessive discomfort'to the patient on whom the electrode is being used since the ridge which digs into the skin of the patient can become extremely irritating.
- the gel pad can often fall out of its recessed nest during handling and must be replaced by hand or other means, all of which tends to cause the gel pad to become less sanitary in use than is desired.
- the need for a ridged barrier between a conductor gel pad and an adhesive portion of the electrode is eliminated so that a relatively smooth surface is presented to the skin of the patient and any irritation and discomfort caused by the presence of a ridge is completely avoided.
- the adhesive base member of the electrode to which a snap fastener contact element is attached is made of a plastic foam material having a closed cell configuration.
- a gel pad made of a plastic foam material having an open cell configuration is then adhered to the underside of the closed cell foam material opposite the underside of the snap fastener contact element.
- a thin vinyl plastic strip is adhered to the upper side of the closed cell body member to provide some rigidity thereto. Because of the closed cell nature of the adhesive base member of the electrode, substantially none of the conductive gel which is dispersed throughout the open cell gel pad can be absorbed by or dispersed within the closed cell material and the gel is adequately retained within the open cell gel pad during manufacture, shipment and use. Moreover, because no solid plastic ridged member is used, the surface of the electrode which comes into contact with the skin of the patient is essentially soft and relatively smooth with no protruding ridges so that it can be readily placed on the patients skin for good adherence without discomfort even with prolonged use.
- the lower surface of the contact element which is in contact with the gel pad may be coated with silver so that, in reacting with the gel substance a silver/silver chloride conductive coating is formed which enhances the signal carrying properties of the electrode.
- FIG. 1 shows a view in cross-section of a monitoring electrode of the prior art
- FIG. 1A shows a plan view of the electrode of FIG.
- FIG. 2 shows a view in cross-section of a preferred embodiment of the electrode in accordance with the invention
- FIG. 2A shows a plan view of the electrode of FIG.
- FIG. 3 shows a view in cross-section of a portion of the electrode of FIG. 2;
- FIG. 4 shows a view in cross-section of a preferred embodiment for packaging one or more of the electrodes of FIG. 2.
- FIG. 1 depicts a conventional monitoring electrode of the prior art which has found relatively widespread use in the medical field at the present time.
- the electrode comprises a solid plastic ridged body member having an upper portion 11A and a lower portion 11B, each of a circular configuration, which portions each include flat body portions 12A and 128 respectively, and ridged portions 13A and 13B, respectively, forming the outer peripheries thereof.
- a contact element 14 is positioned within apertures at the centers of solid portions 11A and 118, the contact element being in the form of a conventional male snap fastener having a first upper portion 14A with a protruding snap at the center thereof and a lower portion 148 which nests within the upper portion so that the overall element can be attached to and retained in the solid ridged member.
- the snap fastener 14 provides a snap contact to a corresponding female snap fastener (not shown) which is in turn connected to an appropriate lead for connection to suitable monitoring equipment (also not shown).
- the upper and lower solid portions 11A and 118 may be made of any appropriately chosen plastic material and are arranged to enclose an adhesive pad member 16 also of substantially circular configuration, as shown.
- foam pad 16 has a layer 17 of double faced adhesive material placed thereon and extending from ridge 138 to the periphery thereof so as to provide an adhesion surface which permits the electrode to be placed in an adhering manner on the skin of a patient.
- a circular pad 19 of foam plastic material is nested within the recess 18 formed by ridge 13B, pad 19 being substantially permeated with a conductive gel substance forming a gel pad for providing a good conductive path from the skin which contacts the outer exposed surface thereof and the lower portion 148 of contact element 14, which is in contact with the inner surface of gel pad 19.
- Gel pad 19 is retained within the recess 18 by the surface tension action of the gel on the underside of solid plastic portion 12B,
- both of the plastic pad materials forming the adhesive pad 16 and the gel pad 19 are made of an open cellular plastic foam material which is readily absorbent to liquids and gels which can thereby penetrate into and become dispersed throughout such materials.
- the ridge 13B and body portion 128 form a barrier so that none of the gel in gel pad 19 comes into contact with the adhesive pad 16.
- the conductivity of the path through pad 19 would be greatly reduced and the effectiveness of the electrode would become diminished.
- ridge 13B tends to dig into the skin and become so irritating that a high degree of discomfort may result, particularly with patients having relatively tender skin.
- the presence of ridge 13B tends to cause the adhesive surfaces in the regions adjacent the ridges to be raised out of contact with the skin so that the area of adhesive contact with the skin is reduced.
- the diameter of the overall electrode must be made relatively large and the electrode becomes less useful for some applications.
- FIGS. 2 and 2A A preferred embodiment of the monitoring electrode of the invention is depicted in FIGS. 2 and 2A and shows the contrast between the structure thereof and that of the prior art electrode shown in FIGS. 1 and 1A.
- the electrode 20 of the invention comprises an adhesive foam pad portion 21 which forms the main body of the electrode and has on one surface thereof a layer 22 of double-faced adhesive which effectively covers the entire surface.
- adhesive foam pad 21 has a substantially circular configuration and at the central region of the surface 24 opposite to the adhesive surface thereof a paper thin circular piece 23 of vinyl plastic material is positioned.
- Vinyl piece 23 imparts a slightly greater degree of rigidity for the surface 24 of the electrode than to the adhesive surface thereof and, further, can be used as an appropriate label for identifying the electrode and the manufacturer thereof.
- a snap fastener contact element 25 is machine fastened at the center of adhesive foam pad 21 as shown. After the fastening process the presence of fastener 25 forms slight depressions at both the upper and the lower surfaces of foam pad 21, as shown. The peripheral region of a gel pad 26 is caused to adhere to the adhesive surface of pad 21 so that the pad 26 is placed at a position opposite the lower contact surface 25A of contact element 25 as shown in enlarged detail in FIG. 3.
- Adhesive foam pad 21 is made of a closed cell plastic material, such as a closed cell polyethylene or polyurethane plastic material, while gel pad 26 is made of an open cell material, such as polyurethane foam material.
- a closed cell material for pad 21 effectively prevents any penetration through the pad 21 of any conductive gel which is present in gel pad 26 within which it is in contact.
- One such closed cell plastic successfully used in the electrode of the invention is a polyethylene plastic sold under the name Volara" by the Voltech Company of Lawrence, Massachusetts.
- One such open cell gel pad material which has been successfully used to provide the necessary gel dispersion action is a polyurethane foam material sold by Rogers Foam Company, Somerville, Massachusetts.
- the double sided adhesive layer 22 is selected so as to avoid causing any irritation to the skin, to which it adheres.
- Adhesive No. 1524 One such adhesive which has been successfully used and which has been approved for such use by the Federal Drug Administration of the United States Government is identified as Adhesive No. 1524, made by 3M Company, Minneapolis, Minnesota.
- the cellular density of open cell material 26 is such as to be sufficiently dense to hold a conductive gel within the material and at the same time sufficiently porous to allow the gel to penetrate throughout the material so that a good electrical contact is made between the skin of the patient and the lower surface 25A of contact element 25.
- Conductive gels for this purpose are readily available to those in the art and any convenient gel such as that identified as Spectra 360 as sold by Parker Laboratories, lrvington, New Jersey, may be used in the electrode of the invention.
- the bottom surface 25A thereof is coated with silver.
- the conductive gel comes into contact with the silver coated surface thereof it forms a combination silver/silver chloride coating which enhances the conductive properties therebetween.
- contact with electrode conductive gels often causes the formation of an acid coating which may be injurious to the skin against which the electrode is pressed.
- the silver/silver chloride coating not only has been found to increase the conductivity of the overall electrode, it has also been found to be essentially harmless to the skin of the patient. It can also be seen that when the electrode is applied to the skin of a patient, gel pad.26 is effectively compressed and the lower surface of the electrode forms an effectively soft and smooth contact with the skin over its entire area and little or no discomfort is felt by the patient.
- the thickness of the adhesive foam pad 21 preferably lies within a range of from 1/ 32nd of an inch to about 3/ l6ths of an inch, with a thickness of about 1/ 1 6th of an inch being successfully used in a preferred embodiment of the electrode.
- the thickness is primarily selected so as toretain sufficient flexibility for the overall electrode to permit it to be used in various skin areas, even those having a relatively deep curvature.
- the adhesive foam pad portion is at least l/32nd of aninch thick, it becomes much easier to remove the electrode both from the card on which it is shipped, as described below, and
- the vinyl label 23 has been found preferably to have a diameter lying 0etween about 0.75 inches to up to the diameter of the foam pad 16.
- the latter preferably has a diameter of from about 1 inch to 2 /4 inches and in a preferred embodiment a diameter of 1% inches hasbeen found to be satisfactory for use not only on adult patients but also on child and infant patients.
- the diameter of gel pad 26 is preferably between about ll/l6 inch and l3/l6 inch with a diameter of about /1 inch being successfully used in a preferred embodiment.
- the gel pad must be sufficiently large to cover the bottom contact element surface and yet have enough surface area in contact with the adhesive layer 22 to permit the gel pad to be adequately.
- the electrode in shipping the overall electrode the electrode can be shipped either in a dry form, that is, a form wherein the gel is not applied to the open cell pad 26 until just prior to use, or in a wet" form, that is, where the gel is applied when the electrode is packaged so that it arrives for use in a pre-gelled" state.
- a dry form that is, a form wherein the gel is not applied to the open cell pad 26 until just prior to use
- a wet that is, where the gel is applied when the electrode is packaged so that it arrives for use in a pre-gelled” state.
- a clear plastic cover-member 32 having relatively rigid raised portions 33 positioned above each gel pad 26, as shown.
- Cover member 32 may be appropriately fastened with adhesive material, such as a suitable glue, at appropriate pointson the lower surface of the card.
- Each card may be inserted into an hermetically sealed bag 35 which also has a light opaque inner surface.
- the hermetically sealedbag prevents theescapeof any mois ture from-the gel and keeps the gel pad 26 in an appropriately wet conductive state.
- the use of a light opaque bag 'prevents the penetration into the interior of the bagof ultraviolet rays which may cause a deterioration of the adhesive, layer 22. Accordingly, when-the electrode-is ready for use it will adhere firmly to the skin-without any problems.
- the semi-rigid cover 32 prevents the gel pad from being inadvertently squeezed during shipment which action would cause an irretrievable loss of the gel material.
- the electrodes of the, inventioma sheetof closedcell plastic foam material is coveredon one surface thereof with a double sided layer of adhesive material.
- a plurality of vinyl labels are then adhered at various regions to the opposite side thereof andthe snap fasteners 25 are machine installed at the centerof 'each vinyl label.
- a pluralityof open cell foam plastic pads are thenadhered to the adhesive layer of the closed cell material at positions opposite'each snap fastener. The open cell pads can be so applied ina dry. state and the electrodes then appropriately punched out from the closed cell plastic sheet. If ltilS desired to ship the electrodes in a wet state, a conductive gel is applied to each of the gel pads before packag-, mg.
- one or more of the punchedelectrodes are mounted on a card having one ormore circular apertures each having a diameter the sameas that of the open cell gel pads and the relatively rigid plastic cover is then glued to thsurface of the card through which the open cell gel pad protrudes.
- Thecards are then placed into hermetically scalable and light opaque. bags and appropriately sealed for storage and/or shipment.
- a monitoring electrode comprising a substantially flat support member formed of plastic foam material having a closed cellular configuration throughout, one surface of which is adhesive;
- a contact element embedded in said support member, a first contact portion thereof being exposed atsaid one surface and a second contact portion thereof protruding from the opposite surface of said support member;
- a pad member formed of plastic foam material having an open cellular configuration adhered to said adhesive surface of said support member at a position such that the inner surface of said pad member is in contact with and substantially covers said exposed portion of said contact element, the outer surface thereof being capable of contacting a surface to be monitored.
- said support member is substantially circular in configuration and has a diameter of about l% inches.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Electrotherapy Devices (AREA)
Abstract
A disposable medical electrode comprising a support member made of a closed cell plastic material having an adhesive surface. A centrally located contact element is embedded therein so as to leave an exposed portion thereof at the adhesive side of the support member. A smaller pad member made up of an open cell plastic material is adhered to the adhesive surface of the support member at a position opposite to and in contact with the exposed portion of the contact element. In use, the pad member has a conductive gel dispersed throughout so that when the electrode is placed against the skin of a patient a good conductive path is present from the skin through the gelled pad to the contact element.
Description
ilnited States Patent 191 Krasnow [451 Aug. 13, 1974 [73] Assignee: Jet Medical Products Inc., Braintree,
Mass.
[22] Filed: Aug. 14, 1972 [21] Appl. No.: 280,350
[52] US. Cl. 128/21. E, 128/417, l28/D1G. 4 [51] Int. Cl A61b 5/04 [58] Field of Search 128/206 E, 2.1 E, DIG. 4,
[56] References Cited UNITED STATES PATENTS Karnofsky 128/417 X 3,701,346 10/1972 Patrick et a1 128/206 E Primary Examiner-Richard A. Gaudet Assistant Examiner-Lee S. Cohen Attorney, Agent, or Firm-Dike, Bronstein, Roberts & Cushman [5 7] ABSTRACT A disposable medical electrode comprising a support member made of a closed cell plastic material having an adhesive surface. A centrally located contact element is embedded therein so as to leave an exposed portion thereof at the adhesive side of the support member. A smaller pad member made up of an open cell plastic material is adhered to the adhesive surface of the support member at a position opposite to and in contact with the exposed portion of the contact element. In use, the pad member has a conductive gel dispersed throughout so that when the electrode is placed against the skin of a patient a good conductive path is present from the skin through the gelled pad to the contact element.
11 Claims, 6 Drawing Figures PATENTEDMIBI 3 14 3.828.766
llgifllllll&
FIG!
FIG. IA 25 DISPOSABLE MEDICAL ELECTRODE DISCLOSURE OF THE INVENTION ble between the skin area which is being monitored and the metallic contact element of the electrode so that a maximum electrical signal can be obtained for use in the monitoring equipment. An improtant further characteristic of such electrodes is that they be so designed as to minimize the discomfort which a patient will suffer, especially when such electrode may be required to be used over a prolonged period of time, sometimes for several days.
It is particularly desirable that such electrodes provide maximum signal strength with minimal discomfort for more sensitive patients, such as adults with sensitive skin and children or infants whose skin is apt to be more tender than that of adults. The comfort factor may be particularly important when used with extremely small infants, less than 30 days old, in the growing field of neo-natalogy.
DESCRIPTION OF THE PRIOR ART A conventionally structured electrode presently available for use in the medical field is a type which utilizes a conductive gel between the skin area which is being contacted and the metallic contact element of the electrode to which the monitoring circuit is connected. In such presently used electrodes the metal contact element is normally affixed to a rigid plastic base member of the electrode, the contact element being in the form of a snap fastener assembly having a first side to which a monitoring circuit is snap connected and a second oppositely disposed side which is in contact with a pad member made of an open cell plastic material permeated with a conductive gel. The pad is in turn in pressure contact with the skin, the conductive gel thereby assuring that a good conductive path is present from the skin to the metal contact element for the signal which is being monitored.
In such prior art electrodes the gel pad is freely nested in a recessed region of the electrode which is formed by a solid ridged portion of the rigid plastic body member, the outer surface of the'ridge coming into pressure contact with the skin adjacent the outer perimeterof the gel pad when the electrode is in use. The ridged body member containing the snap fastener contact element is attached to a circularly shaped open cell plastic foam material one side of which has an adhesive thereon so that the electrode can adhere to the skin. The protruding ridge is thereby between the open cell adhesive foam material and the open cell-gel pad foam material to form a barrier therebetween so as to prevent the conductive gel in the gel pad from being .2 absorbed'by and dispersed throughout the open cell adhesive foam portion of the overall electrode. Unfortunately, however, the presence of the ridge tends to cause excessive discomfort'to the patient on whom the electrode is being used since the ridge which digs into the skin of the patient can become extremely irritating.
Moreover, since the gel pad itself is held within the recessed portion of the electrode only by means of the surface tension created between the gel material and the surface of the solid ridged member of the electrode,
the gel pad can often fall out of its recessed nest during handling and must be replaced by hand or other means, all of which tends to cause the gel pad to become less sanitary in use than is desired.
SUMMARY OF THE INVENTION In the monitoring electrode of the invention the need for a ridged barrier between a conductor gel pad and an adhesive portion of the electrode is eliminated so that a relatively smooth surface is presented to the skin of the patient and any irritation and discomfort caused by the presence of a ridge is completely avoided. In the structure of the invention, the adhesive base member of the electrode to which a snap fastener contact element is attached is made of a plastic foam material having a closed cell configuration. A gel pad made of a plastic foam material having an open cell configuration is then adhered to the underside of the closed cell foam material opposite the underside of the snap fastener contact element.
In one preferred embodiment of the invention a thin vinyl plastic strip is adhered to the upper side of the closed cell body member to provide some rigidity thereto. Because of the closed cell nature of the adhesive base member of the electrode, substantially none of the conductive gel which is dispersed throughout the open cell gel pad can be absorbed by or dispersed within the closed cell material and the gel is adequately retained within the open cell gel pad during manufacture, shipment and use. Moreover, because no solid plastic ridged member is used, the surface of the electrode which comes into contact with the skin of the patient is essentially soft and relatively smooth with no protruding ridges so that it can be readily placed on the patients skin for good adherence without discomfort even with prolonged use.
In the preferred embodiment of the invention the lower surface of the contact element which is in contact with the gel pad may be coated with silver so that, in reacting with the gel substance a silver/silver chloride conductive coating is formed which enhances the signal carrying properties of the electrode.
The elimination of the need for a ridged barrier also permits the formation of a relatively smaller electrode than that of presently available electrodes and permits their use with regions of the body where the larger electrodes have not-been readily useable. A smaller size also makes the electrode more convenient for use with child and infant patients.
The invention is described in more detail with reference to the attached drawings wherein FIG. 1 shows a view in cross-section of a monitoring electrode of the prior art;
FIG. 1A shows a plan view of the electrode of FIG.
FIG. 2 shows a view in cross-section of a preferred embodiment of the electrode in accordance with the invention;
FIG. 2A shows a plan view of the electrode of FIG.
FIG. 3 shows a view in cross-section of a portion of the electrode of FIG. 2; and
FIG. 4 shows a view in cross-section of a preferred embodiment for packaging one or more of the electrodes of FIG. 2.
FIG. 1 depicts a conventional monitoring electrode of the prior art which has found relatively widespread use in the medical field at the present time. As can be seen therein the electrode comprises a solid plastic ridged body member having an upper portion 11A and a lower portion 11B, each of a circular configuration, which portions each include flat body portions 12A and 128 respectively, and ridged portions 13A and 13B, respectively, forming the outer peripheries thereof. A contact element 14 is positioned within apertures at the centers of solid portions 11A and 118, the contact element being in the form of a conventional male snap fastener having a first upper portion 14A with a protruding snap at the center thereof and a lower portion 148 which nests within the upper portion so that the overall element can be attached to and retained in the solid ridged member. The snap fastener 14 provides a snap contact to a corresponding female snap fastener (not shown) which is in turn connected to an appropriate lead for connection to suitable monitoring equipment (also not shown). The upper and lower solid portions 11A and 118 may be made of any appropriately chosen plastic material and are arranged to enclose an adhesive pad member 16 also of substantially circular configuration, as shown. One side of foam pad 16 has a layer 17 of double faced adhesive material placed thereon and extending from ridge 138 to the periphery thereof so as to provide an adhesion surface which permits the electrode to be placed in an adhering manner on the skin of a patient. A circular pad 19 of foam plastic material is nested within the recess 18 formed by ridge 13B, pad 19 being substantially permeated with a conductive gel substance forming a gel pad for providing a good conductive path from the skin which contacts the outer exposed surface thereof and the lower portion 148 of contact element 14, which is in contact with the inner surface of gel pad 19. Gel pad 19 is retained within the recess 18 by the surface tension action of the gel on the underside of solid plastic portion 12B,
In the prior art structure shown both of the plastic pad materials forming the adhesive pad 16 and the gel pad 19 are made of an open cellular plastic foam material which is readily absorbent to liquids and gels which can thereby penetrate into and become dispersed throughout such materials. In order to permit dispersion of conductive gel throughout gel pad 19 without permitting a similar dispersionin the adhesive pad 16, the ridge 13B and body portion 128 form a barrier so that none of the gel in gel pad 19 comes into contact with the adhesive pad 16. Were the conductive gel to become dispersed throughout adhesive pad 16 as well as gel pad 19, the conductivity of the path through pad 19 would be greatly reduced and the effectiveness of the electrode would become diminished. Further, when the prior art electrode 10 is placed on the skin of a patient for any prolonged period of time, ridge 13B tends to dig into the skin and become so irritating that a high degree of discomfort may result, particularly with patients having relatively tender skin.
Moreover, when the electrode has been placed on the skin the presence of ridge 13B tends to cause the adhesive surfaces in the regions adjacent the ridges to be raised out of contact with the skin so that the area of adhesive contact with the skin is reduced. In order to assure that the surface area of adhesive contact is sufficient, the diameter of the overall electrode must be made relatively large and the electrode becomes less useful for some applications.
A preferred embodiment of the monitoring electrode of the invention is depicted in FIGS. 2 and 2A and shows the contrast between the structure thereof and that of the prior art electrode shown in FIGS. 1 and 1A.
As can be seen in FIGS. 2 and 2A, the electrode 20 of the invention comprises an adhesive foam pad portion 21 which forms the main body of the electrode and has on one surface thereof a layer 22 of double-faced adhesive which effectively covers the entire surface. In a preferred embodiment adhesive foam pad 21 has a substantially circular configuration and at the central region of the surface 24 opposite to the adhesive surface thereof a paper thin circular piece 23 of vinyl plastic material is positioned. Vinyl piece 23 imparts a slightly greater degree of rigidity for the surface 24 of the electrode than to the adhesive surface thereof and, further, can be used as an appropriate label for identifying the electrode and the manufacturer thereof.
A snap fastener contact element 25 is machine fastened at the center of adhesive foam pad 21 as shown. After the fastening process the presence of fastener 25 forms slight depressions at both the upper and the lower surfaces of foam pad 21, as shown. The peripheral region of a gel pad 26 is caused to adhere to the adhesive surface of pad 21 so that the pad 26 is placed at a position opposite the lower contact surface 25A of contact element 25 as shown in enlarged detail in FIG. 3.
Further, the double sided adhesive layer 22 is selected so as to avoid causing any irritation to the skin, to which it adheres. One such adhesive which has been successfully used and which has been approved for such use by the Federal Drug Administration of the United States Government is identified as Adhesive No. 1524, made by 3M Company, Minneapolis, Minnesota.
The cellular density of open cell material 26 is such as to be sufficiently dense to hold a conductive gel within the material and at the same time sufficiently porous to allow the gel to penetrate throughout the material so that a good electrical contact is made between the skin of the patient and the lower surface 25A of contact element 25. Conductive gels for this purpose are readily available to those in the art and any convenient gel such as that identified as Spectra 360 as sold by Parker Laboratories, lrvington, New Jersey, may be used in the electrode of the invention.
in order to enhance the conductive path from the skin to the contact element 25, the bottom surface 25A thereof is coated with silver. When the conductive gel comes into contact with the silver coated surface thereof it forms a combination silver/silver chloride coating which enhances the conductive properties therebetween. In using conventional snap fasteners which have chrome plated surfaces, for example, contact with electrode conductive gels often causes the formation of an acid coating which may be injurious to the skin against which the electrode is pressed. The silver/silver chloride coating not only has been found to increase the conductivity of the overall electrode, it has also been found to be essentially harmless to the skin of the patient. It can also be seen that when the electrode is applied to the skin of a patient, gel pad.26 is effectively compressed and the lower surface of the electrode forms an effectively soft and smooth contact with the skin over its entire area and little or no discomfort is felt by the patient.
With reference to the dimensions of the various.ele ments of the electrode of the invention, it has been found that the thickness of the adhesive foam pad 21 preferably lies within a range of from 1/ 32nd of an inch to about 3/ l6ths of an inch, with a thickness of about 1/ 1 6th of an inch being successfully used in a preferred embodiment of the electrode. The thickness is primarily selected so as toretain sufficient flexibility for the overall electrode to permit it to be used in various skin areas, even those having a relatively deep curvature. Moreover, it has been found that if the adhesive foam pad portion is at least l/32nd of aninch thick, it becomes much easier to remove the electrode both from the card on which it is shipped, as described below, and
from the skin after use.
The vinyl label 23 has been found preferably to have a diameter lying 0etween about 0.75 inches to up to the diameter of the foam pad 16. The latter preferably has a diameter of from about 1 inch to 2 /4 inches and in a preferred embodiment a diameter of 1% inches hasbeen found to be satisfactory for use not only on adult patients but also on child and infant patients.
The diameter of gel pad 26 is preferably between about ll/l6 inch and l3/l6 inch with a diameter of about /1 inch being successfully used in a preferred embodiment. Thus, the gel pad must be sufficiently large to cover the bottom contact element surface and yet have enough surface area in contact with the adhesive layer 22 to permit the gel pad to be adequately. attached to the foam pad 21 about its entire periphery. Since the gel pad 26 is retained on foam'pad 21'by the adhesive layer 22 it doesnot depend for its retention upon the surface tension ofthe gel itself. Accordingly, in shipping the overall electrode the electrode can be shipped either in a dry form, that is, a form wherein the gel is not applied to the open cell pad 26 until just prior to use, or in a wet" form, that is, where the gel is applied when the electrode is packaged so that it arrives for use in a pre-gelled" state. Such a construction is in contrast with that of theprior art where the V gel must'beshipped in a wet state so as to be retained gel pads are further protected by applying a clear plastic cover-member 32 having relatively rigid raised portions 33 positioned above each gel pad 26, as shown. Cover member 32 may be appropriately fastened with adhesive material, such as a suitable glue, at appropriate pointson the lower surface of the card.
Each card may be inserted into an hermetically sealed bag 35 which also has a light opaque inner surface. If the, electrode is of a pre-gelled form, the hermetically sealedbag prevents theescapeof any mois ture from-the gel and keeps the gel pad 26 in an appropriately wet conductive state. The use of a light opaque bag'prevents the penetration into the interior of the bagof ultraviolet rays which may cause a deterioration of the adhesive, layer 22. Accordingly, when-the electrode-is ready for use it will adhere firmly to the skin-without any problems. The semi-rigid cover 32 prevents the gel pad from being inadvertently squeezed during shipment which action would cause an irretrievable loss of the gel material.
In manufacturing the electrodes of the, inventioma sheetof closedcell plastic foam material is coveredon one surface thereof with a double sided layer of adhesive material. A plurality of vinyl labelsare then adhered at various regions to the opposite side thereof andthe snap fasteners 25 are machine installed at the centerof 'each vinyl label. A pluralityof open cell foam plastic pads are thenadhered to the adhesive layer of the closed cell material at positions opposite'each snap fastener. The open cell pads can be so applied ina dry. state and the electrodes then appropriately punched out from the closed cell plastic sheet. If ltilS desired to ship the electrodes in a wet state, a conductive gel is applied to each of the gel pads before packag-, mg.
Whether in a wet or in a dry state, one or more of the punchedelectrodes are mounted on a card having one ormore circular apertures each having a diameter the sameas that of the open cell gel pads and the relatively rigid plastic cover is then glued to thsurface of the card through which the open cell gel pad protrudes. Thecards are then placed into hermetically scalable and light opaque. bags and appropriately sealed for storage and/or shipment.
What is claimed is: l. A monitoring electrode comprising a substantially flat support member formed of plastic foam material having a closed cellular configuration throughout, one surface of which is adhesive;
a contact element embedded in said support member, a first contact portion thereof being exposed atsaid one surface and a second contact portion thereof protruding from the opposite surface of said support member;
a pad member formed of plastic foam material having an open cellular configuration adhered to said adhesive surface of said support member at a position such that the inner surface of said pad member is in contact with and substantially covers said exposed portion of said contact element, the outer surface thereof being capable of contacting a surface to be monitored.
2. A monitoring electrode in accordance with claim 1 and further including a conductive gel being dispersed throughout said pad member when said monitoring electrode is in use to provide a conductive path from said outer surface of said pad member to said second contact portion.
3. A monitoring electrode in accordance with claim 2 and further including a plastic strip adhered to a portion of said opposite surface of said support member to impart greater rigidity to said opposite surface than to said one surface thereof.
4. A monitoring electrode in accordance with claim 2 wherein the thickness of said support member is in a range from about 1/32 inch to about 3/16 inches.
5. A monitoring electrode in accordance with claim 4 wherein the thickness of said support member is about l/l6 inch.
8 wherein said support member is substantially circular in configuration and has a diameter of about l% inches.
10. A monitoring electrode in accordance with claim 8 wherein said pad member is substantially circular in configuration and has a diameter in a range from about 1 H16 inches to about 13/16 inches. 11. A monitoring electrode in accordance with claim 10 wherein said pad member is substantially circular in configuration and has a diameter of about inches.
Claims (11)
1. A monitoring electrode comprising a substantially flat support member formed of plastic foam material having a closed cellular configuration throughout, one surface of which is adhesive; a contact element embedded in said support member, a first contact portion thereof being exposed at said one surface and a second contact portion thereof protruding from the opposite surface of said support member; a pad member formed of plastic foam material having an open cellular configuration adhered to said adhesive surface of said support member at a position such that the inner surface of said pad member is in contact with and substantially covers said exposed portion of said contact element, the outer surface thereof being capable of contacting a surface to be monitored.
2. A monitoring electrode in accordance with claim 1 and further including a conductive gel being dispersed throughout said pad member when said monitoring electrode is in use to provide a conductive path from said outer surface of said pad member to said second contact portion.
3. A monitoring electrode in accordance with claim 2 and further including a plastic strip adhered to a portion of said opposite surface of said support member to impart greater rigidity to said opposite surface than to said one surface thereof.
4. A monitoring electrode in accordance with claim 2 wherein the thickness of said support member is in a range from about 1/32 inch to about 3/16 inches.
5. A monitoring electrode in accordance with claim 4 wherein the thickness of said support member is about 1/16 inch.
6. A monitoring electrode in accordance with claim 2 wherein the thickness of said pad member is in a range from about 1/32 inch to about 3/32 inches.
7. A monitoring electrode in accordance with claim 6 wherein the thickness of said pad member is about 1/16 inch.
8. A monitoring electrode in accordance with claim 2 wherein said support member is substantially circular in configuration and has a diameter in a range from about 1 inch to about 2.25 inches.
9. A monitoring electrode in accordance with claim 8 wherein said support member is substantially circular in configuration and has a diameter of about 1 3/8 inches.
10. A monitoring electrode in accordance with claim 8 wherein said pad member is substantially circular in configuration and has a diameter in a range from about 11/16 inches to about 13/16 inches.
11. A monitoring electrode in accordance with claim 10 whereiN said pad member is substantially circular in configuration and has a diameter of about 3/4 inches.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00280350A US3828766A (en) | 1972-08-14 | 1972-08-14 | Disposable medical electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00280350A US3828766A (en) | 1972-08-14 | 1972-08-14 | Disposable medical electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
US3828766A true US3828766A (en) | 1974-08-13 |
Family
ID=23072707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00280350A Expired - Lifetime US3828766A (en) | 1972-08-14 | 1972-08-14 | Disposable medical electrode |
Country Status (1)
Country | Link |
---|---|
US (1) | US3828766A (en) |
Cited By (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3923042A (en) * | 1973-10-15 | 1975-12-02 | Medicor Muevek | Electrical detector/transducer/applicable on the skin surface for biometrical observations |
US3961623A (en) * | 1975-01-17 | 1976-06-08 | Medical Research Laboratories, Inc. | Method of using a disposable electrode pad |
US3964469A (en) * | 1975-04-21 | 1976-06-22 | Eastprint, Inc. | Disposable electrode |
US3972329A (en) * | 1974-11-25 | 1976-08-03 | Kaufman John George | Body electrode for electro-medical use |
US3973557A (en) * | 1975-04-21 | 1976-08-10 | Allison Kenneth C | Electrode |
US3976055A (en) * | 1973-12-17 | 1976-08-24 | Ndm Corporation | Electrode and conductor therefor |
US3977392A (en) * | 1975-04-21 | 1976-08-31 | Eastprint, Inc. | Medical electrode |
US3989035A (en) * | 1975-08-04 | 1976-11-02 | Stemmen Laboratory, Inc. | Disposable medical electrode |
US3993049A (en) * | 1974-12-26 | 1976-11-23 | Kater John A R | Electrodes and materials therefor |
US4029086A (en) * | 1975-08-11 | 1977-06-14 | Consolidated Medical Equipment, Inc. | Electrode arrangement |
US4034854A (en) * | 1976-07-16 | 1977-07-12 | M I Systems, Inc. | Electrode package |
US4040412A (en) * | 1974-08-09 | 1977-08-09 | Sato Takuya R | Bioelectrodes |
US4050453A (en) * | 1976-02-03 | 1977-09-27 | Concept, Inc. | Radiotransparent electrode |
US4067322A (en) * | 1974-07-19 | 1978-01-10 | Johnson Joseph H | Disposable, pre-gel body electrodes |
US4077397A (en) * | 1974-10-07 | 1978-03-07 | Baxter Travenol Laboratories, Inc. | Diagnostic electrode assembly |
US4077398A (en) * | 1974-10-07 | 1978-03-07 | Baxter Travenol Laboratories, Inc. | Diagnostic electrode assembly |
US4092985A (en) * | 1974-11-25 | 1978-06-06 | John George Kaufman | Body electrode for electro-medical use |
WO1979000042A1 (en) * | 1977-07-13 | 1979-02-08 | A Mercuri | Biomedical electrode assembly |
DE2735050A1 (en) * | 1977-08-03 | 1979-02-08 | Siemens Ag | Electrode accepting and sending physiological signals - contains polyether foam inserts having closed pore surface on application side |
EP0000759A1 (en) * | 1977-08-03 | 1979-02-21 | Siemens Aktiengesellschaft | Electrode |
FR2416001A1 (en) * | 1978-02-01 | 1979-08-31 | Bard Inc C R | BIPOLAR TRANSCUTANEOUS ELECTRODE |
US4166456A (en) * | 1977-01-17 | 1979-09-04 | Vaughn Corporation | Carrier release sheet |
US4196737A (en) * | 1978-04-21 | 1980-04-08 | C. R. Bard, Inc. | Transcutaneous electrode construction |
US4319579A (en) * | 1979-06-21 | 1982-03-16 | Ndm Corporation | Reusable medical electrode having disposable electrolyte carrier |
US4327737A (en) * | 1980-05-15 | 1982-05-04 | Roman Szpur | Medical electrode assembly |
US4353373A (en) * | 1980-04-17 | 1982-10-12 | Ferris Manufacturing Corp. | EKG Electrode and package |
US4393584A (en) * | 1979-12-06 | 1983-07-19 | C. R. Bard, Inc. | Method of manufacture of electrode construction |
US4441500A (en) * | 1980-04-17 | 1984-04-10 | Ferris Manufacturing Corp. | EKG Electrode |
US4522211A (en) * | 1979-12-06 | 1985-06-11 | C. R. Bard, Inc. | Medical electrode construction |
US4524775A (en) * | 1982-02-15 | 1985-06-25 | Jan Rasmussen | Medical electrode and a method of manufacturing same |
US4543958A (en) * | 1979-04-30 | 1985-10-01 | Ndm Corporation | Medical electrode assembly |
US4584962A (en) * | 1979-04-30 | 1986-04-29 | Ndm Corporation | Medical electrodes and dispensing conditioner therefor |
US4590089A (en) * | 1979-04-30 | 1986-05-20 | Ndm Corporation | Medical electrodes and dispensing conditioner therefor |
US4669479A (en) * | 1985-08-21 | 1987-06-02 | Spring Creek Institute, Inc. | Dry electrode system for detection of biopotentials |
US4674511A (en) * | 1979-04-30 | 1987-06-23 | American Hospital Supply Corporation | Medical electrode |
US4685467A (en) * | 1985-07-10 | 1987-08-11 | American Hospital Supply Corporation | X-ray transparent medical electrodes and lead wires and assemblies thereof |
USRE32724E (en) * | 1979-06-21 | 1988-08-02 | American Hospital Supply Corporation | Reusable medical electrode having disposable electrolyte carrier |
US4832036A (en) * | 1985-05-13 | 1989-05-23 | Baxter International Inc. | Medical electrode |
US4838273A (en) * | 1979-04-30 | 1989-06-13 | Baxter International Inc. | Medical electrode |
US4852585A (en) * | 1980-08-08 | 1989-08-01 | Darox Corporation | Tin-stannous chloride electrode element |
US5305746A (en) * | 1992-09-29 | 1994-04-26 | Aspect Medical Systems, Inc. | Disposable, pre-gelled, self-prepping electrode |
US5326272A (en) * | 1990-01-30 | 1994-07-05 | Medtronic, Inc. | Low profile electrode connector |
US5431166A (en) * | 1993-01-22 | 1995-07-11 | Ludlow Corporation | Low profile medical electrode |
WO1996011631A1 (en) * | 1994-10-17 | 1996-04-25 | Biofield Corp. | Dc biopotential sensing electrode and electroconductive medium for use therein |
US5660177A (en) * | 1991-11-04 | 1997-08-26 | Biofield Corp. | D.C. biopotential sensing electrode assemblies for apparatus for disease, injury and bodily condition screening or sensing |
US5823957A (en) * | 1994-10-17 | 1998-10-20 | Biofield Corp | D.C. biopotential sensing electrode and electroconductive medium for use therein |
US6254614B1 (en) * | 1999-10-18 | 2001-07-03 | Jerry M. Jesseph | Device and method for improved diagnosis and treatment of cancer |
US20020107549A1 (en) * | 2000-09-18 | 2002-08-08 | Cameron Health, Inc. | Subcutaneous electrode with improved contact shape for transthorasic conduction |
US6711427B1 (en) | 2002-02-13 | 2004-03-23 | Milwaukee Electronics Corporation | Skin abrading medical electrode mounting and packaging system |
US20070167089A1 (en) * | 2006-01-17 | 2007-07-19 | Stephane Gobron | Multi-lead keyhole connector |
US20070260133A1 (en) * | 2006-05-08 | 2007-11-08 | Tycohealthcare Group Lp | Radial electrode array |
US20080081954A1 (en) * | 2006-09-28 | 2008-04-03 | Meyer Peter F | Cable monitoring apparatus |
US20080177168A1 (en) * | 2006-12-05 | 2008-07-24 | Mark Callahan | Ecg lead wire organizer and dispenser |
US20090088652A1 (en) * | 2007-09-28 | 2009-04-02 | Kathleen Tremblay | Physiological sensor placement and signal transmission device |
US20090227856A1 (en) * | 2007-12-21 | 2009-09-10 | Brian Keith Russell | Electrocardiogram sensor |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US20100140500A1 (en) * | 2007-06-19 | 2010-06-10 | Therapy Positioning Technologies, Llc | Apparatus and method for the treatment of breast cancer with particle beams |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US20100292605A1 (en) * | 2009-05-14 | 2010-11-18 | Dragerwerk AG & Co. KGaA | Double temperature sensor |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US7978064B2 (en) | 2005-04-28 | 2011-07-12 | Proteus Biomedical, Inc. | Communication system with partial power source |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US8036748B2 (en) | 2008-11-13 | 2011-10-11 | Proteus Biomedical, Inc. | Ingestible therapy activator system and method |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8055334B2 (en) | 2008-12-11 | 2011-11-08 | Proteus Biomedical, Inc. | Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same |
US8054140B2 (en) | 2006-10-17 | 2011-11-08 | Proteus Biomedical, Inc. | Low voltage oscillator for medical devices |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US8115618B2 (en) | 2007-05-24 | 2012-02-14 | Proteus Biomedical, Inc. | RFID antenna for in-body device |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8114021B2 (en) | 2008-12-15 | 2012-02-14 | Proteus Biomedical, Inc. | Body-associated receiver and method |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8238996B2 (en) | 2006-12-05 | 2012-08-07 | Tyco Healthcare Group Lp | Electrode array |
US8258962B2 (en) | 2008-03-05 | 2012-09-04 | Proteus Biomedical, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US8540633B2 (en) | 2008-08-13 | 2013-09-24 | Proteus Digital Health, Inc. | Identifier circuits for generating unique identifiable indicators and techniques for producing same |
US8540664B2 (en) | 2009-03-25 | 2013-09-24 | Proteus Digital Health, Inc. | Probablistic pharmacokinetic and pharmacodynamic modeling |
US8547248B2 (en) | 2005-09-01 | 2013-10-01 | Proteus Digital Health, Inc. | Implantable zero-wire communications system |
US8545402B2 (en) | 2009-04-28 | 2013-10-01 | Proteus Digital Health, Inc. | Highly reliable ingestible event markers and methods for using the same |
US8558563B2 (en) | 2009-08-21 | 2013-10-15 | Proteus Digital Health, Inc. | Apparatus and method for measuring biochemical parameters |
US8568160B2 (en) | 2010-07-29 | 2013-10-29 | Covidien Lp | ECG adapter system and method |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8597186B2 (en) | 2009-01-06 | 2013-12-03 | Proteus Digital Health, Inc. | Pharmaceutical dosages delivery system |
US8668651B2 (en) | 2006-12-05 | 2014-03-11 | Covidien Lp | ECG lead set and ECG adapter system |
US8690611B2 (en) | 2007-12-11 | 2014-04-08 | Covidien Lp | ECG electrode connector |
US8694080B2 (en) | 2009-10-21 | 2014-04-08 | Covidien Lp | ECG lead system |
US8706217B2 (en) | 2000-09-18 | 2014-04-22 | Cameron Health | Cardioverter-defibrillator having a focused shocking area and orientation thereof |
US8718193B2 (en) | 2006-11-20 | 2014-05-06 | Proteus Digital Health, Inc. | Active signal processing personal health signal receivers |
US8730031B2 (en) | 2005-04-28 | 2014-05-20 | Proteus Digital Health, Inc. | Communication system using an implantable device |
US20140187063A1 (en) * | 2012-12-31 | 2014-07-03 | Suunto Oy | Male end of a telemetric transceiver |
US8784308B2 (en) | 2009-12-02 | 2014-07-22 | Proteus Digital Health, Inc. | Integrated ingestible event marker system with pharmaceutical product |
US8802183B2 (en) | 2005-04-28 | 2014-08-12 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US8831720B2 (en) | 2000-09-18 | 2014-09-09 | Cameron Health, Inc. | Method of implanting and using a subcutaneous defibrillator |
US8836513B2 (en) | 2006-04-28 | 2014-09-16 | Proteus Digital Health, Inc. | Communication system incorporated in an ingestible product |
US8858432B2 (en) | 2007-02-01 | 2014-10-14 | Proteus Digital Health, Inc. | Ingestible event marker systems |
US8868453B2 (en) | 2009-11-04 | 2014-10-21 | Proteus Digital Health, Inc. | System for supply chain management |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US8912908B2 (en) | 2005-04-28 | 2014-12-16 | Proteus Digital Health, Inc. | Communication system with remote activation |
US8932221B2 (en) | 2007-03-09 | 2015-01-13 | Proteus Digital Health, Inc. | In-body device having a multi-directional transmitter |
US8945005B2 (en) | 2006-10-25 | 2015-02-03 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US8956287B2 (en) | 2006-05-02 | 2015-02-17 | Proteus Digital Health, Inc. | Patient customized therapeutic regimens |
US8956288B2 (en) | 2007-02-14 | 2015-02-17 | Proteus Digital Health, Inc. | In-body power source having high surface area electrode |
US8961412B2 (en) | 2007-09-25 | 2015-02-24 | Proteus Digital Health, Inc. | In-body device with virtual dipole signal amplification |
US9014779B2 (en) | 2010-02-01 | 2015-04-21 | Proteus Digital Health, Inc. | Data gathering system |
US9107806B2 (en) | 2010-11-22 | 2015-08-18 | Proteus Digital Health, Inc. | Ingestible device with pharmaceutical product |
USD737979S1 (en) | 2008-12-09 | 2015-09-01 | Covidien Lp | ECG electrode connector |
US9138589B2 (en) | 2001-11-21 | 2015-09-22 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9144683B2 (en) | 2000-09-18 | 2015-09-29 | Cameron Health, Inc. | Post-shock treatment in a subcutaneous device |
US9149423B2 (en) | 2009-05-12 | 2015-10-06 | Proteus Digital Health, Inc. | Ingestible event markers comprising an ingestible component |
US9198608B2 (en) | 2005-04-28 | 2015-12-01 | Proteus Digital Health, Inc. | Communication system incorporated in a container |
US9235683B2 (en) | 2011-11-09 | 2016-01-12 | Proteus Digital Health, Inc. | Apparatus, system, and method for managing adherence to a regimen |
US9270503B2 (en) | 2013-09-20 | 2016-02-23 | Proteus Digital Health, Inc. | Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping |
US9268909B2 (en) | 2012-10-18 | 2016-02-23 | Proteus Digital Health, Inc. | Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device |
US9270025B2 (en) | 2007-03-09 | 2016-02-23 | Proteus Digital Health, Inc. | In-body device having deployable antenna |
US9271897B2 (en) | 2012-07-23 | 2016-03-01 | Proteus Digital Health, Inc. | Techniques for manufacturing ingestible event markers comprising an ingestible component |
US9408547B2 (en) | 2011-07-22 | 2016-08-09 | Covidien Lp | ECG electrode connector |
US9408546B2 (en) | 2013-03-15 | 2016-08-09 | Covidien Lp | Radiolucent ECG electrode system |
US9439566B2 (en) | 2008-12-15 | 2016-09-13 | Proteus Digital Health, Inc. | Re-wearable wireless device |
US9439599B2 (en) | 2011-03-11 | 2016-09-13 | Proteus Digital Health, Inc. | Wearable personal body associated device with various physical configurations |
USD771818S1 (en) | 2013-03-15 | 2016-11-15 | Covidien Lp | ECG electrode connector |
US9577864B2 (en) | 2013-09-24 | 2017-02-21 | Proteus Digital Health, Inc. | Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance |
US9597487B2 (en) | 2010-04-07 | 2017-03-21 | Proteus Digital Health, Inc. | Miniature ingestible device |
US9603550B2 (en) | 2008-07-08 | 2017-03-28 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US9659423B2 (en) | 2008-12-15 | 2017-05-23 | Proteus Digital Health, Inc. | Personal authentication apparatus system and method |
US9693701B2 (en) | 2013-03-15 | 2017-07-04 | Covidien Lp | Electrode connector design to aid in correct placement |
US9756874B2 (en) | 2011-07-11 | 2017-09-12 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
US9796576B2 (en) | 2013-08-30 | 2017-10-24 | Proteus Digital Health, Inc. | Container with electronically controlled interlock |
US9883819B2 (en) | 2009-01-06 | 2018-02-06 | Proteus Digital Health, Inc. | Ingestion-related biofeedback and personalized medical therapy method and system |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US10175376B2 (en) | 2013-03-15 | 2019-01-08 | Proteus Digital Health, Inc. | Metal detector apparatus, system, and method |
US10187121B2 (en) | 2016-07-22 | 2019-01-22 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US10223905B2 (en) | 2011-07-21 | 2019-03-05 | Proteus Digital Health, Inc. | Mobile device and system for detection and communication of information received from an ingestible device |
US10398161B2 (en) | 2014-01-21 | 2019-09-03 | Proteus Digital Heal Th, Inc. | Masticable ingestible product and communication system therefor |
US20190380602A1 (en) * | 2018-06-15 | 2019-12-19 | Johnson Electric S.A. | Medical sensor |
US10529044B2 (en) | 2010-05-19 | 2020-01-07 | Proteus Digital Health, Inc. | Tracking and delivery confirmation of pharmaceutical products |
US11051543B2 (en) | 2015-07-21 | 2021-07-06 | Otsuka Pharmaceutical Co. Ltd. | Alginate on adhesive bilayer laminate film |
US11149123B2 (en) | 2013-01-29 | 2021-10-19 | Otsuka Pharmaceutical Co., Ltd. | Highly-swellable polymeric films and compositions comprising the same |
US11158149B2 (en) | 2013-03-15 | 2021-10-26 | Otsuka Pharmaceutical Co., Ltd. | Personal authentication apparatus system and method |
US11529071B2 (en) | 2016-10-26 | 2022-12-20 | Otsuka Pharmaceutical Co., Ltd. | Methods for manufacturing capsules with ingestible event markers |
US11744481B2 (en) | 2013-03-15 | 2023-09-05 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2055540A (en) * | 1933-12-18 | 1936-09-29 | Gen Therapeutics Corp | Process and apparatus for treating pathological conditions |
US3340868A (en) * | 1965-03-05 | 1967-09-12 | Gen Electric | Body signal pickup electrode |
US3534727A (en) * | 1967-03-24 | 1970-10-20 | Nasa | Biomedical electrode arrangement |
US3545432A (en) * | 1967-07-24 | 1970-12-08 | Gulton Ind Inc | Body electrode assembly |
US3581736A (en) * | 1968-12-20 | 1971-06-01 | Ilias Zenkich | Electrocardiograph electrode |
US3587565A (en) * | 1969-08-25 | 1971-06-28 | Cardiac Electronics Inc | Disposable electrode |
US3696807A (en) * | 1970-02-13 | 1972-10-10 | Mdm Corp | Medical electrode with relatively rigid electrolyte cup |
US3701346A (en) * | 1971-01-04 | 1972-10-31 | Bionetics Inc | Medical electrode |
-
1972
- 1972-08-14 US US00280350A patent/US3828766A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2055540A (en) * | 1933-12-18 | 1936-09-29 | Gen Therapeutics Corp | Process and apparatus for treating pathological conditions |
US3340868A (en) * | 1965-03-05 | 1967-09-12 | Gen Electric | Body signal pickup electrode |
US3534727A (en) * | 1967-03-24 | 1970-10-20 | Nasa | Biomedical electrode arrangement |
US3545432A (en) * | 1967-07-24 | 1970-12-08 | Gulton Ind Inc | Body electrode assembly |
US3581736A (en) * | 1968-12-20 | 1971-06-01 | Ilias Zenkich | Electrocardiograph electrode |
US3587565A (en) * | 1969-08-25 | 1971-06-28 | Cardiac Electronics Inc | Disposable electrode |
US3696807A (en) * | 1970-02-13 | 1972-10-10 | Mdm Corp | Medical electrode with relatively rigid electrolyte cup |
US3701346A (en) * | 1971-01-04 | 1972-10-31 | Bionetics Inc | Medical electrode |
Cited By (236)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3923042A (en) * | 1973-10-15 | 1975-12-02 | Medicor Muevek | Electrical detector/transducer/applicable on the skin surface for biometrical observations |
US3976055A (en) * | 1973-12-17 | 1976-08-24 | Ndm Corporation | Electrode and conductor therefor |
US4067322A (en) * | 1974-07-19 | 1978-01-10 | Johnson Joseph H | Disposable, pre-gel body electrodes |
US4040412A (en) * | 1974-08-09 | 1977-08-09 | Sato Takuya R | Bioelectrodes |
US4077397A (en) * | 1974-10-07 | 1978-03-07 | Baxter Travenol Laboratories, Inc. | Diagnostic electrode assembly |
US4077398A (en) * | 1974-10-07 | 1978-03-07 | Baxter Travenol Laboratories, Inc. | Diagnostic electrode assembly |
US3972329A (en) * | 1974-11-25 | 1976-08-03 | Kaufman John George | Body electrode for electro-medical use |
US4092985A (en) * | 1974-11-25 | 1978-06-06 | John George Kaufman | Body electrode for electro-medical use |
US3993049A (en) * | 1974-12-26 | 1976-11-23 | Kater John A R | Electrodes and materials therefor |
US3961623A (en) * | 1975-01-17 | 1976-06-08 | Medical Research Laboratories, Inc. | Method of using a disposable electrode pad |
US3964469A (en) * | 1975-04-21 | 1976-06-22 | Eastprint, Inc. | Disposable electrode |
US3977392A (en) * | 1975-04-21 | 1976-08-31 | Eastprint, Inc. | Medical electrode |
US3973557A (en) * | 1975-04-21 | 1976-08-10 | Allison Kenneth C | Electrode |
US3989035A (en) * | 1975-08-04 | 1976-11-02 | Stemmen Laboratory, Inc. | Disposable medical electrode |
US4029086A (en) * | 1975-08-11 | 1977-06-14 | Consolidated Medical Equipment, Inc. | Electrode arrangement |
US4050453A (en) * | 1976-02-03 | 1977-09-27 | Concept, Inc. | Radiotransparent electrode |
US4063352A (en) * | 1976-07-16 | 1977-12-20 | M I Systems, Inc. | Method of making electrode package |
US4034854A (en) * | 1976-07-16 | 1977-07-12 | M I Systems, Inc. | Electrode package |
US4166456A (en) * | 1977-01-17 | 1979-09-04 | Vaughn Corporation | Carrier release sheet |
WO1979000042A1 (en) * | 1977-07-13 | 1979-02-08 | A Mercuri | Biomedical electrode assembly |
US4161174A (en) * | 1977-07-13 | 1979-07-17 | Mercuri Albert R | Biomedical electrode assembly |
DE2735050A1 (en) * | 1977-08-03 | 1979-02-08 | Siemens Ag | Electrode accepting and sending physiological signals - contains polyether foam inserts having closed pore surface on application side |
EP0000759A1 (en) * | 1977-08-03 | 1979-02-21 | Siemens Aktiengesellschaft | Electrode |
US4177817A (en) * | 1978-02-01 | 1979-12-11 | C. R. Bard, Inc. | Dual terminal transcutaneous electrode |
FR2416001A1 (en) * | 1978-02-01 | 1979-08-31 | Bard Inc C R | BIPOLAR TRANSCUTANEOUS ELECTRODE |
US4196737A (en) * | 1978-04-21 | 1980-04-08 | C. R. Bard, Inc. | Transcutaneous electrode construction |
US4590089A (en) * | 1979-04-30 | 1986-05-20 | Ndm Corporation | Medical electrodes and dispensing conditioner therefor |
US4674511A (en) * | 1979-04-30 | 1987-06-23 | American Hospital Supply Corporation | Medical electrode |
US4838273A (en) * | 1979-04-30 | 1989-06-13 | Baxter International Inc. | Medical electrode |
US4543958A (en) * | 1979-04-30 | 1985-10-01 | Ndm Corporation | Medical electrode assembly |
US4584962A (en) * | 1979-04-30 | 1986-04-29 | Ndm Corporation | Medical electrodes and dispensing conditioner therefor |
US4319579A (en) * | 1979-06-21 | 1982-03-16 | Ndm Corporation | Reusable medical electrode having disposable electrolyte carrier |
USRE32724E (en) * | 1979-06-21 | 1988-08-02 | American Hospital Supply Corporation | Reusable medical electrode having disposable electrolyte carrier |
US4393584A (en) * | 1979-12-06 | 1983-07-19 | C. R. Bard, Inc. | Method of manufacture of electrode construction |
US4522211A (en) * | 1979-12-06 | 1985-06-11 | C. R. Bard, Inc. | Medical electrode construction |
US4441500A (en) * | 1980-04-17 | 1984-04-10 | Ferris Manufacturing Corp. | EKG Electrode |
US4353373A (en) * | 1980-04-17 | 1982-10-12 | Ferris Manufacturing Corp. | EKG Electrode and package |
US4327737A (en) * | 1980-05-15 | 1982-05-04 | Roman Szpur | Medical electrode assembly |
US4852585A (en) * | 1980-08-08 | 1989-08-01 | Darox Corporation | Tin-stannous chloride electrode element |
US4524775A (en) * | 1982-02-15 | 1985-06-25 | Jan Rasmussen | Medical electrode and a method of manufacturing same |
US4832036A (en) * | 1985-05-13 | 1989-05-23 | Baxter International Inc. | Medical electrode |
US4685467A (en) * | 1985-07-10 | 1987-08-11 | American Hospital Supply Corporation | X-ray transparent medical electrodes and lead wires and assemblies thereof |
US4669479A (en) * | 1985-08-21 | 1987-06-02 | Spring Creek Institute, Inc. | Dry electrode system for detection of biopotentials |
US5326272A (en) * | 1990-01-30 | 1994-07-05 | Medtronic, Inc. | Low profile electrode connector |
US5660177A (en) * | 1991-11-04 | 1997-08-26 | Biofield Corp. | D.C. biopotential sensing electrode assemblies for apparatus for disease, injury and bodily condition screening or sensing |
US5305746A (en) * | 1992-09-29 | 1994-04-26 | Aspect Medical Systems, Inc. | Disposable, pre-gelled, self-prepping electrode |
US5431166A (en) * | 1993-01-22 | 1995-07-11 | Ludlow Corporation | Low profile medical electrode |
WO1996011631A1 (en) * | 1994-10-17 | 1996-04-25 | Biofield Corp. | Dc biopotential sensing electrode and electroconductive medium for use therein |
US5823957A (en) * | 1994-10-17 | 1998-10-20 | Biofield Corp | D.C. biopotential sensing electrode and electroconductive medium for use therein |
US6569176B2 (en) | 1999-10-18 | 2003-05-27 | Jerry M. Jesseph | Device and method for improved diagnosis and treatment of cancer |
US20030233110A1 (en) * | 1999-10-18 | 2003-12-18 | Jesseph Jerry M. | Device and method for improved diagnosis and treatment of cancer |
US6254614B1 (en) * | 1999-10-18 | 2001-07-03 | Jerry M. Jesseph | Device and method for improved diagnosis and treatment of cancer |
US9144683B2 (en) | 2000-09-18 | 2015-09-29 | Cameron Health, Inc. | Post-shock treatment in a subcutaneous device |
US20050240232A9 (en) * | 2000-09-18 | 2005-10-27 | Cameron Health, Inc. | Subcutaneous electrode with improved contact shape for transthorasic conduction |
US7065410B2 (en) * | 2000-09-18 | 2006-06-20 | Cameron Health, Inc. | Subcutaneous electrode with improved contact shape for transthorasic conduction |
US8831720B2 (en) | 2000-09-18 | 2014-09-09 | Cameron Health, Inc. | Method of implanting and using a subcutaneous defibrillator |
US8706217B2 (en) | 2000-09-18 | 2014-04-22 | Cameron Health | Cardioverter-defibrillator having a focused shocking area and orientation thereof |
US7657322B2 (en) | 2000-09-18 | 2010-02-02 | Cameron Health, Inc. | Subcutaneous electrode with improved contact shape for transthoracic conduction |
US20020107549A1 (en) * | 2000-09-18 | 2002-08-08 | Cameron Health, Inc. | Subcutaneous electrode with improved contact shape for transthorasic conduction |
US9138589B2 (en) | 2001-11-21 | 2015-09-22 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9522283B2 (en) | 2001-11-21 | 2016-12-20 | Cameron Health Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US9993653B2 (en) | 2001-11-21 | 2018-06-12 | Cameron Health, Inc. | Apparatus and method for identifying atrial arrhythmia by far-field sensing |
US6711427B1 (en) | 2002-02-13 | 2004-03-23 | Milwaukee Electronics Corporation | Skin abrading medical electrode mounting and packaging system |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US9198608B2 (en) | 2005-04-28 | 2015-12-01 | Proteus Digital Health, Inc. | Communication system incorporated in a container |
US8674825B2 (en) | 2005-04-28 | 2014-03-18 | Proteus Digital Health, Inc. | Pharma-informatics system |
US10517507B2 (en) | 2005-04-28 | 2019-12-31 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US10542909B2 (en) | 2005-04-28 | 2020-01-28 | Proteus Digital Health, Inc. | Communication system with partial power source |
US7978064B2 (en) | 2005-04-28 | 2011-07-12 | Proteus Biomedical, Inc. | Communication system with partial power source |
US11476952B2 (en) | 2005-04-28 | 2022-10-18 | Otsuka Pharmaceutical Co., Ltd. | Pharma-informatics system |
US9161707B2 (en) | 2005-04-28 | 2015-10-20 | Proteus Digital Health, Inc. | Communication system incorporated in an ingestible product |
US9962107B2 (en) | 2005-04-28 | 2018-05-08 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US9681842B2 (en) | 2005-04-28 | 2017-06-20 | Proteus Digital Health, Inc. | Pharma-informatics system |
US9649066B2 (en) | 2005-04-28 | 2017-05-16 | Proteus Digital Health, Inc. | Communication system with partial power source |
US9597010B2 (en) | 2005-04-28 | 2017-03-21 | Proteus Digital Health, Inc. | Communication system using an implantable device |
US8730031B2 (en) | 2005-04-28 | 2014-05-20 | Proteus Digital Health, Inc. | Communication system using an implantable device |
US8802183B2 (en) | 2005-04-28 | 2014-08-12 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US9439582B2 (en) | 2005-04-28 | 2016-09-13 | Proteus Digital Health, Inc. | Communication system with remote activation |
US8816847B2 (en) | 2005-04-28 | 2014-08-26 | Proteus Digital Health, Inc. | Communication system with partial power source |
US8847766B2 (en) | 2005-04-28 | 2014-09-30 | Proteus Digital Health, Inc. | Pharma-informatics system |
US10610128B2 (en) | 2005-04-28 | 2020-04-07 | Proteus Digital Health, Inc. | Pharma-informatics system |
US8912908B2 (en) | 2005-04-28 | 2014-12-16 | Proteus Digital Health, Inc. | Communication system with remote activation |
US9119554B2 (en) | 2005-04-28 | 2015-09-01 | Proteus Digital Health, Inc. | Pharma-informatics system |
US8547248B2 (en) | 2005-09-01 | 2013-10-01 | Proteus Digital Health, Inc. | Implantable zero-wire communications system |
US7364440B2 (en) | 2006-01-17 | 2008-04-29 | Lifesync Corporation | Multi-lead keyhole connector |
US20070167089A1 (en) * | 2006-01-17 | 2007-07-19 | Stephane Gobron | Multi-lead keyhole connector |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US8836513B2 (en) | 2006-04-28 | 2014-09-16 | Proteus Digital Health, Inc. | Communication system incorporated in an ingestible product |
US8956287B2 (en) | 2006-05-02 | 2015-02-17 | Proteus Digital Health, Inc. | Patient customized therapeutic regimens |
US11928614B2 (en) | 2006-05-02 | 2024-03-12 | Otsuka Pharmaceutical Co., Ltd. | Patient customized therapeutic regimens |
US20070260133A1 (en) * | 2006-05-08 | 2007-11-08 | Tycohealthcare Group Lp | Radial electrode array |
US7925323B2 (en) | 2006-05-08 | 2011-04-12 | Tyco Healthcare Group Lp | Radial electrode array |
US20100022865A1 (en) * | 2006-05-08 | 2010-01-28 | Tyco Healthcare Group Lp | Radial Electrode Array |
US7616980B2 (en) | 2006-05-08 | 2009-11-10 | Tyco Healthcare Group Lp | Radial electrode array |
US20080081954A1 (en) * | 2006-09-28 | 2008-04-03 | Meyer Peter F | Cable monitoring apparatus |
US8109883B2 (en) | 2006-09-28 | 2012-02-07 | Tyco Healthcare Group Lp | Cable monitoring apparatus |
US8821405B2 (en) | 2006-09-28 | 2014-09-02 | Covidien Lp | Cable monitoring apparatus |
US8054140B2 (en) | 2006-10-17 | 2011-11-08 | Proteus Biomedical, Inc. | Low voltage oscillator for medical devices |
US10238604B2 (en) | 2006-10-25 | 2019-03-26 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US8945005B2 (en) | 2006-10-25 | 2015-02-03 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US11357730B2 (en) | 2006-10-25 | 2022-06-14 | Otsuka Pharmaceutical Co., Ltd. | Controlled activation ingestible identifier |
US9083589B2 (en) | 2006-11-20 | 2015-07-14 | Proteus Digital Health, Inc. | Active signal processing personal health signal receivers |
US9444503B2 (en) | 2006-11-20 | 2016-09-13 | Proteus Digital Health, Inc. | Active signal processing personal health signal receivers |
US8718193B2 (en) | 2006-11-20 | 2014-05-06 | Proteus Digital Health, Inc. | Active signal processing personal health signal receivers |
US8668651B2 (en) | 2006-12-05 | 2014-03-11 | Covidien Lp | ECG lead set and ECG adapter system |
US9072444B2 (en) | 2006-12-05 | 2015-07-07 | Covidien Lp | ECG lead set and ECG adapter system |
US20080177168A1 (en) * | 2006-12-05 | 2008-07-24 | Mark Callahan | Ecg lead wire organizer and dispenser |
US8238996B2 (en) | 2006-12-05 | 2012-08-07 | Tyco Healthcare Group Lp | Electrode array |
US8560043B2 (en) | 2006-12-05 | 2013-10-15 | Covidien Lp | ECG lead wire organizer and dispenser |
US8868152B2 (en) | 2006-12-05 | 2014-10-21 | Covidien Lp | Electrode array |
US8571627B2 (en) | 2006-12-05 | 2013-10-29 | Covidien Lp | ECG lead wire organizer and dispenser |
US8180425B2 (en) | 2006-12-05 | 2012-05-15 | Tyco Healthcare Group Lp | ECG lead wire organizer and dispenser |
US8858432B2 (en) | 2007-02-01 | 2014-10-14 | Proteus Digital Health, Inc. | Ingestible event marker systems |
US10441194B2 (en) | 2007-02-01 | 2019-10-15 | Proteus Digital Heal Th, Inc. | Ingestible event marker systems |
US8956288B2 (en) | 2007-02-14 | 2015-02-17 | Proteus Digital Health, Inc. | In-body power source having high surface area electrode |
US11464423B2 (en) | 2007-02-14 | 2022-10-11 | Otsuka Pharmaceutical Co., Ltd. | In-body power source having high surface area electrode |
US9270025B2 (en) | 2007-03-09 | 2016-02-23 | Proteus Digital Health, Inc. | In-body device having deployable antenna |
US8932221B2 (en) | 2007-03-09 | 2015-01-13 | Proteus Digital Health, Inc. | In-body device having a multi-directional transmitter |
US8540632B2 (en) | 2007-05-24 | 2013-09-24 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
US8115618B2 (en) | 2007-05-24 | 2012-02-14 | Proteus Biomedical, Inc. | RFID antenna for in-body device |
US10517506B2 (en) | 2007-05-24 | 2019-12-31 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
US20100140500A1 (en) * | 2007-06-19 | 2010-06-10 | Therapy Positioning Technologies, Llc | Apparatus and method for the treatment of breast cancer with particle beams |
US9433371B2 (en) | 2007-09-25 | 2016-09-06 | Proteus Digital Health, Inc. | In-body device with virtual dipole signal amplification |
US8961412B2 (en) | 2007-09-25 | 2015-02-24 | Proteus Digital Health, Inc. | In-body device with virtual dipole signal amplification |
US8798708B2 (en) | 2007-09-28 | 2014-08-05 | Covidien Lp | Physiological sensor placement and signal transmission device |
US20090088652A1 (en) * | 2007-09-28 | 2009-04-02 | Kathleen Tremblay | Physiological sensor placement and signal transmission device |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US8690611B2 (en) | 2007-12-11 | 2014-04-08 | Covidien Lp | ECG electrode connector |
US8795004B2 (en) | 2007-12-11 | 2014-08-05 | Covidien, LP | ECG electrode connector |
US9107594B2 (en) | 2007-12-11 | 2015-08-18 | Covidien Lp | ECG electrode connector |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US20090227856A1 (en) * | 2007-12-21 | 2009-09-10 | Brian Keith Russell | Electrocardiogram sensor |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US9060708B2 (en) | 2008-03-05 | 2015-06-23 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US8258962B2 (en) | 2008-03-05 | 2012-09-04 | Proteus Biomedical, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US8810409B2 (en) | 2008-03-05 | 2014-08-19 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US8542123B2 (en) | 2008-03-05 | 2013-09-24 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US9258035B2 (en) | 2008-03-05 | 2016-02-09 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US9603550B2 (en) | 2008-07-08 | 2017-03-28 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US11217342B2 (en) | 2008-07-08 | 2022-01-04 | Otsuka Pharmaceutical Co., Ltd. | Ingestible event marker data framework |
US10682071B2 (en) | 2008-07-08 | 2020-06-16 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US8540633B2 (en) | 2008-08-13 | 2013-09-24 | Proteus Digital Health, Inc. | Identifier circuits for generating unique identifiable indicators and techniques for producing same |
US8721540B2 (en) | 2008-08-13 | 2014-05-13 | Proteus Digital Health, Inc. | Ingestible circuitry |
US9415010B2 (en) | 2008-08-13 | 2016-08-16 | Proteus Digital Health, Inc. | Ingestible circuitry |
US8036748B2 (en) | 2008-11-13 | 2011-10-11 | Proteus Biomedical, Inc. | Ingestible therapy activator system and method |
USD737979S1 (en) | 2008-12-09 | 2015-09-01 | Covidien Lp | ECG electrode connector |
US8583227B2 (en) | 2008-12-11 | 2013-11-12 | Proteus Digital Health, Inc. | Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same |
US8055334B2 (en) | 2008-12-11 | 2011-11-08 | Proteus Biomedical, Inc. | Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same |
US9659423B2 (en) | 2008-12-15 | 2017-05-23 | Proteus Digital Health, Inc. | Personal authentication apparatus system and method |
US8114021B2 (en) | 2008-12-15 | 2012-02-14 | Proteus Biomedical, Inc. | Body-associated receiver and method |
US8545436B2 (en) | 2008-12-15 | 2013-10-01 | Proteus Digital Health, Inc. | Body-associated receiver and method |
US9439566B2 (en) | 2008-12-15 | 2016-09-13 | Proteus Digital Health, Inc. | Re-wearable wireless device |
US9149577B2 (en) | 2008-12-15 | 2015-10-06 | Proteus Digital Health, Inc. | Body-associated receiver and method |
US8597186B2 (en) | 2009-01-06 | 2013-12-03 | Proteus Digital Health, Inc. | Pharmaceutical dosages delivery system |
US9883819B2 (en) | 2009-01-06 | 2018-02-06 | Proteus Digital Health, Inc. | Ingestion-related biofeedback and personalized medical therapy method and system |
US8540664B2 (en) | 2009-03-25 | 2013-09-24 | Proteus Digital Health, Inc. | Probablistic pharmacokinetic and pharmacodynamic modeling |
US9119918B2 (en) | 2009-03-25 | 2015-09-01 | Proteus Digital Health, Inc. | Probablistic pharmacokinetic and pharmacodynamic modeling |
US9320455B2 (en) | 2009-04-28 | 2016-04-26 | Proteus Digital Health, Inc. | Highly reliable ingestible event markers and methods for using the same |
US8545402B2 (en) | 2009-04-28 | 2013-10-01 | Proteus Digital Health, Inc. | Highly reliable ingestible event markers and methods for using the same |
US10588544B2 (en) | 2009-04-28 | 2020-03-17 | Proteus Digital Health, Inc. | Highly reliable ingestible event markers and methods for using the same |
US9149423B2 (en) | 2009-05-12 | 2015-10-06 | Proteus Digital Health, Inc. | Ingestible event markers comprising an ingestible component |
US20100292605A1 (en) * | 2009-05-14 | 2010-11-18 | Dragerwerk AG & Co. KGaA | Double temperature sensor |
US8708926B2 (en) * | 2009-05-14 | 2014-04-29 | Drägerwerk AG & Co. KGaA | Double temperature sensor |
US8558563B2 (en) | 2009-08-21 | 2013-10-15 | Proteus Digital Health, Inc. | Apparatus and method for measuring biochemical parameters |
US8694080B2 (en) | 2009-10-21 | 2014-04-08 | Covidien Lp | ECG lead system |
US8897865B2 (en) | 2009-10-21 | 2014-11-25 | Covidien Lp | ECG lead system |
US10305544B2 (en) | 2009-11-04 | 2019-05-28 | Proteus Digital Health, Inc. | System for supply chain management |
US8868453B2 (en) | 2009-11-04 | 2014-10-21 | Proteus Digital Health, Inc. | System for supply chain management |
US9941931B2 (en) | 2009-11-04 | 2018-04-10 | Proteus Digital Health, Inc. | System for supply chain management |
US8784308B2 (en) | 2009-12-02 | 2014-07-22 | Proteus Digital Health, Inc. | Integrated ingestible event marker system with pharmaceutical product |
US9014779B2 (en) | 2010-02-01 | 2015-04-21 | Proteus Digital Health, Inc. | Data gathering system |
US10376218B2 (en) | 2010-02-01 | 2019-08-13 | Proteus Digital Health, Inc. | Data gathering system |
US10207093B2 (en) | 2010-04-07 | 2019-02-19 | Proteus Digital Health, Inc. | Miniature ingestible device |
US9597487B2 (en) | 2010-04-07 | 2017-03-21 | Proteus Digital Health, Inc. | Miniature ingestible device |
US11173290B2 (en) | 2010-04-07 | 2021-11-16 | Otsuka Pharmaceutical Co., Ltd. | Miniature ingestible device |
US10529044B2 (en) | 2010-05-19 | 2020-01-07 | Proteus Digital Health, Inc. | Tracking and delivery confirmation of pharmaceutical products |
US8568160B2 (en) | 2010-07-29 | 2013-10-29 | Covidien Lp | ECG adapter system and method |
US11504511B2 (en) | 2010-11-22 | 2022-11-22 | Otsuka Pharmaceutical Co., Ltd. | Ingestible device with pharmaceutical product |
US9107806B2 (en) | 2010-11-22 | 2015-08-18 | Proteus Digital Health, Inc. | Ingestible device with pharmaceutical product |
US9439599B2 (en) | 2011-03-11 | 2016-09-13 | Proteus Digital Health, Inc. | Wearable personal body associated device with various physical configurations |
US11229378B2 (en) | 2011-07-11 | 2022-01-25 | Otsuka Pharmaceutical Co., Ltd. | Communication system with enhanced partial power source and method of manufacturing same |
US9756874B2 (en) | 2011-07-11 | 2017-09-12 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
US10223905B2 (en) | 2011-07-21 | 2019-03-05 | Proteus Digital Health, Inc. | Mobile device and system for detection and communication of information received from an ingestible device |
US9408547B2 (en) | 2011-07-22 | 2016-08-09 | Covidien Lp | ECG electrode connector |
US9737226B2 (en) | 2011-07-22 | 2017-08-22 | Covidien Lp | ECG electrode connector |
US9235683B2 (en) | 2011-11-09 | 2016-01-12 | Proteus Digital Health, Inc. | Apparatus, system, and method for managing adherence to a regimen |
US9271897B2 (en) | 2012-07-23 | 2016-03-01 | Proteus Digital Health, Inc. | Techniques for manufacturing ingestible event markers comprising an ingestible component |
US9268909B2 (en) | 2012-10-18 | 2016-02-23 | Proteus Digital Health, Inc. | Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device |
US20140187063A1 (en) * | 2012-12-31 | 2014-07-03 | Suunto Oy | Male end of a telemetric transceiver |
US8814574B2 (en) * | 2012-12-31 | 2014-08-26 | Suunto Oy | Male end of a telemetric transceiver |
US11149123B2 (en) | 2013-01-29 | 2021-10-19 | Otsuka Pharmaceutical Co., Ltd. | Highly-swellable polymeric films and compositions comprising the same |
US9693701B2 (en) | 2013-03-15 | 2017-07-04 | Covidien Lp | Electrode connector design to aid in correct placement |
USD771818S1 (en) | 2013-03-15 | 2016-11-15 | Covidien Lp | ECG electrode connector |
US11741771B2 (en) | 2013-03-15 | 2023-08-29 | Otsuka Pharmaceutical Co., Ltd. | Personal authentication apparatus system and method |
US10175376B2 (en) | 2013-03-15 | 2019-01-08 | Proteus Digital Health, Inc. | Metal detector apparatus, system, and method |
US9814404B2 (en) | 2013-03-15 | 2017-11-14 | Covidien Lp | Radiolucent ECG electrode system |
US11744481B2 (en) | 2013-03-15 | 2023-09-05 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US9408546B2 (en) | 2013-03-15 | 2016-08-09 | Covidien Lp | Radiolucent ECG electrode system |
US11158149B2 (en) | 2013-03-15 | 2021-10-26 | Otsuka Pharmaceutical Co., Ltd. | Personal authentication apparatus system and method |
US9796576B2 (en) | 2013-08-30 | 2017-10-24 | Proteus Digital Health, Inc. | Container with electronically controlled interlock |
US10421658B2 (en) | 2013-08-30 | 2019-09-24 | Proteus Digital Health, Inc. | Container with electronically controlled interlock |
US10498572B2 (en) | 2013-09-20 | 2019-12-03 | Proteus Digital Health, Inc. | Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping |
US11102038B2 (en) | 2013-09-20 | 2021-08-24 | Otsuka Pharmaceutical Co., Ltd. | Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping |
US9270503B2 (en) | 2013-09-20 | 2016-02-23 | Proteus Digital Health, Inc. | Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping |
US10097388B2 (en) | 2013-09-20 | 2018-10-09 | Proteus Digital Health, Inc. | Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping |
US9787511B2 (en) | 2013-09-20 | 2017-10-10 | Proteus Digital Health, Inc. | Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping |
US9577864B2 (en) | 2013-09-24 | 2017-02-21 | Proteus Digital Health, Inc. | Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US10398161B2 (en) | 2014-01-21 | 2019-09-03 | Proteus Digital Heal Th, Inc. | Masticable ingestible product and communication system therefor |
US11950615B2 (en) | 2014-01-21 | 2024-04-09 | Otsuka Pharmaceutical Co., Ltd. | Masticable ingestible product and communication system therefor |
US11051543B2 (en) | 2015-07-21 | 2021-07-06 | Otsuka Pharmaceutical Co. Ltd. | Alginate on adhesive bilayer laminate film |
US10797758B2 (en) | 2016-07-22 | 2020-10-06 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US10187121B2 (en) | 2016-07-22 | 2019-01-22 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US11529071B2 (en) | 2016-10-26 | 2022-12-20 | Otsuka Pharmaceutical Co., Ltd. | Methods for manufacturing capsules with ingestible event markers |
US11793419B2 (en) | 2016-10-26 | 2023-10-24 | Otsuka Pharmaceutical Co., Ltd. | Methods for manufacturing capsules with ingestible event markers |
US20190380602A1 (en) * | 2018-06-15 | 2019-12-19 | Johnson Electric S.A. | Medical sensor |
US11006882B2 (en) * | 2018-06-15 | 2021-05-18 | Johnson Electric International AG | Medical sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3828766A (en) | Disposable medical electrode | |
US3845757A (en) | Biomedical monitoring electrode | |
US4088133A (en) | Electrode for electrosurgical procedure | |
US3989035A (en) | Disposable medical electrode | |
US4077397A (en) | Diagnostic electrode assembly | |
US4077398A (en) | Diagnostic electrode assembly | |
US4067322A (en) | Disposable, pre-gel body electrodes | |
US3830229A (en) | Disposable body electrodes | |
US4051842A (en) | Electrode and interfacing pad for electrical physiological systems | |
US4444194A (en) | Medical electrode assembly | |
US4441501A (en) | Medical electrode | |
US4196737A (en) | Transcutaneous electrode construction | |
US4117841A (en) | Medicated bandage pocket | |
US3085577A (en) | Body electrode | |
US4727881A (en) | Biomedical electrode | |
US4029086A (en) | Electrode arrangement | |
US3518984A (en) | Packaged diagnostic electrode device | |
JP2001506154A (en) | Biomedical electrodes with disposable electrodes and reusable lead adapters that interface with standard lead connectors | |
US3487827A (en) | Electrode for electromedical equipment | |
JPS6218151U (en) | ||
US3788317A (en) | Porous absorbent pad electrode for use with an electrocardiograph instrument or the like | |
US3923042A (en) | Electrical detector/transducer/applicable on the skin surface for biometrical observations | |
US4166456A (en) | Carrier release sheet | |
US3696807A (en) | Medical electrode with relatively rigid electrolyte cup | |
JPS6327710Y2 (en) |