US2531440A - Lubricants - Google Patents

Lubricants Download PDF

Info

Publication number
US2531440A
US2531440A US738233A US73823347A US2531440A US 2531440 A US2531440 A US 2531440A US 738233 A US738233 A US 738233A US 73823347 A US73823347 A US 73823347A US 2531440 A US2531440 A US 2531440A
Authority
US
United States
Prior art keywords
clay
bentonite
base
onium
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US738233A
Inventor
John W Jordan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NL Industries Inc
Original Assignee
Nat Lead Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Lead Co filed Critical Nat Lead Co
Priority to US738233A priority Critical patent/US2531440A/en
Application granted granted Critical
Publication of US2531440A publication Critical patent/US2531440A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M5/00Solid or semi-solid compositions containing as the essential lubricating ingredient mineral lubricating oils or fatty oils and their use
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/44Products obtained from layered base-exchange silicates by ion-exchange with organic compounds such as ammonium, phosphonium or sulfonium compounds or by intercalation of organic compounds, e.g. organoclay material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/044Cyclic ethers having four or more ring atoms, e.g. furans, dioxolanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/086Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/061Metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/08Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having metal-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/10Groups 5 or 15
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • Soaps commonly used for metal salts of long carbon chain saturated and unsaturated fatty acids as for example, potassium oleate, magnesium stearate, aluminum palmitate, etc., although salts of aromatic-acids, such as lead naphthenate, are also useful.
  • lubricants consisting of these soap-in-oil dispersions have a relatively high thermal coeiilcient of viscosity and that at temperatures often encountered in machinery under normal operating conditions these greases become fluid, resulting in lss of the lubricant and damage to the machinery. This is to a considerable extent a function of the melting point of the soap.
  • the magnesium, zinc or aluminum soaps would not be suitable for high temperature applications because of their low melting points.
  • the alkali soaps while higher melting points, up to 175 C., are subject to hydrolysis by moisture-which gives rise to deleterious alkalinity, and are therefore not entirely suited to some conditions of use.
  • Other additives such as clay and asphaltic materials are sometimes used to increase the load bearing capacity and the high temperature viscosity of greases; the clays, however, introduce abrasive material, and the organic bodying agents increase the low temperature consistency to such a degree that starting of cold machinery is difilcult.
  • emulsions, gels embodying this invention may be obtained in liquids other than water.
  • the afore mentioned gels of bentonite in water are subject to drying, shrinking, and cracking by reason of evaporation of the liquid phase, and similarly, emulsions of organic liquids or solids in aqueous bentonite gels exhibit this same defect upon being exposed to the atmosphere for any appreciable length of time. The effectiveness of such preparations is, therefore, limited.
  • One of the objects of this invention is to provide a novel bodied lubricant.
  • Another object is to provide such a lubricant having a low thermal coemcient of viscosity.
  • a further object is to provide a load bearing grease, which while of good grease consistency at low temperatures, will not flow or run at higher temperatures. 7
  • Another object is to provide a process of making bodied lubricants of the character described.
  • the bodied lubricant comprises an organic lubricatin liquid and a modified clay, originally exhibiting a substantial base-exchange capacity (of at least 25) in which the exchangeable inorganic cation has been replaced by an onium base of the character hereinafter described, of such a configuration as to make the surface of the clay particle organophilic and to an extent suilicient, to form an onium clay having a substantial gelling characteristic in the organic liquid (viz. swelling to at least eight fold in nitrobenzene), colloidally dispersed in the liquid.
  • the modified clay of the type havin the gelling characteristics described is colloidally dispersed in the organic lubricating liquid in a manner to obtain a gel and for this purpose, the dispersion may 'be accomplished in a manner hereinafter described.
  • Bentonites which are particularly useful are the swelling bentonites of the Wyoming type and the swelling magnesium bentonites of the hectorite type.
  • the base-exchange capacities of the various clays enumerated run from about 25 to about 100, based upon miiliequlvalents of exchangeable base per 100 grams of clay.
  • the montmorillonites have comparatively high base-exchange capacities, viz., 60-100.
  • Attapulgite has substantial base-exchange capacity, viz., 25-35.
  • the clays of higher base-exchange capacities are particularly useful where high exchange of an organic base for the cation of the clay is desired.
  • a clay of the character described and exhibiting substantial base-exchange capacity is reacted with an organic compound, more particularly one hereinafter generally defined and referred to as an onium" compound, by the substitution for the clay cation of the cation of the organic compound, which cation is of a class hereinafter referred to as an onium base.
  • an organic compound more particularly one hereinafter generally defined and referred to as an onium” compound
  • This invention is not, however. restricted to the use of a reaction product of a base-salt with clay-salt, but includes the reaction product of a free base with an acid-clay.
  • X is pentavalent as in ammonium, phosphonium, arsonium, and stibonium; where X is tetravalent as in oxonium, sulfonium, selenonium and stannonium compounds; and where X is trivalent, as in iodonium compounds; and that th y may be considered addition compounds of nium, carbonium, stibonium. c. f., -inium. i-illlm.”
  • a numbe of the compounds capable of reactwith ciays, particularly bentonite, will be described: it is to be understood, however. that iilOllS other compounds reactable with clays of the character described, may be employed. These compounds may includes salts of aliphatic, cyclic. aromatic and heterocyclic amines, primary, secondary, and tertiary amines and polyamines.
  • quaternary ammonium compounds as well as other monobasic or polybasic onium compounds, such as triphenylalkyl phosphonium or stibonium-halides, or dialkyl-, or diaryl-sulphonium and selenonium halides, and pyrones, such as 2,5-dimethyl gamma pyrone hydrochloride.
  • the untreated s di m 4 bentonite in contact with water adsorbs large quantities of the water and swells, forming a gel.
  • This swelling has been attributed to the lamellar structure of the clay mineral and to adsorption of water molecules onto the surfaces of the mineral sheets, thus giving rise to a separation of the sheets as the oriented water layers build up to an appreciable depth.
  • the surfaces of the clay laminae contain organic matter, as by the reaction of base-exchange with an organic base, the ability of water molecules to be adsorbed is eliminated, and the clay no longer exhibits its former swelling capacity in water.
  • Wyoming bentonite for example, which is essentially the sodium salt of montmorillonitic acid, is capable of reacting with organic bases or their salts, e. g.,
  • the situation is analogous to the above if the element X of the onium compounds is other than nitrogen.
  • the onium compound should, however, be such that the resultant onium-bentonite will have substantial swelling properties in organic liquids.
  • Such swelling characteristic may be determined by introducing 2 grams of the onium-bentonite product into nitrobenzene and noting the amount of swelling in milliliters.
  • amine-bentonite products the employment of salts of aliphatic amines. including the propyl, butyl and octylamines containing from 3 to 8 carbon atoms will produce an aminebentonite product showing a swelling of from 5 to 7 ml. in nitrobenzene.
  • the ratio of the onium compound. such as, for example, an amine compound, to bentonite may be varied within certain limits in convertmg the bentonite to the organophilic condition.
  • an onium compound such as an amine compound, which when converted to the onium base form and reacted by base-exchange with the clay, is attached to certain points on the surface of the mineral, or to substitute the proper aliphatic chain in a polyammonium base.
  • an onium compound such as an amine compound
  • a base with a molecular area of about 70 square angstrom units or a. linear dimension of at least 14 angstrom units, for example, a primary amine with a chain of 10 carbon atoms, e. g., decyl amines will substantially fulfill the requirements of covering the clay surface.
  • Other types of amines may be used also, e.
  • polyamines such as triethylenetetramine, aromatic amines such as naphthylamine, cyclic amines such as cyclohexylamine, heterocyclic amines such as pyridine, secondary amines suchas diamylamine, tertiary amines such as laury'l dimethyl amine and quaternary-ammonium com-, pounds such as tetraethanolammonium hydroxide.
  • the type of clay mineral to be used may vary with the intended use. For optimum gelling properties, it is best to use a bentonite which exhibits good gelling properties in water. However, some non-swelling clays when converted to the onium salt form will swell in organic liquids and give rise to thixotropic colloidal dispersions.
  • a peptizing agent such as ethyl acetate.
  • the above dispersion aids may not be necessary for some combinations.
  • Example 2 2750 g. of 3, Wyoming bentonite was dispersed in 70 liters of water and the slurry allowed to stand for two hours to settle out the non-clay impurities.
  • 150 g. (2.5 mol) of glacial acetic acid was added to 464 g. (2.5 mol) of dodecylamine and the amine salt then dissolved in 4 liters of warm water. Flocculation of the bentonite occurred upon addition of the amine salt solution, and the precipitate was filtered, washed, dried and pulverized.
  • 150 g. of the dodecylammonium bentonite as prepared was added to 1000 g. of tricresyl phosphate and allowed to swell.
  • Dodecylamine has 12 carbon atoms in a chain, a linear dimension oi l7 angstrom units, an area of 84 sq. angstrom units and 2 grams swell to 98 ml. in nitrobenzene, that is 49 fold.
  • Example 3 118 g. of Wyoming bentonite was dispersed in 3 liters of water and the slurry allowed to stand for 24 hours to settle out non-clay impurities. To the decanted dispersion was added a solution of 51 g. of triphenyllaurylphosphonium bromide in 95% ethanol. The well flocculated precipitate was readily washed. filtered, dried and pulverized to a bulky white powder. 75 g. of this powder was stirred into 425 g. of Dow Corning Silicone Fluid #702 a liquid siloxane linear polymer and the mixture heated for 1 hour at 150 C., after which the thick light colored mass was passed through a 3-roll mill yielding a light gray translucent grease of Vaseline consistency.
  • Dow Corning Silicone Fluid #702 a liquid siloxane linear polymer
  • Triphenyllaurylphosphonium bromide has 12 carbon atoms in a chain, a linear dimension of 17 angstrom units, an area. of 168 sq. angstrom units, and 2 grams swell to 65 ml. in nltrobenzene, that is over 32 fold.
  • Example 4 To a 3% aqueous dispersion of 100 g. or Wyoming bentonite was added an aqueous solution of 57.5 g. of dimethyldicetylammonium bromide. The well flocculated precipitate was readily washed, filtered, dried and pulverized. 100 g. of the resulting powder was stirred into 900 g. of S. A. E. petroleum oil and the mixture heated for 1 hour at 150 C., during which time the mixcure stiilened considerably. The yellow paste was then passed through a 3-roll mill producing a light olive colored translucent grease of chassis lube consistency. This grease exhibited no melting point and possessed excellent thermal stability.
  • Dimethyldecetylammonium bromide has 16 carbon atoms in a chain, a linear dimension of 21 angstrom units, an area of 200 sq. angstrom units, and 2 grams swell to 65 ml. in nitrobenzene. that is over 32 fold.
  • each oi the above mentioned lubricants possess superior and stable lubricating properties over a wide range of temperatures.
  • the preparation of the lubricants is simple. Translated into practical terms, this invention allows greases to be economically produced which will not melt and run out of hot bearings or freeze" at low temperatures.
  • a bodied lubricant comprising essentially, an organic lubricating liquid having colloidally dispersed therein a clay originally exhibiting a base-exchange capacity of at least 25, in which the exchangeable inorganic cation has been exchanged for an onium base of a type capable of and to an extent sufllcient to form an onium-clay swelling to at least eight-fold in nitrobenzene.
  • a bodied lubricant comprising essentially, an organic lubricating liquid having colloidally dispersed therein a bentonite originally exhibiting a base-exchange capacity oi at least 60, in which the exchangeable inorganic cation has been exchanged for an onium base of a type capable of and to an extent sufiicient to form an onium-bentonite swelling to at least eight-fold in nitrobenzene.
  • a bodied lubricant comprising essentially, an organic lubricating liqud having 'colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium ammonium base of a type capable of and to an extent sumcient to form an onium-clay swelling to at least eight-fold in nitrobenzene.
  • a bodied lubricant comprising essentially, an organic lubricating liquid having colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium phosphonium base of such molecular area and to an extent suflicient to form an onium-clay swellingto at least eightfold in nitrobenzene.
  • a bodied lubricant comprising essentially, an organic lubricating liquid having colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium base of a molecular area of at least '70 square angstrom units.
  • a bodied lubricant comprising essentially. an organic lubricating hquid having colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium base having an organic radical with a linear dimension of at least 14 linear angstrom units.
  • a bodied lubricant comprising essentially an organic lubricating liquid having colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium-base having an aliphatic radical containing at least 10 carbon atoms in a chain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

PateniedNimZB, 1950 UNITED STATES PATENT OFFICE 3,531,440 LUBRICANTS John W. Jordan, Pittsburgh, Pa, alslgnor to Na tional Lead Company, New York, N. Y., a cos--v porstion of New Jersey No Drawing. Application March 2, 1047,
Serial No. 738,233 a 1 7 Claims. (Cl. 252-28) 2 This invention relates to lubricants and more up base-exchange capacity, can be reacted with particularlytothebodiedtypesincludlngthose anorganiccompoimdwchasanaminesothat lubricants generally embraced by the term "greases" In the production of bodied lubricants it is customary to prepare solutions or dispersions of soaps in lubricatin oils. the function of the soaps being to body up the oils to grease consistency. Soaps commonly used for metal salts of long carbon chain saturated and unsaturated fatty acids, as for example, potassium oleate, magnesium stearate, aluminum palmitate, etc., although salts of aromatic-acids, such as lead naphthenate, are also useful. It is commonl observed that lubricants consisting of these soap-in-oil dispersions have a relatively high thermal coeiilcient of viscosity and that at temperatures often encountered in machinery under normal operating conditions these greases become fluid, resulting in lss of the lubricant and damage to the machinery. This is to a considerable extent a function of the melting point of the soap. Thus the magnesium, zinc or aluminum soaps would not be suitable for high temperature applications because of their low melting points. The alkali soaps, while higher melting points, up to 175 C., are subject to hydrolysis by moisture-which gives rise to deleterious alkalinity, and are therefore not entirely suited to some conditions of use. Other additives such as clay and asphaltic materials are sometimes used to increase the load bearing capacity and the high temperature viscosity of greases; the clays, however, introduce abrasive material, and the organic bodying agents increase the low temperature consistency to such a degree that starting of cold machinery is difilcult.
Although certain colloidal clays, tonites, when placed in water will swell to many times their dry volumes and in so doing will form gels or pastes of high consistency useful either without further treatment or in mixture with other materials to form, in some cases, emulsions, gels embodying this invention may be obtained in liquids other than water. The afore mentioned gels of bentonite in water are subject to drying, shrinking, and cracking by reason of evaporation of the liquid phase, and similarly, emulsions of organic liquids or solids in aqueous bentonite gels exhibit this same defect upon being exposed to the atmosphere for any appreciable length of time. The effectiveness of such preparations is, therefore, limited.
It has been known that a clay mineral such as ontmorillonite. originally exhibiting a substanthispurposearethe' the clay cation will be replaced by a substituted cationoftheorganiccompoundinordertoform a water-repellent product. However, such prodin an organic liquid and they are substantially non-swelling. Thus, the reaction products of propyl, butyl and octyl amines, containing from 3 to 8 carbon atoms, with sodium bentonite swell only from 5 ml. to 7 ml. when 2 grams of the product are dispersed in nitrobenzene. Such products are, therefore, applicable only where a compound having no exceptionally high gelling properties in an organic liquid is needed.
One of the objects of this invention is to provide a novel bodied lubricant.
Another object is to provide such a lubricant having a low thermal coemcient of viscosity.
A further object is to provide a load bearing grease, which while of good grease consistency at low temperatures, will not flow or run at higher temperatures. 7
Another object is to provide a process of making bodied lubricants of the character described.
Further objects will appear from the detailed description in which will be set forth a number of embodiments of this invention; it is to be understood, however, that this invention is susceptible of various embodiments within the scope of the appended claims.
Generally stated and in accordance with illustrative embodiments of this invention, the bodied lubricant comprises an organic lubricatin liquid and a modified clay, originally exhibiting a substantial base-exchange capacity (of at least 25) in which the exchangeable inorganic cation has been replaced by an onium base of the character hereinafter described, of such a configuration as to make the surface of the clay particle organophilic and to an extent suilicient, to form an onium clay having a substantial gelling characteristic in the organic liquid (viz. swelling to at least eight fold in nitrobenzene), colloidally dispersed in the liquid. In the making of these bodied lubricants, the modified clay of the type havin the gelling characteristics described is colloidally dispersed in the organic lubricating liquid in a manner to obtain a gel and for this purpose, the dispersion may 'be accomplished in a manner hereinafter described.
The clays which are useful as starting materials for making the modified clay in accordance with lhYQhtlQli a those exhibiting substantial base-exchange properties, and particularly those exhibiting comparatively high base-exchange properties and containing cations capable of more or less easy replacement. The clays particularly contemplated by the specification and the claims, include the montmorillonites, viz., sodium, potassium, lithium and other bentonites. particularly of the Wyoming type; magnesium bentonite (sometimes called hectorite) and saponite; also nontronite and attapulgite, particularly that of the Georgia-Florida type. These clays, characterized by an unbalanced crystal lattice, are believed to have negative charges which are normally neutralized by inorganic cations. As found in nature, therefore, they exist as salts of the weak clay-acid with bases such as the alkalior alkaline-earth metal hydroxides. Bentonites which are particularly useful are the swelling bentonites of the Wyoming type and the swelling magnesium bentonites of the hectorite type.
The base-exchange capacities of the various clays enumerated run from about 25 to about 100, based upon miiliequlvalents of exchangeable base per 100 grams of clay. The montmorillonites have comparatively high base-exchange capacities, viz., 60-100. Attapulgite has substantial base-exchange capacity, viz., 25-35. Generally, the clays of higher base-exchange capacities are particularly useful where high exchange of an organic base for the cation of the clay is desired.
More specifically, and in accordance with illustrative embodiments of this invention, a clay of the character described and exhibiting substantial base-exchange capacity, is reacted with an organic compound, more particularly one hereinafter generally defined and referred to as an onium" compound, by the substitution for the clay cation of the cation of the organic compound, which cation is of a class hereinafter referred to as an onium base. This invention is not, however. restricted to the use of a reaction product of a base-salt with clay-salt, but includes the reaction product of a free base with an acid-clay.
An "onium compound has been defined in Hackh's Chemical Dictionary, Second edition, as
A group or organic compounds of the type RXHv which are isologs of ammonium and contain the element X in its highest positive valency,
VlZZ
Where X is pentavalent as in ammonium, phosphonium, arsonium, and stibonium; where X is tetravalent as in oxonium, sulfonium, selenonium and stannonium compounds; and where X is trivalent, as in iodonium compounds; and that th y may be considered addition compounds of nium, carbonium, stibonium. c. f., -inium. i-illlm."
A numbe: of the compounds capable of reactwith ciays, particularly bentonite, will be described: it is to be understood, however. that iilOllS other compounds reactable with clays of the character described, may be employed. These compounds may includes salts of aliphatic, cyclic. aromatic and heterocyclic amines, primary, secondary, and tertiary amines and polyamines. also quaternary ammonium compounds, as well as other monobasic or polybasic onium compounds, such as triphenylalkyl phosphonium or stibonium-halides, or dialkyl-, or diaryl-sulphonium and selenonium halides, and pyrones, such as 2,5-dimethyl gamma pyrone hydrochloride.
As previously mentioned, the untreated s di m 4 bentonite in contact with water adsorbs large quantities of the water and swells, forming a gel. This swelling has been attributed to the lamellar structure of the clay mineral and to adsorption of water molecules onto the surfaces of the mineral sheets, thus giving rise to a separation of the sheets as the oriented water layers build up to an appreciable depth. If the surfaces of the clay laminae contain organic matter, as by the reaction of base-exchange with an organic base, the ability of water molecules to be adsorbed is eliminated, and the clay no longer exhibits its former swelling capacity in water. Thus, Wyoming bentonite, for example, which is essentially the sodium salt of montmorillonitic acid, is capable of reacting with organic bases or their salts, e. g.,
or more readily 2. Na+bentonite- CuHzsNH: Cl-* CuHzsNH: +bentonite- +Na+Cl-' The resulting dodecylammonium bentonite is vis ualized as consisting of clay mineral laminae with dodecylammonium groups fairly regularly distributed over the surfaces and attached by means of the substituted ammonium groups, with the hydrocarbon tails extending out over the crystal surfaces. Such a material is now organophilic rather than hydrophilic and as such exhibits in organic liquids some of the characteristics which the untreated clay exhibited in water. For example, it will swell in many organic liquids and will form stable gels and colloidal dispersions. Such gels are visually homogeneous and often transparent or translucent. They are thermally stable up to the boiling point of the liquid phase and show little tendency to flow or run when heated. The more dilute systems which are more or less liquid have viscositles much higher than those of the liquids themselves, and in most cases exhibit thixotropy characteristic of the analogous bentonite-water system.
The situation is analogous to the above if the element X of the onium compounds is other than nitrogen. The onium compound should, however, be such that the resultant onium-bentonite will have substantial swelling properties in organic liquids. Such swelling characteristic may be determined by introducing 2 grams of the onium-bentonite product into nitrobenzene and noting the amount of swelling in milliliters. Thus in the case of amine-bentonite products. the employment of salts of aliphatic amines. including the propyl, butyl and octylamines containing from 3 to 8 carbon atoms will produce an aminebentonite product showing a swelling of from 5 to 7 ml. in nitrobenzene. There is, however, generally a distinct region of increase of swelling with amine-bentonites in which the amine has in excess of 10 carbon atoms. Thus. the swelling in nitrobenzene of corresponding amine-bentonites are found to be: decylamine-bentonite (10 carbon atoms), 36 ml; dodecylamine-bentonite (12 carbon atoms), 50 ml.; this high swelling will hold through the series, viz., octadecadienylamine-bentonite (18 carbon atoms), 50 ml., a like relation being generally found for other oniumbentonites. Such products may. therefore, well be called high-swelling onium-bentonites.
The ratio of the onium compound. such as, for example, an amine compound, to bentonite, may be varied within certain limits in convertmg the bentonite to the organophilic condition.
8 IngeneraLitissatisfaotorytoreacttheamine salt with the bentonite in the ratio of 100 milliequivalents of amine salt to 100 grams of bentonite, which is approximately the base-exchange capacity of the standard highly swelling sodium bentonites. In accordance with this invention,- it is not necessary that the inorganic cation of the clay be completely replaced by the onium base; some of the objects and useful results of this invention may be obtained by partial replacement. Typical values of swelling on the above basis are listed below for a series of dodecylammonium-bentonites, in which the ratio of amine to bentonite was varied over wide limits:
Amine/bentonite 60 meJlill I. 75/ 1M] 126/ 6 aqueous dispersion of bentonite and allow the non-bentonite impurities to settle out, or to remove them by super-centrifuging. By the latter method it is also possible to fractionate the clay into any desired particle size fraction. Thereafter, the purified bentonite dispersion is reacted with a salt of the desired amine or other basic organic compound. The flocculated onium bentonite is then filtered. dried, ground and mixed with the organic liquid which is to be bodied up. rmrapidly accomplishing dispersion of the onium-bentonite in the organic liquid it is often advantageous to heat the mixture and pass it through a multiple-roll mill such as a Bi v allhlg in nitrobmnene;
This table indicates the wide range over which the amine'bentonite ratio can be varied, but it also shows the optimum effect exhibited at the theoretical base-exchange value ior'this combination.
For the most emcient use of organic base to obtain optimum gelling properties, it is therefore desirable either to select an onium compound such as an amine compound, which when converted to the onium base form and reacted by base-exchange with the clay, is attached to certain points on the surface of the mineral, or to substitute the proper aliphatic chain in a polyammonium base. It has been found that a base with a molecular area of about 70 square angstrom units or a. linear dimension of at least 14 angstrom units, for example, a primary amine with a chain of 10 carbon atoms, e. g., decyl amines will substantially fulfill the requirements of covering the clay surface. Other types of amines, however, may be used also, e. g., polyamines such as triethylenetetramine, aromatic amines such as naphthylamine, cyclic amines such as cyclohexylamine, heterocyclic amines such as pyridine, secondary amines suchas diamylamine, tertiary amines such as laury'l dimethyl amine and quaternary-ammonium com-, pounds such as tetraethanolammonium hydroxide. An excess of organic matter as occasioned by use of an amine of area greater than 70 square Angstroms or a linear dimension of at least 14 Angstrom units, as, for example, octadecadienyl amine, is not detrimental to the gelling properties of the amine-bentonite composition. Good results, for instance, have been obtained with primary amines having hydrocarbon chains of twelve or more carbon atoms.
The type of clay mineral to be used may vary with the intended use. For optimum gelling properties, it is best to use a bentonite which exhibits good gelling properties in water. However, some non-swelling clays when converted to the onium salt form will swell in organic liquids and give rise to thixotropic colloidal dispersions.
It is to be understood that when reference is made to basic organic compounds such as amines, it is implied that before reacting with the clay by base-exchange, the amine is converted to the onium form either by the addition of acid or by reason of the fact that some part of the inorganic base in the naturally occurring clay consists of hydrogen. In the preparation of organic gels various methods may be followed. If it is desired to prepare a gel free from abrasive impuri- I ties, it may be advantageous to start with a dilute paint mill or to add a small amount, via, 5%, of
a peptizing agent, such as ethyl acetate. However, the above dispersion aids may not be necessary for some combinations.
Where impurities associated with the clay are of no consequence, it is often suiilcient merely to add the dry clay to the organic liquid containing suiiicient amine salt or salts of other basic organic compound to more or less completely react with the clay. The gelling effect is thus enhanced by converting the amine to the salt form, or any of the other basic organic compounds to the onium form, either before or after the addition of the clay, by introduction of an acid such as hydrochloric or acetic acid. Further, it is also feasible to prepare a dry mixture, to be used in gel formation, by mixing the amine with dry clay and then mixing in the requisite amount of 2750 g. of a Wyoming bentonite was dispersed in 70 liters of water and the slurry allowed to stand for two hours to settle out the non-clay impurities. About 10% of the weight of the bentonite was discarded in this process. g. (2.5 mol) of glacial acetic acid was added to 663 g. (2.5 mol) of octadecadienylamine and the amine salt then dissolved in 4 liters of warm water. Flocculation of the bentonite occurred upon addition of the amine salt solution, and the fiocculent precipitate was filtered, washed, dried and pulverized. The octadecadienylammonium bentonite as prepared was mixed with S. A. E. 60 lubricating oil to the extent of 40% by weight. This viscous paste, upon passage through a 3-roll paint mill, stiffened up due to dispersion of the organephilic bentonite as a result of mechanical action of the mill. After dilution of the system with 'oil to 20% concentration of the treated clay and procedure, varied from 286 at 1.5 C. to 337 at 154 C. At no temperature was any sign of melting or running observed. Octadecadienylamine has 18 carbon atoms in a chain, a linear dimension of 25 angstrom units, an area of 131 sq. angstrom units and 2 grams swell to 65 ml. in nitrobenzene, that is over 32 fold.
Example 2 2750 g. of 3, Wyoming bentonite was dispersed in 70 liters of water and the slurry allowed to stand for two hours to settle out the non-clay impurities. 150 g. (2.5 mol) of glacial acetic acid was added to 464 g. (2.5 mol) of dodecylamine and the amine salt then dissolved in 4 liters of warm water. Flocculation of the bentonite occurred upon addition of the amine salt solution, and the precipitate was filtered, washed, dried and pulverized. 150 g. of the dodecylammonium bentonite as prepared was added to 1000 g. of tricresyl phosphate and allowed to swell. The resulting mixture of brown translucent gel and clear liquid was stirred and passed through a 3- roll mill yielding a homogeneous translucent redbrown stifi paste of the consistency of vaseline. This paste exhibited a flash point of about 250 C. and lost its liquid phase at about 400 C. by distillation without melting or running. The material is well adapted to use as a high temperature lubricant. It may also be used as a packing in the ignition manifolds of aircraft engines, with no flashover evident at 31,000 volts. At a lower concentration it is useful as a hydraulic fluid because of its relatively slight variation in viscosity between -40 C. and 350 C. Dodecylamine has 12 carbon atoms in a chain, a linear dimension oi l7 angstrom units, an area of 84 sq. angstrom units and 2 grams swell to 98 ml. in nitrobenzene, that is 49 fold.
Example 3 118 g. of Wyoming bentonite was dispersed in 3 liters of water and the slurry allowed to stand for 24 hours to settle out non-clay impurities. To the decanted dispersion was added a solution of 51 g. of triphenyllaurylphosphonium bromide in 95% ethanol. The well flocculated precipitate was readily washed. filtered, dried and pulverized to a bulky white powder. 75 g. of this powder was stirred into 425 g. of Dow Corning Silicone Fluid #702 a liquid siloxane linear polymer and the mixture heated for 1 hour at 150 C., after which the thick light colored mass was passed through a 3-roll mill yielding a light gray translucent grease of Vaseline consistency. This grease exhibited excellent low and high temperature characteristics, with no pour point at any temperature. Triphenyllaurylphosphonium bromide has 12 carbon atoms in a chain, a linear dimension of 17 angstrom units, an area. of 168 sq. angstrom units, and 2 grams swell to 65 ml. in nltrobenzene, that is over 32 fold.
Example 4 To a 3% aqueous dispersion of 100 g. or Wyoming bentonite was added an aqueous solution of 57.5 g. of dimethyldicetylammonium bromide. The well flocculated precipitate was readily washed, filtered, dried and pulverized. 100 g. of the resulting powder was stirred into 900 g. of S. A. E. petroleum oil and the mixture heated for 1 hour at 150 C., during which time the mixcure stiilened considerably. The yellow paste was then passed through a 3-roll mill producing a light olive colored translucent grease of chassis lube consistency. This grease exhibited no melting point and possessed excellent thermal stability. Dimethyldecetylammonium bromide has 16 carbon atoms in a chain, a linear dimension of 21 angstrom units, an area of 200 sq. angstrom units, and 2 grams swell to 65 ml. in nitrobenzene. that is over 32 fold.
As noted, each oi the above mentioned lubricants possess superior and stable lubricating properties over a wide range of temperatures. The preparation of the lubricants is simple. Translated into practical terms, this invention allows greases to be economically produced which will not melt and run out of hot bearings or freeze" at low temperatures.
It will be readily understood that the above illustrative embodiments are to be broadly interpreted and not to be taken as limiting the scope of the invention claimed.
The invention having thus been described, what is claimed is:
1. A bodied lubricant, comprising essentially, an organic lubricating liquid having colloidally dispersed therein a clay originally exhibiting a base-exchange capacity of at least 25, in which the exchangeable inorganic cation has been exchanged for an onium base of a type capable of and to an extent sufllcient to form an onium-clay swelling to at least eight-fold in nitrobenzene.
2. A bodied lubricant, comprising essentially, an organic lubricating liquid having colloidally dispersed therein a bentonite originally exhibiting a base-exchange capacity oi at least 60, in which the exchangeable inorganic cation has been exchanged for an onium base of a type capable of and to an extent sufiicient to form an onium-bentonite swelling to at least eight-fold in nitrobenzene.
3. A bodied lubricant, comprising essentially, an organic lubricating liqud having 'colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium ammonium base of a type capable of and to an extent sumcient to form an onium-clay swelling to at least eight-fold in nitrobenzene.
4. A bodied lubricant, comprising essentially, an organic lubricating liquid having colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium phosphonium base of such molecular area and to an extent suflicient to form an onium-clay swellingto at least eightfold in nitrobenzene.
5. A bodied lubricant. comprising essentially, an organic lubricating liquid having colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium base of a molecular area of at least '70 square angstrom units.
6. A bodied lubricant, comprising essentially. an organic lubricating hquid having colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium base having an organic radical with a linear dimension of at least 14 linear angstrom units.
7. A bodied lubricant, comprising essentially an organic lubricating liquid having colloidally dispersed therein an organophilic clay, originally exhibiting a base-exchange capacity of at least 25 in which the exchangeable inorganic cation has been exchanged for an onium-base having an aliphatic radical containing at least 10 carbon atoms in a chain.
JOHN W. J ORDAN.
REFERENCES CITED The following references are of iecord in the file of this patent:
Number 10 UNITED STATES PATENTS Name Date Olsson Dec. 2, 1924 Sherrick May 13, 1930 Smith Mar. 10, 1936 O'Brien May 9, 1944 Bogart et a1 Dec. 17, 1946

Claims (1)

1. A BODIED LUBRICANT, COMPRISING ESSENTIALLY, AN ORGANIC LUBRICATING LIQUID HAVING COLLOIDALLY DISPERSED THEREIN A CLAY ORIGINALLY EXHIBITING A BASE-EXCHANGE CAPACITY OF AT LEAST 25, IN WHICH THE EXCHANGEABLE INORGANIC CATION HAS BEEN EXCHANGED FOR AN ONIUM BASE OF A TYPE CAPABLE OF AND TO AN EXTENT SUFFICIENT TO FORM AN ONIUM-CLAY SWELLING TO AT LEAST EIGHT-FOLD IN NITROBENZENE.
US738233A 1947-03-29 1947-03-29 Lubricants Expired - Lifetime US2531440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US738233A US2531440A (en) 1947-03-29 1947-03-29 Lubricants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US738233A US2531440A (en) 1947-03-29 1947-03-29 Lubricants

Publications (1)

Publication Number Publication Date
US2531440A true US2531440A (en) 1950-11-28

Family

ID=24967136

Family Applications (1)

Application Number Title Priority Date Filing Date
US738233A Expired - Lifetime US2531440A (en) 1947-03-29 1947-03-29 Lubricants

Country Status (1)

Country Link
US (1) US2531440A (en)

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2623853A (en) * 1951-04-06 1952-12-30 Shell Dev Grease compositions
US2623852A (en) * 1949-12-19 1952-12-30 Shell Dev Oil composition
US2625508A (en) * 1951-02-13 1953-01-13 Shell Dev Water resistant grease
US2626241A (en) * 1949-12-24 1953-01-20 Standard Oil Dev Co Bentonite greases
US2626899A (en) * 1950-06-26 1953-01-27 Shell Dev Grease compositions
US2628197A (en) * 1950-08-17 1953-02-10 Socony Vacuum Oil Co Inc Metalworking lubricant
US2629691A (en) * 1949-12-19 1953-02-24 Shell Dev Grease manufacture
US2640812A (en) * 1951-03-08 1953-06-02 Swan Finch Oil Corp Grease
US2648633A (en) * 1950-12-19 1953-08-11 Shell Dev Grease compositions
US2655476A (en) * 1951-10-26 1953-10-13 Standard Oil Co Thickened lubricants
US2658869A (en) * 1950-06-24 1953-11-10 Shell Dev Grease compositions
US2661301A (en) * 1949-04-04 1953-12-01 Gulf Research Development Co Compositions comprising bentoniteorganic amine compounds in asphalts, tars, or pitches
US2662059A (en) * 1949-06-30 1953-12-08 Gulf Research Development Co Lubricating compositions
US2662057A (en) * 1949-06-30 1953-12-08 Gulf Research Development Co Lubricating compositions
US2662058A (en) * 1949-06-30 1953-12-08 Gulf Research Development Co Petroleum lubricating jelly
US2662056A (en) * 1949-06-30 1953-12-08 Gulf Research Development Co Lubricating compositions
US2668145A (en) * 1951-08-04 1954-02-02 Shell Dev Lubricating compositions
US2677661A (en) * 1950-02-21 1954-05-04 Standard Oil Dev Co Bentonite greases
US2681314A (en) * 1951-12-21 1954-06-15 Shell Dev Process for an inorganic colloid thickened grease
US2704276A (en) * 1954-02-12 1955-03-15 Gulf Research Development Co Lubricating compositions
US2710837A (en) * 1949-08-15 1955-06-14 Gulf Research Development Co Lubricating compositions
US2711393A (en) * 1951-08-04 1955-06-21 Standard Oil Co Thickened lubricants
US2739071A (en) * 1951-12-08 1956-03-20 Westinghouse Electric Corp Fluid pasty insulating composition and an electrical member containing it
US2746887A (en) * 1953-06-17 1956-05-22 Polymouth Cordage Company Lubricated fiber strand
US2761844A (en) * 1951-11-07 1956-09-04 Gulf Research Development Co High temperature lubricating compositions
US2761835A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761836A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761842A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761837A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761841A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761839A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761843A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761840A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761838A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2767175A (en) * 1952-08-22 1956-10-16 Gen Mills Inc Bentonite-quaternary ammonium compound complexes and greases produced therefrom
US2767176A (en) * 1952-09-13 1956-10-16 Gen Mills Inc Organophilic bentonite and greases produced therefrom
US2767189A (en) * 1952-10-09 1956-10-16 Gen Mills Inc Bentonite complexes and greases derived therefrom
US2767177A (en) * 1952-10-03 1956-10-16 Gen Mills Inc Complexes of bentonite, polyamine and monoquaternary ammonium compounds
US2813035A (en) * 1954-03-12 1957-11-12 Deere & Co Waterless green molding sand
US2820006A (en) * 1953-03-02 1958-01-14 Shell Dev Process for the preparation of grease compositions
US2820765A (en) * 1954-10-06 1958-01-21 Standard Oil Co Thickened lubricants
US2820764A (en) * 1951-11-02 1958-01-21 Standard Oil Co Thickened lubricants
US2831809A (en) * 1952-11-25 1958-04-22 Shell Dev Onium clay grease containing surface active agent
US2847380A (en) * 1955-01-17 1958-08-12 Socony Mobil Oil Co Inc Lubricating composition containing surface-esterified siliceous solid and organophilic clay
US2850797A (en) * 1956-03-02 1958-09-09 Douglas Aircraft Co Inc Method of assembling butyl rubber "o" rings in a hydraulic system
US2879229A (en) * 1955-08-18 1959-03-24 Phillips Petroleum Co Clay-thickened lubricants and the preparation thereof
US2885360A (en) * 1951-09-08 1959-05-05 Minerals & Chemicals Corp Of A Clay bodied organic liquids and a process for the preparation thereof
US2909740A (en) * 1955-04-07 1959-10-20 Westinghouse Electric Corp Resinous molding compositions and structures embodying metallic members cast therein
US2920043A (en) * 1957-06-07 1960-01-05 Nalco Chemical Co Cation modified clay as a thickener for hydrocarbon lubricating oil
US2928809A (en) * 1957-08-12 1960-03-15 Devoe & Raynolds Co Epoxide resin-quaternary ammonium salt compositions
US2928807A (en) * 1956-10-05 1960-03-15 Devoe & Raynolds Co Inc Curing of polyepoxides
US2941949A (en) * 1957-05-14 1960-06-21 Amchem Prod Acid baths for cleaning and pickling metal
US2944970A (en) * 1954-07-12 1960-07-12 Shell Oil Co High temperature grease compositions containing salicylic acid derivatives
US2948686A (en) * 1955-07-14 1960-08-09 G H Packwood Mfg Company Thixotropic and fast breaking skin cleaner emulsion and process for producing the same
US2960465A (en) * 1957-07-30 1960-11-15 Texaco Inc Low water loss aqueous drilling fluid
US2966506A (en) * 1958-10-28 1960-12-27 Nat Lead Co Modified clay complexes and method of preparation
US2968624A (en) * 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US2968623A (en) * 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US2968625A (en) * 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US2990367A (en) * 1954-06-21 1961-06-27 Philipp Corp Clay-bodied lubricant containing a silicate ester
US3007867A (en) * 1956-06-01 1961-11-07 Kenmore Res Company Thixotropic high temperature thread lubricant containing silver flakes
US3069387A (en) * 1956-06-01 1962-12-18 Kenmore Res Company Thixotropic thread lubricant
US3074884A (en) * 1958-06-24 1963-01-22 Texaco Inc Solids thickened greases containing petroleum oxidates
US3095375A (en) * 1958-06-24 1963-06-25 Texaco Inc Extreme pressure lubricants containing highly oxidized waxes
US3105140A (en) * 1960-12-24 1963-09-24 Rolls Royce Methods of arc welding in an inert gas atmosphere
US3180764A (en) * 1960-07-06 1965-04-27 Roils Royce Ltd Process of protecting metal by the use of a sprayable coating
US3180765A (en) * 1961-05-17 1965-04-27 Rolls Royce Process for preventing carburization on ferrous metal surfaces
US3230750A (en) * 1962-09-14 1966-01-25 Rolls Royce Forming and heat treatment of sheetmetal articles with organophilic cation-modified clay
US3233028A (en) * 1960-04-27 1966-02-01 Erie Technological Prod Inc Method of making a capacitor
US3243326A (en) * 1958-03-24 1966-03-29 William D White Fluidized metal fuel composition
US3274016A (en) * 1963-06-24 1966-09-20 Exxon Research Engineering Co Process for manufacture of solid compositions comprising asphalt and clay containing soils
US3483109A (en) * 1965-12-15 1969-12-09 Ppg Industries Inc Electrodeposition of polycarboxylic acid resin and an organophilic cation modified clay
US3858303A (en) * 1972-04-20 1975-01-07 Rolls Royce 1971 Ltd Method of brazing
DE2446460A1 (en) * 1973-10-01 1975-04-10 Exxon Research Engineering Co TETRAALKYL PHOSPHONIUM CLAYS, THE PROCESS FOR THEIR PRODUCTION AND THEIR USE FOR GELING ORGANIC LIQUIDS
US3903013A (en) * 1972-10-19 1975-09-02 Int Standard Electric Corp Water blocking gel composition
JPS5411911A (en) * 1977-06-27 1979-01-29 Int Standard Electric Corp Suspension of coal in organic liquids
US4252465A (en) * 1979-02-13 1981-02-24 Shell Oil Company Pipeline gel plug
US4317737A (en) * 1977-03-23 1982-03-02 Exxon Research & Engineering Co. Polyolefin based greases gelled by clays overtreated by higher dialkyl dimethyl ammonium salts
DE3145449A1 (en) * 1980-11-17 1982-07-29 NL Industries, Inc., 10020 New York, N.Y. Organophilic clay gelling agents
DE3145423A1 (en) * 1980-11-17 1982-07-29 NL Industries, Inc., 10020 New York, N.Y. Non-aqueous fluid system and surface-coating composition containing it
US4365030A (en) * 1974-09-27 1982-12-21 Exxon Research And Engineering Co. Overtreated higher dialkyl dimethyl ammonium clay gellants
US4379722A (en) * 1978-08-09 1983-04-12 Shell Oil Company Pipeline gel plug
US4391637A (en) * 1981-10-19 1983-07-05 Nl Industries, Inc. Rheological additive for non-aqueous fluid systems
US4402881A (en) * 1980-11-12 1983-09-06 International Minerals & Chem. Corp. Method of making organophilic clays
US4410364A (en) * 1980-11-17 1983-10-18 Nl Industries, Inc. Printing ink compositions
US4412018A (en) * 1980-11-17 1983-10-25 Nl Industries, Inc. Organophilic clay complexes, their preparation and compositions comprising said complexes
US4434075A (en) 1981-10-19 1984-02-28 Nl Industries, Inc. Anionically modified organophilic clays and their preparation
US4434076A (en) 1981-10-19 1984-02-28 Nl Industries, Inc. Clay cation complexes and their use to increase viscosity of liquid organic systems
US4450095A (en) * 1980-11-17 1984-05-22 Nl Industries, Inc. Organophilic clay gellant having enhanced dispersibility
US4517112A (en) * 1982-02-18 1985-05-14 Nl Industries, Inc. Modified organophilic clay complexes, their preparation and non-aqueous systems containing them
US4929644A (en) * 1986-10-24 1990-05-29 Rheox, Inc. Thickened organic composition having biocidal activity and an additive for thickening and imparting biocidal activity to an organic composition
US5296284A (en) * 1988-04-05 1994-03-22 J. M. Huber Corporation Dyed hectorite pigments and applications
US5334241A (en) * 1992-10-22 1994-08-02 T.O.W. Inc. Organophilic clay and method for its manufacture
US5576257A (en) * 1995-06-19 1996-11-19 T.O.W. Inc. Organophilic clay with dual modifiers, and method for its manufacture
US5616286A (en) * 1995-09-12 1997-04-01 T.O.W. Inc. Process for the manufacture of organophilic clay
US6730719B2 (en) 1999-04-28 2004-05-04 Southern Clay Products, Inc. Process for treating smectite clays to facilitate exfoliation
US6759464B2 (en) 2001-12-21 2004-07-06 The Goodyear Tire & Rubber Company Process for preparing nanocomposite, composition and article thereof
US6787592B1 (en) 1999-10-21 2004-09-07 Southern Clay Products, Inc. Organoclay compositions prepared from ester quats and composites based on the compositions
US6849680B2 (en) 2001-03-02 2005-02-01 Southern Clay Products, Inc. Preparation of polymer nanocomposites by dispersion destabilization
US20060099128A1 (en) * 2002-06-21 2006-05-11 Andrews Alan W Synthetic magnesium silicate compositions and process for the production thereof
US20060147367A1 (en) * 2002-12-20 2006-07-06 Terrance Temperly Process for the produciton of synthetic magnesium silicate compositons
US20060199890A1 (en) * 2005-03-02 2006-09-07 Southern Clay Products, Inc. Nanocomposites including modified fillers
US20060199889A1 (en) * 2005-03-02 2006-09-07 Hunter Douglas L Silanated clay compositions and methods for making and using silanated clay compositions
US20070191510A1 (en) * 2006-02-15 2007-08-16 Chaiko David J Polymer composites, polymer nanocomposites and methods
US20090098395A1 (en) * 2007-10-15 2009-04-16 Pang Chia Lu Barrier coating for thermoplastic films
WO2010075530A1 (en) 2008-12-23 2010-07-01 Metabolix, Inc. Production of non-woven materials from polyhydroxyalkanoate
WO2010118041A1 (en) 2009-04-06 2010-10-14 Metabolix, Inc. Method of improving film processing and injection molding of polyhydroxyalkanoate polymers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1517577A (en) * 1921-04-29 1924-12-02 Olsson Zacharias Lubricant
US1758265A (en) * 1927-10-25 1930-05-13 Edwin S Kassler Jr Lubricant
US2033856A (en) * 1934-07-05 1936-03-10 Claude R Smith Compounds of bentonite with organic bases and process of producing same
US2348639A (en) * 1941-09-30 1944-05-09 Jolly W O'brien Identifying substance
US2412929A (en) * 1942-05-18 1946-12-17 Crane Co Lubricant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1517577A (en) * 1921-04-29 1924-12-02 Olsson Zacharias Lubricant
US1758265A (en) * 1927-10-25 1930-05-13 Edwin S Kassler Jr Lubricant
US2033856A (en) * 1934-07-05 1936-03-10 Claude R Smith Compounds of bentonite with organic bases and process of producing same
US2348639A (en) * 1941-09-30 1944-05-09 Jolly W O'brien Identifying substance
US2412929A (en) * 1942-05-18 1946-12-17 Crane Co Lubricant

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2661301A (en) * 1949-04-04 1953-12-01 Gulf Research Development Co Compositions comprising bentoniteorganic amine compounds in asphalts, tars, or pitches
US2662056A (en) * 1949-06-30 1953-12-08 Gulf Research Development Co Lubricating compositions
US2662058A (en) * 1949-06-30 1953-12-08 Gulf Research Development Co Petroleum lubricating jelly
US2662057A (en) * 1949-06-30 1953-12-08 Gulf Research Development Co Lubricating compositions
US2662059A (en) * 1949-06-30 1953-12-08 Gulf Research Development Co Lubricating compositions
US2710837A (en) * 1949-08-15 1955-06-14 Gulf Research Development Co Lubricating compositions
US2629691A (en) * 1949-12-19 1953-02-24 Shell Dev Grease manufacture
US2623852A (en) * 1949-12-19 1952-12-30 Shell Dev Oil composition
US2626241A (en) * 1949-12-24 1953-01-20 Standard Oil Dev Co Bentonite greases
US2677661A (en) * 1950-02-21 1954-05-04 Standard Oil Dev Co Bentonite greases
US2658869A (en) * 1950-06-24 1953-11-10 Shell Dev Grease compositions
US2626899A (en) * 1950-06-26 1953-01-27 Shell Dev Grease compositions
US2628197A (en) * 1950-08-17 1953-02-10 Socony Vacuum Oil Co Inc Metalworking lubricant
US2648633A (en) * 1950-12-19 1953-08-11 Shell Dev Grease compositions
US2625508A (en) * 1951-02-13 1953-01-13 Shell Dev Water resistant grease
US2640812A (en) * 1951-03-08 1953-06-02 Swan Finch Oil Corp Grease
US2623853A (en) * 1951-04-06 1952-12-30 Shell Dev Grease compositions
US2668145A (en) * 1951-08-04 1954-02-02 Shell Dev Lubricating compositions
US2711393A (en) * 1951-08-04 1955-06-21 Standard Oil Co Thickened lubricants
US2885360A (en) * 1951-09-08 1959-05-05 Minerals & Chemicals Corp Of A Clay bodied organic liquids and a process for the preparation thereof
US2655476A (en) * 1951-10-26 1953-10-13 Standard Oil Co Thickened lubricants
US2820764A (en) * 1951-11-02 1958-01-21 Standard Oil Co Thickened lubricants
US2761844A (en) * 1951-11-07 1956-09-04 Gulf Research Development Co High temperature lubricating compositions
US2739071A (en) * 1951-12-08 1956-03-20 Westinghouse Electric Corp Fluid pasty insulating composition and an electrical member containing it
US2681314A (en) * 1951-12-21 1954-06-15 Shell Dev Process for an inorganic colloid thickened grease
US2767175A (en) * 1952-08-22 1956-10-16 Gen Mills Inc Bentonite-quaternary ammonium compound complexes and greases produced therefrom
US2767176A (en) * 1952-09-13 1956-10-16 Gen Mills Inc Organophilic bentonite and greases produced therefrom
US2767177A (en) * 1952-10-03 1956-10-16 Gen Mills Inc Complexes of bentonite, polyamine and monoquaternary ammonium compounds
US2767189A (en) * 1952-10-09 1956-10-16 Gen Mills Inc Bentonite complexes and greases derived therefrom
US2831809A (en) * 1952-11-25 1958-04-22 Shell Dev Onium clay grease containing surface active agent
US2820006A (en) * 1953-03-02 1958-01-14 Shell Dev Process for the preparation of grease compositions
US2746887A (en) * 1953-06-17 1956-05-22 Polymouth Cordage Company Lubricated fiber strand
US2704276A (en) * 1954-02-12 1955-03-15 Gulf Research Development Co Lubricating compositions
US2813035A (en) * 1954-03-12 1957-11-12 Deere & Co Waterless green molding sand
US2990367A (en) * 1954-06-21 1961-06-27 Philipp Corp Clay-bodied lubricant containing a silicate ester
US2944970A (en) * 1954-07-12 1960-07-12 Shell Oil Co High temperature grease compositions containing salicylic acid derivatives
US2820765A (en) * 1954-10-06 1958-01-21 Standard Oil Co Thickened lubricants
US2761837A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761836A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761842A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761841A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761835A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761838A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761839A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761840A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2761843A (en) * 1954-11-18 1956-09-04 Gulf Research Development Co Treatment of clays
US2847380A (en) * 1955-01-17 1958-08-12 Socony Mobil Oil Co Inc Lubricating composition containing surface-esterified siliceous solid and organophilic clay
US2909740A (en) * 1955-04-07 1959-10-20 Westinghouse Electric Corp Resinous molding compositions and structures embodying metallic members cast therein
US2948686A (en) * 1955-07-14 1960-08-09 G H Packwood Mfg Company Thixotropic and fast breaking skin cleaner emulsion and process for producing the same
US2879229A (en) * 1955-08-18 1959-03-24 Phillips Petroleum Co Clay-thickened lubricants and the preparation thereof
US2850797A (en) * 1956-03-02 1958-09-09 Douglas Aircraft Co Inc Method of assembling butyl rubber "o" rings in a hydraulic system
US3069387A (en) * 1956-06-01 1962-12-18 Kenmore Res Company Thixotropic thread lubricant
US3007867A (en) * 1956-06-01 1961-11-07 Kenmore Res Company Thixotropic high temperature thread lubricant containing silver flakes
US2968624A (en) * 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US2968623A (en) * 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US2968625A (en) * 1956-07-25 1961-01-17 Standard Oil Co Fluid power transmission
US2928807A (en) * 1956-10-05 1960-03-15 Devoe & Raynolds Co Inc Curing of polyepoxides
US2941949A (en) * 1957-05-14 1960-06-21 Amchem Prod Acid baths for cleaning and pickling metal
US2920043A (en) * 1957-06-07 1960-01-05 Nalco Chemical Co Cation modified clay as a thickener for hydrocarbon lubricating oil
US2960465A (en) * 1957-07-30 1960-11-15 Texaco Inc Low water loss aqueous drilling fluid
US2928809A (en) * 1957-08-12 1960-03-15 Devoe & Raynolds Co Epoxide resin-quaternary ammonium salt compositions
US3243326A (en) * 1958-03-24 1966-03-29 William D White Fluidized metal fuel composition
US3074884A (en) * 1958-06-24 1963-01-22 Texaco Inc Solids thickened greases containing petroleum oxidates
US3095375A (en) * 1958-06-24 1963-06-25 Texaco Inc Extreme pressure lubricants containing highly oxidized waxes
US2966506A (en) * 1958-10-28 1960-12-27 Nat Lead Co Modified clay complexes and method of preparation
US3233028A (en) * 1960-04-27 1966-02-01 Erie Technological Prod Inc Method of making a capacitor
US3180764A (en) * 1960-07-06 1965-04-27 Roils Royce Ltd Process of protecting metal by the use of a sprayable coating
US3105140A (en) * 1960-12-24 1963-09-24 Rolls Royce Methods of arc welding in an inert gas atmosphere
US3180765A (en) * 1961-05-17 1965-04-27 Rolls Royce Process for preventing carburization on ferrous metal surfaces
US3230750A (en) * 1962-09-14 1966-01-25 Rolls Royce Forming and heat treatment of sheetmetal articles with organophilic cation-modified clay
US3274016A (en) * 1963-06-24 1966-09-20 Exxon Research Engineering Co Process for manufacture of solid compositions comprising asphalt and clay containing soils
US3483109A (en) * 1965-12-15 1969-12-09 Ppg Industries Inc Electrodeposition of polycarboxylic acid resin and an organophilic cation modified clay
US3515689A (en) * 1965-12-15 1970-06-02 Ppg Industries Inc Aqueous,electrodepositable compositions of polycarboxylic acid resin and an organophilic cation-modified clay
US3858303A (en) * 1972-04-20 1975-01-07 Rolls Royce 1971 Ltd Method of brazing
US3903013A (en) * 1972-10-19 1975-09-02 Int Standard Electric Corp Water blocking gel composition
DE2446460A1 (en) * 1973-10-01 1975-04-10 Exxon Research Engineering Co TETRAALKYL PHOSPHONIUM CLAYS, THE PROCESS FOR THEIR PRODUCTION AND THEIR USE FOR GELING ORGANIC LIQUIDS
US3929849A (en) * 1973-10-01 1975-12-30 Exxon Research Engineering Co Tetraalkyl phosphonium aluminosilicates
US4365030A (en) * 1974-09-27 1982-12-21 Exxon Research And Engineering Co. Overtreated higher dialkyl dimethyl ammonium clay gellants
US4317737A (en) * 1977-03-23 1982-03-02 Exxon Research & Engineering Co. Polyolefin based greases gelled by clays overtreated by higher dialkyl dimethyl ammonium salts
JPS5411911A (en) * 1977-06-27 1979-01-29 Int Standard Electric Corp Suspension of coal in organic liquids
JPS5541718B2 (en) * 1977-06-27 1980-10-25
US4379722A (en) * 1978-08-09 1983-04-12 Shell Oil Company Pipeline gel plug
US4252465A (en) * 1979-02-13 1981-02-24 Shell Oil Company Pipeline gel plug
US4402881A (en) * 1980-11-12 1983-09-06 International Minerals & Chem. Corp. Method of making organophilic clays
US4450095A (en) * 1980-11-17 1984-05-22 Nl Industries, Inc. Organophilic clay gellant having enhanced dispersibility
DE3145449A1 (en) * 1980-11-17 1982-07-29 NL Industries, Inc., 10020 New York, N.Y. Organophilic clay gelling agents
US4410364A (en) * 1980-11-17 1983-10-18 Nl Industries, Inc. Printing ink compositions
US4412018A (en) * 1980-11-17 1983-10-25 Nl Industries, Inc. Organophilic clay complexes, their preparation and compositions comprising said complexes
DE3145423A1 (en) * 1980-11-17 1982-07-29 NL Industries, Inc., 10020 New York, N.Y. Non-aqueous fluid system and surface-coating composition containing it
US4391637A (en) * 1981-10-19 1983-07-05 Nl Industries, Inc. Rheological additive for non-aqueous fluid systems
US4434075A (en) 1981-10-19 1984-02-28 Nl Industries, Inc. Anionically modified organophilic clays and their preparation
US4434076A (en) 1981-10-19 1984-02-28 Nl Industries, Inc. Clay cation complexes and their use to increase viscosity of liquid organic systems
US4517112A (en) * 1982-02-18 1985-05-14 Nl Industries, Inc. Modified organophilic clay complexes, their preparation and non-aqueous systems containing them
US4929644A (en) * 1986-10-24 1990-05-29 Rheox, Inc. Thickened organic composition having biocidal activity and an additive for thickening and imparting biocidal activity to an organic composition
US5296284A (en) * 1988-04-05 1994-03-22 J. M. Huber Corporation Dyed hectorite pigments and applications
US5334241A (en) * 1992-10-22 1994-08-02 T.O.W. Inc. Organophilic clay and method for its manufacture
US5576257A (en) * 1995-06-19 1996-11-19 T.O.W. Inc. Organophilic clay with dual modifiers, and method for its manufacture
US5616286A (en) * 1995-09-12 1997-04-01 T.O.W. Inc. Process for the manufacture of organophilic clay
US6730719B2 (en) 1999-04-28 2004-05-04 Southern Clay Products, Inc. Process for treating smectite clays to facilitate exfoliation
US6787592B1 (en) 1999-10-21 2004-09-07 Southern Clay Products, Inc. Organoclay compositions prepared from ester quats and composites based on the compositions
US6849680B2 (en) 2001-03-02 2005-02-01 Southern Clay Products, Inc. Preparation of polymer nanocomposites by dispersion destabilization
US6759464B2 (en) 2001-12-21 2004-07-06 The Goodyear Tire & Rubber Company Process for preparing nanocomposite, composition and article thereof
US20060099128A1 (en) * 2002-06-21 2006-05-11 Andrews Alan W Synthetic magnesium silicate compositions and process for the production thereof
US20060147367A1 (en) * 2002-12-20 2006-07-06 Terrance Temperly Process for the produciton of synthetic magnesium silicate compositons
US20060199890A1 (en) * 2005-03-02 2006-09-07 Southern Clay Products, Inc. Nanocomposites including modified fillers
US20060199889A1 (en) * 2005-03-02 2006-09-07 Hunter Douglas L Silanated clay compositions and methods for making and using silanated clay compositions
US20070191510A1 (en) * 2006-02-15 2007-08-16 Chaiko David J Polymer composites, polymer nanocomposites and methods
US7919185B2 (en) 2006-02-15 2011-04-05 Chaiko David J Polymer composites, polymer nanocomposites and methods
US20090098395A1 (en) * 2007-10-15 2009-04-16 Pang Chia Lu Barrier coating for thermoplastic films
WO2010075530A1 (en) 2008-12-23 2010-07-01 Metabolix, Inc. Production of non-woven materials from polyhydroxyalkanoate
WO2010118041A1 (en) 2009-04-06 2010-10-14 Metabolix, Inc. Method of improving film processing and injection molding of polyhydroxyalkanoate polymers

Similar Documents

Publication Publication Date Title
US2531440A (en) Lubricants
US2531427A (en) Modified gel-forming clay and process of producing same
US2622987A (en) Coating composition and the vehicle therefor containing a compound of a clay and an onium base
US4287086A (en) Viscous organic systems containing an organophilic clay gellant without an organic dispersant therefor
CA1076448A (en) Organophilic clay having enhanced dispersibility
CA1128954A (en) Viscosity increasing additive for non-aqueous fluid systems
US4434076A (en) Clay cation complexes and their use to increase viscosity of liquid organic systems
US2658869A (en) Grease compositions
DE878832C (en) Process for the production of lubricating greases
US2739067A (en) Printing inks
US2675353A (en) Oil base drilling fluid
US2648633A (en) Grease compositions
US4474706A (en) Process for the preparation of organophilic clays
US2645588A (en) Siloxane silica composition
US2626899A (en) Grease compositions
US2848417A (en) Extreme high temperature grease compositions
US2629691A (en) Grease manufacture
US2567315A (en) Process for the production of a water repelling composition and the composition thereof
US2531825A (en) Paint, varnish, and lacquer remover
US3839389A (en) Organophilic swelling clays
US2583606A (en) Silica base lubricating greases
US2679479A (en) Inorganic gelling agent thickened fluorocarbon grease compositions
GB2108175A (en) Oil base fluids containing an organophilic clay gellant
US2583604A (en) Lubricating grease
DE1214003B (en) Process for the preparation of organopolysiloxanes