US20230332574A1 - Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same - Google Patents
Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same Download PDFInfo
- Publication number
- US20230332574A1 US20230332574A1 US17/977,633 US202217977633A US2023332574A1 US 20230332574 A1 US20230332574 A1 US 20230332574A1 US 202217977633 A US202217977633 A US 202217977633A US 2023332574 A1 US2023332574 A1 US 2023332574A1
- Authority
- US
- United States
- Prior art keywords
- vertical
- motor
- wind turbine
- pitch
- wind
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title abstract description 9
- 230000005540 biological transmission Effects 0.000 description 42
- 238000001816 cooling Methods 0.000 description 35
- 230000007704 transition Effects 0.000 description 22
- 239000003570 air Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 13
- 230000036961 partial effect Effects 0.000 description 9
- 238000009529 body temperature measurement Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 7
- 230000003014 reinforcing effect Effects 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 230000011664 signaling Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 235000000621 Bidens tripartita Nutrition 0.000 description 2
- 240000004082 Bidens tripartita Species 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 208000006637 fused teeth Diseases 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 241000288673 Chiroptera Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/06—Controlling wind motors the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/005—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor the axis being vertical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/60—Cooling or heating of wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/70—Bearing or lubricating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/062—Rotors characterised by their construction elements
- F03D3/066—Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
- F03D3/067—Cyclic movements
- F03D3/068—Cyclic movements mechanically controlled by the rotor structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
- F05B2240/214—Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/912—Mounting on supporting structures or systems on a stationary structure on a tower
- F05B2240/9121—Mounting on supporting structures or systems on a stationary structure on a tower on a lattice tower
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/72—Adjusting of angle of incidence or attack of rotating blades by turning around an axis parallel to the rotor centre line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/76—Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/79—Bearing, support or actuation arrangements therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Definitions
- the present invention relates to a vertical wind turbine, as well as a kit for a vertical wind turbine, and a method for operating a vertical wind turbine.
- WO 2015/185299 A1 on behalf of the applicant discloses a vertical wind turbine with vertical blades, that are each driven by a servomotor via a transmission into a predetermined rotational position around their respective axis of rotation, which position can be changed at anytime; virtual cam disks are provided, which respectively determine the course of the blade angle by means of the position of the blade on the circle of revolution, and wherein the active control is carried out in accordance with the virtual cam disks.
- European patent EP 2 235 365 B1 on behalf of the applicant relates to a wind turbine with at least one rotor, which can be rotated around a vertical axis and which, between two horizontal bearing planes disposed at a distance on top of each other, comprises a plurality of rotor blades, which are disposed uniformly distributed on a circumferential circle and can each be pivoted around a vertical pivot axis and the pivot range of which is delimited on both sides by a limit stop.
- U.S. Pat. No. 3,902,072 A discloses a wind powered generator with a horizontal, rotating platform on the outer circumference of which a plurality of vertical blades is positioned, which all revolve coaxially around a central axis and each rotate around an individual axis.
- the rotation of the vertical blades depends on changes in the wind direction and wind speed and the rotation of each individual blade is controlled so that for 3 ⁇ 4 of the rotation path of the platform, power is drawn from the wind, while for the rest of the path, the blades are adjusted so that they offer minimal resistance to the wind.
- the blades are controlled by means of a central transmission mechanism with a shared servomotor.
- the document U.S. Pat. No. 4,410,806 A describes a vertical wind turbine with a rotating structure, which includes a series of rotatable vertical blades positions of which are controlled to maintain a constant rotation speed of the rotating structure, when wind speed is sufficient.
- a microprocessor controller processes information about the wind speed, wind direction, and rotation speed of the rotating structure and produces an electrical signal for adjusting the blade position.
- the control system for the wind turbine includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the angle of attack, which in turn determines the rotation speed of the rotor.
- a wind speed sensor provides data for starting or stopping the system and a wind direction sensor is used to keep the blade flip region at 90° and 270° relative to the wind direction.
- the control system is designed to maintain constant rotation speed at wind speeds of between 19 and 40 miles per hour.
- One object of the invention is to avoid at least some of the disadvantages of the prior art.
- the efficiency and service life of vertical wind turbines should be improved in comparison to the prior art. This object is achieved by the features of the independent claims.
- a vertical wind turbine according to the invention with a plurality of vertical blades, which are each supported such that they are motor-driven pivotable around a respective blade rotation axis independently of one another, and are rotatable on a common circular path around a vertical rotor rotation axis, wherein the blades are each held fastened to at least one pitch motor for motor-driven pivoting of the blades around their respective blade rotation axis.
- the blades are each supported directly at the pitch motor.
- the blades are each fastened to a respective vertical blade axis independently of one another, can be motor-driven to pivot around a respective blade rotation axis, and are supported so that they are able to rotate on a common circular path around a vertical rotor rotation axis; wherein the blade axes are each provided with at least one pitch motor for motor-driven pivoting of the blades, a motor shaft of which extends concentrically to the respective blade rotation axis.
- the disadvantages from the prior art are overcome by predetermining angular positions of vertical blades of the vertical wind turbine, which are supported such that they are rotatable around a respective vertical rotor rotation axis, and are motor-driven pivotable around a respective blade rotation axis independently of one another, wherein the angular positions of the blades are each predetermined by means of at least one pitch motor at least partially supporting the respective blade.
- a pitch motor carrying the respective blade predetermines the angular position.
- the blades can each be carried exclusively at a single pitch motor, which provides mechanical certainty and thus a very advantageous vibration behavior to the entire wind turbine, considered as a system. It is thus possible for a vibration frequency of the vertical wind turbine during operation to always be kept below its resonant frequency, which helps to minimize dynamic loads on the wind turbine resulting from any vibrations and thus makes it possible to increase the maintenance interval lengths and service life thereof.
- angular positions are predetermined for vertical blades of the vertical wind turbine that are driven around a respective vertical blade axis, the angular positions being continuously controlled by means of a direct drive of each of the blades by means of a respective pitch motor positioned concentrically to the blade axis.
- the solution according to the invention has the advantage that it enables a very precise and energy-saving driving of the blades in accordance with pitch cam disks.
- the angular positions of the blades can be optimally set without delay and taking into consideration the varying system conditions (wind speed, wind direction, rotor rotation, power output, etc.) at a power consumption of the pitch motors of at most less than 10% to preferably less than 0.5%, for example 0.3%, of a generator output power of the vertical wind turbine.
- the tip speed ratio A is defined by the ratio of the rotational speed of the rotor to the wind speed.
- a continuous pitch control of the blades according to the invention helps keep the tip speed ratio as optimally constant as possible and compensates for negative effects of strongly and quickly changing wind conditions. Thereby, an optimal energy yield in partial load operation is achieved. Consequently, vertical wind turbines according to the invention make it possible to utilize wind energy in an economically efficient way even in locations with widely varying wind conditions.
- this yields circumferential speeds of approx. 100 km/h which leads to significantly lower noise emissions than in conventional horizontal wind turbines and vertical wind turbines that are known from the prior art because the circumferential speed affects the acoustic power to the sixth power.
- vertical wind turbines that are configured and operated according to the invention can be operated more efficiently and economically than horizontal wind turbines, particularly in wind farms, or more precisely stated, can be operated at twice the wind farm efficiency.
- vertical wind turbines according to the invention can be operated in a power range of for example 750 kW generator output power, which is ideal for the rapidly growing sector of the “distributed wind market” in which environmentally friendly and socially responsible solutions are very relevant (populated areas, logistically challenging wind locations).
- vertical wind turbines according to the invention have an advantageous wake behavior. Since the blades are held in their angular position in a variable manner by means of the pitch motors, which helps prevent stalls, this minimizes turbulence in the wake. A resulting low turbulence intensity in the wake allows for shorter distances between vertical wind turbines according to the invention and thus further improves their wind farm efficiency.
- Vertical wind turbines according to the invention can be installed using a self-assembly system without the use of additional heavy-duty cranes.
- the self-assembly system includes a central crane that grows along with a tower or tower system of a vertical wind turbine according to the invention and heavy-duty lifting rollers that are positioned in the tower and/or on arms of the vertical wind turbine. All of the heavy main components can be hoisted to their respective installation heights by means of a mobile cable winch on the ground and deflection sheaves in the tower.
- the vertical wind turbines according to the invention are also advantageous in that the silhouette of the vertically oriented rotor is more visible to birds and bats than a horizontally rotating three-blade rotor.
- the rotor blade speeds are significantly lower than with horizontal wind turbines in which blade tip speeds of 300 to 400 km/h occur.
- the relatively slowly rotating rotor system of the vertical wind turbine according to the invention has a calm shadowing and a small ice throwing range.
- the pitch motor is embodied as a torque motor with at least one rotor ring that is rotationally coupled to the respective blade.
- the pitch motor can be embodied as a torque motor with at least one rotor that is torsionally rigidly coupled to the blade axis.
- the torque motor can be embodied as a permanently excited brushless DC motor with an internal-rotor design.
- the rotor which is thus surrounded along its outer circumference by a stator of the pitch motor, can be torsionally rigidly coupled in a simple and effective way to a motor shaft of the pitch motor with the aid of a clamping set.
- the rotor ring rests against the outer circumference of a motor shaft of the pitch motor.
- a torque produced by the pitch motor can be transmitted directly to the motor shaft and thus to the blade.
- the blade is advantageously driven directly by the motor.
- the blade axes are supported on motor bearings in the pitch motor.
- the blades can be secured in rotary fashion in the pitch motor.
- the bearing can be implemented by means of tapered roller bearings, rolling bearings, or conical roller bearings, which are positioned in an axially prestressed fashion between the blade axis and motor on the one hand and the stator on the other in order to absorb both axial forces and radial forces. This enables a precise positioning of the blade axes with a long service life and a highly efficient driving of the blade axes by means of the pitch motor with low friction losses.
- the blades are borne supported on motor bearings in the pitch motor. Consequently, both horizontal forces and vertical forces originating from the blades, including a weight force of the blades, can be absorbed in the motor bearings.
- the motor bearings are positioned in a bearing receiving chamber that is sealed up in against the surroundings of the vertical wind turbine with the aid of sealing elements.
- the bearing receiving chamber can contain lubricant such as grease for lubricating the motor bearings.
- the bearing receptacle is filled with the lubricant, which is replaced or refilled every 5 years, depending on the requirements. This achieves an effective lubrication of the motor bearings, which helps to further maximize the service life of a vertical wind turbine according to the invention.
- the bearing receiving chamber can in turn be sealed up relative to a motor interior with the aid of additional sealing elements so that the motor interior is protected from harmful environmental influences in an essentially hermetically sealed way.
- the motor interior can be at least partially formed by a motor housing and/or enclosed by it.
- An expansion or compensation vessel can be connected to the hermetically sealed motor interior in a fluid-conducting manner via at least one fluid line and can constitute a changeable expansion or compensation volume in order to compensate for temperature-induced volume changes of fluids, in particular air, contained in open spaces inside the motor chamber.
- space-filling elements can be positioned in the motor chamber, which can be formed of foam material, for example.
- the expansion vessel and space-filling elements help to prevent humidity from condensing in the motor interior.
- expansion vessel and space-filling elements prevent bearing lubricant and/or motor lubricant such as grease from being displaced or escaping when pressure fluctuations occur.
- the blades include an upper blade section and a lower blade section and the pitch motor is positioned between the upper and lower blade sections.
- the pitch motor can thus support both blade sections, with the upper blade section extending upwardly away from the pitch motor and the lower blade section extending downwardly. Consequently, torques or positioning forces that are produced by the pitch motor and act on the blades can be introduced into the blades as symmetrically as possible in relation to the longitudinal span of the blades in the vertical direction.
- the blades can be supported rotatable around their blade rotation axis at at least one additional bearing point arranged at a distance from the pitch motor.
- the pitch motor can, for example, be positioned between two additional bearing points.
- a bearing unit is positioned at each of the outer ends of the blade pointing away from the pitch motor.
- the bearing unit includes a housing, two roller bearings, and a hollow shaft that connects the rotor blades of the blades to one another.
- spherical roller bearings can be used, which absorb high radial forces occurring mainly at the blade ends and help to stiffen the rotor system as a whole.
- the motor bearings can include, for example, two axially prestressed conical roller bearings that absorb the entire weight force of the blades.
- the blades are flange-mounted to the pitch motor.
- a flange section of the blade can be fastened directly to the motor shaft or to the rotor of the pitch motor. Torques or positioning forces that are produced by the pitch motor can thus be transmitted directly to the blades.
- the blades or blade axes can each include a vane axis section in the region of a vane of the blade and a transition section positioned between the vane axis section and the motor shaft.
- the transition section and motor shaft can, for example, be integrally formed of a single piece of metal.
- the transition section allows for an optimal connection between the motor shaft and the vane axis section.
- the transition section can taper in the direction extending away from the motor shaft.
- the transition section can be shaped in the form of a stud.
- An outer diameter of the motor shaft can be greater than an inner diameter of the vane axis section. The transition section thus helps to overcome dimensional differences between the motor shaft and the vane axis section and to connect them to each other in a precisely fitting way.
- the pitch motor includes at least one rotary position transducer for determining a rotation position of the blade.
- the rotary position transducer preferably includes an absolute position transducer and a relative position transducer.
- the absolute position transducer includes a magnetic ring or strip, which extends along the outer circumference of the motor shaft and has increments of different magnetization with irregular distances between one another along the outer circumference or more precisely stated, irregular lengths.
- the relative position transducer includes a magnetic ring or strip, which extends along the outer circumference of the motor shaft and has increments of different magnetization with regular, i.e. equal distances between one another along the outer circumference or more precisely stated, regular or uniform lengths.
- the pitch motors each have a motor housing at which a rotor arm is fastened that connects the blades to a rotor hub of the vertical wind turbine.
- the pitch motors can thus each have a motor housing to which a blade mount is mounted that connects the blades to a rotor hub of the vertical wind turbine.
- the blade mount can alternatively or additionally include a plurality of struts, for example. At least one of these struts can be directly connected to the pitch motor in order to secure the respective blade.
- the rotor arm is flange mounted to the motor housing.
- the motor housing can be provided with a motor flange onto which the arm is mounted.
- the motor housing has at least two housing shells, for example an upper and lower housing shell. Both of the housing shells can have a respective flange half of the motor flange formed onto them.
- the blade mount can have a plurality of struts, with at least one strut respectively flange-mounted to the motor housing.
- each strut can be advantageously flange-mounted to the end of the pitch motor. This permits a weight-reducing, highly stable design of the rotor as a whole since the pitch motor simultaneously functions as a driving point, bearing point, and connecting point between the blade mount and the blade.
- a stator ring of the pitch motor is positioned between two flange halves of a mounting collar of the motor housing and/or between an upper shell and lower shell of a casing that at least partially cases-in the pitch motor.
- the pitch motor is thus preferably covered with a casing that is shaped in accordance with aerodynamic aspects.
- the casing helps to reduce an aerodynamic drag of the pitch motor.
- the casing helps to avoid or at least reduce the presence of a gap between the pitch motor and the vanes and thus the pressure losses that occur at such a gap between the two lateral surfaces of the blade at the end of the respective vane oriented toward the pitch motor. It is thus possible to further increase the efficiency of a vertical wind turbine according to the invention.
- the motor housing can include support ribs, which extend radially to the motor shaft and connect a bearing seat of the pitch motor on the outer circumference to a wall of the pitch motor housing facing in the axial direction.
- Support ribs of this kind help to reliably transmit forces that the motor shaft introduces onto the motor housing via the bearing points to a connection point of the blade mount on the motor housing, for example the above-mentioned motor flange.
- the rigidity of the motor housing is increased while its weight is kept as low as possible.
- the casing forms at least one intake socket and at least one discharge opening in order to convey cooling air between the intake socket and the discharge opening along at least part of a cooling body that is mounted on the stator ring.
- An air duct formed between the intake socket and the discharge opening helps to prevent stalls from occurring in the cooling air conveyed along the cooling body and thus to prevent stalls from producing wakes in the cooling air. It is thus possible to increase the cooling capacity of the cooling air on the cooling body, which helps to avoid an overheating of the pitch motor.
- the pitch motor is preferably cased-in with a casing that is designed in accordance with aerodynamic aspects.
- the casing can minimize an aerodynamic drag caused by the pitch motor, which helps to further increase the efficiency of a vertical wind turbine according to the invention.
- the casing helps to minimize any intermediate spaces between the blade sections and between the blade sections and the motor and thus to prevent a pressure compensation in the intermediate spaces.
- casings or covers can also be provided in the region of the additional bearing points or bearing units between the blade sections in order to counteract pressure compensation and the efficiency loss that this entails.
- the vertical wind turbine has a transmission that couples a rotor of the vertical wind turbine, which is able to rotate around the rotor rotation axis, to a generator of the vertical wind turbine; wherein at least one transmission stage of the transmission is embodied as a planetary gear or planetary gear stage.
- the transmission can include at least one planetary gear and an additional spur gear pair.
- the transmission has two planetary gear stages, which are positioned one above the other in the axial direction of the rotor rotation axis. The transmission therefore has a compact design with the greatest possible efficiency and longevity.
- At least one planet gear of the planetary gear or planetary gear stage is connected by means of a flexible pin to a strut of the planetary gear or planetary gear stage.
- a flexible pin enables minimal deflections of the planet gear.
- all of the planet gears are supported on flexible pins.
- Flexible pins help to minimize loads on the transmission due to uneven loads of the planet gears and their tooth flanks.
- the flexible pins ensure a uniform distribution of the transmission load among the planet gears.
- the planet gears supported on the flexible pins can, so to speak, divide the load among themselves. It is thus possible to further increase the maintenance interval lengths and service life of a vertical wind turbine according to the invention.
- the vertical wind turbine has a control device for control of the pitch motors, that is connected in a signal-transmitting manner to the pitch motors and to at least one wind speed sensor and/or at least one wind direction sensor.
- the control device calculates a set-point angle of the blades for each pitch motor, for example cyclically, and transmits it via a communication device to a control section of an inverter system, which in addition to the control section, also has a supply section for each pitch motor.
- the control section carries out a position control of the blades in order to set a desired angular position in accordance with the set-point angle.
- the power section continuously inverts an electric current of for example 150 A RSM and briefly outputs a peak current of 210 A RMS in order to achieve a maximum torque of the pitch motors.
- the control device in this case monitors a precision of the blade adjustment and a state of the drive control and is able to influence them.
- the at least one wind speed sensor and/or the at least one wind direction sensor is arranged in the region of at least one of the pitch motors.
- the at least one wind speed sensor and/or the at least one wind direction sensor can be mounted on a rod, which is fastened to the pitch motor or in the region of the pitch motor and protrudes beyond an outer edge of the blade.
- the at least one wind speed sensor and/or the at least one wind direction sensor can be mounted on a distal end of the rod oriented away from the blade.
- the at least one wind speed sensor and/or the at least one wind direction sensor is preferably situated outside of an influence region of the blade in which air flow changes and turbulence caused by the blade could occur.
- sensors such as a wind speed sensor and/or wind direction sensor as well as other signaling and measuring means can be positioned on a mast positioned centrally on the rotor hub and preferably protruding in the vertical direction beyond an upper end of the blades.
- At least one wind speed sensor and/or wind direction sensor can be positioned in the region of the motor hub.
- the number of wind speed sensors and/or wind direction sensors used can coincide with the respective number of blades and arms of the vertical wind turbine.
- Wind speed sensors and/or wind direction sensors in the region of the motor hub can be fastened to ends of rods extending away from the rotor hub.
- the wind speed sensors and/or wind direction sensors in the region of the motor hub can preferably be positioned between the blades or their arms, in other words offset from the blades, in order to avoid a wind shadowing of the wind speed sensors and/or wind direction sensors in the region of the motor hub by the blades.
- a vertical wind turbine according to the invention is provided in the form of a kit.
- a kit which essentially includes all of the components and parts of the vertical wind turbine and tools for the installation thereof, such as cranes, winches, and the like, makes it possible to install a vertical wind turbine according to the invention in sites that are not accessible or hardly accessible for horizontal wind turbines.
- a preparation of a vertical wind turbine according to the invention in the form of a kit also helps to ensure that all of the components, parts, and tools that are required for the installation, operation, and maintenance of the vertical wind turbine stem from verified supply sources and satisfy desired safety and quality requirements.
- a method according to the invention for operating a vertical wind turbine can be improved by predetermining the angular positions by means of pitch cam disks. Thereby, set-point values for adjusting the angular position are provided for essentially every azimuth angle. Different pitch cam disks can be provided for different wind speeds.
- a wind speed, wind direction, and rotor rotation of a vertical wind turbine rotor comprising the blades are included in the continuous control. It is thus possible for a vertical wind turbine according to the invention to be operated with the smallest possible set-point deviations of the angular positions and thus in an extremely efficient way.
- a vertical wind turbine according to the invention with a plurality of vertical blades, which are each fastened to a respective vertical blade axis such that they are pivotable independently of one another around a respective blade rotation axis, and are supported rotatable on a common circular path around a vertical rotor rotation axis, wherein the vertical wind turbine is configured to control a pitch angle of the blades at least in a partial load mode of the vertical wind turbine, such that the blades rotate with an essentially constant tip speed ratio ⁇ .
- the disadvantages of the prior art are further overcome by predetermining pitch angles of vertical blades of the vertical wind turbine that are driven around a respective vertical blade axis; wherein at least in a partial load mode of the vertical wind turbine, the pitch angles are controlled such that the blades rotate with an essentially constant tip speed ratio ⁇ .
- the vertical wind turbine is designed to operate in the partial load mode in a range of wind speeds that at least partially lie between 3 and 12 m/s.
- a partial load range is suitable for both inland and coastal sites and ensures a high energy yield as well as a relatively large number of full load hours per year. With a low starting speed of 3 m/s, the partial load range also ensures that a vertical wind turbine according to the invention is able to supply power even in a light wind.
- the constant tip speed ratio amounts to between 2 and 2.6, preferably between 2.2 and 2.4, and most preferably essentially 2.3.
- a value range of this kind for the constant tip speed ratio results in relatively low rotation speeds of the rotor and therefore relatively low blade speeds.
- the vertical wind turbine is configured to control the pitch angle so that in a nominal operation mode of the vertical wind turbine, the blades rotate with a variable tip speed ratio.
- a pitch control according to the invention can thus contribute to limiting the output of a vertical wind turbine according to the invention. This prevents damage to the material of a vertical wind turbine according to the invention and thus reduces wear on it and extends its service life.
- the vertical wind turbine is configured to control the pitch angle so that in the nominal operation mode, the blades rotate at an essentially constant nominal speed.
- the rotor rotates in a nominal speed range. This helps to avoid load peaks on components of the vertical wind turbine and therefore helps to prevent damage to the material of a vertical wind turbine, reduce wear, and increase service life.
- the variable tip speed ratio A amounts to between 1 and 1.8, preferably between 1.3 and 1.5, most preferably essentially 1.38.
- the cut-out wind speed v 3 can be in the range of 20 m/s.
- the relatively low value range of the variable tip speed ratio helps to keep the circumferential speed of the blades as low as possible and thus to ensure that a vertical wind turbine according to the invention is very environmentally friendly.
- the vertical wind turbine is configured to control the pitch angle in a start-up mode so that starting from a resistance mode with tip speed ratios of ⁇ 1, the blades transition into a fast mode with tip speed ratios of ⁇ >1. It is thus possible, particularly when starting the vertical wind turbine from a rotor standstill, to make optimal use of the energy absorbed by the blades based on their wind resistance and to maximize a start-up torque on the rotor. As soon as the rotor has reached a certain rotation speed, a smooth transition to the fast mode of the blades can be carried out. This helps to shorten the overall start-up times of a vertical wind turbine according to the invention and thus helps to increase the energy yield.
- the control of the pitch angle is based on at least one cam disk, which determines the pitch angle in an essentially continuous manner for an entire rotation of the rotor.
- a continuous determination of the pitch angle enables the gentlest, smoothest possible control and regulation of a vertical wind turbine according to the invention with the least number of parameter jumps of the kind that can occur when pitch angles are predetermined in rough, discrete steps.
- Different cam disks can be specified for different wind speeds.
- Each of the cam disks can be optimized with regard to the respective wind speed and with regard to the resulting flow conditions at the blades.
- a maximum value of the pitch angle for windward positions of the blade is generally greater than for leeward positions of the blade, with respective regard to the rotor rotation axis.
- the pitch angle can generally be less than for azimuth angles of between 180 and 360°.
- the pitch control thus takes into account the respective flow conditions at the blades as a function of the azimuth angle. In particular, this therefore takes into account leeward flow effects caused by the rotor and blades themselves such as turbulence and wakes, making it possible to further improve the energy yield of a vertical wind turbine according to the invention.
- the pitch angle is less than zero.
- the blade is thus rotated into the wind with a pitch angle of less than 0° or more precisely stated, changes from leeward to windward.
- the vertical wind turbine has at least one wind speed sensor and/or at least one wind direction sensor, which is positioned on at least one of the blades and is connected in a signal-transmitting manner to a control device for determining a setpoint of the pitch angle.
- wind speed and/or wind direction as relevant measurement variables can be advantageously determined at the blade and, can be determined as close as possible to a closed loop control system for adjusting the pitch angle, which system includes the blade and for example a pitch drive mounted on it or positioned in the vicinity thereof. This promotes a pitch control that is as precise and error-free as possible.
- an amount of a positioning error in the control of the pitch angle is essentially always less than 5°, preferably less than 3°, most preferably less than 1.5°.
- FIG. 1 shows a schematic perspective view of a vertical wind turbine according to the invention
- FIG. 2 shows a schematic side view of a vertical wind turbine according to the invention
- FIG. 3 shows a schematic top view of a vertical wind turbine according to the invention
- FIG. 4 shows a detail IV indicated in FIG. 2 of a blade of a vertical wind turbine according to the invention
- FIG. 5 shows a detail V indicated in FIG. 4 of a blade of a vertical wind turbine according to the invention with a pitch motor according to the invention in a schematic cross-sectional view along a rotation axis of the blade;
- FIG. 6 shows a schematic perspective view of aerodynamically cased-in pitch motors of a vertical wind turbine according to the invention
- FIG. 7 shows a schematic perspective view of a pitch motor together with blades mounted on it, particularly showing a motor flange of the pitch motor for fastening the pitch motor together with the blades to an arm of a rotor of a vertical wind turbine according to the invention
- FIG. 8 shows a schematic partial cross-sectional view of a pitch motor according to the invention.
- FIG. 9 shows a schematic cross-sectional view of a drive train of a vertical wind turbine according to the invention along a drive shaft of the drive train;
- FIG. 10 shows a schematic perspective view of a first embodiment according to the invention of a hub connection of a vertical wind turbine according to the invention
- FIG. 11 shows a schematic front view of a section of an arm of a rotor of a vertical wind turbine according to the invention
- FIG. 12 shows a schematic side view of the section shown in FIG. 11 of an arm of a rotor of a vertical wind turbine according to the invention
- FIG. 13 shows a schematic cross-sectional view of the section shown in FIGS. 11 and 12 of an arm of a rotor of a vertical wind turbine according to the invention along the cross-sectional line A-A shown in FIG. 12 ;
- FIG. 14 shows a schematic top view of the section shown in FIGS. 11 to 13 of an arm of a rotor of a vertical wind turbine according to the invention
- FIG. 15 shows a schematic top view of a vertical wind turbine according to the invention during operation to illustrate angular positions and force conditions at blades of the vertical wind turbine;
- FIG. 16 shows a schematic diagram to illustrate the function of a control device according to the invention belonging to a vertical wind turbine according to the invention
- FIG. 17 shows a schematic diagram with a sample torque characteristic curve of a pitch motor according to the invention for a vertical wind turbine according to the invention
- FIG. 18 shows a schematic diagram with sample cam disks for controlling a pitch motor for a vertical wind turbine according to the invention
- FIG. 19 shows a schematic perspective view of a test bench for determining a positioning error of a pitch motor of a vertical wind turbine according to the invention
- FIG. 20 shows a schematic diagram of a positioning error of a pitch motor according to the invention, which has been determined by means of the test bench shown in FIG. 19 , over a plurality of control cycles;
- FIG. 21 shows a schematic diagram of a positioning error of a pitch motor according to the invention over one control cycle at a
- FIG. 22 shows a schematic diagram of a positioning error of a pitch motor according to the invention over one control cycle at a cut-out wind speed.
- FIG. 1 shows a schematic perspective view of a vertical wind turbine according to the invention 1 .
- the vertical wind turbine 1 extends along a longitudinal direction X, a transverse direction Y, and a vertical direction Z, which together define a Cartesian coordinate system.
- the vertical wind turbine 1 includes a rotor 2 , a nacelle 3 , a tower system 4 , footings 5 , and a container-like switchgear box 6 .
- the rotor 2 includes a plurality of vertical blades 7 , which are fastened by means of a blade mount 8 to a rotor hub 9 , which is supported in the nacelle 3 so that it is able to rotate around a rotor rotation axis C 2 that is vertically oriented, i.e. extends parallel to the vertical direction Z.
- the blade mount 8 includes rotor arms 10 , which extend between the blades 7 and the rotor hub 9 .
- a signaling and/or measuring unit 11 is positioned on the rotor hub 9 concentric to the rotor rotation axis C 2 .
- the nacelle 3 is positioned at the top of the tower system 4 , is cased-in in a sound-absorbing way, and contains a drive train of the vertical wind turbine 1 (generator, rotor bearing system, transmission, mechanical brake, and cooling/lubricating system, see FIG. 9 ).
- the tower system 4 is preferably embodied as a lattice mast tower.
- the footings 5 are preferably concrete footings, which absorb the load of the tower system 4 , the nacelle 3 , and the rotor 2 .
- Other components such as electrical transformers, switch components, and a control device (see FIG. 16 ) of the vertical wind turbine 1 are preferably accommodated in the switchgear box 6 .
- the blades 7 are supported so that they are able to rotate around a blade rotation axis C 7 , which likewise extends essentially parallel to the vertical direction Z.
- a blade rotation axis C 7 which likewise extends essentially parallel to the vertical direction Z.
- they are each provided with at least one pitch drive 12 .
- At least one of the rotor arms 10 is connected to the pitch drive 12 , which can thus help absorb a load of the blade 7 .
- FIG. 2 shows a schematic front view of the vertical wind turbine 1 .
- the blades 7 have a plurality of blade sections 13 , namely an upper end section 13 a , an upper middle section 13 b , a lower middle section 13 c , and a lower end section 13 d .
- the upper end section 13 a and upper middle section 13 b together constitute an upper blade section 13 e .
- the lower middle section 13 c and lower end section 13 d together constitute a lower blade section 13 f .
- the pitch drive 12 is positioned between the upper middle section 13 b and lower middle section 13 c , i.e. between the upper blade section 13 e and lower blade section 13 f .
- Between the upper end section 13 a and the middle end section 13 b as well as between the lower middle section 13 c and the lower end section 13 d respective cross-sectional change of a profile of the blades 7 is provided, respectively.
- the blades 7 are each connected by means of one of the arms 10 to the rotor hub 9 , which is designed to transmit forces acting radially and axially relative to the rotor rotation axis C 2 , said forces therefore acting essentially in a horizontal plane, which is defined parallel to the longitudinal direction X and transverse direction Y, and along the vertical direction Z.
- the pitch drive 12 between the upper middle section 13 b and lower middle section 13 c of the blades 7 , forces are absorbed, which act both radially and parallel to the rotor rotation axis C 2 . Consequently, the entire weight load of the rotor 2 is absorbed at the pitch drive 12 .
- the rotor hub 9 and the tower system 4 are each embodied as a tubular lattice structure.
- the tower system 4 embodied as a lattice mast tower, it tapers in the direction toward the nacelle 3 and at this location, absorbs all of the static and dynamic loads generated by the rotor 2 .
- the loads are transferred to the ground by means of the footings 5 .
- the nacelle 3 can be accessed by means of a ladder (see FIG. 10 ).
- a maximum width B 4 of the tower system 4 measured parallel to the longitudinal direction X at the footings 5 is 22 m, for example.
- a length L 7 of the blades 7 measured parallel to the vertical direction Z is 54 m, for example.
- An overall height of the vertical wind turbine 1 measured to include a height of the footings extending above the ground is 105 m without the signaling and/or measuring mast 11 , for example.
- FIG. 3 shows a schematic top view of the vertical wind turbine 1 .
- the blades 7 have a blade profile and move on a circular path K around the rotor rotation axis C 2 .
- a diameter D K of the circular path K is 32 m, for example, and approximately corresponds to a maximum diameter of the tower system 4 .
- FIG. 4 a detail IV indicated in FIG. 2 of one of the blades 7 of the vertical wind turbine 1 .
- the blade 7 has vanes 19 .
- the blade 7 is supported in the pitch drive 12 on a motor shaft 25 of the pitch drive 12 .
- the vanes 19 form a blade axis 26 , which passes through the entire length of the blade 7 and the vanes 19 are supported so that they are able to move in rotating fashion around this axis.
- the vanes 19 can be manufactured having a shell construction. To this end, the vanes 19 have a vane axis section and an outer skin for absorbing normal forces, flexural forces, and torsional forces as well as torques (see FIG. 5 ).
- FIG. 5 shows a detail V indicated in FIG. 4 of the blade 7 with the pitch drive 12 in a schematic cross-sectional view along the blade rotation axis C 7 .
- the pitch drive 12 has a pitch motor 27 , which is positioned in a clearance 28 between the upper middle section 13 b and lower middle section 13 c of the blade 7 .
- the pitch motor 27 is embodied as an electronically controlled, transmissionless, air-cooled torque motor and has a stator ring 29 and a rotor ring 30 that is circumferentially surrounded by the stator ring 29 and is spaced apart from it by a gap.
- a cooling body 31 with cooling fins 32 is fastened to an outer circumference surface of the stator ring 29 so as to be able to dissipate waste heat of the pitch motor 27 .
- the rotor ring 30 of the pitch motor 27 is mounted on a rim 33 , which is embodied as a kind of collar that is of one piece with the motor shaft 25 , at which rim the rotor ring 30 is connected in a rotationally coupled fashion to the essentially cylindrical motor shaft 25 with the aid of fastening elements 34 in the form of bolts.
- the rotor ring 30 extends essentially on the outer circumference side along the motor shaft 25 and is positioned so that it is spaced radially apart from the motor shaft 25 by at most a small gap.
- a drive torque of the pitch motor 27 which is electromagnetically generated between the stator ring 29 and the rotor ring 30 and acts in a direction oriented around the blade rotation axis C 7 —is transferred from the rotor ring 30 to the motor shaft 25 .
- a motor housing 35 of the pitch motor 27 forms a motor interior 36 in which the rotor ring is accommodated.
- the motor housing 35 has a top 37 and a bottom 38 , which extend in a disk shape along and essentially parallel to the rim 33 .
- the top 37 and bottom 38 are each respectively connected to a bearing seat 39 .
- the top 37 and bottom 38 are connected to the stator ring 29 and cooling body 31 by means of walls of the motor housing 35 and, on a side of the pitch motor 27 facing the rotor arm 10 that supports the blade 7 , are connected to a motor flange 40 of the pitch drive 12 .
- the motor flange 40 provides end surfaces 41 at which the rotor arm 10 is connected to the motor flange 40 by means of a mounting collar 42 connected to the rotor arm 10 .
- the mounting collar 42 provides a counterpart end surface 43 that faces radially away from the rotor rotation axis C 2 in the direction toward the circular path K of the blades 7 .
- the motor flange 40 and mounting collar 42 are connected to each other by means of connecting elements 44 , which are embodied for example in the form of detachable connecting elements 44 such as bolted connections.
- connecting elements 44 which are embodied for example in the form of detachable connecting elements 44 such as bolted connections.
- Between the end surfaces 41 of the motor flange 40 there is an open space 40 a in order to provide sufficient space in the region of the cooling fins 32 for heat dissipation or more precisely stated, to prevent a heat buildup.
- Reinforcing ribs 45 extend between the bearing seat 39 and motor flange 40 in order to be able to transmit the static and dynamic loads, which originate from the blade 7 , from the bearing seat 39 via the motor housing 35 to the motor flange 40 with as little distortion of the motor housing 35 as possible.
- the reinforcing ribs 45 are each advantageously embodied of one piece with the motor housing 35 , for example during the casting, and/or are connected by means of welding to the top 37 , bottom 38 , bearing seat 39 , and motor flange 40 or to the top 37 , bottom 38 , and bearing seat 39 ; they extend away from the top 37 and bottom 38 in strut-like fashion.
- the reinforcing ribs 45 also contribute to the cooling of the pitch motor 37 through heat dissipation via the motor housing 35 .
- At least one sensor element 46 is provided in the wall of the motor housing in order to detect a rotation position of the motor shaft 25 and thus of the blade 7 for the control or regulation of the vertical wind turbine 1 .
- Respective motor bearings 47 are positioned between the two bearing seats 39 and the motor shaft 25 .
- the motor bearings 47 are embodied in the form of spherical roller bearings. They transmit high radial forces from the blades 7 to the rotor arms 10 and also stiffen the rotor 2 as a whole.
- the motor bearings 47 are each accommodated in a bearing receiving chamber 48 , which, to the greatest extent possible, is hermetically sealed by means of sealing elements 49 .
- the sealing elements 49 seal the bearing receiving chamber 48 , both in relation to the motor interior 36 and in relation to the surroundings of the vertical wind turbine 1 .
- the bearing receiving chamber 48 is sealed by means of inner rings 50 , which—resting against the motor bearing 47 and, on the outer circumference side, against the sealing element 49 in the axial direction of the blade 7 , both in and away from the upward direction Z, respectively—isolate the bearing receiving chamber 48 from the motor interior 36 .
- the bearing receiving chamber 48 is sealed in relation to the surroundings of the vertical wind turbine 1 by means of outer rings 51 , which respectively rest against the outside of the bearing seat 39 and enclose the sealing element 49 on the inner circumference.
- the motor shaft 25 is connected to a transition section 52 or transitions into it in integral fashion.
- the transition section 52 widens as it extends away from the pitch drive 12 and is mounted in a vane axis section 53 , which rotationally couples the transition section 52 to the blade 7 in adapter fashion.
- connecting ends 55 of the transition section 52 extending in the direction along the blade rotation axis C 7 are embodied in flange-like fashion and are additionally provided with a compensation weight holder 56 for holding a compensation weight 56 a for the vane 19 so that they have flange sections 57 oriented axially away from the connecting ends 55 , on which positive-fit elements 58 and other connecting elements 59 are provided, for example likewise detachable ones in the form of bolt connections, which create a positive-fit and/or force-fit engagement between the transition section or more precisely, its flange section 57 , and the respective vane axis section 53 .
- the motor shaft 25 , the transition section 52 , and the vane axis section 53 extend coaxial to one another.
- the vane axis section 53 supports an outer skin 60 of the blade 7 .
- FIG. 6 shows a schematic perspective view of the pitch drives 12 in which the pitch motor 27 is provided with an aerodynamic cover in the form of a casing 61 .
- the casing 61 has a upper shell 62 and a lower shell 63 , which enclose the motor housing 35 of the pitch motor 27 like a cowling and thus cover the top 37 and bottom 38 together with the reinforcing ribs 45 and support ribs 46 as well as the motor flange 40 , thus minimizing the size of a drive gap 64 that is formed between the pitch drive 12 and the blade 7 and minimizing the accompanying losses in pressure and output that occur at such a gap.
- annular gap-shaped cooling opening 65 is formed, which axially surrounds the cooling body 31 and through which the cooling fins 32 freely extend so that with ambient air circulating unhindered around them, they can give off the waste heat of the pitch motor 27 to the surroundings of the vertical wind turbine 1 .
- the drive gap 64 is further reduced in that the casing 61 provides an extension 66 , which is formed in accordance with aerodynamic aspects, which adjoins the upper shell 62 and lower shell 63 , and outer contour of which in a projection along the blade rotation axis C 7 essentially corresponds to a blade profile of the blades 7 .
- the casing 61 is provided with end caps 67 , which rest flush against the motor flange 40 and an outer diameter of which, at least in some places, is adapted to an outer diameter of the mounting collar 42 .
- An outer contour of the mounting collar 42 is in turn adapted to an outer contour of the rotor arm 10 .
- the end caps 67 , the motor flange 40 , the connecting flange 42 , and the rotor arm 10 transition into one another with outer contours that are as flush with one another as possible and there is an aerodynamically advantageous transition between the pitch drive 12 and the blade mount 8 .
- At least one intake socket 68 a or intake opening and a discharge opening 68 b are formed into the casing 61 of the pitch drive 12 .
- a cooling air duct 69 is shaped into the casing 61 or is formed between the casing 61 and the pitch drive 12 .
- the intake opening embodied in the intake socket 68 a is oriented in the circumference direction along the circular path K so that during the rotation of the rotor 2 , the intake socket 68 a takes in ambient air and this is conveyed through the cooling air duct 69 along the cooling body 31 or more specifically its cooling fins 32 to the discharge opening 68 b .
- two intake sockets 68 a and a discharge opening 68 b are advantageously provided, with a combined cross-section of the intake sockets 68 a being greater than a cross-section of the discharge opening 68 b , as a result of which along the two cooling air ducts 69 per pitch drive 12 that are respectively formed between the intake sockets 68 a and the discharge opening 68 b , the cooling air tends to experience a slight compression and thus acceleration, which helps to further increase a cooling capacity of the cooling air.
- FIG. 7 shows a schematic perspective view of a pitch motor 27 together with the blades 7 mounted thereon, particularly showing the motor flange 40 of the pitch motor 27 for fastening the pitch motor 27 together with the blade 7 to one of the rotor arms 10 of the rotor 2 of the vertical wind turbine 1 .
- the open space 40 a at the motor flange 40 is formed between upper housing half 35 a and a lower housing half 35 b of the motor housing 35 .
- the motor flange 40 has an upper flange half 41 a and a lower flange half 41 b , between which the pitch motor 27 is accessible from the respective rotor arm 10 and between which cooling air can flow along the cooling body 31 .
- the reinforcing ribs 45 on the motor housing 35 each provide a stabilization of the upper housing half 35 a and the lower housing half 35 b considered individually, in order to ensure that they are sufficiently rigid.
- FIG. 8 shows a schematic partial cross-sectional view of the pitch motor 27 .
- the pitch drive 12 is provided with a motor-braking and/or motor-locking unit 27 a , which is arranged on the motor housing 35 , is accessible via the motor flange 40 , and is manually actuatable.
- the motor-braking and/or motor-locking unit 27 a is embodied to cooperate in a form-locking manner with the compensation weight holder 56 , for example in that a locking bolt 27 b of the motor-braking and/or motor-locking unit 27 a engages in a positive-fit with a corresponding locking opening 27 c of the compensation weight holder, so that a locking of the motor shaft 25 relative to the motor housing 35 in at least one rotation direction around the blade rotation axis C 7 for maintenance and/or safety purposes prevents the pitch motor 27 and thus the blade 7 from executing any rotation around the blade rotation axis C 7 .
- a first rotary position transducer 46 a and a second rotary position transducer 46 b extend parallel to each other along the outer circumference of the motor shaft 25 and are embodied to be detected by the at least one sensor element 46 .
- the first rotary position transducer 46 a is embodied for example as an absolute position transducer.
- the second rotary position transducer 46 b is embodied for example as a relative position transducer.
- the first rotary position transducer 46 a embodied as an absolute position transducer can for example have increments at least some of which are positioned at irregular distances from one another along the outer circumference of the motor shaft 25 .
- the second rotary position transducer 46 b embodied as a relative position transducer can for example have increments positioned at regular distances from one another along the outer circumference of the motor shaft 25 .
- the first rotary position transducer 46 a permits the determination of an absolute position of the motor shaft 25 and thus of the blade 7 around the blade rotation axis C 7 .
- the second rotary position transducer 46 permits the determination of a relative position of the motor shaft 25 and thus of the blade 7 around the blade rotation axis C 7 .
- Using the first rotary position transducer 46 a and second rotary position transducer 46 b in this way makes it possible to determine the rotation position of the motor shaft 25 and of the blade 7 with a high position resolution.
- FIG. 9 shows a schematic cross-sectional view of a drive train 70 of the vertical wind turbine 1 along a drive shaft 71 of the drive train 70 , whose drive rotation axis C 71 extends coaxial to the rotor rotation axis C 2 .
- the rotor hub 9 has a pedestal 72 that forms a stud 73 , which likewise extends coaxial to the drive rotation axis C 71 and rotor rotation axis C 2 .
- a hub shoulder 74 which points away from the upward direction Z, is formed on the pedestal 72 and rests on a transition ring 75 , which in turn rests axially in a direction oriented away from the upward direction Z on a first rotor bearing 76 a , which constitutes a part of a rotor bearing system 76 .
- the rotor bearing system 76 also includes a second rotor bearing 76 b and a third rotor bearing 76 c .
- the first and second rotor bearings 76 a , 76 b are embodied for example as prestressed conical roller bearings and transmit radial loads resulting from wind loads to the tower system 4 .
- the first and second rotor bearings 76 a , 76 b are mounted on a rotor shaft 78 by means of a separate bearing bush 77 .
- the part of the rotor bearing system 76 comprising the first and second rotor bearings 76 a , 76 b is assembled in an axially free-floating fashion in a hub connection 79 that constitutes a machine support and therefore remains free of vertical loads.
- the third rotor bearing 76 c absorbs the vertical loads of the rotor 2 and thus essentially its weight force and for this purpose, is advantageously embodied in the form of an axial spherical roller bearing, which introduces the vertical loads directly into the nacelle 3 .
- a transmission 80 of the vertical wind turbine 1 is arranged in which a rotor speed of the rotor shaft 78 is converted into a generator rotation speed at an output shaft 82 of the transmission 80 .
- a clutch unit 83 for example in the form of a double-Catalan, torsionally rigid steel disk clutch, connects the output shaft 82 in a torque-transmitting fashion to a generator shaft 84 of a generator 85 , for example a synchronous machine with permanent magnets, in order to produce electrical current, in this case for example with a maximum power of 750 kW.
- the clutch unit 83 prevents a redundant dimensioning of bearing forces.
- the rotor shaft 78 is provided with an intended break point 86 (for example with a nominal torque of 500 kNm; an intended break moment of 1000 kNm; and a permissible transmission peak torque of 1500 kNm).
- the transmission 80 converts the low rotor speed according to the invention into a high generator rotation speed.
- a transmission step-up factor i amounts to roughly 65 to 75, preferably approx. 70.
- a transmission housing 87 of the transmission 80 is rigidly screw-mounted to the hub connection by means of a flange bell 88 . This results in a direct feedback of the high operating torque.
- Between the rotor shaft 78 and drive train 70 there is a double-cardan, spherically ground double-tooth clutch 89 , which transmits the torque of the rotor 2 to the transmission 80 without redundant dimensioning of bearing forces.
- a pitch pipe 90 passes through the transmission 80 coaxial to the rotor shaft 78 and serves as a feed-through for control wires and power cables for the pitch drive 12 .
- the pitch pipe 12 is driven to a point above the intended break point 86 in the coupling 89 by being rotationally coupled to the rotor 2 .
- a slip ring packet 90 a is provided, in which the mutual cooperation of corresponding brushes and slip rings (not shown) connects the signal wires, control wires, and power cables for the pitch drive 12 in an electrically conductive fashion to corresponding control wires and power cables inside the tower 4 , which then lead to the switchgear box 6 .
- FIG. 9 also shows that the transmission 80 has a plurality of transmission stages, in the present case for example a first transmission stage 80 a , a second transmission stage 80 b , and a third transmission stage 80 c .
- the first transmission stage 80 a and second transmission stage 80 b are each embodied as a planetary gear stage 81 .
- the planetary gear stages 81 have respective planet gears 81 a , which are each supported on a strut 81 c by means of a flexible pin 81 b . With their respective gears, the planet gears 81 a engage simultaneously with a ring gear 81 d and a sun gear 81 e of the respective planetary gear stage 81 .
- the sun gear 81 e of the second transmission stage 80 b is connected in a torque-transmitting way by means of a slip clutch 89 a to a gear 81 f of the third transmission stage 80 c , which is embodied as a spur gear pair.
- the gear 81 f engages with a pinion 81 g of the third transmission stage 80 c .
- the pinion 81 g is connected in a torque-transmitting way to the drive shaft 82 for the generator 85 .
- FIG. 1 shows a schematic perspective view of an embodiment according to the invention of the hub connection 79 of the vertical wind turbine 1 .
- the hub connection 79 includes a cylindrical, drum-like integrally formed base body 91 , which provides a feed-through 92 for accommodating a shaft bearing unit 93 (see FIG. 9 ) of the drive train 70 .
- Supporting feet 94 are fastened equidistantly to the outer circumference side of the base body 91 and extend out radially from it.
- the supporting feet 94 each provide a horizontally oriented rest 95 for mounting the hub connection 80 onto the tower system 4 .
- the supporting feet 94 can for example be composed of welded-together plates and be integrally connected to the base body 91 by welding or be flange-mounted to it; the base body can in turn also be composed of welded-together plates.
- the hub connection 79 can be composed of a plurality of identically shaped segments, which each provide two flange ends, at which they are connected to one another enclosing a circle and thus combine to form the feed-through 92 for accommodating the shaft bearing unit 93 .
- Each of the segments 96 constitutes a supporting arm.
- a vertically extending supporting tab can be formed, which lies in a respective radial plane relative thereto for being mounted onto the tower system 4 .
- the segments can be cast individually or in one piece, which can help to reduce manufacturing costs, particularly in mass production and can help to adapt material thicknesses of the segments in high-stress points and can also help to provide rounded regions on it in order to reduce stress concentrations, for example by having the flange ends transition into the supporting arms by forming a curved profile.
- the rotor hub 9 itself can likewise be composed of segments 95 or be integrally cast together with its segments 95 .
- On each of the segments 95 there is a flange end 97 for fastening one of the rotor arms 10 to the rotor hub 9 .
- Each flange end 97 can be formed onto a supporting arm 98 , which is provided on the rotor hub 9 and extends away from the rotor rotation axis C 2 .
- the supporting arms 98 can be formed of one piece with the respective segment 95 .
- the rotor arms 10 have an upper arm half 10 a and a lower arm half 10 b , which in the radial direction of the rotor 2 oriented toward the rotor hub 9 , are brought together at a hub end 10 c of the rotor arm 10 .
- a rotor arm hub flange 10 d is provided for fastening the rotor arm 10 to one of the flange ends 97 of the rotor hub 9 .
- a connecting segment 10 e of the rotor arm 10 is provided, which connects the upper arm half 10 a and lower arm half 10 b to each other along their longitudinal span.
- the signaling and/or measuring unit 11 can be positioned on a covering cap 99 for the rotor hub 9 and for example includes a plurality of wind speed sensors 104 and wind direction sensors 105 , which are each fastened to a rod 106 that extends away from the covering cap 99 .
- the rods 106 can each be positioned offset from the rotor arms 10 so that as much as possible, the respective wind speed sensors 104 and wind direction sensors 105 do not lie in the wind shadow of the blades 7 as the rotor 2 rotates around its rotor rotation axis C 2 or in any case, only lie in their wind shadow for the shortest possible time intervals.
- FIG. 11 shows a schematic front view of a section of one of the rotor arms 10 of the rotor 2 of the vertical wind turbine 1 .
- a rotor arm blade flange 10 g and the mounting collar 42 for fastening the rotor arm to the blade 7 and to the respective motor flange 40 are provided at a distal rotor arm end 10 f .
- the depicted section of the rotor arm 10 can be either the upper arm half 10 a or the lower arm half 10 b , which are shaped identically in order to facilitate the production of the rotor arms 10 and to minimize their production costs.
- FIG. 12 shows a schematic side view of the section shown in FIG. 11 of one of the rotor arms 10 of the vertical wind turbine 1 .
- the rotor arms 10 taper in the vertical direction Z from the hub end 10 c toward the rotor arm end 10 f.
- FIG. 13 shows a schematic cross-sectional view of the section shown in FIGS. 11 and 12 of one of the rotor arms 10 of the vertical wind turbine 1 , along the cross-sectional line A-A shown in FIG. 12 .
- the rotor arms 10 have a wall thickness that is sufficient for embodying the vane axis section 53 in such a way that the respective vane 19 can be fastened to the flange section 57 .
- FIG. 14 shows a schematic top view of the section shown in FIGS. 11 to 13 of the rotor arm 10 of the vertical wind turbine 1 .
- the rotor arms 10 likewise taper transversely to the vertical direction Z vertical direction Z from the hub end 10 c toward the rotor arm end 10 f.
- FIG. 15 shows a schematic top view of the vertical wind turbine 1 to illustrate angular positions and force conditions at the blades 7 during the operation of the vertical wind turbine 1 .
- the wind flows against the blades 7 at a wind speed v W .
- the rotation of the rotor 2 around the rotor rotation axis C 2 produces an angular velocity ⁇ of the rotor 2 , which, multiplied by a radius R K of the circular path K that corresponds to half of the diameter D K of the circular path K, yields a circumferential speed v U of the blades 7 along the circular path K according to equation (1) below:
- the angle of attack ⁇ is respectively measured between the vector of the circumferential speed v U and a chord line 100 of the blades 7 , which extends in a straight line between a leading edge 101 and a trailing edge 102 .
- the pitch angle ⁇ is measured between the vector of the relative speed v R and the chord line 100 .
- the blades 7 have a symmetrical blade profile, by means of which the blade chord forms a plane of symmetry of the blades 7 or their vanes.
- the relative speed v R is a function of an azimuth angle ⁇ of the rotor 2 , which is measured for example for the respective rotor arm 10 starting from a zero point at a position 90° from the wind direction, facing into the wind and rotating relative to a main axis of the vertical wind turbine 1 .
- a tangent of the angle of incidence ⁇ is calculated as a function of the wind speed v W , the relative speed v R , and the azimuth angle ⁇ or as a function of a tip speed ratio ⁇ and the azimuth angle ⁇ according to equation (4) below:
- tip speed ratio ⁇ in turn, according to equation (5) below, corresponds to a ratio of the circumferential speed v U to the wind speed v W and according to the invention, is to be set as optimally as possible and kept constant by means of the respective pitch drive 12 or more precisely, its pitch motor 27 , in accordance with the respective wind conditions with varying pitch angles ⁇ in order to maximize an energy yield or performance of a vertical wind turbine 1 according to the invention:
- a static center of gravity of the blade 7 lies on or as close as possible to the rotor rotation axis C 7 .
- the rotor rotation axis C 7 is positioned on the chord line 100 at 20 to 23%, preferably 21.5%, of a rotor blade depth measured from the leading edge 101 .
- the counterweight 56 a is provided in the region of the pitch drive 12 and if need be, an additional counterweight 103 is positioned in the region of the leading edge 101 in the blade 7 .
- the additional counterweight 103 is composed of rod segments, preferably of a round steel rod with diameters of between 60 and 100 mm, most preferably 80 mm.
- the rod segments are fastened to the ribs 54 .
- the segments can be advantageously connected to one another in an electrically conductive fashion.
- the additional counterweight 103 can perform a double function in that it also serves as a lightning rod.
- the vertical wind turbine 1 has at least one wind speed sensor 104 and/or wind direction sensor 105 .
- the wind speed sensor 104 and/or wind direction sensor 105 is positioned at the upper end of the signaling and/or measuring mast 11 and/or on at least one of the blades 7 or on all of the blades 7 .
- the wind speed sensor 104 and/or wind direction sensor 105 is preferably fastened to the blade 7 in the region of the pitch drive 12 because wind speeds and/or directions measured there are highly relevant for the control of the pitch drive 12 .
- the wind speed sensor 104 and/or wind direction sensor 105 is positioned at the distal end of a rod 106 , which is fastened to the blade 7 or pitch drive 12 and, oriented radially away from the rotor rotation axis C 2 , protrudes beyond the circular path K into a region in the vicinity of the vertical wind turbine 1 , which lies as far as possible outside of air flow boundary layers that are formed around the rotor 2 and its components, i.e. largely outside of the influence range of the blade 7 .
- FIG. 16 shows a schematic diagram to illustrate the function of a control device according to the invention 107 of the vertical wind turbine 1 .
- the control device 107 includes a supply unit 108 , which is on the one hand connected to a motor control unit 109 that includes a power section 110 and on the other hand, is connected to a choke 111 and a filter 112 in order to ensure the most malfunction-free and error-free power supply possible.
- the power unit 110 is embodied as an inverter.
- the motor control unit 109 is connected to the pitch drive 12 , a power supply unit 114 , and a control unit 115 for monitoring and controlling the vertical wind turbine 1 .
- the power supply unit 114 includes a main power supply unit 116 and an auxiliary power supply unit 117 , the latter ensuring an emergency power supply to the control device 107 if the main power supply unit 116 fails or is not available.
- control device 107 includes a motor protection unit 118 and a data transmission unit 119 .
- the pitch drive 12 also includes a rotary position transducer 120 with a position sensor 121 for monitoring a rotation position of the rotor ring 30 relative to the stator ring 29 .
- the pitch motor 27 also includes a motor unit 122 , which includes at least the stator ring 29 and the rotor ring 30 , and a temperature measuring unit 123 , which has a first temperature sensor 124 and at least one other temperature sensor 125 .
- the first temperature sensor 124 is embodied as a resistance-dependent temperature sensor (KTY)
- the other temperature sensor 125 is embodied for example as a temperature sensor with a positive temperature coefficient (PTC).
- the power section 110 of the motor control unit 109 of the control device 107 inverts—for example continuously—a current that is required to drive the pitch motor 27 .
- the power element 110 can output a continuous current of 100 to 200, preferably 150 A RMS , and produce a peak current of 200 to 250, preferably 210 A RMS , so that it is possible to quickly obtain a maximum torque of the pitch motor 27 .
- the control unit 115 cyclically calculates a set-point value S for the adjustment of each of the blades 7 , for example in the form of a set-point pitch angle ⁇ S , and supplies it via the corresponding line 113 to the motor control unit 109 .
- an actual value I such as an actual pitch angle ⁇ I is determined and is transmitted via the corresponding line 113 to the motor control unit 109 .
- the motor control unit 109 determines a differential value d, for example an angular deviation ⁇ , and based on it, derives a control value U, for example in the form of a control current A, which is transmitted to the respective drive unit 12 and/or the motor unit 122 of the pitch motor 27 .
- the motor control unit 109 adjusts the pitch angle ⁇ according to the invention with the least possible angular deviation ⁇ .
- the temperature measuring unit 123 detects a first temperature measurement value T and at least one other temperature measurement value T x , which are determined for redundancy reasons and/or for different uses.
- the temperature measurement value T is transmitted via one of the lines 113 to the motor protection unit 118 .
- the motor protection unit 118 compares the temperature measurement value T to a temperature limit value and if the temperature limit value is exceeded, can transmit an alarm signal via the corresponding line 113 to the motor control unit 109 , where preventive measures for protecting the respective pitch drive 12 are initiated, for example an emergency shut-off or interruption of the power supply.
- the motor protection unit 118 can use the corresponding line 113 to transmit temperature values for relaying temperature data to the motor control unit 109 and/or control unit 115 and the data transmission unit 119 .
- the other temperature measurement value T x is transmitted via corresponding lines 113 directly to the motor control unit 109 in order to keep a temperature of the drive unit 12 and the components thereof within the scope of a predetermined or specified operating temperature.
- immediate temperature control measures can be initiated, whereas in the control unit 115 , longer-term temperature control measures can be carried out.
- a rapid temperature control can be carried out in order to protect the drive unit 12 , whereas the temperature data that are related to the control unit 115 can be used to perform a long-term temperature control and through the direct relaying of the other temperature measurement value T x to the motor control unit 109 , a middle-term temperature control is possible.
- the control device 107 is configured and set up to implement the following ten operating modes M 0 to M 9 of the vertical wind turbine 1 :
- FIG. 17 shows a schematic diagram of a sample torque characteristic curve of the pitch motor 27 .
- the diagram shows a maximum torque Tp, a nominal torque Ti, and continuous torque Tc of the pitch motor 27 over the rotation speed of the pitch motor 27 .
- the pitch motor 27 can rapidly produce the maximum torque Tp in order to spontaneously, i.e. within a very short, extremely limited time, perform a quick adjustment of the respective blade 7 .
- the nominal torque Ti can be used continuously until a temperature limit value is exceeded.
- the continuous torque Tc is available on an ongoing basis and does not lead to temperature limit values being exceeded.
- FIG. 18 shows a schematic diagram with sample cam disks for controlling the pitch motor 12 , namely a first cam disk S 1 , which is provided for example for the nominal wind speed v 2 of for example 12 m/s, and a further cam disk S 2 , which is provided for the first cut-out wind speed v 3 of for example 20 m/s. Between these two wind speeds, for example a nominal-load operation or full-load operation of the vertical wind turbine 1 in the seventh operating mode M 7 is provided, in which the rotor 2 rotates at a nominal speed and the generator 85 outputs its nominal power.
- the set-point value S of the pitch angle ⁇ is represented as the set-point pitch angle ⁇ S in dependence of the azimuth angle ⁇ .
- the set-point pitch angle ⁇ S at an azimuth angle ⁇ of 0° is less than 0°, for example in the range from ⁇ 2 to ⁇ 3°.
- the set-point pitch angle ⁇ S first passes through a local maximum of ⁇ 2 to ⁇ 3° at an azimuth angle ⁇ of approx. 20° and then passes through an inflection point between ⁇ 3 and ⁇ 4° at an azimuth angle ⁇ of approx. 20° until the set-point pitch angle ⁇ S at an azimuth angle ⁇ of approx. 50° reaches an absolute minimum of approx. ⁇ 10°.
- the set-point pitch angle ⁇ S for the nominal wind speed v 2 is once again approx. 2 to ⁇ 3° and then, at an azimuth angle ⁇ of approx. 200°, reaches a value of 0°.
- the set-point pitch angle ⁇ S for the nominal wind speed v 2 reaches its absolute maximum of approx. 2 to 3° and then at an azimuth angle ⁇ of approx. 290° once again reaches a value of 0° and at approximately the same time, passes through an inflection point.
- the set-point pitch angle ⁇ S passes through a local minimum of approx. ⁇ 3 to ⁇ 4° at an azimuth angle ⁇ of approx. 330° and finally, at an azimuth angle ⁇ of approx. 360°, returns once again to its initial range of ⁇ 2 to ⁇ 3°.
- the set-point pitch angle ⁇ S at an azimuth angle ⁇ of 0° is less than 0°, for example in the range from ⁇ 1 to ⁇ 2°, and is thus less than the set-point pitch angle ⁇ S at an azimuth angle ⁇ of 0° at a nominal wind speed v 2 .
- the set-point pitch angle ⁇ S passes through an inflection point between ⁇ 14 and ⁇ 16° at an azimuth angle ⁇ of approx. 45° until, at an azimuth angle ⁇ of approx. 100°, the set-point pitch angle ⁇ S passes through another inflection point at approx. ⁇ 30° and then, at an azimuth angle ⁇ of approx. 100°, reaches an absolute minimum of approx. ⁇ 37° to ⁇ 38°.
- the set-point pitch angle ⁇ S for the first cut-out wind speed v 3 is approx. ⁇ 2 to ⁇ 3° and then, at an azimuth angle ⁇ of approx. 170°, reaches a value of 0° earlier than the set-point pitch angle ⁇ S for the nominal wind speed v 2 .
- the set-point pitch angle ⁇ S reaches its absolute maximum of approx. 35° and then, at an azimuth angle ⁇ of approx. 270°, reaches an inflection point at approx. 25°.
- the set-point pitch angle ⁇ S passes through an inflection point at approx. 15° at an azimuth angle ⁇ of approx. 320° and finally, at an azimuth angle ⁇ of approx. 360°, returns once again to its initial range of ⁇ 1 to ⁇ 2°.
- FIG. 19 shows a schematic perspective view of a test bench 200 for determining a positioning error of the pitch motor 27 of the vertical wind turbine 1 .
- a frame structure 201 is provided, to which is attached a holding arm 202 for holding the pitch drive 12 or pitch motor 27 and a transverse arm 203 .
- the pitch drive 12 together with a section of the blade 7 is mounted on the holding arm 202 of the test bench 200 by means of the motor flange 40 similarly to how it would be mounted to the rotor arm 10 of the vertical wind turbine 1 .
- the transition section 52 protruding out from the pitch motor 27 is accommodated in a shaft mount 204 of the test bench 200 so that it is able to rotate around the blade rotation axis C 7 .
- the shaft mount 204 is positioned in the middle of a swing arm 205 , which is likewise held so that it is able to rotate around the blade rotation axis C 7 in an extension 206 of the frame structure 201 .
- a weight 207 is secured at each of the two ends of the swing arm 205 oriented away from the blade rotation axis C 7 .
- the weights 207 simulate a total mass of the blade 7 .
- the ends of the swing arm 205 are connected to the transverse arm 203 by means of spring elements 208 in the form of coil spring packs and articulating linkages 209 fastened thereto.
- the spring elements 208 simulate wind forces.
- FIG. 20 shows a schematic diagram of a positioning error, which has been determined by means of the test bench 200 shown in FIG. 19 , in the form an angular deviation ⁇ of the pitch motor 27 in ° over time tin seconds for a plurality of control cycles during which a simulated azimuth angle ⁇ passes through a respective rotor rotation of 360°.
- the angular deviation ⁇ After an initial transient response, which does not occur in the vertical wind turbine 1 , the angular deviation ⁇ reaches an absolute value of less than 1.5° for set-point pitch angles ⁇ S with absolute values of at most 30 to 40°.
- FIG. 21 shows a schematic diagram of a positioning error of the pitch motor 27 in the form of the angular deviation ⁇ in ° over time tin seconds over one control cycle for the nominal wind speed v 2 .
- the angular deviation ⁇ has an absolute value of always less than 0.5° and reaches a maximum absolute value of approx. 0.25° after respective local and absolute minima and maxima of the set-point pitch angle ⁇ S .
- the angular deviation ⁇ fluctuates around 0°.
- FIG. 22 shows a schematic diagram of a positioning error of the pitch motor 27 in the form of the angular deviation ⁇ in ° over time tin seconds over one control cycle for the first cut-out wind speed v 3 .
- the angular deviation ⁇ has an absolute value of always less than 1.5° and reaches a maximum absolute value of approx. 1.45° after respective local and absolute minima of the set-point pitch angle ⁇ S and reaches a maximum of approx. 0.6 at local and absolute maxima thereof.
- the angular deviation ⁇ In the vicinity of the inflection points of the set-point pitch angle ⁇ I , the angular deviation ⁇ likewise fluctuates around 0°. In general, therefore, the angular deviation ⁇ turns out to be slightly higher at the first cut-out wind speed v 3 than at the nominal wind speed v 2 .
- wind speeds are chiefly indicated for a design instance of the vertical wind turbine 1 described here, with a nominal power of 750 KW, a nominal height of 105 m, a rotor diameter of 32 m, a length of the blades 7 of 54 m, a height of the blades 7 over the ground of 51 m, a height of the middle of the blades 7 above the ground of 78 m, a survival wind speed of 59.5 m/s, and an annual average speed of 8.5 m/s and can be varied in accordance with other design instances, which can in turn result in deviations of relative physical variables such as tip speed ratios.
- more than two pitch drives 12 can be provided for each blade 7 or, for example, one pitch drive 12 can be provided for each blade section 13 .
- two respective blades 7 or blade sections 13 can be provided, which are driven in a vertically separate way from each other.
- two pitch drives 12 can be positioned between two blades 7 or blade sections 13 and, as an upper and lower pitch drive 12 , can be respectively associated with an upper and lower of the two blades 7 or blade sections 13 .
- the upper blade or blade section 13 can thus be rotated around its blade rotation axis C 7 independently of the lower blade 7 or blade section 13 .
- Each of the two blades 7 or blade sections 13 can be associated with at least one wind speed sensor 104 and/or wind direction sensor 105 .
- the at least one wind speed sensor 104 and/or wind direction sensor 105 is advantageously positioned in the middle of the respective blade 7 or blade section 13 and can be mounted on a rod 106 there as described above. Consequently, for each of the blades 7 or blade sections 13 positioned one above the other vertically, optimal pitch angles ⁇ can be separately set in order to take wind flow conditions that change in the vertical direction Z along the blade 7 into account during operation of the vertical wind turbine 1 and thus improve the efficiency of the turbine. This must be taken into consideration particularly for circular path diameters D K that are larger than 32 m, for example 45 m, in which case a total length L 7 of the blades 7 would then be approx. 73 m, for example.
- T temperature measurement value T x other temperature meas. value Tc continuos torque Ti nominal torque Tp maximum torque U control value R K radius of the circular path X longitudinal direction Y transverse direction Z vertical direction, upward direction ⁇ angle of attack ⁇ pitch angle ⁇ I set-point pitch angle ⁇ S actual pitch angle ⁇ angular deviation ⁇ angle of incidence ⁇ tip speed ratio ⁇ azimuth angle ⁇ angular velocity
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Wind Motors (AREA)
Abstract
Description
- The present application is a Continuation of U.S. application Ser. No. 16/625,891, filed Dec. 23, 2019, which is a 35 U.S.C. §§ 371 national stage application of International Application No. PCT/EP2018/067582, filed Jun. 29, 2018, PCT Application No. PCT/IB2017/053972, filed Jun. 30, 2017, and PCT Application No. PCT/IB2017/053974, filed Jun. 30, 2017, the contents of which are incorporated herein by reference.
- The present invention relates to a vertical wind turbine, as well as a kit for a vertical wind turbine, and a method for operating a vertical wind turbine.
- Vertical wind turbines with active blade control are known from the prior art. WO 2015/185299 A1 on behalf of the applicant discloses a vertical wind turbine with vertical blades, that are each driven by a servomotor via a transmission into a predetermined rotational position around their respective axis of rotation, which position can be changed at anytime; virtual cam disks are provided, which respectively determine the course of the blade angle by means of the position of the blade on the circle of revolution, and wherein the active control is carried out in accordance with the virtual cam disks.
- Further,
European patent EP 2 235 365 B1 on behalf of the applicant relates to a wind turbine with at least one rotor, which can be rotated around a vertical axis and which, between two horizontal bearing planes disposed at a distance on top of each other, comprises a plurality of rotor blades, which are disposed uniformly distributed on a circumferential circle and can each be pivoted around a vertical pivot axis and the pivot range of which is delimited on both sides by a limit stop. - Furthermore, the document U.S. Pat. No. 3,902,072 A discloses a wind powered generator with a horizontal, rotating platform on the outer circumference of which a plurality of vertical blades is positioned, which all revolve coaxially around a central axis and each rotate around an individual axis. The rotation of the vertical blades depends on changes in the wind direction and wind speed and the rotation of each individual blade is controlled so that for ¾ of the rotation path of the platform, power is drawn from the wind, while for the rest of the path, the blades are adjusted so that they offer minimal resistance to the wind. The blades are controlled by means of a central transmission mechanism with a shared servomotor.
- The document U.S. Pat. No. 4,410,806 A describes a vertical wind turbine with a rotating structure, which includes a series of rotatable vertical blades positions of which are controlled to maintain a constant rotation speed of the rotating structure, when wind speed is sufficient. A microprocessor controller processes information about the wind speed, wind direction, and rotation speed of the rotating structure and produces an electrical signal for adjusting the blade position. The control system for the wind turbine includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the angle of attack, which in turn determines the rotation speed of the rotor. A wind speed sensor provides data for starting or stopping the system and a wind direction sensor is used to keep the blade flip region at 90° and 270° relative to the wind direction. The control system is designed to maintain constant rotation speed at wind speeds of between 19 and 40 miles per hour.
- The document U.S. Pat. No. 4,494,007 A discloses a vertical wind turbine, wherein the orientation of the blades revolving around a common central axis is controlled by a tail vane by means of a shared mechanism during their rotation around the central axis such that if the wind speed changes, the rotation position of the blades is changed.
- The document U.S. Pat. No. 4,609,827 A describes a vertical wind turbine with rotor vanes that are airfoil-shaped. A positive and synchronous vane orientation system is controlled by a mechanism located exterior to its rotor.
- Finally, in “Vertical Axis Wind Turbine with Individual Active Blade Pitch Control”; College of Mechanical and Electrical Engineering; Harbin Engineering University; Harbin, China; 2012 IEEE, Lixun Zhang, Yingbin Liang, Erxiao Li, Song Zhang, and Jian Guo describe a vertical wind turbine with individually active blade control, wherein servomotors are mounted on the arms supporting the blades and each by means of a belt drive, are intended to perform a pitch angle adjustment of the blades in accordance with their azimuth angle.
- In “H-Darrieus Wind Turbine with Blade Pitch Control”; International Stud of Rotating Machinery, vol. 2009, Ion Paraschivoiu, Octavian Trifu, and F. Saeed address a variation of the pitch angle of the blades of a vertical wind turbine in accordance with the azimuth angle in order to maximize a torque output by the rotor of the vertical wind turbine.
- In “A Straight-bladed Variable-pitch VAWT Concept for Improved Power Generation”; ASME 2003, Wind Energy Symposium, vol. 2003, pp. 146-154; January 2003, Y. Staelens, F. Saeed, and I. Paraschivoiu describe experiments for improving the performance of vertical wind turbines with blades, a pitch angle of which is variable. At each blade, the tangential force should be optimized by varying the pitch angle in the respective rotational position in accordance with the azimuth angle. Different blade profiles are studied.
- In vertical wind turbines that are known from the prior art, it is disadvantageous that the blade control and blade drive do not enable a satisfactory energy yield and reasonable efficiency. In addition, the blade drive consumes too much energy and is susceptible to wear, which minimizes the efficiency and service life of the systems in an unsatisfactory way.
- One object of the invention is to avoid at least some of the disadvantages of the prior art. In particular, the efficiency and service life of vertical wind turbines should be improved in comparison to the prior art. This object is achieved by the features of the independent claims.
- In particular, the disadvantages of the prior art are overcome by means of a vertical wind turbine according to the invention with a plurality of vertical blades, which are each supported such that they are motor-driven pivotable around a respective blade rotation axis independently of one another, and are rotatable on a common circular path around a vertical rotor rotation axis, wherein the blades are each held fastened to at least one pitch motor for motor-driven pivoting of the blades around their respective blade rotation axis.
- In other words, the blades are each supported directly at the pitch motor. For example, the blades are each fastened to a respective vertical blade axis independently of one another, can be motor-driven to pivot around a respective blade rotation axis, and are supported so that they are able to rotate on a common circular path around a vertical rotor rotation axis; wherein the blade axes are each provided with at least one pitch motor for motor-driven pivoting of the blades, a motor shaft of which extends concentrically to the respective blade rotation axis.
- With a method according to the invention, the disadvantages from the prior art are overcome by predetermining angular positions of vertical blades of the vertical wind turbine, which are supported such that they are rotatable around a respective vertical rotor rotation axis, and are motor-driven pivotable around a respective blade rotation axis independently of one another, wherein the angular positions of the blades are each predetermined by means of at least one pitch motor at least partially supporting the respective blade.
- In other words, a pitch motor carrying the respective blade predetermines the angular position. The blades can each be carried exclusively at a single pitch motor, which provides mechanical certainty and thus a very advantageous vibration behavior to the entire wind turbine, considered as a system. It is thus possible for a vibration frequency of the vertical wind turbine during operation to always be kept below its resonant frequency, which helps to minimize dynamic loads on the wind turbine resulting from any vibrations and thus makes it possible to increase the maintenance interval lengths and service life thereof. For example, angular positions are predetermined for vertical blades of the vertical wind turbine that are driven around a respective vertical blade axis, the angular positions being continuously controlled by means of a direct drive of each of the blades by means of a respective pitch motor positioned concentrically to the blade axis.
- The solution according to the invention has the advantage that it enables a very precise and energy-saving driving of the blades in accordance with pitch cam disks. The angular positions of the blades can be optimally set without delay and taking into consideration the varying system conditions (wind speed, wind direction, rotor rotation, power output, etc.) at a power consumption of the pitch motors of at most less than 10% to preferably less than 0.5%, for example 0.3%, of a generator output power of the vertical wind turbine.
- By means of the solution according to the invention, it is possible to satisfy an existing requirement for vertical wind turbines of selecting the tip speed ratio A such that the angle between the incidence vector of the wind and the rotor blade chord (the so-called angle of attack) does not exceed a value at which the flow separates from the profile. The tip speed ratio A is defined by the ratio of the rotational speed of the rotor to the wind speed. Up to a nominal speed, vertical wind turbines according to the invention have a tip speed ratio λ of 2 to 2.5, preferably approx. 2.3, which is determined by a circumferential speed of the blades of approx. 27.6 m/s at a wind speed of 12 m/s during nominal operation (λ=27.6/12=2.3).
- The higher the tip speed ratio, the smaller the angle of attack relative to the profile. In reality, this means that vertical wind turbines are generally operated with tip speed ratios A of greater than 4. This necessarily results in high rotation speeds or high rotor radii in order to achieve the circumferential speed that is required for the tip speed ratio. High circumferential speeds in turn increase parasitic losses, which are caused by the aerodynamic drag of rotor arms and guys, for example. Such losses influence the energy output by the cube of the circumferential speed.
- A continuous pitch control of the blades according to the invention helps keep the tip speed ratio as optimally constant as possible and compensates for negative effects of strongly and quickly changing wind conditions. Thereby, an optimal energy yield in partial load operation is achieved. Consequently, vertical wind turbines according to the invention make it possible to utilize wind energy in an economically efficient way even in locations with widely varying wind conditions.
- In addition, high circumferential speeds contribute to a high noise emission and to high centrifugal accelerations. Through a continuous control of the rotor blades of the kind that is implemented in vertical wind turbines according to the invention, in principle any tip speed ratio can be used with the optimal pitch angle. In other words, a stall can be avoided even with low tip speed ratios. It is thus possible for the optimal operating range to be evaluated in a way that takes into account parasitic resistances.
- Numerical simulations with a DMS model (double multiple stream-tube) for vertical wind turbines according to the invention in accordance with an exemplary embodiment show a maximum energy yield at a tip speed ratio of for example λ=2.3. Including geometrical dimensions of vertical wind turbines according to the invention, this yields circumferential speeds of approx. 100 km/h, which leads to significantly lower noise emissions than in conventional horizontal wind turbines and vertical wind turbines that are known from the prior art because the circumferential speed affects the acoustic power to the sixth power.
- Furthermore, in connection with a wind farm efficiency of vertical wind turbines, which is approx. 20% and is thus more advantageous than a wind farm efficiency of horizontal wind turbines, which is approx. 10%, vertical wind turbines that are configured and operated according to the invention can be operated more efficiently and economically than horizontal wind turbines, particularly in wind farms, or more precisely stated, can be operated at twice the wind farm efficiency. In addition, unlike horizontal wind turbines, vertical wind turbines according to the invention can be operated in a power range of for example 750 kW generator output power, which is ideal for the rapidly growing sector of the “distributed wind market” in which environmentally friendly and socially responsible solutions are very relevant (populated areas, logistically challenging wind locations).
- In addition, vertical wind turbines according to the invention have an advantageous wake behavior. Since the blades are held in their angular position in a variable manner by means of the pitch motors, which helps prevent stalls, this minimizes turbulence in the wake. A resulting low turbulence intensity in the wake allows for shorter distances between vertical wind turbines according to the invention and thus further improves their wind farm efficiency.
- As a result of relatively small and/or lightweight parts and components, in contrast to horizontal wind turbines, it is possible to set up vertical wind turbines without heavy transport even in difficult terrain. In normal terrain, all of the components of a vertical wind turbine (even heavy ones) can be transported using a conventional truck without special transport. In mountainous terrain, the components can be transported by a light helicopter and the few heavy components can be transported by an off-road vehicle.
- Vertical wind turbines according to the invention can be installed using a self-assembly system without the use of additional heavy-duty cranes. The self-assembly system includes a central crane that grows along with a tower or tower system of a vertical wind turbine according to the invention and heavy-duty lifting rollers that are positioned in the tower and/or on arms of the vertical wind turbine. All of the heavy main components can be hoisted to their respective installation heights by means of a mobile cable winch on the ground and deflection sheaves in the tower.
- For repair-related disassembly and assembly work on the rotor blades and blade bearings, only a small crane is temporarily positioned at the very top of the respective rotor arm with the aid of a helicopter. For simple maintenance and repair work on the rotor, the rotor is locked in position by positive-fit engagement. In the case of rotor bearing damage, generator damage, or transmission damage, disassembling the rotor does not require removal thereof. When stopped, it is mechanically secured to a lifting device on the tower and a thrust bearing supporting the rotor is thus freed of the rotor load. This securing can withstand gale forces. The components possibly requiring repair can then be lowered without a crane, using a cable winch and deflection sheaves in the tower and can be directly loaded onto a truck at the bottom.
- Finally, with regard to their environmental impact, the vertical wind turbines according to the invention are also advantageous in that the silhouette of the vertically oriented rotor is more visible to birds and bats than a horizontally rotating three-blade rotor. In addition, at a maximum of 100 km/h, the rotor blade speeds are significantly lower than with horizontal wind turbines in which blade tip speeds of 300 to 400 km/h occur. In contrast to horizontal wind turbines, the relatively slowly rotating rotor system of the vertical wind turbine according to the invention has a calm shadowing and a small ice throwing range. The appearance of a vertical wind turbine according to the invention, with its predominantly vertical lines, integrates well into the surrounding landscape.
- The solution according to the invention can be arbitrarily enhanced and further improved by means of the following embodiments, which are each advantageous in and by themselves; a person skilled in the art will easily recognize in a clear and unambiguous way that apparatus features of a vertical wind turbine according to the invention constitute the basis for corresponding steps of a method according to the invention and vice versa. The disclosure content of the applicant's international patent application numbers PCT/IB2017/053972 and PCT/IB2017/053974 is fully incorporated into the present disclosure by reference.
- According to a first further embodiment of a vertical wind turbine according to the invention, the pitch motor is embodied as a torque motor with at least one rotor ring that is rotationally coupled to the respective blade. For this purpose, the pitch motor can be embodied as a torque motor with at least one rotor that is torsionally rigidly coupled to the blade axis. For example, the torque motor can be embodied as a permanently excited brushless DC motor with an internal-rotor design. The rotor, which is thus surrounded along its outer circumference by a stator of the pitch motor, can be torsionally rigidly coupled in a simple and effective way to a motor shaft of the pitch motor with the aid of a clamping set.
- According to another embodiment, the rotor ring rests against the outer circumference of a motor shaft of the pitch motor. Thus, a torque produced by the pitch motor can be transmitted directly to the motor shaft and thus to the blade. In other words, the blade is advantageously driven directly by the motor. For example, the blade axes are supported on motor bearings in the pitch motor. In other words, the blades can be secured in rotary fashion in the pitch motor. For example, the bearing can be implemented by means of tapered roller bearings, rolling bearings, or conical roller bearings, which are positioned in an axially prestressed fashion between the blade axis and motor on the one hand and the stator on the other in order to absorb both axial forces and radial forces. This enables a precise positioning of the blade axes with a long service life and a highly efficient driving of the blade axes by means of the pitch motor with low friction losses.
- According to another embodiment, the blades are borne supported on motor bearings in the pitch motor. Consequently, both horizontal forces and vertical forces originating from the blades, including a weight force of the blades, can be absorbed in the motor bearings. For example, the motor bearings are positioned in a bearing receiving chamber that is sealed up in against the surroundings of the vertical wind turbine with the aid of sealing elements. The bearing receiving chamber can contain lubricant such as grease for lubricating the motor bearings. Preferably, the bearing receptacle is filled with the lubricant, which is replaced or refilled every 5 years, depending on the requirements. This achieves an effective lubrication of the motor bearings, which helps to further maximize the service life of a vertical wind turbine according to the invention.
- The bearing receiving chamber can in turn be sealed up relative to a motor interior with the aid of additional sealing elements so that the motor interior is protected from harmful environmental influences in an essentially hermetically sealed way. The motor interior can be at least partially formed by a motor housing and/or enclosed by it.
- An expansion or compensation vessel can be connected to the hermetically sealed motor interior in a fluid-conducting manner via at least one fluid line and can constitute a changeable expansion or compensation volume in order to compensate for temperature-induced volume changes of fluids, in particular air, contained in open spaces inside the motor chamber. To avoid the presence of open spaces in the motor interior, space-filling elements can be positioned in the motor chamber, which can be formed of foam material, for example. The expansion vessel and space-filling elements on the one hand help to prevent humidity from condensing in the motor interior. On the other hand, expansion vessel and space-filling elements prevent bearing lubricant and/or motor lubricant such as grease from being displaced or escaping when pressure fluctuations occur.
- According to another embodiment, the blades include an upper blade section and a lower blade section and the pitch motor is positioned between the upper and lower blade sections. The pitch motor can thus support both blade sections, with the upper blade section extending upwardly away from the pitch motor and the lower blade section extending downwardly. Consequently, torques or positioning forces that are produced by the pitch motor and act on the blades can be introduced into the blades as symmetrically as possible in relation to the longitudinal span of the blades in the vertical direction.
- Alternatively, or additionally, the blades can be supported rotatable around their blade rotation axis at at least one additional bearing point arranged at a distance from the pitch motor. In this way, the pitch motor can, for example, be positioned between two additional bearing points. There are thus two respective blade sections per blade, namely a blade section between the upper bearing point and the pitch motor and a blade section between the pitch motor and the lower bearing point.
- Preferably, a bearing unit is positioned at each of the outer ends of the blade pointing away from the pitch motor. The bearing unit includes a housing, two roller bearings, and a hollow shaft that connects the rotor blades of the blades to one another. At the additional bearing points, spherical roller bearings can be used, which absorb high radial forces occurring mainly at the blade ends and help to stiffen the rotor system as a whole. By contrast, the motor bearings can include, for example, two axially prestressed conical roller bearings that absorb the entire weight force of the blades.
- According to another embodiment, the blades are flange-mounted to the pitch motor. To that end, a flange section of the blade can be fastened directly to the motor shaft or to the rotor of the pitch motor. Torques or positioning forces that are produced by the pitch motor can thus be transmitted directly to the blades. Alternatively, or additionally, the blades or blade axes can each include a vane axis section in the region of a vane of the blade and a transition section positioned between the vane axis section and the motor shaft. The transition section and motor shaft can, for example, be integrally formed of a single piece of metal. The transition section allows for an optimal connection between the motor shaft and the vane axis section. The transition section can taper in the direction extending away from the motor shaft. For example, the transition section can be shaped in the form of a stud. An outer diameter of the motor shaft can be greater than an inner diameter of the vane axis section. The transition section thus helps to overcome dimensional differences between the motor shaft and the vane axis section and to connect them to each other in a precisely fitting way.
- According to another embodiment, the pitch motor includes at least one rotary position transducer for determining a rotation position of the blade. The rotary position transducer preferably includes an absolute position transducer and a relative position transducer. For example, the absolute position transducer includes a magnetic ring or strip, which extends along the outer circumference of the motor shaft and has increments of different magnetization with irregular distances between one another along the outer circumference or more precisely stated, irregular lengths. For example, the relative position transducer includes a magnetic ring or strip, which extends along the outer circumference of the motor shaft and has increments of different magnetization with regular, i.e. equal distances between one another along the outer circumference or more precisely stated, regular or uniform lengths.
- According to another embodiment, the pitch motors each have a motor housing at which a rotor arm is fastened that connects the blades to a rotor hub of the vertical wind turbine. In other words, the pitch motors can thus each have a motor housing to which a blade mount is mounted that connects the blades to a rotor hub of the vertical wind turbine. The blade mount can alternatively or additionally include a plurality of struts, for example. At least one of these struts can be directly connected to the pitch motor in order to secure the respective blade.
- According to another embodiment, the rotor arm is flange mounted to the motor housing. To that end, the motor housing can be provided with a motor flange onto which the arm is mounted. The motor housing has at least two housing shells, for example an upper and lower housing shell. Both of the housing shells can have a respective flange half of the motor flange formed onto them.
- Alternatively, or additionally, the blade mount can have a plurality of struts, with at least one strut respectively flange-mounted to the motor housing. On the outside of the motor housing in the region of an outer circumference of the stator, each strut can be advantageously flange-mounted to the end of the pitch motor. This permits a weight-reducing, highly stable design of the rotor as a whole since the pitch motor simultaneously functions as a driving point, bearing point, and connecting point between the blade mount and the blade.
- According to another embodiment, a stator ring of the pitch motor is positioned between two flange halves of a mounting collar of the motor housing and/or between an upper shell and lower shell of a casing that at least partially cases-in the pitch motor. The pitch motor is thus preferably covered with a casing that is shaped in accordance with aerodynamic aspects. On the one hand, the casing helps to reduce an aerodynamic drag of the pitch motor. On the other hand, the casing helps to avoid or at least reduce the presence of a gap between the pitch motor and the vanes and thus the pressure losses that occur at such a gap between the two lateral surfaces of the blade at the end of the respective vane oriented toward the pitch motor. It is thus possible to further increase the efficiency of a vertical wind turbine according to the invention.
- Alternatively, or additionally, the motor housing can include support ribs, which extend radially to the motor shaft and connect a bearing seat of the pitch motor on the outer circumference to a wall of the pitch motor housing facing in the axial direction. Support ribs of this kind help to reliably transmit forces that the motor shaft introduces onto the motor housing via the bearing points to a connection point of the blade mount on the motor housing, for example the above-mentioned motor flange. The rigidity of the motor housing is increased while its weight is kept as low as possible.
- According to another embodiment, the casing forms at least one intake socket and at least one discharge opening in order to convey cooling air between the intake socket and the discharge opening along at least part of a cooling body that is mounted on the stator ring. An air duct formed between the intake socket and the discharge opening helps to prevent stalls from occurring in the cooling air conveyed along the cooling body and thus to prevent stalls from producing wakes in the cooling air. It is thus possible to increase the cooling capacity of the cooling air on the cooling body, which helps to avoid an overheating of the pitch motor.
- As already mentioned above, the pitch motor is preferably cased-in with a casing that is designed in accordance with aerodynamic aspects. The casing can minimize an aerodynamic drag caused by the pitch motor, which helps to further increase the efficiency of a vertical wind turbine according to the invention. In addition, the casing helps to minimize any intermediate spaces between the blade sections and between the blade sections and the motor and thus to prevent a pressure compensation in the intermediate spaces. In a similar way, casings or covers can also be provided in the region of the additional bearing points or bearing units between the blade sections in order to counteract pressure compensation and the efficiency loss that this entails.
- According to another embodiment, the vertical wind turbine has a transmission that couples a rotor of the vertical wind turbine, which is able to rotate around the rotor rotation axis, to a generator of the vertical wind turbine; wherein at least one transmission stage of the transmission is embodied as a planetary gear or planetary gear stage. For example, the transmission can include at least one planetary gear and an additional spur gear pair. Preferably, the transmission has two planetary gear stages, which are positioned one above the other in the axial direction of the rotor rotation axis. The transmission therefore has a compact design with the greatest possible efficiency and longevity.
- According to another embodiment, at least one planet gear of the planetary gear or planetary gear stage is connected by means of a flexible pin to a strut of the planetary gear or planetary gear stage. Such a flexible pin enables minimal deflections of the planet gear. Preferably all of the planet gears are supported on flexible pins. Flexible pins help to minimize loads on the transmission due to uneven loads of the planet gears and their tooth flanks. The flexible pins ensure a uniform distribution of the transmission load among the planet gears. The planet gears supported on the flexible pins can, so to speak, divide the load among themselves. It is thus possible to further increase the maintenance interval lengths and service life of a vertical wind turbine according to the invention.
- By contrast, with a rigid support of the planet gears, unilateral loads on certain planet gears can occur, which not only increases wear on these planet gears, but also requires the transmission as a whole to be dimensioned larger than is the case with flexible pins because the rigidly supported planet gears are subjected to higher loads than the planet gears that are supported on flexible pins. The flexible pins therefore make it possible to reduce the size of the transmission as a whole, which helps to reduce material consumption, production complexity, and costs.
- According to another embodiment, the vertical wind turbine has a control device for control of the pitch motors, that is connected in a signal-transmitting manner to the pitch motors and to at least one wind speed sensor and/or at least one wind direction sensor. The control device calculates a set-point angle of the blades for each pitch motor, for example cyclically, and transmits it via a communication device to a control section of an inverter system, which in addition to the control section, also has a supply section for each pitch motor. The control section carries out a position control of the blades in order to set a desired angular position in accordance with the set-point angle. To that end, the power section continuously inverts an electric current of for example 150 ARSM and briefly outputs a peak current of 210 ARMS in order to achieve a maximum torque of the pitch motors. The control device in this case monitors a precision of the blade adjustment and a state of the drive control and is able to influence them.
- According to another embodiment, the at least one wind speed sensor and/or the at least one wind direction sensor is arranged in the region of at least one of the pitch motors. For example, the at least one wind speed sensor and/or the at least one wind direction sensor can be mounted on a rod, which is fastened to the pitch motor or in the region of the pitch motor and protrudes beyond an outer edge of the blade. In particular, the at least one wind speed sensor and/or the at least one wind direction sensor can be mounted on a distal end of the rod oriented away from the blade. As a result, the at least one wind speed sensor and/or the at least one wind direction sensor is preferably situated outside of an influence region of the blade in which air flow changes and turbulence caused by the blade could occur. Alternatively, or additionally, sensors such as a wind speed sensor and/or wind direction sensor as well as other signaling and measuring means can be positioned on a mast positioned centrally on the rotor hub and preferably protruding in the vertical direction beyond an upper end of the blades.
- Alternatively, or additionally, at least one wind speed sensor and/or wind direction sensor can be positioned in the region of the motor hub. For example, the number of wind speed sensors and/or wind direction sensors used can coincide with the respective number of blades and arms of the vertical wind turbine. Wind speed sensors and/or wind direction sensors in the region of the motor hub can be fastened to ends of rods extending away from the rotor hub. The wind speed sensors and/or wind direction sensors in the region of the motor hub can preferably be positioned between the blades or their arms, in other words offset from the blades, in order to avoid a wind shadowing of the wind speed sensors and/or wind direction sensors in the region of the motor hub by the blades.
- According to another embodiment, a vertical wind turbine according to the invention is provided in the form of a kit. As has already been mentioned above, such a kit, which essentially includes all of the components and parts of the vertical wind turbine and tools for the installation thereof, such as cranes, winches, and the like, makes it possible to install a vertical wind turbine according to the invention in sites that are not accessible or hardly accessible for horizontal wind turbines. A preparation of a vertical wind turbine according to the invention in the form of a kit also helps to ensure that all of the components, parts, and tools that are required for the installation, operation, and maintenance of the vertical wind turbine stem from verified supply sources and satisfy desired safety and quality requirements.
- According to another embodiment, a method according to the invention for operating a vertical wind turbine can be improved by predetermining the angular positions by means of pitch cam disks. Thereby, set-point values for adjusting the angular position are provided for essentially every azimuth angle. Different pitch cam disks can be provided for different wind speeds.
- According to another embodiment of a method according to the invention, a wind speed, wind direction, and rotor rotation of a vertical wind turbine rotor comprising the blades are included in the continuous control. It is thus possible for a vertical wind turbine according to the invention to be operated with the smallest possible set-point deviations of the angular positions and thus in an extremely efficient way.
- Further, the disadvantages from the prior art are overcome by means of a vertical wind turbine according to the invention with a plurality of vertical blades, which are each fastened to a respective vertical blade axis such that they are pivotable independently of one another around a respective blade rotation axis, and are supported rotatable on a common circular path around a vertical rotor rotation axis, wherein the vertical wind turbine is configured to control a pitch angle of the blades at least in a partial load mode of the vertical wind turbine, such that the blades rotate with an essentially constant tip speed ratio λ.
- With a method according to the invention, the disadvantages of the prior art are further overcome by predetermining pitch angles of vertical blades of the vertical wind turbine that are driven around a respective vertical blade axis; wherein at least in a partial load mode of the vertical wind turbine, the pitch angles are controlled such that the blades rotate with an essentially constant tip speed ratio λ.
- According to a further embodiment of a vertical wind turbine according to the invention, the vertical wind turbine is designed to operate in the partial load mode in a range of wind speeds that at least partially lie between 3 and 12 m/s. Such a partial load range is suitable for both inland and coastal sites and ensures a high energy yield as well as a relatively large number of full load hours per year. With a low starting speed of 3 m/s, the partial load range also ensures that a vertical wind turbine according to the invention is able to supply power even in a light wind.
- According to another embodiment, the constant tip speed ratio amounts to between 2 and 2.6, preferably between 2.2 and 2.4, and most preferably essentially 2.3. A value range of this kind for the constant tip speed ratio results in relatively low rotation speeds of the rotor and therefore relatively low blade speeds. As a result, a vertical wind turbine according to the invention, as already mentioned above, can be operated with advantageously low environmental influences.
- According to another embodiment, the vertical wind turbine is configured to control the pitch angle so that in a nominal operation mode of the vertical wind turbine, the blades rotate with a variable tip speed ratio. A pitch control according to the invention can thus contribute to limiting the output of a vertical wind turbine according to the invention. This prevents damage to the material of a vertical wind turbine according to the invention and thus reduces wear on it and extends its service life.
- According to another embodiment, the vertical wind turbine is configured to control the pitch angle so that in the nominal operation mode, the blades rotate at an essentially constant nominal speed. As a result, the rotor rotates in a nominal speed range. This helps to avoid load peaks on components of the vertical wind turbine and therefore helps to prevent damage to the material of a vertical wind turbine, reduce wear, and increase service life.
- According to another embodiment, at a first cut-out wind speed v3 of the vertical wind turbine, the variable tip speed ratio A amounts to between 1 and 1.8, preferably between 1.3 and 1.5, most preferably essentially 1.38. For example, the cut-out wind speed v3 can be in the range of 20 m/s. Particularly at such a relatively high wind speed, the relatively low value range of the variable tip speed ratio helps to keep the circumferential speed of the blades as low as possible and thus to ensure that a vertical wind turbine according to the invention is very environmentally friendly.
- According to another embodiment, the vertical wind turbine is configured to control the pitch angle in a start-up mode so that starting from a resistance mode with tip speed ratios of λ≤1, the blades transition into a fast mode with tip speed ratios of λ>1. It is thus possible, particularly when starting the vertical wind turbine from a rotor standstill, to make optimal use of the energy absorbed by the blades based on their wind resistance and to maximize a start-up torque on the rotor. As soon as the rotor has reached a certain rotation speed, a smooth transition to the fast mode of the blades can be carried out. This helps to shorten the overall start-up times of a vertical wind turbine according to the invention and thus helps to increase the energy yield.
- According to another embodiment, the control of the pitch angle is based on at least one cam disk, which determines the pitch angle in an essentially continuous manner for an entire rotation of the rotor. A continuous determination of the pitch angle enables the gentlest, smoothest possible control and regulation of a vertical wind turbine according to the invention with the least number of parameter jumps of the kind that can occur when pitch angles are predetermined in rough, discrete steps. Different cam disks can be specified for different wind speeds. Each of the cam disks can be optimized with regard to the respective wind speed and with regard to the resulting flow conditions at the blades.
- According to another embodiment, a maximum value of the pitch angle for windward positions of the blade is generally greater than for leeward positions of the blade, with respective regard to the rotor rotation axis. In other words, for azimuth angles of less than 180°, the pitch angle can generally be less than for azimuth angles of between 180 and 360°. The pitch control thus takes into account the respective flow conditions at the blades as a function of the azimuth angle. In particular, this therefore takes into account leeward flow effects caused by the rotor and blades themselves such as turbulence and wakes, making it possible to further improve the energy yield of a vertical wind turbine according to the invention.
- According to another embodiment, for wind speeds in the range of a nominal wind speed, at an azimuth angle of 0° measured from a zero line oriented perpendicular to the wind direction, the pitch angle is less than zero. In other words, the blade is thus rotated into the wind with a pitch angle of less than 0° or more precisely stated, changes from leeward to windward. This contributes to improved dynamics of a vertical wind turbine according to the invention and thus to an increased energy yield.
- According to another embodiment, at least for wind speeds in the vicinity of the nominal wind speed, with azimuth angles of 0° to 90° measured from a zero line oriented perpendicularly to the wind direction, there is a local maximum of the pitch angle. Thereby, the dynamics and energy yield of a wind turbine according to the invention are further improved.
- According to another embodiment, the vertical wind turbine has at least one wind speed sensor and/or at least one wind direction sensor, which is positioned on at least one of the blades and is connected in a signal-transmitting manner to a control device for determining a setpoint of the pitch angle. As a result, wind speed and/or wind direction as relevant measurement variables can be advantageously determined at the blade and, can be determined as close as possible to a closed loop control system for adjusting the pitch angle, which system includes the blade and for example a pitch drive mounted on it or positioned in the vicinity thereof. This promotes a pitch control that is as precise and error-free as possible.
- According to another embodiment, at wind speeds from still air up to a further cut-off speed of the vertical wind turbine, an amount of a positioning error in the control of the pitch angle is essentially always less than 5°, preferably less than 3°, most preferably less than 1.5°. By means of such low positioning errors it is possible on the one hand to increase the energy yield of a vertical wind turbine according to the invention. On the other hand, this also makes it possible to minimize undesirable incorrect loading as well as vibrations and the like of the vertical wind turbine because largely without deviation, the rotation of the blades corresponds to a predetermined set-point value or set-point pitch angle.
- Exemplary embodiments of the invention will be described below based on the following figures. In the drawings:
-
FIG. 1 shows a schematic perspective view of a vertical wind turbine according to the invention; -
FIG. 2 shows a schematic side view of a vertical wind turbine according to the invention; -
FIG. 3 shows a schematic top view of a vertical wind turbine according to the invention; -
FIG. 4 shows a detail IV indicated inFIG. 2 of a blade of a vertical wind turbine according to the invention; -
FIG. 5 shows a detail V indicated inFIG. 4 of a blade of a vertical wind turbine according to the invention with a pitch motor according to the invention in a schematic cross-sectional view along a rotation axis of the blade; -
FIG. 6 shows a schematic perspective view of aerodynamically cased-in pitch motors of a vertical wind turbine according to the invention; -
FIG. 7 shows a schematic perspective view of a pitch motor together with blades mounted on it, particularly showing a motor flange of the pitch motor for fastening the pitch motor together with the blades to an arm of a rotor of a vertical wind turbine according to the invention; -
FIG. 8 shows a schematic partial cross-sectional view of a pitch motor according to the invention; -
FIG. 9 shows a schematic cross-sectional view of a drive train of a vertical wind turbine according to the invention along a drive shaft of the drive train; -
FIG. 10 shows a schematic perspective view of a first embodiment according to the invention of a hub connection of a vertical wind turbine according to the invention; -
FIG. 11 shows a schematic front view of a section of an arm of a rotor of a vertical wind turbine according to the invention; -
FIG. 12 shows a schematic side view of the section shown inFIG. 11 of an arm of a rotor of a vertical wind turbine according to the invention; -
FIG. 13 shows a schematic cross-sectional view of the section shown inFIGS. 11 and 12 of an arm of a rotor of a vertical wind turbine according to the invention along the cross-sectional line A-A shown inFIG. 12 ; -
FIG. 14 shows a schematic top view of the section shown inFIGS. 11 to 13 of an arm of a rotor of a vertical wind turbine according to the invention; -
FIG. 15 shows a schematic top view of a vertical wind turbine according to the invention during operation to illustrate angular positions and force conditions at blades of the vertical wind turbine; -
FIG. 16 shows a schematic diagram to illustrate the function of a control device according to the invention belonging to a vertical wind turbine according to the invention; -
FIG. 17 shows a schematic diagram with a sample torque characteristic curve of a pitch motor according to the invention for a vertical wind turbine according to the invention; -
FIG. 18 shows a schematic diagram with sample cam disks for controlling a pitch motor for a vertical wind turbine according to the invention; -
FIG. 19 shows a schematic perspective view of a test bench for determining a positioning error of a pitch motor of a vertical wind turbine according to the invention; -
FIG. 20 shows a schematic diagram of a positioning error of a pitch motor according to the invention, which has been determined by means of the test bench shown inFIG. 19 , over a plurality of control cycles; -
FIG. 21 shows a schematic diagram of a positioning error of a pitch motor according to the invention over one control cycle at a; and -
FIG. 22 shows a schematic diagram of a positioning error of a pitch motor according to the invention over one control cycle at a cut-out wind speed. - For better comprehension of the present invention, reference is made to the drawings in the following. The drawings merely show exemplary embodiments of the subject-matter of the invention; as described above, features can be arbitrarily combined with one another or also omitted, depending on the respective requirements.
-
FIG. 1 shows a schematic perspective view of a vertical wind turbine according to theinvention 1. Thevertical wind turbine 1 extends along a longitudinal direction X, a transverse direction Y, and a vertical direction Z, which together define a Cartesian coordinate system. Thevertical wind turbine 1 includes arotor 2, anacelle 3, atower system 4,footings 5, and a container-like switchgear box 6. - The
rotor 2 includes a plurality ofvertical blades 7, which are fastened by means of a blade mount 8 to arotor hub 9, which is supported in thenacelle 3 so that it is able to rotate around a rotor rotation axis C2 that is vertically oriented, i.e. extends parallel to the vertical direction Z. The blade mount 8 includesrotor arms 10, which extend between theblades 7 and therotor hub 9. A signaling and/or measuring unit 11 is positioned on therotor hub 9 concentric to the rotor rotation axis C2. - As a rule, the
nacelle 3 is positioned at the top of thetower system 4, is cased-in in a sound-absorbing way, and contains a drive train of the vertical wind turbine 1 (generator, rotor bearing system, transmission, mechanical brake, and cooling/lubricating system, seeFIG. 9 ). Thetower system 4 is preferably embodied as a lattice mast tower. Thefootings 5 are preferably concrete footings, which absorb the load of thetower system 4, thenacelle 3, and therotor 2. Other components such as electrical transformers, switch components, and a control device (seeFIG. 16 ) of thevertical wind turbine 1 are preferably accommodated in theswitchgear box 6. - The
blades 7 are supported so that they are able to rotate around a blade rotation axis C7, which likewise extends essentially parallel to the vertical direction Z. For the rotation of each of theblades 7 around its respective blade rotation axis C7, they are each provided with at least onepitch drive 12. At least one of therotor arms 10 is connected to thepitch drive 12, which can thus help absorb a load of theblade 7. -
FIG. 2 shows a schematic front view of thevertical wind turbine 1. Here, it becomes clear that theblades 7 have a plurality ofblade sections 13, namely anupper end section 13 a, an uppermiddle section 13 b, a lowermiddle section 13 c, and alower end section 13 d. Theupper end section 13 a and uppermiddle section 13 b together constitute anupper blade section 13 e. The lowermiddle section 13 c andlower end section 13 d together constitute alower blade section 13 f. Thepitch drive 12 is positioned between the uppermiddle section 13 b and lowermiddle section 13 c, i.e. between theupper blade section 13 e andlower blade section 13 f. Between theupper end section 13 a and themiddle end section 13 b as well as between the lowermiddle section 13 c and thelower end section 13 d, respective cross-sectional change of a profile of theblades 7 is provided, respectively. - At bearing
points 14 between theupper blade section 13 e andlower blade section 13 f, theblades 7 are each connected by means of one of thearms 10 to therotor hub 9, which is designed to transmit forces acting radially and axially relative to the rotor rotation axis C2, said forces therefore acting essentially in a horizontal plane, which is defined parallel to the longitudinal direction X and transverse direction Y, and along the vertical direction Z. At thepitch drive 12, between the uppermiddle section 13 b and lowermiddle section 13 c of theblades 7, forces are absorbed, which act both radially and parallel to the rotor rotation axis C2. Consequently, the entire weight load of therotor 2 is absorbed at thepitch drive 12. - Further, it is illustrated in
FIG. 2 that therotor hub 9 and thetower system 4 are each embodied as a tubular lattice structure. At the top of thetower system 4 embodied as a lattice mast tower, it tapers in the direction toward thenacelle 3 and at this location, absorbs all of the static and dynamic loads generated by therotor 2. At the bottom of thetower system 4, the loads are transferred to the ground by means of thefootings 5. Thenacelle 3 can be accessed by means of a ladder (seeFIG. 10 ). - A maximum width B4 of the
tower system 4 measured parallel to the longitudinal direction X at thefootings 5 is 22 m, for example. A length L7 of theblades 7 measured parallel to the vertical direction Z is 54 m, for example. An overall height of thevertical wind turbine 1 measured to include a height of the footings extending above the ground is 105 m without the signaling and/or measuring mast 11, for example. -
FIG. 3 shows a schematic top view of thevertical wind turbine 1. Here, it becomes clear that theblades 7 have a blade profile and move on a circular path K around the rotor rotation axis C2. A diameter DK of the circular path K is 32 m, for example, and approximately corresponds to a maximum diameter of thetower system 4. -
FIG. 4 a detail IV indicated inFIG. 2 of one of theblades 7 of thevertical wind turbine 1. Theblade 7 has vanes 19. Between the uppermiddle section 13 b and lowermiddle section 13 c, i.e. between theupper blade section 13 e andlower blade section 13 f, theblade 7 is supported in thepitch drive 12 on amotor shaft 25 of thepitch drive 12. Together with themotor shaft 25, thevanes 19 form ablade axis 26, which passes through the entire length of theblade 7 and thevanes 19 are supported so that they are able to move in rotating fashion around this axis. For example, thevanes 19 can be manufactured having a shell construction. To this end, thevanes 19 have a vane axis section and an outer skin for absorbing normal forces, flexural forces, and torsional forces as well as torques (seeFIG. 5 ). -
FIG. 5 shows a detail V indicated inFIG. 4 of theblade 7 with thepitch drive 12 in a schematic cross-sectional view along the blade rotation axis C7. Thepitch drive 12 has apitch motor 27, which is positioned in aclearance 28 between the uppermiddle section 13 b and lowermiddle section 13 c of theblade 7. Thepitch motor 27 is embodied as an electronically controlled, transmissionless, air-cooled torque motor and has astator ring 29 and arotor ring 30 that is circumferentially surrounded by thestator ring 29 and is spaced apart from it by a gap. A coolingbody 31 withcooling fins 32 is fastened to an outer circumference surface of thestator ring 29 so as to be able to dissipate waste heat of thepitch motor 27. - The
rotor ring 30 of thepitch motor 27 is mounted on arim 33, which is embodied as a kind of collar that is of one piece with themotor shaft 25, at which rim therotor ring 30 is connected in a rotationally coupled fashion to the essentiallycylindrical motor shaft 25 with the aid offastening elements 34 in the form of bolts. Therotor ring 30 extends essentially on the outer circumference side along themotor shaft 25 and is positioned so that it is spaced radially apart from themotor shaft 25 by at most a small gap. By means of therim 34, a drive torque of thepitch motor 27—which is electromagnetically generated between thestator ring 29 and therotor ring 30 and acts in a direction oriented around the blade rotation axis C7—is transferred from therotor ring 30 to themotor shaft 25. - A
motor housing 35 of thepitch motor 27 forms amotor interior 36 in which the rotor ring is accommodated. Themotor housing 35 has a top 37 and a bottom 38, which extend in a disk shape along and essentially parallel to therim 33. On their inner circumference sides, the top 37 and bottom 38 are each respectively connected to a bearingseat 39. The top 37 and bottom 38 are connected to thestator ring 29 and coolingbody 31 by means of walls of themotor housing 35 and, on a side of thepitch motor 27 facing therotor arm 10 that supports theblade 7, are connected to amotor flange 40 of thepitch drive 12. - The
motor flange 40 provides end surfaces 41 at which therotor arm 10 is connected to themotor flange 40 by means of a mounting collar 42 connected to therotor arm 10. The mounting collar 42 provides acounterpart end surface 43 that faces radially away from the rotor rotation axis C2 in the direction toward the circular path K of theblades 7. Themotor flange 40 and mounting collar 42 are connected to each other by means of connecting elements 44, which are embodied for example in the form of detachable connecting elements 44 such as bolted connections. Between the end surfaces 41 of themotor flange 40, there is anopen space 40 a in order to provide sufficient space in the region of the coolingfins 32 for heat dissipation or more precisely stated, to prevent a heat buildup. - Reinforcing
ribs 45 extend between the bearingseat 39 andmotor flange 40 in order to be able to transmit the static and dynamic loads, which originate from theblade 7, from the bearingseat 39 via themotor housing 35 to themotor flange 40 with as little distortion of themotor housing 35 as possible. The reinforcingribs 45 are each advantageously embodied of one piece with themotor housing 35, for example during the casting, and/or are connected by means of welding to the top 37, bottom 38, bearingseat 39, andmotor flange 40 or to the top 37, bottom 38, and bearingseat 39; they extend away from the top 37 and bottom 38 in strut-like fashion. In addition to their reinforcing action, the reinforcingribs 45 also contribute to the cooling of thepitch motor 37 through heat dissipation via themotor housing 35. - At least one
sensor element 46, for example in the form of an induction sensor, is provided in the wall of the motor housing in order to detect a rotation position of themotor shaft 25 and thus of theblade 7 for the control or regulation of thevertical wind turbine 1.Respective motor bearings 47 are positioned between the two bearingseats 39 and themotor shaft 25. For example, themotor bearings 47 are embodied in the form of spherical roller bearings. They transmit high radial forces from theblades 7 to therotor arms 10 and also stiffen therotor 2 as a whole. In order to protect themotor bearings 47 from harmful environmental influences, themotor bearings 47 are each accommodated in abearing receiving chamber 48, which, to the greatest extent possible, is hermetically sealed by means of sealingelements 49. - The sealing
elements 49 seal thebearing receiving chamber 48, both in relation to themotor interior 36 and in relation to the surroundings of thevertical wind turbine 1. Toward themotor interior 36, thebearing receiving chamber 48 is sealed by means ofinner rings 50, which—resting against themotor bearing 47 and, on the outer circumference side, against the sealingelement 49 in the axial direction of theblade 7, both in and away from the upward direction Z, respectively—isolate thebearing receiving chamber 48 from themotor interior 36. Thebearing receiving chamber 48 is sealed in relation to the surroundings of thevertical wind turbine 1 by means ofouter rings 51, which respectively rest against the outside of the bearingseat 39 and enclose the sealingelement 49 on the inner circumference. - At its ends oriented toward the
vanes 19, themotor shaft 25 is connected to atransition section 52 or transitions into it in integral fashion. Thetransition section 52 widens as it extends away from thepitch drive 12 and is mounted in avane axis section 53, which rotationally couples thetransition section 52 to theblade 7 in adapter fashion. To that end, connecting ends 55 of thetransition section 52 extending in the direction along the blade rotation axis C7 are embodied in flange-like fashion and are additionally provided with acompensation weight holder 56 for holding acompensation weight 56 a for thevane 19 so that they haveflange sections 57 oriented axially away from the connecting ends 55, on which positive-fit elements 58 and other connectingelements 59 are provided, for example likewise detachable ones in the form of bolt connections, which create a positive-fit and/or force-fit engagement between the transition section or more precisely, itsflange section 57, and the respectivevane axis section 53. Themotor shaft 25, thetransition section 52, and thevane axis section 53 extend coaxial to one another. Thevane axis section 53 supports anouter skin 60 of theblade 7. -
FIG. 6 shows a schematic perspective view of the pitch drives 12 in which thepitch motor 27 is provided with an aerodynamic cover in the form of acasing 61. Thecasing 61 has aupper shell 62 and alower shell 63, which enclose themotor housing 35 of thepitch motor 27 like a cowling and thus cover the top 37 and bottom 38 together with the reinforcingribs 45 andsupport ribs 46 as well as themotor flange 40, thus minimizing the size of adrive gap 64 that is formed between thepitch drive 12 and theblade 7 and minimizing the accompanying losses in pressure and output that occur at such a gap. Between theupper shell 62 andlower shell 63, an annular gap-shapedcooling opening 65 is formed, which axially surrounds the coolingbody 31 and through which thecooling fins 32 freely extend so that with ambient air circulating unhindered around them, they can give off the waste heat of thepitch motor 27 to the surroundings of thevertical wind turbine 1. - The
drive gap 64 is further reduced in that thecasing 61 provides anextension 66, which is formed in accordance with aerodynamic aspects, which adjoins theupper shell 62 andlower shell 63, and outer contour of which in a projection along the blade rotation axis C7 essentially corresponds to a blade profile of theblades 7. In the direction toward therotor arm 10, thecasing 61 is provided withend caps 67, which rest flush against themotor flange 40 and an outer diameter of which, at least in some places, is adapted to an outer diameter of the mounting collar 42. An outer contour of the mounting collar 42 is in turn adapted to an outer contour of therotor arm 10. As a result, the end caps 67, themotor flange 40, the connecting flange 42, and therotor arm 10 transition into one another with outer contours that are as flush with one another as possible and there is an aerodynamically advantageous transition between thepitch drive 12 and the blade mount 8. - Further, it is illustrated in
FIG. 6 that at least one intake socket 68 a or intake opening and a discharge opening 68 b are formed into thecasing 61 of thepitch drive 12. Between the intake socket 68 a and the discharge opening 68 b, a coolingair duct 69 is shaped into thecasing 61 or is formed between thecasing 61 and thepitch drive 12. The intake opening embodied in the intake socket 68 a is oriented in the circumference direction along the circular path K so that during the rotation of therotor 2, the intake socket 68 a takes in ambient air and this is conveyed through the coolingair duct 69 along the coolingbody 31 or more specifically itscooling fins 32 to the discharge opening 68 b. This prevents cooling air in the region of the coolingbody 31 or more precisely itscooling fins 32 from flowing away from them, which helps to ensure a cooling of thepitch drive 12 that satisfies the respective requirements. In addition, two intake sockets 68 a and a discharge opening 68 b are advantageously provided, with a combined cross-section of the intake sockets 68 a being greater than a cross-section of the discharge opening 68 b, as a result of which along the two coolingair ducts 69 perpitch drive 12 that are respectively formed between the intake sockets 68 a and the discharge opening 68 b, the cooling air tends to experience a slight compression and thus acceleration, which helps to further increase a cooling capacity of the cooling air. -
FIG. 7 shows a schematic perspective view of apitch motor 27 together with theblades 7 mounted thereon, particularly showing themotor flange 40 of thepitch motor 27 for fastening thepitch motor 27 together with theblade 7 to one of therotor arms 10 of therotor 2 of thevertical wind turbine 1. Here, it becomes clear that theopen space 40 a at themotor flange 40 is formed betweenupper housing half 35 a and a lower housing half 35 b of themotor housing 35. As a result, themotor flange 40 has an upper flange half 41 a and a lower flange half 41 b, between which thepitch motor 27 is accessible from therespective rotor arm 10 and between which cooling air can flow along the coolingbody 31. The reinforcingribs 45 on themotor housing 35 each provide a stabilization of theupper housing half 35 a and the lower housing half 35 b considered individually, in order to ensure that they are sufficiently rigid. -
FIG. 8 shows a schematic partial cross-sectional view of thepitch motor 27. In order to be able to lock thepitch motor 27 in position and thus prevent theblade 7 from being able to execute rotations around its blade rotation axis C7, thepitch drive 12 is provided with a motor-braking and/or motor-lockingunit 27 a, which is arranged on themotor housing 35, is accessible via themotor flange 40, and is manually actuatable. For example, the motor-braking and/or motor-lockingunit 27 a is embodied to cooperate in a form-locking manner with thecompensation weight holder 56, for example in that a locking bolt 27 b of the motor-braking and/or motor-lockingunit 27 a engages in a positive-fit with a corresponding locking opening 27 c of the compensation weight holder, so that a locking of themotor shaft 25 relative to themotor housing 35 in at least one rotation direction around the blade rotation axis C7 for maintenance and/or safety purposes prevents thepitch motor 27 and thus theblade 7 from executing any rotation around the blade rotation axis C7. - In addition, a first rotary position transducer 46 a and a second rotary position transducer 46 b extend parallel to each other along the outer circumference of the
motor shaft 25 and are embodied to be detected by the at least onesensor element 46. The first rotary position transducer 46 a is embodied for example as an absolute position transducer. The second rotary position transducer 46 b is embodied for example as a relative position transducer. The first rotary position transducer 46 a embodied as an absolute position transducer can for example have increments at least some of which are positioned at irregular distances from one another along the outer circumference of themotor shaft 25. The second rotary position transducer 46 b embodied as a relative position transducer can for example have increments positioned at regular distances from one another along the outer circumference of themotor shaft 25. As a result, the first rotary position transducer 46 a permits the determination of an absolute position of themotor shaft 25 and thus of theblade 7 around the blade rotation axis C7. The secondrotary position transducer 46 permits the determination of a relative position of themotor shaft 25 and thus of theblade 7 around the blade rotation axis C7. Using the first rotary position transducer 46 a and second rotary position transducer 46 b in this way makes it possible to determine the rotation position of themotor shaft 25 and of theblade 7 with a high position resolution. -
FIG. 9 shows a schematic cross-sectional view of adrive train 70 of thevertical wind turbine 1 along adrive shaft 71 of thedrive train 70, whose drive rotation axis C71 extends coaxial to the rotor rotation axis C2. Therotor hub 9 has apedestal 72 that forms astud 73, which likewise extends coaxial to the drive rotation axis C71 and rotor rotation axis C2. At the place where thepedestal 72 tapers toward thestud 73, ahub shoulder 74, which points away from the upward direction Z, is formed on thepedestal 72 and rests on a transition ring 75, which in turn rests axially in a direction oriented away from the upward direction Z on a first rotor bearing 76 a, which constitutes a part of arotor bearing system 76. - In addition to the first rotor bearing 76 a, the
rotor bearing system 76 also includes a second rotor bearing 76 b and a third rotor bearing 76 c. The first and second rotor bearings 76 a, 76 b are embodied for example as prestressed conical roller bearings and transmit radial loads resulting from wind loads to thetower system 4. For this purpose, the first and second rotor bearings 76 a, 76 b are mounted on arotor shaft 78 by means of a separate bearing bush 77. The part of therotor bearing system 76 comprising the first and second rotor bearings 76 a, 76 b is assembled in an axially free-floating fashion in ahub connection 79 that constitutes a machine support and therefore remains free of vertical loads. The third rotor bearing 76 c absorbs the vertical loads of therotor 2 and thus essentially its weight force and for this purpose, is advantageously embodied in the form of an axial spherical roller bearing, which introduces the vertical loads directly into thenacelle 3. - Below the
nacelle 3, atransmission 80 of thevertical wind turbine 1 is arranged in which a rotor speed of therotor shaft 78 is converted into a generator rotation speed at anoutput shaft 82 of thetransmission 80. Aclutch unit 83, for example in the form of a double-Catalan, torsionally rigid steel disk clutch, connects theoutput shaft 82 in a torque-transmitting fashion to agenerator shaft 84 of agenerator 85, for example a synchronous machine with permanent magnets, in order to produce electrical current, in this case for example with a maximum power of 750 kW. Theclutch unit 83 prevents a redundant dimensioning of bearing forces. To limit the torque, therotor shaft 78 is provided with an intended break point 86 (for example with a nominal torque of 500 kNm; an intended break moment of 1000 kNm; and a permissible transmission peak torque of 1500 kNm). - The
transmission 80 converts the low rotor speed according to the invention into a high generator rotation speed. For example, a transmission step-up factor i amounts to roughly 65 to 75, preferably approx. 70. A transmission housing 87 of thetransmission 80 is rigidly screw-mounted to the hub connection by means of aflange bell 88. This results in a direct feedback of the high operating torque. Between therotor shaft 78 and drivetrain 70, there is a double-cardan, spherically ground double-tooth clutch 89, which transmits the torque of therotor 2 to thetransmission 80 without redundant dimensioning of bearing forces. - In addition, a
pitch pipe 90 passes through thetransmission 80 coaxial to therotor shaft 78 and serves as a feed-through for control wires and power cables for thepitch drive 12. Thepitch pipe 12 is driven to a point above the intendedbreak point 86 in thecoupling 89 by being rotationally coupled to therotor 2. Thus, after a breakage occurs at the intendedbreak point 86 and after the system subsequently coasts to a stop, the cables and lines for transmitting signals and/or power (seeFIG. 16 ) are not twisted and therefore remain intact. At the lower end of thepitch pipe 90, a slip ring packet 90 a is provided, in which the mutual cooperation of corresponding brushes and slip rings (not shown) connects the signal wires, control wires, and power cables for thepitch drive 12 in an electrically conductive fashion to corresponding control wires and power cables inside thetower 4, which then lead to theswitchgear box 6. -
FIG. 9 also shows that thetransmission 80 has a plurality of transmission stages, in the present case for example a first transmission stage 80 a, a second transmission stage 80 b, and a third transmission stage 80 c. The first transmission stage 80 a and second transmission stage 80 b are each embodied as a planetary gear stage 81. The planetary gear stages 81 have respective planet gears 81 a, which are each supported on astrut 81 c by means of a flexible pin 81 b. With their respective gears, the planet gears 81 a engage simultaneously with a ring gear 81 d and a sun gear 81 e of the respective planetary gear stage 81. The sun gear 81 e of the second transmission stage 80 b is connected in a torque-transmitting way by means of a slip clutch 89 a to a gear 81 f of the third transmission stage 80 c, which is embodied as a spur gear pair. The gear 81 f engages with a pinion 81 g of the third transmission stage 80 c. The pinion 81 g is connected in a torque-transmitting way to thedrive shaft 82 for thegenerator 85. -
FIG. 1 shows a schematic perspective view of an embodiment according to the invention of thehub connection 79 of thevertical wind turbine 1. Thehub connection 79 includes a cylindrical, drum-like integrally formedbase body 91, which provides a feed-through 92 for accommodating a shaft bearing unit 93 (seeFIG. 9 ) of thedrive train 70. Supporting feet 94 are fastened equidistantly to the outer circumference side of thebase body 91 and extend out radially from it. The supporting feet 94 each provide a horizontally orientedrest 95 for mounting thehub connection 80 onto thetower system 4. The supporting feet 94 can for example be composed of welded-together plates and be integrally connected to thebase body 91 by welding or be flange-mounted to it; the base body can in turn also be composed of welded-together plates. - The
hub connection 79 can be composed of a plurality of identically shaped segments, which each provide two flange ends, at which they are connected to one another enclosing a circle and thus combine to form the feed-through 92 for accommodating theshaft bearing unit 93. Each of the segments 96 constitutes a supporting arm. At the distal end of each supporting arm oriented away from the feed-through 92, a vertically extending supporting tab can be formed, which lies in a respective radial plane relative thereto for being mounted onto thetower system 4. For example, the segments can be cast individually or in one piece, which can help to reduce manufacturing costs, particularly in mass production and can help to adapt material thicknesses of the segments in high-stress points and can also help to provide rounded regions on it in order to reduce stress concentrations, for example by having the flange ends transition into the supporting arms by forming a curved profile. - The
rotor hub 9 itself can likewise be composed ofsegments 95 or be integrally cast together with itssegments 95. On each of thesegments 95, there is aflange end 97 for fastening one of therotor arms 10 to therotor hub 9. Eachflange end 97 can be formed onto a supportingarm 98, which is provided on therotor hub 9 and extends away from the rotor rotation axis C2. The supportingarms 98 can be formed of one piece with therespective segment 95. - The
rotor arms 10 have anupper arm half 10 a and alower arm half 10 b, which in the radial direction of therotor 2 oriented toward therotor hub 9, are brought together at a hub end 10 c of therotor arm 10. At the hub end 10 c, a rotor arm hub flange 10 d is provided for fastening therotor arm 10 to one of the flange ends 97 of therotor hub 9. Between theupper arm half 10 a andlower arm half 10 a extending along a longitudinal axis span of therotor arm 10, a connectingsegment 10 e of therotor arm 10 is provided, which connects theupper arm half 10 a andlower arm half 10 b to each other along their longitudinal span. - The signaling and/or measuring unit 11 can be positioned on a covering cap 99 for the
rotor hub 9 and for example includes a plurality ofwind speed sensors 104 and wind direction sensors 105, which are each fastened to arod 106 that extends away from the covering cap 99. Viewed in the axial direction of thevertical wind turbine 1, therods 106 can each be positioned offset from therotor arms 10 so that as much as possible, the respectivewind speed sensors 104 and wind direction sensors 105 do not lie in the wind shadow of theblades 7 as therotor 2 rotates around its rotor rotation axis C2 or in any case, only lie in their wind shadow for the shortest possible time intervals. -
FIG. 11 shows a schematic front view of a section of one of therotor arms 10 of therotor 2 of thevertical wind turbine 1. Here, it becomes clear that a rotor arm blade flange 10 g and the mounting collar 42 for fastening the rotor arm to theblade 7 and to therespective motor flange 40 are provided at a distal rotor arm end 10 f. The depicted section of therotor arm 10 can be either theupper arm half 10 a or thelower arm half 10 b, which are shaped identically in order to facilitate the production of therotor arms 10 and to minimize their production costs. -
FIG. 12 shows a schematic side view of the section shown inFIG. 11 of one of therotor arms 10 of thevertical wind turbine 1. Here, it becomes clear that therotor arms 10 taper in the vertical direction Z from the hub end 10 c toward the rotor arm end 10 f. -
FIG. 13 shows a schematic cross-sectional view of the section shown inFIGS. 11 and 12 of one of therotor arms 10 of thevertical wind turbine 1, along the cross-sectional line A-A shown inFIG. 12 . Here, it becomes clear that in the region of thehub end 10, therotor arms 10 have a wall thickness that is sufficient for embodying thevane axis section 53 in such a way that therespective vane 19 can be fastened to theflange section 57. -
FIG. 14 shows a schematic top view of the section shown inFIGS. 11 to 13 of therotor arm 10 of thevertical wind turbine 1. Here, it becomes clear that therotor arms 10 likewise taper transversely to the vertical direction Z vertical direction Z from the hub end 10 c toward the rotor arm end 10 f. -
FIG. 15 shows a schematic top view of thevertical wind turbine 1 to illustrate angular positions and force conditions at theblades 7 during the operation of thevertical wind turbine 1. During the operation of thevertical wind turbine 1, the wind flows against theblades 7 at a wind speed vW. The rotation of therotor 2 around the rotor rotation axis C2 produces an angular velocity ω of therotor 2, which, multiplied by a radius RK of the circular path K that corresponds to half of the diameter DK of the circular path K, yields a circumferential speed vU of theblades 7 along the circular path K according to equation (1) below: -
v U =φ×R K (1) - A difference between the wind speed vW and the circumferential speed vU yields a relative speed vR of the
blade 7 moving along the circular path K in relation to the wind according to equation (2) below: -
v R =v W −v U (2) - Between the vectors of the circumferential speed vU and the relative speed vR at the
blade 7, there is an angle of incidence γ, which is calculated according to equation (3) below from a sum of a relative angle of incidence or angle of attack α and a gradient angle or pitch angle β: -
γ=α+β (3) - The angle of attack α is respectively measured between the vector of the circumferential speed vU and a
chord line 100 of theblades 7, which extends in a straight line between aleading edge 101 and a trailingedge 102. The pitch angle β is measured between the vector of the relative speed vR and thechord line 100. Theblades 7 have a symmetrical blade profile, by means of which the blade chord forms a plane of symmetry of theblades 7 or their vanes. - Through the rotation of the
rotor 2 around the rotor rotation axis C2, the relative speed vR is a function of an azimuth angle Θ of therotor 2, which is measured for example for therespective rotor arm 10 starting from a zero point at aposition 90° from the wind direction, facing into the wind and rotating relative to a main axis of thevertical wind turbine 1. A tangent of the angle of incidence γ is calculated as a function of the wind speed vW, the relative speed vR, and the azimuth angle Θ or as a function of a tip speed ratio λ and the azimuth angle Θ according to equation (4) below: -
- where the tip speed ratio λ in turn, according to equation (5) below, corresponds to a ratio of the circumferential speed vU to the wind speed vW and according to the invention, is to be set as optimally as possible and kept constant by means of the
respective pitch drive 12 or more precisely, itspitch motor 27, in accordance with the respective wind conditions with varying pitch angles β in order to maximize an energy yield or performance of avertical wind turbine 1 according to the invention: -
- In order to minimize an adjusting torque of the
pitch drive 12—which is required to vary the pitch angle β by rotating theblade 7 around the rotor rotation axis C7—, it is advantageous if a static center of gravity of theblade 7 lies on or as close as possible to the rotor rotation axis C7. For example, the rotor rotation axis C7 is positioned on thechord line 100 at 20 to 23%, preferably 21.5%, of a rotor blade depth measured from theleading edge 101. In order to position the center of gravity on the rotor rotation axis C7, thecounterweight 56 a is provided in the region of thepitch drive 12 and if need be, anadditional counterweight 103 is positioned in the region of theleading edge 101 in theblade 7. For example, theadditional counterweight 103 is composed of rod segments, preferably of a round steel rod with diameters of between 60 and 100 mm, most preferably 80 mm. The rod segments are fastened to the ribs 54. The segments can be advantageously connected to one another in an electrically conductive fashion. As a result, theadditional counterweight 103 can perform a double function in that it also serves as a lightning rod. - In addition, the
vertical wind turbine 1 has at least onewind speed sensor 104 and/or wind direction sensor 105. Thewind speed sensor 104 and/or wind direction sensor 105 is positioned at the upper end of the signaling and/or measuring mast 11 and/or on at least one of theblades 7 or on all of theblades 7. Thewind speed sensor 104 and/or wind direction sensor 105 is preferably fastened to theblade 7 in the region of thepitch drive 12 because wind speeds and/or directions measured there are highly relevant for the control of thepitch drive 12. - In order to keep the
wind speed sensor 104 and/or wind direction sensor 105 outside of air turbulence caused by theblade 7, thewind speed sensor 104 and/or wind direction sensor 105 is positioned at the distal end of arod 106, which is fastened to theblade 7 orpitch drive 12 and, oriented radially away from the rotor rotation axis C2, protrudes beyond the circular path K into a region in the vicinity of thevertical wind turbine 1, which lies as far as possible outside of air flow boundary layers that are formed around therotor 2 and its components, i.e. largely outside of the influence range of theblade 7. -
FIG. 16 shows a schematic diagram to illustrate the function of a control device according to theinvention 107 of thevertical wind turbine 1. Thecontrol device 107 includes asupply unit 108, which is on the one hand connected to amotor control unit 109 that includes apower section 110 and on the other hand, is connected to achoke 111 and afilter 112 in order to ensure the most malfunction-free and error-free power supply possible. For example, thepower unit 110 is embodied as an inverter. - Via
lines 113 for transmitting signals and/or power, themotor control unit 109 is connected to thepitch drive 12, apower supply unit 114, and acontrol unit 115 for monitoring and controlling thevertical wind turbine 1. Thepower supply unit 114 includes a mainpower supply unit 116 and an auxiliarypower supply unit 117, the latter ensuring an emergency power supply to thecontrol device 107 if the mainpower supply unit 116 fails or is not available. - In addition, the
control device 107 includes amotor protection unit 118 and adata transmission unit 119. Thepitch drive 12 also includes arotary position transducer 120 with aposition sensor 121 for monitoring a rotation position of therotor ring 30 relative to thestator ring 29. Thepitch motor 27 also includes amotor unit 122, which includes at least thestator ring 29 and therotor ring 30, and atemperature measuring unit 123, which has afirst temperature sensor 124 and at least oneother temperature sensor 125. For example, thefirst temperature sensor 124 is embodied as a resistance-dependent temperature sensor (KTY), whereas theother temperature sensor 125 is embodied for example as a temperature sensor with a positive temperature coefficient (PTC). - During operation of the
vertical wind turbine 1, thepower section 110 of themotor control unit 109 of thecontrol device 107 inverts—for example continuously—a current that is required to drive thepitch motor 27. For example, thepower element 110 can output a continuous current of 100 to 200, preferably 150 ARMS, and produce a peak current of 200 to 250, preferably 210 ARMS, so that it is possible to quickly obtain a maximum torque of thepitch motor 27. Thecontrol unit 115 cyclically calculates a set-point value S for the adjustment of each of theblades 7, for example in the form of a set-point pitch angle βS, and supplies it via thecorresponding line 113 to themotor control unit 109. - With the aid of the
rotary position transducer 120, an actual value I such as an actual pitch angle βI is determined and is transmitted via thecorresponding line 113 to themotor control unit 109. Based on the set-point value S and the actual value I, themotor control unit 109 determines a differential value d, for example an angular deviation δ, and based on it, derives a control value U, for example in the form of a control current A, which is transmitted to therespective drive unit 12 and/or themotor unit 122 of thepitch motor 27. Correspondingly, themotor control unit 109 adjusts the pitch angle β according to the invention with the least possible angular deviation δ. - With the aid of the
temperature sensor 124 and theother temperature sensor 125, thetemperature measuring unit 123 detects a first temperature measurement value T and at least one other temperature measurement value Tx, which are determined for redundancy reasons and/or for different uses. Thus, the temperature measurement value T is transmitted via one of thelines 113 to themotor protection unit 118. Themotor protection unit 118 compares the temperature measurement value T to a temperature limit value and if the temperature limit value is exceeded, can transmit an alarm signal via thecorresponding line 113 to themotor control unit 109, where preventive measures for protecting therespective pitch drive 12 are initiated, for example an emergency shut-off or interruption of the power supply. At the same time, themotor protection unit 118 can use thecorresponding line 113 to transmit temperature values for relaying temperature data to themotor control unit 109 and/orcontrol unit 115 and thedata transmission unit 119. - The other temperature measurement value Tx is transmitted via corresponding
lines 113 directly to themotor control unit 109 in order to keep a temperature of thedrive unit 12 and the components thereof within the scope of a predetermined or specified operating temperature. In themotor control unit 109, immediate temperature control measures can be initiated, whereas in thecontrol unit 115, longer-term temperature control measures can be carried out. Thus with the aid of the alarm signal sent by themotor protection unit 118 on the basis of the temperature measurement value T, a rapid temperature control can be carried out in order to protect thedrive unit 12, whereas the temperature data that are related to thecontrol unit 115 can be used to perform a long-term temperature control and through the direct relaying of the other temperature measurement value Tx to themotor control unit 109, a middle-term temperature control is possible. - The
control device 107 is configured and set up to implement the following ten operating modes M0 to M9 of the vertical wind turbine 1: -
- M0: The
vertical wind turbine 1 is switched off in a zeroth operating mode M0. - M1: Start-up readiness of the
vertical wind turbine 1 from still air in a first operating mode M1 at wind speeds below a starting wind speed v1, i.e. with 0≤vW<v1, for example where v1=3 m/s; - M2: Start-up of the
vertical wind turbine 1 in a second operating mode M2 at wind speeds above the starting wind speed v1 and below a nominal wind speed v2, i.e. with v1 vW<v2, for example where v2=12 m/s; - M3: Switching of the
vertical wind turbine 1 from a resistance mode where λ≤1 starting into a fast mode where λ>1 in a third operating mode M3 or start-up mode at wind speeds above the starting wind speed v1 and below a first cut-out wind speed v3, i.e. with v1≤vW<v3, for example with a minimum rotation speed of the rotor of 4 [rpm] and a first cut-out wind speed v3=20 m/s (average measured over 10 minutes); - M4: Shut-down of the
vertical wind turbine 1 in a fourth operating mode M4 at wind speeds above the first cut-out wind speed v3 or a further cut-out wind speed v4, i.e. with vW>v3 or vW>v4, respectively, for example where v4=30 m/s (average measured over 3 seconds); - M5: Restarting of the
vertical wind turbine 1 in a fifth operating mode M5 when the wind speed falls below a restart wind speed v5 after a shut-down in the fourth operating mode M4, for example where v5=18 m/s; - M6: Operation of the
vertical wind turbine 1 at a constant tip speed ratio λ in a sixth operating mode M6 or partial load mode for wind speeds above the starting wind speed v1 and below a nominal wind speed v2, i.e. with v1≤vW<v2, for example with a tip speed ratio λ between 2 and 2.6, preferably between 2.2 and 2.4, most preferably 2.3 at a nominal wind speed v2 of 12 m/s and a circumferential speed of theblades 7 on the circular path K of vU=27.6 m/s; - M7: Operation of the
vertical wind turbine 1 with a variable tip speed ratio λ in a seventh operating mode M7 or nominal operation mode or also full-load operation with a nominal speed of the rotor of for example 16.5 [rpm] at wind speeds above the nominal wind speed v2 and below the first cut-out wind speed v3 or the further cut-out wind speed v4, i.e. in a nominal wind speed range with v2≤vW<v3 or v2≤vW<v4; for example with a tip speed ratio λ between 1 and 1.8, preferably between 1.3 and 1.5, most preferably 1.38 at a first cut-out wind speed v3 of 20 m/s; - M8: Emergency shut-down of the
vertical wind turbine 1 in an eighth operating mode M8 at extreme wind speed increase gradients dvW/dt greater than a shut-down gradient of the wind speed; and - M9: Switching-off of the
vertical wind turbine 1 in a ninth operating mode M9 to switch thevertical wind turbine 1 into the zeroth operating mode from one of the operating modes M1 to M8.
- M0: The
-
FIG. 17 shows a schematic diagram of a sample torque characteristic curve of thepitch motor 27. The diagram shows a maximum torque Tp, a nominal torque Ti, and continuous torque Tc of thepitch motor 27 over the rotation speed of thepitch motor 27. Thepitch motor 27 can rapidly produce the maximum torque Tp in order to spontaneously, i.e. within a very short, extremely limited time, perform a quick adjustment of therespective blade 7. When the maximum torque Tp is exceeded, i.e. when an overload occurs, the motor slips and is thus inherently safe, i.e. no damage to the motor occurs. The nominal torque Ti can be used continuously until a temperature limit value is exceeded. As a rule, the continuous torque Tc is available on an ongoing basis and does not lead to temperature limit values being exceeded. -
FIG. 18 shows a schematic diagram with sample cam disks for controlling thepitch motor 12, namely a first cam disk S1, which is provided for example for the nominal wind speed v2 of for example 12 m/s, and a further cam disk S2, which is provided for the first cut-out wind speed v3 of for example 20 m/s. Between these two wind speeds, for example a nominal-load operation or full-load operation of thevertical wind turbine 1 in the seventh operating mode M7 is provided, in which therotor 2 rotates at a nominal speed and thegenerator 85 outputs its nominal power. For each cam disk S1, S2, the set-point value S of the pitch angle β is represented as the set-point pitch angle βS in dependence of the azimuth angle Θ. - At the nominal wind speed v2, the set-point pitch angle βS at an azimuth angle Θ of 0° is less than 0°, for example in the range from −2 to −3°. On the way to an azimuth angle Θ of 90°, the set-point pitch angle βS first passes through a local maximum of −2 to −3° at an azimuth angle Θ of approx. 20° and then passes through an inflection point between −3 and −4° at an azimuth angle Θ of approx. 20° until the set-point pitch angle βS at an azimuth angle Θ of approx. 50° reaches an absolute minimum of approx. −10°.
- At an azimuth angle Θ of 180°, the set-point pitch angle βS for the nominal wind speed v2 is once again approx. 2 to −3° and then, at an azimuth angle Θ of approx. 200°, reaches a value of 0°. At an azimuth angle Θ of approx. 250°, the set-point pitch angle βS for the nominal wind speed v2 reaches its absolute maximum of approx. 2 to 3° and then at an azimuth angle Θ of approx. 290° once again reaches a value of 0° and at approximately the same time, passes through an inflection point. Then the set-point pitch angle βS passes through a local minimum of approx. −3 to −4° at an azimuth angle Θ of approx. 330° and finally, at an azimuth angle Θ of approx. 360°, returns once again to its initial range of −2 to −3°.
- At the first cut-out wind speed v3, the set-point pitch angle βS at an azimuth angle Θ of 0° is less than 0°, for example in the range from −1 to −2°, and is thus less than the set-point pitch angle βS at an azimuth angle Θ of 0° at a nominal wind speed v2. On the way to an azimuth angle Θ of 90°, without a local maximum, the set-point pitch angle βS passes through an inflection point between −14 and −16° at an azimuth angle Θ of approx. 45° until, at an azimuth angle Θ of approx. 100°, the set-point pitch angle βS passes through another inflection point at approx. −30° and then, at an azimuth angle Θ of approx. 100°, reaches an absolute minimum of approx. −37° to −38°.
- At an azimuth angle Θ of 180°, the set-point pitch angle βS for the first cut-out wind speed v3, like the set-point pitch angle βS for the nominal wind speed v2, is approx. −2 to −3° and then, at an azimuth angle Θ of approx. 170°, reaches a value of 0° earlier than the set-point pitch angle βS for the nominal wind speed v2. At an azimuth angle Θ of approx. 230 to 240°, the set-point pitch angle βS reaches its absolute maximum of approx. 35° and then, at an azimuth angle Θ of approx. 270°, reaches an inflection point at approx. 25°. Then the set-point pitch angle βS passes through an inflection point at approx. 15° at an azimuth angle Θ of approx. 320° and finally, at an azimuth angle Θ of approx. 360°, returns once again to its initial range of −1 to −2°.
-
FIG. 19 shows a schematic perspective view of atest bench 200 for determining a positioning error of thepitch motor 27 of thevertical wind turbine 1. On thetest bench 200, aframe structure 201 is provided, to which is attached a holdingarm 202 for holding thepitch drive 12 orpitch motor 27 and atransverse arm 203. Thepitch drive 12 together with a section of theblade 7 is mounted on the holdingarm 202 of thetest bench 200 by means of themotor flange 40 similarly to how it would be mounted to therotor arm 10 of thevertical wind turbine 1. Thetransition section 52 protruding out from thepitch motor 27 is accommodated in ashaft mount 204 of thetest bench 200 so that it is able to rotate around the blade rotation axis C7. - The
shaft mount 204 is positioned in the middle of aswing arm 205, which is likewise held so that it is able to rotate around the blade rotation axis C7 in anextension 206 of theframe structure 201. Aweight 207 is secured at each of the two ends of theswing arm 205 oriented away from the blade rotation axis C7. Theweights 207 simulate a total mass of theblade 7. In addition, the ends of theswing arm 205 are connected to thetransverse arm 203 by means ofspring elements 208 in the form of coil spring packs and articulatinglinkages 209 fastened thereto. Thespring elements 208 simulate wind forces. -
FIG. 20 shows a schematic diagram of a positioning error, which has been determined by means of thetest bench 200 shown inFIG. 19 , in the form an angular deviation δ of thepitch motor 27 in ° over time tin seconds for a plurality of control cycles during which a simulated azimuth angle Θ passes through a respective rotor rotation of 360°. After an initial transient response, which does not occur in thevertical wind turbine 1, the angular deviation δ reaches an absolute value of less than 1.5° for set-point pitch angles βS with absolute values of at most 30 to 40°. -
FIG. 21 shows a schematic diagram of a positioning error of thepitch motor 27 in the form of the angular deviation δ in ° over time tin seconds over one control cycle for the nominal wind speed v2. At a nominal wind speed v2, the angular deviation δ has an absolute value of always less than 0.5° and reaches a maximum absolute value of approx. 0.25° after respective local and absolute minima and maxima of the set-point pitch angle βS. In the vicinity of the inflection points of the set-point pitch angle βI, the angular deviation δ fluctuates around 0°. -
FIG. 22 shows a schematic diagram of a positioning error of thepitch motor 27 in the form of the angular deviation δ in ° over time tin seconds over one control cycle for the first cut-out wind speed v3. At the first cut-out wind speed v3, the angular deviation δ has an absolute value of always less than 1.5° and reaches a maximum absolute value of approx. 1.45° after respective local and absolute minima of the set-point pitch angle βS and reaches a maximum of approx. 0.6 at local and absolute maxima thereof. In the vicinity of the inflection points of the set-point pitch angle βI, the angular deviation δ likewise fluctuates around 0°. In general, therefore, the angular deviation δ turns out to be slightly higher at the first cut-out wind speed v3 than at the nominal wind speed v2. - Deviations from the above-described embodiments and implementation examples are possible within the scope of the concept of the invention. A person skilled in the art will therefore recognize that characteristic values and parameters of the
vertical wind turbine 1 and its components as well as values for controlling the components are dependent on the dimensions of thevertical wind turbine 1 and are subject to change. Consequently, all of the above-mentioned absolute values of physical variables, e.g. wind speeds, are chiefly indicated for a design instance of thevertical wind turbine 1 described here, with a nominal power of 750 KW, a nominal height of 105 m, a rotor diameter of 32 m, a length of theblades 7 of 54 m, a height of theblades 7 over the ground of 51 m, a height of the middle of theblades 7 above the ground of 78 m, a survival wind speed of 59.5 m/s, and an annual average speed of 8.5 m/s and can be varied in accordance with other design instances, which can in turn result in deviations of relative physical variables such as tip speed ratios. - Also within the scope of the concept of the invention, unlike in the exemplary embodiment described here, more than two pitch drives 12 can be provided for each
blade 7 or, for example, onepitch drive 12 can be provided for eachblade section 13. In other words, tworespective blades 7 orblade sections 13 can be provided, which are driven in a vertically separate way from each other. Thus for example, two pitch drives 12 can be positioned between twoblades 7 orblade sections 13 and, as an upper andlower pitch drive 12, can be respectively associated with an upper and lower of the twoblades 7 orblade sections 13. The upper blade orblade section 13 can thus be rotated around its blade rotation axis C7 independently of thelower blade 7 orblade section 13. - Each of the two
blades 7 orblade sections 13 can be associated with at least onewind speed sensor 104 and/or wind direction sensor 105. The at least onewind speed sensor 104 and/or wind direction sensor 105 is advantageously positioned in the middle of therespective blade 7 orblade section 13 and can be mounted on arod 106 there as described above. Consequently, for each of theblades 7 orblade sections 13 positioned one above the other vertically, optimal pitch angles β can be separately set in order to take wind flow conditions that change in the vertical direction Z along theblade 7 into account during operation of thevertical wind turbine 1 and thus improve the efficiency of the turbine. This must be taken into consideration particularly for circular path diameters DK that are larger than 32 m, for example 45 m, in which case a total length L7 of theblades 7 would then be approx. 73 m, for example. -
Reference Signs List 1 vertical wind turbine 2 rotor 3 nacelle 4 tower system 5 footings 6 switchgear box 7 blade 8 blade mount 9 rotor hub 10 rotor arm 10a upper arm half 10b lower arm half 10c hub end 10d rotor arm hub flange 10e connecting segment 10f rotor arm end 10g rotor arm blade flange 11 signaling and/or measuring unit 12 pitch drive 13 blade section 13a upper end section 13b upper middle section 13c lower middle section 13d lower end section 13e upper blade section 10f lower blade section 14 bearing point 19 vane 25 motor shaft 26 blade axis 27 pitch motor 27a motor-braking and/or motor- locking unit 27b locking bolt 27c locking opening 28 clearance 29 stator ring 30 rotor ring 31 cooling body 32 cooling fins 33 rim 34 fastening element 35 motor housing 35a upper housing half 35b lower housing half 36 motor interior 37 wall/top 38 wall/bottom 39 bearing seat 40 motor flange 40a open space 41 end surface 41a upper flange half 41b lower flange half 42 mounting collar 43 counterpart end surface 44 connecting element 45 reinforcing rib 46 sensor element 46a first rotary position transducer 46b second rotary position transducer 47 motor bearing 48 bearing receiving chamber 49 sealing element 50 inner ring 51 outer ring 52 transition section 53 vane axis section 55 connecting end 56 compensation weight holder 56a compensation weight 57 flange section 58 positive-fit element 59 further connecting element 60 outer skin 61 casing 62 upper shell 63 lower shell 64 drive gap 65 cooling opening 66 extension 67 end cap 68a intake socket/opening 68b discharge opening 69 cooling air duct 70 drive train 71 drive shaft 72 pedestal 73 stud 74 hub shoulder 75 transition ring 76 rotor bearing system 76a first rotor bearing 76b second rotor bearing 76c third rotor bearing 77 bearing bush 78 rotor shaft 79 hub connection 80 hub connection 80′ hub connection 80 transmission 80a first transmission stage 80b second transmission stage 80c third transmission stage 81 planetary gear stage 81a planet gear 81c strut 81d ring gear 81e sun gear 81f gear 81g pinion 82 output shaft 83 clutch unit 84 generator shaft 85 generator 86 intended break point 87 transmission housing 88 flange bell 89 double-tooth clutch 90 pitch pipe 90a slip ring packet 91 base body 92 feed-through 93 shaft bearing unit 94 supporting feet 95 rest 96 segment 97 flange end 98 supporting arm 99 covering cap 100 chord line 101 leading edge 102 trailing edge 103 additional counterweight 104 wind speed sensor 105 wind direction sensor 106 rod 107 control device 108 supply unit 109 motor control unit 110 power section 111 choke 112 filter 113 line 114 power supply unit 115 control unit 116 main power supply unit 117 auxiliary power supply unit 118 motor protection unit 119 data transmission unit 120 rotary position transducer 121 position sensor 122 motor unit 123 temperature measuring unit 124 temperature sensor 125 other temperature sensor 200 test bench 201 frame structure 202 holding arm 203 transverse arm 204 shaft mount 205 swing arm 206 extension 207 weight 208 spring element 209 articulating linkage i transmission step-up factor d differential value t time vW wind speed vU circumferential speed vR relative speed v1 starting wind speed v2 nominal wind speed v3 first cut-out wind speed v4 further cut-out wind speed v5 restart wind speed A control current B4 maximum width of the tower system C2 rotor rotation axis C7 blade rotation axis C71 drive rotation axis DK diameter of the circular path L7 length of the blades K circular path I actual value P1 resistance force P2 lifting force S set-point value S1 first cam disk S2 further cam disk. T temperature measurement value Tx other temperature meas. value Tc continuos torque Ti nominal torque Tp maximum torque U control value RK radius of the circular path X longitudinal direction Y transverse direction Z vertical direction, upward direction α angle of attack β pitch angle βI set-point pitch angle βS actual pitch angle δ angular deviation γ angle of incidence λ tip speed ratio Θ azimuth angle ω angular velocity
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/977,633 US20230332574A1 (en) | 2017-06-30 | 2022-10-31 | Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/IB2017/053974 | 2017-06-30 | ||
PCT/IB2017/053972 WO2019002922A1 (en) | 2017-06-30 | 2017-06-30 | Vertical wind turbine with regulated tip-speed ratio behavior, kit for same, and method for operating same |
WOPCT/IB2017/053972 | 2017-06-30 | ||
PCT/IB2017/053974 WO2019002923A1 (en) | 2017-06-30 | 2017-06-30 | Vertical wind turbine comprising a coaxial pitch motor, kit for same, and method for operating same |
PCT/EP2018/067582 WO2019002549A1 (en) | 2017-06-30 | 2018-06-29 | Vertical wind turbine comprising pitch motor with protruding rotor blades, kit for same, and method for operating same |
US201916625891A | 2019-12-23 | 2019-12-23 | |
US17/977,633 US20230332574A1 (en) | 2017-06-30 | 2022-10-31 | Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/067582 Continuation WO2019002549A1 (en) | 2017-06-30 | 2018-06-29 | Vertical wind turbine comprising pitch motor with protruding rotor blades, kit for same, and method for operating same |
US16/625,891 Continuation US11519387B2 (en) | 2017-06-30 | 2018-06-29 | Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230332574A1 true US20230332574A1 (en) | 2023-10-19 |
Family
ID=62778927
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/625,891 Active 2038-10-28 US11519387B2 (en) | 2017-06-30 | 2018-06-29 | Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same |
US17/977,633 Pending US20230332574A1 (en) | 2017-06-30 | 2022-10-31 | Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/625,891 Active 2038-10-28 US11519387B2 (en) | 2017-06-30 | 2018-06-29 | Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same |
Country Status (4)
Country | Link |
---|---|
US (2) | US11519387B2 (en) |
EP (1) | EP3645870B1 (en) |
CN (1) | CN110892154A (en) |
WO (1) | WO2019002549A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11060605B2 (en) * | 2018-07-09 | 2021-07-13 | Textron Innovations Inc. | Spherical mounted cylindrical roller bearing system |
CN112597582B (en) * | 2020-12-11 | 2022-09-09 | 中国直升机设计研究所 | Tandem helicopter rotor and fuselage coupling stability modeling method |
CN114893353B (en) * | 2022-04-25 | 2022-12-09 | 迈格钠磁动力股份有限公司 | Vertical axis wind turbine |
CN115045799A (en) * | 2022-06-27 | 2022-09-13 | 上海理工大学 | Support arm braking vertical axis wind turbine with auxiliary starting assembly |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5574364A (en) * | 1993-02-19 | 1996-11-12 | Nippondenso Co., Ltd. | Position detector including a reference position wherein the sensor is saturating the MR sensor for preventing hysteresis and in a bridge circuit |
US6379115B1 (en) * | 1999-08-02 | 2002-04-30 | Tetsuo Hirai | Windmill and windmill control method |
US20030128026A1 (en) * | 1998-07-20 | 2003-07-10 | Lutz Jon F. | Accurate rotor position sensor and method using magnet ring and hall effect sensors |
US20140219802A1 (en) * | 2011-10-05 | 2014-08-07 | Viggo Lundhild | Vertical Axis Wind\Tidal Turbine with Dynamically Positioned Blades |
WO2015185299A1 (en) * | 2014-06-06 | 2015-12-10 | Agile Wind Power Ag | Vertical axis wind turbine and method for operating of such a turbine |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3902072A (en) | 1974-02-19 | 1975-08-26 | Paul J Quinn | Wind turbine |
US4410806A (en) | 1981-09-03 | 1983-10-18 | Brulle Robert V | Control system for a vertical axis windmill |
US4494007A (en) | 1982-09-02 | 1985-01-15 | Gaston Manufacturing, Inc. | Wind machine |
US4609827A (en) | 1984-10-09 | 1986-09-02 | Nepple Richard E | Synchro-vane vertical axis wind powered generator |
US5503525A (en) | 1992-08-12 | 1996-04-02 | The University Of Melbourne | Pitch-regulated vertical access wind turbine |
ITTO980598A1 (en) * | 1998-07-08 | 2000-01-08 | Jans Donato | DEVICE FOR COUPLING AN ELECTRIC SERVOMOTOR TO A STEERING COLUMN OF A MOTOR VEHICLE |
JP2002305852A (en) * | 2001-04-02 | 2002-10-18 | Yaskawa Electric Corp | Ac servo motor |
DE102004019620B4 (en) | 2004-04-16 | 2006-02-16 | Jaroslaw Warszewski | Flow-controlled wind turbine |
JP2008043149A (en) * | 2006-08-09 | 2008-02-21 | Toyota Industries Corp | Motor cooling structure |
WO2008104258A1 (en) * | 2007-02-27 | 2008-09-04 | Urs Giger | Transmission for a wind power installation, torque supports, and wind power installation |
SE531944C2 (en) | 2007-12-20 | 2009-09-15 | Liljeholm Konsult Ab | Device for controlling the angle of attack in wind turbines and method for controlling it |
CH700332B1 (en) | 2008-01-04 | 2010-08-13 | Patrick Richter | Wind Turbine. |
CN201730751U (en) * | 2010-07-05 | 2011-02-02 | 杨寿生 | Megawatt-level vertical axis wind driven generator with adjustable angle of attack |
ES1075900Y (en) * | 2011-07-22 | 2012-03-22 | Ind Technoflex Sa | VERTICAL HUB AEROGENERATOR, PERFECTED |
CN102536643B (en) * | 2012-01-16 | 2013-08-28 | 哈尔滨工程大学 | Vertical axis wind turbine |
JP5986640B2 (en) * | 2012-10-12 | 2016-09-06 | 国際計測器株式会社 | Motor unit, power simulator, torsion test device, rotary torsion test device, linear motion actuator and vibration device |
DE102013113863A1 (en) * | 2012-12-27 | 2014-07-03 | Jakob Hölzel | Vertical axle wind-power plant, has rotatable carrier arranged opposite to wings over axles, and positioning device provided with sensor and servomotor that are formed to rotate carrier such that wing is vertically aligned in wind direction |
CN203670095U (en) * | 2013-12-23 | 2014-06-25 | 广州雅图新能源科技有限公司 | Wind wheel of horizontal-axis wind driven generator |
CN203796496U (en) * | 2014-01-22 | 2014-08-27 | 刘录英 | Large-sized variable pitch type vertical axis wind generating set |
CN103758693A (en) * | 2014-02-19 | 2014-04-30 | 严强 | Large blade rotating angle adjusting and locking device for vertical-axis wind turbine |
KR101617763B1 (en) * | 2014-10-20 | 2016-05-03 | 연세대학교 원주산학협력단 | Verticle axis wind turbine including apparatus for controlling pitch angle of turbine blades simulataneously |
US20180066633A1 (en) * | 2015-10-23 | 2018-03-08 | Matteo Bojanovich | Method and means for mounting wind turbines upon a column |
EP3645868B1 (en) | 2017-06-30 | 2024-10-23 | Agile Wind Power AG | Vertical wind turbine with regulated tip-speed ratio behavior, kit for same, and method for operating same |
US11519385B2 (en) | 2017-06-30 | 2022-12-06 | Agile Wind Power Ag | Vertical wind turbine comprising a coaxial pitch motor, kit for same, and method for operating same |
-
2018
- 2018-06-29 US US16/625,891 patent/US11519387B2/en active Active
- 2018-06-29 CN CN201880044241.2A patent/CN110892154A/en active Pending
- 2018-06-29 EP EP18734821.4A patent/EP3645870B1/en active Active
- 2018-06-29 WO PCT/EP2018/067582 patent/WO2019002549A1/en active Application Filing
-
2022
- 2022-10-31 US US17/977,633 patent/US20230332574A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5574364A (en) * | 1993-02-19 | 1996-11-12 | Nippondenso Co., Ltd. | Position detector including a reference position wherein the sensor is saturating the MR sensor for preventing hysteresis and in a bridge circuit |
US20030128026A1 (en) * | 1998-07-20 | 2003-07-10 | Lutz Jon F. | Accurate rotor position sensor and method using magnet ring and hall effect sensors |
US6379115B1 (en) * | 1999-08-02 | 2002-04-30 | Tetsuo Hirai | Windmill and windmill control method |
US20140219802A1 (en) * | 2011-10-05 | 2014-08-07 | Viggo Lundhild | Vertical Axis Wind\Tidal Turbine with Dynamically Positioned Blades |
WO2015185299A1 (en) * | 2014-06-06 | 2015-12-10 | Agile Wind Power Ag | Vertical axis wind turbine and method for operating of such a turbine |
US20170138345A1 (en) * | 2014-06-06 | 2017-05-18 | Agile Wind Power Ag | Vertical Axis Wind Turbine and Method for Operating Such a Turbine |
Non-Patent Citations (1)
Title |
---|
Wind Systems, "New Wind Turbine Pitch System from Moog", July 2011, https://www.windsystemsmag.com/news/new-wind-turbine-pitch-system-from-moog/ (Year: 2011) * |
Also Published As
Publication number | Publication date |
---|---|
US11519387B2 (en) | 2022-12-06 |
US20200149511A1 (en) | 2020-05-14 |
CN110892154A (en) | 2020-03-17 |
WO2019002549A1 (en) | 2019-01-03 |
EP3645870B1 (en) | 2023-06-07 |
EP3645870A1 (en) | 2020-05-06 |
EP3645870C0 (en) | 2023-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12085059B2 (en) | Vertical wind turbine comprising a coaxial pitch motor, kit for same, and method for operating same | |
US11982257B2 (en) | Vertical wind turbine with controlled tip-speed ratio behavior, kit for same, and method for operating same | |
US20230332574A1 (en) | Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same | |
US7528497B2 (en) | Wind-turbine with load-carrying skin | |
CN102022265B (en) | System and methods for determining a cut-out limit for a wind turbine | |
US20130180199A1 (en) | Flange connection for a wind turbine and method of connecting parts of a wind turbine | |
EP3262297B1 (en) | Structure adapted to traverse a fluid environment and method of retrofitting structure adapted to traverse a fluid environment | |
US20070132247A1 (en) | Electric power generation system | |
JP2008175070A (en) | Vertical shaft magnus type wind power generator | |
KR20140108733A (en) | Wind turbine rotor | |
EP1902216B1 (en) | Wind-turbine with load-carrying skin | |
CN112585351B (en) | Counterweight assembly for use during single blade installation of a wind turbine | |
CA2892050C (en) | Wind turbine rotor and methods of assembling the same | |
EP3964706A1 (en) | A method for operating a wind turbine, a method for designing a wind turbine, and a wind turbine | |
US20160172934A1 (en) | Contra rotor wind turbine system using a hydraulic power transmission device | |
CN219932330U (en) | Wind generating set | |
RU2177562C1 (en) | Windmill-electric generating plant | |
JP2023088263A (en) | Methods for operating wind turbines and methods for charging auxiliary power sources | |
JP2023129293A (en) | Methods for operating wind turbines and methods for feeding auxiliary systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AGILE WIND POWER AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUG, THOMAS HANS;ORAM, CHRISTIAN;SIGNING DATES FROM 20191220 TO 20200204;REEL/FRAME:061599/0062 |
|
AS | Assignment |
Owner name: AGILE WIND POWER AG, SWITZERLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE CONVEYINGPARTY DATEA AND RECEIVING PARTY DATA PREVIOUSLY RECORDED AT REEL: 061599 FRAME: 0062. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:HUG, THOMAS HANS;ORAM, CHRISTIAN;WENGER, JOHANNES;REEL/FRAME:062049/0291 Effective date: 20221117 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |