US20230241227A1 - Bi-functional compounds and methods for targeted ubiquitination of androgen receptor - Google Patents
Bi-functional compounds and methods for targeted ubiquitination of androgen receptor Download PDFInfo
- Publication number
- US20230241227A1 US20230241227A1 US18/151,904 US202318151904A US2023241227A1 US 20230241227 A1 US20230241227 A1 US 20230241227A1 US 202318151904 A US202318151904 A US 202318151904A US 2023241227 A1 US2023241227 A1 US 2023241227A1
- Authority
- US
- United States
- Prior art keywords
- optionally substituted
- alkyl
- halo
- substituted
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 204
- 108010080146 androgen receptors Proteins 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 63
- 102000001307 androgen receptors Human genes 0.000 title claims abstract description 15
- 230000034512 ubiquitination Effects 0.000 title description 8
- 238000010798 ubiquitination Methods 0.000 title description 8
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 claims abstract description 78
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 claims abstract description 78
- 230000015556 catabolic process Effects 0.000 claims abstract description 27
- 238000006731 degradation reaction Methods 0.000 claims abstract description 27
- 125000005843 halogen group Chemical group 0.000 claims description 188
- 125000000217 alkyl group Chemical group 0.000 claims description 127
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 99
- 230000027455 binding Effects 0.000 claims description 82
- 125000003118 aryl group Chemical group 0.000 claims description 77
- 125000001072 heteroaryl group Chemical group 0.000 claims description 69
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 54
- -1 methoxy, ethoxy, isopropoxy Chemical group 0.000 claims description 49
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 49
- 206010028980 Neoplasm Diseases 0.000 claims description 45
- 125000001424 substituent group Chemical group 0.000 claims description 45
- 125000005647 linker group Chemical group 0.000 claims description 42
- 229910052736 halogen Inorganic materials 0.000 claims description 40
- 229910052799 carbon Inorganic materials 0.000 claims description 39
- 125000005842 heteroatom Chemical group 0.000 claims description 39
- 125000000623 heterocyclic group Chemical group 0.000 claims description 36
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 36
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 33
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 32
- 150000002367 halogens Chemical class 0.000 claims description 30
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 30
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 29
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 29
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 27
- 125000004429 atom Chemical group 0.000 claims description 27
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 25
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 24
- 125000002723 alicyclic group Chemical group 0.000 claims description 23
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 23
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 22
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 22
- 201000011510 cancer Diseases 0.000 claims description 22
- 201000010099 disease Diseases 0.000 claims description 22
- 229910052731 fluorine Inorganic materials 0.000 claims description 21
- 229910052801 chlorine Inorganic materials 0.000 claims description 20
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 20
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- 125000003107 substituted aryl group Chemical group 0.000 claims description 19
- 125000004122 cyclic group Chemical group 0.000 claims description 18
- 108020001756 ligand binding domains Proteins 0.000 claims description 18
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 17
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 claims description 16
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical compound F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 claims description 15
- 125000003342 alkenyl group Chemical group 0.000 claims description 15
- VUWZPRWSIVNGKG-UHFFFAOYSA-N fluoromethane Chemical compound F[CH2] VUWZPRWSIVNGKG-UHFFFAOYSA-N 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 14
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- 229910052717 sulfur Inorganic materials 0.000 claims description 13
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 11
- 108010029485 Protein Isoforms Proteins 0.000 claims description 10
- 102000001708 Protein Isoforms Human genes 0.000 claims description 10
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 9
- 125000004076 pyridyl group Chemical group 0.000 claims description 9
- 125000004001 thioalkyl group Chemical group 0.000 claims description 8
- 229910006074 SO2NH2 Inorganic materials 0.000 claims description 7
- 125000001188 haloalkyl group Chemical group 0.000 claims description 7
- 125000002757 morpholinyl group Chemical group 0.000 claims description 7
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 6
- 125000000304 alkynyl group Chemical group 0.000 claims description 6
- 230000006907 apoptotic process Effects 0.000 claims description 6
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 230000000707 stereoselective effect Effects 0.000 claims description 6
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 5
- 230000000593 degrading effect Effects 0.000 claims description 5
- 125000002883 imidazolyl group Chemical group 0.000 claims description 5
- 230000004952 protein activity Effects 0.000 claims description 5
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 5
- 125000004434 sulfur atom Chemical group 0.000 claims description 5
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 4
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 claims description 4
- 230000001737 promoting effect Effects 0.000 claims description 4
- 125000005017 substituted alkenyl group Chemical group 0.000 claims description 4
- 125000004426 substituted alkynyl group Chemical group 0.000 claims description 4
- 125000002102 aryl alkyloxo group Chemical group 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 3
- 125000004304 oxazol-5-yl group Chemical group O1C=NC=C1* 0.000 claims description 3
- 229920000768 polyamine Polymers 0.000 claims description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 3
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 125000002098 pyridazinyl group Chemical group 0.000 claims description 2
- 125000000565 sulfonamide group Chemical group 0.000 claims 2
- 102000004169 proteins and genes Human genes 0.000 abstract description 67
- 108090000623 proteins and genes Proteins 0.000 abstract description 67
- 229940124823 proteolysis targeting chimeric molecule Drugs 0.000 abstract description 11
- 229920001184 polypeptide Polymers 0.000 abstract description 5
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 5
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 5
- 108091008721 AR-V7 Proteins 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 90
- 102100032187 Androgen receptor Human genes 0.000 description 87
- 235000018102 proteins Nutrition 0.000 description 41
- 238000011282 treatment Methods 0.000 description 38
- 239000000203 mixture Substances 0.000 description 34
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- 108090000848 Ubiquitin Proteins 0.000 description 28
- 102000044159 Ubiquitin Human genes 0.000 description 28
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 25
- IJKSBYRAJCSENF-UHFFFAOYSA-N 2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]-N-[6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]hexyl]acetamide Chemical compound FC1=C(OCC(=O)NCCCCCCNC2=C3C(N(C(C3=CC=C2)=O)C2C(NC(CC2)=O)=O)=O)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 IJKSBYRAJCSENF-UHFFFAOYSA-N 0.000 description 22
- 108091008715 AR-FL Proteins 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- VLJNHYLEOZPXFW-UHFFFAOYSA-N pyrrolidine-2-carboxamide Chemical compound NC(=O)C1CCCN1 VLJNHYLEOZPXFW-UHFFFAOYSA-N 0.000 description 20
- 206010060862 Prostate cancer Diseases 0.000 description 19
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 19
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- 239000000460 chlorine Substances 0.000 description 18
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 16
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 16
- WXCXUHSOUPDCQV-UHFFFAOYSA-N enzalutamide Chemical compound C1=C(F)C(C(=O)NC)=CC=C1N1C(C)(C)C(=O)N(C=2C=C(C(C#N)=CC=2)C(F)(F)F)C1=S WXCXUHSOUPDCQV-UHFFFAOYSA-N 0.000 description 15
- 229960004671 enzalutamide Drugs 0.000 description 15
- 238000003119 immunoblot Methods 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 12
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 12
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 239000003446 ligand Substances 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 11
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 11
- 230000003247 decreasing effect Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 9
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 9
- 125000002947 alkylene group Chemical group 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 101100236865 Mus musculus Mdm2 gene Proteins 0.000 description 8
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 8
- 239000003098 androgen Substances 0.000 description 8
- 210000000692 cap cell Anatomy 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- 238000004896 high resolution mass spectrometry Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- JOZGICGAZBMCJF-JMSDHYLISA-N (2S,4R)-1-[(2S)-2-[5-[[2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]acetyl]amino]pentanoylamino]-3,3-dimethylbutanoyl]-4-hydroxy-N-[(1S)-1-[4-(4-methyl-1,3-thiazol-5-yl)phenyl]ethyl]pyrrolidine-2-carboxamide Chemical compound FC1=C(OCC(=O)NCCCCC(=O)N[C@H](C(=O)N2[C@@H](C[C@H](C2)O)C(=O)N[C@@H](C)C2=CC=C(C=C2)C2=C(N=CS2)C)C(C)(C)C)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 JOZGICGAZBMCJF-JMSDHYLISA-N 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 206010061535 Ovarian neoplasm Diseases 0.000 description 7
- 125000004093 cyano group Chemical group *C#N 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 108091007065 BIRCs Proteins 0.000 description 6
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 6
- 102000055031 Inhibitor of Apoptosis Proteins Human genes 0.000 description 6
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 6
- 206010033128 Ovarian cancer Diseases 0.000 description 6
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 6
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 6
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 6
- GZOSMCIZMLWJML-VJLLXTKPSA-N abiraterone Chemical group C([C@H]1[C@H]2[C@@H]([C@]3(CC[C@H](O)CC3=CC2)C)CC[C@@]11C)C=C1C1=CC=CN=C1 GZOSMCIZMLWJML-VJLLXTKPSA-N 0.000 description 6
- 229960000853 abiraterone Drugs 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 150000001413 amino acids Chemical group 0.000 description 6
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 6
- 238000003818 flash chromatography Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 125000002950 monocyclic group Chemical group 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 6
- 150000003852 triazoles Chemical class 0.000 description 6
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 5
- 101000941994 Homo sapiens Protein cereblon Proteins 0.000 description 5
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 102100032783 Protein cereblon Human genes 0.000 description 5
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 5
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 5
- 229940030486 androgens Drugs 0.000 description 5
- HJBWBFZLDZWPHF-UHFFFAOYSA-N apalutamide Chemical compound C1=C(F)C(C(=O)NC)=CC=C1N1C2(CCC2)C(=O)N(C=2C=C(C(C#N)=NC=2)C(F)(F)F)C1=S HJBWBFZLDZWPHF-UHFFFAOYSA-N 0.000 description 5
- 229950007511 apalutamide Drugs 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 5
- 125000001153 fluoro group Chemical group F* 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 5
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 5
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 5
- 235000018977 lysine Nutrition 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 229960003433 thalidomide Drugs 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- LBUJPTNKIBCYBY-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline Chemical compound C1=CC=C2CCCNC2=C1 LBUJPTNKIBCYBY-UHFFFAOYSA-N 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- 108010007005 Estrogen Receptor alpha Proteins 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 102000003676 Glucocorticoid Receptors Human genes 0.000 description 4
- 108090000079 Glucocorticoid Receptors Proteins 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- TZYWCYJVHRLUCT-VABKMULXSA-N N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal Chemical compound CC(C)C[C@@H](C=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)OCC1=CC=CC=C1 TZYWCYJVHRLUCT-VABKMULXSA-N 0.000 description 4
- 239000007832 Na2SO4 Substances 0.000 description 4
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000012267 brine Substances 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 238000001516 cell proliferation assay Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 229950001379 darolutamide Drugs 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- BLIJXOOIHRSQRB-PXYINDEMSA-N n-[(2s)-1-[3-(3-chloro-4-cyanophenyl)pyrazol-1-yl]propan-2-yl]-5-(1-hydroxyethyl)-1h-pyrazole-3-carboxamide Chemical compound C([C@H](C)NC(=O)C=1NN=C(C=1)C(C)O)N(N=1)C=CC=1C1=CC=C(C#N)C(Cl)=C1 BLIJXOOIHRSQRB-PXYINDEMSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 4
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 4
- 125000003367 polycyclic group Chemical group 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 102000003998 progesterone receptors Human genes 0.000 description 4
- 108090000468 progesterone receptors Proteins 0.000 description 4
- 150000003839 salts Chemical group 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000004809 thin layer chromatography Methods 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- NDVQUNZCNAMROD-RZUBCFFCSA-N (2S,4R)-1-[(2S)-2-[(1-cyanocyclopropanecarbonyl)amino]-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide Chemical compound C(#N)C1(CC1)C(=O)N[C@H](C(=O)N1[C@@H](C[C@H](C1)O)C(=O)NCC1=CC=C(C=C1)C1=C(N=CS1)C)C(C)(C)C NDVQUNZCNAMROD-RZUBCFFCSA-N 0.000 description 3
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 3
- 108090000672 Annexin A5 Proteins 0.000 description 3
- 102000004121 Annexin A5 Human genes 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 3
- 102000001477 Deubiquitinating Enzymes Human genes 0.000 description 3
- 108010093668 Deubiquitinating Enzymes Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 102000003960 Ligases Human genes 0.000 description 3
- 108090000364 Ligases Proteins 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- 101710132695 Ubiquitin-conjugating enzyme E2 Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 125000003368 amide group Chemical group 0.000 description 3
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical class CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 3
- 125000001246 bromo group Chemical group Br* 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000001378 electrochemiluminescence detection Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 3
- 150000003854 isothiazoles Chemical class 0.000 description 3
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 3
- 150000002545 isoxazoles Chemical class 0.000 description 3
- 125000000468 ketone group Chemical group 0.000 description 3
- 229960004942 lenalidomide Drugs 0.000 description 3
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 150000002916 oxazoles Chemical class 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229960000688 pomalidomide Drugs 0.000 description 3
- UVSMNLNDYGZFPF-UHFFFAOYSA-N pomalidomide Chemical compound O=C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O UVSMNLNDYGZFPF-UHFFFAOYSA-N 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 239000012047 saturated solution Substances 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 229960003604 testosterone Drugs 0.000 description 3
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 150000003557 thiazoles Chemical class 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- HCMJWOGOISXSDL-UHFFFAOYSA-N (2-isothiocyanato-1-phenylethyl)benzene Chemical compound C=1C=CC=CC=1C(CN=C=S)C1=CC=CC=C1 HCMJWOGOISXSDL-UHFFFAOYSA-N 0.000 description 2
- CTVJSWYMXREHGW-IBBKEZFESA-N (2S,4R)-1-[(2S)-2-(5-aminopentanoylamino)-3,3-dimethylbutanoyl]-4-hydroxy-N-[(1S)-1-[4-(4-methyl-1,3-thiazol-5-yl)phenyl]ethyl]pyrrolidine-2-carboxamide hydrochloride Chemical compound Cl.NCCCCC(=O)N[C@H](C(=O)N1[C@@H](C[C@H](C1)O)C(=O)N[C@@H](C)C1=CC=C(C=C1)C1=C(N=CS1)C)C(C)(C)C CTVJSWYMXREHGW-IBBKEZFESA-N 0.000 description 2
- 125000006376 (C3-C10) cycloalkyl group Chemical group 0.000 description 2
- SPTWXRJNCFIDRQ-ZHACJKMWSA-N (e)-n-(4-acetylphenyl)-3-(5-ethylfuran-2-yl)prop-2-enamide Chemical compound O1C(CC)=CC=C1\C=C\C(=O)NC1=CC=C(C(C)=O)C=C1 SPTWXRJNCFIDRQ-ZHACJKMWSA-N 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- UWYZHKAOTLEWKK-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline Chemical compound C1=CC=C2CNCCC2=C1 UWYZHKAOTLEWKK-UHFFFAOYSA-N 0.000 description 2
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 2
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- HBEDSQVIWPRPAY-UHFFFAOYSA-N 2,3-dihydrobenzofuran Chemical class C1=CC=C2OCCC2=C1 HBEDSQVIWPRPAY-UHFFFAOYSA-N 0.000 description 2
- XUQKSQKFVKSYDL-UHFFFAOYSA-N 2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]acetic acid Chemical compound FC1=C(OCC(=O)O)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 XUQKSQKFVKSYDL-UHFFFAOYSA-N 0.000 description 2
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 2
- BDUHCSBCVGXTJM-WUFINQPMSA-N 4-[[(4S,5R)-4,5-bis(4-chlorophenyl)-2-(4-methoxy-2-propan-2-yloxyphenyl)-4,5-dihydroimidazol-1-yl]-oxomethyl]-2-piperazinone Chemical compound CC(C)OC1=CC(OC)=CC=C1C1=N[C@@H](C=2C=CC(Cl)=CC=2)[C@@H](C=2C=CC(Cl)=CC=2)N1C(=O)N1CC(=O)NCC1 BDUHCSBCVGXTJM-WUFINQPMSA-N 0.000 description 2
- GDRVFDDBLLKWRI-UHFFFAOYSA-N 4H-quinolizine Chemical compound C1=CC=CN2CC=CC=C21 GDRVFDDBLLKWRI-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- 229940123407 Androgen receptor antagonist Drugs 0.000 description 2
- 206010068597 Bulbospinal muscular atrophy congenital Diseases 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- 102000007594 Estrogen Receptor alpha Human genes 0.000 description 2
- 102100038595 Estrogen receptor Human genes 0.000 description 2
- 108010040476 FITC-annexin A5 Proteins 0.000 description 2
- DHCLVCXQIBBOPH-UHFFFAOYSA-N Glycerol 2-phosphate Chemical compound OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 208000027747 Kennedy disease Diseases 0.000 description 2
- 229930194542 Keto Natural products 0.000 description 2
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 2
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 2
- 108091092878 Microsatellite Proteins 0.000 description 2
- 102000005431 Molecular Chaperones Human genes 0.000 description 2
- 108010006519 Molecular Chaperones Proteins 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 2
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 2
- 229940079156 Proteasome inhibitor Drugs 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 229910007157 Si(OH)3 Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000012288 TUNEL assay Methods 0.000 description 2
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 229960003473 androstanolone Drugs 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 150000001556 benzimidazoles Chemical class 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 2
- 150000003857 carboxamides Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 2
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- DOGIDQKFVLKMLQ-JTHVHQAWSA-N epoxomicin Chemical compound CC[C@H](C)[C@H](N(C)C(C)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)[C@@]1(C)CO1 DOGIDQKFVLKMLQ-JTHVHQAWSA-N 0.000 description 2
- 108700002672 epoxomicin Proteins 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 150000002475 indoles Chemical class 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 230000002601 intratumoral effect Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- LVWZTYCIRDMTEY-UHFFFAOYSA-N metamizole Chemical compound O=C1C(N(CS(O)(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 LVWZTYCIRDMTEY-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008196 pharmacological composition Substances 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 2
- 125000004193 piperazinyl group Chemical group 0.000 description 2
- 125000003386 piperidinyl group Chemical group 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 2
- 239000003207 proteasome inhibitor Substances 0.000 description 2
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 150000003233 pyrroles Chemical class 0.000 description 2
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 2
- 150000003248 quinolines Chemical class 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 2
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 2
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 2
- 150000003536 tetrazoles Chemical class 0.000 description 2
- 150000007970 thio esters Chemical class 0.000 description 2
- 125000005309 thioalkoxy group Chemical group 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NBKZGRPRTQELKX-UHFFFAOYSA-N (2-methylpropan-2-yl)oxymethanone Chemical compound CC(C)(C)O[C]=O NBKZGRPRTQELKX-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- CEAFRDPPZUKUOI-XWGDAZIUSA-N (2S,4R)-1-[(2S)-2-[4-[[2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]acetyl]amino]butanoylamino]-3,3-dimethylbutanoyl]-4-hydroxy-N-[(1S)-1-[4-(4-methyl-1,3-thiazol-5-yl)phenyl]ethyl]pyrrolidine-2-carboxamide Chemical compound FC1=C(OCC(=O)NCCCC(=O)N[C@H](C(=O)N2[C@@H](C[C@H](C2)O)C(=O)N[C@@H](C)C2=CC=C(C=C2)C2=C(N=CS2)C)C(C)(C)C)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 CEAFRDPPZUKUOI-XWGDAZIUSA-N 0.000 description 1
- OIUHHWKOFXGRNL-WNCPREHOSA-N (2S,4R)-1-[(2S)-2-[6-[[2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]acetyl]amino]hexanoylamino]-3,3-dimethylbutanoyl]-4-hydroxy-N-[(1S)-1-[4-(4-methyl-1,3-thiazol-5-yl)phenyl]ethyl]pyrrolidine-2-carboxamide Chemical compound FC1=C(OCC(=O)NCCCCCC(=O)N[C@H](C(=O)N2[C@@H](C[C@H](C2)O)C(=O)N[C@@H](C)C2=CC=C(C=C2)C2=C(N=CS2)C)C(C)(C)C)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 OIUHHWKOFXGRNL-WNCPREHOSA-N 0.000 description 1
- XCQRPQUEFNGEEU-RGBNLOSNSA-N (2S,4R)-1-[(2S)-2-[7-[[2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]acetyl]amino]heptanoylamino]-3,3-dimethylbutanoyl]-4-hydroxy-N-[(1S)-1-[4-(4-methyl-1,3-thiazol-5-yl)phenyl]ethyl]pyrrolidine-2-carboxamide Chemical compound FC1=C(OCC(=O)NCCCCCCC(=O)N[C@H](C(=O)N2[C@@H](C[C@H](C2)O)C(=O)N[C@@H](C)C2=CC=C(C=C2)C2=C(N=CS2)C)C(C)(C)C)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 XCQRPQUEFNGEEU-RGBNLOSNSA-N 0.000 description 1
- FAFSBLFSHCGHSG-IADFLZFBSA-N (2S,4R)-1-[(2S)-2-[8-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]octanoylamino]-3,3-dimethylbutanoyl]-4-hydroxy-N-[(1S)-1-[4-(4-methyl-1,3-thiazol-5-yl)phenyl]ethyl]pyrrolidine-2-carboxamide Chemical compound FC1=C(OCCCCCCCC(=O)N[C@H](C(=O)N2[C@@H](C[C@H](C2)O)C(=O)N[C@@H](C)C2=CC=C(C=C2)C2=C(N=CS2)C)C(C)(C)C)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 FAFSBLFSHCGHSG-IADFLZFBSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000006823 (C1-C6) acyl group Chemical group 0.000 description 1
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 1
- 125000006824 (C1-C6) dialkyl amine group Chemical group 0.000 description 1
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 description 1
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- IOEPOEDBBPRAEI-UHFFFAOYSA-N 1,2-dihydroisoquinoline Chemical compound C1=CC=C2CNC=CC2=C1 IOEPOEDBBPRAEI-UHFFFAOYSA-N 0.000 description 1
- IRFSXVIRXMYULF-UHFFFAOYSA-N 1,2-dihydroquinoline Chemical compound C1=CC=C2C=CCNC2=C1 IRFSXVIRXMYULF-UHFFFAOYSA-N 0.000 description 1
- 125000005871 1,3-benzodioxolyl group Chemical group 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- PQQRHWFRZHFGFM-UHFFFAOYSA-N 1,3-thiazole-4-carboxamide Chemical compound NC(=O)C1=CSC=N1 PQQRHWFRZHFGFM-UHFFFAOYSA-N 0.000 description 1
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 1
- DOYHLGZQAFUFFL-UHFFFAOYSA-N 1-(2,2-dimethylpropyl)pyrrolidine-2-carboxamide Chemical compound CC(C)(C)CN1CCCC1C(N)=O DOYHLGZQAFUFFL-UHFFFAOYSA-N 0.000 description 1
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- AAQTWLBJPNLKHT-UHFFFAOYSA-N 1H-perimidine Chemical compound N1C=NC2=CC=CC3=CC=CC1=C32 AAQTWLBJPNLKHT-UHFFFAOYSA-N 0.000 description 1
- XWIYUCRMWCHYJR-UHFFFAOYSA-N 1h-pyrrolo[3,2-b]pyridine Chemical compound C1=CC=C2NC=CC2=N1 XWIYUCRMWCHYJR-UHFFFAOYSA-N 0.000 description 1
- AWBOSXFRPFZLOP-UHFFFAOYSA-N 2,1,3-benzoxadiazole Chemical compound C1=CC=CC2=NON=C21 AWBOSXFRPFZLOP-UHFFFAOYSA-N 0.000 description 1
- JKTCBAGSMQIFNL-UHFFFAOYSA-N 2,3-dihydrofuran Chemical compound C1CC=CO1 JKTCBAGSMQIFNL-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- ZJVGPYCYWFIPOS-UHFFFAOYSA-N 2,5-dibromo-N-[6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]hexyl]-1-(2-morpholin-4-yl-1,3-thiazol-4-yl)imidazole-4-carboxamide Chemical compound BrC=1N(C(=C(N=1)C(=O)NCCCCCCNC1=C2C(N(C(C2=CC=C1)=O)C1C(NC(CC1)=O)=O)=O)Br)C=1N=C(SC=1)N1CCOCC1 ZJVGPYCYWFIPOS-UHFFFAOYSA-N 0.000 description 1
- JQJMKXVVRNUAOH-UHFFFAOYSA-N 2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]-N-[10-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]decyl]acetamide Chemical compound FC1=C(OCC(=O)NCCCCCCCCCCNC2=C3C(N(C(C3=CC=C2)=O)C2C(NC(CC2)=O)=O)=O)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 JQJMKXVVRNUAOH-UHFFFAOYSA-N 0.000 description 1
- BWPKNXYYICKRBJ-UHFFFAOYSA-N 2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]-N-[2-[2-[2-[2-[2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethoxy]ethoxy]ethoxy]ethoxy]ethyl]acetamide Chemical compound FC1=C(OCC(=O)NCCOCCOCCOCCOCCNC2=C3C(N(C(C3=CC=C2)=O)C2C(NC(CC2)=O)=O)=O)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 BWPKNXYYICKRBJ-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- UXGVMFHEKMGWMA-UHFFFAOYSA-N 2-benzofuran Chemical compound C1=CC=CC2=COC=C21 UXGVMFHEKMGWMA-UHFFFAOYSA-N 0.000 description 1
- JNSUFFBMQFHNIC-UHFFFAOYSA-N 2-benzyl-5-methoxy-1h-imidazole Chemical class N1C(OC)=CN=C1CC1=CC=CC=C1 JNSUFFBMQFHNIC-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- VLRSADZEDXVUPG-UHFFFAOYSA-N 2-naphthalen-1-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CC2=CC=CC=C12 VLRSADZEDXVUPG-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- UMZCLZPXPCNKML-UHFFFAOYSA-N 2h-imidazo[4,5-d][1,3]thiazole Chemical compound C1=NC2=NCSC2=N1 UMZCLZPXPCNKML-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- BBQUPKKQVQXRBQ-UHFFFAOYSA-N 4-(10-aminodecylamino)-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione hydrochloride Chemical compound Cl.NCCCCCCCCCCNC1=C2C(N(C(C2=CC=C1)=O)C1C(NC(CC1)=O)=O)=O BBQUPKKQVQXRBQ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- PBGMRXNTLPSDNR-UHFFFAOYSA-N 4-(6-aminohexylamino)-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione hydrochloride Chemical compound Cl.NCCCCCCNc1cccc2C(=O)N(C3CCC(=O)NC3=O)C(=O)c12 PBGMRXNTLPSDNR-UHFFFAOYSA-N 0.000 description 1
- SBFOORBQHVOGJM-UHFFFAOYSA-N 4-[2-[2-[2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]ethoxy]ethoxy]ethylamino]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione Chemical compound FC1=C(OCCOCCOCCNC2=C3C(N(C(C3=CC=C2)=O)C2C(NC(CC2)=O)=O)=O)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 SBFOORBQHVOGJM-UHFFFAOYSA-N 0.000 description 1
- GAMYYCRTACQSBR-UHFFFAOYSA-N 4-azabenzimidazole Chemical compound C1=CC=C2NC=NC2=N1 GAMYYCRTACQSBR-UHFFFAOYSA-N 0.000 description 1
- XKVUYEYANWFIJX-UHFFFAOYSA-N 5-methyl-1h-pyrazole Chemical group CC1=CC=NN1 XKVUYEYANWFIJX-UHFFFAOYSA-N 0.000 description 1
- XZLIYCQRASOFQM-UHFFFAOYSA-N 5h-imidazo[4,5-d]triazine Chemical compound N1=NC=C2NC=NC2=N1 XZLIYCQRASOFQM-UHFFFAOYSA-N 0.000 description 1
- KDOPAZIWBAHVJB-UHFFFAOYSA-N 5h-pyrrolo[3,2-d]pyrimidine Chemical compound C1=NC=C2NC=CC2=N1 KDOPAZIWBAHVJB-UHFFFAOYSA-N 0.000 description 1
- 108010022579 ATP dependent 26S protease Proteins 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101150093240 Brd2 gene Proteins 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 229940127515 E3 Ubiquitin Ligase Inhibitors Drugs 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000055218 HECT-type E3 ubiquitin transferases Human genes 0.000 description 1
- 108030001237 HECT-type E3 ubiquitin transferases Proteins 0.000 description 1
- 101000836540 Homo sapiens Aldo-keto reductase family 1 member B1 Proteins 0.000 description 1
- 101000809450 Homo sapiens Amphiregulin Proteins 0.000 description 1
- 101000928259 Homo sapiens NADPH:adrenodoxin oxidoreductase, mitochondrial Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 231100000416 LDH assay Toxicity 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 229940083338 MDM2 inhibitor Drugs 0.000 description 1
- 239000012819 MDM2-Inhibitor Substances 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- XGYANVKAVCOXLM-UHFFFAOYSA-N N-[2-[2-[2-[2-[[2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]acetyl]amino]ethoxy]ethoxy]ethoxy]ethyl]-2-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxyacetamide Chemical compound FC1=C(OCC(=O)NCCOCCOCCOCCNC(COC2=C3C(N(C(C3=CC=C2)=O)C2C(NC(CC2)=O)=O)=O)=O)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 XGYANVKAVCOXLM-UHFFFAOYSA-N 0.000 description 1
- QRPMKJCDKMYFHP-FICMJICFSA-N N-[5-[[(2S)-1-[(2S,4R)-4-hydroxy-2-[[(1S)-1-[4-(4-methyl-1,3-thiazol-5-yl)phenyl]ethyl]carbamoyl]pyrrolidin-1-yl]-3,3-dimethyl-1-oxobutan-2-yl]amino]-5-oxopentyl]-2-morpholin-4-yl-1,3-benzothiazole-4-carboxamide Chemical compound O[C@@H]1C[C@H](N(C1)C([C@H](C(C)(C)C)NC(CCCCNC(=O)C=1C=CC=C2C=1N=C(S2)N1CCOCC1)=O)=O)C(N[C@@H](C)C1=CC=C(C=C1)C1=C(N=CS1)C)=O QRPMKJCDKMYFHP-FICMJICFSA-N 0.000 description 1
- AAVRMEZWFCZWMI-BEEKQIBHSA-N N-[6-[[(2S)-2-[[(2S)-1-[(2S)-2-cyclohexyl-2-[[(2S)-2-(methylamino)propanoyl]amino]acetyl]pyrrolidine-2-carbonyl]amino]-3,3-diphenylpropanoyl]amino]hexyl]-2-morpholin-4-yl-1,3-benzothiazole-4-carboxamide Chemical compound C1(CCCCC1)[C@@H](C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C(=O)NCCCCCCNC(=O)C=1C=CC=C2C=1N=C(S2)N1CCOCC1)C(C1=CC=CC=C1)C1=CC=CC=C1)NC([C@H](C)NC)=O AAVRMEZWFCZWMI-BEEKQIBHSA-N 0.000 description 1
- MYBZQHJXDAQVRE-UHFFFAOYSA-N N-[6-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]hexyl]-1-(2-morpholin-4-yl-1,3-thiazol-4-yl)imidazole-4-carboxamide Chemical compound O=C1NC(CCC1N1C(C2=CC=CC(=C2C1=O)NCCCCCCNC(=O)C=1N=CN(C=1)C=1N=C(SC=1)N1CCOCC1)=O)=O MYBZQHJXDAQVRE-UHFFFAOYSA-N 0.000 description 1
- RLACQRJCPMREJZ-UHFFFAOYSA-N N-[6-[[2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]acetyl]amino]hexyl]-2-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxyacetamide Chemical compound FC1=C(OCC(=O)NCCCCCCNC(COC2=C3C(N(C(C3=CC=C2)=O)C2C(NC(CC2)=O)=O)=O)=O)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 RLACQRJCPMREJZ-UHFFFAOYSA-N 0.000 description 1
- GHOUAOQHEBUDSD-UHFFFAOYSA-N N-[8-[[2-[2,3-difluoro-6-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenoxy]acetyl]amino]octyl]-2-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxyacetamide Chemical compound FC1=C(OCC(=O)NCCCCCCCCNC(COC2=C3C(N(C(C3=CC=C2)=O)C2C(NC(CC2)=O)=O)=O)=O)C(=CC=C1F)C=1N=C(SC=1)N1CCOCC1 GHOUAOQHEBUDSD-UHFFFAOYSA-N 0.000 description 1
- 229910020700 Na3VO4 Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010068086 Polyubiquitin Proteins 0.000 description 1
- 102100037935 Polyubiquitin-C Human genes 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 101150007742 RING1 gene Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 208000035217 Ring chromosome 1 syndrome Diseases 0.000 description 1
- 208000032825 Ring chromosome 2 syndrome Diseases 0.000 description 1
- 208000032826 Ring chromosome 3 syndrome Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102100021719 Steroid 17-alpha-hydroxylase/17,20 lyase Human genes 0.000 description 1
- 101710163849 Steroid 17-alpha-hydroxylase/17,20 lyase Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 230000006154 adenylylation Effects 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000000033 alkoxyamino group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 1
- 239000005030 aluminium foil Substances 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 239000003936 androgen receptor antagonist Substances 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000005518 carboxamido group Chemical group 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 229940126142 compound 16 Drugs 0.000 description 1
- 230000002508 compound effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229940124301 concurrent medication Drugs 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- LYHIYZUYZIHTCV-UHFFFAOYSA-N cyclopenta[b]pyran Chemical compound C1=COC2=CC=CC2=C1 LYHIYZUYZIHTCV-UHFFFAOYSA-N 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004852 dihydrofuranyl group Chemical group O1C(CC=C1)* 0.000 description 1
- 125000005047 dihydroimidazolyl group Chemical group N1(CNC=C1)* 0.000 description 1
- 125000005043 dihydropyranyl group Chemical group O1C(CCC=C1)* 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000000547 effect on apoptosis Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000006167 equilibration buffer Substances 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- BVGZJYIQWKFYTQ-UHFFFAOYSA-N ethyl n-oxocarbamate Chemical compound CCOC(=O)N=O BVGZJYIQWKFYTQ-UHFFFAOYSA-N 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 238000009093 first-line therapy Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000003269 fluorescent indicator Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 1
- YRTCKZIKGWZNCU-UHFFFAOYSA-N furo[3,2-b]pyridine Chemical compound C1=CC=C2OC=CC2=N1 YRTCKZIKGWZNCU-UHFFFAOYSA-N 0.000 description 1
- JUQAECQBUNODQP-UHFFFAOYSA-N furo[3,2-d]pyrimidine Chemical compound C1=NC=C2OC=CC2=N1 JUQAECQBUNODQP-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000004470 heterocyclooxy group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 102000046818 human AR Human genes 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002349 hydroxyamino group Chemical group [H]ON([H])[*] 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical compound O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- LPAGFVYQRIESJQ-UHFFFAOYSA-N indoline Chemical compound C1=CC=C2NCCC2=C1 LPAGFVYQRIESJQ-UHFFFAOYSA-N 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 150000002478 indolizines Chemical class 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000004628 isothiazolidinyl group Chemical group S1N(CCC1)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 238000002307 isotope ratio mass spectrometry Methods 0.000 description 1
- 125000003965 isoxazolidinyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000002843 lactate dehydrogenase assay Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000000436 ligase inhibitor Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 150000002669 lysines Chemical class 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 208000010658 metastatic prostate carcinoma Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N methylimidazole Natural products CC1=CNC=N1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 description 1
- 125000005322 morpholin-1-yl group Chemical group 0.000 description 1
- 239000012120 mounting media Substances 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 108020004017 nuclear receptors Proteins 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000011474 orchiectomy Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000005880 oxathiolanyl group Chemical group 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 125000005255 oxyaminoacyl group Chemical group 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 230000004844 protein turnover Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- OUFHXMSGJIYFPW-UHFFFAOYSA-N pyrazino[2,3-c]pyridazine Chemical compound N1=NC=CC2=NC=CN=C21 OUFHXMSGJIYFPW-UHFFFAOYSA-N 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- BWESROVQGZSBRX-UHFFFAOYSA-N pyrido[3,2-d]pyrimidine Chemical compound C1=NC=NC2=CC=CN=C21 BWESROVQGZSBRX-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- DHHKPEUQJIEKOA-UHFFFAOYSA-N tert-butyl 2-[6-(nitromethyl)-6-bicyclo[3.2.0]hept-3-enyl]acetate Chemical compound C1C=CC2C(CC(=O)OC(C)(C)C)(C[N+]([O-])=O)CC21 DHHKPEUQJIEKOA-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- ONCNIMLKGZSAJT-UHFFFAOYSA-N thieno[3,2-b]furan Chemical compound S1C=CC2=C1C=CO2 ONCNIMLKGZSAJT-UHFFFAOYSA-N 0.000 description 1
- RBNBDIMXFJYDLQ-UHFFFAOYSA-N thieno[3,2-d]pyrimidine Chemical compound C1=NC=C2SC=CC2=N1 RBNBDIMXFJYDLQ-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000005296 thioaryloxy group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 125000005404 thioheteroaryloxy group Chemical group 0.000 description 1
- 125000005323 thioketone group Chemical group 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 1
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 108700002720 ubiquitin adenylate Proteins 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- AIFRHYZBTHREPW-UHFFFAOYSA-N β-carboline Chemical compound N1=CC=C2C3=CC=CC=C3NC2=C1 AIFRHYZBTHREPW-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/55—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
Definitions
- This invention relates to therapeutic compounds and compositions, and methods for their use in the treatment of various indications, including various cancers.
- the invention relates to therapies and methods of treatment for cancers such as prostate cancer.
- Prostate cancer is the most commonly diagnosed malignancy in males in the United States and the second leading cause of male cancer mortality. Numerous studies have shown that the androgen receptor (AR) is central not only to the development of prostate cancer, but also the progression of the disease to the castration resistance state (Taplin, M. E. et al., J. Clin. Oncol. 2003 21:2673-8; and Tilley, W. D. et al., Cancer Res. 1994 54:4096-4102). Thus, effective inhibition of human AR remains one of the most effective therapeutic approaches to the treatment of advanced, metastatic prostate cancer.
- AR androgen receptor
- Androgens are also known to play a role in female cancers.
- ovarian cancer where elevated levels of androgens are associated with an increased risk of developing ovarian cancer (Helzlsouer, K. J. et al., JAMA 1995 274, 1926-1930; Edmondson, R. J. et al., Br. J. Cancer 2002 86, 879-885).
- AR has been detected in a majority of ovarian cancers (Risch, H. A., J. Natl. Cancer Inst. 1998 90, 1774-1786; Rao, B. R. et al., Endocr. Rev. 1991 12, 14-26; Clinton, G. M. et al., Crit. Rev. Oncol. Hematol. 1997 25, 1-9).
- AR belongs to the nuclear hormone receptor family that is activated by androgens such as testosterone and dihydrotestosterone. These androgens, as well as antagonists such as enzalutamide, compete with the androgens that bind to the ligand binding domain (LBD).
- LBD ligand binding domain
- AR possesses a modular organization characteristic of all nuclear receptors. It is comprised of an N-terminal domain (NTD), a central DNA binding domain (DBD), a short hinge region, and C-terminal domain that contains a hormone ligand binding pocket (the LBD, which also comprises the hormone binding site (HBS)) and the Activation Function-2 (AF2) site (Gao, W. Q. et al., Chem. Rev. 2005 105:3352-3370).
- NTD N-terminal domain
- DBD central DNA binding domain
- AF2 Activation Function-2
- the activation of AR follows a well characterized pathway: in the cytoplasm, the receptor is associated with chaperone proteins that maintain agonist binding conformation of the AR (Georget, V. et al., Biochemistry 2002 41:11824-11831). Upon binding of an androgen, the AR undergoes a series of conformational changes, disassociation from chaperones, dimerization, and translocation into the nucleus (Fang, Y. F. et al., J. Biol. Chem. 1996 271:28697-28702; and Wong, C. I. et al., J. Biol. Chem. 1993 268:19004-19012) where it further interacts with co-activator proteins at the AF2 site (Zhou, X. E. et al. J. Biol. Chem. 2010 285:9161-9171). This event triggers the recruitment of RNA polymerase II and other factors to form a functional transcriptional complex with the AR.
- AR-LBD mutations that convert AR-antagonists into agonists or by expression of AR-variants lacking the LBD.
- AR is a major driver of prostate cancer and inhibition of its transcriptional activity using competitive antagonists such as enzalutamide and apalutamide remains a frontline therapy for prostate cancer management.
- Another therapy is abiraterone which is an inhibitor of cytochrome P450 17A1 that impairs AR signaling by depleting adrenal and intratumoral testosterone and dihydrotestosterone.
- AR-V7 patients on enzalutamide and abiraterone with a splice variant of AR, labelled as AR-V7, had lower PSA response rates, shorter PSA progression-free survival, and shorter overall survival.
- AR-V7 lacks the LBD, which is the target of enzalutamide and testosterone, but AR-V7 remains constitutively active as a transcription factor. Accordingly, it is desirable to investigate other approaches to antagonize the AR receptor as well as AR-V7.
- the common domain between these two proteins is the DBD and compounds have been identified as discussed in Li, H. et al., J. Med. Chem. 2014 57, 6458-6467 (2014); Dalal, K. et al., Mol. Cancer Ther. 2017 vol. 16, 2281-2291; Xu, R. et al., Chem. Biol . & Drug Design 2018 91(1), 172-180; and WO 2015/120543.
- bi-functional proteolysis targeting chimeric molecules which contain a ligand that recognizes the target protein that is linked to a ligand that binds to a specific E3 ubiquitin ligase.
- the ensuing bifunctional molecule binds to the target protein and the E3 ligase enabling the transfer of ubiquitin to the target protein from the Ligase provided there is a suitable acceptor on the target protein.
- Another method is the “molecular glue” process whereby the molecule together with the E3 ligase recruit the target protein to the E3 ligase followed by the ubiquitin transfer and degradation of the target (Chopra, R., Sadok, A., Collins, I., Drug Disc Today: Technologies, 2019, 31, 5-13.)
- the only requirement is the presence of an E3 ligase binding moiety. After binding to the E3 ligase, the ensuing moiety could recruit the protein to be degraded.
- the labelling of proteins with ubiquitin is implicated in the protein's turnover by the 26S proteasome.
- Protein ubiquitination is a multi-step process whereby a ubiquitin protein is successively relayed between different classes of enzymes (E1, E2, E3) in order to eventually tag a cellular substrate.
- E1, E2, E3 the C-terminal carboxylate of ubiquitin is adenylated by the E1 activating enzyme in an ATP-dependent step.
- a conserved nucleophilic cysteine residue of the E1 enzyme displaces the AMP from the ubiquitin adenylate resulting in a covalent ubiquitin thioester conjugate.
- the binding and ensuing adenylation of a second ubiquitin molecule promote the recruitment of an E2 conjugating enzyme to this ternary complex.
- An active site Cys on the E2 subsequently facilitates the transfer of the covalently linked ubiquitin from the E1 to a Cys residue on the E2 through a trans-thioesterification reaction.
- an E3 ligase recruits a specific downstream target protein and mediates the transfer of the ubiquitin from the E2 enzyme to the terminal substrate through either a covalent or non-covalent mechanism.
- Each ubiquitin is ligated to a protein through either a peptide bond with the N-terminal amino group or an isopeptide bond formed between a side chain F-amino group of a select Lys residue on the target protein and the ubiquitin.
- Deubiquitinating enzymes are enzymes that specifically cleave the ubiquitin protein from the substrate thereby offering additional mechanisms of regulation over the entire labeling pathway.
- DUBs Deubiquitinating enzymes
- E1s enzymes that specifically cleave the ubiquitin protein from the substrate thereby offering additional mechanisms of regulation over the entire labeling pathway.
- human proteome there are eight known human E1s, about 40 E2s, over 600 E3s and over 100 DUBs. These enzymes are well described in Pavia, S. et al., J. Med. Chem. 2018 61(2), 405-421.
- the E3 ligases originate in three major classes—the RING finger and U-box E3s, the HECT E3s, and the RING/HECT-hybrid type E3s.
- the E3 ligases are localized in various cell organelles and hence the effectiveness of the E3 ligase ligand depends at least in part on the location of the protein targeted for degradation, assuming that the full molecule is available within the appropriate location in the cell.
- the linker length and conformational flexibility also contributes to the effectiveness of the degradation molecule. The mechanism depends on the availability of a Lys residue on the surface of the protein close to the targeted protein ligand binding pocket.
- Ubiquitin binds at Lys residues and hence the “delivery” of ubiquitin for binding at the appropriate Lys influences the effectiveness of the degradation molecule.
- Crew et al. (US20170327469A1, US20180099940A1) are progressing a proposed treatment for castration-resistant prostate cancer based on bifunctional molecules coupling various E3 ligases to AR antagonists binding at the AR LBD site.
- Our approach is different in that we do not target the LBD site but the DBD site and, correspondingly, the chemical matter is quite different.
- the present invention relates to bi-functional compounds which function to recruit endogenous proteins to an E3 ubiquitin ligase for degradation, and methods for using same. More specifically, the present disclosure provides specific proteolysis targeting chimera (PROTAC) molecules which find utility as modulators of targeted ubiquitinization of a variety of polypeptides and other proteins, such as AR, which are then degraded and/or otherwise inhibited by the compounds as described herein.
- PROTAC proteolysis targeting chimera
- these PROTAC molecules comprise an E3 ubiquitin ligase binding moiety (i.e., a ligand for an E3 ubiquitin ligase) linked to a moiety that binds a target protein (i.e., a protein/polypeptide targeting ligand) such that the target protein/polypeptide is placed in proximity to the ubiquitin ligase to effect degradation (and/or inhibition) of that protein.
- a target protein i.e., a protein/polypeptide targeting ligand
- the description provides methods for using an effective amount of the compounds described herein for the treatment or amelioration of a disease condition including cancer, e.g., prostate cancer, and Kennedy's Disease.
- Suitable ligands that bind to the E3 ubiquitin ligase include cereblon binders such as immunomodulatory imide drugs (IMiDs) including thalidomide, pomalidomide, and lenalidomide (Deshales, R. J., Nature Chem Biol. 2015 11, 634-635), and analogs or derivatives thereof.
- IMDs immunomodulatory imide drugs
- the IMiDs themselves act as “molecular glues” and therefore have been shown to recruit a different set of proteins for degradation (reference).
- E3 ubiquitin ligase binders are E3 CRL2 VHL compounds, also called Von-Hippel-Lindau or VHL ligands, the cellular inhibitor of apoptosis protein (IAP) as discussed in Shibata, N. et al., J. Med. Chem., 2018 61(2), 543-575.
- Binders of the E3 ligase Mouse Double Minute 2 (MDM2) comprise the fourth class of E3 Ligase Binders (E3LBs) that are utilized (Skalniak, L., et al., Expert Opin. Ther, Patents, 2019, 29, 151-170).
- compositions comprising such compounds which function to recruit proteins including AR-V7 and AR for targeted ubiquitination and degradation.
- structure of such compounds can be depicted as:
- ARB is an AR binding moiety and E3LB is a ubiquitin ligase binding moiety.
- the compounds may further comprise a chemical linker (“L”).
- L chemical linker
- ARB is an AR binding moiety
- L is a bond or linker moiety
- E3LB is a ubiquitin ligase binding moiety.
- the description provides therapeutic compositions comprising an effective amount of a compound as described herein or pharmaceutically acceptable salt form thereof, and a pharmaceutically acceptable carrier.
- the therapeutic compositions modulate protein degradation in a patient or subject, for example, an animal such as a human, and can be used for treating or ameliorating disease states or conditions which are modulated through the degraded protein.
- the therapeutic compositions as described herein may be used to effectuate the degradation and/or inhibition of proteins of interest for the treatment or amelioration of a disease, e.g., cancer.
- the present disclosure provides a method of ubiquitinating/degrading a target protein in a cell.
- the method comprises administering a bi-functional compound as described herein comprising an ARB moiety and a E3LB moiety, preferably linked through a linker moiety, as otherwise described herein, wherein the E3LB moiety is coupled to the ARB moiety and wherein the E3LB moiety recognizes an E3 ubiquitin ligase and the ARB moiety recognizes the target protein such that degradation of the target protein occurs when the target protein is placed in proximity to the ubiquitin ligase, thus resulting in degradation/inhibition of the effects of the target protein and the control of protein levels.
- the control of protein levels afforded by the present disclosure provides treatment of a disease state or condition, which is modulated through the target protein by lowering the level of that protein in the cells of a patient.
- the description provides methods for treating or ameliorating a disease, disorder or symptom thereof in a subject or a patient, e.g., an animal such as a human, comprising administering to a subject in need thereof a pharmaceutical composition comprising an effective amount, e.g., a therapeutically effective amount, of a compound as described herein or pharmaceutically acceptable salt form thereof, and a pharmaceutically acceptable carrier, wherein the composition is effective for treating or ameliorating the disease or disorder or symptom thereof in the subject.
- a pharmaceutical composition comprising an effective amount, e.g., a therapeutically effective amount, of a compound as described herein or pharmaceutically acceptable salt form thereof, and a pharmaceutically acceptable carrier, wherein the composition is effective for treating or ameliorating the disease or disorder or symptom thereof in the subject.
- the description provides methods for identifying the effects of the degradation of proteins of interest in a biological system using compounds according to the present disclosure.
- FIG. 1 is an immunoblot of certain exemplified compounds.
- an E3 ubiquitin ligase protein can ubiquitinate a target protein, in particular the androgen receptor of a slice variant of AR which lacks the LBD, labelled as AR-V7, once the E3 ubiquitin ligase protein and the target protein are brought into proximity by a chimeric construct (e.g., a PROTAC) as described herein, in which a moiety that binds the E3 ubiquitin ligase protein is coupled, e.g., covalently, to a moiety that binds the androgen receptor target protein.
- a chimeric construct e.g., a PROTAC
- a moiety that binds the E3 ubiquitin ligase protein is coupled, e.g., covalently, to a moiety that binds the androgen receptor target protein.
- the present description provides compounds, compositions comprising the same, and associated methods of use for ubiquitination and degradation of a chosen target protein,
- the present disclosure provides compounds useful for regulating protein activity.
- the composition comprises a ubiquitin pathway protein binding moiety (preferably for an E3 ubiquitin ligase, alone or in complex with an E2 ubiquitin conjugating enzyme which is responsible for the transfer of ubiquitin to targeted proteins) according to a defined chemical structure and a protein targeting moiety which are linked or coupled together, preferably through a linker, wherein the ubiquitin pathway protein binding moiety recognizes a ubiquitin pathway protein and the targeting moiety recognizes a target protein (e.g., androgen receptor).
- a target protein e.g., androgen receptor
- the PROTACs of the present invention comprise an E3 ubiquitin ligase binding moiety (“E3LB”), and a moiety that binds a target protein (i.e. a protein/polypeptide targeting ligand) that is an AR binding moiety (“ARB”).
- E3LB E3 ubiquitin ligase binding moiety
- ARB AR binding moiety
- the structure of the bi-functional compound can be depicted as:
- ARB is an AR binding moiety as described herein
- E3LB is an E3 ligase binding moiety as described herein
- the bi-functional compound further comprises a chemical linker (“L”).
- L a chemical linker
- ARB is an AR binding moiety as described herein
- E3LB is an E3 ligase binding moiety as described herein
- L is a chemical linker moiety, e.g., a linker as described herein, or optionally a bond, that links the ARB and E3LB moieties.
- the respective positions of the ARB and E3LB moieties as well as their number as illustrated herein is provided by way of example only and is not intended to limit the compounds in any way.
- the bi-functional compounds as described herein can be synthesized such that the number and position of the respective functional moieties can be varied as desired.
- the compounds as described herein comprise multiple E3LB moieties, multiple ARB moieties, multiple chemical linkers, or a combination thereof.
- the general structures are exemplary and the respective moieties can be arranged spatially in any desired order or configuration, e.g., ARB-L-E3LB, and E3LB-L-ARB, respectively.
- the E3LB group and ARB group may be covalently linked to the linker group through any covalent bond which is appropriate and stable to the chemistry of the linker.
- one or more hydrogen atoms may be replaced with an equivalent number of deuterium atoms.
- the ARB may be selected from the following structures:
- L is the linker in the general formula above;
- A is 3-7 membered alicyclic with 0-4 heteroatoms or aryl, heteroaryl independently substituted by 1 or more halo, hydroxyl, nitro, CN, C ⁇ CH, NR 2 R 3 , OCH 3 , OC 1-3 alkyl (optionally substituted by 1 or more halo), CH 2 F, CHF 2 , CF 3 , C 1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C 1-6 alkoxyl), C 1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C 2-6 alkenyl, C 2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C ⁇ CH, CF 3 , C 1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C 1-6 alkoxy),
- B is aryl, heteroaryl independently substituted by 1 or more halo, hydroxyl, nitro, CN, C ⁇ CH, NR 2 R 3 , OCH 3 , OC 1-3 alkyl (optionally substituted by 1 or more halo), CF 3 , C 1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C 1-6 alkoxyl), C 1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C 2-6 alkenyl, C 2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C ⁇ CH, CF 3 , C 1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C 1-6 alkoxy), C 1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo),
- R 1 are independently H, OH, CONH 2 , CONR 2 R 3 , SONH 2 , SONR 2 R 3 , SO 2 NH 2 , SO 2 NR 2 R 3 , NHCO C 1-3 alkyl (optionally substituted by 1 or more halo), NR 2 COC 1-3 alkyl (optionally substituted by 1 or more halo), NR 2 SO 2 C 1-3 alkyl (optionally substituted by 1 or more halo), NR 2 SOC 1-3 alkyl (optionally substituted by 1 or more halo), CN, C ⁇ CH, NH 2 , NR 2 R 3 , OCH 3 , OC 1-3 alkyl (optionally substituted by 1 or more halo), CHF 2 , CH 2 F, CF 3 , halo, C 1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C 1-6 alkoxyl) or, if applicable, taken together with an R 1 on an adjacent
- A is:
- A is: R
- B is: R
- L is the linker as described above, and R 1 is described above.
- B is:
- L is the linker as described above, and R 1 is described above.
- B is:
- L is the linker as described above, and R 1 is described above.
- the linker group (L) comprises a chemical structural unit represented by the formula: -A q -, in which q is an integer greater than 1; and A is independently selected from the group consisting of a bond, CR L1 R L2 , O, S, SO, SO 2 , NR L3 SO 2 NR L3 , SONR L3 , CONR L3 , NR L3 CONR L4 , NR L3 SO 2 NR L4 , CO, CR L1 ⁇ CR L2 , C ⁇ C, SiR L1 R L2 , P(O)R L1 , P(O)OR L1 , NR L3 C( ⁇ NCN)NR L4 , NR L3 C( ⁇ NCN), NR L3 C( ⁇ CNO 2 )NR L4 , C 3-11 cycloaklyl optionally substituted with 0-6 R L1 and/or R L2 groups, and heteroaryl optionally substituted with 0-6 R L1 and/or R L2 groups
- the E3LB moiety may be selected from a variety of moieties, including the following structures:
- R 1 is described above;
- R 4 is selected from H, alkyl (linear, branched, optionally substituted with R 5 ), OH, R 5 OCOOR 6 , R 5 OCONR 5 R 7 , CH 2 -heterocyclyl optionally substituted with R 5 , or benzyl optionally substituted with R 5 ;
- R 5 and R 7 are each independently a bond, H, alkyl (linear, branched), cycloalkyl, aryl, hetaryl heterocyclyl, or —C( ⁇ O)R 6 each of which is optionally substituted; and
- R 6 is selected from CONR 5 R 7 , OR 5 , NR 5 R 7 , SR 5 , SO 2 R 5 , SO 2 NR 5 R 7 , CR 5 R 7 , CR 5 NR 5 R 7 , aryl, hetaryl, alkyl (linear, branched, optionally substituted), cycloalkyl, heterocyclyl, P(O)(OR 5 )R 7 , P(O)R 5 R 7 , OP(O)(OR 5 )R 7 , OP(O)R 5 R 7 , Cl, F, Br, I, CF 3 , CHF 2 , CH 2 F, CN, NR 5 SO 2 NR 5 R 7 , NR 5 CONR 5 R 7 , CONR 5 COR 7 , CONR 5 COR 7 , NR 5 C( ⁇ N ⁇ CN)NR 5 R 7 , C( ⁇ N—CN)NR 5 R 7 , NR 5 C(—N ⁇ CN)R 7 , NR
- the E3LB moiety may also be selected from E3LB-e and E3LB-f as described below:
- L is the linker previously described;
- R 8 is H, a straight chain or branched C 1-8 alkyl, C 3-6 cycloalkyl, halo, CFH 2 , CF 2 H, or CF 3 ; and
- R 9 is a H, halo, 4-methylthiazol-5-ylm, or oxazol-5-yl.
- L is the linker previously described and R 11 is independently optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted heterocyclyalkyl wherein the substituents are alkyl, halogen, or OH.
- the E3LB moiety may also be selected from E3LB-g, E3LB-h, E3LB-i, E3LB-j, and E3LB-k as described below:
- L is the linker previously described
- R 12 and R 13 are independently hydrogen, optionally substituted alkyl, or optionally substituted cycloalkyl;
- X is CH 2 , N, or O; Y is S or O;
- D is a bond (direct bond between X and L) or a ring which may be aryl, heteroaryl independently substituted by 1 or more halo, hydroxyl, nitro, CN, C ⁇ CH, NR 2 R 3 , OCH 3 , OC 1-3 alkyl (optionally substituted by 1 or more halo), CF 3 , C 1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C 1-6 alkoxyl), C 1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C 2-6 alkenyl, C 2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C ⁇ CH, CF 3 , C 1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C 1-6 alkoxy), C 1-6 alkoxy
- R 2 , R 3 is independently H, halo, C 1-6 alkyl (optionally substituted by 1 or more F) or taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms;
- R 20 is selected from the group consisting of:
- A is a C 4-8 aliphatic ring
- B is an aryl or N-containing heteroaryl and optionally substituted by alkyl or haloalkyl.
- E3LB may be selected from the MDM2 class of E3 ligases represented by E3LB-1 below.
- R 22 is independently aryl or heteroaryl optionally substituted by halogen, mono-, di or tri-substituted halogen;
- R 21 is independently aryl or heteroaryl, optionally substituted by mono-, di- or tri-substituted halogen, CN, ethynyl, cyclopropyl, methyl, ethyl, isopropyl, methoxy, ethoxy, isopropoxy, other C 1-6 alkyl, other C 1-6 alkenyl and C 1-6 alkynyl;
- R 23 is selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, substituted cycloalkyl, alkenyl and substituted cycloalkenyl;
- R 24 is H, alkyl, aryl, substituted alkyl, cycloalkyl, aryl substituted cycloalkyl and alkoxy substituted cycloalkyl;
- E is para-substituted aryl, single or multiple N containing heteroaryl optionally substituted by —OCH 3 , —OCH 2 CH 3 and halogen.
- L is the linker previously defined above.
- the E3LB moiety is inclusive of all cereblon binders such as immunomodulatory imide drugs (IMiDs) including thalidomide, pomalidomide, and lenalidomide, and analogs or derivatives thereof, as well as E3 CRL2 1L compounds, the cellular inhibitor of apoptosis protein (IAP), and the mouse double minute 2 (MDM2) binders.
- IiDs immunomodulatory imide drugs
- IAP apoptosis protein
- MDM2 mouse double minute 2
- the compounds as described herein comprise a plurality of E3LB moieties and/or a plurality of ARB moieties.
- the compounds as described herein comprise multiple ARB moieties (targeting the same or different locations of the AR), multiple E3LB moieties, one or more moieties that bind specifically to another E3 ubiquitin ligase, e.g., VHL, IAP, MDM2, or a combination thereof.
- the ARB moieties, E3LB moieties, and other moieties that bind specifically to another E3 ubiquitin ligase can be coupled directly or via one or more chemical linkers or a combination thereof.
- the moieties can be for the same E3 ubiquitin ligase or each respective moiety can bind specifically to a different E3 ubiquitin ligase.
- such moieties may be the same or, optionally, different.
- the EMLB moieties are identical or, optionally, different.
- the compound comprising a plurality of E3LB moieties further comprises at least one ARB moiety coupled to a EMLB moiety directly or via a chemical linker (“L”) or both.
- the compound comprising a plurality of E3LB moieties further comprises multiple ARB moieties.
- the ARB moieties are the same or, optionally, different.
- the compound is selected from the group consisting of the exemplary compounds as described below, and salts and polymorphs thereof:
- Example 1 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(6-((2-(2,6-dioxopiperidin- 3-yl)-l,3-dioxoisoindolin-4- yl)amino)hexyl)acetamide
- Example 2 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(8-((2-(2,6-dioxopiperidin- 3-yl)-l,3-dioxoisoindolin-4- yl)amino)octyl)acetamide
- Example 3 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(10-((2-(2,6- dioxopiperidin- 3-yl)-l,3-dioxoisoindolin-4
- the disclosure provides compounds of formula (I):
- Androgen Receptor Binder-Linker-E3 Ligase Binder (I). It is understood that the terms “Androgen Receptor Binder,” “Androgen Receptor Binding Moiety” and “AR Binding Moiety” refer a molecular structure which generally binds successfully to androgen receptor protein, recognizing that in different people androgen receptors will not have the identical amino acid sequence, and thus, the strength of binding may vary across different particular AR sequences.
- the present disclosure provides:
- R 1 is each independently H, OH, CONH 2 , CONR 2 R 3 , SONH 2 , SONR 2 R 3 , SO 2 NH 2 , SO 2 NR 2 R 3 , NHCO—C 1-3 alkyl (optionally substituted by 1 or more halo), NR 2 COC 1-3 alkyl (optionally substituted by 1 or more halo), NR 2 SO 2 C 1-3 alkyl (optionally substituted by 1 or more halo), NR 2 SOC 1-3 alkyl (optionally substituted by 1 or more halo), CN, C ⁇ CH, NH 2 , NR 2 R 3 , OCH 3 , OC 1-3 alkyl (optionally substituted by 1 or more halo), CHF 2 , CH 2 F, CF 3 , halo, C 1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C 1-6 alkoxyl) or, if applicable, taken together with an R 1 on
- R 2 , R 3 are each independently H, halo, C 1-6 alkyl (optionally substituted by 1 or more F) or taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms; and
- R 4 is selected from H, alkyl (linear, branched, optionally substituted with R 5 ), OH, R 5 OCOOR 6 , R 5 OCONR 5 R 7 , CH 2 -heterocyclyl optionally substituted with R 5 , or benzyl optionally substituted with R 5 ;
- R 5 and R 7 are each independently a bond, H, alkyl (linear, branched), cycloalkyl, aryl, hetaryl heterocyclyl, or —C( ⁇ O)R 6 each of which is optionally substitute; and
- R 6 is selected from CONR 5 R 7 , OR 5 , NR 5 R 7 , SR 5 , SO 2 R 5 , SO 2 NR 5 R 7 , CR 5 R 7 , CR 5 NR 5 R 7 , aryl, hetaryl, alkyl (linear, branched, optionally substituted), cycloalkyl, heterocyclyl, P(O)(OR 5 )R 7 , P(O)R 5 R 7 , OP(O)(OR 5 )R 7 , OP(O)R 5 R 7 , Cl, F, Br, I, CF 3 , CHF 2 , CH 2 F, CN, NR 5 SO 2 NR 5 R 7 , NR 5 CONR 5 R 7 , CONR 5 COR 7 , CONR 5 COR 7 , NR 5 C( ⁇ N—CN)NR 5 R 7 , C( ⁇ N—CN)NR 5 R 7 , NR 5 C(—N ⁇ CN)R 7 , NR
- A is a C 4-8 aliphatic ring
- B is an aryl or N-containing heteroaryl and optionally substituted by alkyl or haloalkyl.
- Y is N, O, C ⁇ O, or S, and
- a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
- the term “or” should be understood to have the same meaning as “and/or” as defined above.
- “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements.
- the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from anyone or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
- This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
- “at least one of A and B” can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
- co-administration and “co-administering” or “combination therapy” can refer to both concurrent administration (administration of two or more therapeutic agents at the same time) and time varied administration (administration of one or more therapeutic agents at a time different from that of the administration of an additional therapeutic agent or agents), as long as the therapeutic agents are present in the patient to some extent, preferably at effective amounts, at the same time.
- one or more of the present compounds described herein are co-administered in combination with at least one additional bioactive agent, especially including an anticancer agent.
- the co-administration of compounds results in synergistic activity and/or therapy, including anticancer activity.
- the term “effective” can mean, but is in no way limited to, that amount/dose of the active pharmaceutical ingredient, which, when used in the context of its intended use, effectuates or is sufficient to prevent, inhibit the occurrence, ameliorate, delay or treat (alleviate a symptom to some extent, preferably all) the symptoms of a condition, disorder or disease state in a subject in need of such treatment or receiving such treatment.
- effective subsumes all other effective amount or effective concentration terms, e.g., “effective amount/dose,” “pharmaceutically effective amount/dose” or “therapeutically effective amount/dose,” which are otherwise described or used in the present application.
- the effective amount depends on the type and severity of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors which those skilled in the medical arts will recognize.
- the exact amount can be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Pickar, Dosage Calculations (1999); and Remington, The Science and Practice of Pharmacy, 20th Edition, 2003, Gennaro, Ed., Lippincott, Williams & Wilkins).
- composition can mean, but is in no way limited to, a composition or formulation that allows for the effective distribution of an agent provided by the present disclosure, which is in a form suitable for administration to the physical location most suitable for their desired activity, e.g., systemic administration.
- pharmaceutically acceptable can mean, but is in no way limited to, entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a patient or subject.
- pharmaceutically acceptable carrier can mean, but is in no way limited to, any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration to a patient or subject. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences , a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, ringer's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- systemic administration refers to a route of administration that is, e.g., enteral or parenteral, and results in the systemic distribution of an agent leading to systemic absorption or accumulation of drugs in the blood stream followed by distribution throughout the entire body. Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Such forms should not prevent the composition or formulation from reaching a target cell (i.e., a cell to which the negatively charged polymer is desired to be delivered to). For example, pharmacological compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms which prevent the composition or formulation from exerting its effect. Administration routes which lead to systemic absorption include, without limitations: intravenous, subcutaneous, intraperitoneal, inhalation, oral, intrapulmonary and intramuscular.
- the rate of entry of a drug into the circulation has been shown to be a function of molecular weight or size.
- a liposome or other drug carrier comprising the compounds of the instant disclosure can potentially localize the drug, for example, in certain tissue types, such as the tissues of the reticular endothelial system (RES).
- RES reticular endothelial system
- a liposome formulation which can facilitate the association of drug with the surface of cells, such as, lymphocytes and macrophages is also useful.
- patient and “subject” are used throughout the specification to describe a cell, tissue, or animal, preferably a mammal, e.g., a human or a domesticated animal, to whom treatment, including prophylactic treatment, with the compositions according to the present disclosure is provided.
- a mammal e.g., a human or a domesticated animal
- the term patient refers to that specific animal, including a domesticated animal such as a dog or cat or a farm animal such as a horse, cow, sheep, etc.
- the term patient refers to a human patient unless otherwise stated or implied from the context of the use of the term.
- compound refers to any specific chemical compound disclosed herein and includes tautomers, regioisomers, geometric isomers, and where applicable, stereoisomers, including optical isomers (enantiomers) and other stereoisomers (diastereomers) thereof, as well as pharmaceutically acceptable salts and derivatives thereof where applicable, in context.
- compound generally refers to a single compound, but also may include other compounds such as stereoisomers, regioisomers and/or optical isomers (including racemic mixtures) as well as specific enantiomers or enantiomerically enriched mixtures of disclosed compounds.
- the term also refers, in context to prodrug forms of compounds which have been modified to facilitate the administration and delivery of compounds to a site of activity.
- the term also refers to any specific chemical compound in which one or more atoms have been replaced with one or more different isotopes of the same element. It is noted that in describing the present compounds, numerous substituents and variables associated with same, among others, are described.
- derivatives can mean compositions formed from the native compounds either directly, by modification, or by partial substitution.
- analogs can mean compositions that have a structure similar to, but not identical to, the native compound.
- ubiquitin ligase refers to a family of proteins that facilitate the transfer of ubiquitin to a specific substrate protein, targeting the substrate protein for degradation.
- cereblon is an E3 ubiquitin ligase protein that alone or in combination with an E2 ubiquitin-conjugating enzyme causes the attachment of ubiquitin to a lysine on a target protein, and subsequently targets the specific protein substrates for degradation by the proteasome.
- E3 ubiquitin ligase alone or in complex with an E2 ubiquitin conjugating enzyme is responsible for the transfer of ubiquitin to targeted proteins.
- the ubiquitin ligase may be involved in polyubiquitination such that a second ubiquitin may be attached to the first; a third may be attached to the second, and so forth.
- Polyubiquitination marks proteins for degradation by the proteasome.
- Mono-ubiquitinated proteins may not be targeted to the proteasome for degradation, but may instead be altered in their cellular location or function, for example, via binding other proteins that have domains capable of binding ubiquitin.
- different lysines on ubiquitin can be targeted by an E3 to make chains. The most common lysine is Lys48 on the ubiquitin chain. This is the lysine used to make polyubiquitin, which is recognized by the proteasome.
- halo or halogen means fluoro (F), chloro (Cl), bromo (Br) or iodo (I).
- hydrocarbyl means a compound which contains carbon and hydrogen and which may be fully saturated, partially unsaturated or aromatic and includes aryl groups, alkyl groups, alkenyl groups and alkynyl groups.
- alkyl means within its context a linear, branch-chained, or cyclic fully saturated hydrocarbon radical or alkyl group, preferably a C 1 -C 10 , more preferably a C 1 -C 6 , alternatively a C 1 -C 3 alkyl group, which may be optionally substituted.
- alkyl groups are methyl, ethyl, n-butyl, sec-butyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, isopropyl, 2-methylpropyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclohexylmethyl, cyclohexylethyl and cyclohexyl, among others.
- alkenyl refers to linear, branched or branch-chained, or cyclic C 2 -C 10 (preferably C 2 -C 6 ) hydrocarbon radicals containing at least one C ⁇ C bond.
- Alkynyl refers to linear, branched or branch-chained, or cyclic C 2 -C 10 (preferably C 2 -C 6 ) hydrocarbon radicals containing at least one C ⁇ C bond.
- alkylene refers to a —(CH 2 ) n — group (wherein n is an integer generally from 0-6), which may be optionally substituted.
- the alkylene group preferably is substituted on one or more of the methylene groups with a C 1 -C 6 alkyl group (including a cyclopropyl group or a t-butyl group), more preferably a methyl group, but may also be substituted with one or more halo groups, preferably from 1 to 3 halo groups or one or two hydroxyl groups, O—(C 1 -C 6 alkyl) groups or amino acid sidechains as otherwise disclosed herein.
- an alkylene group may be substituted with a urethane or alkoxy group (or other group) which is further substituted with a polyethylene glycol chain (of from 1 to 10, preferably 1 to 6, often 1 to 4 ethylene glycol units) to which is substituted (preferably, but not exclusively on the distal end of the polyethylene glycol chain) an alkyl chain substituted with a single halogen group, preferably a chlorine group.
- a polyethylene glycol chain of from 1 to 10, preferably 1 to 6, often 1 to 4 ethylene glycol units
- the alkylene (often, a methylene) group may be substituted with an amino acid sidechain group such as a sidechain group of a natural or unnatural amino acid, for example, alanine, (3-alanine, arginine, asparagine, aspartic acid, cysteine, cystine, glutamic acid, glutamine, glycine, phenylalanine, histidine, isoleucine, lysine, leucine, methionine, praline, serine, threonine, valine, tryptophan, or tyrosine.
- alanine 3-alanine, arginine, asparagine, aspartic acid, cysteine, cystine, glutamic acid, glutamine, glycine, phenylalanine, histidine
- isoleucine lysine, leucine, methionine, praline, serine, threonine, valine, tryptophan, or ty
- a range of carbon atoms which includes C 0 means that carbon is absent and is replaced with H (or deuterium).
- a range of carbon atoms which is C 0 -C 6 includes carbons atoms of 1, 2, 3, 4, 5 and 6 and for C 0 , H (or deuterium)stands in place of carbon.
- unsubstituted means substituted only with hydrogen atoms.
- substituted or “optionally substituted” means independently (i.e., where more than a single substitution occurs, each substituent is independent of another substituent) one or more substituents (independently up to five substituents, preferably up to three substituents, often 1 or 2 substituents on a moiety in a compound according to the present invention, and may include substituents which themselves may be further substituted) at a carbon (or nitrogen) position anywhere on a molecule within context, and includes as substituents hydroxyl, thiol, carboxyl, cyano (C ⁇ N), nitro (NO 2 ), halogen (preferably, 1, 2 or 3 halogens, especially on an alkyl, especially a methyl group such as a trifluoromethyl), an alkyl group (preferably, C 1 -C 10 , more preferably, C 1 -C 6 ), aryl (especially phenyl and substituted phenyl for example benzyl or benzoyl
- Substituents according to the present invention may include, for example SiR 1 R 2 R 3 groups wherein each of R 1 and R 2 is as otherwise described herein, and R 3 is H or a C 1 -C 6 alkyl group, preferably R 1 , R 2 , R 3 in this context is a C 1 -C 3 alkyl group (including an isopropyl or t-butyl group).
- Each of the above-described groups may be linked directly to the substituted moiety or alternatively, the substituent may be linked to the substituted moiety (preferably in the case of an aryl or heteroaryl moiety) through an optionally substituted —(CH 2 ) m — or, alternatively, an optionally substituted —(OCH 2 ) m —, —(OCH 2 CH 2 ) m — or —(CH 2 CH 2 O) m — group, which may be substituted with any one or more of the above described substituents.
- Alkylene groups —(CH 2 ) m — or —(CH 2 ) n — groups or other chains such as ethylene glycol chains, as identified above, may be substituted anywhere on the chain.
- Preferred substituents on alkylene groups include halogen or C 1 -C 6 (preferably C 1 -C 3 ) alkyl groups, which may be optionally substituted with one or two hydroxyl groups, one or two ether groups (O—C 1 -C 6 groups), up to three halo groups (preferably F), or a sidechain of an amino acid as otherwise described herein and optionally substituted amide (preferably carboxamide substituted as described above) or urethane groups (often with one or two C 0 -C 6 alkyl substituents, which group(s) may be further substituted).
- halogen or C 1 -C 6 (preferably C 1 -C 3 ) alkyl groups which may be optionally substituted with one or two hydroxyl groups, one or two ether groups (O—C 1 -C 6 groups), up to three halo groups (preferably F), or a sidechain of an amino acid as otherwise described herein and optionally substituted amide (preferably carboxamide substituted as described above) or
- the alkylene group (often a single methylene group) is substituted with one or two optionally substituted C 1 -C 6 alkyl groups, preferably C 1 -C 4 alkyl group, most often methyl or O-methyl groups or a sidechain of an amino acid as otherwise described herein.
- a moiety in a molecule may be optionally substituted with up to five substituents, preferably up to three substituents. Most often, in the present invention moieties which are substituted are substituted with one or two substituents.
- substituted also means within its context of use C 1 -C 6 alkyl, C 1 -C 6 alkoxy, halogen, amido, carboxamido, sulfone, including sulfonamide, keto, carboxy, C 1 -C 6 ester (oxy ester or carbonyl ester), C 1 -C 6 keto, urethane —O—C(O)—NR 1 R 2 or —N(R 1 )—C(O)—O—R 1 , nitro, cyano and amine (especially including a C 1 -C 6 alkylene —NR 1 R 2 , a mono- or di-C 1 -C 6 alkyl substituted amines which may be optionally substituted with one or two hydroxyl groups).
- substituted also means, within the chemical context of the compound defined and substituent used, an optionally substituted aryl or heteroaryl group or an optionally substituted heterocyclic group as otherwise described herein.
- Alkylene groups may also be substituted as otherwise disclosed herein, preferably with optionally substituted C 1 -C 6 alkyl groups (methyl, ethyl or hydroxymethyl or hydroxyethyl is preferred, thus providing a chiral center), a sidechain of an amino acid group as otherwise described herein, an amido group as described hereinabove, or a urethane group OC(O)NR 1 R 2 group wherein R 1 and R 2 are as otherwise described herein, although numerous other groups may also be used as substituents.
- Various optionally substituted moieties may be substituted with 3 or more substituents, preferably no more than 3 substituents and preferably with 1 or 2 substituents. It is noted that in instances where, in a compound at a particular position of the molecule substitution is required (principally, because of valency), but no substitution is indicated, then that substituent is construed or understood to be H, unless the context of the substitution suggests otherwise.
- aryl and “aromatic,” in context, refer to a substituted (as otherwise described herein) or unsubstituted monovalent aromatic radical having a single ring (e.g., benzene, phenyl, benzyl) or condensed rings (e.g., naphthyl, anthracenyl, phenanthrenyl, etc.) and can be bound to the compound according to the present invention at any available stable position on the ring(s) or as otherwise indicated in the chemical structure presented.
- aryl groups in context, may include heterocyclic aromatic ring systems “heteroaryl” groups having one or more nitrogen, oxygen, or sulfur atoms in the ring (monocyclic) such as imidazole, furyl, pyrrole, furanyl, thiene, thiazole, pyridine, pyrimidine, pyrazine, triazole, oxazole or fused ring systems such as indole, quinoline, indolizine, azaindolizine, benzofurazan, etc., among others, which may be optionally substituted as described above.
- heteroaryl having one or more nitrogen, oxygen, or sulfur atoms in the ring (monocyclic) such as imidazole, furyl, pyrrole, furanyl, thiene, thiazole, pyridine, pyrimidine, pyrazine, triazole, oxazole or fused ring systems such as indole, quinoline, indolizin
- heteroaryl groups include nitrogen-containing heteroaryl groups such as pyrrole, pyridine, pyridone, pyridazine, pyrimidine, pyrazine, pyrazole, imidazole, triazole, triazine, tetrazole, indole, isoindole, indolizine, azaindolizine, purine, indazole, quinoline, dihydroquinoline, tetrahydroquinoline, isoquinoline, dihydroisoquinoline, tetrahydroiso-quinoline, quinolizine, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, imidazopyridine, imidazotriazine, pyrazinopyridazine, acridine, phenanthridine, carbazole, carbazoline, perimidine, phenanthroline
- substituted aryl refers to an aromatic carbocyclic group comprised of at least one aromatic ring or of multiple condensed rings at least one of which being aromatic, wherein the ring(s) are substituted with one or more substituents.
- an aryl group can comprise a substituent(s) selected from: (CH 2 ) n OH, (CH 2 ) n O(C 1 -C 6 )alkyl, (CH 2 ) n O(CH 2 ) n (C 1 -C 6 )alkyl, (CH 2 ) n C(O)(C 0 -C 6 ) alkyl, (CH 2 ) n C(O)O(C 0 -C 6 ) alkyl, (CH 2 ) n OC(O)(C 0 -C 6 ) alkyl, amine, mono- or di-(C 1 -C 6 alkyl) amine wherein the alkyl group on the amine is optionally substituted with 1 or 2 hydroxyl groups or up to three halo (preferably F, Cl) groups, OH, COOH, C 1 -C 6 alkyl, preferably CH 3 , CF 3 , OMe, OCF 3 , NO 2
- carboxyl denotes the group C(O)OR, wherein R is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl or substituted heteroaryl, whereas these generic substituents have meanings which are identical with definitions of the corresponding groups defined herein.
- heteroaryl and “hetaryl” include, without limitation, an optionally substituted quinoline (which may be attached to the pharmacophore or substituted on any carbon atom within the quinoline ring), an optionally substituted indole (including dihydroindole), an optionally substituted indolizine, an optionally substituted azaindolizine (2, 3 or 4-azaindolizine) an optionally substituted benzimidazole, benzodiazole, benzoxofuran, an optionally substituted imidazole, an optionally substituted isoxazole, an optionally substituted oxazole (preferably methyl substituted), an optionally substituted diazole, an optionally substituted triazole, a tetrazole, an optionally substituted benzofuran, an optionally substituted thiophene, an optionally substituted thiazole (preferably methyl and/or thiol substituted), an optionally substituted
- R PRO is H, optionally substituted C 0 -C 6 alkyl or an optionally substituted aryl, heteroaryl or heterocyclic group selected from the group consisting of oxazole, isoxazole, thiazole, isothiazole, imidazole, diazole, oximidazole, pyrrole, pyrollidine, furan, dihydrofuran, tetrahydrofuran, thiene, dihydrothiene, tetrahydrothiene, pyridine, piperidine, piperazine, morpholine, quinoline (each preferably substituted with a C 0 -C 3 alkyl group, preferably methyl or a halo group preferably F or Cl), benzofuran, indolem indolizine, azaindolizine: R PRO1 and R PRO2 are each independently H, an optionally substituted C 0 -C 3 alkyl group or together form a keto group and each n is independently
- arylkyl and heteroarylalkyl refer to groups that comprise both aryl or, respectively, heteroaryl as well as alkyl and/or heteroalkyl and/or carbocyclic and/or heterocycloalkyl ring systems according to the above definitions.
- arylalkyl refers to an aryl group as defined above appended to an alkyl group defined above.
- the arylalkyl group is attached to the parent moiety through an alkyl group wherein the alkyl group is one to six carbon atoms.
- the aryl group in the arylalkyl group may be substituted as defined above.
- heterocycle and “heterocyclic” refer to a cyclic group which contains at least one heteroatom, i.e., O, N or S, and may be aromatic (heteroaryl) or non-aromatic.
- heteroaryl moieties are subsumed under the definition of heterocycle, depending on the context of its use.
- heterocycles include: azetidinyl, benzimidazolyl 1,4-benzodioxanyl, 1,3-benzodioxolyl, benzoxazolyl, benzothiazolyl, benzothienyl, dihydroimidazolyl, dihydropyranyl, dihydrofuranyl, dioxanyl, dioxolanyl, ethyleneurea, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, furyl, homopiperidinyl, imidazolyl, imidazolinyl, imidazolidinyl, indolinyl, indolyl, isoquinolinyl, isothiazolidinyl, isothiazolyl, isoxazolidinyl, isoxazolyl, morpholinyl, naphthyridinyl, oxazolidinyl, oxazolyl,
- Heterocyclic groups can be optionally substituted with a member selected from the group consisting of alkoxy, substituted alkoxy, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aminoacyloxy, oxyaminoacyl, azido, cyano, halogen, hydroxyl, keto, thioketo, carboxy, carboxyalkyl, thioaryloxy, thioheteroaryloxy, thioheterocyclooxy, thiol, thioalkoxy, substituted thioalkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclic, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-substituted alkyl, -SOary
- heterocyclic groups can have a single ring or multiple condensed rings.
- nitrogen heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, morpholino, piperidinyl, tetrahydrofur
- heterocyclic also includes bicyclic groups in which any of the heterocyclic rings is fused to a benzene ring or a cyclohexane ring or another heterocyclic ring (for example, indolyl, quinolyl, isoquinolyl, tetrahydroquinolyl, and the like).
- cycloalkyl includes, without limitation, univalent groups derived from monocyclic or polycyclic alkyl groups or cycloalkanes, as defined herein, e.g., saturated monocyclic hydrocarbon groups having from three to twenty carbon atoms in the ring, including, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
- substituted cycloalkyl includes, without limitation, a monocyclic or polycyclic alkyl group being substituted by one or more substituents, for example, amino, halogen, alkyl, substituted alkyl, carbyloxy, carbylmercapto, aryl, nitro, mercapto, or sulfa, whereas these generic substituent groups have meanings which are identical with definitions of the corresponding groups as defined herein.
- heterocycloalkyl refers to a monocyclic or polycyclic alkyl group in which at least one ring carbon atom of its cyclic structure being replaced with a heteroatom selected from the group consisting of N, O, S, or P.
- substituted heterocycloalkyl refers to a monocyclic or polycyclic alkyl group in which at least one ring carbon atom of its cyclic structure being replaced with a heteroatom selected from the group consisting of N, O, S, or P, and the group contains one or more substituents selected from the group consisting of halogen, alkyl, substituted alkyl, carbyloxy, carbylmercapto, aryl, nitro, mercapto, or sulfa, whereas these generic substituent group have meanings which are identical with definitions of the corresponding groups as defined herein.
- High-Resolution Mass Spectroscopy (HRMS) spectra were registered on Agilent Technologies 6540 UHD Accurate Mass Q-TOF LC-MS system. The purity of all final compounds that were evaluated in biological assays was assessed as >95%, using LC-MS. The analyses were carried out according to the method listed below.
- the mobile phase was a mixture of water (solvent A) and acetonitrile (solvent B), both containing formic acid at 0.1%.
- ARB Androgen Receptor (AR) Binder
- E3LB E3 Ligase Binder
- the human prostate cancer cell line, 22Rv1 has been reported to express a high level of AR-V7.
- 22Rv1 was seeded at 50,000 cells/well on a 24-well plate in quadruplicates and treated with test compound in concentrations ranging up to 20 ⁇ M for four days.
- Standard culture media was RPMI-1640 supplemented with 10% fetal bovine serum.
- the test compound initially was dissolved in DMSO at 50 mM. This stock solution was then diluted as needed for the indicated concentrations. At the end of the four-day period, cells were harvested using 1% trypsin and counted using an automated cell counter.
- Immunoblot was carried out to determine the effect of the test compound on AR-V7.
- 22Rv1 was plated at 200,000 cell/well on a 6-well plate and cultured as described with 10 ⁇ M test compound. After four days of treatment, cells were harvested using a cell scraper and lysed in a standard fashion using SDS. After removing debris via centrifuge, 30 ⁇ g of protein were loaded onto SDS-PAGE gel. After electrophoresis, protein was transferred to a nylon membrane and ECL was carried out using primary antibody against AR-V7 (Thermofisher Scientific, cat #NC0752138). Protein bands were visualized using the commercially available Enhanced Chemiluminescence (ECL) kit (Thermofisher). As shown in FIG. 1 , the results demonstrated a dramatically decreased level of AR-V7 protein.
- ECL Enhanced Chemiluminescence
- Test Compound are tested for in vitro efficacy against various CaP cell lines.
- LNCaP, 22Rv1, VCaP, PC3, and DU145 are obtained from the American Type Culture Collection (ATCC) and maintained in the standard culture media: RPMI-1640 supplemented with 10% fetal bovine serum (FBS).
- LNCaP, 22Rv1, and VCaP are androgen-responsive cell lines, while PC3 and DU145 are not.
- LNCaP, 22Rv1, and VCaP are treated continuously with 10-50 ⁇ M abiraterone, apalutamide, darolutamide, or enzalutamide.
- LNCaP-Abi R LNCaP-Apa R , LNCaP-Daro R , LNCaP-Enz R , VCaP-Abi R , VCaP-Apa R , VCaP-Daro R , VCaP-Enz R , 22Rv1-Abi R , 22Rv1-Apa R , 22Rv1-Daro R , and 22Rv1-Enz R .
- the standard culture media for these SAT-resistant cell lines included 10 ⁇ M of their respective SAT.
- the inhibitors MG132 and Epoxomicin are used for the proteasome inhibitor study.
- the E3 ligase inhibitors Heclin, Nutlin 3a, Thalidomide, and VH298 are used.
- Cell lines obtained from ATCC are confirmed by checking their morphology using optical microscopy, establishing baselines for cell proliferation, verifying species of origin using isoenzymology, and characterizing the cell's DNA fingerprint using short tandem repeat (STR) profiling.
- STR short tandem repeat
- Apoptosis Assay An apoptosis assay is carried out using the Thermo Fisher ApoDETECT Annexin V-FITC kit following the protocol recommended by the vendor. Briefly, after treatment with 1 ⁇ M of Test Compound for 3 to 24 hours, cells are fixed with 80% ethanol and washed with PBS three times. Then, fixed cells are incubated with Annexin V-FITC in PBS solution for 30 minutes at room temperature. After washing three times with PBS, cells are treated with 300 nM DAPI in PBS for 5 minutes at room temperature. Finally, after washing three times with PBS, mounting solution is added and the cells are visualized using immunofluorescence microscopy.
- a TUNEL assay is performed using Promega DeadEnd Fluorometric TUNEL system. After treatment with Test Compound and fixation as described above in the Annexin-V experiment, 100 ⁇ l of equilibration buffer is incubated for 10 min. Then, 50 ⁇ l of TdT reaction mix is added and incubated for 60 min at 37° C. in a humidified chamber. Finally, stop solution is added and samples are mounted on slides using mounting medium. To assess non-specific cytotoxicity, an LDH assay kit is used.
- CaP cells are collected and lysed with the lysis buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na 2 EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na 3 VO 4 , and 1 ⁇ g/ml leupeptin) containing 1 mM phenylmethylsulfonyl fluoride (PMSF). Cell lysates are then centrifuged and protein in the supernatant is quantified.
- lysis buffer 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na 2 EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na 3 VO 4 , and 1 ⁇ g/ml leupept
- samples are incubated with AR-V7, GR, PR, ER ⁇ , AR-FL, ubiquitin, or 3-actin antibodies.
- AR-V7, AR-FL, PR, GR, and ER ⁇ immunoblots, primary antibody is diluted 1:1000 in 5% skim milk.
- 3-actin immunoblot 1:10000 diluted primary antibody is used. All membranes are incubated overnight at 4° C. Following the incubation with appropriate secondary antibody, immunoblots are analyzed using SuperSignal West Femto Maximum Sensitivity Substrate (ThermoFisher).
- mice are then treated daily with Test Compound with or without enzalutamide via the indicated route (intratumoral, intraperitoneal, or oral) for five to six weeks.
- indicated route intraatumoral, intraperitoneal, or oral
- All animals are sacrificed and tumors are harvested and analyzed.
- Statistical significance is calculated using the Student's t-test for paired comparisons of experimental groups and, where appropriate, by Wilcoxon rank sum test, and by 2-way ANOVA. In vitro experiments are repeated a minimum of three times.
- Example 16 Treatment of the AR-V7-expressing CaP cell line 22Rv1 with the Compound of Example 16 (0, 0.01, 0.1, 1 and 10 ⁇ M) for 24 hours, immunoblot demonstrated decreased AR-V7 and AR-FL protein expression levels in 22Rv1 cells starting at concentration as low as 0.1 ⁇ M and 1 ⁇ M, respectively.
- Example 16's effect on AR-V7 and AR-FL protein levels was concentration-dependent and AR-specific, as there was no visible effect on the expression levels of the proteins glucocorticoid receptor (GR), progesterone receptor (PR) a and b, and estrogen receptor alpha (ER).
- GR glucocorticoid receptor
- PR progesterone receptor
- ER estrogen receptor alpha
- the concentration of Compound of Example 16 at which 50% of AR-V7 and AR-FL degraded in 24 hours (DC 50 ) is determined to be 0.37 and 2 ⁇ M, respectively.
- Example 16 decreased the cell count of 22Rv1 in a concentration dependent manner over 6 days (cell counts are approximately 90%, 70% and 65% of control at 0.01, 0.1 and 1 ⁇ M, respectively).
- constructs comprising Example 16's DBD binding motif with its linker (Control 1, C1) and Example 16's VHL domain with its linker (Control 2, C2) are prepared, as shown below:
- Treatment with C1 or C2 does not result in any significant changes in cell count at up to 1 ⁇ M concentration compared to the control (cell counts are 95-105% of control cell counts).
- the annexin-V assay is carried out to assess the effect on apoptosis over a 0 to 48 hours period. Starting approximately three hours after treatment, an increase in annexin-V staining is observed via fluorescence microscopy, and it continues to increase through 48 hours. This result is confirmed by the TUNEL assay. As a negative control, the C1 control is compared, and no change in apoptosis is observed.
- 22Rv1 cells are pretreated for 2 hours with the proteasome inhibitors MG-132 (5 ⁇ M) and epoxomicin (1 ⁇ M) prior to treatment with Compound of Example 16 at 1 ⁇ M. It is found that AR-V7 degradation is completely blocked, as shown by immunoblotting.
- the E3 ubiquitin ligase inhibitors are also examined: VH 298 (VHL inhibitor; 20 ⁇ M), heclin (HECT inhibitor; 10 ⁇ M), nutlin 3a (MDM2 inhibitor; 0.1 ⁇ M), and thalidomide (cereblon inhibitor; 10 ⁇ M). It is found that when 22Rv1 cells are pretreated with each of these inhibitors for two hours prior to incubation with 1 ⁇ M Compound of Example 16, only VH298 pretreatment inhibits AR-V7 degradation.
- SAT agents abiraterone, apalutamide, enzalutamide, and darolutamide.
- LNCaP, VCaP, and 22Rv1 cells are cultured with each of the SAT agents for three to six months until resistance emerges.
- the resulting cells are designated LNCaP-Abi R , LNCaP-Apal R , LNCaP-Darol R , LNCaP-Enz R , VcaP-Abi R , VcaP-Apal R , VcaP-Darol R , VcaP-Enz R , 22Rv1-Abi R , 22Rv1-Apal R , 22Rv1-Darol R , and 22Rv1-Enz R .
- Quantitative PCR demonstrates that all twelve SAT-resistant CaP cell lines express decreased and increased mRNA and protein levels of AR-FL and AR-V7, respectively.
- mice treated with the Compound have a significantly smaller tumor volume at the end of 5 weeks (approximately 500 mm 3 for treatment, and 800 mm 3 for control).
- weight of the mice did not significantly change, suggesting that the Compound does not have major toxicity in mice.
- Tumors are harvested and analyzed at the end of the study period. It is found that immunoblot demonstrates a significant decrease in AR-V7 and AR-FL protein levels in all treated tumors. Similar results are obtained when the Compound of Example 16 is injected intratumorally into VCaP-Enz R xenografts.
- the concentration of Compound at which 50% of AR-V7 and AR-FL is degraded in 24 hours is less than 50 nM and less than 500 nM, respectively.
- the Compounds of Examples 26, 34 and 35 at 10 ⁇ M reduces cell counts by substantially more than 50% after 4 days of treatment of 22Rv1-Enz R cells, an effect substantially blocked by pre-treatment with MG-132 (5 ⁇ M). Similar results are obtained for the Compound of Example 24.
- the Compound of Example 26 substantially reduces tumor mass beginning at around 3 weeks of treatment through 7 weeks of treatment at 8.3 mg/kg and 0.83 mg/kg (tumor mass at 7 weeks, control approx. 1500 mm 3 ; treatment groups ⁇ 600 mm 3 ). No significant changes in animal body mass observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a continuation-in-part application under 35 U.S.C. 111(a), which claims priority to, and the benefit of, U.S. patent application Ser. No. 16/777,294, filed on Jan. 30, 2020, which claims priority to, and the benefit of, U.S. Provisional Application No. 62/798,554, filed on Jan. 30, 2019, the contents of each of which are hereby incorporated by reference in their entireties.
- This invention relates to therapeutic compounds and compositions, and methods for their use in the treatment of various indications, including various cancers. In particular, the invention relates to therapies and methods of treatment for cancers such as prostate cancer.
- Prostate cancer is the most commonly diagnosed malignancy in males in the United States and the second leading cause of male cancer mortality. Numerous studies have shown that the androgen receptor (AR) is central not only to the development of prostate cancer, but also the progression of the disease to the castration resistance state (Taplin, M. E. et al., J. Clin. Oncol. 2003 21:2673-8; and Tilley, W. D. et al., Cancer Res. 1994 54:4096-4102). Thus, effective inhibition of human AR remains one of the most effective therapeutic approaches to the treatment of advanced, metastatic prostate cancer.
- Androgens are also known to play a role in female cancers. One example is ovarian cancer where elevated levels of androgens are associated with an increased risk of developing ovarian cancer (Helzlsouer, K. J. et al., JAMA 1995 274, 1926-1930; Edmondson, R. J. et al., Br. J. Cancer 2002 86, 879-885). Moreover, AR has been detected in a majority of ovarian cancers (Risch, H. A., J. Natl. Cancer Inst. 1998 90, 1774-1786; Rao, B. R. et al., Endocr. Rev. 1991 12, 14-26; Clinton, G. M. et al., Crit. Rev. Oncol. Hematol. 1997 25, 1-9).
- AR belongs to the nuclear hormone receptor family that is activated by androgens such as testosterone and dihydrotestosterone. These androgens, as well as antagonists such as enzalutamide, compete with the androgens that bind to the ligand binding domain (LBD). AR possesses a modular organization characteristic of all nuclear receptors. It is comprised of an N-terminal domain (NTD), a central DNA binding domain (DBD), a short hinge region, and C-terminal domain that contains a hormone ligand binding pocket (the LBD, which also comprises the hormone binding site (HBS)) and the Activation Function-2 (AF2) site (Gao, W. Q. et al., Chem. Rev. 2005 105:3352-3370). The latter represents a hydrophobic groove on the AR surface which is flanked with regions of positive and negative charges—“charge clamps” that are significant for binding AR activation factors (Zhou, X. E. et al., J. Biol. Chem. 2010 285:9161-9171).
- The activation of AR follows a well characterized pathway: in the cytoplasm, the receptor is associated with chaperone proteins that maintain agonist binding conformation of the AR (Georget, V. et al., Biochemistry 2002 41:11824-11831). Upon binding of an androgen, the AR undergoes a series of conformational changes, disassociation from chaperones, dimerization, and translocation into the nucleus (Fang, Y. F. et al., J. Biol. Chem. 1996 271:28697-28702; and Wong, C. I. et al., J. Biol. Chem. 1993 268:19004-19012) where it further interacts with co-activator proteins at the AF2 site (Zhou, X. E. et al. J. Biol. Chem. 2010 285:9161-9171). This event triggers the recruitment of RNA polymerase II and other factors to form a functional transcriptional complex with the AR.
- In castration-resistant prostate cancer (CRPC), drug resistance can manifest through AR-LBD mutations that convert AR-antagonists into agonists or by expression of AR-variants lacking the LBD. AR is a major driver of prostate cancer and inhibition of its transcriptional activity using competitive antagonists such as enzalutamide and apalutamide remains a frontline therapy for prostate cancer management. Another therapy is abiraterone which is an inhibitor of cytochrome P450 17A1 that impairs AR signaling by depleting adrenal and intratumoral testosterone and dihydrotestosterone. Recent work (Antonarakis, E. S. et al., New Engl. J. Med. 2014 37, 1028-1038) has shown that patients on enzalutamide and abiraterone with a splice variant of AR, labelled as AR-V7, had lower PSA response rates, shorter PSA progression-free survival, and shorter overall survival.
- AR-V7 lacks the LBD, which is the target of enzalutamide and testosterone, but AR-V7 remains constitutively active as a transcription factor. Accordingly, it is desirable to investigate other approaches to antagonize the AR receptor as well as AR-V7. The common domain between these two proteins is the DBD and compounds have been identified as discussed in Li, H. et al., J. Med. Chem. 2014 57, 6458-6467 (2014); Dalal, K. et al., Mol. Cancer Ther. 2017 vol. 16, 2281-2291; Xu, R. et al., Chem. Biol. & Drug Design 2018 91(1), 172-180; and WO 2015/120543.
- Several methods are available for the manipulation of protein levels, including bi-functional proteolysis targeting chimeric molecules (PROTACs) which contain a ligand that recognizes the target protein that is linked to a ligand that binds to a specific E3 ubiquitin ligase. The ensuing bifunctional molecule binds to the target protein and the E3 ligase enabling the transfer of ubiquitin to the target protein from the Ligase provided there is a suitable acceptor on the target protein. Another method is the “molecular glue” process whereby the molecule together with the E3 ligase recruit the target protein to the E3 ligase followed by the ubiquitin transfer and degradation of the target (Chopra, R., Sadok, A., Collins, I., Drug Disc Today: Technologies, 2019, 31, 5-13.) In the case of a compound acting as a “molecular glue”, the only requirement is the presence of an E3 ligase binding moiety. After binding to the E3 ligase, the ensuing moiety could recruit the protein to be degraded. The labelling of proteins with ubiquitin is implicated in the protein's turnover by the 26S proteasome.
- Protein ubiquitination is a multi-step process whereby a ubiquitin protein is successively relayed between different classes of enzymes (E1, E2, E3) in order to eventually tag a cellular substrate. Initially, the C-terminal carboxylate of ubiquitin is adenylated by the E1 activating enzyme in an ATP-dependent step. Subsequently, a conserved nucleophilic cysteine residue of the E1 enzyme displaces the AMP from the ubiquitin adenylate resulting in a covalent ubiquitin thioester conjugate. The binding and ensuing adenylation of a second ubiquitin molecule promote the recruitment of an E2 conjugating enzyme to this ternary complex. An active site Cys on the E2 subsequently facilitates the transfer of the covalently linked ubiquitin from the E1 to a Cys residue on the E2 through a trans-thioesterification reaction. Concomitantly, an E3 ligase recruits a specific downstream target protein and mediates the transfer of the ubiquitin from the E2 enzyme to the terminal substrate through either a covalent or non-covalent mechanism. Each ubiquitin is ligated to a protein through either a peptide bond with the N-terminal amino group or an isopeptide bond formed between a side chain F-amino group of a select Lys residue on the target protein and the ubiquitin.
- Deubiquitinating enzymes (DUBs) are enzymes that specifically cleave the ubiquitin protein from the substrate thereby offering additional mechanisms of regulation over the entire labeling pathway. In the current human proteome there are eight known human E1s, about 40 E2s, over 600 E3s and over 100 DUBs. These enzymes are well described in Pavia, S. et al., J. Med. Chem. 2018 61(2), 405-421.
- The E3 ligases originate in three major classes—the RING finger and U-box E3s, the HECT E3s, and the RING/HECT-hybrid type E3s. The E3 ligases are localized in various cell organelles and hence the effectiveness of the E3 ligase ligand depends at least in part on the location of the protein targeted for degradation, assuming that the full molecule is available within the appropriate location in the cell. In addition, for every combination of the target ligand and the ubiquitin recruiting ligand, the linker length and conformational flexibility also contributes to the effectiveness of the degradation molecule. The mechanism depends on the availability of a Lys residue on the surface of the protein close to the targeted protein ligand binding pocket. Ubiquitin binds at Lys residues and hence the “delivery” of ubiquitin for binding at the appropriate Lys influences the effectiveness of the degradation molecule. Crew et al. (US20170327469A1, US20180099940A1) are progressing a proposed treatment for castration-resistant prostate cancer based on bifunctional molecules coupling various E3 ligases to AR antagonists binding at the AR LBD site. Our approach is different in that we do not target the LBD site but the DBD site and, correspondingly, the chemical matter is quite different.
- There exists a continuing need for effective treatments for diseases and conditions that are related to aberrant AR regulation or activity, for example, cancers such as prostate cancer, and Kennedy's Disease. In developing such treatments, it would be desirable to have a molecule which can simultaneously bind AR and an E3 ubiquitin ligase and which also promotes ubiquitination of AR-V7 and perhaps AR, and leads to degradation of AR-V7 and AR by the proteasome.
- The present invention relates to bi-functional compounds which function to recruit endogenous proteins to an E3 ubiquitin ligase for degradation, and methods for using same. More specifically, the present disclosure provides specific proteolysis targeting chimera (PROTAC) molecules which find utility as modulators of targeted ubiquitinization of a variety of polypeptides and other proteins, such as AR, which are then degraded and/or otherwise inhibited by the compounds as described herein.
- In one aspect, these PROTAC molecules comprise an E3 ubiquitin ligase binding moiety (i.e., a ligand for an E3 ubiquitin ligase) linked to a moiety that binds a target protein (i.e., a protein/polypeptide targeting ligand) such that the target protein/polypeptide is placed in proximity to the ubiquitin ligase to effect degradation (and/or inhibition) of that protein. In addition, the description provides methods for using an effective amount of the compounds described herein for the treatment or amelioration of a disease condition including cancer, e.g., prostate cancer, and Kennedy's Disease.
- Suitable ligands that bind to the E3 ubiquitin ligase include cereblon binders such as immunomodulatory imide drugs (IMiDs) including thalidomide, pomalidomide, and lenalidomide (Deshales, R. J., Nature Chem Biol. 2015 11, 634-635), and analogs or derivatives thereof. The IMiDs themselves act as “molecular glues” and therefore have been shown to recruit a different set of proteins for degradation (reference). In addition, we have uncovered an intermediate molecule that acts via the “molecular glue” mechanism. Other suitable E3 ubiquitin ligase binders are E3 CRL2VHL compounds, also called Von-Hippel-Lindau or VHL ligands, the cellular inhibitor of apoptosis protein (IAP) as discussed in Shibata, N. et al., J. Med. Chem., 2018 61(2), 543-575. Binders of the E3 ligase Mouse Double Minute 2 (MDM2) comprise the fourth class of E3 Ligase Binders (E3LBs) that are utilized (Skalniak, L., et al., Expert Opin. Ther, Patents, 2019, 29, 151-170).
- In one aspect, there are provided compositions comprising such compounds which function to recruit proteins including AR-V7 and AR for targeted ubiquitination and degradation. In some embodiments, the structure of such compounds can be depicted as:
-
ARB-E3LB - wherein ARB is an AR binding moiety and E3LB is a ubiquitin ligase binding moiety.
- In some embodiments, the compounds may further comprise a chemical linker (“L”). The structure of such compounds can be depicted as:
-
ARB-L-E3LB - wherein ARB is an AR binding moiety, L is a bond or linker moiety, and E3LB is a ubiquitin ligase binding moiety.
- In an additional aspect, the description provides therapeutic compositions comprising an effective amount of a compound as described herein or pharmaceutically acceptable salt form thereof, and a pharmaceutically acceptable carrier. The therapeutic compositions modulate protein degradation in a patient or subject, for example, an animal such as a human, and can be used for treating or ameliorating disease states or conditions which are modulated through the degraded protein. In certain embodiments, the therapeutic compositions as described herein may be used to effectuate the degradation and/or inhibition of proteins of interest for the treatment or amelioration of a disease, e.g., cancer.
- In another aspect, the present disclosure provides a method of ubiquitinating/degrading a target protein in a cell. In certain embodiments, the method comprises administering a bi-functional compound as described herein comprising an ARB moiety and a E3LB moiety, preferably linked through a linker moiety, as otherwise described herein, wherein the E3LB moiety is coupled to the ARB moiety and wherein the E3LB moiety recognizes an E3 ubiquitin ligase and the ARB moiety recognizes the target protein such that degradation of the target protein occurs when the target protein is placed in proximity to the ubiquitin ligase, thus resulting in degradation/inhibition of the effects of the target protein and the control of protein levels. The control of protein levels afforded by the present disclosure provides treatment of a disease state or condition, which is modulated through the target protein by lowering the level of that protein in the cells of a patient.
- In another aspect, the description provides methods for treating or ameliorating a disease, disorder or symptom thereof in a subject or a patient, e.g., an animal such as a human, comprising administering to a subject in need thereof a pharmaceutical composition comprising an effective amount, e.g., a therapeutically effective amount, of a compound as described herein or pharmaceutically acceptable salt form thereof, and a pharmaceutically acceptable carrier, wherein the composition is effective for treating or ameliorating the disease or disorder or symptom thereof in the subject.
- In another aspect, the description provides methods for identifying the effects of the degradation of proteins of interest in a biological system using compounds according to the present disclosure.
- The preceding general areas of utility are given by way of example only and are not intended to be limiting on the scope of the present disclosure and appended claims. Additional objects and advantages associated with the compositions, methods, and processes of the present disclosure will be appreciated by one of ordinary skill in the art in light of the instant claims, description, and examples. For example, the various aspects and embodiments of the invention may be utilized in numerous combinations, all of which are expressly contemplated by the present description. These additional advantages objects and embodiments are expressly included within the scope of the present disclosure. The publications and other materials used herein to illuminate the background of the invention, and in particular cases, to provide additional details respecting the practice, are incorporated by reference. Where applicable or not specifically disclaimed, any one of the embodiments described herein are contemplated to be able to combine with any other one or more embodiments, even though the embodiments are described under different aspects of the disclosure.
-
FIG. 1 is an immunoblot of certain exemplified compounds. - The following is a detailed description provided to aid those skilled in the art in practicing the present invention. Those of ordinary skill in the art may make modifications and variations in the embodiments described herein without departing from the spirit or scope of the present disclosure. All publications, patent applications, patents, figures and other references mentioned herein are expressly incorporated by reference in their entirety.
- The present description relates to the surprising and unexpected discovery that an E3 ubiquitin ligase protein can ubiquitinate a target protein, in particular the androgen receptor of a slice variant of AR which lacks the LBD, labelled as AR-V7, once the E3 ubiquitin ligase protein and the target protein are brought into proximity by a chimeric construct (e.g., a PROTAC) as described herein, in which a moiety that binds the E3 ubiquitin ligase protein is coupled, e.g., covalently, to a moiety that binds the androgen receptor target protein. Accordingly, the present description provides compounds, compositions comprising the same, and associated methods of use for ubiquitination and degradation of a chosen target protein, e.g., androgen receptor AR-V7.
- In one aspect, the present disclosure provides compounds useful for regulating protein activity. The composition comprises a ubiquitin pathway protein binding moiety (preferably for an E3 ubiquitin ligase, alone or in complex with an E2 ubiquitin conjugating enzyme which is responsible for the transfer of ubiquitin to targeted proteins) according to a defined chemical structure and a protein targeting moiety which are linked or coupled together, preferably through a linker, wherein the ubiquitin pathway protein binding moiety recognizes a ubiquitin pathway protein and the targeting moiety recognizes a target protein (e.g., androgen receptor). Such compounds may be referred to herein as PROTAC compounds or PROTACs.
- In one aspect, the PROTACs of the present invention comprise an E3 ubiquitin ligase binding moiety (“E3LB”), and a moiety that binds a target protein (i.e. a protein/polypeptide targeting ligand) that is an AR binding moiety (“ARB”). In this embodiment, the structure of the bi-functional compound can be depicted as:
-
ARB-E3LB - where ARB is an AR binding moiety as described herein, and E3LB is an E3 ligase binding moiety as described herein
- In certain embodiments the bi-functional compound further comprises a chemical linker (“L”). In these embodiments, the structure of the bi-functional compounds can be depicted as:
-
ARB-L-E3LB - where ARB is an AR binding moiety as described herein, E3LB is an E3 ligase binding moiety as described herein, and L is a chemical linker moiety, e.g., a linker as described herein, or optionally a bond, that links the ARB and E3LB moieties.
- The respective positions of the ARB and E3LB moieties as well as their number as illustrated herein is provided by way of example only and is not intended to limit the compounds in any way. As would be understood by the skilled artisan, the bi-functional compounds as described herein can be synthesized such that the number and position of the respective functional moieties can be varied as desired. In certain embodiments, the compounds as described herein comprise multiple E3LB moieties, multiple ARB moieties, multiple chemical linkers, or a combination thereof.
- It will be understood that the general structures are exemplary and the respective moieties can be arranged spatially in any desired order or configuration, e.g., ARB-L-E3LB, and E3LB-L-ARB, respectively. The E3LB group and ARB group may be covalently linked to the linker group through any covalent bond which is appropriate and stable to the chemistry of the linker. It will be further understood that for all compounds described herein, one or more hydrogen atoms may be replaced with an equivalent number of deuterium atoms.
- In certain embodiments, the ARB may be selected from the following structures:
- wherein L is the linker in the general formula above;
- A is 3-7 membered alicyclic with 0-4 heteroatoms or aryl, heteroaryl independently substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CH2F, CHF2, CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl), C1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, C2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, or C2-6 alkynyl;
- B is aryl, heteroaryl independently substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl), C1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, C2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, or C2-6 alkynyl, wherein the linker L is attached to B; and
- R1 are independently H, OH, CONH2, CONR2R3, SONH2, SONR2R3, SO2NH2, SO2NR2R3, NHCO C1-3 alkyl (optionally substituted by 1 or more halo), NR2COC1-3 alkyl (optionally substituted by 1 or more halo), NR2SO2C1-3 alkyl (optionally substituted by 1 or more halo), NR2SOC1-3 alkyl (optionally substituted by 1 or more halo), CN, C≡CH, NH2, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CHF2, CH2F, CF3, halo, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl) or, if applicable, taken together with an R1 on an adjacent bonded atom, together with the atoms they are attached to, form a 3-6 membered ring alicyclic, aryl, or heteroaryl system containing 0-2 heteroatoms, and R2, R3 is independently H, halo, C1-6 alkyl (optionally substituted by 1 or more F) or taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms.
- In one aspect, A is:
- wherein R1 is described above.
- In another aspect, A is: R
- wherein R1 is described above and X=C or N.
- In yet another aspect, B is: R
- wherein L is the linker as described above, and R1 is described above.
- In still another aspect, B is:
- wherein L is the linker as described above, and R1 is described above.
- In yet another aspect, B is:
- wherein L is the linker as described above, and R1 is described above.
- The linker group (L) comprises a chemical structural unit represented by the formula: -Aq-, in which q is an integer greater than 1; and A is independently selected from the group consisting of a bond, CRL1RL2, O, S, SO, SO2, NRL3 SO2NRL3, SONRL3, CONRL3, NRL3CONRL4, NRL3SO2NRL4, CO, CRL1═CRL2, C≡C, SiRL1RL2, P(O)RL1, P(O)ORL1, NRL3C(═NCN)NRL4, NRL3C(═NCN), NRL3C(═CNO2)NRL4, C3-11 cycloaklyl optionally substituted with 0-6 RL1 and/or RL2 groups, and heteroaryl optionally substituted with 0-6 RL1 and/or RL2 groups, wherein RL1, RL2, RL3, RL4 and RL5 are each independently selected from the group consisting of H, halo, C1-8 alkyl, OC1-8 alkyl, SC1-8 alkyl, NHC1-8 alkyl, N(C1-8 alkyl)2, C3-11 cycloalkyl, aryl, heteroaryl, C3-11 heterocyclyl, OC1-8 cycloalkyl, SC1-8 cycloalkyl, NHC1-8 cycloalkyl, N(C1-8cycloalkyl)2, N(C1-8 cycloalkyl)(C1-8 alkyl), OH, NH2, SH, SO2C1-8 alkyl, P(O)(OC1-8 alkyl)(C1-8 alkyl), P(O)(OC1-8 alkyl)2, CC—C1-8 alkyl, CCH, CH═CH(C1-8 alkyl), C(C1-8 alkyl)═CH(C1-8 alkyl), C(C1-8 alkyl)═C(C1-8 alkyl)2, Si(OH)3, SiC(1-8 alkyl)3, Si(OH)(C1-8 alkyl)2, COC1-8 alkyl, CO2H, CN, CF3, CHF2, CH2F, NO2, SF5, SO2NHC1-8 alkyl, SO2NHC1-8 alkyl, SO2N(C1-8 alkyl)2, SONHC1-8 alkyl, SON(C1-8 alkyl)2, CONHC1-8 alkyl, CON(C1-8 alkyl)2, N(C1-8 alkyl)CONH(C1-8 alkyl), N(C1-8 alkyl)CON(C1-8 alkyl)2, NHCONH(C1-8 alkyl), NHCON(C1-8 alkyl)2, NHCONH2, N(C1-8 alkyl)SO2NH(C1-8 alkyl), N(C1-8 alkyl)SO2N(C1-8 alkyl)2, NHSO2NH(C1-8 alkyl), NHSO2N(C1-8 alkyl)2 and NHSO2NH2. RL1 and RL2 each, independently can be linked to another A group to form a cycloalklyl and or heterocyclyl moiety that can be further substituted with 0-4 RL5 groups.
- In certain embodiments, the E3LB moiety may be selected from a variety of moieties, including the following structures:
-
- R1 is described above;
- R4 is selected from H, alkyl (linear, branched, optionally substituted with R5), OH, R5OCOOR6, R5OCONR5R7, CH2-heterocyclyl optionally substituted with R5, or benzyl optionally substituted with R5;
- R5 and R7 are each independently a bond, H, alkyl (linear, branched), cycloalkyl, aryl, hetaryl heterocyclyl, or —C(═O)R6 each of which is optionally substituted; and
- R6 is selected from CONR5R7, OR5, NR5R7, SR5, SO2R5, SO2NR5R7, CR5R7, CR5NR5R7, aryl, hetaryl, alkyl (linear, branched, optionally substituted), cycloalkyl, heterocyclyl, P(O)(OR5)R7, P(O)R5R7, OP(O)(OR5)R7, OP(O)R5R7, Cl, F, Br, I, CF3, CHF2, CH2F, CN, NR5SO2NR5R7, NR5CONR5R7, CONR5COR7, NR5C(═N═CN)NR5R7, C(═N—CN)NR5R7, NR5C(—N═CN)R7, NR5C(═C—NO2)NR5R7, SO2NR5COR7, NO2, CO2R5, C(C═N—OR5)R7, CR5, CR5R7, CCR5, S(C═O)(C═N—R5)R7, SF5, R5NR5R7, (R5O)nR7, or OCF3, where n is an integer from 1 to 10.
- The E3LB moiety may also be selected from E3LB-e and E3LB-f as described below:
- wherein L is the linker previously described; R8 is H, a straight chain or branched C1-8 alkyl, C3-6 cycloalkyl, halo, CFH2, CF2H, or CF3; and R9 is a H, halo, 4-methylthiazol-5-ylm, or oxazol-5-yl.
- wherein L is the linker previously described and R11 is independently optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted heterocyclyalkyl wherein the substituents are alkyl, halogen, or OH.
- The E3LB moiety may also be selected from E3LB-g, E3LB-h, E3LB-i, E3LB-j, and E3LB-k as described below:
- wherein L is the linker previously described;
- R10 are independently optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted arylalkyl, optionally substituted aryl, optionally substituted thioalkyl wherein the substituents attached to the S atom of the thioalkyl are optionally substituted alkyl, optionally substituted branched alkyl, optionally substituted heterocyclyl, (CH2)vCOR14, CH2CHR15COR16 or CH2R17, where v=1 to 3; R14 and R16 are independently selected from OH, NR18R19, or —OR20; R15 is —NR18R19; R17 is optionally substituted aryl or optionally substituted heterocyclyl, where the optional substituents include alkyl and halogen; R18 is hydrogen or optionally substituted alkyl; R19 is hydrogen, optionally substituted alkyl, optionally substituted branched alkyl, optionally substituted arylalkyl, optionally substituted heterocyclyl, —CH2(OCH2CH2O)wCH3, or a polyamine chain, where w=1 to 8; and optional substituents may be OH, halo, or NH2;
- R12 and R13 are independently hydrogen, optionally substituted alkyl, or optionally substituted cycloalkyl;
- X is CH2, N, or O; Y is S or O;
- D is a bond (direct bond between X and L) or a ring which may be aryl, heteroaryl independently substituted by 1 or more halo, hydroxyl, nitro, CN, C═CH, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl), C1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, C2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, or C2-6 alkynyl. R2, R3 is independently H, halo, C1-6 alkyl (optionally substituted by 1 or more F) or taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms; and
- R20 is selected from the group consisting of:
- wherein A is a C4-8 aliphatic ring, and B is an aryl or N-containing heteroaryl and optionally substituted by alkyl or haloalkyl.
- Optionally, E3LB may be selected from the MDM2 class of E3 ligases represented by E3LB-1 below.
- wherein R22 is independently aryl or heteroaryl optionally substituted by halogen, mono-, di or tri-substituted halogen;
- R21 is independently aryl or heteroaryl, optionally substituted by mono-, di- or tri-substituted halogen, CN, ethynyl, cyclopropyl, methyl, ethyl, isopropyl, methoxy, ethoxy, isopropoxy, other C1-6 alkyl, other C1-6 alkenyl and C1-6 alkynyl;
- R23 is selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, substituted cycloalkyl, alkenyl and substituted cycloalkenyl;
- R24 is H, alkyl, aryl, substituted alkyl, cycloalkyl, aryl substituted cycloalkyl and alkoxy substituted cycloalkyl; and
- E is para-substituted aryl, single or multiple N containing heteroaryl optionally substituted by —OCH3, —OCH2CH3 and halogen. L is the linker previously defined above.
- The E3LB moiety is inclusive of all cereblon binders such as immunomodulatory imide drugs (IMiDs) including thalidomide, pomalidomide, and lenalidomide, and analogs or derivatives thereof, as well as E3 CRL21L compounds, the cellular inhibitor of apoptosis protein (IAP), and the mouse double minute 2 (MDM2) binders.
- In certain embodiments, the compounds as described herein comprise a plurality of E3LB moieties and/or a plurality of ARB moieties. In certain additional embodiments, the compounds as described herein comprise multiple ARB moieties (targeting the same or different locations of the AR), multiple E3LB moieties, one or more moieties that bind specifically to another E3 ubiquitin ligase, e.g., VHL, IAP, MDM2, or a combination thereof. In any of the aspects of embodiments described herein, the ARB moieties, E3LB moieties, and other moieties that bind specifically to another E3 ubiquitin ligase can be coupled directly or via one or more chemical linkers or a combination thereof. In additional embodiments, where a compound has multiple moieties that bind specifically to another E3 ubiquitin ligase, the moieties can be for the same E3 ubiquitin ligase or each respective moiety can bind specifically to a different E3 ubiquitin ligase. In those embodiments where a compound has multiple ARB moieties, such moieties may be the same or, optionally, different.
- In certain embodiments, where the compound comprises multiple EMLB moieties, the EMLB moieties are identical or, optionally, different. In additional embodiments, the compound comprising a plurality of E3LB moieties further comprises at least one ARB moiety coupled to a EMLB moiety directly or via a chemical linker (“L”) or both. In certain additional embodiments, the compound comprising a plurality of E3LB moieties further comprises multiple ARB moieties. In still additional embodiments, the ARB moieties are the same or, optionally, different.
- In certain embodiments, the compound is selected from the group consisting of the exemplary compounds as described below, and salts and polymorphs thereof:
-
Example 1 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(6-((2-(2,6-dioxopiperidin- 3-yl)-l,3-dioxoisoindolin-4- yl)amino)hexyl)acetamide Example 2 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(8-((2-(2,6-dioxopiperidin- 3-yl)-l,3-dioxoisoindolin-4- yl)amino)octyl)acetamide Example 3 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(10-((2-(2,6- dioxopiperidin- 3-yl)-l,3-dioxoisoindolin-4- yl)amino)decyl)acetamide Example 4 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(2-(2-(2-((2-(2,6- dioxopiperidin-3-yl)-l,3-dioxoisoindolin-4- yl)amino)ethoxy)ethoxy)ethyl)acetamide Example 5 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(2-(2-(2-(2-((2-(2,6- dioxopiperidin-3-yl)-l,3-dioxoisoindolin-4- yl)amino)ethoxy)ethoxy)ethoxy)ethyl) acetamide Example 6 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(14-((2-(2,6- dioxopiperidin- 3-yl)-1,3-dioxoisoindolin-4-yl)amino)-3,6,9, 12-tetraoxatetradecyl)acetamide Example 7 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(6-(2-((2-(2,6- dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4- yl)oxy)acetamido)hexyl)acetamide Example 8 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(8-(2-((2-(2,6- dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4- yl)oxy)acetamido)octyl)acetamide Example 9 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(10-(2-((2-(2,6- dioxopiperidin-3-yl)-l,3-dioxoisoindolin-4- yl)oxy)acetamido)decyl)acetamide Example 10 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(2-(2-(2-(2-((2-(2,6- dioxopiperidin-3-yl)-1,3-dioxoisoindolin- 4-yl)oxy)acetamido)ethoxy)ethoxy)ethyl) acetamide Example 11 2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-N-(l-((2-(2,6-dioxopiperidin- 3-yl)-1,3-dioxoisoindolin-4-yl)oxy)-2-oxo- 6,9,12-trioxa-3-azatetradecan-14- yl)acetamide Example 12 4-((2-(2-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)ethoxy)ethoxy)ethyl)amino)-2- (2,6-dioxopiperidin-3-yl)isoindoline-1,3- dione Example 13 4-((2-(2-(2-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)ethoxy)ethoxy)ethoxy)ethyl) amino)-2-(2,6-dioxopiperidin-3-yl) isoindoline-l,3-dione Example 14 N-(14-(2,3-difluoro-6-(2- morpholinothiazol- 4-yl)phenoxy)-3,6,9,12-tetraoxatetradecyl)- 2-((2-(2,6-dioxopiperidin-3-yl)-l,3- dioxoisoindolin-4-yl)oxy)acetamide Example 15 (2S,4R)-l-((S)-2-(4-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)acetamido)butanamido)-3,3- dimethylbutanoyl)-4-hydroxy-N-((S)-l-(4- (4-methylthiazol-5-yl)phenyl)ethyl) pyrrolidine-2-carboxamide Example 16 (2S,4R)-l-((S)-2-(5-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)acetamido)pentanamido)-3,3- dimethylbutanoyl)-4-hydroxy-N-((S)-l-(4- (4-methylthiazol-5-yl)phenyl)ethyl) pyrrolidine-2-carboxamide Example 17 (2S,4R)-l-((S)-2-(6-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)acetamido)hexanamido)-3,3- dimethylbutanoyl)-4-hydroxy-N-((S)-l-(4- (4-methylthiazol-5-yl)phenyl)ethyl) pyrrolidine-2-carboxamide Example 18 (2S,4R)-l-((S)-2-(7-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)acetamido)heptanamido)-3,3- dimethylbutanoyl)-4-hydroxy-N-((S)-l-(4- (4-methylthiazol-5-yl)phenyl)ethyl) pyrrolidine-2-carboxamide Example 19 (2S,4R)-l-((S)-2-(2-(3-(2-(2,3-difluoro-6- (2-morpholinothiazol-4- yl)phenoxy)acetamido)propoxy)acetamido)- 3,3-dimethylbutanoyl)-4-hydroxy-N-((S)-l- (4-(4-methylthiazol-5- yl)phenyl)ethyl)pyrrolidine-2-carboxamide Example 20 (2S,4R)-l-((S)-2-(ter/-butyl)-14-(2,3- difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)-4,13-dioxo-6,9-dioxa-3,12- diazatetradecanoyl)-4-hydroxy-N-((S)-l-(4- (4-methylthiazol-5- yl)phenyl)ethyl)pyrrolidine-2-carboxamide Example 21 (2S,4R)-l-((S)-2-(8-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)octanamido)-3,3- dimethylbutanoyl)-4-hydroxy-N-((S)-l-(4- (4-methylthiazol-5-yl)phenyl)ethyl) pyrrolidine-2-carboxamide Example 22 (2S,4R)-N-((S)-3-((4-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)acetamido)butyl)amino)-l-(4- (4-methylthiazol-5-yl)phenyl)-3- oxopropyl)- l-((S)-2-(1-fluorocyclopropane-l- carboxamido)-3,3-dimethylbutanoyl)-4- hydroxypyrrolidine-2-carboxamide Example 23 (2S,4R)-N-((S)-3-((6-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)acetamido)hexyl)amino)-l-(4- (4-methylthiazol-5-yl)phenyl)-3- oxopropyl)- l-((S)-2-(1-fluorocyclopropane-l- carboxamido)-3,3-dimethylbutanoyl)-4- hydroxypyrrolidine-2-carboxamide Example 24 (S)-l-((S)-2-cyclohexyl-2-((S)-2- (methylamino)propanamido)acetyl)-N-((S)- l-((2-(2-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)ethoxy)ethoxy)ethyl)amino)-l- oxo-3,3-diphenylpropan-2-yl)pyrrolidine-2- carboxamide Example 25 (S)-l-((S)-2-cyclohexyl-2-((S)-2- (methylamino)propanamido)acetyl)-N- ((S)-l- ((4-(2-(2,3-difluoro-6-(2- morpholinothiazol- 4-yl)phenoxy)acetamido)butyl)amino)-l- oxo-3,3-diphenylpropan-2-yl)pyrrolidine- 2-carboxamide Example 26 (S)-l-((S)-2-cyclohexyl-2-((S)-2- (methylamino)propanamido)acetyl)-N- ((S)-l- ((6-(2-(2,3-difluoro-6-(2- morpholinothiazol- 4-yl)phenoxy)acetamido)hexyl)amino)-l- oxo-3,3-diphenylpropan-2-yl)pyrrolidine- 2-carboxamide Example 27 (2R,3S,4R,5S)-3-(3-chloro-2- fluorophenyl)-4- (4-chloro-2-fluorophenyl)-4-cyano-N-(4- ((2-(2-(2-(2,3-difluoro-6-(2-morpholino- thiazol-4-yl)phenoxy)ethoxy)ethoxy) ethyl)carbamoyl)-2-methoxyphenyl)-5- neopentyl-pyrrolidine-2-carboxamide Example 28 (2R,3S,4R,5S)-3-(3-chloro-2- fluorophenyl)-4- (4-chloro-2-fluorophenyl)-4-cyano-N-(4- ((4- (2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)acetamido)butyl)carbamoyl)-2- methoxyphenyl)-5-neopentylpyrrolidine-2- carboxamide Example 29 (2R,3S,4R,5S)-3-(3-chloro-2- fluorophenyl)-4- (4-chloro-2-fluorophenyl)-4-cyano-N-(4- ((6- (2-(2,3-difluoro-6-(2-morpholinothiazol-4- yl)phenoxy)acetamido)hexyl)carbamoyl)-2- methoxyphenyl)-5-neopentylpyrrolidine-2- carboxamide Example 30 N-(5-(((S)-l-((2S,4R)-4-hydroxy-2-(((S)-l- (4-(4-methylthiazol-5- yl)phenyl)ethyl)carbamoyl)pyrrolidin-l-yl)- 3,3-dimethyl-l-oxobutan-2-yl)amino)-5- oxopentyl)-2-morpholinobenzo[d]thiazole- 4-carboxamide Example 31 N-(6-((S)-2-((S)-l-((S)-2-cyclohexyl-2-((S)- 2-(methylamino)propanamido)acetyl) pyrrolidin e-2-carboxamido)-3,3- diphenylpropanamido)hexyl)-2- morpholinobenzo[d]thiazole-4- carboxamide Example 32 N-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3- dioxoisoindolin-4-yl)amino)hexyl)-l-(2- morpholinothiazol-4-yl)-1H-imidazole-4- carboxamide Example 33 2,5-dibromo-N-(6-((2-(2,6- dioxopiperidin-3- yl)-1,3-dioxoisoindolin-4-yl)amino)hexyl)- l-(2-morpholinothiazol-4-yl)-1H-imidazole- 4-carboxamide Example 34 4-((10-aminodecyl)amino)-2-(2,6- dioxopiperidin-3-yl)isoindoline-1,3-dione hydrochloride Example 35 (S)-7-(2-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)ethoxy)ethoxy)-2-((S)-3,3- dimethyl-2-((S)-2- (methylamino)propanamido)butanoyl)-N- ((R)-1,2,3,4-tetrahydronaphthalen-l-yl)- l,2,3,4-tetrahydroisoquinoline-3- carboxamidedihydrochloride Example 36 (S)-7-(2-(2-(2-(2,3-difluoro-6-(2- morpholinothiazol-4- yl)phenoxy)ethoxy)ethoxy)ethoxy)-2-((S)- 3,3-dimethyl-2-((S)-2- (methylamino)propanamido)butanoyl)-N- ((R)-1,2,3,4-tetrahydronaphthalen-l-yl)- l,2,3,4-tetrahydroisoquinoline-3- carboxamidedihydrochloride - In one aspect, the disclosure provides compounds of formula (I):
- which is referred to as Androgen Receptor Binder-Linker-E3 Ligase Binder (I). It is understood that the terms “Androgen Receptor Binder,” “Androgen Receptor Binding Moiety” and “AR Binding Moiety” refer a molecular structure which generally binds successfully to androgen receptor protein, recognizing that in different people androgen receptors will not have the identical amino acid sequence, and thus, the strength of binding may vary across different particular AR sequences. In further embodiments of this aspect, the present disclosure provides:
-
- 1.1 A compound having a chemical structure ARB-L-E3LB or ARB-Link-E3LB, wherein ARB is an AR binding moiety that does not bind to a ligand binding domain, E3LB is an E3 ligase binding moiety, and L or Link is a linker coupling the AR binding moiety to the E3 ligase binding moiety.
- 1.2 Compound 1.1, wherein the AR binding moiety binds to one more of AR splice variants V1 to V15, for example, to AR splice variant V7 (AR-V7).
- 1.3 Compound 1.1 or 1.2, wherein the AR binding moiety is selected from:
-
-
- wherein:
- A is 3-7 membered alicyclic with 0-4 heteroatoms (e.g., morpholinyl) or aryl, heteroaryl independently substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CH2F, CHF2, CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl), C1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, C2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, or C2-6 alkynyl;
- B is aryl (e.g., phenyl), heteroaryl (e.g., imidazolyl) independently substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl), C1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, C2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, or C2-6 alkynyl, wherein the linker L is attached to B; and
- R1 is each independently H, OH, CONH2, CONR2R3, SONH2, SONR2R3, SO2NH2, SO2NR2R3, NHCO—C1-3 alkyl (optionally substituted by 1 or more halo), NR2COC1-3 alkyl (optionally substituted by 1 or more halo), NR2SO2C1-3 alkyl (optionally substituted by 1 or more halo), NR2SOC1-3 alkyl (optionally substituted by 1 or more halo), CN, C═CH, NH2, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CHF2, CH2F, CF3, halo, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl) or, if applicable, taken together with an R1 on an adjacent bonded atom, together with the atoms they are attached to, form a 3-6 membered ring alicyclic, aryl, or heteroaryl system containing 0-2 heteroatoms, and R2, R3 is independently H, halo, C1-6 alkyl (optionally substituted by 1 or more F) or taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms.
- wherein:
- 1.4 Compound 1.3, wherein A is:
-
-
- wherein X is CH or N.
- 1.5 Compound 1.4 or 1.5, wherein B is:
-
- 1.6 Compound 1.1 or 1.2, wherein the compound has an AR binding moiety as provided in a structure selected from the group consisting of:
-
-
- wherein:
- Ring1 is 3-7 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, CN, C≡CH, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, or C2-6 alkynyl, bridged or spiro, bicyclic rings with 0-4 heteroatoms and substituted by 1 or more halo, CN, C≡CH, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, C2-6 alkynyl, or
- wherein:
-
-
-
-
- Ring2 is aryl, 2-benzyloxy-3,4difluoro, heteroaryl independently substituted by 1 or more halo, hydroxyl, CN, C≡CH, NR102R103, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), C1-6 alkyl (linear branched, optionally substituted by 1 or more halo, C1-6 alkoxyl), C1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, C2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted with 1 or more halo, hydroxyl, CN, C≡CH, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, or C2-6 alkynyl, wherein R102 and R103 are independently H, halo, C1-6 alkyl (optionally substituted by 1 or more F) or, taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms,
-
-
-
-
-
- R101 is independently H, OH, CONH2, CONR102R103, SONH2, SONR102R103, SO2NH2, SO2NR102R103, NHCO—C1-3 alkyl (optionally substituted by 1 or more halo), NR102COC1-3 alkyl (optionally substituted by 1 or more halo), NR2SO2C1-3 alkyl (optionally substituted by 1 or more halo), NR102SOC1-3 alkyl (optionally substituted by 1 or more halo), CN, C≡CH, NH2, NR102R103, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CHF2, CH2F, CF3, halo, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl) or, taken together with an R101 on an adjacent bonded atom, together with the atoms they are attached to, form a 3-6 membered ring alicyclic, aryl, or heteroaryl system containing 0-2 heteroatoms, wherein R102 and R103 are independently H, halo, C1-6 alkyl (optionally substituted by 1 or more F) or, taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms.
-
- 1.7 Any preceding compound, wherein the linker (“L” or “Link”) comprises a chemical structure represented by -Aq-, in which q is an integer greater than 1, and A is independently selected from the group consisting of a bond, CRL1RL2, O, S, SO, SO2, NRL3, SO2NRL3, SONRL3, CONRL3, NRL3CONRL4, NRL3SO2NRL4, CO, CRL1═CRL2, C≡C, SiRL1RL2, P(O)RL1, P(O)ORL1, NRL3C(═NCN)NRL4, NRL3C(═NCN), NRL3C(═CNO2)NRL4, C3-11 cycloaklyl (optionally substituted with 0-6 RL1 and/or RL2 groups), and heteroaryl (optionally substituted with 0-6 RL1 and/or RL2 groups), wherein RL1, RL2, RL3, RL4 and RL5 are each independently selected from the group consisting of H, halo, C1-8 alkyl, OC1-8 alkyl, SC1-8 alkyl, NHC1-8 alkyl, N(C1-8 alkyl)2, C3-11 cycloalkyl, aryl, heteroaryl, C3-11 heterocyclyl, OC1-8 cycloalkyl, SC1-8 cycloalkyl, NHC1-8 cycloalkyl, N(C1-8cycloalkyl)2, N(C1-8 cycloalkyl)(C1-8 alkyl), OH, NH2, SH, SO2C1-8 alkyl, P(O)(OC1-8 alkyl)(C1-8 alkyl), P(O)(OC1-8 alkyl)2, CC—C1-8 alkyl, CCH, CH═CH(C1-8 alkyl), C(C1-8 alkyl)═CH(C1-8 alkyl), C(C1-8 alkyl)═C(C1-8 alkyl)2, Si(OH)3, SiC(1-8 alkyl)3, Si(OH)(C1-8 alkyl)2, COC1-8 alkyl, CO2H, CN, CF3, CHF2, CH2F, NO2, SF5, SO2NHC1-8 alkyl, SO2NHC1-8 alkyl, SO2N(C1-8 alkyl)2, SONHC1-8 alkyl, SON(C1-8 alkyl)2, CONHC1-8 alkyl, CON(C1-8 alkyl)2, N(C1-8 alkyl)CONH(C1-8 alkyl), N(C1-8 alkyl)CON(C1-8 alkyl)2, NHCONH(C1-8 alkyl), NHCON(C1-8 alkyl)2, NHCONH2, N(C1-8 alkyl)SO2NH(C1-8 alkyl), N(C1-8 alkyl)SO2N(C1-8 alkyl)2, NHSO2NH(C1-8 alkyl), NHSO2N(C1-8 alkyl)2 and NHSO2NH2, and wherein RL1 and RL2 each, independently may be linked to another A group to form a cycloalkyl and or heterocyclyl moiety that can be further substituted with 0-4 RL5 groups.
- 1.8 Any preceding compound, wherein the linker (e.g., “Link”) comprises a structure selected from the group consisting of:
-
-
- 1.9 Any preceding compound, wherein the E3 ligase binding moiety comprises a structure selected from the group consisting of:
- R1 is each independently H, OH, CONH2, CONR2R3, SONH2, SONR2R3, SO2NH2, SO2NR2R3, NHCO—C1-3 alkyl (optionally substituted by 1 or more halo), NR2COC1-3 alkyl (optionally substituted by 1 or more halo), NR2SO2C1-3 alkyl (optionally substituted by 1 or more halo), NR2SOC1-3 alkyl (optionally substituted by 1 or more halo), CN, C═CH, NH2, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CHF2, CH2F, CF3, halo, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl) or, if applicable, taken together with an R1 on an adjacent bonded atom, together with the atoms they are attached to, form a 3-6 membered ring alicyclic, aryl, or heteroaryl system containing 0-2 heteroatoms, and
- R2, R3 are each independently H, halo, C1-6 alkyl (optionally substituted by 1 or more F) or taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms; and
- R4 is selected from H, alkyl (linear, branched, optionally substituted with R5), OH, R5OCOOR6, R5OCONR5R7, CH2-heterocyclyl optionally substituted with R5, or benzyl optionally substituted with R5;
- R5 and R7 are each independently a bond, H, alkyl (linear, branched), cycloalkyl, aryl, hetaryl heterocyclyl, or —C(═O)R6 each of which is optionally substitute; and
- R6 is selected from CONR5R7, OR5, NR5R7, SR5, SO2R5, SO2NR5R7, CR5R7, CR5NR5R7, aryl, hetaryl, alkyl (linear, branched, optionally substituted), cycloalkyl, heterocyclyl, P(O)(OR5)R7, P(O)R5R7, OP(O)(OR5)R7, OP(O)R5R7, Cl, F, Br, I, CF3, CHF2, CH2F, CN, NR5SO2NR5R7, NR5CONR5R7, CONR5COR7, NR5C(═N—CN)NR5R7, C(═N—CN)NR5R7, NR5C(—N═CN)R7, NR5C(═C—NO2)NR5R7, SO2NR5COR7, NO2, CO2R5, C(C═N—OR5)R7, CR5, CR5R7, CCR5, S(C═O)(C═N—R5)R7, SF5, R5NR5R7, (R5O)nR7, or OCF3, where n is an integer from 1 to 10.
-
- 1.10 Any preceding compound, wherein the E3 ligase binding moiety comprises a structure selected from:
-
-
- wherein in each moiety:
- R8 is H, a straight chain or branched C1-8 alkyl (e.g., methyl, ethyl, isopropyl, tert-butyl), C3-6 cycloalkyl (e.g., cyclopropyl), halo, CFH2, CF2H, or CF3;
- R9 is a H, halo, 4-methylthiazol-5-ylm, or oxazol-5-yl;
- R10 are independently optionally substituted alkyl (e.g., methyl, ethyl, isopropyl, tert-butyl), optionally substituted cycloalkyl (e.g., cyclopropyl), optionally substituted cycloalkylalkyl, optionally substituted arylalkyl, optionally substituted aryl, optionally substituted thioalkyl wherein the substituents attached to the S atom of the thioalkyl are optionally substituted alkyl, optionally substituted branched alkyl, optionally substituted heterocyclyl, (CH2)vCOR14, CH2CHR15COR16 or CH2R17, where v=1 to 3;
- R14 and R16 are independently selected from OH, NR18R19, or —OR20 (as defined hereinbelow);
- R15 is —NR18R19;
- R17 is optionally substituted aryl or optionally substituted heterocyclyl, where the optional substituents include alkyl and halogen;
- R18 is hydrogen or optionally substituted alkyl;
- R19 is hydrogen, optionally substituted alkyl, optionally substituted branched alkyl, optionally substituted arylalkyl, optionally substituted heterocyclyl, —CH2(OCH2CH2O)vCH3, or a polyamine chain, where w=1 to 8;
- each R11 is independently optionally substituted alkyl (e.g., methyl, ethyl, isopropyl, tert-butyl), optionally substituted cycloalkyl (e.g., cyclopropyl), optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted heterocycloalkyl wherein the substituents are alkyl, halogen, or OH.
- wherein in each moiety:
- 1.11 Any preceding compound, wherein the E3 ligase binding moiety comprises a structure selected from the group consisting of:
-
-
-
- wherein:
- R10 and R11 are each as defined in Compound 1.9;
- R12 and R13 are independently hydrogen, optionally substituted alkyl (e.g., methyl), or optionally substituted cycloalkyl;
- X is CH2, NR2, or O;
- Y is S or O;
- D is a bond (direct bond between X and L) or a ring which may be aryl or heteroaryl, independently substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, NR2R3, OCH3, OC1-3 alkyl (optionally substituted by 1 or more halo), CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxyl), C1-6 alkoxyl (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, C2-6 alkynyl, 3-6 membered alicyclic with 0-4 heteroatoms and substituted by 1 or more halo, hydroxyl, nitro, CN, C≡CH, CF3, C1-6 alkyl (linear, branched, optionally substituted by 1 or more halo, C1-6 alkoxy), C1-6 alkoxy (linear, branched, optionally substituted by 1 or more halo), C2-6 alkenyl, or C2-6 alkynyl;
- R2, R3 are each independently H, halo, C1-6 alkyl (optionally substituted by 1 or more F) or taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms; and
- R20 is selected from the group consisting of.
- wherein:
-
-
-
-
- wherein A is a C4-8 aliphatic ring, and B is an aryl (e.g., phenyl) or N-containing heteroaryl (e.g., pyridyl) and each is optionally substituted by alkyl or haloalkyl.
-
- 1.12 Any preceding compound, wherein the E3 ligase binding moiety is:
-
-
-
- wherein:
- R22 is aryl (e.g. phenyl) or heteroaryl (e.g., pyridyl) optionally substituted by halogen (e.g., F or Cl), e.g., mono-, di or tri-substituted independently by halogen;
- R21 is aryl (e.g. phenyl) or heteroaryl (e.g., pyridyl), optionally substituted by halogen (e.g., F or Cl), e.g., mono-, di- or tri-substituted by halogen, CN, ethynyl, cyclopropyl, methyl, ethyl, isopropyl, methoxy, ethoxy, isopropoxy, other C1-6 alkyl, other C1-6 alkenyl and C1-6 alkynyl;
- R23 is selected from alkyl (e.g., methyl, ethyl, isopropyl, propyl, n-butyl, sec-butyl, isobutyl, t-butyl, n-pentyl, t-pentyl, isoamyl, neopentyl, n-hexyl), substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, substituted cycloalkyl, alkenyl and substituted cycloalkenyl;
- R24 is H, alkyl (e.g., methyl), aryl, substituted alkyl, cycloalkyl, aryl substituted cycloalkyl and alkoxy substituted cycloalkyl; and E is para-substituted (1,4-disubstituted) aryl (e.g., phenyl), single or multiple N containing heteroaryl (e.g., pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl), each optionally further substituted by —OCH3, —OCH2CH3 and halogen.
- wherein:
- 1.13 Any preceding compound, wherein the E3 ligase binding moiety is a cereblon binding fragment, e.g., selected from thalidomide, pomalidomide, and lenalidomide
- 1.14 Any preceding compound, wherein the E3 ligase binding moiety is an E3 CRL2VHL moiety, or an IAP or MDM2-binding moiety.
- 1.15 Any preceding compound, wherein the compound has an E3 ligase binding moiety as provided in a structure selected from the group consisting of:
-
-
-
- wherein:
- R104 is independently H, OH, CONH2, CONR102R103, SONH2, SONR102R103, SO2NH2, SO2NR102R103, NHCO C1-3 alkyl (optionally substituted by one or more halo), NR102COC1-3 alkyl (optionally substituted by one or more halo), NR2SO2C1-3 alkyl (optionally substituted by one or more halo), NR102SOC1-3 alkyl (optionally substituted by one or more halo), CN, C═CH, NH2, NR102R103, OCH3, OC1-3 alkyl (optionally substituted by one or more halo), CHF2, CH2F, CF3, halo, C1-6 alkyl (linear, branched, optionally substituted by one or more halo, C1-6 alkoxyl) or, taken together with an R101 on an adjacent bonded atom, together with the atoms they are attached to, form a 3-6 membered ring alicyclic, aryl, or heteroaryl system containing 0-2 heteroatoms, wherein and R102, R103 is independently H, halo, C1-6 alkyl (optionally substituted by one or more F) or taken together with the atom they are attached to, form a 3-8 membered ring system containing 0-2 heteroatoms,
- R105 is independently H, C1-6 alkyl (optionally substituted by one or more F), and
- X is NH or O.
- wherein:
- 1.16 Any preceding compound, wherein the compound has an E3 ligase binding moiety which is a Von-Hippel-Lindau Ligase binding moiety as provided in a structure selected from the group consisting of:
-
-
-
- wherein
- R106 is isopropyl, tert-butyl, sec-butyl, cyclopentyl, cyclohexyl, cyclopropyl or haloalkyl,
- R107 is H, haloalkyl, methyl, ethyl, isopropyl, cyclopropyl or C1-C6 alkyl (linear, branched, optionally substituted), each optionally substituted with one or more halo, hydroxyl, CN, C1-C6 alkyl (linear, branched, optionally substituted), or C1-C6 alkoxyl (linear, branched, optionally substituted),
- R108 is H or a prodrug group,
- R109 is H, halo, optionally substituted C3-6 cycloalkyl, optionally substituted C1-6 alkyl. Optionally substituted C1-6 alkenyl or C1-6 haloalkyl, and
- X is S or O.
- wherein
- 1.17 Any preceding compound, wherein the compound has an E3 ligase binding moiety as provided in a structure selected from the group consisting of:
-
-
-
- wherein:
- R110 are independently hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl,
- R111 are independently hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl,
- R112 are independently optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted arylalkyl, optionally substituted aryl, optionally substituted thioalkyl wherein the substituents attached to the S atom of the thioalkyl are optionally substituted branched alkyl, optionally substituted heterocyclyl, —(CH2)COR115, —CH2CHR116COR117 or CH2R118, where v=1-3, R115 and R117 are independently selected from OH, NR118R119 or OR120, R116 is NR118R119, R118 is optionally substituted aryl or optionally substituted heterocyclyl where the optional substituents include alkyl and halogen, and R119 is hydrogen or optionally substituted alkyl,
- R113 is selected from the group consisting of
-
-
-
- where B is an aryl or N-containing heteroaryl and optionally substituted by alkyl or haloalkyl,
- R114 is selected from the group consisting of
-
- wherein A is a C4-8 aliphatic ring, B is an aryl or N-containing heteroaryl and optionally substituted by alkyl or haloalkyl. Y is N, O, C═O, or S, and
-
- X is S or O.
- 1.18 Any preceding compound, wherein the compound has an E3 ligase binding moiety which is an MDM2 homolog inhibitor as provided in a structure selected from the group consisting of:
-
-
- wherein:
- Ring3 is para-substituted aryl, single or multiple N containing heteroaryl optionally substituted by —OCH3, —OCH2CH3, or halogen,
- R121 is independently aryl or heteroaryl, optionally substituted by mono-, di- or tri-substituted halogen, —CN, ethynyl, cyclopropyl, methyl, ethyl, isopropyl, methoxy, ethoxy, isopropoxy, other C1-6 alkyl, other C1-6 alkenyl and C1-6 alkynyl,
- R122 is independently aryl or heteroaryl optionally substituted by halogen, or mono, di, or tri-substituted halogen,
- R123 is selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, substituted cycloalkyl, alkenyl and substituted cycloalkenyl, and
- R124 is selected from H, alkyl, aryl, substituted alkyl, cycloalkyl, aryl substituted cycloalkyl and alkoxy substituted cycloalkyl.
- wherein:
- 1.19 Any preceding compound, wherein the AR binding moiety is selected from:
-
-
- wherein:
- A is a 3-7 membered alicyclic ring with 0-4 heteroatoms (e.g., morpholinyl), B is aryl (e.g., phenyl) or heteroaryl (e.g., imidazolyl) optionally substituted by one or more halo, and R1 is H, OH, CN, NH2, OCH3, halo, or C1-6 alkyl; or
- wherein:
-
-
- wherein:
- A is a 3-7 membered alicyclic ring with 0-4 heteroatoms (e.g., morpholinyl), and R1 is H, OH, CN, NH2, OCH3, halo, or C1-6 alkyl.
- 1.20 Compound 1.19, wherein A is selected from morpholinyl, piperazinyl, N-methylpiperazinyl, piperidinyl, and pyrrolidinyl.
- 1.21 Compound 1.20, wherein A is morpholinyl (e.g., 1-morpholinyl).
- 1.22 Any of Compounds 1.19 to 1.21, wherein R1 is H or halo.
- 1.23 Any of Compounds 1.19 to 1.22, wherein B is phenyl optionally substituted by one or two halo (e.g., fluoro, chloro or bromo) or B is imidazolyl optionally substituted by one or two halo (e.g., fluoro, chloro or bromo).
- 1.24 Compound 1.23, wherein B is:
-
-
- wherein each R1 is independently H or F.
- 1.25 Any preceding compound, wherein the AR binding moiety is selected from:
-
- 1.26 Any preceding compound, wherein the AR binding moiety is:
-
- 1.27 Any preceding compound, wherein the E3 ligase binding moiety is selected from:
-
- each as described hereinabove.
- 1.28 Compound 1.27, wherein each R1 (of the E3LB) is independently selected from H, OH, CN, NH2, OCH3, halo, or C1-6 alkyl; R4 is H or C1-3 alkyl (e.g., methyl); R8 is H, halo, or C1-6 alkyl (e.g., methyl, ethyl, isopropyl, tert-butyl); R10 is H, halo, or optionally substituted C1-6 alkyl (e.g., methyl, ethyl, isopropyl, tert-butyl) or C3-6 cycloalkyl (e.g., cyclopropyl); R11 is H, optionally substituted C1-6 alkyl (e.g., methyl, ethyl, isopropyl, tert-butyl), or optionally substituted C3-10 cycloalkyl (e.g., cyclopropyl); R12 and R13 are each independently H or C1-6 alkyl (e.g., methyl); R20 is CH(aryl)2 (e.g. CHPh2); R21 and R22 are each aryl (e.g., phenyl) optionally substituted by halogen (e.g., F or Cl); R23 optionally substituted C1-10 alkyl (e.g., methyl, ethyl, isopropyl, propyl, n-butyl, sec-butyl, isobutyl, t-butyl, n-pentyl, t-pentyl, isoamyl, neopentyl, n-hexyl); R24 is H or C1-6 alkyl; and E is para-substituted phenyl optionally substituted by OCH3.
- 1.29 Compound 1.27, wherein R1 is H; R4 is H; R8 is C1-6 alkyl (e.g., tert-butyl); R10 is optionally substituted C1-6 alkyl (e.g., methyl or tert-butyl) or C3-6 cycloalkyl (e.g., cyclohexyl); R11 is optionally substituted C3-10 cycloalkyl (e.g., cyclopropyl or tetrahydronapthyl); R12 and R13 are each independently C1-6 alkyl (e.g. methyl); R20 is CH(phenyl)2; R21 and R22 are each phenyl optionally substituted by one or two halogen (e.g., F or Cl); R23 C1-6 alkyl (e.g., tert-amyl); R24 is H; and E is para-substituted phenyl optionally substituted by OCH3.
- 1.30 Compound 1.27, wherein R1 is H; R4 is H; R10 is tert-butyl; R10 is methyl, tert-butyl or cyclohexyl; R11 is cyclopropyl or tetrahydronapthyl each optionally substituted with halo (e.g., fluoro); R12 and R13 are each independently methyl; R20 is CH(phenyl)2; R21 and R22 are each phenyl optionally substituted by one or two halogen (e.g., F or Cl); R23 tert-amyl; R24 is H; and E is para-substituted phenyl substituted by one OCH3.
- 1.31 Any preceding compound, wherein the E3 ligase binding moiety is selected from the group consisting of:
-
- 1.32 Any preceding compound, wherein the linker group (e.g., “L”) is selected from:
-
- wherein n is from 1-5;
-
- wherein n is from 1-5;
-
- wherein n is from 1-5;
-
- wherein m is from 0-12;
-
- wherein m is from 0-12;
-
- wherein m is from 0-12;
-
- wherein m is from 2-4;
-
- wherein m is from 0-12;
-
- wherein m is from 0-10;
-
- wherein n is from 1-5;
-
- wherein n is from 1-5;
-
- wherein n is from 1-5;
-
- wherein m is from 0-10;
-
- wherein m is from 0-10;
-
- wherein m is from 0-10;
-
- wherein n is from 1-5;
-
- wherein n is from 1-5;
-
- wherein n is from 1-5;
-
- wherein n is from 1-5;
-
- wherein n is from 1-5;
-
- wherein m is from 1-12;
-
- wherein m is from 1-12;
-
- wherein m is from 1-12; and
-
- wherein m is from 0-10.
- 1.33 Any preceding compound, wherein the linker group is selected from:
-
- wherein n is from 2-4;
-
- wherein n is from 2-4;
-
- wherein n is from 2-3;
-
- wherein m is from 2-8;
-
- wherein m is from 4-8;
- wherein m is from 2-4;
-
- wherein m is from 2-4;
-
- wherein m is from 1-4;
-
- wherein m is from 1-4;
-
- wherein n is from 2-4;
-
- wherein n is from 1-3;
-
- wherein n is from 1-2;
-
- wherein m is from 4-6;
-
- wherein m is from 2-4; and
-
- wherein m is from 2-4.
- 1.34 Any preceding compound, wherein the compound comprises an AR binding moiety as defined in section 1.25, and an E3 ligase binding moiety as defined in section 1.31, and a linker as defined in section 1.32.
- 1.35 Any preceding compound, wherein the compound comprises an AR binding moiety as defined in section 1.26, and an E3 ligase binding moiety as defined in section 1.31, and a linker as defined in section 1.32.
- 1.36 Any preceding compound, wherein the compound comprises an AR binding moiety as defined in section 1.25, and an E3 ligase binding moiety as defined in section 1.31, and a linker as defined in section 1.33.
- 1.37 Any preceding compound, wherein the compound comprises an AR binding moiety as defined in section 1.26, and an E3 ligase binding moiety as defined in section 1.31, and a linker as defined in section 1.33.
- 1.38 Any preceding compound, wherein the compound comprises:
- the AR binding moiety
-
-
- the E3 ligase binding moiety
-
-
-
- and
- a linker selected from:
-
-
-
- wherein n is from 1-5;
-
-
-
- wherein n is from 1-5;
-
-
-
- wherein m is from 0-12;
-
-
-
- wherein m is from 2-4;
-
-
-
- wherein m is from 0-12; and
-
-
-
- wherein m is from 0-10.
- 1.39 Any preceding compound, wherein the compound comprises:
- the AR binding moiety
-
-
-
- the E3 ligase binding moiety
-
-
-
- and
- a linker selected from:
-
-
-
- wherein n is from 1-5;
-
-
-
- wherein m is from 0-12;
-
-
-
- wherein n is from 1-5; and
-
-
-
- wherein m is from 1-12.
- 1.40 Any preceding compound, wherein the compound is selected from any one or more of Examples 1 to 35 in the table above.
- 1.41 Any preceding compound, wherein the compound is selected from the group consisting of:
-
- (a) 2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)-N-(6-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)hexyl)acetamide,
- (b) 2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)-N-(10-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)decyl)acetamide,
- (c) (2S,4R)-1-((S)-2-(4-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)butanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide,
- (d) (2S,4R)-1-((S)-2-(5-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)pentanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide,
- (e) (2S,4R)-1-((S)-2-(6-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)hexanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide,
- (f) (2S,4R)-1-((S)-2-(7-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)heptanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide,
- (g) (2S,4R)-1-((S)-2-(2-(3-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)propoxy)acetamido)-3,3-dimethylbutanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide,
- (h) (2S,4R)-1-((S)-2-(tert-butyl)-14-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)-4,13-dioxo-6,9-dioxa-3,12-diazatetradecanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide,
- (i) (2S,4R)-1-((S)-2-(8-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)octanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide,
- (j) (S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N—((S)-1-((2-(2-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)ethoxy)ethoxy)ethyl)amino)-1-oxo-3,3-diphenylpropan-2-yl)pyrrolidine-2-carboxamide,
- (k) (S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N—((S)-1-((4-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)butyl)amino)-1-oxo-3,3-diphenylpropan-2-yl)pyrrolidine-2-carboxamide,
- (l) (S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N—((S)-1-((6-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)hexyl)amino)-1-oxo-3,3-diphenylpropan-2-yl)pyrrolidine-2-carboxamide,
- (m) (2R,3 S,4R,5S)-3-(3-chloro-2-fluorophenyl)-4-(4-chloro-2-fluorophenyl)-4-cyano-N-(4-((2-(2-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)ethoxy)ethoxy)ethyl)carbamoyl)-2-methoxyphenyl)-5-neopentylpyrrolidine-2-carboxamide,
- (n) (2R,3S,4R,5S)-3-(3-chloro-2-fluorophenyl)-4-(4-chloro-2-fluorophenyl)-4-cyano-N-(4-((4-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)butyl)carbamoyl)-2-methoxyphenyl)-5-neopentylpyrrolidine-2-carboxamide,
- (o) (2R,3S,4R,5S)-3-(3-chloro-2-fluorophenyl)-4-(4-chloro-2-fluorophenyl)-4-cyano-N-(4-((6-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)hexyl)carbamoyl)-2-methoxyphenyl)-5-neopentylpyrrolidine-2-carboxamide,
- (p) N-(5-(((S)-1-((2S,4R)-4-hydroxy-2-(((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)amino)-5-oxopentyl)-2-morpholinobenzo[d]thiazole-4-carboxamide, and
- (q) N-(6-((S)-2-((S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)pyrrolidine-2-carboxamido)-3,3-diphenylpropanamido)hexyl)-2-morpholinobenzo[d]thiazole-4-carboxamide.
- 1.42 Any preceding compound, wherein the compound is selected from:
- (a) (2S,4R)-1-((S)-2-(5-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)pentanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide;
- (b) (S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N—((S)-1-((2-(2-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)ethoxy)ethoxy)ethyl)amino)-1-oxo-3,3-diphenylpropan-2-yl)pyrrolidine-2-carboxamide; and
- (c) (S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N—((S)-1-((6-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)hexyl)amino)-1-oxo-3,3-diphenylpropan-2-yl)pyrrolidine-2-carboxamide.
- 1.43 Any of Compounds 1.1-1.42 wherein the compound is effective in causing or promoting the degradation of the androgen receptor (AR) in a cell, or of causing or promoting apoptosis in a cell.
- 1.44 Compound 1.43, wherein the cell is a cancer cell (e.g., a prostate cancer cell or ovarian cancer cell, for example, castration-resistant prostate cancer (CRPC) cell).
- 1.45 Compound 1.43 or 1.44, wherein the cell overexpresses the AR or expresses a mutated AR, such as an AR having a truncated ligand binding domain or absent ligand binding domain.
- 1.46 Compound 1.45, wherein the mutant AR is any AR-V1 to AR-V15 splice variant, e.g., the AR-V7 splice variant.
- 1.47 A pharmaceutical composition comprising any of Compounds 1.1-1.46 (e.g., an effective amount of any of Compounds 1.1-1.46), and a pharmaceutically acceptable carrier, additive and/or excipient.
- 1.48 Pharmaceutical Composition 1.47, further comprising at least one additional anticancer agent.
- 1.49 Any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, for use in the treatment of a disease state or condition in a patient wherein dysregulated protein activity is responsible for said disease or condition.
- 1.50 Use of any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, in the treatment of a disease state or condition in a patient wherein dysregulated protein activity is responsible for said disease or condition.
- 1.51 A Method of treating a disease state or condition in a patient wherein dysregulated protein activity is responsible for said disease or condition, said method comprising administering an effective amount of any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, to a patient in need thereof.
- 1.52 Any of the Uses or Methods according to 1.49 to 1.51, wherein the disease or condition is a cancer.
- 1.53 Any of the Uses or Methods according to 1.49 to 1.52, wherein the disease or condition is a cancer identified as having a mutation resulting, or expected to result in, overexpression of the androgen receptor.
- 1.54 Use or Method 1.53, wherein the cell expresses a mutated androgen receptor, e.g., one in which there is a mutation in the ligand binding domain of the AR.
- 1.55 Use or Method 1.54, wherein the ligand binding domain of the AR is truncated or absent.
- 1.56 Any of Uses or Methods 1.51-1.55, wherein the cell expresses or overexpresses any AR-V1 to AR-V15 splice variant, e.g., the AR-V7 splice variant.
- 1.57 Any of the uses or methods according to 1.52 to 1.56, wherein the cancer is a prostate cancer or ovarian cancer.
- 1.58 Use or Method 1.57, wherein the cancer is a prostate cancer, for example, castration-resistant prostate cancer (CRPC).
- 1.59 Any of the uses or methods according to 1.49 to 1.58, wherein the disease or condition is not responsive to, or no longer responsive to, treatment with an androgen receptor antagonist (e.g., abiraterone, apalutamide, enzalutamide, or darolutamide).
- 1.60 Any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, for use in the degradation of an androgen receptor in a cell, e.g., a mutated AR such as any AR-V1 to AR-V15 splice variant, e.g., the AR-V7 splice variant.
- 1.61 Use of any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, in the degradation of an androgen receptor (AR) in a cell, e.g., a mutated AR such as any AR-V1 to AR-V15 splice variant, e.g., the AR-V7 splice variant.
- 1.62 A Method of degrading an androgen receptor in a cell, e.g., a mutated AR such as any AR-V1 to AR-V15 splice variant, e.g., the AR-V7 splice variant, said method comprising administering an effective amount of any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, to such cell.
- 1.63 Any of Uses or Methods 1.60-1.62, wherein the cell is a cancer cell (e.g., a prostate cancer cell or ovarian cancer cell, for example, castration-resistant prostate cancer (CRPC) cell).
- 1.64 Any of Uses or Methods 1.60-1.63, wherein the cell overexpresses the AR or expresses a mutated AR, such as an AR having a truncated ligand binding domain or absent ligand binding domain.
- 1.65 Use or Method 1.64, wherein the mutant AR is any AR-V1 to AR-V15 splice variant, e.g., the AR-V7 splice variant.
- 1.66 Any of Uses or Methods 1.60-1.65, wherein the AR is resistant to inhibition by an AR antagonist (e.g., abiraterone, apalutamide, enzalutamide, or darolutamide).
- 1.67 Any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, for use in inducing apoptosis in a cell, e.g., a cancer cell.
- 1.68 Use of any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, in the induction of apoptosis in a cell, e.g., a cancer cell.
- 1.69 A Method of inducing apoptosis in a cell, e.g., a cancer cell, said method comprising administering an effective amount of any of Compounds 1.1-1.46, or pharmaceutical composition 1.47 or 1.48, to such cell.
- 1.70 Any of Uses or Methods 1.67-1.69, wherein the cell is a prostate cancer cell or ovarian cancer cell (for example, castration-resistant prostate cancer (CRPC) cell).
- 1.71 Any of Uses or Methods 1.67-1.70, wherein the cell overexpresses the androgen receptor (AR) or expresses a mutated AR, such as an AR having a truncated ligand binding domain or absent ligand binding domain.
- 1.72 Use or Method 1.71, wherein the mutant AR is any AR-V1 to AR-V15 splice variant, e.g., the AR-V7 splice variant.
- 1.73 Any of Uses or Methods 1.60-1.72, wherein the cell is from a patient suffering from or diagnosed with cancer.
- 1.74 Any of Uses or Methods 1.60-1.72, wherein the cell is in a patient suffering from or diagnosed with cancer.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terminology used in the description is for describing particular embodiments only and is not intended to be limiting of the invention.
- Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise (such as in the case of a group containing a number of carbon atoms in which case each carbon atom number falling within the range is provided), between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the invention.
- The following terms are used to describe the present disclosure. In instances where a term is not specifically defined herein, that term is given an art-recognized meaning by those of ordinary skill applying that term in context to its use in describing the present invention.
- The articles “a” and “an” as used herein and in the claims are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article unless the context clearly indicates otherwise. By way of example, “an element” means one element or more than one element.
- The phrase “and/or” as used herein and in the claims should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
- As used herein in the specification and in the claims, the term “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e., “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.”
- The term “about” and the like, as used herein, in association with numeric values or ranges, reflects the fact that there is a certain level of variation that is recognized and tolerated in the art due to practical and/or theoretical limitations. For example, minor variation is tolerated due to inherent variances in the manner in which certain devices operate and/or measurements are taken. In accordance with the above, the term “about” is normally used to encompass values within the standard deviation or standard error.
- In the claims, as well as in the specification, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean “including without limitation”. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
- It should also be understood, that although various compounds, compositions, and methods are described in “open” terms of “comprising,” “including,” or “having” various components or steps (interpreted as meaning “including without limitation”), the compounds, compositions, methods, and devices can also “consist essentially of” or “consist of” the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups. This paragraph is not meant in any way to limit the meaning of “comprising,” “having,” or “including” (and other verb forms thereof) which are to be interpreted as open-ended phrases meaning “including without limitation” consistent with patent law and custom. The intent of this paragraph is merely to indicate that the closed-member groups defined by the “consisting of” or “consisting essentially of” language are lesser included groups within the open-ended descriptions and to provide support for claims employing the “consisting of” or “consisting essentially of” language.
- As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from anyone or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
- It should also be understood that, in certain methods described herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited unless the context indicates otherwise.
- The terms “co-administration” and “co-administering” or “combination therapy” can refer to both concurrent administration (administration of two or more therapeutic agents at the same time) and time varied administration (administration of one or more therapeutic agents at a time different from that of the administration of an additional therapeutic agent or agents), as long as the therapeutic agents are present in the patient to some extent, preferably at effective amounts, at the same time. In certain preferred aspects, one or more of the present compounds described herein, are co-administered in combination with at least one additional bioactive agent, especially including an anticancer agent. In particularly preferred aspects, the co-administration of compounds results in synergistic activity and/or therapy, including anticancer activity.
- The term “effective” can mean, but is in no way limited to, that amount/dose of the active pharmaceutical ingredient, which, when used in the context of its intended use, effectuates or is sufficient to prevent, inhibit the occurrence, ameliorate, delay or treat (alleviate a symptom to some extent, preferably all) the symptoms of a condition, disorder or disease state in a subject in need of such treatment or receiving such treatment. The term effective subsumes all other effective amount or effective concentration terms, e.g., “effective amount/dose,” “pharmaceutically effective amount/dose” or “therapeutically effective amount/dose,” which are otherwise described or used in the present application.
- The effective amount depends on the type and severity of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors which those skilled in the medical arts will recognize. The exact amount can be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Pickar, Dosage Calculations (1999); and Remington, The Science and Practice of Pharmacy, 20th Edition, 2003, Gennaro, Ed., Lippincott, Williams & Wilkins).
- The term “pharmacological composition,” “therapeutic composition,” “therapeutic formulation” or “pharmaceutically acceptable formulation” can mean, but is in no way limited to, a composition or formulation that allows for the effective distribution of an agent provided by the present disclosure, which is in a form suitable for administration to the physical location most suitable for their desired activity, e.g., systemic administration.
- The term “pharmaceutically acceptable” can mean, but is in no way limited to, entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a patient or subject.
- The term “pharmaceutically acceptable carrier” can mean, but is in no way limited to, any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration to a patient or subject. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, ringer's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- The term “systemic administration” refers to a route of administration that is, e.g., enteral or parenteral, and results in the systemic distribution of an agent leading to systemic absorption or accumulation of drugs in the blood stream followed by distribution throughout the entire body. Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Such forms should not prevent the composition or formulation from reaching a target cell (i.e., a cell to which the negatively charged polymer is desired to be delivered to). For example, pharmacological compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms which prevent the composition or formulation from exerting its effect. Administration routes which lead to systemic absorption include, without limitations: intravenous, subcutaneous, intraperitoneal, inhalation, oral, intrapulmonary and intramuscular.
- The rate of entry of a drug into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier comprising the compounds of the instant disclosure can potentially localize the drug, for example, in certain tissue types, such as the tissues of the reticular endothelial system (RES). A liposome formulation which can facilitate the association of drug with the surface of cells, such as, lymphocytes and macrophages is also useful.
- The terms “patient” and “subject” are used throughout the specification to describe a cell, tissue, or animal, preferably a mammal, e.g., a human or a domesticated animal, to whom treatment, including prophylactic treatment, with the compositions according to the present disclosure is provided. For treatment of those infections, conditions or disease states which are specific for a specific animal such as a human patient, the term patient refers to that specific animal, including a domesticated animal such as a dog or cat or a farm animal such as a horse, cow, sheep, etc. In general, in the present disclosure, the term patient refers to a human patient unless otherwise stated or implied from the context of the use of the term.
- The term “compound,” as used herein, unless otherwise indicated, refers to any specific chemical compound disclosed herein and includes tautomers, regioisomers, geometric isomers, and where applicable, stereoisomers, including optical isomers (enantiomers) and other stereoisomers (diastereomers) thereof, as well as pharmaceutically acceptable salts and derivatives thereof where applicable, in context. Within its use in context, the term compound generally refers to a single compound, but also may include other compounds such as stereoisomers, regioisomers and/or optical isomers (including racemic mixtures) as well as specific enantiomers or enantiomerically enriched mixtures of disclosed compounds. The term also refers, in context to prodrug forms of compounds which have been modified to facilitate the administration and delivery of compounds to a site of activity. The term also refers to any specific chemical compound in which one or more atoms have been replaced with one or more different isotopes of the same element. It is noted that in describing the present compounds, numerous substituents and variables associated with same, among others, are described.
- It is understood by those of ordinary skill that molecules which are described herein are stable compounds as generally described hereunder. When the bond is shown, both a double bond and single bond are represented or understood within the context of the compound shown and well-known rules for valence interactions.
- As used herein, “derivatives” can mean compositions formed from the native compounds either directly, by modification, or by partial substitution. As used herein, “analogs” can mean compositions that have a structure similar to, but not identical to, the native compound.
- The term “ubiquitin ligase” refers to a family of proteins that facilitate the transfer of ubiquitin to a specific substrate protein, targeting the substrate protein for degradation. For example, cereblon is an E3 ubiquitin ligase protein that alone or in combination with an E2 ubiquitin-conjugating enzyme causes the attachment of ubiquitin to a lysine on a target protein, and subsequently targets the specific protein substrates for degradation by the proteasome. Thus, E3 ubiquitin ligase alone or in complex with an E2 ubiquitin conjugating enzyme is responsible for the transfer of ubiquitin to targeted proteins. In general, the ubiquitin ligase may be involved in polyubiquitination such that a second ubiquitin may be attached to the first; a third may be attached to the second, and so forth. Polyubiquitination marks proteins for degradation by the proteasome. However, there are some ubiquitination events that are limited to mono-ubiquitination, in which only a single ubiquitin is added by the ubiquitin ligase to a substrate molecule. Mono-ubiquitinated proteins may not be targeted to the proteasome for degradation, but may instead be altered in their cellular location or function, for example, via binding other proteins that have domains capable of binding ubiquitin. Further, different lysines on ubiquitin can be targeted by an E3 to make chains. The most common lysine is Lys48 on the ubiquitin chain. This is the lysine used to make polyubiquitin, which is recognized by the proteasome.
- As used herein, the terms “halo” or “halogen” means fluoro (F), chloro (Cl), bromo (Br) or iodo (I).
- As used herein, the term “hydrocarbyl” means a compound which contains carbon and hydrogen and which may be fully saturated, partially unsaturated or aromatic and includes aryl groups, alkyl groups, alkenyl groups and alkynyl groups.
- As used herein, the term “alkyl” means within its context a linear, branch-chained, or cyclic fully saturated hydrocarbon radical or alkyl group, preferably a C1-C10, more preferably a C1-C6, alternatively a C1-C3 alkyl group, which may be optionally substituted. Examples of alkyl groups are methyl, ethyl, n-butyl, sec-butyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, isopropyl, 2-methylpropyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclohexylmethyl, cyclohexylethyl and cyclohexyl, among others.
- As used herein, the term “alkenyl” refers to linear, branched or branch-chained, or cyclic C2-C10 (preferably C2-C6) hydrocarbon radicals containing at least one C═C bond.
- As used herein, the term “Alkynyl” refers to linear, branched or branch-chained, or cyclic C2-C10 (preferably C2-C6) hydrocarbon radicals containing at least one C≡C bond.
- As used herein, the term “alkylene” refers to a —(CH2)n— group (wherein n is an integer generally from 0-6), which may be optionally substituted. When substituted, the alkylene group preferably is substituted on one or more of the methylene groups with a C1-C6 alkyl group (including a cyclopropyl group or a t-butyl group), more preferably a methyl group, but may also be substituted with one or more halo groups, preferably from 1 to 3 halo groups or one or two hydroxyl groups, O—(C1-C6 alkyl) groups or amino acid sidechains as otherwise disclosed herein. In certain embodiments, an alkylene group may be substituted with a urethane or alkoxy group (or other group) which is further substituted with a polyethylene glycol chain (of from 1 to 10, preferably 1 to 6, often 1 to 4 ethylene glycol units) to which is substituted (preferably, but not exclusively on the distal end of the polyethylene glycol chain) an alkyl chain substituted with a single halogen group, preferably a chlorine group. In still other embodiments, the alkylene (often, a methylene) group, may be substituted with an amino acid sidechain group such as a sidechain group of a natural or unnatural amino acid, for example, alanine, (3-alanine, arginine, asparagine, aspartic acid, cysteine, cystine, glutamic acid, glutamine, glycine, phenylalanine, histidine, isoleucine, lysine, leucine, methionine, praline, serine, threonine, valine, tryptophan, or tyrosine.
- As used herein, a range of carbon atoms which includes C0 means that carbon is absent and is replaced with H (or deuterium). Thus, a range of carbon atoms which is C0-C6 includes carbons atoms of 1, 2, 3, 4, 5 and 6 and for C0, H (or deuterium)stands in place of carbon.
- As used herein, the term “unsubstituted” means substituted only with hydrogen atoms.
- As used herein, the term “substituted” or “optionally substituted” means independently (i.e., where more than a single substitution occurs, each substituent is independent of another substituent) one or more substituents (independently up to five substituents, preferably up to three substituents, often 1 or 2 substituents on a moiety in a compound according to the present invention, and may include substituents which themselves may be further substituted) at a carbon (or nitrogen) position anywhere on a molecule within context, and includes as substituents hydroxyl, thiol, carboxyl, cyano (C≡N), nitro (NO2), halogen (preferably, 1, 2 or 3 halogens, especially on an alkyl, especially a methyl group such as a trifluoromethyl), an alkyl group (preferably, C1-C10, more preferably, C1-C6), aryl (especially phenyl and substituted phenyl for example benzyl or benzoyl), alkoxy group (preferably, C1-C6 alkyl or aryl, including phenyl and substituted phenyl), thioether (C1-C6 alkyl or aryl), acyl (preferably, C1-C6 acyl), ester or thioester (preferably, C1-C6 alkyl or aryl) including alkylene ester (such that attachment is on the alkylene group, rather than at the ester function which is preferably substituted with a C1-C6 alkyl or aryl group), preferably, C1-C6 alkyl or aryl, halogen (preferably, F or Cl), amine (including a five- or six-membered cyclic alkylene amine, further including a C1-C6 alkyl amine or a C1-C6 dialkyl amine which alkyl groups may be substituted with one or two hydroxyl groups) or an optionally substituted N(C0-C6 alkyl)C(O)(OC1-C6 alkyl) group (which may be optionally substituted with a polyethylene glycol chain to which is further bound an alkyl group containing a single halogen, preferably chlorine substituent), hydrazine, amido, which is preferably substituted with one or two C1-C6 alkyl groups (including a carboxamide which is optionally substituted with one or two C1-C6 alkyl groups), alkanol (preferably, C1-C6 alkyl or aryl), or alkanoic acid (preferably, C1-C6 alkyl or aryl). Substituents according to the present invention may include, for example SiR1R2R3 groups wherein each of R1 and R2 is as otherwise described herein, and R3 is H or a C1-C6 alkyl group, preferably R1, R2, R3 in this context is a C1-C3 alkyl group (including an isopropyl or t-butyl group). Each of the above-described groups may be linked directly to the substituted moiety or alternatively, the substituent may be linked to the substituted moiety (preferably in the case of an aryl or heteroaryl moiety) through an optionally substituted —(CH2)m— or, alternatively, an optionally substituted —(OCH2)m—, —(OCH2CH2)m— or —(CH2CH2O)m— group, which may be substituted with any one or more of the above described substituents. Alkylene groups —(CH2)m— or —(CH2)n— groups or other chains such as ethylene glycol chains, as identified above, may be substituted anywhere on the chain.
- Preferred substituents on alkylene groups include halogen or C1-C6 (preferably C1-C3) alkyl groups, which may be optionally substituted with one or two hydroxyl groups, one or two ether groups (O—C1-C6 groups), up to three halo groups (preferably F), or a sidechain of an amino acid as otherwise described herein and optionally substituted amide (preferably carboxamide substituted as described above) or urethane groups (often with one or two C0-C6 alkyl substituents, which group(s) may be further substituted). In certain embodiments, the alkylene group (often a single methylene group) is substituted with one or two optionally substituted C1-C6 alkyl groups, preferably C1-C4 alkyl group, most often methyl or O-methyl groups or a sidechain of an amino acid as otherwise described herein. In the present invention, a moiety in a molecule may be optionally substituted with up to five substituents, preferably up to three substituents. Most often, in the present invention moieties which are substituted are substituted with one or two substituents.
- As used herein, the term “substituted” (each substituent being independent of any other substituent) also means within its context of use C1-C6 alkyl, C1-C6 alkoxy, halogen, amido, carboxamido, sulfone, including sulfonamide, keto, carboxy, C1-C6 ester (oxy ester or carbonyl ester), C1-C6 keto, urethane —O—C(O)—NR1R2 or —N(R1)—C(O)—O—R1, nitro, cyano and amine (especially including a C1-C6 alkylene —NR1R2, a mono- or di-C1-C6 alkyl substituted amines which may be optionally substituted with one or two hydroxyl groups). Each of these groups contains unless otherwise indicated, within context, between 1 and 6 carbon atoms. In certain embodiments, preferred substituents will include, for example, NH, NHC(O), 0, =0, (CH2)m (here, m and n are in context, 1, 2, 3, 4, 5 or 6), S, S(O), SO2 or NHC(O)NH, (CH2)nOH, (CH2)nSH, (CH2)nCOOH, C1-C6 alkyl, (CH2)nO(C1-C6 alkyl), (CH2)nC(O)(C1-C6 alkyl), (CH2)nOC(O)(C1-C6 alkyl), (CH2)nC(O)O(C1-C6 alkyl), (CH2)nNHC(O)R1, (CH2)nC(O)NR1R2, (OCH2)nOH, (CH2O)nCOOH, C1-C6 alkyl, (OCH2)nO(C1-C6 alkyl), (CH2O)nC(O)(C1-C6 alkyl), (OCH2)nNHC(O)R1, (CH2O)nC(O)NR1R2, S(O)2Rs, S(O)Rs (Rs is C1-C6 alkyl or a (CH2)mNR1R2 group), NO2, CN, or halogen (F, Cl, Br, I, preferably F or Cl), depending on the context of the use of the substituent. R1 and R2 are each, within context, H or a C1-C6 alkyl group (which may be optionally substituted with one or two hydroxyl groups or up to three halogen groups, preferably fluorine).
- The term “substituted” also means, within the chemical context of the compound defined and substituent used, an optionally substituted aryl or heteroaryl group or an optionally substituted heterocyclic group as otherwise described herein. Alkylene groups may also be substituted as otherwise disclosed herein, preferably with optionally substituted C1-C6 alkyl groups (methyl, ethyl or hydroxymethyl or hydroxyethyl is preferred, thus providing a chiral center), a sidechain of an amino acid group as otherwise described herein, an amido group as described hereinabove, or a urethane group OC(O)NR1R2 group wherein R1 and R2 are as otherwise described herein, although numerous other groups may also be used as substituents. Various optionally substituted moieties may be substituted with 3 or more substituents, preferably no more than 3 substituents and preferably with 1 or 2 substituents. It is noted that in instances where, in a compound at a particular position of the molecule substitution is required (principally, because of valency), but no substitution is indicated, then that substituent is construed or understood to be H, unless the context of the substitution suggests otherwise.
- As used herein, the terms “aryl” and “aromatic,” in context, refer to a substituted (as otherwise described herein) or unsubstituted monovalent aromatic radical having a single ring (e.g., benzene, phenyl, benzyl) or condensed rings (e.g., naphthyl, anthracenyl, phenanthrenyl, etc.) and can be bound to the compound according to the present invention at any available stable position on the ring(s) or as otherwise indicated in the chemical structure presented. Other examples of aryl groups, in context, may include heterocyclic aromatic ring systems “heteroaryl” groups having one or more nitrogen, oxygen, or sulfur atoms in the ring (monocyclic) such as imidazole, furyl, pyrrole, furanyl, thiene, thiazole, pyridine, pyrimidine, pyrazine, triazole, oxazole or fused ring systems such as indole, quinoline, indolizine, azaindolizine, benzofurazan, etc., among others, which may be optionally substituted as described above. Among the heteroaryl groups which may be mentioned include nitrogen-containing heteroaryl groups such as pyrrole, pyridine, pyridone, pyridazine, pyrimidine, pyrazine, pyrazole, imidazole, triazole, triazine, tetrazole, indole, isoindole, indolizine, azaindolizine, purine, indazole, quinoline, dihydroquinoline, tetrahydroquinoline, isoquinoline, dihydroisoquinoline, tetrahydroiso-quinoline, quinolizine, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, imidazopyridine, imidazotriazine, pyrazinopyridazine, acridine, phenanthridine, carbazole, carbazoline, perimidine, phenanthroline, phenacene, oxadiazole, benzimidazole, pyrrolopyridine, pyrrolopyrimidine and pyridopyrimidine; sulfur containing aromatic heterocycles such as thiophene and benzothiophene; oxygen containing aromatic heterocycles such as furan, pyran, cyclopentapyran, benzofuran and isobenzofuran; and aromatic heterocycles comprising 2 or more hetero atoms selected from among nitrogen, sulfur and oxygen, such as thiazole, thiadizole, isothiazole, benzoxazole, benzothiazole, benzothiadiazole, phenothiazine, isoxazole, furazan, phenoxazine, pyrazoloxazole, imidazothiazole, thienofuran, furopyrrole, pyridoxazine, furopyridine, furopyrimidine, thienopyrimidine and oxazole, among others, all of which may be optionally substituted.
- As used herein, the term “substituted aryl” refers to an aromatic carbocyclic group comprised of at least one aromatic ring or of multiple condensed rings at least one of which being aromatic, wherein the ring(s) are substituted with one or more substituents. For example, an aryl group can comprise a substituent(s) selected from: (CH2)nOH, (CH2)nO(C1-C6)alkyl, (CH2)nO(CH2)n(C1-C6)alkyl, (CH2)nC(O)(C0-C6) alkyl, (CH2)nC(O)O(C0-C6) alkyl, (CH2)nOC(O)(C0-C6) alkyl, amine, mono- or di-(C1-C6 alkyl) amine wherein the alkyl group on the amine is optionally substituted with 1 or 2 hydroxyl groups or up to three halo (preferably F, Cl) groups, OH, COOH, C1-C6 alkyl, preferably CH3, CF3, OMe, OCF3, NO2, or CN group (each of which may be substituted in ortho-, meta- and/or para-positions of the phenyl ring, preferably para-), an optionally substituted phenyl group (the phenyl group itself is preferably substituted with a linker group attached to a ARB group, including a E3LB group), and/or at least one of F, Cl, OH, COOH, CH3, CF3, OMe, OCF3, NO2, or CN group (in ortho-, meta- and/or para-positions of the phenyl ring, preferably para-), a naphthyl group, which may be optionally substituted, an optionally substituted heteroaryl, preferably an optionally substituted isoxazole including a methyl substituted isoxazole, an optionally substituted oxazole including a methyl substituted oxazole, an optionally substituted thiazole including a methyl substituted thiazole, an optionally substituted isothiazole including a methyl substituted isothiazole, an optionally substituted pyrrole including a methyl substituted pyrrole, an optionally substituted imidazole including a methyl imidazole, an optionally substituted benzimidazole or methoxybenzyl-imidazole, an optionally substituted oximidazole or methyloximidazole, an optionally substituted diazole group, including a methyldiazole group, an optionally substituted triazole group, including a methyl substituted triazole group, an optionally substituted pyridine group, including a halo (preferably, F) or methyl substituted pyridine group or an oxapyridine group (where the pyridine group is linked to the phenyl group by an oxygen), an optionally substituted furan, an optionally substituted benzofuran, an optionally substituted dihydrobenzofuran, an optionally substituted indole, indolizine or azaindolizine (2, 3, or 4-azaindolizine), an optionally substituted quinoline, and combinations thereof.
- As used herein, the term “carboxyl” denotes the group C(O)OR, wherein R is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl or substituted heteroaryl, whereas these generic substituents have meanings which are identical with definitions of the corresponding groups defined herein.
- As used herein, the terms “heteroaryl” and “hetaryl” include, without limitation, an optionally substituted quinoline (which may be attached to the pharmacophore or substituted on any carbon atom within the quinoline ring), an optionally substituted indole (including dihydroindole), an optionally substituted indolizine, an optionally substituted azaindolizine (2, 3 or 4-azaindolizine) an optionally substituted benzimidazole, benzodiazole, benzoxofuran, an optionally substituted imidazole, an optionally substituted isoxazole, an optionally substituted oxazole (preferably methyl substituted), an optionally substituted diazole, an optionally substituted triazole, a tetrazole, an optionally substituted benzofuran, an optionally substituted thiophene, an optionally substituted thiazole (preferably methyl and/or thiol substituted), an optionally substituted isothiazole, an optionally substituted triazole (preferably a 1,2,3-triazole substituted with a methyl group, a triisopropylsilyl group, an optionally substituted (CH2)mOC1-C6 alkyl group or an optionally substituted (CH2)mC(O)OC1-C6 alkyl group), an optionally substituted pyridine (2-, 3-, or 4-pyridine) or a group according to the chemical structure:
-
- wherein SC is CHRSS, NRURE, or O;
- RHET is H, CN, NO2, halo (preferable Cl or F), optionally substituted C1-C6 alkyl (preferably substituted with one or two hydroxyl groups or up to three halo groups (e.g. CF3), optionally substituted O(C1-C6 alkyl) (preferably substituted with one or two hydroxyl groups or up to three halo groups) or an optionally substituted acetylenic group —C≡C—Ra, wherein Ra is H or a C1-C6 alkyl group (preferably C1-C3 alkyl).
- RSS is H, CN, NO2, halo (preferably F or Cl), optionally substituted C1-C6 alkyl (preferably substituted with one or two hydroxyl groups or up to three halo groups), optionally substituted O—(C1-C6 alkyl) (preferably substituted with one or two hydroxyl groups or up to three halo groups) or an optionally substituted —C(O)(C1-C6 alkyl) (preferably substituted with one or two hydroxyl groups or up to three halo groups);
- RURE is H, a C1-C6 alkyl (preferably H or C1-C3 alkyl) or a —C(O)(C1-C6 alkyl), each of which groups is optionally substituted with one or two hydroxyl groups or up to three halogen, preferably fluorine groups, or an optionally substituted phenyl group, an optionally substituted heterocycle, for example piperidine, morpholine, pyrrolidine, tetrahydrofuran, tetrahydrothiophene, piperidine, piperazine, each of which is optionally substituted, and
- YC is N or C—RYC, wherein RYC is H, OH, CN, NO2, halo (preferably Cl or F), optionally substituted C1-C6 alkyl (preferably substituted with one or two hydroxyl groups or up to three halo groups (e.g. CF3), optionally substituted O(C1-C6 alkyl) (preferably substituted with one or two hydroxyl groups or up to three halo groups) or an optionally substituted acetylenic group —C≡C—Ra, wherein Ra is H or a C1-C6 alkyl group (preferably C1-C3 alkyl).
- RPRO is H, optionally substituted C0-C6 alkyl or an optionally substituted aryl, heteroaryl or heterocyclic group selected from the group consisting of oxazole, isoxazole, thiazole, isothiazole, imidazole, diazole, oximidazole, pyrrole, pyrollidine, furan, dihydrofuran, tetrahydrofuran, thiene, dihydrothiene, tetrahydrothiene, pyridine, piperidine, piperazine, morpholine, quinoline (each preferably substituted with a C0-C3 alkyl group, preferably methyl or a halo group preferably F or Cl), benzofuran, indolem indolizine, azaindolizine: RPRO1 and RPRO2 are each independently H, an optionally substituted C0-C3 alkyl group or together form a keto group and each n is independently 0,1,2,3,4,5 or 6 or an optionally substituted heterocycle, preferably tetrahydrofuran, tetrahydrothiene, piperidine, piperazine or morpholine (each of which groups when substituted are preferably substituted with a methyl or halo).
- As used herein, the terms “arylkyl” and “heteroarylalkyl” refer to groups that comprise both aryl or, respectively, heteroaryl as well as alkyl and/or heteroalkyl and/or carbocyclic and/or heterocycloalkyl ring systems according to the above definitions.
- As used herein, the term “arylalkyl” as used herein refers to an aryl group as defined above appended to an alkyl group defined above. The arylalkyl group is attached to the parent moiety through an alkyl group wherein the alkyl group is one to six carbon atoms. The aryl group in the arylalkyl group may be substituted as defined above.
- As used herein, the terms “heterocycle” and “heterocyclic” refer to a cyclic group which contains at least one heteroatom, i.e., O, N or S, and may be aromatic (heteroaryl) or non-aromatic. Thus, the heteroaryl moieties are subsumed under the definition of heterocycle, depending on the context of its use. Exemplary heterocycles include: azetidinyl,
benzimidazolyl 1,4-benzodioxanyl, 1,3-benzodioxolyl, benzoxazolyl, benzothiazolyl, benzothienyl, dihydroimidazolyl, dihydropyranyl, dihydrofuranyl, dioxanyl, dioxolanyl, ethyleneurea, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, furyl, homopiperidinyl, imidazolyl, imidazolinyl, imidazolidinyl, indolinyl, indolyl, isoquinolinyl, isothiazolidinyl, isothiazolyl, isoxazolidinyl, isoxazolyl, morpholinyl, naphthyridinyl, oxazolidinyl, oxazolyl, pyridone, 2-pyrrolidone, pyridine, piperazinyl, N-methylpiperazinyl, piperidinyl, phthalimide, succinimide, pyrazinyl, pyrazolinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, pyrrolyl, quinolinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydroquinoline, thiazolidinyl, thiazolyl, thienyl, tetrahydrothiophene, oxane, oxetanyl, oxathiolanyl, and thiane among others. - Heterocyclic groups can be optionally substituted with a member selected from the group consisting of alkoxy, substituted alkoxy, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aminoacyloxy, oxyaminoacyl, azido, cyano, halogen, hydroxyl, keto, thioketo, carboxy, carboxyalkyl, thioaryloxy, thioheteroaryloxy, thioheterocyclooxy, thiol, thioalkoxy, substituted thioalkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclic, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, —SO-alkyl, —SO-substituted alkyl, -SOaryl, —SO-heteroaryl, —SO2-alkyl, -SO2-substituted alkyl, —SO2-aryl, oxo (═O), and —SO2-heteroaryl. Such heterocyclic groups can have a single ring or multiple condensed rings. Examples of nitrogen heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, morpholino, piperidinyl, tetrahydrofuranyl, and the like as well as N-alkoxynitrogen containing heterocycles. The term “heterocyclic” also includes bicyclic groups in which any of the heterocyclic rings is fused to a benzene ring or a cyclohexane ring or another heterocyclic ring (for example, indolyl, quinolyl, isoquinolyl, tetrahydroquinolyl, and the like).
- As used herein, the term “cycloalkyl” includes, without limitation, univalent groups derived from monocyclic or polycyclic alkyl groups or cycloalkanes, as defined herein, e.g., saturated monocyclic hydrocarbon groups having from three to twenty carbon atoms in the ring, including, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
- As used herein, the term “substituted cycloalkyl” includes, without limitation, a monocyclic or polycyclic alkyl group being substituted by one or more substituents, for example, amino, halogen, alkyl, substituted alkyl, carbyloxy, carbylmercapto, aryl, nitro, mercapto, or sulfa, whereas these generic substituent groups have meanings which are identical with definitions of the corresponding groups as defined herein.
- As used herein, the term “heterocycloalkyl” refers to a monocyclic or polycyclic alkyl group in which at least one ring carbon atom of its cyclic structure being replaced with a heteroatom selected from the group consisting of N, O, S, or P.
- As used herein, the term “substituted heterocycloalkyl” refers to a monocyclic or polycyclic alkyl group in which at least one ring carbon atom of its cyclic structure being replaced with a heteroatom selected from the group consisting of N, O, S, or P, and the group contains one or more substituents selected from the group consisting of halogen, alkyl, substituted alkyl, carbyloxy, carbylmercapto, aryl, nitro, mercapto, or sulfa, whereas these generic substituent group have meanings which are identical with definitions of the corresponding groups as defined herein.
- Unless otherwise noted, starting materials, reagents, and solvents were obtained from commercial suppliers (e.g. Acros Organics, Sigma-Aldrich, Alfa Aesar, Fluorochem, and Merck) and were used without further purification. Reactions were routinely monitored by thin-layer chromatography (TLC) performed on silica gel 60 F254 (layer 0.2 mm) pre-coated aluminium foil (with fluorescent indicator UV254) (Sigma-Aldrich). Developed plates were air-dried and visualized under UV light (254/365 nm) or by using KMnO4 or ninhydrin solutions. Flash column chromatography was performed on Merck silica gel 60 (mesh 230-400).
- 1H NMR and 13C NMR spectra were recorded at room temperature at 400 and 101 MHz, respectively, on a Bruker Avance 400 spectrometer by using TMS or residual solvent peak as internal standard. Chemical shifts are reported in ppm (δ) and the coupling constants (J) are given in Hertz (Hz). Peak multiplicities are abbreviated as follow: s (singlet), bs (broad singlet), d (doublet), dd (double doublet), t (triplet), dt (double triplet), q (quartet), p (pentet), and m (multiplet).
- High-Resolution Mass Spectroscopy (HRMS) spectra were registered on Agilent Technologies 6540 UHD Accurate Mass Q-TOF LC-MS system. The purity of all final compounds that were evaluated in biological assays was assessed as >95%, using LC-MS. The analyses were carried out according to the method listed below. The mobile phase was a mixture of water (solvent A) and acetonitrile (solvent B), both containing formic acid at 0.1%. Method: Acquity UPLC BEH C18 1.7 μm (C18, 150×2.1 mm) column at 40° C. using a flow rate of 0.65 mL/min in a 10 min gradient elution. Gradient elution was as follows: 99.5:0.5 (A/B) to 5:95 (A/B) over 8 min, 5:95 (A/B) for 2 min, and then reversion back to 99.5:0.5 (A/B) over 0.1 min. The UV detection is an averaged signal from wavelength of 190 nm to 640 nm and mass spectra are recorded on a mass spectrometer using positive mode electro spray ionization. The chemical names were generated using ChemBioDraw 12.0 from CambridgeSoft.
- Compounds described herein may be synthesized as described herein, using modified methods described herein or by methods known to a person of skill in the art.
- Chemistry abbreviations: ACN, acetonitrile; AcOH, acetic acid; AcOK, potassium acetate; Boc, tert-butoxycarbonyl; CD3OD, deuterated methanol; CDCl3, deuterated chloroform; DCE, dichloroethane; DCM, dichloromethane; DEE, diethyl ether; DIAD, diisopropyl azodicarboxylate; DIPEA, N,N′-diisopropylethylamine; DMA, dimethylacetamide; DMF, dimethylformamide; DMSO, dimethylsulfoxide; DMSO-d6, deuterated dimethylsulfoxide; EA, ethyl acetate; h, hour; EDC, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; Et3N, triethylamine; HATU, 2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; min, minutes; HOBt, 1-hydroxybenzotriazole; HIRMS, high-resolution mass spectroscopy; MeOH, methanol; NMR, nuclear magnetic resonance; tBu, tert-butyl; THF, tetrahydrofuran; TLC, thin-layer chromatography; TMS, tetramethylsilane; PE, petroleum ether; rt, room temperature.
- Compounds of general formula (I) may be prepared by the general synthetic approaches described below (
General Scheme 1 and 2), together with synthetic methods known in the art of organic chemistry. In all methods, it is well-understood that protecting groups for sensitive or reactive groups may be employed where necessary in accordance with general principles of chemistry. Protecting groups are manipulated according to standard methods of organic synthesis (T. W. Green and P. G. M. Wuts (1999) Protective Groups in Organic Synthesis, 3′ edition, John Wiley & Sons). These groups are removed at a convenient stage of the compound synthesis using methods that are readily apparent to those skilled in the art. The selection of processes as well as the reaction conditions and order of their execution shall be consistent with the preparation of compounds of Formula (I). Specific detailed synthetic procedures for a variety of intermediates and final compounds within the scope of the present disclosure is publicly available in the U.S. Patent Application Publication of U.S. patent application Ser. No. 16/777,294, filed on Jan. 30, 2020, as well as its PCT counterpart, which are publishing on or about Jul. 30, 2020. - ARB: Androgen Receptor (AR) Binder; E3LB: E3 Ligase Binder.
- General Procedure III: HATU-Mediated Amidation Reaction.
- In an oven-dried round-bottom flask, under nitrogen atmosphere, to a stirred solution of 2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetic acid (E) (0.048 g, 0.122 mmol, 1.0 equiv), 4-((6-aminohexyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione hydrochloride (L) (0.050 g, 0.122 mmol, 1.0 equiv), and DIPEA (0.083 mL, 0.489 mmol, 4.0 equiv) in dry DMF (3.0 mL) was added HATU (0.058 g, 0.153 mmol, 1.25 equiv). Stirring was continued at rt for 16h. The reaction mixture was diluted with water (30 mL) and extracted with EA (15 mL×3). The reunited organic layers were washed with water (20 mL×3), brine (20 mL×3), dried over anhydrous Na2SO4 and then concentrated under reduced pressure to give a crude residue, which was purified by flash column chromatography on SiO2 (DCM/Acetone/MeOH, 90:10:0 to 89:10:1) affording a yellow solid (0.015 g, 18% yield). 1H NMR (400 MHz, CDCl3): δ 8.09 (s, 1H), 7.63-7.56 (m, 1H), 7.56-7.48 (m, 1H), 7.11 (d, J=7.0 Hz, 1H), 7.05 (s, 1H), 7.04-6.96 (m, 1H), 6.93 (s, 1H), 6.90 (d, J=8.5 Hz, 1H), 6.25 (s, 1H), 4.93 (dd, J=5.3, 11.9 Hz, 1H), 4.60 (s, 2H), 3.89-3.78 (m, 4H), 3.64-3.51 (m, 4H), 3.36 (q, J=6.8 Hz, 2H), 3.33-3.26 (m, 2H), 2.97-2.68 (m, 3H), 2.18-2.11 (m, 1H), 1.79-1.35 (m, 8H); 13C NMR (101 MHz, CDCl3): δ 170.87, 170.74, 169.50, 168.25, 167.92, 167.59, 150.76 (dd, J=11.6, 251.4 Hz), 146.96, 146.37-146.09 (m), 144.62 (dd, J=1.5, 9.1 Hz), 144.15 (dd, J=14.0, 247.3 Hz), 136.15, 132.48, 125.04, 124.53 (dd, J=4.0, 7.8 Hz), 116.63, 112.43 (d, J=17.2 Hz), 111.46, 109.90, 105.96, 72.42 (d, J=4.9 Hz), 66.11 (2C), 48.87, 48.62 (2C), 42.52, 38.95, 31.41, 29.42, 29.13, 26.62, 26.55, 22.82. HRMS (ESI) m/z [M+H]+ calcd for C34H36F2N6O7S 711.2407, found 711.2412.
- General Procedure III (4 hours) was followed by using (2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetic acid (E) (0.67 g, 1.71 mmol), (2S,4R)-1-((S)-2-(5-aminopentanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N—((S)-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2 carboxamide hydrochloride (AZ) (0.99 g, 1.71 mmol), DIPEA (1.19 mL, 6.82 mmol), and HATU (0.81 g, 2.13 mmol) in dry DMF (7.5 mL) to afford the titled compound as white solid (0.604 g, 40% yield) following purification by flash column chromatography on SiO2 (DCM/Acetone/MeOH, 60:37:3). 1H NMR (400 MHz, CDCl3): δ 8.70 (s, 1H), 7.60 (ddd, J=8.5, 6.0, 2.1 Hz, 1H), 7.48-7.34 (m, 5H), 7.12 (t, J=5.6 Hz, 1H), 7.05-6.92 (m, 2H), 6.32 (d, J=8.6 Hz, 1H), 5.15-5.05 (m, 1H), 4.75 (t, J=8.0 Hz, 1H), 4.66-4.53 (m, 3H), 4.49 (bs, 1H), 4.11 (d, J=11.4 Hz, 1H), 3.90-3.80 (m, 4H), 3.59 (dd, J=11.4, 3.5 Hz, 1H), 3.55-3.46 (m, 4H), 3.45-3.17 (m, 3H), 2.61-2.50 (m, 4H), 2.39-2.21 (m, 2H), 2.07 (dd, J=13.6, 8.3 Hz, 1H), 1.83-1.52 (m, 4H), 1.48 (d, J=6.9 Hz, 3H), 1.06 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 173.34, 172.25, 170.85, 169.54, 168.31, 150.64 (dd, J=251.3, 11.3 Hz), 150.26, 148.50, 146.40 (d, J=1.7 Hz), 144.69-144.42 (m), 144.19 (dd, J=247.5, 14.0 Hz), 143.11, 131.58, 130.88, 129.56 (2C), 126.41 (2C), 125.32 (d, J=3.4 Hz), 124.48 (dd, J=7.7, 3.9 Hz), 112.49 (d, J=17.1 Hz), 106.25, 72.29 (d, J=5.0 Hz), 70.03, 66.13 (2C), 58.24, 57.67, 56.72, 48.86, 48.55 (2C), 38.35, 35.47, 35.35, 34.92, 28.73, 26.51 (3C), 22.40, 22.24, 16.10. HRMS (ESI) m/z [M+H]+ calcd for C43H53F2N7O7S2 882.34887, found 882.3458.
- To the solution of tert-butyl ((S)-1-(((S)-1-cyclohexyl-2-((S)-2-(((S)-1-((2-(2-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)ethoxy)ethoxy)ethyl)amino)-1-oxo-3,3-diphenylpropan-2-yl)carbamoyl)pyrrolidin-1-yl)-2-oxoethyl)amino)-1-oxopropan-2-yl)(methyl)carbamate (BW) (0.060 g, 0.056 mmol) in dry DCM (0.5 mL) was added a solution of 4N HCl in dioxane (0.5 mL) and the mixture was stirred at rt for 4 h. The solvent was evaporated to dryness and the residue was diluted with saturated solution of NaHCO3 (10 mL) and extracted with EA (6 mL×3). The reunited organic phases were washed with brine (10 mL), dried over Na2SO4, and evaporated under reduced pressure affording a crude residue which was purified by flash column chromatography on SiO2 (DCM/MeOH, 95:5 to 94:6) yielding the titled compound (0.041 g, 75% yield) as white solid. HIRMS (ESI) m/z [M+Na]+ calcd for C51H65F2N7O8S 996.44756, found 996.44769.
- To the solution of tert-butyl ((5)-1-(((5)-1-cyclohexyl-2-((5)-2-(((5)-1-((4-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)butyl)amino)-1-oxo-3, 3-diphenylpropan-2-yl)carbamoyl)pyrrolidin-1-yl)-2-oxoethyl)amino)-1-oxopropan-2-yl)(methyl)carbamate (BY) (0.035 g, 0.033 mmol) in dry DCM (0.3 mL) was added a solution of 4N HCl in dioxane (0.3 mL) and the mixture was stirred at rt for 4 h. The solvent was evaporated to dryness and the residue was diluted with saturated solution of NaHCO3 (10 mL) and extracted with EA (5 mL×3). The reunited organic phases were washed with brine (10 mL), dried over Na2SO4, and evaporated under reduced pressure affording a crude residue which was purified by flash column chromatography on SiO2 (DCM/MeOH, 93:7 to 9:1) yielding the titled compound (0.010 g, 33% yield) as white solid. HIRMS (ESI) m/z [M+Na]+ calcd for C51H64F2N8O7S 993.44789, found 993.44843.
- To the solution of tert-butyl ((S)-1-(((S)-1-cyclohexyl-2-((5)-2-(((5)-1-((6-(2-(2,3-difluoro-6-(2-morpholinothiazol-4-yl)phenoxy)acetamido)hexyl)amino)-1-oxo-3, 3-diphenylpropan-2-yl)carbamoyl)pyrrolidin-1-yl)-2-oxoethyl)amino)-1-oxopropan-2-yl)(methyl)carbamate (BZ) (0.030 g, 0.027 mmol) in dry DCM (0.3 mL) was added a solution of 4N HCl in dioxane (0.3 mL) and the mixture was stirred at rt for 4 h. The solvent was evaporated to dryness and the residue was diluted with saturated solution of NaHCO3 (10 mL) and extracted with EA (5 mL×3). The reunited organic phases were washed with brine (10 mL), dried over Na2SO4, and evaporated under reduced pressure affording a crude residue which was purified by flash column chromatography on SiO2 (DCM/MeOH, 95:5 to 93:7) yielding the titled compound (0.017 g, 63% yield) as white solid. IRMS (ESI) m/z [M+H]+ calcd for C53H68F2N8O7S 999.49725, found 999.49979.
- The human prostate cancer cell line, 22Rv1 has been reported to express a high level of AR-V7. Thus, 22Rv1 was seeded at 50,000 cells/well on a 24-well plate in quadruplicates and treated with test compound in concentrations ranging up to 20 μM for four days. Standard culture media was RPMI-1640 supplemented with 10% fetal bovine serum. The test compound initially was dissolved in DMSO at 50 mM. This stock solution was then diluted as needed for the indicated concentrations. At the end of the four-day period, cells were harvested using 1% trypsin and counted using an automated cell counter.
- The results as shown in Table 1 below demonstrate that the test compounds decreased cell count in a concentration dependent manner. In the Table: (+)—the cell count decreased between 0 and 20%; (++)—the cell count decreased less than 50%; (+++)—the cell count decreased by more than 50%.
-
TABLE 1 Compound 22Rv1 cell count decrease of Example at 10 μM for 48 hours 1 ++ 2 + 3 ++ 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 ++ 16 ++ 17 ++ 18 ++ 19 ++ 20 ++ 21 ++ 22 + 23 + 24 +++ 25 +++ 26 +++ 27 +++ 28 +++ 29 ++ 30 ++ 31 +++ 32 + 33 + 34 ++ 35 +++ 36 +++ - Immunoblot was carried out to determine the effect of the test compound on AR-V7. 22Rv1 was plated at 200,000 cell/well on a 6-well plate and cultured as described with 10 μM test compound. After four days of treatment, cells were harvested using a cell scraper and lysed in a standard fashion using SDS. After removing debris via centrifuge, 30 μg of protein were loaded onto SDS-PAGE gel. After electrophoresis, protein was transferred to a nylon membrane and ECL was carried out using primary antibody against AR-V7 (Thermofisher Scientific, cat #NC0752138). Protein bands were visualized using the commercially available Enhanced Chemiluminescence (ECL) kit (Thermofisher). As shown in
FIG. 1 , the results demonstrated a dramatically decreased level of AR-V7 protein. - Compounds according to the present disclosure (“Test Compound”) are tested for in vitro efficacy against various CaP cell lines.
- Cell Culture. Human CaP cell lines, LNCaP, 22Rv1, VCaP, PC3, and DU145 are obtained from the American Type Culture Collection (ATCC) and maintained in the standard culture media: RPMI-1640 supplemented with 10% fetal bovine serum (FBS). LNCaP, 22Rv1, and VCaP are androgen-responsive cell lines, while PC3 and DU145 are not. To establish SAT resistant CaP cell lines, LNCaP, 22Rv1, and VCaP are treated continuously with 10-50 μM abiraterone, apalutamide, darolutamide, or enzalutamide. After 3-6 months, stable cell lines are established and designated as LNCaP-AbiR, LNCaP-ApaR, LNCaP-DaroR, LNCaP-EnzR, VCaP-AbiR, VCaP-ApaR, VCaP-DaroR, VCaP-EnzR, 22Rv1-AbiR, 22Rv1-ApaR, 22Rv1-DaroR, and 22Rv1-EnzR. Unless otherwise specified, the standard culture media for these SAT-resistant cell lines included 10 μM of their respective SAT. For the proteasome inhibitor study, the inhibitors MG132 and Epoxomicin are used. The E3 ligase inhibitors Heclin, Nutlin 3a, Thalidomide, and VH298 are used. Cell lines obtained from ATCC are confirmed by checking their morphology using optical microscopy, establishing baselines for cell proliferation, verifying species of origin using isoenzymology, and characterizing the cell's DNA fingerprint using short tandem repeat (STR) profiling. Mycoplasma contamination is also assessed using a PCR based detection system.
- Apoptosis Assay. An apoptosis assay is carried out using the Thermo Fisher ApoDETECT Annexin V-FITC kit following the protocol recommended by the vendor. Briefly, after treatment with 1 μM of Test Compound for 3 to 24 hours, cells are fixed with 80% ethanol and washed with PBS three times. Then, fixed cells are incubated with Annexin V-FITC in PBS solution for 30 minutes at room temperature. After washing three times with PBS, cells are treated with 300 nM DAPI in PBS for 5 minutes at room temperature. Finally, after washing three times with PBS, mounting solution is added and the cells are visualized using immunofluorescence microscopy. Next, a TUNEL assay is performed using Promega DeadEnd Fluorometric TUNEL system. After treatment with Test Compound and fixation as described above in the Annexin-V experiment, 100 μl of equilibration buffer is incubated for 10 min. Then, 50 μl of TdT reaction mix is added and incubated for 60 min at 37° C. in a humidified chamber. Finally, stop solution is added and samples are mounted on slides using mounting medium. To assess non-specific cytotoxicity, an LDH assay kit is used.
- Transient Transfections. One μg of a plasmid containing cDNA of AR-V7 or AR-FL is transfected into indicated the CaP cell lines on 6-well plates. Three μl of lipofectamine 3000 is used for each transfection.
- Immunoblot Analysis. CaP cells are collected and lysed with the lysis buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, and 1 μg/ml leupeptin) containing 1 mM phenylmethylsulfonyl fluoride (PMSF). Cell lysates are then centrifuged and protein in the supernatant is quantified. After separating 25-50 g of protein using SDS-PAGE, samples are incubated with AR-V7, GR, PR, ERα, AR-FL, ubiquitin, or 3-actin antibodies. For AR-V7, AR-FL, PR, GR, and ERα, immunoblots, primary antibody is diluted 1:1000 in 5% skim milk. For the 3-actin immunoblot, 1:10000 diluted primary antibody is used. All membranes are incubated overnight at 4° C. Following the incubation with appropriate secondary antibody, immunoblots are analyzed using SuperSignal West Femto Maximum Sensitivity Substrate (ThermoFisher).
- In Vivo Study. To explore the therapeutic potential of Test Compound, 22Rv1, 22Rv1-EnzR, VCaP, and VCaP-EnzR are injected into nu/nu immunodeficient mice. When the resulting tumors reached an average size of 3 mm in diameter, all animals are surgically castrated via bilateral orchiectomy and divided into four groups of five mice each. For anesthesia, 3% isofluorane gas inhalation is used. Tumor size was measured using calipers and tumor volume was calculated using the formula: tumor volume=length×width2/0.361.
- Mice are then treated daily with Test Compound with or without enzalutamide via the indicated route (intratumoral, intraperitoneal, or oral) for five to six weeks. At the end of the study, all animals are sacrificed and tumors are harvested and analyzed. Statistical significance is calculated using the Student's t-test for paired comparisons of experimental groups and, where appropriate, by Wilcoxon rank sum test, and by 2-way ANOVA. In vitro experiments are repeated a minimum of three times.
- Results. Treatment of the AR-V7-expressing CaP cell line 22Rv1 with the Compound of Example 16 (0, 0.01, 0.1, 1 and 10 μM) for 24 hours, immunoblot demonstrated decreased AR-V7 and AR-FL protein expression levels in 22Rv1 cells starting at concentration as low as 0.1 μM and 1 μM, respectively. Example 16's effect on AR-V7 and AR-FL protein levels was concentration-dependent and AR-specific, as there was no visible effect on the expression levels of the proteins glucocorticoid receptor (GR), progesterone receptor (PR) a and b, and estrogen receptor alpha (ER). The concentration of Compound of Example 16 at which 50% of AR-V7 and AR-FL degraded in 24 hours (DC50) is determined to be 0.37 and 2 μM, respectively. These results demonstrate that the Compound is able to degrade both AR-V7 and AR-FL, although the degradation effect is more efficient against AR-V7 compared to AR-FL.
- Along with degrading AR-V7 and AR-FL, in the cell proliferation assay, Compound of Example 16 decreased the cell count of 22Rv1 in a concentration dependent manner over 6 days (cell counts are approximately 90%, 70% and 65% of control at 0.01, 0.1 and 1 μM, respectively). As additional controls, constructs comprising Example 16's DBD binding motif with its linker (Control 1, C1) and Example 16's VHL domain with its linker (Control 2, C2) are prepared, as shown below:
- Treatment with C1 or C2 does not result in any significant changes in cell count at up to 1 μM concentration compared to the control (cell counts are 95-105% of control cell counts).
- In another set of experiments, several cell lines (22Rv1, PC3, DU145, LNCaP, VCaP) are compared side to side for the effect of the Compound of Example 16. At 1 μM of Compound of Example 16, 22Rv1 cell count is approximately 40% of the control. The Compound only inhibits the proliferation of androgen-responsive cells (22Rv1, LNCaP, and VCaP). The AR-negative cell lines, PC3 and DU145, are not affected by the Compound. Upon transfecting AR-V7 or AR-FL into 22Rv1 cells, there is seen a partial resistance to the Compound's inhibitory effect (at 1 μM). However, with the transfection of both AR-V7 and AR-FL, the Compound's effect was completely abrogated in 22Rv1 cells. These results suggest that the Compound of Example 16 inhibits CaP cellular proliferation by degrading AR-V7 and AR-FL.
- After treating 22Rv1 cells with
Compound 16 at 1 μM, the annexin-V assay is carried out to assess the effect on apoptosis over a 0 to 48 hours period. Starting approximately three hours after treatment, an increase in annexin-V staining is observed via fluorescence microscopy, and it continues to increase through 48 hours. This result is confirmed by the TUNEL assay. As a negative control, the C1 control is compared, and no change in apoptosis is observed. In addition, using the lactate dehydrogenase (LDH) assay it is observed that the Compound at up to 20 μM had no non-specific cytotoxic effect in 22Rv1 after six days treatment (0.01, 0.1, 1 10 and 20 μM tested). - To determine the mechanism of the cell proliferation inhibition, 22Rv1 cells are pretreated for 2 hours with the proteasome inhibitors MG-132 (5 μM) and epoxomicin (1 μM) prior to treatment with Compound of Example 16 at 1 μM. It is found that AR-V7 degradation is completely blocked, as shown by immunoblotting. The E3 ubiquitin ligase inhibitors are also examined: VH 298 (VHL inhibitor; 20 μM), heclin (HECT inhibitor; 10 μM), nutlin 3a (MDM2 inhibitor; 0.1 μM), and thalidomide (cereblon inhibitor; 10 μM). It is found that when 22Rv1 cells are pretreated with each of these inhibitors for two hours prior to incubation with 1 μM Compound of Example 16, only VH298 pretreatment inhibits AR-V7 degradation.
- To determine the ubiquitination status of AR proteins, 22Rv1 is pretreated with MG132 for two hours prior to adding Compound of Example 16 (at 1 μM). Immunoblot analysis demonstrates polyubiquitination of AR-V7 starting at 6 hours after Compound treatment. AR-FL polyubiquitination is also detected, but occurs significantly later, at 24 hours after treatment. Collectively, these results suggest that the Compound of Example 16 stimulates AR-V7 and AR-FL ubiquitination and degradation specifically via the VHL E3 ligase/proteasome axis.
- To assess the potential therapeutic role of the Compound, twelve human CaP cell lines are generated that are resistant to the four FDA-approved SAT agents: abiraterone, apalutamide, enzalutamide, and darolutamide. Specifically, LNCaP, VCaP, and 22Rv1 cells are cultured with each of the SAT agents for three to six months until resistance emerges. The resulting cells are designated LNCaP-AbiR, LNCaP-ApalR, LNCaP-DarolR, LNCaP-EnzR, VcaP-AbiR, VcaP-ApalR, VcaP-DarolR, VcaP-EnzR, 22Rv1-AbiR, 22Rv1-ApalR, 22Rv1-DarolR, and 22Rv1-EnzR. Quantitative PCR demonstrates that all twelve SAT-resistant CaP cell lines express decreased and increased mRNA and protein levels of AR-FL and AR-V7, respectively. Using the cell proliferation assay above, it is found that all twelve cell lines' cell counts decreased after treatment with the Compound of Example 16 at 1 μM for 6 days (cell counts were reduced generally to 6-80% of control for all lines, except 22Rv1-EnzR, which was decreased to about 45% of control). Immunoblot assays with 22Rv1, VCaP and LNCaP cells demonstrate that the Compound decreases the protein expression levels of both AR-V7 and AR-FL in the parental and SAT-resistant cells. In all three cell lines, the effect on the protein levels of AR-V7 is greater than that on AR-FL. As negative controls, the AR-negative PC3 and DU145 cells are also compared. As predicted based on the suspected mechanism of action, the Compound had no major effect on the mRNA levels of AR-FL and AR-V7 in these cells.
- The in vivo effects of the Compound of Example 16 is assessed in mice using enzalutamide-resistant CaP xenografts. First, 22Rv1-EnzR tumor xenografts are established in nu/nu mice. Upon CaP xenograft formation (average diameter of 3 mm), mice are randomized into controls or treatment. Control mice are treated with 100 μl vehicle containing 10 mg/ml enzalutamide (n=5). The treatment group is injected with 100 μl vehicle containing 2.5 mg/ml Compound of Example 16 and 10 mg/ml enzalutamide daily directly into tumors (n=5) and tumor volumes were followed. The results demonstrate that mice treated with the Compound have a significantly smaller tumor volume at the end of 5 weeks (approximately 500 mm3 for treatment, and 800 mm3 for control). During the treatment period, weight of the mice did not significantly change, suggesting that the Compound does not have major toxicity in mice. Tumors are harvested and analyzed at the end of the study period. It is found that immunoblot demonstrates a significant decrease in AR-V7 and AR-FL protein levels in all treated tumors. Similar results are obtained when the Compound of Example 16 is injected intratumorally into VCaP-EnzR xenografts.
- To test whether the Compound is active systemically, an identical study is carried out as above except for delivering the Compound intraperitoneally (TP) or orally for four weeks. Enzalutamide-resistant CaP tumor xenografts are established in twelve mice and three each are assigned to the following four groups: control IP (vehicle), control oral (vehicle), 8.3 mg/kg IP, and 8.3 mg/kg oral. Because these cells are resistant to enzalutamide, all animals are administered enzalutamide. The results demonstrate that the Compound is effective when administered IP (tumor size approximately 1000 mm3 for treatment group, and 2200 mm3 for control group). Again, no significant change in weight was detected following treatment. Immunoblot shows that IP administration of the Compound decreased AR-V7 and AR-FL protein expression in EnzR Cap tumors. Similar results are found when the Compound is delivered orally (PO) (tumor size approximately 700 mm3 for treatment group, and 2200 mm3 for control group).
- Some of the above studies are carried out on additional compounds of the disclosure. For example, it is found that for the Compound of Example 26, the concentration of Compound at which 50% of AR-V7 and AR-FL is degraded in 24 hours (DC50), as determined by immunoblot, is less than 50 nM and less than 500 nM, respectively. In cell proliferation assays, the Compounds of Examples 26, 34 and 35 at 10 μM reduces cell counts by substantially more than 50% after 4 days of treatment of 22Rv1-EnzR cells, an effect substantially blocked by pre-treatment with MG-132 (5 μM). Similar results are obtained for the Compound of Example 24. In the in vivo mouse tumor model described above, using 22Rv1-EnzR tumors, the Compound of Example 26 substantially reduces tumor mass beginning at around 3 weeks of treatment through 7 weeks of treatment at 8.3 mg/kg and 0.83 mg/kg (tumor mass at 7 weeks, control approx. 1500 mm3; treatment groups <600 mm3). No significant changes in animal body mass observed.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/151,904 US20230241227A1 (en) | 2019-01-30 | 2023-01-09 | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962798554P | 2019-01-30 | 2019-01-30 | |
US16/777,294 US11098025B2 (en) | 2019-01-30 | 2020-01-30 | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
US16/876,949 US11547759B2 (en) | 2019-01-30 | 2020-05-18 | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
US18/151,904 US20230241227A1 (en) | 2019-01-30 | 2023-01-09 | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/876,949 Continuation US11547759B2 (en) | 2019-01-30 | 2020-05-18 | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230241227A1 true US20230241227A1 (en) | 2023-08-03 |
Family
ID=72335052
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/876,949 Active 2040-03-28 US11547759B2 (en) | 2019-01-30 | 2020-05-18 | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
US18/151,904 Pending US20230241227A1 (en) | 2019-01-30 | 2023-01-09 | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/876,949 Active 2040-03-28 US11547759B2 (en) | 2019-01-30 | 2020-05-18 | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
Country Status (1)
Country | Link |
---|---|
US (2) | US11547759B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11883393B2 (en) | 2019-12-19 | 2024-01-30 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of androgen receptor |
US12043612B2 (en) | 2020-05-09 | 2024-07-23 | Arvinas Operations, Inc. | Methods of manufacturing a bifunctional compound, ultrapure forms of the bifunctional compound, and dosage forms comprising the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020160295A1 (en) | 2019-01-30 | 2020-08-06 | Montelino Therapeutics, Llc | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
WO2021236695A1 (en) * | 2020-05-18 | 2021-11-25 | Montelino Therapeutics, Inc. | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
CA3206906A1 (en) * | 2021-02-02 | 2022-08-11 | Andras Herner | Selective bcl-xl protac compounds and methods of use |
US11981672B2 (en) | 2021-09-13 | 2024-05-14 | Montelino Therapeutics Inc. | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
WO2023039604A1 (en) * | 2021-09-13 | 2023-03-16 | Montelino Therapeutics, Inc. | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
US20240207415A1 (en) | 2022-11-08 | 2024-06-27 | Montelino Therapeutics, Inc. | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6306663B1 (en) | 1999-02-12 | 2001-10-23 | Proteinex, Inc. | Controlling protein levels in eucaryotic organisms |
WO2011082285A1 (en) | 2009-12-30 | 2011-07-07 | Avila Therapeutics, Inc. | Ligand-directed covalent modification of protein |
KR20240096553A (en) | 2012-01-12 | 2024-06-26 | 예일 유니버시티 | Compounds and Methods for the Enhanced Degradation of Targeted Proteins and Other Polypeptides by an E3 Ubiquitin Ligase |
GB201311891D0 (en) | 2013-07-03 | 2013-08-14 | Glaxosmithkline Ip Dev Ltd | Novel compound |
EP3105229A4 (en) | 2014-02-14 | 2017-12-20 | The University of British Columbia | Human androgen receptor dna-binding domain (dbd) compounds as therapeutics and methods for their use |
EP3256470B1 (en) | 2014-12-23 | 2023-07-26 | Dana-Farber Cancer Institute, Inc. | Methods to induce targeted protein degradation through bifunctional molecules |
US20170327469A1 (en) | 2015-01-20 | 2017-11-16 | Arvinas, Inc. | Compounds and methods for the targeted degradation of androgen receptor |
JP6817962B2 (en) | 2015-01-20 | 2021-01-20 | アルビナス・オペレーションズ・インコーポレイテッドArvinas Operations, Inc. | Compounds and methods for targeted androgen receptor degradation |
GB201506871D0 (en) | 2015-04-22 | 2015-06-03 | Glaxosmithkline Ip Dev Ltd | Novel compounds |
GB201506872D0 (en) | 2015-04-22 | 2015-06-03 | Ge Oil & Gas Uk Ltd | Novel compounds |
WO2017007612A1 (en) | 2015-07-07 | 2017-01-12 | Dana-Farber Cancer Institute, Inc. | Methods to induce targeted protein degradation through bifunctional molecules |
JP2018526430A (en) | 2015-07-10 | 2018-09-13 | アルヴィナス・インコーポレイテッド | MDM2 modulators of proteolysis and related methods of use |
MX2018012174A (en) | 2016-04-06 | 2019-07-08 | Univ Michigan Regents | Mdm2 protein degraders. |
CN110506039A (en) | 2016-10-11 | 2019-11-26 | 阿尔维纳斯股份有限公司 | Compounds and methods for for androgen receptor targeting degradation |
CN110431138A (en) | 2016-12-19 | 2019-11-08 | 豪夫迈·罗氏有限公司 | AR-V7 inhibitor |
-
2020
- 2020-05-18 US US16/876,949 patent/US11547759B2/en active Active
-
2023
- 2023-01-09 US US18/151,904 patent/US20230241227A1/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11883393B2 (en) | 2019-12-19 | 2024-01-30 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of androgen receptor |
US12043612B2 (en) | 2020-05-09 | 2024-07-23 | Arvinas Operations, Inc. | Methods of manufacturing a bifunctional compound, ultrapure forms of the bifunctional compound, and dosage forms comprising the same |
Also Published As
Publication number | Publication date |
---|---|
US11547759B2 (en) | 2023-01-10 |
US20200282068A1 (en) | 2020-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230241227A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
US20210292298A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
US20230132823A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
US11236051B2 (en) | Compounds and methods for the targeted degradation of androgen receptor | |
US10889593B2 (en) | Compounds targeting proteins, compositions, methods, and uses thereof | |
US20210283261A1 (en) | Compositions and Methods for Treating ALK-Mediated Cancer | |
US20180147202A1 (en) | TANK-BINDING KINASE-1 PROTACs AND ASSOCIATED METHODS OF USE | |
KR20210098960A (en) | HELIOS small molecule degrading agent and method of use | |
IL229387A (en) | Spiro-oxindole mdm2 antagonists | |
US11505539B2 (en) | Deuterated compounds as inhibitors of the BCL6 BTB domain protein-protein interaction and/or as BCL6 degraders | |
US11981672B2 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
WO2022159650A1 (en) | HETEROBIFUNCTIONAL COMPOUNDS AS DEGRADERS OF eEF1A2 | |
WO2023039601A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
US20220401564A1 (en) | Selective histone deacetylase (hdac) degraders and methods of use thereof | |
US20240317734A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
WO2023039602A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
US20240246956A1 (en) | Class iia histone deacetylase (hdac) degrader ligands and methods of use thereof | |
WO2023039604A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
US20240376118A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
US20240207415A1 (en) | Bi-functional compounds and methods for targeted ubiquitination of androgen receptor | |
CA3224123A1 (en) | Small molecule inhibition of deubiquitinating enzyme josephin domain containing 1 (josd1) as a targeted therapy for leukemias with mutant janus kinase 2 (jak2) | |
WO2023220722A2 (en) | Pak1 degraders and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MONTELINO THERAPEUTICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MONTELINO THERAPEUTICS, LLC;REEL/FRAME:062932/0886 Effective date: 20200709 Owner name: MONTELINO THERAPEUTICS, LLC, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESANTIS, JENNY;VAZ, ROY JOSEPH;SIGNING DATES FROM 20200712 TO 20200714;REEL/FRAME:062932/0883 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |