US20180113529A1 - Transparent conductor, method for producing same, and touch panel - Google Patents
Transparent conductor, method for producing same, and touch panel Download PDFInfo
- Publication number
- US20180113529A1 US20180113529A1 US15/567,918 US201615567918A US2018113529A1 US 20180113529 A1 US20180113529 A1 US 20180113529A1 US 201615567918 A US201615567918 A US 201615567918A US 2018113529 A1 US2018113529 A1 US 2018113529A1
- Authority
- US
- United States
- Prior art keywords
- layer
- transmittance
- laminate part
- refractive index
- transparent conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 234
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 144
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 144
- 238000002834 transmittance Methods 0.000 claims abstract description 143
- 229920005989 resin Polymers 0.000 claims abstract description 124
- 239000011347 resin Substances 0.000 claims abstract description 124
- 239000000758 substrate Substances 0.000 claims abstract description 113
- 229910052751 metal Inorganic materials 0.000 claims abstract description 90
- 239000002184 metal Substances 0.000 claims abstract description 90
- 238000003475 lamination Methods 0.000 claims abstract description 40
- 229910001316 Ag alloy Inorganic materials 0.000 claims abstract description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052709 silver Inorganic materials 0.000 claims abstract description 16
- 239000004332 silver Substances 0.000 claims abstract description 16
- 239000011521 glass Substances 0.000 claims description 116
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 74
- 238000000034 method Methods 0.000 claims description 59
- 239000000203 mixture Substances 0.000 claims description 43
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 39
- 239000011787 zinc oxide Substances 0.000 claims description 37
- 238000005530 etching Methods 0.000 claims description 33
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 23
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 22
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 229910003437 indium oxide Inorganic materials 0.000 claims description 14
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 14
- 229910001887 tin oxide Inorganic materials 0.000 claims description 12
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 9
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 9
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 claims description 9
- 239000011342 resin composition Substances 0.000 description 42
- 239000010419 fine particle Substances 0.000 description 41
- 230000003287 optical effect Effects 0.000 description 22
- 239000000853 adhesive Substances 0.000 description 21
- 230000001070 adhesive effect Effects 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 238000004544 sputter deposition Methods 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 12
- -1 polyethylene terephthalate Polymers 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 239000000470 constituent Substances 0.000 description 9
- 239000006059 cover glass Substances 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 239000003999 initiator Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 7
- 238000000059 patterning Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- 229910001928 zirconium oxide Inorganic materials 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 3
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 229910010442 TiO2-SnO2 Inorganic materials 0.000 description 3
- 229910010257 TiO2—SnO2 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000007611 bar coating method Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 238000007759 kiss coating Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910000484 niobium oxide Inorganic materials 0.000 description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 3
- 229920002189 poly(glycerol 1-O-monomethacrylate) polymer Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- ZXHDVRATSGZISC-UHFFFAOYSA-N 1,2-bis(ethenoxy)ethane Chemical compound C=COCCOC=C ZXHDVRATSGZISC-UHFFFAOYSA-N 0.000 description 1
- JOSFJABFAXRZJQ-UHFFFAOYSA-N 1,6-bis(ethenoxy)hexane Chemical compound C=COCCCCCCOC=C JOSFJABFAXRZJQ-UHFFFAOYSA-N 0.000 description 1
- SUFSXWBMZQUYOC-UHFFFAOYSA-N 2,2-bis(ethenoxymethyl)propane-1,3-diol Chemical compound C=COCC(CO)(CO)COC=C SUFSXWBMZQUYOC-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- FUQUBWCLBBUXCM-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-1-ene Chemical group CC=C.CCC(CO)(CO)CO FUQUBWCLBBUXCM-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- ILRVMZXWYVQUMN-UHFFFAOYSA-N 3-ethenoxy-2,2-bis(ethenoxymethyl)propan-1-ol Chemical compound C=COCC(CO)(COC=C)COC=C ILRVMZXWYVQUMN-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910019714 Nb2O3 Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910002668 Pd-Cu Inorganic materials 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910020935 Sn-Sb Inorganic materials 0.000 description 1
- 229910008757 Sn—Sb Inorganic materials 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000007786 electrostatic charging Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- WSTZPWUPYWHZRR-UHFFFAOYSA-N ethene;2-ethyl-2-(hydroxymethyl)propane-1,3-diol Chemical group C=C.CCC(CO)(CO)CO WSTZPWUPYWHZRR-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0274—Optical details, e.g. printed circuits comprising integral optical means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/418—Refractive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/208—Touch screens
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0036—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0286—Programmable, customizable or modifiable circuits
- H05K1/0287—Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
- H05K1/0289—Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns having a matrix lay-out, i.e. having selectively interconnectable sets of X-conductors and Y-conductors in different planes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0108—Transparent
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0338—Layered conductor, e.g. layered metal substrate, layered finish layer or layered thin film adhesion layer
Definitions
- the present disclosure relates to a transparent conductor and a method for producing the same, and a touch panel using the transparent conductor.
- Transparent conductors are used for displays such as liquid crystal displays (LCDs), plasma display panels (PDPs), and electroluminescence panels (organic EL, inorganic EL), and transparent electrodes for solar cells or the like.
- transparent conductors are used for electromagnetic insulation films and infrared shield film.
- ITO which is a substance obtained by adding tin (Sn) to indium oxide (In 2 O 3 ), is widely used.
- Terminals provided with a touch panel such as smartphones and tablet terminals have been rapidly spreading in recent years. They have a configuration in which a touch sensor part is provided on a liquid crystal panel, and a cover glass is provided on the outermost surface.
- the touch sensor part is configured with one sheet or two sheets pasted together, each sheet being obtained by forming an ITO film through sputtering on one surface or both surfaces of a glass or a substrate for a film.
- a transparent conductor having a high transmittance and low resistance has been required. It is required for lowering of the resistance of a transparent conductor with an ITO film to thicken the ITO film or to crystallize the ITO film through thermal annealing.
- thickening of the ITO film leads to lowering of the transmittance.
- Patent Literature 1 a transparent conductive film having a laminate structure of a metal oxide layer containing a component different from ITO and a metal layer has been proposed (e.g., Patent Literature 1).
- Patent Literature 1 Japanese Unexamined Patent Publication No. 2002-157929
- a patterning process is performed to form a conductive part and an insulating part in a transparent conductor so that a touched position can be detected.
- the conductive part and the insulating part are formed, they are covered with a glass layer, and thus a touch panel or the like is manufactured. Since a conductive part and an insulating part in a transparent conductive film with ITO are almost equivalent in terms of optical properties, almost no shading is caused to the pattern.
- a conductive part and an insulating part in a transparent conductive film with ITO are almost equivalent in terms of optical properties both in the state before being covered with a glass layer (a state of a film) and in the state after being covered with a glass layer.
- the transmittance of each of the conductive part and the insulating part is different between the state before being covered with a glass layer and the state after being covered with a glass layer, as a result of which, even when the transmittance difference between the conductive part and the insulating part before being covered with a glass layer is set small, the transmittance difference becomes larger after being covered with a glass layer to cause shading to the pattern.
- an object of the present invention is, in one aspect, to provide a transparent conductor having a laminate structure of a metal oxide layer and a metal layer, the transparent conductor being capable of sufficiently preventing generation of shading due to a difference in transmittance difference between a conductive part and an insulating part.
- Another object of the present invention is, in another aspect, to provide a production method capable of producing such a transparent conductor at high productivity.
- Still another object of the present invention is, in still another aspect, to provide a touch panel with shading due to a difference in transmittance between a conductive part and an insulating part sufficiently reduced.
- the present invention provides, in one aspect, a transparent conductor comprising a transparent resin substrate, wherein the transparent conductor comprises: a first laminate part including the transparent resin substrate and a transmittance-controlling layer; and a second laminate part including the transparent resin substrate, the transmittance-controlling layer, a metal layer containing silver or a silver alloy, and a metal oxide layer in the order presented, the first laminate part and the second laminate part are adjacent to each other in a direction perpendicular to the direction of lamination of the first laminate part and the second laminate part, and the difference between the transmittance of the first laminate part in the direction of lamination, T 1 , and the transmittance of the second laminate part in the direction of lamination, T 2 , (T 2 ⁇ T 1 ) is 4% or more.
- the transparent conductor includes a transmittance-controlling layer, not only in the second laminate part which is to function as a conductive part, but also in the first laminate part which is to function as an insulating part.
- the configuration in which the transmittance-controlling layer is provided can provide a larger difference in transmittance between the first laminate part and the second laminate part in the direction of lamination (T 2 ⁇ T 1 ) to 4% or more. If a glass layer is provided to cover the transmittance-controlling layer in the first laminate part and the metal oxide layer in the second laminate part, then the transmittance of the first laminate part becomes higher to approach the transmittance of the second laminate part.
- the transparent conductor can be suitably used for applications requiring high image quality, such as touch panels.
- the T 2 may be 80% or higher. This provides a transparent conductor having high transmittance, and thus a transparent conductor can be obtained which is particularly suitable for applications requiring reduction of shading in a pattern of a conductive part and insulating part as much as possible, such as touch panels.
- the refractive index of the transmittance-controlling layer may be 1.8 to 2.5 and the refractive index of the metal oxide layer may be 1.8 to 2.3.
- the configuration in which the transmittance-controlling layer having such a refractive index is included can further decrease the difference in transmittance between a conductive part (fourth laminate part) and an insulating part (third laminate part) after the glass layer is provided, while a sufficiently high transmittance is imparted to each of them. Thereby, the image quality can be further enhanced while shading is further reduced.
- the first laminate part and the second laminate part may each include a high refractive index layer between the transparent resin substrate and the transmittance-controlling layer.
- the refractive index of the high refractive index layer may be 1.55 to 1.8.
- the configuration in which the high refractive index layer is provided can further decrease the difference in transmittance for wavelengths of 450 nm to 650 nm.
- the first laminate part and the second laminate part may each include, between the transparent resin substrate and the transmittance-controlling layer, a low refractive index layer and a high refractive index layer in the order presented from the transparent resin substrate side.
- the refractive index of the high refractive index layer may be 1.55 to 1.8
- the refractive index of the low refractive index layer may be lower than the refractive index of the high refractive index layer and be 1.4 to 1.6.
- the configuration in which the high refractive index layer and low refractive index layer are provided in combination can further decrease the transmittance difference for the entire visible light region.
- the first laminate part and the second laminate part may each include a hardcoat layer in the side opposite to the transmittance-controlling layer side of the transparent resin substrate.
- the configuration in which the hardcoat layer is included can sufficiently prevent generation of a scratch in the transparent resin substrate.
- the transmittance-controlling layer may contain at least one of zinc oxide and tin oxide.
- the metal oxide layer may have a composition different from the composition of the transmittance-controlling layer and contain at least one selected from the group consisting of zinc oxide, gallium oxide, germanium oxide, indium oxide, titanium oxide, and tin oxide.
- the first laminate part and the second laminate part may be formed by partially etching the metal layer and the metal oxide layer, without removing the transmittance-controlling layer through the etching.
- the transparent conductor to be formed in this manner can be produced at high productivity.
- the first laminate part and the second laminate part may each include a glass layer in the side opposite to the transparent resin substrate side, and the transmittance of a third laminate including the first laminate part and the glass layer in the direction of lamination, T 3 , may be 90% or lower, and the transmittance of a fourth laminate part including the second laminate part and the glass layer in the direction of lamination, T 4 , may be 85% or higher.
- the configuration in which the transmittance of the third laminate part including an insulating part, T 3 , is 90% or lower can provide a sufficiently small absolute value of the difference in transmittance between the third laminate part and the fourth laminate part including a conductive part,
- a transparent conductor with shading due to the difference in transmittance between a conductive part and an insulating part sufficiently reduced can be obtained.
- the absolute value of the difference between the transmittance T 3 and the transmittance T 4 may be 1% or less. Thereby, shading due to the difference in transmittance between a conductive part and an insulating part can be further reduced.
- the present invention provides, in another aspect, a transparent conductor comprising a transparent resin substrate, wherein the transparent conductor is obtained by etching a laminate including the transparent resin substrate, a transmittance-controlling layer, a metal layer containing silver or a silver alloy, and a metal oxide layer in the order presented to remove a part of the metal layer and the metal oxide layer, without removing the transmittance-controlling layer, the transparent conductor comprises a first laminate part including the transparent resin substrate and a transmittance-controlling layer and a second laminate part including the transparent resin substrate, the transmittance-controlling layer, a metal layer containing silver or a silver alloy, and a metal oxide layer in the order presented, and the first laminate part and the second laminate part are adjacent to each other in a direction perpendicular to the direction of lamination of the first laminate part and the second laminate part.
- the transparent conductor can sufficiently prevent generation of shading due to the difference in transmittance between a conductive part and an insulating part.
- the present invention provides, in still another aspect, a transparent conductor comprising a transparent resin substrate, wherein the transparent conductor comprises: a third laminate part including the transparent resin substrate, a transmittance-controlling layer, and a glass layer in the order presented; and a fourth laminate part including the transparent resin substrate, the transmittance-controlling layer, a metal layer containing silver or a silver alloy, a metal oxide layer, and the glass layer in the order presented, the third laminate part and the fourth laminate part are adjacent to each other in a direction perpendicular to the direction of lamination of the third laminate part and the fourth laminate part, the transmittance of the third laminate part in the direction of lamination, T 3 , is 90% or lower, and the transmittance of the fourth laminate part in the direction of lamination, T 4 , is 85% or higher.
- the transparent conductor can have a sufficiently small absolute value of the difference between the transmittance of the third laminate part including an insulating part, T 3 , and the transmittance of the fourth laminate part including a conductive part, T 4 . Accordingly, generation of shading can be sufficiently prevented.
- the transparent conductor can be suitably used for applications requiring high image quality, such as touch panels.
- the present invention provides, in still another aspect, a transparent conductor comprising a transparent resin substrate, wherein the transparent conductor comprises: a third laminate part including the transparent resin substrate, a transmittance-controlling layer, and a glass layer in the order presented; and a fourth laminate part including the transparent resin substrate, the transmittance-controlling layer, a metal layer containing silver or a silver alloy, a metal oxide layer, and the glass layer in the order presented, the third laminate part and the fourth laminate part are adjacent to each other in a direction perpendicular to the direction of lamination of the third laminate part and the fourth laminate part, and the transmittance-controlling layer is an insulating layer.
- the transparent conductor can sufficiently prevent generation of shading due to the difference in transmittance between a conductive part and an insulating part.
- the present invention provides, in still another aspect, a touch panel comprising one or more sensor films on a panel sheet, wherein at least one of the sensor films is configured with the above transparent conductor. Since the touch panel includes a sensor film configured with the above transparent conductor, shading due to the difference in transmittance between a conductive part and an insulating part can be sufficiently reduced.
- the present invention provides, in still another aspect, a method for producing the above transparent conductor, the method comprising: a step of etching a laminate including the transparent resin substrate, the transmittance-controlling layer, the metal layer containing silver or a silver alloy, and the metal oxide layer in the order presented to remove a part of the metal layer and the metal oxide layer, without removing the transmittance-controlling layer, for formation of the first laminate part and the second laminate part.
- the present invention can provide a transparent conductor capable of sufficiently preventing generation of shading due to the difference in transmittance between a conductive part and an insulating part.
- the present invention can further provide a production method capable of producing such a transparent conductor at high productivity.
- the present invention can provide a touch panel with shading due to the difference in transmittance between a conductive part and an insulating part sufficiently reduced by using such a transparent conductor.
- FIG. 1 is a cross-sectional view schematically illustrating one embodiment of the transparent conductor.
- FIG. 2 is a cross-sectional view schematically illustrating another embodiment of the transparent conductor.
- FIG. 3 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor.
- FIG. 4 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor.
- FIG. 5 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor.
- FIG. 6 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor.
- FIG. 7 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor.
- FIG. 8 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor.
- FIG. 9 is a schematic cross-sectional view illustrating an enlarged partial cross-section of the touch panel in one embodiment.
- FIG. 10 is a plan view of a sensor film constituting one embodiment of the touch panel.
- FIG. 11 is a plan view of a sensor film constituting one embodiment of the touch panel.
- FIG. 1 is a schematic cross-sectional view illustrating one embodiment of the transparent conductor.
- a transparent conductor 100 includes a first laminate part 10 in which a film-shaped transparent resin substrate 11 and a transmittance-controlling layer 12 are laminated, and a second laminate part 20 in which the transparent resin substrate 11 , the transmittance-controlling layer 12 , a metal layer 16 , and a metal oxide layer 14 are laminated in the order presented.
- the first laminate part 10 and the second laminate part 20 are provided in a manner such that they are adjacent to each other in a direction (the right and left direction in FIG. 1 ) perpendicular to the direction of lamination of them (the up and down direction in FIG. 1 ).
- the first laminate part 10 and the second laminate part 20 may be provided alternately along the perpendicular direction.
- Transparent in the present specification means that visible lights transmit, and a certain degree of light scattering is permitted.
- the degree of light scattering required for the transparent conductor 100 depends on the application thereof. What is called “semitransparent”, which allows light scattering, is also included in the concept of “transparent” in the present specification. It is preferable that the degree of light scattering be smaller and the transparency be higher.
- the first laminate part 10 is to function as an insulating part without a conductor, the insulating part formed, for example, through a patterning process.
- the transmittance of the first laminate part 10 without a glass layer above the transmittance-controlling layer 12 in the direction of lamination, T 1 may be, for example, 80% or higher, or may be 82% or higher. Such high T 1 can impart excellent display performance to the transparent conductor.
- the transmittance of the first laminate part 10 without a glass layer above the transmittance-controlling layer 12 , T 1 may be, for example, 90% or lower, or may be 85% or lower.
- the “transmittance” in the present specification refers to transmittance at a wavelength of 550 nm measured by using a commercially available hazemeter. This transmittance is transmittance for light including diffused transmitted light and determined by using an integrating sphere.
- the second laminate part 20 is to function as a conductive part formed, for example, through a patterning process.
- the transmittance of the second laminate part 20 without a glass layer above the metal oxide layer 14 in the direction of lamination, T 2 may be, for example, 80% or higher, or may be 85% or higher. Such high T 2 can impart excellent display performance to the transparent conductor.
- the transmittance of the second laminate part 20 without a glass layer above the metal oxide layer 14 , T 2 may be 93% or lower, or may be 91% or lower.
- the difference between T 1 and T 2 is 4% or more, and may be 5% or more.
- can be set sufficiently small.
- the difference between T and T 2 (T 2 ⁇ T 1 ) may be 10% or less, or may be 8% or less, from the viewpoint of decreasing the absolute value.
- the transparent resin substrate 11 may be any flexible organic resin film, without any limitation.
- the organic resin film may be an organic resin sheet.
- the organic resin film include polyester films such as polyethylene terephthalate (PET) films and polyethylene naphthalate (PEN) films; polyolefin films such as polyethylene films and polypropylene films; polycarbonate films; acrylic films; norbornene films; polyarylate films; polyether sulfone films; diacetylcellulose films; and triacetylcellulose films.
- polyester films such as polyethylene terephthalate (PET) films and polyethylene naphthalate (PEN) films are preferable.
- the transparent resin substrate 11 be thicker, from the viewpoint of rigidity. On the other hand, it is preferable that the transparent resin substrate 11 be thinner, from the viewpoint of thinning of the transparent conductor 100 . From such viewpoints, the thickness of the transparent resin substrate 11 is, for example, 10 to 200 ⁇ m.
- the refractive index of the transparent resin substrate is, for example, 1.50 to 1.70, from the viewpoint of achieving a transparent conductor excellent in optical properties.
- the transparent resin substrate 11 may have been subjected to at least one surface treatment selected from the group consisting of corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment.
- the transparent resin substrate may be a resin film.
- the configuration in which a resin film is used can impart excellent flexibility to the transparent conductor 100 .
- the transparent conductor 100 can be used not only as a transparent conductor for touch panels, but also for transparent electrodes of flexible organic EL lights or the like or electromagnetic shielding.
- a flexible organic resin film may be used for the transparent resin substrate 11 so as to allow appropriate deformation in response to an external input by the finger, a pen, or the like.
- the material of the transmittance-controlling layer 12 is not limited.
- the transmittance-controlling layer 12 may be, for example, an oxide layer, a nitride layer, or a resin layer obtained by application of a resin composition followed by curing.
- the transmittance-controlling layer 12 is required to be insoluble in an etching solution to be used in removal of the metal layer 16 and the metal oxide layer 14 , from the viewpoint of an easy patterning process. Thereby, the transmittance-controlling layer 12 is not removed in etching, and thus the transparent conductor 100 including the first laminate part 10 and the second laminate part 20 can be produced easily.
- the transmittance-controlling layer 12 is required to have insulation properties.
- Examples of an oxide constituting the transmittance-controlling layer 12 include oxides containing zinc oxide and tin oxide as primary components. The configuration in which such an oxide is contained allows the transmittance-controlling layer 12 to have conductivity and high transparency in combination.
- the zinc oxide is, for example, ZnO
- the tin oxide is, for example, SnO 2 .
- the ratio of metal atoms to oxygen atoms in each metal oxide may be deviated from the stoichiometric ratio.
- the oxide constituting the transmittance-controlling layer 12 may be an oxide containing zinc oxide, as a primary component, at least one selected from tin oxide, niobium oxide, and chromium oxide at a content of 10 mol % or more, as an accessory component, and at least one selected from aluminum oxide, gallium oxide, titanium oxide, and germanium oxide, as another component.
- the oxide containing the accessory component is insoluble in acids. Accordingly, the transmittance-controlling layer 12 composed of the oxide can remain unetched without any change in an etching process, while the metal layer 16 containing silver or a silver alloy and the metal oxide layer 14 are removed by etching. In addition, an oxide composed of titanium oxide and niobium oxide can similarly remain unetched without any change.
- the refractive index of the transmittance-controlling layer 12 may be, for example, 1.8 to 2.5, or may be 1.95 to 2.05. Such a refractive index allows the conductive part and the insulating part to have sufficiently high transmittance with the difference further decreased. Thereby, the image quality can be further enhanced while shading is further reduced.
- the thickness of the transmittance-controlling layer 12 may be, for example, 10 to 100 nm, or may be 20 to 80 nm. Such a thickness allows the first laminate part 10 to have low transmittance T 1 . Thus, the transmittance of the third laminate part, T 3 , can be set to 90% or lower.
- the transmittances of the first laminate part 10 (third laminate part) and the second laminate part 20 (fourth laminate part) can be adjusted by changing the product of the thickness and the refractive index (thickness ⁇ refractive index) of the transmittance-controlling layer 12 .
- the transmittance-controlling layer 12 is an oxide layer or a nitride layer
- the transmittance-controlling layer 12 can be produced by using a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method.
- a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method.
- a sputtering method is preferable because a smaller film-forming chamber can be used and the film-forming speed is high in a sputtering method.
- the sputtering method include DC magnetron sputtering.
- an oxide target or a metal or metalloid target can be used.
- the metal layer 16 is a layer containing silver or a silver alloy as a primary component.
- the configuration in which the metal layer 16 has high conductivity allows the transparent conductor 100 to have sufficiently low surface resistance.
- the additive elements constituting the silver alloy together with Ag are, for example, at least one selected from Pd, Cu, Nd, In, Sn, and Sb.
- Examples of the silver alloy include Ag—Pd, Ag—Cu, Ag—Pd—Cu, Ag—Nd—Cu, Ag—In—Sn, and Ag—Sn—Sb.
- the content of the additive elements in the metal layer 16 be 0.5% by mass or more and 5% by mass or less. If the content is less than 0.5% by mass, the corrosion resistance-enhancing effect of Ag tends to be lower. If the content is more than 5% by mass, on the other hand, the transmittance tends to be lower with higher absorbance.
- the thickness of the metal layer 16 is, for example, 3 to 20 nm. From the viewpoint of sufficient enhancement of the transmittance of the transparent conductor 100 with the surface resistance kept sufficiently low, the thickness of the metal layer 16 is preferably 4 to 15 nm. If the thickness of the metal layer 16 is excessively large, the transmittance tends to be lower. If the thickness of the metal layer 16 is excessively small, on the other hand, the surface resistance tends to be higher.
- the metal layer 16 has a function to adjust the transmittance and surface resistance of the transparent conductor 100 .
- the metal layer 16 can be produced by using a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method. Among them, a sputtering method is preferable because a smaller film-forming chamber can be used and the film-forming speed is high in a sputtering method. Examples of the sputtering method include DC magnetron sputtering. For the target, a metal target can be used.
- the metal oxide layer 14 is a transparent layer containing an oxide, and the composition is not limited.
- the oxide include oxides containing four components of zinc oxide, indium oxide, titanium oxide, and tin oxide, as primary components.
- the configuration in which the metal oxide layer 14 containing the four components as primary components and the metal layer 16 are laminated allows the metal oxide layer 14 and the metal layer 16 to have high conductivity and high transparency in combination without need of thermal annealing.
- the metal oxide layer 14 and the metal layer 16 laminated allows efficient patterning because they have excellent resistance to alkalis while they are easily removable with an acidic etching solution.
- the zinc oxide is, for example, ZnO
- the indium oxide is, for example, In 2 O 3
- the titanium oxide is, for example, TiO 2
- the tin oxide is, for example, SnO 2 .
- the ratio of metal atoms to oxygen atoms in each metal oxide may be deviated from the stoichiometric ratio.
- the content of zinc oxide with respect to the total of the four components is, for example, 20 mol % or more, from the viewpoint of achieving a sufficiently high transmittance and conductivity.
- the content of zinc oxide with respect to the total of the four components is, for example, 68 mol % or less, from the viewpoint of achieving sufficiently high storage stability.
- the content of indium oxide with respect to the total of the four components is, for example, 35 mol % or less, from the viewpoint of achieving a sufficiently high transmittance with the surface resistance kept sufficiently low.
- the content of indium oxide with respect to the total of the four components is, for example, 15 mol % or more, from the viewpoint of achieving sufficiently high storage stability.
- the content of titanium oxide with respect to the total of the four components is, for example, 15 mol % or less, from the viewpoint of achieving a sufficiently high transmittance.
- the content of titanium oxide with respect to the total of the four components is, for example, 5 mol % or more, from the viewpoint of achieving sufficiently high resistance to alkalis.
- the content of tin oxide with respect to the total of the four components is, for example, 40 mol % or less, from the viewpoint of achieving a sufficiently high transmittance.
- the content of tin oxide with respect to the total of the four components is, for example, 5 mol % or more, from the viewpoint of achieving sufficiently high storage stability.
- the contents of the four components are values as zinc oxide, indium oxide, titanium oxide, and tin oxide are converted to ZnO, In 2 O 3 , TiO 2 , and SnO 2 , respectively.
- oxides contained as a primary component in the metal oxide layer 14 include oxides containing three components of zinc oxide, gallium oxide, and germanium oxide. It is preferable that zinc oxide be contained at the highest content among the three components. Such an oxide contains zinc oxide at the highest content, and thus is excellent in economic efficiency.
- the content of zinc oxide with respect to the total of the three component is, for example, 70 mol % or more, and preferably 75 mol % or more, from the viewpoint of achieving a sufficiently high transmittance and conductivity.
- the content of zinc oxide with respect to the total of the three components is, for example, 90 mol % or less, and preferably 84 mol % or less, from the viewpoint of achieving sufficiently high storage stability. If the content of zinc oxide is excessively high, white turbidity is likely to be generated during storage under a high temperature and high humidity environment. If the content of zinc oxide is excessively low, on the other hand, the transmittance and conductivity tend to be lower.
- the content of gallium oxide with respect to the total of the three components is, for example, 15 mol % or less, and preferably 11 mol % or less, from the viewpoint of achieving a sufficiently high transmittance with the surface resistance kept sufficiently low.
- the content of gallium oxide with respect to the total of the three components is, for example, 5 mol % or more, and preferably 8 mol % or more, from the viewpoint of achieving sufficiently high storage stability. If the content of gallium oxide is excessively high, the surface resistance tends to be higher and the transmittance tends to be lower. If the content of gallium oxide is excessively low, on the other hand, white turbidity is likely to be generated and the surface resistance tends to increase during storage under a high temperature and high humidity environment.
- the content of germanium oxide with respect to the total of the three components is, for example, 20 mol % or less, and preferably 14 mol % or less, from the viewpoint of achieving a sufficiently high transmittance with the surface resistance kept sufficiently low.
- the content of germanium oxide with respect to the total of the three components is, for example, 5 mol % or more, and preferably 8 mol % or more, from the viewpoint of achieving sufficiently high storage stability. If the content of germanium oxide is excessively high, the surface resistance tends to be higher and the transmittance tends to be lower. If the content of germanium oxide is excessively low, on the other hand, the surface resistance tends to increase during storage under a high temperature and high humidity environment.
- the contents of the three components are values as zinc oxide, gallium oxide, and germanium oxide are converted to ZnO, Ga 2 O 3 , and GeO 2 , respectively.
- the metal oxide layer 14 has a function to adjust optical properties, a function to protect the metal layer 16 , and a function to ensure the conductivity, in combination.
- the metal oxide layer 14 may contain, in addition to the four components or the three components, any trace component or inevitable component in a quantity such that the functions of the metal oxide layer 14 are not largely impaired.
- the fraction of the total of the four components or the fraction of the total of the three components in the metal oxide layer 14 be high, from the viewpoint of imparting sufficiently high properties to the transparent conductor 100 .
- the fraction is, for example, 95 mol % or more, and preferably 97 mol % or more.
- the metal oxide layer 14 may consist of the four components or the three components, without any limitation to the four components or the three components.
- the transmittance-controlling layer 12 and the metal oxide layer 14 have different compositions.
- the configuration in which the transmittance-controlling layer 12 and the metal oxide layer 14 have different compositions allows the transmittance-controlling layer 12 to remain without any change while only a part (unmasked portion) of the metal oxide layer 14 and the metal layer 16 is removed in etching a laminate including the transparent resin substrate 11 , the transmittance-controlling layer 12 , the metal layer 16 , and the metal oxide layer 14 in the order presented.
- the refractive index of the metal oxide layer 14 may be, for example, 1.8 to 2.3, or may be 1.9 to 2.3. Such a refractive index allows the conductive part (fourth laminate part) and the insulating part (third laminate part) to have sufficiently high transmittance with the difference between them further decreased. Thereby, the image quality can be further enhanced while shading is further reduced.
- the thickness of the metal oxide layer 14 may be, for example, 10 to 100 nm, or may be 20 to 80 nm. By optimizing the film thickness of the metal oxide layer 14 to such a thickness, the transmittance can be adjusted. Thus, the transmittance of the second laminate part 20 , T 2 , can be set to 80% or higher. The transmittances of the first laminate part 10 (third laminate part) and the second laminate part 20 (fourth laminate part) can be adjusted by changing the product of the thickness and the refractive index (thickness ⁇ refractive index) of the metal oxide layer 14 .
- the metal oxide layer 14 can be produced by using a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method.
- a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method.
- a sputtering method is preferable because a smaller film-forming chamber can be used and the film-forming speed is high in a sputtering method.
- Examples of the sputtering method include DC magnetron sputtering.
- the target an oxide target or a metal or metalloid target can be used.
- a wiring electrode or the like may be provided on the metal oxide layer 14 .
- a current to conduct through the metal layer 16 is introduced from a wiring electrode or the like to be provided on the metal oxide layer 14 via the metal oxide layer 14 . Accordingly, it is preferable that the metal oxide layer 14 have high conductivity.
- FIG. 2 is a schematic cross-sectional view illustrating another embodiment of the transparent conductor.
- a transparent conductor 101 differs from the transparent conductor 100 in that the transparent conductor 101 includes a hardcoat layer 18 on the back surface of the transparent resin substrate 11 . That is, the transparent conductor 101 includes a hardcoat layer 18 in the side opposite to the transmittance-controlling layer 12 side.
- the constituents other than the hardcoat layer 18 are the same as those of the transparent conductor 100 .
- the transparent conductor 101 includes a first laminate part 10 a in which the hardcoat layer 18 , the transparent resin substrate 11 , and the transmittance-controlling layer 12 are laminated in the order presented, and a second laminate part 20 a in which the hardcoat layer 18 , the transparent resin substrate 11 , the transmittance-controlling layer 12 , the metal layer 16 , and the metal oxide layer 14 are laminated in the order presented.
- the first laminate part 10 a and the second laminate part 20 a are provided in a manner such that they are adjacent to each other in a direction (the right and left direction in FIG. 2 ) perpendicular to the direction of lamination of them (the up and down direction in FIG. 2 ).
- the hardcoat layer 18 typically has almost no impact on the transmittances of the first laminate part 10 a and the second laminate part 20 a .
- the range of each of the transmittance of the first laminate part 10 a , T 1 , and the transmittance of the second laminate part 20 a , T 2 , and the relation between the two transmittances are the same as those for the first laminate part 10 and the second laminate part 20 in FIG. 1 .
- can be set sufficiently small.
- each of the hardcoat layers 18 contains a cured resin obtained by curing a resin composition. It is preferable that the resin composition contain at least one selected from the group consisting of thermosetting resin compositions, ultraviolet-curable resin compositions, and electron beam-curable resin compositions.
- the thermosetting resin composition may contain at least one selected from the group consisting of epoxy resins, phenoxy resins, and melamine resins.
- the resin composition is, for example, a composition containing a curable compound having an energy ray-reactive group such as a (meth)acryloyl group and a vinyl group.
- a curable compound having an energy ray-reactive group such as a (meth)acryloyl group and a vinyl group.
- the representation “(meth)acryloyl group” means that at least one of an acryloyl group and a methacryloyl group is included. It is preferable that the curable compound contain a polyfunctional monomer or oligomer including two or more, preferably three or more, energy ray-reactive groups in one molecule.
- the curable compound preferably contains an acrylic monomer.
- the acrylic monomer include 1,6-hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane ethylene oxide-modified tri(meth)acrylate, trimethylolpropane propylene oxide-modified tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, ditrimethylol propane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, pentaerythritol tri(meth)acrylate, and 3-(meth)acryloyloxy glycerin mono(meth)acrylate.
- the acrylic monomer is not necessarily limited to them
- a compound having a vinyl group may be used.
- the compound having a vinyl group include ethylene glycol divinyl ether, pentaerythritol divinyl ether, 1,6-hexanediol divinyl ether, trimethylolpropane divinyl ether, ethylene oxide-modified hydroquinone divinyl ether, ethylene oxide-modified bisphenol A divinyl ether, pentaerythritol trivinyl ether, dipentaerythritol hexavinyl ether, and ditrimethylol propane polyvinyl ether.
- the compound having a vinyl group is not necessarily limited to them.
- the resin composition contains a photopolymerization initiator.
- a photopolymerization initiator can be used.
- the photopolymerization initiator can be appropriately selected from known compounds including acetophenone-based, benzoin-based, benzophenone-based, and thioxanthone-based compounds. More specific examples of the photopolymerization initiator include DAROCUR 1173, IRGACURE 651, IRGACURE 184, IRGACURE 907 (trade names, manufactured by BASF Japan Ltd.), and KAYACURE DETX-S (trade name, manufactured by Nippon Kayaku Co., Ltd.).
- the content of the photopolymerization initiator can be about 0.01 to 20% by mass or 0.5 to 5% by mass with respect to the mass of the curable compound.
- the resin composition may be a known resin composition obtained by adding a photopolymerization initiator to an acrylic monomer.
- Examples of the resin composition obtained by adding a photopolymerization initiator to an acrylic monomer include SD-318 (trade name, manufactured by DIC Corporation) and XNR 5535 (trade name, manufactured by NAGASE & CO., LTD.), each as an ultraviolet-curable resin.
- the resin composition may contain an organic fine particle and/or inorganic fine particle, for example, to enhance the strength of the coating film and/or adjust the refractive index.
- organic fine particle include organic silicon fine particles, crosslinked acrylic fine particles, and crosslinked polystyrene fine particles.
- inorganic fine particle include silicon oxide fine particles, aluminum oxide fine particles, zirconium oxide fine particles, titanium oxide fine particles, and iron oxide fine particles. Among them, silicon oxide fine particles are preferable.
- a fine particle the surface of which has been treated with a silane coupling agent and includes energy ray-reactive groups including a (meth)acryloyl group and/or vinyl group present as a film thereon.
- energy ray-reactive groups including a (meth)acryloyl group and/or vinyl group present as a film thereon.
- a silicon oxide fine particle treated with a silane coupling agent containing a (meth)acryloyl group is preferably used.
- the average particle diameter of the fine particle is smaller than the thickness of each of the hardcoat layers 18 , and may be 100 nm or smaller, or 20 nm or smaller, from the viewpoint of ensuring sufficient transparency. From the viewpoint of production of a colloidal solution, on the other hand, the average particle diameter of the fine particle may be 5 nm or larger, or 10 nm or larger. In the case that an organic fine particle and/or inorganic fine particle is used, the total quantity of the organic fine particle and inorganic fine particle may be, for example, 5 to 500 parts by mass, or 20 to 200 parts by mass, with respect to 100 parts by mass of the curable compound.
- the resin composition can be cured through irradiation with an energy ray such as an ultraviolet ray.
- an energy ray such as an ultraviolet ray.
- the hardcoat layer 18 can be produced by applying a solution or dispersion of a resin composition onto one surface (back surface) of the transparent resin substrate 11 followed by drying to cure the resin composition.
- the application can be performed by using a known method. Examples of the application method include an extrusion nozzle method, a blade method, a knife method, a bar-coating method, a kiss-coating method, a kiss reverse method, a gravure roll method, a dipping method, a reverse roll method, a direct roll method, a curtain method, and a squeezing method.
- each of the hardcoat layer 18 is, for example, 0.5 to 10 ⁇ m. If the thickness is larger than 10 ⁇ m, unevenness in thickness or a wrinkle is likely to be generated. If the thickness is lower than 0.5 ⁇ m, on the other hand, in the case that quite a large quantity of low-molecular-weight components including a plasticizer or an oligomer is contained in the transparent resin substrate 11 , it may be difficult to sufficiently prevent the bleed-out of the components.
- the refractive index of the hardcoat layer 18 is, for example, 1.40 to 1.60.
- the absolute value of the refractive index difference between the transparent resin substrate 11 and the hardcoat layer 18 is, for example, 0.15 or less.
- the configuration in which the absolute value of the refractive index difference between the hardcoat layer 18 and the transparent resin substrate 11 is small can reduce the intensity of interference unevenness generated by unevenness in thickness in the hardcoat layer 18 .
- FIG. 3 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor.
- a transparent conductor 102 differs from the transparent conductor 101 in that the transparent conductor 102 includes a high refractive index layer 13 between the transparent resin substrate 11 and the transmittance-controlling layer 12 .
- the constituents other than the high refractive index layer 13 are the same as those of the transparent conductor 101 .
- the constituents other than the high refractive index layer 13 and the hardcoat layer 18 are the same as those of the transparent conductor 100 .
- the transparent conductor 102 includes a first laminate part 10 b in which the hardcoat layer 18 , the transparent resin substrate 11 , the high refractive index layer 13 , and the transmittance-controlling layer 12 are laminated in the order presented, and a second laminate part 20 b in which the hardcoat layer 18 , the transparent resin substrate 11 , the high refractive index layer 13 , the transmittance-controlling layer 12 , the metal layer 16 , and the metal oxide layer 14 are laminated in the order presented.
- the first laminate part 10 b and the second laminate part 20 b are provided in a manner such that they are adjacent to each other in a direction (the right and left direction in FIG. 3 ) perpendicular to the direction of lamination of them (the up and down direction in FIG. 3 ).
- each of the transmittance of the first laminate part 10 b , T 1 , and the transmittance of the second laminate part 20 b , T 2 , and the relation between the two transmittances are the same as those for the first laminate part 10 and the second laminate part 20 in FIG. 1 . Accordingly, the absolute value of the difference between the transmittance of a third laminate part obtained by providing a glass layer above the transmittance-controlling layer 12 in the first laminate part 10 b , T 3 , and the transmittance of a fourth laminate part obtained by providing a glass layer above the metal oxide layer 14 in the second laminate part 20 b , T 4 ,
- , can be set sufficiently small.
- the high refractive index layer 13 may be composed of the same material as the hardcoat layer 18 .
- the high refractive index layer 13 can be produced by using the same method as for the hardcoat layer 18 . Accordingly, the contents of description of the hardcoat layer 18 are also applied to the high refractive index layer 13 .
- the high refractive index layer 13 contains, for example, a cured resin obtained by curing a resin composition with an energy ray, as the hardcoat layer 18 .
- a resin composition those exemplified for the hardcoat layer 18 can be used.
- the energy ray-curable resin composition described for the hardcoat layer 18 can be used. That is, the resin composition is an energy ray-curable resin composition containing a curable compound having an energy ray-reactive group selected from a (meth)acryloyl group, a vinyl group, and so on.
- the resin composition may contain a polymer having a high refractive index.
- the resin composition may contain a fine particle of metal oxide.
- the fine particle of metal oxide include fine particles of titanium oxide (TiO 2 , refractive index: 2.35), zirconium oxide (ZrO 2 , refractive index: 2.05), cerium oxide (CeO 2 , refractive index: 2.30), niobium oxide (Nb 2 O 3 , refractive index: 2.15), antimony oxide (Sb 2 O 3 , refractive index: 2.10), tantalum oxide (Ta 2 O, refractive index: 2.10), and combinations of two or more thereof.
- the high refractive index layer 13 containing a cured resin and the fine particle of metal oxide can be produced by applying a resin composition obtained by dispersing the fine particle in a curable compound onto the transparent resin substrate 11 followed by curing.
- the content of the fine particle may be, for example, 5 to 500 parts by mass, or may be 20 to 200 parts by mass, with respect to 100 parts by mass of the curable compound. As the content of the fine particle is lower, the refractive index of the high refractive index layer 13 tends to be lower.
- the refractive index of the high refractive index layer 13 is lower than that of the transmittance-controlling layer 12 , and may be, for example, 1.55 to 1.80, or may be 1.57 to 1.75. If the refractive index of the high refractive index layer 13 is excessively low, the wavelength range allowing a small transmittance difference tends to be narrow. If the refractive index of the transmittance-controlling layer 12 is excessively high, on the other hand, the total light transmittance of the second laminate part 20 b (and a fourth laminate part 40 b to be described later) tends to be lower.
- the thickness of the high refractive index layer 13 may be 10 to 150 nm, or may be 15 to 100 nm. If the thickness of the high refractive index layer 13 is excessively small, it tends to be difficult to produce the high refractive index layer 13 by application. If the thickness of the high refractive index layer 13 is excessively large, on the other hand, the total light transmittance of the second laminate part 20 b (and a fourth laminate part 40 b to be described later) tends to be lower.
- the high refractive index layer 13 can be formed by using, for example, a resin composition in which titanium oxide (TiO 2 ) is dispersed in an energy ray-curable acrylic resin component (trade name: TYT80, manufactured by TOYO INK CO., LTD., refractive index: 1.80), or a resin composition in which zirconium oxide (ZrO 2 ) is dispersed in an energy ray-curable acrylic resin component (trade name: TYZ70, manufactured by TOYO INK CO., LTD., refractive index: 1.70).
- the high refractive index layer 13 may be formed by using a resin composition containing a polymer having a high refractive index. Examples of the polymer having a high refractive index include UR-101 (trade name, refractive index: 1.70, manufactured by Nissan Chemical Industries, Ltd.).
- the high refractive index layer 13 can be produced by applying the above-described resin composition onto the transparent resin substrate 11 such as a PET substrate followed by drying and subsequent curing through ultraviolet irradiation.
- the application can be performed by using a known method.
- Examples of the application method include an extrusion nozzle method, a blade method, a knife method, a bar-coating method, a kiss-coating method, a kiss reverse method, a gravure roll method, a dipping method, a reverse roll method, a direct roll method, a curtain method, and a squeezing method. These application methods are more preferable than a vacuum film formation method with a sputtering method or the like, from the viewpoint of production cost.
- the refractive index of the high refractive index layer 13 can be adjusted, for example, by changing the type and content of the fine particle contained in the high refractive index layer.
- the configuration in which the high refractive index layer 13 is provided can widen the wavelength range allowing a small transmittance difference.
- FIG. 4 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor.
- a transparent conductor 103 differs from the transparent conductor 102 in that the transparent conductor 103 includes a low refractive index layer 17 between the transparent resin substrate 11 and the high refractive index layer 13 .
- the constituents other than the low refractive index layer 17 are the same as those of the transparent conductor 102 .
- the constituents other than the low refractive index layer 17 , the high refractive index layer 13 , and the hardcoat layer 18 are the same as those of the transparent conductor 100 .
- the transparent conductor 103 includes a first laminate part 10 c in which the hardcoat layer 18 , the transparent resin substrate 11 , the low refractive index layer 17 , the high refractive index layer 13 , and the transmittance-controlling layer 12 are laminated in the order presented, and a second laminate part 20 c in which the hardcoat layer 18 , the transparent resin substrate 11 , the low refractive index layer 17 , the high refractive index layer 13 , the transmittance-controlling layer 12 , the metal layer 16 , and the metal oxide layer 14 are laminated in the order presented.
- the first laminate part 10 c and the second laminate part 20 c are provided in a manner such that they are adjacent to each other in a direction (the right and left direction in FIG. 4 ) perpendicular to the direction of lamination of them (the up and down direction in FIG. 4 ).
- each of the transmittance of the first laminate part 10 c , T 1 , and the transmittance of the second laminate part 20 c , T 2 , and the relation between the two transmittances are the same as those for the first laminate part 10 and the second laminate part 20 in FIG. 1 . Accordingly, the absolute value of the difference between the transmittance of a third laminate part obtained by providing a glass layer above the transmittance-controlling layer 12 in the first laminate part 10 c , T 3 , and the transmittance of a fourth laminate part obtained by providing a glass layer above the metal oxide layer 14 in the second laminate part 20 c , T 4 ,
- , can be set sufficiently small.
- the low refractive index layer 17 may be composed of the same material as the hardcoat layer 18 .
- the low refractive index layer 17 can be produced by using the same method as for the hardcoat layer 18 . Accordingly, the contents of description of the hardcoat layer 18 are also applied to the low refractive index layer 17 .
- the low refractive index layer 17 contains, for example, a cured resin obtained by curing a resin composition with an energy ray, as the hardcoat layer 18 .
- the resin composition exemplified for the hardcoat layer 18 can be used.
- the resin composition for example, the energy ray-curable resin composition described for the hardcoat layer 18 can be used. That is, the resin composition may be an energy ray-curable resin composition containing a curable compound having an energy ray-reactive group selected from a (meth)acryloyl group, a vinyl group, and so on.
- the resin composition may contain a fine particle of metal oxide.
- the fine particle of metal oxide include fine particles of silicon oxide (SiO 2 , refractive index: 1.55).
- the low refractive index layer 17 containing a cured resin and such a fine particle of metal oxide can be produced by applying a resin composition obtained by dispersing the fine particle in a curable compound onto the transparent resin substrate 11 followed by curing.
- the content of the fine particle may be, for example, 5 to 500 parts by mass, or may be 20 to 200 parts by mass, with respect to 100 parts by mass of the curable compound. As the content of the fine particle is lower, the refractive index of the low refractive index layer 17 tends to be lower.
- the refractive index of the low refractive index layer 17 is lower than those of the transmittance-controlling layer 12 and the high refractive index layer 13 , and may be, for example, 1.40 to 1.60, or may be 1.45 to 1.55. If the refractive index of the low refractive index layer 17 is excessively low, the wavelength range allowing a small transmittance difference tends to be narrow. If the refractive index of the low refractive index layer 17 is excessively high, on the other hand, the total light transmittance of the second laminate part 20 c (and a fourth laminate part 40 c to be described later) tends to be lower.
- the thickness of the low refractive index layer 17 may be 10 to 150 nm, or may be 15 to 130 nm. If the thickness of the low refractive index layer 17 is excessively small, it tends to be difficult to produce the low refractive index layer 17 by application. If the thickness of the low refractive index layer 17 is excessively large, on the other hand, the total light transmittance of the second laminate part 20 c (and a fourth laminate part 40 c to be described later) tends to be lower.
- the low refractive index layer 17 can be produced by applying the above-described resin composition onto the transparent resin substrate 11 such as a PET substrate followed by drying and subsequent curing through ultraviolet irradiation.
- the application can be performed by using a known method.
- Examples of the application method include an extrusion nozzle method, a blade method, a knife method, a bar-coating method, a kiss-coating method, a kiss reverse method, a gravure roll method, a dipping method, a reverse roll method, a direct roll method, a curtain method, and a squeezing method. These application methods are more preferable than a vacuum film formation method with a sputtering method or the like, from the viewpoint of production cost.
- the refractive index of the low refractive index layer 17 can be adjusted, for example, by changing the type and content of the fine particle contained in the low refractive index layer 17 .
- the configuration in which the low refractive index layer 17 is provided can decrease the transmittance difference in a broad wavelength range of visible lights.
- each of the transparent conductors 100 , 101 , 102 , and 103 may be 200 ⁇ m or smaller, or may be 150 ⁇ m or smaller. Such a thickness can sufficiently meet the required level of thinning.
- Each of the transparent conductors 100 , 101 , 102 , and 103 may be used, for example, directly as a part for touch panels or the like, or a plurality of them may be laminated via an optical clear adhesive.
- the layer configurations of transparent conductors to be laminated may be the same or different.
- the transparent conductors 100 may be laminated, or the transparent conductor 101 and the transparent conductor 102 may be laminated.
- a glass layer may be laminated, via an optical clear adhesive, above one transparent conductor or a plurality of transparent conductors laminated. Even in such embodiments, shading due to the shape of a conductive part and insulating part can be sufficiently reduced.
- a method for producing the transparent conductor 100 includes a step of etching a laminate including the transparent resin substrate 11 , the transmittance-controlling layer 12 , the metal layer 16 , and the metal oxide layer 14 in the order presented to remove a part of the metal layer 16 and the metal oxide layer 14 .
- the other part of the metal layer 16 and the metal oxide layer 14 , and the transmittance-controlling layer 12 are allowed to remain without being removed.
- the first laminate part 10 and the second laminate part 20 are formed.
- Another type of the transparent conductor can be produced by etching a laminate including at least one of the hardcoat layer 18 , the high refractive index layer 13 , and the low refractive index layer 17 , which are included in the corresponding laminate structure.
- Each of the transparent conductors 101 , 102 , and 103 can be produced in the same manner for the transparent conductor 100 .
- FIG. 5 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor.
- a transparent conductor 104 in FIG. 5 differs from the transparent conductor 100 in that the transparent conductor 104 includes a glass layer 19 above the transmittance-controlling layer 12 and the metal oxide layer 14 .
- the constituents other than the glass layer 19 are the same as those of the transparent conductor 100 . Accordingly, the transparent conductor 100 can be used as an intermediate for producing the transparent conductor 104 .
- the transparent conductor 104 includes a third laminate part 30 in which the transparent resin substrate 11 , the transmittance-controlling layer 12 , and the glass layer 19 are laminated in the order presented, and a fourth laminate part 40 in which the transparent resin substrate 11 , the transmittance-controlling layer 12 , the metal layer 16 , the metal oxide layer 14 , and the glass layer 19 are laminated in the order presented.
- the third laminate part 30 and the fourth laminate part 40 are provided in a manner such that they are adjacent to each other in a direction (the right and left direction in FIG. 5 ) perpendicular to the direction of lamination of them (the up and down direction in FIG. 5 ).
- the third laminate part 30 and the fourth laminate part 40 may be provided alternately along the perpendicular direction.
- the third laminate part 30 has a structure in which the glass layer 19 is laminated on the transmittance-controlling layer 12 in the first laminate part 10 of the transparent conductor 100 .
- the glass layer 19 may be composed of one or more glass sheets.
- the glass layer 19 may be pasted on the transmittance-controlling layer 12 via an optical clear adhesive not illustrated.
- the fourth laminate part 40 has a structure in which the glass layer 19 is laminated on the metal oxide layer 14 in the second laminate part 20 of the transparent conductor 100 .
- the glass layer 19 may be composed of one or more glass sheets.
- the glass layer 19 may be pasted on the metal oxide layer 14 via an optical clear adhesive not illustrated.
- the thickness of the glass layer 19 is, for example, 0.1 to 5 mm.
- the thickness of the glass layer 19 can be adjusted according to the application.
- the refractive index of the glass layer 19 is, for example, 1.4 to 1.6.
- the third laminate part 30 corresponds to an insulating part without any conductive part.
- the transmittance of the third laminate part 30 in the direction of lamination, T 3 may be 84% or higher, or 85% or higher. Such high T 3 can impart excellent display performance to the transparent conductor.
- the transmittance of the third laminate part 30 , T 3 is 90% or lower, and may be 89.5% or lower. Thereby, the absolute value of the difference between T 3 and T 4 can be set sufficiently small.
- the fourth laminate part 40 corresponds to a conductive part.
- the transmittance of the fourth laminate part 40 in the direction of lamination, T 4 is 85% or higher, and may be 87% or higher. Such high T 4 can impart excellent display performance to the transparent conductor.
- the transmittance of the fourth laminate part 40 , T 4 may be 93% or lower, or may be 91% or lower.
- may be 0.1% or more and 1.0% or less. Thereby, generation of shading due to the difference in transmittance between a conductive part and an insulating part can be sufficiently prevented.
- FIG. 6 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor.
- a transparent conductor 105 in FIG. 6 differs from the transparent conductor 101 in FIG. 2 in that the transparent conductor 105 includes the glass layer 19 above the transmittance-controlling layer 12 and the metal oxide layer 14 .
- the constituents other than the glass layer 19 are the same as those of the transparent conductor 101 . Accordingly, the transparent conductor 101 can be used as an intermediate for producing the transparent conductor 105 .
- the transparent conductor 105 includes a third laminate part 30 a in which the hardcoat layer 18 , the transparent resin substrate 11 , the transmittance-controlling layer 12 , and the glass layer 19 are laminated in the order presented, and a fourth laminate part 40 a in which the hardcoat layer 18 , the transparent resin substrate 11 , the transmittance-controlling layer 12 , the metal layer 16 , the metal oxide layer 14 , and the glass layer 19 are laminated in the order presented.
- the third laminate part 30 a and the fourth laminate part 40 a are provided in a manner such that they are adjacent to each other in a direction (the right and left direction in FIG. 6 ) perpendicular to the direction of lamination of them (the up and down direction in FIG. 6 ).
- the third laminate part 30 a corresponding to an insulating part without any conductor has a structure in which the glass layer 19 is laminated on the transmittance-controlling layer 12 in the first laminate part 10 a of the transparent conductor 101 illustrated in FIG. 2 .
- the fourth laminate part 40 a corresponding to a conductive part has a structure in which the glass layer 19 is laminated on the metal oxide layer 14 in the second laminate part 20 a of the transparent conductor 101 illustrated in FIG. 2 .
- the range of each of the transmittance of the third laminate part 30 a , T 3 , and the transmittance of the fourth laminate part 40 a , T 4 , and the relation between the two transmittances are the same as those for the transparent conductor 104 .
- FIG. 7 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor.
- a transparent conductor 106 in FIG. 7 differs from the transparent conductor 102 in FIG. 3 in that the transparent conductor 106 includes the glass layer 19 above the transmittance-controlling layer 12 and the metal oxide layer 14 .
- the constituents other than the glass layer 19 are the same as those of the transparent conductor 102 . Accordingly, the transparent conductor 102 can be used as an intermediate for producing the transparent conductor 106 .
- the transparent conductor 106 includes a third laminate part 30 b in which the hardcoat layer 18 , the transparent resin substrate 11 , the high refractive index layer 13 , the transmittance-controlling layer 12 , and the glass layer 19 are laminated in the order presented, and a fourth laminate part 40 b in which the hardcoat layer 18 , the transparent resin substrate 11 , the high refractive index layer 13 , the transmittance-controlling layer 12 , the metal layer 16 , the metal oxide layer 14 , and the glass layer 19 are laminated in the order presented.
- the third laminate part 30 b corresponding to an insulating part without any conductor has a structure in which the glass layer 19 is laminated on the transmittance-controlling layer 12 in the first laminate part 10 b of the transparent conductor 102 illustrated in FIG. 3 .
- the fourth laminate part 40 b corresponding to a conductive part has a structure in which the glass layer 19 is laminated on the metal oxide layer 14 in the second laminate part 20 b of the transparent conductor 102 .
- the range of each of the transmittance of the third laminate part 30 b , T 3 , and the transmittance of the fourth laminate part 40 b , T 4 , and the relation between the two transmittances are the same as those for the transparent conductors 104 and 105 .
- FIG. 8 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor.
- a transparent conductor 107 in FIG. 8 differs from the transparent conductor 103 in FIG. 4 in that the transparent conductor 107 includes the glass layer 19 above the transmittance-controlling layer 12 and the metal oxide layer 14 .
- the constituents other than the glass layer 19 are the same as those of the transparent conductor 103 . Accordingly, the transparent conductor 103 can be used as an intermediate for producing the transparent conductor 107 .
- the transparent conductor 107 includes a third laminate part 30 c in which the hardcoat layer 18 , the transparent resin substrate 11 , the low refractive index layer 17 , the high refractive index layer 13 , the transmittance-controlling layer 12 , and the glass layer 19 are laminated in the order presented, and a fourth laminate part 40 c in which the hardcoat layer 18 , the transparent resin substrate 11 , the low refractive index layer 17 , the high refractive index layer 13 , the transmittance-controlling layer 12 , the metal layer 16 , the metal oxide layer 14 , and the glass layer 19 are laminated in the order presented.
- the third laminate part 30 c corresponding to an insulating part without any conductor has a structure in which the glass layer 19 is laminated on the transmittance-controlling layer 12 in the first laminate part 10 c in the transparent conductor 103 illustrated in FIG. 4 .
- the fourth laminate part 40 c having a conductive part has a structure in which the glass layer 19 is laminated on the metal oxide layer 14 in the second laminate part 20 c of the transparent conductor 103 illustrated in FIG. 4 .
- each of the transmittance of the third laminate part 30 c , T 3 , and the transmittance of the fourth laminate part 40 c , T 4 , and the relation between the two transmittances are the same as those for the transparent conductors 104 , 105 , and 106 .
- the transparent conductors 104 , 105 , 106 , and 107 can sufficiently prevent generation of shading due to the difference in transmittance between a conductive part and an insulating part.
- the transparent conductors 104 , 105 , 106 , and 107 can be used particularly suitably for applications including touch panels.
- the transparent conductor 104 can be produced by performing a step of providing the glass layer 19 so as to cover the transmittance-controlling layer 12 and the metal oxide layer 14 of the transparent conductor 100 .
- Each of the transparent conductors 105 , 106 , and 107 can be produced in the same manner as for the transparent conductor 104 .
- the glass layer 19 may be pasted on the transmittance-controlling layer 12 and the metal oxide layer 14 with an optical clear adhesive.
- each layer constituting each of the above-described transparent conductors can be measured by using the following procedure.
- the transparent conductor is cut with a focused ion beam (FIB) apparatus to obtain a cross-section.
- the cross-section is observed under a transmission electron microscope (TEM) to measure the thickness of each layer. It is preferable to measure at 10 or more positions arbitrarily selected to determine the average value.
- TEM transmission electron microscope
- a microtome may be used as an apparatus other than a focused ion beam apparatus.
- SEM scanning electron microscope
- measurement of film thickness can be performed by using an X-ray fluorescence spectrometer.
- FIG. 9 is a schematic cross-sectional view illustrating an enlarged partial cross-section of a touch panel 200 including a pair of sensor films.
- FIGS. 10 and 11 are plan views of sensor films 100 a and 100 b , respectively, each with the above-described transparent conductor 100 .
- the touch panel 200 includes a pair of sensor films 100 a and 100 b oppositely disposed via an optical clear adhesive 72 .
- the touch panel 200 is configured to be capable of calculating a position touched by a contact body as a coordinate position (horizontal position and vertical position) in a two-dimensional coordinate (X-Y coordinate) plane parallel to a panel sheet 70 as a display.
- the touch panel 200 includes a sensor film 100 a for detecting a vertical position (hereinafter, referred to as “sensor film for Y”) and a sensor film 100 b for detecting a horizontal position (hereinafter, referred to as “sensor film for X”) pasted together via an optical clear adhesive 72 .
- sensor film for Y a sensor film 100 a for detecting a vertical position
- sensor film for X a sensor film 100 b for detecting a horizontal position
- optical clear adhesive 72 As illustrated in FIG. 9 , the touch panel 200 includes a sensor film 100 a for detecting a vertical position (hereinafter, referred to as “sensor film for Y”) and a sensor film 100 b for detecting a horizontal position (hereinafter, referred to as “sensor film for X”) pasted together via an optical clear adhesive 72 .
- spacers 92 are provided between the sensor film for X 100 b and the panel sheet 70 as a display device.
- a cover glass 76 is provided via an optical clear adhesive 74 . That is, the touch panel 200 has a structure in which the sensor film for X 100 b , the sensor film for Y 100 a , and the cover glass 76 are disposed above the panel sheet 70 in the order presented from the panel sheet 70 side.
- the sensor film for Y 100 a for detecting a vertical position and the sensor film for X 100 b for detecting a horizontal position are each composed of the above-described transparent conductor 100 .
- the sensor film for Y 100 a and the sensor film for X 100 b include, as a conductive part, sensor electrodes 15 a and sensor electrodes 15 b , respectively, facing to the cover glass 76 .
- the sensor electrodes 15 a and 15 b each include a laminate including the transmittance-controlling layer 12 , the metal layer 16 , and the metal oxide layer 14 in the order presented.
- the metal layer 16 and the metal oxide layer 14 have been partially removed by etching or the like.
- the sensor electrodes 15 a extend in the vertical direction (y direction) so as to detect a touched position in the vertical direction (y direction).
- the sensor electrodes 15 a are disposed in parallel to each other along the vertical direction (y direction).
- One end of each sensor electrode 15 a is connected to an electrode 80 in the driving IC side via a conductor line 50 formed of a silver paste.
- the sensor film for X 100 b for detecting a horizontal position includes sensor electrodes 15 b on the surface facing to the sensor film for Y 100 a .
- the sensor electrodes 15 b each include a laminate in which the transmittance-controlling layer 12 , the metal layer 16 , and the metal oxide layer 14 are laminated in the order presented. As illustrated in FIG. 11 , the sensor electrodes 15 b extend in the horizontal direction (x direction) so as to detect a touch position in the horizontal direction (x direction).
- the sensor electrodes 15 b are disposed in parallel to each other along the horizontal direction (x direction). One end of each sensor electrode 15 b is connected to an electrode 80 in the driving IC side via a conductor line 50 formed of a silver paste.
- the sensor electrodes 15 a and 15 b may each include the hardcoat layer 18 .
- the sensor electrodes 15 a and 15 b may each include the high refractive index layer 13 or the low refractive index layer 17 between the transparent resin substrate 11 and the transmittance-controlling layer 12 .
- the sensor film for Y 100 a and the sensor film for X 100 b are laminated via the optical clear adhesive 72 in such a manner that the sensor electrodes 15 a and 15 b are perpendicular to each other as viewed from the direction of lamination of the sensor film for Y 100 a and the sensor film for X 100 b .
- the cover glass 76 (glass layer 19 ) is provided via the optical clear adhesive 74 .
- the optical clear adhesives 74 , the cover glass 76 , and the panel sheet 70 common materials can be used.
- Each of the conductor lines 50 and the electrodes 80 in FIGS. 10 and 11 includes a conductive material such as metal (e.g., Ag).
- the conductor lines 50 and the electrodes 80 are produced through pattern formation by screen printing.
- the transparent resin substrate 11 also has a function as a protective film to cover the surface of the touch panel 200 .
- the number and shape of the sensor electrodes 15 a or 15 b in each of the sensor films 100 a and 100 b are not limited to those in the embodiments illustrated in FIGS. 9, 10, and 11 .
- a larger number of the sensor electrodes 15 a and 15 b may be employed to enhance the precision of detecting a touched position.
- the sensor films 100 a and 100 b are each configured with the transparent conductor 100 .
- the sensor films 100 a and 100 b may be each configured with any of the transparent conductors 101 , 102 , and 103 , in place of the transparent conductor 100 .
- the panel sheet 70 is provided, via the spacers 92 , in the side opposite to the sensor film for Y 100 a side of the sensor film for X 100 b .
- the spacers 92 can be provided at positions corresponding to the shape of the sensor electrodes 15 a and 15 b and at positions surrounding the entire of the sensor electrodes 15 a and 15 b .
- Each spacer 92 may be formed of a material with translucency such as a PET (polyethylene terephthalate) resin.
- One end of each spacer 92 is adhered to the bottom surface of the sensor film for X 100 b with an optical clear adhesive or an adhesive 90 with translucency such as an acrylic adhesive and an epoxy adhesive.
- each spacer 92 is adhered to the panel sheet 70 as a display device with the adhesive 90 .
- an interspace S can be provided between the sensor film for X 100 b and the panel sheet 70 as a display device by disposing the sensor film for X 100 b and the panel sheet 70 so as to face each other via the spacers 92 .
- a control unit may be electrically connected to each electrode 80 illustrated in FIGS. 10 and 11 .
- the capacity change of each of the sensor electrodes 15 a and 15 b caused by a capacitance change between the fingertip and the sensor film for Y 100 a of the touch panel 200 is measured.
- the control unit can calculate the position touched by the contact body as a coordinate position (an intersection between a position in the X-axis direction and a position in the Y-axis direction) on the basis of the measurement results.
- various known methods can be employed for the method for driving the sensor electrodes and method for calculating a coordinate position.
- the transmittance in the sensor film 100 a in the direction of lamination differs between the conductive part with the sensor electrodes 15 a and the insulating part without the sensor electrodes 15 a by 4% or more.
- the transmittance in the sensor film 100 b in the direction of lamination differs between the laminate part with the sensor electrodes 15 b and the laminate part without the sensor electrodes 15 b by 4% or more.
- the difference in transmittance between the laminate part including at least one of the sensor electrodes 15 a and 15 b (conductive part) and the laminate part including neither of the sensor electrodes 15 a and 15 b (insulating part) is sufficiently small. Accordingly, shading due to the difference in transmittance between a conductive part and an insulating part can be sufficiently reduced in the touch panel 200 .
- the touch panel 200 can be manufactured by using the following procedure. After the transparent conductor 100 is prepared, etching of the transmittance-controlling layer 12 , the metal layer 16 , and the metal oxide layer 14 is performed for patterning. Specifically, by using the technique of photolithography, a resist material is applied onto the surface of the metal oxide layer 14 through spin coating. Thereafter, pre-baking may be performed to improve the adhesion. Subsequently, a mask pattern is disposed, exposed, and developed with a developing solution to form a resist pattern. Formation of a resist pattern can be achieved not only through photolithography, but also through screen printing or the like. Any of the transparent conductors 101 , 102 , and 103 may be used in place of the transparent conductor 100 .
- the transparent conductor 100 with the resist pattern formed thereon is soaked in an acidic etching solution to dissolve the second metal oxide layer 14 and the metal layer 16 for removal at the part without resist pattern formation.
- the transmittance-controlling layer 12 may be dissolved for removal.
- the metal oxide layer 14 is excellent in solubility in acids for etching.
- formation of an electrode pattern can be smoothly performed through removal of the metal oxide layer 14 and the metal layer 16 in a single operation.
- the resist is removed with an alkaline solution, and thus the sensor film for Y 100 a with the sensor electrodes 15 a formed thereon and the sensor film for X 100 b with the sensor electrodes 15 b formed thereon can be obtained.
- the transmittance-controlling layer 12 can remain without any change even after etching of the metal layer 16 and the metal oxide layer 14 in a single operation.
- etching solution for example, an inorganic acid-based etching solution can be used without any limitation.
- inorganic acid-based etching solutions include phosphoric acid-based etching solutions and hydrochloric acid-based etching solutions.
- a metal paste such as a silver alloy paste is applied to form the conductor lines 50 and electrodes 80 .
- the control unit and the sensor electrodes 15 a and 15 b are electrically connected.
- the sensor film for Y 100 a and the sensor film for X 100 b are pasted together with the optical clear adhesive 72 in an manner such that the sensor electrodes 15 a and 15 b of the sensor film for Y 100 a and the sensor film for X 100 b protrude in the same direction.
- the sensor film for Y 100 a and the sensor film for X 100 b are pasted together in a manner such that the sensor electrodes 15 a and 15 b are perpendicular to each other as viewed from the direction of lamination of the sensor film for Y 100 a and the sensor film for X 100 b .
- the cover glass 76 and the sensor film for Y 100 a are pasted together with the optical clear adhesive 74 .
- the touch panel 200 can be manufactured.
- the transparent conductor 100 it is not necessary to use the transparent conductor 100 for both of the sensor film for Y 100 a and the sensor film for X 100 b , and another transparent conductor may be used for any one of the sensor film for Y 100 a and the sensor film for X 100 b . Even such a touch panel can provide a sufficiently clear display.
- the transparent conductors according to the above-described embodiments can be suitably used for touch panels.
- the application is not limited to touch panels, and if the metal oxide layer 14 and the metal layer 16 are processed into a predetermined shape by etching to form a part including the metal oxide layer 14 and the metal layer 16 (conductive part) and a part not including the metal oxide layer 14 and the metal layer 16 (insulating part), for example, the product can be used for transparent electrodes, prevention of electrostatic charging, and electromagnetic shielding in various display devices including liquid crystal displays (LCDs), plasma display panels (PDPs), and electroluminescence panels (organic EL, inorganic EL), electrochromic elements, and electronic papers.
- the product can be used as an antenna.
- any layer other than the above-described layers may be provided at any position of the transparent conductor according to each embodiment in a manner such that the function is not largely impaired.
- an absorbing layer having a configuration in which a fine particle of metal oxide with absorbance, the metal oxide being, for example, antimony oxide, bismuth oxide, chromium oxide, and/or cerium oxide, is dispersed in a resin component may be provided between the transparent resin substrate 11 and the transmittance-controlling layer.
- a known pressure-sensitive adhesive sheet optical clear adhesive
- a polyethylene terephthalate film with a thickness of 50 ⁇ m (manufactured by TORAY INDUSTRIES, INC., product number: UH13, refractive index: 1.61) was prepared.
- the PET film was used as the transparent resin substrate.
- a coating material for producing the hardcoat layer on the back surface of the PET film was prepared by using the following procedure.
- the above raw materials were diluted with a solvent (propylene glycol monomethyl ether (PGMA)) and mixed together to disperse the components in the solvent. Thereby, a coating material with a nonvolatile content (NV) of 25.5% by mass was prepared. The thus-obtained coating material was used as a coating material for production of the hardcoat layer.
- PGMA propylene glycol monomethyl ether
- the coating material for production of the hardcoat layer was applied onto one surface (back surface) of the transparent resin substrate to produce a coating film. After the solvent in the coating film was removed in a hot air drying oven set at 80° C., the coating film was irradiated for curing with an ultraviolet ray by using a UV treatment apparatus at an integrated light intensity of 400 mJ/cm 2 . Thus, the hardcoat layer with a thickness of 1.5 ⁇ m was formed on one surface of the transparent resin substrate.
- the transmittance-controlling layer, the metal layer, and the metal oxide layer were sequentially formed on the other surface (front surface) of the transparent resin substrate through DC magnetron sputtering.
- the transmittance-controlling layer was formed by using a ZnO—SnO 2 target.
- the metal layer was formed by using an AgPdCu target.
- the metal oxide layer was formed by using a ZnO—Ga 2 O 3 —GeO 2 target.
- the composition of each layer formed was the same as the composition of the corresponding target.
- a mask pattern was disposed on the surface of the metal oxide layer of the laminate obtained, and a resist pattern was formed through printing with a resist ink.
- the resist pattern obtained was dried under conditions of 100° C. for 10 minutes.
- the laminate with the resist pattern formed thereon was soaked in a PAN-based etching solution containing phosphoric acid, acetic acid, nitric acid, and hydrochloric acid to dissolve the metal oxide layer and the metal layer in a part without the resist pattern formed for removal.
- the resist pattern was removed with an alkali, and thus a transparent conductor of Example 1 (before formation of the glass layer) was produced.
- This transparent conductor included the first laminate part 10 a and the second laminate part 20 a as illustrated in FIG. 2 .
- the composition, thickness, and refractive index of each residual layer were as shown in Table 1.
- the transmittances of the first laminate part 10 a and the second laminate part 20 a in the direction of lamination, T 1 and T 2 were measured by using a hazemeter (trade name: NDH-7000, manufactured by NIPPON DENSHOKU INDUSTRIES CO., LTD.). In addition, the value of the difference in transmittance (T 2 ⁇ T 1 ) was calculated. These results were as shown in Table 1.
- An OCA Optical Clear Adhesive as a film-shaped pressure-sensitive adhesive sheet was pasted on the transmittance-controlling layer and the metal oxide layer of the above-described laminate with a pattern formed thereon through etching.
- a glass sheet was pasted on the OCA.
- the thickness and refractive index of the glass layer (glass sheet) formed were 1 mm and 1.45, respectively. Thereby, a transparent conductor (with the glass layer) including the third laminate part 30 a and the fourth laminate part 40 a as illustrated in FIG. 6 was obtained.
- the transmittances of the third laminate part 30 a and the fourth laminate part 40 a in the direction of lamination, T 3 and T 4 were measured by using a hazemeter (trade name: NDH-7000, manufactured by NIPPON DENSHOKU INDUSTRIES CO., LTD.).
- the absolute value of T 4 ⁇ T 3 was calculated.
- Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Example 1, except that the thickness of each of the transmittance-controlling layer and the metal oxide layer was changed as shown in Table 1, a ZnO—In 2 O 3 —TiO 2 —SnO 2 target was used in formation of the metal oxide layer, and the high refractive index layer was formed between the transparent resin substrate and the transmittance-controlling layer.
- the composition of the metal oxide layer formed was the same as the composition of the corresponding target.
- the composition, thickness, and refractive index of each layer are shown in Table 1.
- the high refractive index layer was formed by using the following procedure.
- a resin composition containing zirconium oxide (ZrO 2 ) (trade name: TYZ70, manufactured by TOYO INK CO., LTD., refractive index: 1.70) was diluted with propylene glycol monomethyl ether (PGMA) as a solvent to prepare a coating material with a nonvolatile content (NV) of 6% by mass.
- PGMA propylene glycol monomethyl ether
- the coating material prepared was applied onto the other surface (front surface) of the transparent resin substrate to form the high refractive index layer. Thereafter, the transmittance-controlling layer, the metal layer, and the metal oxide layer were sequentially formed on the high refractive index layer formed in the same manner as in Example 1.
- the transparent conductor (without the glass layer) of Example 2 included the first laminate part 10 b and the second laminate part 20 b as illustrated in FIG. 3 .
- the transparent conductor (with the glass layer) of Example 2 included the third laminate part 30 b and the fourth laminate part 40 b as illustrated in FIG. 7 .
- Evaluations 1 and 2 were performed in the same manner as in Example 1. The evaluation results were as shown in Table 1.
- Example 1 First Second First Second laminate laminate laminate laminate laminate part part part part part Metal oxide Composition none *1 none *2 layer Thickness 50 40 (nm) Refractive 2.0 2.1 index Metal layer Thickness none 5 none 5 (nm) Transmittance- Composition ZnO—SnO 2 ZnO—SnO 2 controlling Thickness 40 50 layer (nm) Refractive 2.0 2.0 index High refractive Thickness None 70 index layer (nm) Refractive 1.70 index Transmittance % 83.8 89.3 83.9 89.0 (T1, T2) T2 ⁇ T1 % 5.5 5.1 Third Fourth Third Fourth laminate laminate laminate laminate laminate laminate part part part part Transmittance % 89.0 89.1 89.2 88.4 (T3, T4)
- *1 is ZnO Ga2O 3 GeO 2
- *2 is ZnO InO 2 TiO 2 SnO 2 .
- Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Example 2, except that the thickness of each of the transmittance-controlling layer and the high refractive index layer was changed as shown in Table 2, and the low refractive index layer was formed between the transparent resin substrate and the high refractive index layer.
- the composition, thickness, and refractive index of each layer are shown in Table 2.
- the low refractive index layer was formed by using the following procedure.
- a resin composition containing silicon oxide (SiO 2 ) (trade name: ENS653, manufactured by DIC Corporation, refractive index: 1.45) was diluted with propylene glycol monomethyl ether (PGMA) as a solvent to prepare a coating material with a nonvolatile content (NV) of 3% by mass.
- the coating material prepared was applied onto the other surface (front surface) of the transparent resin substrate to form the low refractive index layer. Thereafter, the high refractive index layer, the transmittance-controlling layer, the metal layer, and the metal oxide layer were sequentially formed on the low refractive index layer formed in the same manner as in Example 2.
- the transparent conductor (without the glass layer) of Example 3 included the first laminate part 10 c and the second laminate part 20 c as illustrated in FIG. 4 . Evaluations 1 and 2 were performed in the same manner as in Example 2. The evaluation results were as shown in Table 2.
- the hardcoat layer with a thickness of 1.5 ⁇ m was formed on one surface (back surface) of the transparent resin substrate in the same manner as in Example 1.
- the transmittance-controlling layer, the metal layer, and the metal oxide layer were sequentially formed on the other surface (front surface) of the transparent resin substrate through DC magnetron sputtering.
- the transmittance-controlling layer and the metal oxide layer were formed by using a ZnO—Ga 2 O 3 —GeO 2 target.
- the metal layer was formed by using an AgPdCu target.
- the composition of each layer formed was the same as the composition of the corresponding target.
- a resist pattern was formed in the same manner as in Example 1, and etching was performed. Thereby, the metal oxide layer, the metal layer, and the transmittance-controlling layer in a part without the resist pattern formed were dissolved for removal.
- a transparent conductor (without the glass layer) of Comparative Example 1 was produced.
- This transparent conductor included a first laminate part including the hardcoat layer and the transparent resin substrate in the order presented, and a second laminate part including the hardcoat layer, the transparent resin substrate, the transmittance-controlling layer, the metal layer, and the metal oxide layer in the order presented.
- the composition, thickness, and refractive index of each layer were as shown in Table 3.
- Evaluation 1 was performed for the transparent conductor (without the glass layer) in the same manner as in Example 1. Further, a transparent conductor (with the glass layer) was produced by forming the glass layer in the same manner as in Example 1. Then, Evaluation 2 was performed in the same manner as in Example 1. The evaluation results were as shown in Table 3.
- Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Comparative Example 1, except that the thickness of each of the metal oxide layer and the transmittance-controlling layer was changed as shown in Table 3, a ZnO—In 2 O 3 —TiO 2 —SnO 2 target was used in formation of the metal oxide layer and the transmittance-controlling layer, and the high refractive index layer was formed between the transparent resin substrate and the transmittance-controlling layer.
- the composition of each of the metal oxide layer and the transmittance-controlling layer formed was the same as the composition of the corresponding target.
- the transparent conductor (without the glass layer) of Comparative Example 2 included a first laminate part including the hardcoat layer, the transparent resin substrate, and the high refractive index layer in the order presented, and a second laminate part including the hardcoat layer, the transparent resin substrate, the high refractive index layer, the transmittance-controlling layer, the metal layer, and the metal oxide layer in the order presented.
- the transparent conductor (with the glass layer) of Comparative Example 2 included the glass layer above the first laminate part and the second laminate part.
- the composition, thickness, and refractive index of each layer were as shown in Table 3.
- Evaluations 1 and 2 were performed for the transparent conductors (without the glass layer, with the glass layer) in the same manner as in Example 1. The evaluation results were as shown in Table 3.
- Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Example 3, except that a ZnO—In 2 O 3 —TiO 2 —SnO 2 target was used in formation of the transmittance-controlling layer.
- the composition of the transmittance-controlling layer formed was the same as the composition of the corresponding target.
- the transparent conductor (without the glass layer) of Comparative Example 3 included a first laminate part including the hardcoat layer, the transparent resin substrate, the low refractive index layer, and the high refractive index layer in the order presented, and a second laminate part including the hardcoat layer, the transparent resin substrate, the low refractive index layer, the high refractive index layer, the transmittance-controlling layer, the metal layer, and the metal oxide layer in the order presented.
- the transparent conductor (with the glass layer) of Comparative Example 3 included the glass layer above the first laminate part and the second laminate part.
- the composition, thickness, and refractive index of each layer were as shown in Table 4.
- Evaluations 1 and 2 were performed for the transparent conductors (without the glass layer, with the glass layer) in the same manner as in Example 3. The evaluation results were as shown in Table 4.
- Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Example 1, except that the thickness of the transmittance-controlling layer was changed as shown in Table 4, and the high refractive index layer was formed between the transparent resin substrate and the transmittance-controlling layer.
- the high refractive index layer was formed in the same manner as in Example 2.
- the transparent conductor (without the glass layer) of Comparative Example 4 included a first laminate part including the hardcoat layer, the transparent resin substrate, and the high refractive index layer in the order presented, and a second laminate part including the hardcoat layer, the transparent resin substrate, the high refractive index layer, the transmittance-controlling layer, the metal layer, and the metal oxide layer in the order presented.
- the transparent conductor (with the glass layer) of Comparative Example 4 included the glass layer above the first laminate part and the second laminate part.
- the composition, thickness, and refractive index of each layer were as shown in Table 4.
- Evaluations 1 and 2 were performed for the transparent conductors (without the glass layer, with the glass layer) in the same manner as in Example 1. The evaluation results were as shown in Table 4.
- the present disclosure can provide a transparent conductor capable of sufficiently preventing generation of shading due to the difference in transmittance between a conductive part and an insulating part, and a method for producing the same.
- the present disclosure can provide a touch panel with shading due to the difference in transmittance between a conductive part and an insulating part sufficiently reduced by using such a transparent conductor.
- 10 , 10 a , 10 b , 10 c first laminate part, 11 : transparent resin substrate, 12 : transmittance-controlling layer, 13 : high refractive index layer, 14 : metal oxide layer, 15 a , 15 b : sensor electrode, 16 : metal layer, 17 : low refractive index layer, 18 : hardcoat layer, 19 : glass layer, 20 , 20 a , 20 b , 20 c : second laminate part, 30 , 30 a , 30 b , 30 c : third laminate part, 40 , 40 a , 40 b , 40 c : fourth laminate part, 50 : conductor line, 70 : panel sheet, 76 : cover glass, 80 : electrode, 90 : adhesive, 92 : spacer, 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 : transparent conductor, 100 a , 100 b : sensor film, 200 : touch panel.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
- The present disclosure relates to a transparent conductor and a method for producing the same, and a touch panel using the transparent conductor.
- Transparent conductors are used for displays such as liquid crystal displays (LCDs), plasma display panels (PDPs), and electroluminescence panels (organic EL, inorganic EL), and transparent electrodes for solar cells or the like. In addition, transparent conductors are used for electromagnetic insulation films and infrared shield film. For a material of a metal oxide layer of a transparent conductor, ITO, which is a substance obtained by adding tin (Sn) to indium oxide (In2O3), is widely used.
- Terminals provided with a touch panel such as smartphones and tablet terminals have been rapidly spreading in recent years. They have a configuration in which a touch sensor part is provided on a liquid crystal panel, and a cover glass is provided on the outermost surface. The touch sensor part is configured with one sheet or two sheets pasted together, each sheet being obtained by forming an ITO film through sputtering on one surface or both surfaces of a glass or a substrate for a film.
- In association with upsizing of touch panels and achievement of highly precise touch sensor function, a transparent conductor having a high transmittance and low resistance has been required. It is required for lowering of the resistance of a transparent conductor with an ITO film to thicken the ITO film or to crystallize the ITO film through thermal annealing. However, thickening of the ITO film leads to lowering of the transmittance. In addition, it is typically difficult to perform thermal annealing for a substrate for a film at high temperature. Thus, it is currently difficult to lower the resistance of an ITO film provided on a substrate for a film while the transmittance is kept high.
- In such circumstances, a transparent conductive film having a laminate structure of a metal oxide layer containing a component different from ITO and a metal layer has been proposed (e.g., Patent Literature 1).
- Patent Literature 1: Japanese Unexamined Patent Publication No. 2002-157929
- For use as a touch panel or the like, a patterning process is performed to form a conductive part and an insulating part in a transparent conductor so that a touched position can be detected. After the conductive part and the insulating part are formed, they are covered with a glass layer, and thus a touch panel or the like is manufactured. Since a conductive part and an insulating part in a transparent conductive film with ITO are almost equivalent in terms of optical properties, almost no shading is caused to the pattern. In addition, a conductive part and an insulating part in a transparent conductive film with ITO are almost equivalent in terms of optical properties both in the state before being covered with a glass layer (a state of a film) and in the state after being covered with a glass layer.
- In the case of a transparent conductor in which metal oxide layers are laminated with a metal layer sandwiched therebetween, however, total removal of the metal layer and the metal oxide layers sandwiching the metal layer by etching in a patterning process causes shading to the pattern because the transmittance of the conductive part before etching and the transmittance of the insulating part after etching are different. The transmittance of each of the conductive part and the insulating part is different between the state before being covered with a glass layer and the state after being covered with a glass layer, as a result of which, even when the transmittance difference between the conductive part and the insulating part before being covered with a glass layer is set small, the transmittance difference becomes larger after being covered with a glass layer to cause shading to the pattern.
- In view of this, an object of the present invention is, in one aspect, to provide a transparent conductor having a laminate structure of a metal oxide layer and a metal layer, the transparent conductor being capable of sufficiently preventing generation of shading due to a difference in transmittance difference between a conductive part and an insulating part. Another object of the present invention is, in another aspect, to provide a production method capable of producing such a transparent conductor at high productivity. Still another object of the present invention is, in still another aspect, to provide a touch panel with shading due to a difference in transmittance between a conductive part and an insulating part sufficiently reduced.
- The present invention provides, in one aspect, a transparent conductor comprising a transparent resin substrate, wherein the transparent conductor comprises: a first laminate part including the transparent resin substrate and a transmittance-controlling layer; and a second laminate part including the transparent resin substrate, the transmittance-controlling layer, a metal layer containing silver or a silver alloy, and a metal oxide layer in the order presented, the first laminate part and the second laminate part are adjacent to each other in a direction perpendicular to the direction of lamination of the first laminate part and the second laminate part, and the difference between the transmittance of the first laminate part in the direction of lamination, T1, and the transmittance of the second laminate part in the direction of lamination, T2, (T2−T1) is 4% or more.
- The transparent conductor includes a transmittance-controlling layer, not only in the second laminate part which is to function as a conductive part, but also in the first laminate part which is to function as an insulating part. The configuration in which the transmittance-controlling layer is provided can provide a larger difference in transmittance between the first laminate part and the second laminate part in the direction of lamination (T2−T1) to 4% or more. If a glass layer is provided to cover the transmittance-controlling layer in the first laminate part and the metal oxide layer in the second laminate part, then the transmittance of the first laminate part becomes higher to approach the transmittance of the second laminate part. Thus, by making a difference in transmittance (T2−T1) in advance in the state before being covered with the glass layer, the difference in transmittance between a conductive part and a part without a conductive part, namely, an insulating part, after providing the glass layer can be decreased. Accordingly, generation of shading due to the shape of a conductive part and insulating part can be sufficiently prevented. The transparent conductor can be suitably used for applications requiring high image quality, such as touch panels.
- The T2 may be 80% or higher. This provides a transparent conductor having high transmittance, and thus a transparent conductor can be obtained which is particularly suitable for applications requiring reduction of shading in a pattern of a conductive part and insulating part as much as possible, such as touch panels.
- In some embodiments, the refractive index of the transmittance-controlling layer may be 1.8 to 2.5 and the refractive index of the metal oxide layer may be 1.8 to 2.3. The configuration in which the transmittance-controlling layer having such a refractive index is included can further decrease the difference in transmittance between a conductive part (fourth laminate part) and an insulating part (third laminate part) after the glass layer is provided, while a sufficiently high transmittance is imparted to each of them. Thereby, the image quality can be further enhanced while shading is further reduced.
- In some embodiments, the first laminate part and the second laminate part may each include a high refractive index layer between the transparent resin substrate and the transmittance-controlling layer. In this case, the refractive index of the high refractive index layer may be 1.55 to 1.8. The configuration in which the high refractive index layer is provided can further decrease the difference in transmittance for wavelengths of 450 nm to 650 nm.
- In some embodiments, the first laminate part and the second laminate part may each include, between the transparent resin substrate and the transmittance-controlling layer, a low refractive index layer and a high refractive index layer in the order presented from the transparent resin substrate side. In this case, the refractive index of the high refractive index layer may be 1.55 to 1.8, and the refractive index of the low refractive index layer may be lower than the refractive index of the high refractive index layer and be 1.4 to 1.6. The configuration in which the high refractive index layer and low refractive index layer are provided in combination can further decrease the transmittance difference for the entire visible light region.
- In some embodiments, the first laminate part and the second laminate part may each include a hardcoat layer in the side opposite to the transmittance-controlling layer side of the transparent resin substrate. The configuration in which the hardcoat layer is included can sufficiently prevent generation of a scratch in the transparent resin substrate.
- In some embodiments, the transmittance-controlling layer may contain at least one of zinc oxide and tin oxide. The metal oxide layer may have a composition different from the composition of the transmittance-controlling layer and contain at least one selected from the group consisting of zinc oxide, gallium oxide, germanium oxide, indium oxide, titanium oxide, and tin oxide.
- In some embodiments, the first laminate part and the second laminate part may be formed by partially etching the metal layer and the metal oxide layer, without removing the transmittance-controlling layer through the etching. The transparent conductor to be formed in this manner can be produced at high productivity.
- In some embodiments, in the transparent conductor, the first laminate part and the second laminate part may each include a glass layer in the side opposite to the transparent resin substrate side, and the transmittance of a third laminate including the first laminate part and the glass layer in the direction of lamination, T3, may be 90% or lower, and the transmittance of a fourth laminate part including the second laminate part and the glass layer in the direction of lamination, T4, may be 85% or higher.
- The configuration in which the transmittance of the third laminate part including an insulating part, T3, is 90% or lower can provide a sufficiently small absolute value of the difference in transmittance between the third laminate part and the fourth laminate part including a conductive part, |T4−T3|. Thereby, a transparent conductor with shading due to the difference in transmittance between a conductive part and an insulating part sufficiently reduced can be obtained.
- In some embodiments, the absolute value of the difference between the transmittance T3 and the transmittance T4 (T4−T3) may be 1% or less. Thereby, shading due to the difference in transmittance between a conductive part and an insulating part can be further reduced.
- The present invention provides, in another aspect, a transparent conductor comprising a transparent resin substrate, wherein the transparent conductor is obtained by etching a laminate including the transparent resin substrate, a transmittance-controlling layer, a metal layer containing silver or a silver alloy, and a metal oxide layer in the order presented to remove a part of the metal layer and the metal oxide layer, without removing the transmittance-controlling layer, the transparent conductor comprises a first laminate part including the transparent resin substrate and a transmittance-controlling layer and a second laminate part including the transparent resin substrate, the transmittance-controlling layer, a metal layer containing silver or a silver alloy, and a metal oxide layer in the order presented, and the first laminate part and the second laminate part are adjacent to each other in a direction perpendicular to the direction of lamination of the first laminate part and the second laminate part. The transparent conductor can sufficiently prevent generation of shading due to the difference in transmittance between a conductive part and an insulating part.
- The present invention provides, in still another aspect, a transparent conductor comprising a transparent resin substrate, wherein the transparent conductor comprises: a third laminate part including the transparent resin substrate, a transmittance-controlling layer, and a glass layer in the order presented; and a fourth laminate part including the transparent resin substrate, the transmittance-controlling layer, a metal layer containing silver or a silver alloy, a metal oxide layer, and the glass layer in the order presented, the third laminate part and the fourth laminate part are adjacent to each other in a direction perpendicular to the direction of lamination of the third laminate part and the fourth laminate part, the transmittance of the third laminate part in the direction of lamination, T3, is 90% or lower, and the transmittance of the fourth laminate part in the direction of lamination, T4, is 85% or higher.
- The transparent conductor can have a sufficiently small absolute value of the difference between the transmittance of the third laminate part including an insulating part, T3, and the transmittance of the fourth laminate part including a conductive part, T4. Accordingly, generation of shading can be sufficiently prevented. The transparent conductor can be suitably used for applications requiring high image quality, such as touch panels.
- The present invention provides, in still another aspect, a transparent conductor comprising a transparent resin substrate, wherein the transparent conductor comprises: a third laminate part including the transparent resin substrate, a transmittance-controlling layer, and a glass layer in the order presented; and a fourth laminate part including the transparent resin substrate, the transmittance-controlling layer, a metal layer containing silver or a silver alloy, a metal oxide layer, and the glass layer in the order presented, the third laminate part and the fourth laminate part are adjacent to each other in a direction perpendicular to the direction of lamination of the third laminate part and the fourth laminate part, and the transmittance-controlling layer is an insulating layer. The transparent conductor can sufficiently prevent generation of shading due to the difference in transmittance between a conductive part and an insulating part.
- The present invention provides, in still another aspect, a touch panel comprising one or more sensor films on a panel sheet, wherein at least one of the sensor films is configured with the above transparent conductor. Since the touch panel includes a sensor film configured with the above transparent conductor, shading due to the difference in transmittance between a conductive part and an insulating part can be sufficiently reduced.
- The present invention provides, in still another aspect, a method for producing the above transparent conductor, the method comprising: a step of etching a laminate including the transparent resin substrate, the transmittance-controlling layer, the metal layer containing silver or a silver alloy, and the metal oxide layer in the order presented to remove a part of the metal layer and the metal oxide layer, without removing the transmittance-controlling layer, for formation of the first laminate part and the second laminate part. Thereby, a transparent conductor capable of sufficiently preventing generation of shading due to the shape of a conductive part and insulating part can be produced at high production efficiency.
- The present invention can provide a transparent conductor capable of sufficiently preventing generation of shading due to the difference in transmittance between a conductive part and an insulating part. The present invention can further provide a production method capable of producing such a transparent conductor at high productivity. Furthermore, the present invention can provide a touch panel with shading due to the difference in transmittance between a conductive part and an insulating part sufficiently reduced by using such a transparent conductor.
-
FIG. 1 is a cross-sectional view schematically illustrating one embodiment of the transparent conductor. -
FIG. 2 is a cross-sectional view schematically illustrating another embodiment of the transparent conductor. -
FIG. 3 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor. -
FIG. 4 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor. -
FIG. 5 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor. -
FIG. 6 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor. -
FIG. 7 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor. -
FIG. 8 is a cross-sectional view schematically illustrating still another embodiment of the transparent conductor. -
FIG. 9 is a schematic cross-sectional view illustrating an enlarged partial cross-section of the touch panel in one embodiment. -
FIG. 10 is a plan view of a sensor film constituting one embodiment of the touch panel. -
FIG. 11 is a plan view of a sensor film constituting one embodiment of the touch panel. - Embodiments of the present invention will be described in detail below with reference to drawings. However, the embodiments below are examples to describe the present invention, and are not intended to limit the present invention to the contents below. In descriptions, an identical reference sign is used for identical elements or elements having identical function, and redundant descriptions are occasionally omitted. The positional relation such as right and left and up and down in a drawing is as illustrated in the drawing, unless otherwise specified. In addition, the dimensional ratio in a drawing is not limited to that illustrated in the drawing.
-
FIG. 1 is a schematic cross-sectional view illustrating one embodiment of the transparent conductor. Atransparent conductor 100 includes afirst laminate part 10 in which a film-shapedtransparent resin substrate 11 and a transmittance-controllinglayer 12 are laminated, and asecond laminate part 20 in which thetransparent resin substrate 11, the transmittance-controllinglayer 12, ametal layer 16, and ametal oxide layer 14 are laminated in the order presented. Thefirst laminate part 10 and thesecond laminate part 20 are provided in a manner such that they are adjacent to each other in a direction (the right and left direction inFIG. 1 ) perpendicular to the direction of lamination of them (the up and down direction inFIG. 1 ). Thefirst laminate part 10 and thesecond laminate part 20 may be provided alternately along the perpendicular direction. - “Transparent” in the present specification means that visible lights transmit, and a certain degree of light scattering is permitted. The degree of light scattering required for the
transparent conductor 100 depends on the application thereof. What is called “semitransparent”, which allows light scattering, is also included in the concept of “transparent” in the present specification. It is preferable that the degree of light scattering be smaller and the transparency be higher. - The
first laminate part 10 is to function as an insulating part without a conductor, the insulating part formed, for example, through a patterning process. The transmittance of thefirst laminate part 10 without a glass layer above the transmittance-controllinglayer 12 in the direction of lamination, T1, may be, for example, 80% or higher, or may be 82% or higher. Such high T1 can impart excellent display performance to the transparent conductor. The transmittance of thefirst laminate part 10 without a glass layer above the transmittance-controllinglayer 12, T1, may be, for example, 90% or lower, or may be 85% or lower. The “transmittance” in the present specification refers to transmittance at a wavelength of 550 nm measured by using a commercially available hazemeter. This transmittance is transmittance for light including diffused transmitted light and determined by using an integrating sphere. - The
second laminate part 20 is to function as a conductive part formed, for example, through a patterning process. The transmittance of thesecond laminate part 20 without a glass layer above themetal oxide layer 14 in the direction of lamination, T2, may be, for example, 80% or higher, or may be 85% or higher. Such high T2 can impart excellent display performance to the transparent conductor. The transmittance of thesecond laminate part 20 without a glass layer above themetal oxide layer 14, T2, may be 93% or lower, or may be 91% or lower. - The difference between T1 and T2 (T2−T1) is 4% or more, and may be 5% or more. Thereby, the absolute value of the difference between the transmittance of a third laminate part obtained by providing a glass layer above the transmittance-controlling
layer 12 in thefirst laminate part 10, T3, and the transmittance of a fourth laminate part obtained by providing a glass layer above themetal oxide layer 14 in the second laminate part, T4, |T4−T3|, can be set sufficiently small. |T4−T3| may be 1% or less, or may be 0.8% or less. The difference between T and T2 (T2−T1) may be 10% or less, or may be 8% or less, from the viewpoint of decreasing the absolute value. - The
transparent resin substrate 11 may be any flexible organic resin film, without any limitation. The organic resin film may be an organic resin sheet. Examples of the organic resin film include polyester films such as polyethylene terephthalate (PET) films and polyethylene naphthalate (PEN) films; polyolefin films such as polyethylene films and polypropylene films; polycarbonate films; acrylic films; norbornene films; polyarylate films; polyether sulfone films; diacetylcellulose films; and triacetylcellulose films. Among them, polyester films such as polyethylene terephthalate (PET) films and polyethylene naphthalate (PEN) films are preferable. - It is preferable that the
transparent resin substrate 11 be thicker, from the viewpoint of rigidity. On the other hand, it is preferable that thetransparent resin substrate 11 be thinner, from the viewpoint of thinning of thetransparent conductor 100. From such viewpoints, the thickness of thetransparent resin substrate 11 is, for example, 10 to 200 μm. The refractive index of the transparent resin substrate is, for example, 1.50 to 1.70, from the viewpoint of achieving a transparent conductor excellent in optical properties. The refractive index in the present specification is a value measured under conditions of λ=633 nm and a temperature of 20° C. by using a commercially available ellipsometer. - The
transparent resin substrate 11 may have been subjected to at least one surface treatment selected from the group consisting of corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment. The transparent resin substrate may be a resin film. The configuration in which a resin film is used can impart excellent flexibility to thetransparent conductor 100. Thereby, thetransparent conductor 100 can be used not only as a transparent conductor for touch panels, but also for transparent electrodes of flexible organic EL lights or the like or electromagnetic shielding. - When the
transparent conductor 100 is used as a sensor film constituting a touch panel, for example, a flexible organic resin film may be used for thetransparent resin substrate 11 so as to allow appropriate deformation in response to an external input by the finger, a pen, or the like. - The material of the transmittance-controlling
layer 12 is not limited. The transmittance-controllinglayer 12 may be, for example, an oxide layer, a nitride layer, or a resin layer obtained by application of a resin composition followed by curing. The transmittance-controllinglayer 12 is required to be insoluble in an etching solution to be used in removal of themetal layer 16 and themetal oxide layer 14, from the viewpoint of an easy patterning process. Thereby, the transmittance-controllinglayer 12 is not removed in etching, and thus thetransparent conductor 100 including thefirst laminate part 10 and thesecond laminate part 20 can be produced easily. In addition, the transmittance-controllinglayer 12 is required to have insulation properties. - Examples of an oxide constituting the transmittance-controlling
layer 12 include oxides containing zinc oxide and tin oxide as primary components. The configuration in which such an oxide is contained allows the transmittance-controllinglayer 12 to have conductivity and high transparency in combination. The zinc oxide is, for example, ZnO, and the tin oxide is, for example, SnO2. The ratio of metal atoms to oxygen atoms in each metal oxide may be deviated from the stoichiometric ratio. - Alternatively, the oxide constituting the transmittance-controlling
layer 12 may be an oxide containing zinc oxide, as a primary component, at least one selected from tin oxide, niobium oxide, and chromium oxide at a content of 10 mol % or more, as an accessory component, and at least one selected from aluminum oxide, gallium oxide, titanium oxide, and germanium oxide, as another component. The oxide containing the accessory component is insoluble in acids. Accordingly, the transmittance-controllinglayer 12 composed of the oxide can remain unetched without any change in an etching process, while themetal layer 16 containing silver or a silver alloy and themetal oxide layer 14 are removed by etching. In addition, an oxide composed of titanium oxide and niobium oxide can similarly remain unetched without any change. - The refractive index of the transmittance-controlling
layer 12 may be, for example, 1.8 to 2.5, or may be 1.95 to 2.05. Such a refractive index allows the conductive part and the insulating part to have sufficiently high transmittance with the difference further decreased. Thereby, the image quality can be further enhanced while shading is further reduced. - The thickness of the transmittance-controlling
layer 12 may be, for example, 10 to 100 nm, or may be 20 to 80 nm. Such a thickness allows thefirst laminate part 10 to have low transmittance T1. Thus, the transmittance of the third laminate part, T3, can be set to 90% or lower. The transmittances of the first laminate part 10 (third laminate part) and the second laminate part 20 (fourth laminate part) can be adjusted by changing the product of the thickness and the refractive index (thickness×refractive index) of the transmittance-controllinglayer 12. - In the case that the transmittance-controlling
layer 12 is an oxide layer or a nitride layer, the transmittance-controllinglayer 12 can be produced by using a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method. Among them, a sputtering method is preferable because a smaller film-forming chamber can be used and the film-forming speed is high in a sputtering method. Examples of the sputtering method include DC magnetron sputtering. For the target, an oxide target or a metal or metalloid target can be used. - The
metal layer 16 is a layer containing silver or a silver alloy as a primary component. The configuration in which themetal layer 16 has high conductivity allows thetransparent conductor 100 to have sufficiently low surface resistance. The additive elements constituting the silver alloy together with Ag are, for example, at least one selected from Pd, Cu, Nd, In, Sn, and Sb. Examples of the silver alloy include Ag—Pd, Ag—Cu, Ag—Pd—Cu, Ag—Nd—Cu, Ag—In—Sn, and Ag—Sn—Sb. - It is preferable that the content of the additive elements in the
metal layer 16 be 0.5% by mass or more and 5% by mass or less. If the content is less than 0.5% by mass, the corrosion resistance-enhancing effect of Ag tends to be lower. If the content is more than 5% by mass, on the other hand, the transmittance tends to be lower with higher absorbance. The thickness of themetal layer 16 is, for example, 3 to 20 nm. From the viewpoint of sufficient enhancement of the transmittance of thetransparent conductor 100 with the surface resistance kept sufficiently low, the thickness of themetal layer 16 is preferably 4 to 15 nm. If the thickness of themetal layer 16 is excessively large, the transmittance tends to be lower. If the thickness of themetal layer 16 is excessively small, on the other hand, the surface resistance tends to be higher. - The
metal layer 16 has a function to adjust the transmittance and surface resistance of thetransparent conductor 100. Themetal layer 16 can be produced by using a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method. Among them, a sputtering method is preferable because a smaller film-forming chamber can be used and the film-forming speed is high in a sputtering method. Examples of the sputtering method include DC magnetron sputtering. For the target, a metal target can be used. - The
metal oxide layer 14 is a transparent layer containing an oxide, and the composition is not limited. Examples of the oxide include oxides containing four components of zinc oxide, indium oxide, titanium oxide, and tin oxide, as primary components. The configuration in which themetal oxide layer 14 containing the four components as primary components and themetal layer 16 are laminated allows themetal oxide layer 14 and themetal layer 16 to have high conductivity and high transparency in combination without need of thermal annealing. In addition, themetal oxide layer 14 and themetal layer 16 laminated allows efficient patterning because they have excellent resistance to alkalis while they are easily removable with an acidic etching solution. - The zinc oxide is, for example, ZnO, the indium oxide is, for example, In2O3, the titanium oxide is, for example, TiO2, and the tin oxide is, for example, SnO2. The ratio of metal atoms to oxygen atoms in each metal oxide may be deviated from the stoichiometric ratio.
- In the
metal oxide layer 14, the content of zinc oxide with respect to the total of the four components is, for example, 20 mol % or more, from the viewpoint of achieving a sufficiently high transmittance and conductivity. In themetal oxide layer 14, the content of zinc oxide with respect to the total of the four components is, for example, 68 mol % or less, from the viewpoint of achieving sufficiently high storage stability. - In the
metal oxide layer 14, the content of indium oxide with respect to the total of the four components is, for example, 35 mol % or less, from the viewpoint of achieving a sufficiently high transmittance with the surface resistance kept sufficiently low. In themetal oxide layer 14, the content of indium oxide with respect to the total of the four components is, for example, 15 mol % or more, from the viewpoint of achieving sufficiently high storage stability. - In the
metal oxide layer 14, the content of titanium oxide with respect to the total of the four components is, for example, 15 mol % or less, from the viewpoint of achieving a sufficiently high transmittance. In themetal oxide layer 14, the content of titanium oxide with respect to the total of the four components is, for example, 5 mol % or more, from the viewpoint of achieving sufficiently high resistance to alkalis. - In the
metal oxide layer 14, the content of tin oxide with respect to the total of the four components is, for example, 40 mol % or less, from the viewpoint of achieving a sufficiently high transmittance. In themetal oxide layer 14, the content of tin oxide with respect to the total of the four components is, for example, 5 mol % or more, from the viewpoint of achieving sufficiently high storage stability. The contents of the four components are values as zinc oxide, indium oxide, titanium oxide, and tin oxide are converted to ZnO, In2O3, TiO2, and SnO2, respectively. - Other examples of the oxide contained as a primary component in the
metal oxide layer 14 include oxides containing three components of zinc oxide, gallium oxide, and germanium oxide. It is preferable that zinc oxide be contained at the highest content among the three components. Such an oxide contains zinc oxide at the highest content, and thus is excellent in economic efficiency. - The content of zinc oxide with respect to the total of the three component is, for example, 70 mol % or more, and preferably 75 mol % or more, from the viewpoint of achieving a sufficiently high transmittance and conductivity. The content of zinc oxide with respect to the total of the three components is, for example, 90 mol % or less, and preferably 84 mol % or less, from the viewpoint of achieving sufficiently high storage stability. If the content of zinc oxide is excessively high, white turbidity is likely to be generated during storage under a high temperature and high humidity environment. If the content of zinc oxide is excessively low, on the other hand, the transmittance and conductivity tend to be lower.
- The content of gallium oxide with respect to the total of the three components is, for example, 15 mol % or less, and preferably 11 mol % or less, from the viewpoint of achieving a sufficiently high transmittance with the surface resistance kept sufficiently low. The content of gallium oxide with respect to the total of the three components is, for example, 5 mol % or more, and preferably 8 mol % or more, from the viewpoint of achieving sufficiently high storage stability. If the content of gallium oxide is excessively high, the surface resistance tends to be higher and the transmittance tends to be lower. If the content of gallium oxide is excessively low, on the other hand, white turbidity is likely to be generated and the surface resistance tends to increase during storage under a high temperature and high humidity environment.
- The content of germanium oxide with respect to the total of the three components is, for example, 20 mol % or less, and preferably 14 mol % or less, from the viewpoint of achieving a sufficiently high transmittance with the surface resistance kept sufficiently low. The content of germanium oxide with respect to the total of the three components is, for example, 5 mol % or more, and preferably 8 mol % or more, from the viewpoint of achieving sufficiently high storage stability. If the content of germanium oxide is excessively high, the surface resistance tends to be higher and the transmittance tends to be lower. If the content of germanium oxide is excessively low, on the other hand, the surface resistance tends to increase during storage under a high temperature and high humidity environment. The contents of the three components are values as zinc oxide, gallium oxide, and germanium oxide are converted to ZnO, Ga2O3, and GeO2, respectively.
- The
metal oxide layer 14 has a function to adjust optical properties, a function to protect themetal layer 16, and a function to ensure the conductivity, in combination. Themetal oxide layer 14 may contain, in addition to the four components or the three components, any trace component or inevitable component in a quantity such that the functions of themetal oxide layer 14 are not largely impaired. However, it is preferable that the fraction of the total of the four components or the fraction of the total of the three components in themetal oxide layer 14 be high, from the viewpoint of imparting sufficiently high properties to thetransparent conductor 100. In this case, the fraction is, for example, 95 mol % or more, and preferably 97 mol % or more. Themetal oxide layer 14 may consist of the four components or the three components, without any limitation to the four components or the three components. - The transmittance-controlling
layer 12 and themetal oxide layer 14 have different compositions. The configuration in which the transmittance-controllinglayer 12 and themetal oxide layer 14 have different compositions allows the transmittance-controllinglayer 12 to remain without any change while only a part (unmasked portion) of themetal oxide layer 14 and themetal layer 16 is removed in etching a laminate including thetransparent resin substrate 11, the transmittance-controllinglayer 12, themetal layer 16, and themetal oxide layer 14 in the order presented. - The refractive index of the
metal oxide layer 14 may be, for example, 1.8 to 2.3, or may be 1.9 to 2.3. Such a refractive index allows the conductive part (fourth laminate part) and the insulating part (third laminate part) to have sufficiently high transmittance with the difference between them further decreased. Thereby, the image quality can be further enhanced while shading is further reduced. - The thickness of the
metal oxide layer 14 may be, for example, 10 to 100 nm, or may be 20 to 80 nm. By optimizing the film thickness of themetal oxide layer 14 to such a thickness, the transmittance can be adjusted. Thus, the transmittance of thesecond laminate part 20, T2, can be set to 80% or higher. The transmittances of the first laminate part 10 (third laminate part) and the second laminate part 20 (fourth laminate part) can be adjusted by changing the product of the thickness and the refractive index (thickness×refractive index) of themetal oxide layer 14. - The
metal oxide layer 14 can be produced by using a vacuum film formation method such as a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method. Among them, a sputtering method is preferable because a smaller film-forming chamber can be used and the film-forming speed is high in a sputtering method. Examples of the sputtering method include DC magnetron sputtering. For the target, an oxide target or a metal or metalloid target can be used. - A wiring electrode or the like may be provided on the
metal oxide layer 14. A current to conduct through themetal layer 16 is introduced from a wiring electrode or the like to be provided on themetal oxide layer 14 via themetal oxide layer 14. Accordingly, it is preferable that themetal oxide layer 14 have high conductivity. -
FIG. 2 is a schematic cross-sectional view illustrating another embodiment of the transparent conductor. Atransparent conductor 101 differs from thetransparent conductor 100 in that thetransparent conductor 101 includes ahardcoat layer 18 on the back surface of thetransparent resin substrate 11. That is, thetransparent conductor 101 includes ahardcoat layer 18 in the side opposite to the transmittance-controllinglayer 12 side. The constituents other than thehardcoat layer 18 are the same as those of thetransparent conductor 100. - The
transparent conductor 101 includes afirst laminate part 10 a in which thehardcoat layer 18, thetransparent resin substrate 11, and the transmittance-controllinglayer 12 are laminated in the order presented, and asecond laminate part 20 a in which thehardcoat layer 18, thetransparent resin substrate 11, the transmittance-controllinglayer 12, themetal layer 16, and themetal oxide layer 14 are laminated in the order presented. Thefirst laminate part 10 a and thesecond laminate part 20 a are provided in a manner such that they are adjacent to each other in a direction (the right and left direction inFIG. 2 ) perpendicular to the direction of lamination of them (the up and down direction inFIG. 2 ). - The
hardcoat layer 18 typically has almost no impact on the transmittances of thefirst laminate part 10 a and thesecond laminate part 20 a. The range of each of the transmittance of thefirst laminate part 10 a, T1, and the transmittance of thesecond laminate part 20 a, T2, and the relation between the two transmittances are the same as those for thefirst laminate part 10 and thesecond laminate part 20 inFIG. 1 . Accordingly, the absolute value of the difference between the transmittance of a third laminate part obtained by providing a glass layer above the transmittance-controllinglayer 12 in thefirst laminate part 10 a, T3, and the transmittance of a fourth laminate part obtained by providing a glass layer above themetal oxide layer 14 in thesecond laminate part 20 a, T4, |T4−T3|, can be set sufficiently small. - The configuration in which the hardcoat layers 18 are provided can sufficiently prevent generation of a scratch in the
transparent resin substrate 11. Each of the hardcoat layers 18 contains a cured resin obtained by curing a resin composition. It is preferable that the resin composition contain at least one selected from the group consisting of thermosetting resin compositions, ultraviolet-curable resin compositions, and electron beam-curable resin compositions. The thermosetting resin composition may contain at least one selected from the group consisting of epoxy resins, phenoxy resins, and melamine resins. - The resin composition is, for example, a composition containing a curable compound having an energy ray-reactive group such as a (meth)acryloyl group and a vinyl group. The representation “(meth)acryloyl group” means that at least one of an acryloyl group and a methacryloyl group is included. It is preferable that the curable compound contain a polyfunctional monomer or oligomer including two or more, preferably three or more, energy ray-reactive groups in one molecule.
- The curable compound preferably contains an acrylic monomer. Specific examples of the acrylic monomer include 1,6-hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane ethylene oxide-modified tri(meth)acrylate, trimethylolpropane propylene oxide-modified tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, ditrimethylol propane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, pentaerythritol tri(meth)acrylate, and 3-(meth)acryloyloxy glycerin mono(meth)acrylate. However, the acrylic monomer is not necessarily limited to them. Other examples of the acrylic monomer include urethane-modified acrylates and epoxy-modified acrylates.
- For the curable compound, a compound having a vinyl group may be used. Examples of the compound having a vinyl group include ethylene glycol divinyl ether, pentaerythritol divinyl ether, 1,6-hexanediol divinyl ether, trimethylolpropane divinyl ether, ethylene oxide-modified hydroquinone divinyl ether, ethylene oxide-modified bisphenol A divinyl ether, pentaerythritol trivinyl ether, dipentaerythritol hexavinyl ether, and ditrimethylol propane polyvinyl ether. However, the compound having a vinyl group is not necessarily limited to them.
- In the case that the curable compound is cured with an ultraviolet ray, the resin composition contains a photopolymerization initiator. Various photopolymerization initiators can be used. For example, the photopolymerization initiator can be appropriately selected from known compounds including acetophenone-based, benzoin-based, benzophenone-based, and thioxanthone-based compounds. More specific examples of the photopolymerization initiator include DAROCUR 1173, IRGACURE 651, IRGACURE 184, IRGACURE 907 (trade names, manufactured by BASF Japan Ltd.), and KAYACURE DETX-S (trade name, manufactured by Nippon Kayaku Co., Ltd.).
- The content of the photopolymerization initiator can be about 0.01 to 20% by mass or 0.5 to 5% by mass with respect to the mass of the curable compound. The resin composition may be a known resin composition obtained by adding a photopolymerization initiator to an acrylic monomer. Examples of the resin composition obtained by adding a photopolymerization initiator to an acrylic monomer include SD-318 (trade name, manufactured by DIC Corporation) and XNR 5535 (trade name, manufactured by NAGASE & CO., LTD.), each as an ultraviolet-curable resin.
- The resin composition may contain an organic fine particle and/or inorganic fine particle, for example, to enhance the strength of the coating film and/or adjust the refractive index. Examples of the organic fine particle include organic silicon fine particles, crosslinked acrylic fine particles, and crosslinked polystyrene fine particles. Examples of the inorganic fine particle include silicon oxide fine particles, aluminum oxide fine particles, zirconium oxide fine particles, titanium oxide fine particles, and iron oxide fine particles. Among them, silicon oxide fine particles are preferable.
- Also preferable is a fine particle the surface of which has been treated with a silane coupling agent and includes energy ray-reactive groups including a (meth)acryloyl group and/or vinyl group present as a film thereon. Use of such a reactive fine particle can enhance the strength of the film through interparticle reaction of the fine particle or reaction between the fine particle and a polyfunctional monomer or oligomer during energy ray irradiation. A silicon oxide fine particle treated with a silane coupling agent containing a (meth)acryloyl group is preferably used.
- The average particle diameter of the fine particle is smaller than the thickness of each of the hardcoat layers 18, and may be 100 nm or smaller, or 20 nm or smaller, from the viewpoint of ensuring sufficient transparency. From the viewpoint of production of a colloidal solution, on the other hand, the average particle diameter of the fine particle may be 5 nm or larger, or 10 nm or larger. In the case that an organic fine particle and/or inorganic fine particle is used, the total quantity of the organic fine particle and inorganic fine particle may be, for example, 5 to 500 parts by mass, or 20 to 200 parts by mass, with respect to 100 parts by mass of the curable compound.
- If an energy ray-curable resin composition is used, the resin composition can be cured through irradiation with an energy ray such as an ultraviolet ray. Thus, use of such a resin composition is preferable from the viewpoint of the manufacture process.
- The
hardcoat layer 18 can be produced by applying a solution or dispersion of a resin composition onto one surface (back surface) of thetransparent resin substrate 11 followed by drying to cure the resin composition. The application can be performed by using a known method. Examples of the application method include an extrusion nozzle method, a blade method, a knife method, a bar-coating method, a kiss-coating method, a kiss reverse method, a gravure roll method, a dipping method, a reverse roll method, a direct roll method, a curtain method, and a squeezing method. - The thickness of each of the
hardcoat layer 18 is, for example, 0.5 to 10 μm. If the thickness is larger than 10 μm, unevenness in thickness or a wrinkle is likely to be generated. If the thickness is lower than 0.5 μm, on the other hand, in the case that quite a large quantity of low-molecular-weight components including a plasticizer or an oligomer is contained in thetransparent resin substrate 11, it may be difficult to sufficiently prevent the bleed-out of the components. - The refractive index of the
hardcoat layer 18 is, for example, 1.40 to 1.60. The absolute value of the refractive index difference between thetransparent resin substrate 11 and thehardcoat layer 18 is, for example, 0.15 or less. The configuration in which the absolute value of the refractive index difference between thehardcoat layer 18 and thetransparent resin substrate 11 is small can reduce the intensity of interference unevenness generated by unevenness in thickness in thehardcoat layer 18. -
FIG. 3 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor. Atransparent conductor 102 differs from thetransparent conductor 101 in that thetransparent conductor 102 includes a highrefractive index layer 13 between thetransparent resin substrate 11 and the transmittance-controllinglayer 12. The constituents other than the highrefractive index layer 13 are the same as those of thetransparent conductor 101. The constituents other than the highrefractive index layer 13 and thehardcoat layer 18 are the same as those of thetransparent conductor 100. - The
transparent conductor 102 includes afirst laminate part 10 b in which thehardcoat layer 18, thetransparent resin substrate 11, the highrefractive index layer 13, and the transmittance-controllinglayer 12 are laminated in the order presented, and asecond laminate part 20 b in which thehardcoat layer 18, thetransparent resin substrate 11, the highrefractive index layer 13, the transmittance-controllinglayer 12, themetal layer 16, and themetal oxide layer 14 are laminated in the order presented. Thefirst laminate part 10 b and thesecond laminate part 20 b are provided in a manner such that they are adjacent to each other in a direction (the right and left direction inFIG. 3 ) perpendicular to the direction of lamination of them (the up and down direction inFIG. 3 ). - The range of each of the transmittance of the
first laminate part 10 b, T1, and the transmittance of thesecond laminate part 20 b, T2, and the relation between the two transmittances are the same as those for thefirst laminate part 10 and thesecond laminate part 20 inFIG. 1 . Accordingly, the absolute value of the difference between the transmittance of a third laminate part obtained by providing a glass layer above the transmittance-controllinglayer 12 in thefirst laminate part 10 b, T3, and the transmittance of a fourth laminate part obtained by providing a glass layer above themetal oxide layer 14 in thesecond laminate part 20 b, T4, |T4−T3|, can be set sufficiently small. - The high
refractive index layer 13 may be composed of the same material as thehardcoat layer 18. The highrefractive index layer 13 can be produced by using the same method as for thehardcoat layer 18. Accordingly, the contents of description of thehardcoat layer 18 are also applied to the highrefractive index layer 13. - The high
refractive index layer 13 contains, for example, a cured resin obtained by curing a resin composition with an energy ray, as thehardcoat layer 18. For the resin composition, those exemplified for thehardcoat layer 18 can be used. For example, the energy ray-curable resin composition described for thehardcoat layer 18 can be used. That is, the resin composition is an energy ray-curable resin composition containing a curable compound having an energy ray-reactive group selected from a (meth)acryloyl group, a vinyl group, and so on. The resin composition may contain a polymer having a high refractive index. - The resin composition may contain a fine particle of metal oxide. Examples of the fine particle of metal oxide include fine particles of titanium oxide (TiO2, refractive index: 2.35), zirconium oxide (ZrO2, refractive index: 2.05), cerium oxide (CeO2, refractive index: 2.30), niobium oxide (Nb2O3, refractive index: 2.15), antimony oxide (Sb2O3, refractive index: 2.10), tantalum oxide (Ta2O, refractive index: 2.10), and combinations of two or more thereof.
- The high
refractive index layer 13 containing a cured resin and the fine particle of metal oxide can be produced by applying a resin composition obtained by dispersing the fine particle in a curable compound onto thetransparent resin substrate 11 followed by curing. The content of the fine particle may be, for example, 5 to 500 parts by mass, or may be 20 to 200 parts by mass, with respect to 100 parts by mass of the curable compound. As the content of the fine particle is lower, the refractive index of the highrefractive index layer 13 tends to be lower. - The refractive index of the high
refractive index layer 13 is lower than that of the transmittance-controllinglayer 12, and may be, for example, 1.55 to 1.80, or may be 1.57 to 1.75. If the refractive index of the highrefractive index layer 13 is excessively low, the wavelength range allowing a small transmittance difference tends to be narrow. If the refractive index of the transmittance-controllinglayer 12 is excessively high, on the other hand, the total light transmittance of thesecond laminate part 20 b (and afourth laminate part 40 b to be described later) tends to be lower. - The thickness of the high
refractive index layer 13 may be 10 to 150 nm, or may be 15 to 100 nm. If the thickness of the highrefractive index layer 13 is excessively small, it tends to be difficult to produce the highrefractive index layer 13 by application. If the thickness of the highrefractive index layer 13 is excessively large, on the other hand, the total light transmittance of thesecond laminate part 20 b (and afourth laminate part 40 b to be described later) tends to be lower. - The high
refractive index layer 13 can be formed by using, for example, a resin composition in which titanium oxide (TiO2) is dispersed in an energy ray-curable acrylic resin component (trade name: TYT80, manufactured by TOYO INK CO., LTD., refractive index: 1.80), or a resin composition in which zirconium oxide (ZrO2) is dispersed in an energy ray-curable acrylic resin component (trade name: TYZ70, manufactured by TOYO INK CO., LTD., refractive index: 1.70). The highrefractive index layer 13 may be formed by using a resin composition containing a polymer having a high refractive index. Examples of the polymer having a high refractive index include UR-101 (trade name, refractive index: 1.70, manufactured by Nissan Chemical Industries, Ltd.). - The high
refractive index layer 13 can be produced by applying the above-described resin composition onto thetransparent resin substrate 11 such as a PET substrate followed by drying and subsequent curing through ultraviolet irradiation. The application can be performed by using a known method. Examples of the application method include an extrusion nozzle method, a blade method, a knife method, a bar-coating method, a kiss-coating method, a kiss reverse method, a gravure roll method, a dipping method, a reverse roll method, a direct roll method, a curtain method, and a squeezing method. These application methods are more preferable than a vacuum film formation method with a sputtering method or the like, from the viewpoint of production cost. - The refractive index of the high
refractive index layer 13 can be adjusted, for example, by changing the type and content of the fine particle contained in the high refractive index layer. The configuration in which the highrefractive index layer 13 is provided can widen the wavelength range allowing a small transmittance difference. -
FIG. 4 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor. Atransparent conductor 103 differs from thetransparent conductor 102 in that thetransparent conductor 103 includes a lowrefractive index layer 17 between thetransparent resin substrate 11 and the highrefractive index layer 13. The constituents other than the lowrefractive index layer 17 are the same as those of thetransparent conductor 102. The constituents other than the lowrefractive index layer 17, the highrefractive index layer 13, and thehardcoat layer 18 are the same as those of thetransparent conductor 100. - The
transparent conductor 103 includes afirst laminate part 10 c in which thehardcoat layer 18, thetransparent resin substrate 11, the lowrefractive index layer 17, the highrefractive index layer 13, and the transmittance-controllinglayer 12 are laminated in the order presented, and asecond laminate part 20 c in which thehardcoat layer 18, thetransparent resin substrate 11, the lowrefractive index layer 17, the highrefractive index layer 13, the transmittance-controllinglayer 12, themetal layer 16, and themetal oxide layer 14 are laminated in the order presented. Thefirst laminate part 10 c and thesecond laminate part 20 c are provided in a manner such that they are adjacent to each other in a direction (the right and left direction inFIG. 4 ) perpendicular to the direction of lamination of them (the up and down direction inFIG. 4 ). - The range of each of the transmittance of the
first laminate part 10 c, T1, and the transmittance of thesecond laminate part 20 c, T2, and the relation between the two transmittances are the same as those for thefirst laminate part 10 and thesecond laminate part 20 inFIG. 1 . Accordingly, the absolute value of the difference between the transmittance of a third laminate part obtained by providing a glass layer above the transmittance-controllinglayer 12 in thefirst laminate part 10 c, T3, and the transmittance of a fourth laminate part obtained by providing a glass layer above themetal oxide layer 14 in thesecond laminate part 20 c, T4, |T4−T3|, can be set sufficiently small. - The low
refractive index layer 17 may be composed of the same material as thehardcoat layer 18. The lowrefractive index layer 17 can be produced by using the same method as for thehardcoat layer 18. Accordingly, the contents of description of thehardcoat layer 18 are also applied to the lowrefractive index layer 17. - The low
refractive index layer 17 contains, for example, a cured resin obtained by curing a resin composition with an energy ray, as thehardcoat layer 18. For the resin composition, the resin composition exemplified for thehardcoat layer 18 can be used. For the resin composition, for example, the energy ray-curable resin composition described for thehardcoat layer 18 can be used. That is, the resin composition may be an energy ray-curable resin composition containing a curable compound having an energy ray-reactive group selected from a (meth)acryloyl group, a vinyl group, and so on. - The resin composition may contain a fine particle of metal oxide. Examples of the fine particle of metal oxide include fine particles of silicon oxide (SiO2, refractive index: 1.55). The low
refractive index layer 17 containing a cured resin and such a fine particle of metal oxide can be produced by applying a resin composition obtained by dispersing the fine particle in a curable compound onto thetransparent resin substrate 11 followed by curing. The content of the fine particle may be, for example, 5 to 500 parts by mass, or may be 20 to 200 parts by mass, with respect to 100 parts by mass of the curable compound. As the content of the fine particle is lower, the refractive index of the lowrefractive index layer 17 tends to be lower. - The refractive index of the low
refractive index layer 17 is lower than those of the transmittance-controllinglayer 12 and the highrefractive index layer 13, and may be, for example, 1.40 to 1.60, or may be 1.45 to 1.55. If the refractive index of the lowrefractive index layer 17 is excessively low, the wavelength range allowing a small transmittance difference tends to be narrow. If the refractive index of the lowrefractive index layer 17 is excessively high, on the other hand, the total light transmittance of thesecond laminate part 20 c (and afourth laminate part 40 c to be described later) tends to be lower. - The thickness of the low
refractive index layer 17 may be 10 to 150 nm, or may be 15 to 130 nm. If the thickness of the lowrefractive index layer 17 is excessively small, it tends to be difficult to produce the lowrefractive index layer 17 by application. If the thickness of the lowrefractive index layer 17 is excessively large, on the other hand, the total light transmittance of thesecond laminate part 20 c (and afourth laminate part 40 c to be described later) tends to be lower. - The low
refractive index layer 17 can be produced by applying the above-described resin composition onto thetransparent resin substrate 11 such as a PET substrate followed by drying and subsequent curing through ultraviolet irradiation. The application can be performed by using a known method. Examples of the application method include an extrusion nozzle method, a blade method, a knife method, a bar-coating method, a kiss-coating method, a kiss reverse method, a gravure roll method, a dipping method, a reverse roll method, a direct roll method, a curtain method, and a squeezing method. These application methods are more preferable than a vacuum film formation method with a sputtering method or the like, from the viewpoint of production cost. - The refractive index of the low
refractive index layer 17 can be adjusted, for example, by changing the type and content of the fine particle contained in the lowrefractive index layer 17. The configuration in which the lowrefractive index layer 17 is provided can decrease the transmittance difference in a broad wavelength range of visible lights. - The thickness of each of the
transparent conductors transparent conductors transparent conductors 100 may be laminated, or thetransparent conductor 101 and thetransparent conductor 102 may be laminated. A glass layer may be laminated, via an optical clear adhesive, above one transparent conductor or a plurality of transparent conductors laminated. Even in such embodiments, shading due to the shape of a conductive part and insulating part can be sufficiently reduced. - A method for producing the
transparent conductor 100 includes a step of etching a laminate including thetransparent resin substrate 11, the transmittance-controllinglayer 12, themetal layer 16, and themetal oxide layer 14 in the order presented to remove a part of themetal layer 16 and themetal oxide layer 14. In the step, the other part of themetal layer 16 and themetal oxide layer 14, and the transmittance-controllinglayer 12 are allowed to remain without being removed. Thereby, thefirst laminate part 10 and thesecond laminate part 20 are formed. Another type of the transparent conductor can be produced by etching a laminate including at least one of thehardcoat layer 18, the highrefractive index layer 13, and the lowrefractive index layer 17, which are included in the corresponding laminate structure. Each of thetransparent conductors transparent conductor 100. -
FIG. 5 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor. Atransparent conductor 104 inFIG. 5 differs from thetransparent conductor 100 in that thetransparent conductor 104 includes aglass layer 19 above the transmittance-controllinglayer 12 and themetal oxide layer 14. The constituents other than theglass layer 19 are the same as those of thetransparent conductor 100. Accordingly, thetransparent conductor 100 can be used as an intermediate for producing thetransparent conductor 104. - The
transparent conductor 104 includes athird laminate part 30 in which thetransparent resin substrate 11, the transmittance-controllinglayer 12, and theglass layer 19 are laminated in the order presented, and afourth laminate part 40 in which thetransparent resin substrate 11, the transmittance-controllinglayer 12, themetal layer 16, themetal oxide layer 14, and theglass layer 19 are laminated in the order presented. Thethird laminate part 30 and thefourth laminate part 40 are provided in a manner such that they are adjacent to each other in a direction (the right and left direction inFIG. 5 ) perpendicular to the direction of lamination of them (the up and down direction inFIG. 5 ). Thethird laminate part 30 and thefourth laminate part 40 may be provided alternately along the perpendicular direction. - The
third laminate part 30 has a structure in which theglass layer 19 is laminated on the transmittance-controllinglayer 12 in thefirst laminate part 10 of thetransparent conductor 100. Theglass layer 19 may be composed of one or more glass sheets. Theglass layer 19 may be pasted on the transmittance-controllinglayer 12 via an optical clear adhesive not illustrated. Thefourth laminate part 40 has a structure in which theglass layer 19 is laminated on themetal oxide layer 14 in thesecond laminate part 20 of thetransparent conductor 100. Theglass layer 19 may be composed of one or more glass sheets. Theglass layer 19 may be pasted on themetal oxide layer 14 via an optical clear adhesive not illustrated. - The thickness of the
glass layer 19 is, for example, 0.1 to 5 mm. The thickness of theglass layer 19 can be adjusted according to the application. The refractive index of theglass layer 19 is, for example, 1.4 to 1.6. - The
third laminate part 30 corresponds to an insulating part without any conductive part. The transmittance of thethird laminate part 30 in the direction of lamination, T3, may be 84% or higher, or 85% or higher. Such high T3 can impart excellent display performance to the transparent conductor. The transmittance of thethird laminate part 30, T3, is 90% or lower, and may be 89.5% or lower. Thereby, the absolute value of the difference between T3 and T4 can be set sufficiently small. - The
fourth laminate part 40 corresponds to a conductive part. The transmittance of thefourth laminate part 40 in the direction of lamination, T4, is 85% or higher, and may be 87% or higher. Such high T4 can impart excellent display performance to the transparent conductor. The transmittance of thefourth laminate part 40, T4, may be 93% or lower, or may be 91% or lower. - The absolute value of the difference between T4 and T3, |T4−T3|, may be 0.1% or more and 1.0% or less. Thereby, generation of shading due to the difference in transmittance between a conductive part and an insulating part can be sufficiently prevented.
-
FIG. 6 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor. Atransparent conductor 105 inFIG. 6 differs from thetransparent conductor 101 inFIG. 2 in that thetransparent conductor 105 includes theglass layer 19 above the transmittance-controllinglayer 12 and themetal oxide layer 14. The constituents other than theglass layer 19 are the same as those of thetransparent conductor 101. Accordingly, thetransparent conductor 101 can be used as an intermediate for producing thetransparent conductor 105. - The
transparent conductor 105 includes athird laminate part 30 a in which thehardcoat layer 18, thetransparent resin substrate 11, the transmittance-controllinglayer 12, and theglass layer 19 are laminated in the order presented, and afourth laminate part 40 a in which thehardcoat layer 18, thetransparent resin substrate 11, the transmittance-controllinglayer 12, themetal layer 16, themetal oxide layer 14, and theglass layer 19 are laminated in the order presented. Thethird laminate part 30 a and thefourth laminate part 40 a are provided in a manner such that they are adjacent to each other in a direction (the right and left direction inFIG. 6 ) perpendicular to the direction of lamination of them (the up and down direction inFIG. 6 ). - The
third laminate part 30 a corresponding to an insulating part without any conductor has a structure in which theglass layer 19 is laminated on the transmittance-controllinglayer 12 in thefirst laminate part 10 a of thetransparent conductor 101 illustrated inFIG. 2 . Thefourth laminate part 40 a corresponding to a conductive part has a structure in which theglass layer 19 is laminated on themetal oxide layer 14 in thesecond laminate part 20 a of thetransparent conductor 101 illustrated inFIG. 2 . The range of each of the transmittance of thethird laminate part 30 a, T3, and the transmittance of thefourth laminate part 40 a, T4, and the relation between the two transmittances are the same as those for thetransparent conductor 104. -
FIG. 7 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor. Atransparent conductor 106 inFIG. 7 differs from thetransparent conductor 102 inFIG. 3 in that thetransparent conductor 106 includes theglass layer 19 above the transmittance-controllinglayer 12 and themetal oxide layer 14. The constituents other than theglass layer 19 are the same as those of thetransparent conductor 102. Accordingly, thetransparent conductor 102 can be used as an intermediate for producing thetransparent conductor 106. - The
transparent conductor 106 includes athird laminate part 30 b in which thehardcoat layer 18, thetransparent resin substrate 11, the highrefractive index layer 13, the transmittance-controllinglayer 12, and theglass layer 19 are laminated in the order presented, and afourth laminate part 40 b in which thehardcoat layer 18, thetransparent resin substrate 11, the highrefractive index layer 13, the transmittance-controllinglayer 12, themetal layer 16, themetal oxide layer 14, and theglass layer 19 are laminated in the order presented. - The
third laminate part 30 b corresponding to an insulating part without any conductor has a structure in which theglass layer 19 is laminated on the transmittance-controllinglayer 12 in thefirst laminate part 10 b of thetransparent conductor 102 illustrated inFIG. 3 . Thefourth laminate part 40 b corresponding to a conductive part has a structure in which theglass layer 19 is laminated on themetal oxide layer 14 in thesecond laminate part 20 b of thetransparent conductor 102. The range of each of the transmittance of thethird laminate part 30 b, T3, and the transmittance of thefourth laminate part 40 b, T4, and the relation between the two transmittances are the same as those for thetransparent conductors -
FIG. 8 is a schematic cross-sectional view illustrating still another embodiment of the transparent conductor. Atransparent conductor 107 inFIG. 8 differs from thetransparent conductor 103 inFIG. 4 in that thetransparent conductor 107 includes theglass layer 19 above the transmittance-controllinglayer 12 and themetal oxide layer 14. The constituents other than theglass layer 19 are the same as those of thetransparent conductor 103. Accordingly, thetransparent conductor 103 can be used as an intermediate for producing thetransparent conductor 107. - The
transparent conductor 107 includes athird laminate part 30 c in which thehardcoat layer 18, thetransparent resin substrate 11, the lowrefractive index layer 17, the highrefractive index layer 13, the transmittance-controllinglayer 12, and theglass layer 19 are laminated in the order presented, and afourth laminate part 40 c in which thehardcoat layer 18, thetransparent resin substrate 11, the lowrefractive index layer 17, the highrefractive index layer 13, the transmittance-controllinglayer 12, themetal layer 16, themetal oxide layer 14, and theglass layer 19 are laminated in the order presented. - The
third laminate part 30 c corresponding to an insulating part without any conductor has a structure in which theglass layer 19 is laminated on the transmittance-controllinglayer 12 in thefirst laminate part 10 c in thetransparent conductor 103 illustrated inFIG. 4 . Thefourth laminate part 40 c having a conductive part has a structure in which theglass layer 19 is laminated on themetal oxide layer 14 in thesecond laminate part 20 c of thetransparent conductor 103 illustrated inFIG. 4 . The range of each of the transmittance of thethird laminate part 30 c, T3, and the transmittance of thefourth laminate part 40 c, T4, and the relation between the two transmittances are the same as those for thetransparent conductors - The
transparent conductors transparent conductors transparent conductor 104 can be produced by performing a step of providing theglass layer 19 so as to cover the transmittance-controllinglayer 12 and themetal oxide layer 14 of thetransparent conductor 100. Each of thetransparent conductors transparent conductor 104. Theglass layer 19 may be pasted on the transmittance-controllinglayer 12 and themetal oxide layer 14 with an optical clear adhesive. - The thickness of each layer constituting each of the above-described transparent conductors can be measured by using the following procedure. The transparent conductor is cut with a focused ion beam (FIB) apparatus to obtain a cross-section. The cross-section is observed under a transmission electron microscope (TEM) to measure the thickness of each layer. It is preferable to measure at 10 or more positions arbitrarily selected to determine the average value. To obtain a cross-section, a microtome may be used as an apparatus other than a focused ion beam apparatus. For measurement of thickness, a scanning electron microscope (SEM) may be used. Alternatively, measurement of film thickness can be performed by using an X-ray fluorescence spectrometer.
-
FIG. 9 is a schematic cross-sectional view illustrating an enlarged partial cross-section of atouch panel 200 including a pair of sensor films.FIGS. 10 and 11 are plan views ofsensor films transparent conductor 100. Thetouch panel 200 includes a pair ofsensor films clear adhesive 72. Thetouch panel 200 is configured to be capable of calculating a position touched by a contact body as a coordinate position (horizontal position and vertical position) in a two-dimensional coordinate (X-Y coordinate) plane parallel to apanel sheet 70 as a display. - As illustrated in
FIG. 9 , thetouch panel 200 includes asensor film 100 a for detecting a vertical position (hereinafter, referred to as “sensor film for Y”) and asensor film 100 b for detecting a horizontal position (hereinafter, referred to as “sensor film for X”) pasted together via an opticalclear adhesive 72. In the bottom surface side of the sensor film forX 100 b, spacers 92 are provided between the sensor film forX 100 b and thepanel sheet 70 as a display device. - In the upper surface side of the sensor film for
Y 100 a (the side opposite to the panel sheet 70), acover glass 76 is provided via an optical clear adhesive 74. That is, thetouch panel 200 has a structure in which the sensor film forX 100 b, the sensor film forY 100 a, and thecover glass 76 are disposed above thepanel sheet 70 in the order presented from thepanel sheet 70 side. - The sensor film for
Y 100 a for detecting a vertical position and the sensor film forX 100 b for detecting a horizontal position are each composed of the above-describedtransparent conductor 100. The sensor film forY 100 a and the sensor film forX 100 b include, as a conductive part,sensor electrodes 15 a andsensor electrodes 15 b, respectively, facing to thecover glass 76. - The
sensor electrodes layer 12, themetal layer 16, and themetal oxide layer 14 in the order presented. Themetal layer 16 and themetal oxide layer 14 have been partially removed by etching or the like. As illustrated inFIG. 10 , thesensor electrodes 15 a extend in the vertical direction (y direction) so as to detect a touched position in the vertical direction (y direction). Thesensor electrodes 15 a are disposed in parallel to each other along the vertical direction (y direction). One end of eachsensor electrode 15 a is connected to anelectrode 80 in the driving IC side via aconductor line 50 formed of a silver paste. - The sensor film for
X 100 b for detecting a horizontal position includessensor electrodes 15 b on the surface facing to the sensor film forY 100 a. Thesensor electrodes 15 b each include a laminate in which the transmittance-controllinglayer 12, themetal layer 16, and themetal oxide layer 14 are laminated in the order presented. As illustrated inFIG. 11 , thesensor electrodes 15 b extend in the horizontal direction (x direction) so as to detect a touch position in the horizontal direction (x direction). Thesensor electrodes 15 b are disposed in parallel to each other along the horizontal direction (x direction). One end of eachsensor electrode 15 b is connected to anelectrode 80 in the driving IC side via aconductor line 50 formed of a silver paste. - The
sensor electrodes hardcoat layer 18. Thesensor electrodes refractive index layer 13 or the lowrefractive index layer 17 between thetransparent resin substrate 11 and the transmittance-controllinglayer 12. - As illustrated in
FIG. 9 , the sensor film forY 100 a and the sensor film forX 100 b are laminated via the opticalclear adhesive 72 in such a manner that thesensor electrodes Y 100 a and the sensor film forX 100 b. In the side opposite to the sensor film forX 100 b side of the sensor film forY 100 a, the cover glass 76 (glass layer 19) is provided via the optical clear adhesive 74. For the optical clear adhesives 74, thecover glass 76, and thepanel sheet 70, common materials can be used. - Each of the conductor lines 50 and the
electrodes 80 inFIGS. 10 and 11 includes a conductive material such as metal (e.g., Ag). The conductor lines 50 and theelectrodes 80 are produced through pattern formation by screen printing. Thetransparent resin substrate 11 also has a function as a protective film to cover the surface of thetouch panel 200. - The number and shape of the
sensor electrodes sensor films FIGS. 9, 10, and 11 . For example, a larger number of thesensor electrodes sensor films transparent conductor 100. Thesensor films transparent conductors transparent conductor 100. - As illustrated in
FIG. 9 , thepanel sheet 70 is provided, via thespacers 92, in the side opposite to the sensor film forY 100 a side of the sensor film forX 100 b. Thespacers 92 can be provided at positions corresponding to the shape of thesensor electrodes sensor electrodes spacer 92 may be formed of a material with translucency such as a PET (polyethylene terephthalate) resin. One end of eachspacer 92 is adhered to the bottom surface of the sensor film forX 100 b with an optical clear adhesive or an adhesive 90 with translucency such as an acrylic adhesive and an epoxy adhesive. The other end of eachspacer 92 is adhered to thepanel sheet 70 as a display device with the adhesive 90. Thus, an interspace S can be provided between the sensor film forX 100 b and thepanel sheet 70 as a display device by disposing the sensor film forX 100 b and thepanel sheet 70 so as to face each other via thespacers 92. - To each
electrode 80 illustrated inFIGS. 10 and 11 , a control unit (IC) may be electrically connected. The capacity change of each of thesensor electrodes Y 100 a of thetouch panel 200 is measured. The control unit can calculate the position touched by the contact body as a coordinate position (an intersection between a position in the X-axis direction and a position in the Y-axis direction) on the basis of the measurement results. In addition to the above methods, various known methods can be employed for the method for driving the sensor electrodes and method for calculating a coordinate position. - The transmittance in the
sensor film 100 a in the direction of lamination differs between the conductive part with thesensor electrodes 15 a and the insulating part without thesensor electrodes 15 a by 4% or more. The transmittance in thesensor film 100 b in the direction of lamination differs between the laminate part with thesensor electrodes 15 b and the laminate part without thesensor electrodes 15 b by 4% or more. In the state in which thesensor film 100 a is laminated on thesensor film 100 b via an optical clear adhesive, and acover glass 76 as the glass layer is further provided above thesensor films sensor electrodes sensor electrodes touch panel 200. - The
touch panel 200 can be manufactured by using the following procedure. After thetransparent conductor 100 is prepared, etching of the transmittance-controllinglayer 12, themetal layer 16, and themetal oxide layer 14 is performed for patterning. Specifically, by using the technique of photolithography, a resist material is applied onto the surface of themetal oxide layer 14 through spin coating. Thereafter, pre-baking may be performed to improve the adhesion. Subsequently, a mask pattern is disposed, exposed, and developed with a developing solution to form a resist pattern. Formation of a resist pattern can be achieved not only through photolithography, but also through screen printing or the like. Any of thetransparent conductors transparent conductor 100. - Next, the
transparent conductor 100 with the resist pattern formed thereon is soaked in an acidic etching solution to dissolve the secondmetal oxide layer 14 and themetal layer 16 for removal at the part without resist pattern formation. As necessary, the transmittance-controllinglayer 12 may be dissolved for removal. Themetal oxide layer 14 is excellent in solubility in acids for etching. Thus, formation of an electrode pattern can be smoothly performed through removal of themetal oxide layer 14 and themetal layer 16 in a single operation. Thereafter, the resist is removed with an alkaline solution, and thus the sensor film forY 100 a with thesensor electrodes 15 a formed thereon and the sensor film forX 100 b with thesensor electrodes 15 b formed thereon can be obtained. - Through setting the composition of the transmittance-controlling
layer 12 and that of themetal oxide layer 14 different from each other and setting the composition of the transmittance-controllinglayer 12 so as not to allow removal of the transmittance-controllinglayer 12 by etching, the transmittance-controllinglayer 12 can remain without any change even after etching of themetal layer 16 and themetal oxide layer 14 in a single operation. For the etching solution, for example, an inorganic acid-based etching solution can be used without any limitation. Examples of inorganic acid-based etching solutions include phosphoric acid-based etching solutions and hydrochloric acid-based etching solutions. - Subsequently, a metal paste such as a silver alloy paste is applied to form the conductor lines 50 and
electrodes 80. Thus, the control unit and thesensor electrodes Y 100 a and the sensor film forX 100 b are pasted together with the opticalclear adhesive 72 in an manner such that thesensor electrodes Y 100 a and the sensor film forX 100 b protrude in the same direction. In this case, the sensor film forY 100 a and the sensor film forX 100 b are pasted together in a manner such that thesensor electrodes Y 100 a and the sensor film forX 100 b. Then, thecover glass 76 and the sensor film forY 100 a are pasted together with the optical clear adhesive 74. Thus, thetouch panel 200 can be manufactured. - It is not necessary to use the
transparent conductor 100 for both of the sensor film forY 100 a and the sensor film forX 100 b, and another transparent conductor may be used for any one of the sensor film forY 100 a and the sensor film forX 100 b. Even such a touch panel can provide a sufficiently clear display. - As described above, the transparent conductors according to the above-described embodiments can be suitably used for touch panels. However, the application is not limited to touch panels, and if the
metal oxide layer 14 and themetal layer 16 are processed into a predetermined shape by etching to form a part including themetal oxide layer 14 and the metal layer 16 (conductive part) and a part not including themetal oxide layer 14 and the metal layer 16 (insulating part), for example, the product can be used for transparent electrodes, prevention of electrostatic charging, and electromagnetic shielding in various display devices including liquid crystal displays (LCDs), plasma display panels (PDPs), and electroluminescence panels (organic EL, inorganic EL), electrochromic elements, and electronic papers. In addition, the product can be used as an antenna. - While the suitable embodiments of the present invention have been described hereinbefore, the present invention is not limited to the above-described embodiments. For example, any layer other than the above-described layers may be provided at any position of the transparent conductor according to each embodiment in a manner such that the function is not largely impaired. For example, an absorbing layer having a configuration in which a fine particle of metal oxide with absorbance, the metal oxide being, for example, antimony oxide, bismuth oxide, chromium oxide, and/or cerium oxide, is dispersed in a resin component may be provided between the
transparent resin substrate 11 and the transmittance-controlling layer. Further, a known pressure-sensitive adhesive sheet (optical clear adhesive) may be included between theglass layer 19 and the transmittance-controllinglayer 12 andmetal oxide layer 14. - Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples; however, the present invention is never limited to the Examples.
- A polyethylene terephthalate film with a thickness of 50 μm (manufactured by TORAY INDUSTRIES, INC., product number: UH13, refractive index: 1.61) was prepared. The PET film was used as the transparent resin substrate. A coating material for producing the hardcoat layer on the back surface of the PET film was prepared by using the following procedure.
- The following raw materials were prepared.
-
- colloidal silica modified with reactive groups (dispersion medium: propylene glycol monomethyl ether acetate, nonvolatile content: 40% by mass): 100 parts by mass
- dipentaerythritol hexaacrylate: 48 parts by mass
- 1,6-hexanediol diacrylate: 12 parts by mass
- photopolymerization initiator (1-hydroxycyclohexyl phenyl ketone): 2.5 parts by mass
- The above raw materials were diluted with a solvent (propylene glycol monomethyl ether (PGMA)) and mixed together to disperse the components in the solvent. Thereby, a coating material with a nonvolatile content (NV) of 25.5% by mass was prepared. The thus-obtained coating material was used as a coating material for production of the hardcoat layer.
- The coating material for production of the hardcoat layer was applied onto one surface (back surface) of the transparent resin substrate to produce a coating film. After the solvent in the coating film was removed in a hot air drying oven set at 80° C., the coating film was irradiated for curing with an ultraviolet ray by using a UV treatment apparatus at an integrated light intensity of 400 mJ/cm2. Thus, the hardcoat layer with a thickness of 1.5 μm was formed on one surface of the transparent resin substrate.
- The transmittance-controlling layer, the metal layer, and the metal oxide layer were sequentially formed on the other surface (front surface) of the transparent resin substrate through DC magnetron sputtering. The transmittance-controlling layer was formed by using a ZnO—SnO2 target. The composition of the target was ZnO:SnO2=45:55 (mol %). The metal layer was formed by using an AgPdCu target. The composition of the target was Ag:Pd:Cu=99.0:0.5:0.5(% by mass).
- The metal oxide layer was formed by using a ZnO—Ga2O3—GeO2 target. The composition of the target was ZnO:Ga2O3:GeO2=81:9:10 (mol %). The composition of each layer formed was the same as the composition of the corresponding target. Thus, a laminate in which the hardcoat layer, the transparent resin substrate, the transmittance-controlling layer, the metal layer, and the metal oxide layer were laminated in the order presented was obtained.
- A mask pattern was disposed on the surface of the metal oxide layer of the laminate obtained, and a resist pattern was formed through printing with a resist ink. The resist pattern obtained was dried under conditions of 100° C. for 10 minutes. Subsequently, the laminate with the resist pattern formed thereon was soaked in a PAN-based etching solution containing phosphoric acid, acetic acid, nitric acid, and hydrochloric acid to dissolve the metal oxide layer and the metal layer in a part without the resist pattern formed for removal. Finally, the resist pattern was removed with an alkali, and thus a transparent conductor of Example 1 (before formation of the glass layer) was produced. This transparent conductor included the
first laminate part 10 a and thesecond laminate part 20 a as illustrated inFIG. 2 . The composition, thickness, and refractive index of each residual layer were as shown in Table 1. - (Evaluation of Transparent Conductor 1)
- For the transparent conductor obtained, the transmittances of the
first laminate part 10 a and thesecond laminate part 20 a in the direction of lamination, T1 and T2, were measured by using a hazemeter (trade name: NDH-7000, manufactured by NIPPON DENSHOKU INDUSTRIES CO., LTD.). In addition, the value of the difference in transmittance (T2−T1) was calculated. These results were as shown in Table 1. - (Formation of Glass Layer)
- An OCA (Optical Clear Adhesive) as a film-shaped pressure-sensitive adhesive sheet was pasted on the transmittance-controlling layer and the metal oxide layer of the above-described laminate with a pattern formed thereon through etching. On the OCA, a glass sheet was pasted. The thickness and refractive index of the glass layer (glass sheet) formed were 1 mm and 1.45, respectively. Thereby, a transparent conductor (with the glass layer) including the
third laminate part 30 a and thefourth laminate part 40 a as illustrated inFIG. 6 was obtained. - (Evaluation of Transparent Conductor 2)
- For the transparent conductor obtained, the transmittances of the
third laminate part 30 a and thefourth laminate part 40 a in the direction of lamination, T3 and T4, were measured by using a hazemeter (trade name: NDH-7000, manufactured by NIPPON DENSHOKU INDUSTRIES CO., LTD.). In addition, the absolute value of T4−T3 was calculated. These results were as shown in Table 1. - Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Example 1, except that the thickness of each of the transmittance-controlling layer and the metal oxide layer was changed as shown in Table 1, a ZnO—In2O3—TiO2—SnO2 target was used in formation of the metal oxide layer, and the high refractive index layer was formed between the transparent resin substrate and the transmittance-controlling layer. The composition of the target used for formation of the metal oxide layer was ZnO:In2O3:TiO2:SnO2=44:26:11:19 (mol %). The composition of the metal oxide layer formed was the same as the composition of the corresponding target. The composition, thickness, and refractive index of each layer are shown in Table 1.
- The high refractive index layer was formed by using the following procedure. A resin composition containing zirconium oxide (ZrO2) (trade name: TYZ70, manufactured by TOYO INK CO., LTD., refractive index: 1.70) was diluted with propylene glycol monomethyl ether (PGMA) as a solvent to prepare a coating material with a nonvolatile content (NV) of 6% by mass. The coating material prepared was applied onto the other surface (front surface) of the transparent resin substrate to form the high refractive index layer. Thereafter, the transmittance-controlling layer, the metal layer, and the metal oxide layer were sequentially formed on the high refractive index layer formed in the same manner as in Example 1. The transparent conductor (without the glass layer) of Example 2 included the
first laminate part 10 b and thesecond laminate part 20 b as illustrated inFIG. 3 . The transparent conductor (with the glass layer) of Example 2 included thethird laminate part 30 b and thefourth laminate part 40 b as illustrated inFIG. 7 . Evaluations 1 and 2 were performed in the same manner as in Example 1. The evaluation results were as shown in Table 1. -
TABLE 1 Example 1 Example 2 First Second First Second laminate laminate laminate laminate part part part part Metal oxide Composition none *1 none *2 layer Thickness 50 40 (nm) Refractive 2.0 2.1 index Metal layer Thickness none 5 none 5 (nm) Transmittance- Composition ZnO—SnO2 ZnO—SnO2 controlling Thickness 40 50 layer (nm) Refractive 2.0 2.0 index High refractive Thickness None 70 index layer (nm) Refractive 1.70 index Transmittance % 83.8 89.3 83.9 89.0 (T1, T2) T2 − T1 % 5.5 5.1 Third Fourth Third Fourth laminate laminate laminate laminate part part part part Transmittance % 89.0 89.1 89.2 88.4 (T3, T4) |T4 − T3| % 0.1 0.8 In the table, *1 is ZnO Ga2O3 GeO2, and *2 is ZnO InO2 TiO2 SnO2. - Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Example 2, except that the thickness of each of the transmittance-controlling layer and the high refractive index layer was changed as shown in Table 2, and the low refractive index layer was formed between the transparent resin substrate and the high refractive index layer. The composition, thickness, and refractive index of each layer are shown in Table 2.
- The low refractive index layer was formed by using the following procedure. A resin composition containing silicon oxide (SiO2) (trade name: ENS653, manufactured by DIC Corporation, refractive index: 1.45) was diluted with propylene glycol monomethyl ether (PGMA) as a solvent to prepare a coating material with a nonvolatile content (NV) of 3% by mass. The coating material prepared was applied onto the other surface (front surface) of the transparent resin substrate to form the low refractive index layer. Thereafter, the high refractive index layer, the transmittance-controlling layer, the metal layer, and the metal oxide layer were sequentially formed on the low refractive index layer formed in the same manner as in Example 2. The transparent conductor (without the glass layer) of Example 3 included the
first laminate part 10 c and thesecond laminate part 20 c as illustrated inFIG. 4 . Evaluations 1 and 2 were performed in the same manner as in Example 2. The evaluation results were as shown in Table 2. -
TABLE 2 Example 3 First Second laminate part laminate part Metal oxide layer Composition none *2 Thickness 40 (nm) Refractive 2.1 index Metal layer (nm) Thickness none 5 Transmittance-controlling Composition ZnO—SnO2 layer Thickness 40 (nm) Refractive 2.0 index High refractive index Thickness 50 layer (nm) Refractive 1.68 index Low refractive index Thickness 100 layer (nm) Refractive 1.50 index Transmittance (T1, T2) % 82.0 87.9 T2 − T1 % 5.9 Third Fourth laminate part laminate part Transmittance (T3, T4) % 88.3 87.7 |T4 − T3| % 0.6 In the table, *2 is ZnO InO2 TiO2 SnO2. - The hardcoat layer with a thickness of 1.5 μm was formed on one surface (back surface) of the transparent resin substrate in the same manner as in Example 1.
- The transmittance-controlling layer, the metal layer, and the metal oxide layer were sequentially formed on the other surface (front surface) of the transparent resin substrate through DC magnetron sputtering. The transmittance-controlling layer and the metal oxide layer were formed by using a ZnO—Ga2O3—GeO2 target. The composition of the target was ZnO:Ga2O3:GeO2=81:9:10 (mol %). The metal layer was formed by using an AgPdCu target. The composition of the target was Ag:Pd:Cu=99.0:0.5:0.5(% by mass). The composition of each layer formed was the same as the composition of the corresponding target.
- Thus, a laminate in which the hardcoat layer, the transparent resin substrate, the transmittance-controlling layer, the metal layer, and the metal oxide layer were laminated in the order presented was obtained.
- For the laminate obtained, a resist pattern was formed in the same manner as in Example 1, and etching was performed. Thereby, the metal oxide layer, the metal layer, and the transmittance-controlling layer in a part without the resist pattern formed were dissolved for removal. Thus, a transparent conductor (without the glass layer) of Comparative Example 1 was produced. This transparent conductor included a first laminate part including the hardcoat layer and the transparent resin substrate in the order presented, and a second laminate part including the hardcoat layer, the transparent resin substrate, the transmittance-controlling layer, the metal layer, and the metal oxide layer in the order presented. The composition, thickness, and refractive index of each layer were as shown in Table 3.
- Evaluation 1 was performed for the transparent conductor (without the glass layer) in the same manner as in Example 1. Further, a transparent conductor (with the glass layer) was produced by forming the glass layer in the same manner as in Example 1. Then, Evaluation 2 was performed in the same manner as in Example 1. The evaluation results were as shown in Table 3.
- Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Comparative Example 1, except that the thickness of each of the metal oxide layer and the transmittance-controlling layer was changed as shown in Table 3, a ZnO—In2O3—TiO2—SnO2 target was used in formation of the metal oxide layer and the transmittance-controlling layer, and the high refractive index layer was formed between the transparent resin substrate and the transmittance-controlling layer. The composition of the target used for formation of the metal oxide layer and the transmittance-controlling layer was ZnO:In2O3:TiO2:SnO2=44:26:11:19 (mol %). The composition of each of the metal oxide layer and the transmittance-controlling layer formed was the same as the composition of the corresponding target.
- The transparent conductor (without the glass layer) of Comparative Example 2 included a first laminate part including the hardcoat layer, the transparent resin substrate, and the high refractive index layer in the order presented, and a second laminate part including the hardcoat layer, the transparent resin substrate, the high refractive index layer, the transmittance-controlling layer, the metal layer, and the metal oxide layer in the order presented. The transparent conductor (with the glass layer) of Comparative Example 2 included the glass layer above the first laminate part and the second laminate part. The composition, thickness, and refractive index of each layer were as shown in Table 3.
- Evaluations 1 and 2 were performed for the transparent conductors (without the glass layer, with the glass layer) in the same manner as in Example 1. The evaluation results were as shown in Table 3.
-
TABLE 3 Comparative Comparative Example 1 Example 2 First Second First Second laminate laminate laminate laminate part part part part Metal oxide Composition none *1 none *2 layer Thickness 50 40 (nm) Refractive 2.0 2.1 index Metal layer Thickness none 5 none 5 (nm) Transmittance- Composition none *1 none *2 controlling Thickness 40 50 layer (nm) Refractive 2.0 2.1 index High refractive Thickness none 70 index layer (nm) Refractive 1.70 index Transmittance % 93.8 90.6 90.3 88.5 (T1, T2) T2 − T1 % 3.2 1.8 Third Fourth Third Fourth laminate laminate laminate laminate part part part part Transmittance % 93.6 89.1 91.5 88.1 (T3, T4) |T4 − T3| % 4.5 3.4 In the table, *1 is ZnO Ga2O3 GeO2, and *2 is ZnO InO2 TiO2 SnO2. - Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Example 3, except that a ZnO—In2O3—TiO2—SnO2 target was used in formation of the transmittance-controlling layer. The composition of the target used for formation of the transmittance-controlling layer was ZnO:In2O3:TiO2:SnO2=44:26:11:19 (mol %). The composition of the transmittance-controlling layer formed was the same as the composition of the corresponding target.
- The transparent conductor (without the glass layer) of Comparative Example 3 included a first laminate part including the hardcoat layer, the transparent resin substrate, the low refractive index layer, and the high refractive index layer in the order presented, and a second laminate part including the hardcoat layer, the transparent resin substrate, the low refractive index layer, the high refractive index layer, the transmittance-controlling layer, the metal layer, and the metal oxide layer in the order presented. The transparent conductor (with the glass layer) of Comparative Example 3 included the glass layer above the first laminate part and the second laminate part. The composition, thickness, and refractive index of each layer were as shown in Table 4.
- Evaluations 1 and 2 were performed for the transparent conductors (without the glass layer, with the glass layer) in the same manner as in Example 3. The evaluation results were as shown in Table 4.
- Transparent conductors (without the glass layer, with the glass layer) were produced in the same manner as in Example 1, except that the thickness of the transmittance-controlling layer was changed as shown in Table 4, and the high refractive index layer was formed between the transparent resin substrate and the transmittance-controlling layer. The high refractive index layer was formed in the same manner as in Example 2.
- The transparent conductor (without the glass layer) of Comparative Example 4 included a first laminate part including the hardcoat layer, the transparent resin substrate, and the high refractive index layer in the order presented, and a second laminate part including the hardcoat layer, the transparent resin substrate, the high refractive index layer, the transmittance-controlling layer, the metal layer, and the metal oxide layer in the order presented. The transparent conductor (with the glass layer) of Comparative Example 4 included the glass layer above the first laminate part and the second laminate part. The composition, thickness, and refractive index of each layer were as shown in Table 4.
- Evaluations 1 and 2 were performed for the transparent conductors (without the glass layer, with the glass layer) in the same manner as in Example 1. The evaluation results were as shown in Table 4.
-
TABLE 4 Comparative Comparative Example 3 Example 4 First Second First Second laminate laminate laminate laminate part part part part Metal oxide Composition none *2 none *1 layer Thickness 40 50 (nm) Refractive 2.1 2.0 index Metal layer Thickness none 5 none 5 (nm) Transmittance- Composition none *2 ZnO—SnO2 controlling Thickness 40 70 layer (nm) Refractive 2.1 2.0 index High refractive Thickness 50 70 index layer (nm) Refractive 1.68 1.70 index Low refractive Thickness 100 none index layer (nm) Refractive 1.50 index Transmittance % 87.8 88.2 82.5 84.1 (T1, T2) T2 − T1 % 0.4 1.6 Third Fourth Third Fourth laminate laminate laminate laminate part part part part Transmittance % 90.8 87.9 88.9 84.3 (T3, T4) |T4 − T3| % 2.9 4.6 In the table, *1 is ZnO Ga2O3 GeO2, and *2 is ZnO InO2 TiO2 SnO2. - As shown in Tables 1 to 4, it was confirmed for each Example that use of the transparent conductor (without the glass layer) with a difference in transmittance between the first laminate part and the second laminate part (T2−T1) of 4% or less can provide a sufficiently small absolute value of the difference between the transmittance of the third laminate part corresponding to an insulating part, T3, and the transmittance of the fourth laminate part corresponding to a conductive part, T4. Such a transparent conductor can sufficiently reduce shading due to the difference in transmittance.
- The present disclosure can provide a transparent conductor capable of sufficiently preventing generation of shading due to the difference in transmittance between a conductive part and an insulating part, and a method for producing the same. In addition, the present disclosure can provide a touch panel with shading due to the difference in transmittance between a conductive part and an insulating part sufficiently reduced by using such a transparent conductor.
- 10, 10 a, 10 b, 10 c: first laminate part, 11: transparent resin substrate, 12: transmittance-controlling layer, 13: high refractive index layer, 14: metal oxide layer, 15 a, 15 b: sensor electrode, 16: metal layer, 17: low refractive index layer, 18: hardcoat layer, 19: glass layer, 20, 20 a, 20 b, 20 c: second laminate part, 30, 30 a, 30 b, 30 c: third laminate part, 40, 40 a, 40 b, 40 c: fourth laminate part, 50: conductor line, 70: panel sheet, 76: cover glass, 80: electrode, 90: adhesive, 92: spacer, 100, 101, 102, 103, 104, 105, 106, 107: transparent conductor, 100 a, 100 b: sensor film, 200: touch panel.
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-089524 | 2015-04-24 | ||
JP2015089524A JP6052330B2 (en) | 2015-04-24 | 2015-04-24 | Transparent conductor, manufacturing method thereof, and touch panel |
PCT/JP2016/062786 WO2016171260A1 (en) | 2015-04-24 | 2016-04-22 | Transparent conductor, method for producing same, and touch panel |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180113529A1 true US20180113529A1 (en) | 2018-04-26 |
US10540045B2 US10540045B2 (en) | 2020-01-21 |
Family
ID=57143157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/567,918 Active 2036-10-10 US10540045B2 (en) | 2015-04-24 | 2016-04-22 | Transparent conductor, method for producing same, and touch panel |
Country Status (5)
Country | Link |
---|---|
US (1) | US10540045B2 (en) |
EP (1) | EP3287877A4 (en) |
JP (1) | JP6052330B2 (en) |
CN (1) | CN107533402B (en) |
WO (1) | WO2016171260A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200097044A1 (en) * | 2018-09-24 | 2020-03-26 | Apple Inc. | Hybrid coverlay/window structure for flexible display applications |
US10902970B2 (en) * | 2015-04-16 | 2021-01-26 | Basf Se | Patterned transparent conductive film and process for producing such a patterned transparent conductive film |
US20220367084A1 (en) * | 2019-07-03 | 2022-11-17 | Dexerials Corporation | Conductive laminate, optical device using same, and production method for conductive laminate |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6260647B2 (en) * | 2016-06-13 | 2018-01-17 | Tdk株式会社 | Transparent conductor |
KR101909934B1 (en) * | 2017-04-19 | 2018-10-19 | 충북대학교 산학협력단 | Transparent composite oxide film for flexible display, and display apparatus including the same, and method thereof |
KR102006697B1 (en) | 2018-01-31 | 2019-08-02 | 청주대학교 산학협력단 | Multilayer transparent electrode of electrochromic device and method for manufacturing thereof |
JP2022124137A (en) * | 2021-02-15 | 2022-08-25 | リンテック株式会社 | Writability improvement sheet |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052173A (en) * | 1991-06-25 | 1993-01-08 | Daicel Chem Ind Ltd | Liquid crystal display device |
JPH0957892A (en) * | 1995-08-24 | 1997-03-04 | Mitsui Toatsu Chem Inc | Transparent conductive laminate |
JP2000351170A (en) * | 1999-06-10 | 2000-12-19 | Gunze Ltd | Transparent conductive laminate |
JP2002157929A (en) | 2000-09-08 | 2002-05-31 | Mitsui Chemicals Inc | Transparent conductive thin film laminated product and its etching method |
ES2364309B1 (en) * | 2010-02-19 | 2012-08-13 | Institut De Ciencies Fotoniques, Fundacio Privada | TRANSPARENT ELECTRODE BASED ON THE COMBINATION OF OXIDES, METALS AND TRANSPARENT DRIVING OXIDES. |
US9860981B2 (en) * | 2010-07-09 | 2018-01-02 | Jnc Corporation | Transparent conductive film and method for producing same |
EP2648079A4 (en) * | 2010-11-30 | 2016-05-04 | Nitto Denko Corp | Display panel device having touch-input function |
CN202110510U (en) * | 2011-04-04 | 2012-01-11 | 宸鸿科技(厦门)有限公司 | Touch control panel |
JP5780034B2 (en) * | 2011-07-26 | 2015-09-16 | 日油株式会社 | Color tone correction film and transparent conductive film using the same |
JP5889675B2 (en) * | 2012-03-05 | 2016-03-22 | リンテック株式会社 | Transparent conductive film and method for producing the same |
JP2014194749A (en) * | 2013-02-27 | 2014-10-09 | Hosiden Corp | Touch panel |
JP6059575B2 (en) * | 2013-03-26 | 2017-01-11 | 株式会社カネカ | Method for producing substrate with transparent electrode, and laminate |
CN103336605B (en) * | 2013-06-14 | 2016-05-18 | 业成光电(深圳)有限公司 | Contact panel and use the electronic installation of this contact panel |
CN104427738A (en) * | 2013-08-21 | 2015-03-18 | 富葵精密组件(深圳)有限公司 | Printed circuit board and manufacturing method thereof |
-
2015
- 2015-04-24 JP JP2015089524A patent/JP6052330B2/en active Active
-
2016
- 2016-04-22 CN CN201680023522.0A patent/CN107533402B/en active Active
- 2016-04-22 WO PCT/JP2016/062786 patent/WO2016171260A1/en active Application Filing
- 2016-04-22 US US15/567,918 patent/US10540045B2/en active Active
- 2016-04-22 EP EP16783281.5A patent/EP3287877A4/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10902970B2 (en) * | 2015-04-16 | 2021-01-26 | Basf Se | Patterned transparent conductive film and process for producing such a patterned transparent conductive film |
US20200097044A1 (en) * | 2018-09-24 | 2020-03-26 | Apple Inc. | Hybrid coverlay/window structure for flexible display applications |
US10817016B2 (en) * | 2018-09-24 | 2020-10-27 | Apple Inc. | Hybrid coverlay/window structure for flexible display applications |
US11402868B2 (en) | 2018-09-24 | 2022-08-02 | Apple Inc. | Hybrid coverlay/window structure for flexible display applications |
US11846984B2 (en) | 2018-09-24 | 2023-12-19 | Apple Inc. | Hybrid coverlay/window structure for flexible display applications |
US20220367084A1 (en) * | 2019-07-03 | 2022-11-17 | Dexerials Corporation | Conductive laminate, optical device using same, and production method for conductive laminate |
US11862361B2 (en) * | 2019-07-03 | 2024-01-02 | Dexerials Corporation | Conductive laminate, optical device using same, and production method for conductive laminate |
Also Published As
Publication number | Publication date |
---|---|
JP2016207027A (en) | 2016-12-08 |
CN107533402A (en) | 2018-01-02 |
EP3287877A1 (en) | 2018-02-28 |
EP3287877A4 (en) | 2019-01-16 |
WO2016171260A1 (en) | 2016-10-27 |
CN107533402B (en) | 2021-02-02 |
US10540045B2 (en) | 2020-01-21 |
JP6052330B2 (en) | 2016-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10540045B2 (en) | Transparent conductor, method for producing same, and touch panel | |
US10527873B2 (en) | Transparent conductor and touch panel | |
US10510457B2 (en) | Transparent conductor | |
US9582130B2 (en) | Transparent conductor and touch panel | |
JP5803062B2 (en) | Transparent conductor and touch panel using the same | |
JP5958476B2 (en) | Transparent conductor and touch panel | |
TWI597742B (en) | Transparent conductive body and touch panel | |
TWI595392B (en) | Transparent conductive body and touch panel | |
KR101737778B1 (en) | Transparent conductor and touch panel | |
KR102547456B1 (en) | Transparent conductive film and image display device | |
JP2016091455A (en) | Transparent conductor and touch panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: TDK CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHINGAI, HIROSHI;TAMAGAWA, YOSHIHISA;SAKURAI, MOTOHIRO;SIGNING DATES FROM 20171016 TO 20171030;REEL/FRAME:044507/0609 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |