US20170207443A1 - Method of preparing battery electrodes - Google Patents

Method of preparing battery electrodes Download PDF

Info

Publication number
US20170207443A1
US20170207443A1 US15/410,749 US201715410749A US2017207443A1 US 20170207443 A1 US20170207443 A1 US 20170207443A1 US 201715410749 A US201715410749 A US 201715410749A US 2017207443 A1 US2017207443 A1 US 2017207443A1
Authority
US
United States
Prior art keywords
slurry
acid
water
core
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/410,749
Inventor
Peihua SHEN
Sing Hung Eric WONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRST International Ltd
Original Assignee
GRST Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRST Energy Ltd filed Critical GRST Energy Ltd
Priority to US15/410,749 priority Critical patent/US20170207443A1/en
Assigned to GRST Energy Limited reassignment GRST Energy Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WONG, Sing Hung Eric, SHEN, Peihua
Assigned to GRST INTERNATIONAL LIMITED reassignment GRST INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRST Energy Limited
Publication of US20170207443A1 publication Critical patent/US20170207443A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to lithium-ion batteries in the application of sustainable energy area. More particularly, this invention relates to the use of aqueous-based slurries for preparing battery electrodes.
  • LIBs Lithium-ion batteries
  • EV electric vehicles
  • grid energy storage Due to rapid market development of electric vehicles (EV) and grid energy storage, high-performance, low-cost LIBs are currently offering one of the most promising options for large-scale energy storage devices.
  • a lithium ion battery includes a separator, a cathode and an anode.
  • electrodes are prepared by dispersing fine powders of an active battery electrode material, a conductive agent, and a binder material in an appropriate solvent. The dispersion can be coated onto a current collector such as a copper or aluminum metal foil, and then dried at an elevated temperature to remove the solvent. Sheets of the cathode and anode are subsequently stacked or rolled with the separator separating the cathode and anode to form a battery.
  • PVDF Polyvinylidene fluoride
  • NMP N-Methyl-2-pyrrolidone
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • U.S. Pat. No. 8,956,688 B2 describes a method of making a battery electrode. The method comprises measuring the zeta potential of the active electrode material and the conductive additive material; selecting a cationic or anionic dispersant based on the zeta potential; determining the isoelectric point (IEP) of the active electrode material and the conductive additive material; dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.
  • IEP isoelectric point
  • the method is complicated, involving measurements of the zeta potential of the active electrode material and the conductive additive material, and isoelectric point (IEP) of the active electrode material and the conductive additive material. Furthermore, an additional surface treatment step for treating the surface of the current collector is required in order to enhance the capacity retention.
  • U.S. Pat. No. 8,092,557 B2 describes a method of making an electrode for a rechargeable lithium ion battery using a water-based slurry having a pH between 7.0 and 11.7, wherein the electrode includes an electro-active material, a (polystyrenebutadiene rubber)-poly (acrylonitrile-co-acrylamide) polymer, and a conductive additive.
  • this method does not provide any data for evaluating the electrochemical performance of the electrodes prepared by this method.
  • U.S. Patent Application No. 2013/0034651 A1 describes a slurry for the manufacture of an electrode, wherein the slurry comprises a combination of at least three of polyacrylic acid (PAA), carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR) and polyvinylidene fluoride (PVDF) in an aqueous solution and an electrochemically activateable compound.
  • PAA polyacrylic acid
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • PVDF polyvinylidene fluoride
  • the slurry for preparing the cathode electrode comprises acetone or other organic solvents such as NMP and DMAC.
  • a method of preparing a battery electrode comprising the steps of:
  • the active battery electrode material is a cathode material, wherein the cathode material is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNi x Mn y O 2 , Li 1+z Ni x Mn y Co 1-x-y O 2 , LiNi x Co y Al z O 2 , LiV 2 O 5 , LiTiS 2 , LiMoS 2 , LiMnO 2 , LiCrO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4 , and combinations thereof, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2.
  • the cathode material is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNi x Mn y O 2 , Li 1+z Ni x Mn y Co 1-x-y O 2 , Li
  • the pH of the first aqueous solution is at a range from about 4 to about 7 and the first suspension is stirred for a time period from about 2 minutes to about 12 hours.
  • the first aqueous solution comprises one or more acids selected from the group consisting of H 2 SO 4 , HNO 3 , H 3 PO 4 , HCOOH, CH 3 COOH, H 3 C 6 H 5 O 7 , H 2 C 2 O 4 , C 6 H 12 O 7 , C 4 H 6 O 5 , and combinations thereof.
  • the first aqueous solution further comprises ethanol, isopropanol, methanol, acetone, n-propanol, t-butanol, or a combination thereof.
  • the first suspension is dried by a double-cone vacuum dryer, a microwave dryer, or a microwave vacuum dryer.
  • the conductive agent is selected from the group consisting of carbon, carbon black, graphite, expanded graphite, graphene, graphene nanoplatelets, carbon fibres, carbon nano-fibers, graphitized carbon flake, carbon tubes, carbon nanotubes, activated carbon, mesoporous carbon, and combinations thereof.
  • the conductive agent is pre-treated in an alkaline solution or a basic solution for a time period from about 30 minutes to about 2 hours, wherein the alkaline solution or basic solution comprises a base selected from the group consisting of H 2 O 2 , LiOH, NaOH, KOH, NH 3 .H 2 O, Be(OH) 2 , Mg(OH) 2 , Ca(OH) 2 , Li 2 CO 3 , Na 2 CO 3 , NaHCO 3 , K 2 CO 3 , KHCO 3 , and combinations thereof.
  • a base selected from the group consisting of H 2 O 2 , LiOH, NaOH, KOH, NH 3 .H 2 O, Be(OH) 2 , Mg(OH) 2 , Ca(OH) 2 , Li 2 CO 3 , Na 2 CO 3 , NaHCO 3 , K 2 CO 3 , KHCO 3 , and combinations thereof.
  • the conductive agent is dispersed in a third aqueous solution to form a second suspension prior to step 3).
  • the binder material is selected from the group consisting of styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), acrylonitrile copolymer, polyacrylic acid (PAA), polyacrylonitrile, poly(vinylidene fluoride)-hexafluoropropene (PVDF-HFP), latex, a salt of alginic acid, and combinations thereof.
  • the salt of alginic acid comprises a cation selected from Na, Li, K, Ca, NH 4 , Mg, Al, or a combination thereof.
  • the binder material is dissolved in a fourth aqueous solution to form a resulting solution prior to step 3).
  • each of the first, second, third and fourth aqueous solutions independently is purified water, pure water, de-ionized water, distilled water, or a combination thereof.
  • the slurry or homogenized slurry further comprises a dispersing agent selected from the group consisting of ethanol, isopropanol, n-propanol, t-butanol, n-butanol, lithium dodecyl sulfate, trimethylhexadecyl ammonium chloride, alcohol ethoxylate, nonylphenol ethoxylate, sodium dodecylbenzene sulfonate, sodium stearate, and combinations thereof.
  • a dispersing agent selected from the group consisting of ethanol, isopropanol, n-propanol, t-butanol, n-butanol, lithium dodecyl sulfate, trimethylhexadecyl ammonium chloride, alcohol ethoxylate, nonylphenol ethoxylate, sodium dodecylbenzene sulfonate, sodium stearate, and combinations thereof.
  • the homogenizer is a stirring mixer, a blender, a mill, an ultrasonicator, a rotor-stator homogenizer, or a high pressure homogenizer.
  • the ultrasonicator is a probe-type ultrasonicator or an ultrasonic flow cell.
  • the ultrasonicator is operated at a power density from about 10 W/L to about 100 W/L, or from about 20 W/L to about 40 W/L.
  • the homogenized slurry is applied on the current collector using a doctor blade coater, a slot-die coater, a transfer coater, or a spray coater.
  • each of the current collectors of the positive and negative electrodes is independently stainless steel, titanium, nickel, aluminum, copper or electrically-conductive resin.
  • the current collector of the positive electrode is an aluminum thin film.
  • the current collector of the negative electrode is a copper thin film.
  • the coated film is dried for a time period from about 1 minute to about 30 minutes, or from about 2 minutes to about 10 minutes at a temperature from about 45° C. to about 100° C., or from about 55° C. to about 75° C.
  • the coated film is dried by a conveyor hot air drying oven, a conveyor resistance drying oven, a conveyor inductive drying oven, or a conveyor microwave drying oven.
  • the conveyor moves at a speed from about 2 meter/minute to about 30 meter/minute, from about 2 meter/minute to about 25 meter/minute, from about 2 meter/minute to about 20 meter/minute, from about 2 meter/minute to about 16 meter/minute, from about 3 meter/minute to about 30 meter/minute, from about 3 meter/minute to about 20 meter/minute, or from about 3 meter/minute to about 16 meter/minute.
  • the active battery electrode material is an anode material, wherein the anode material is selected from the group consisting of natural graphite particulate, synthetic graphite particulate, Sn particulate, Li 4 Ti 5 O 12 particulate, Si particulate, Si—C composite particulate, and combinations thereof.
  • FIG. 1 depicts an embodiment of the method disclosed herein.
  • FIG. 2 depicts a SEM image of the surface morphology of Example 1, an embodiment of the coated cathode electrode disclosed herein.
  • FIG. 3 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 2.
  • FIG. 4 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 4.
  • FIG. 5 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 6.
  • FIG. 6 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 8.
  • FIG. 7 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 10.
  • FIG. 8 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 12.
  • FIG. 9 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 14.
  • FIG. 10 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 15.
  • FIG. 11 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 16.
  • FIG. 12 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 17.
  • FIG. 13 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 18.
  • FIG. 14 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 1.
  • FIG. 15 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 2.
  • FIG. 16 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 3.
  • FIG. 17 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 4.
  • FIG. 18 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 5.
  • FIG. 19 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 6.
  • FIG. 20 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 7.
  • FIG. 21 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 8.
  • FIG. 22 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 9.
  • FIG. 23 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 10.
  • a method of preparing a battery electrode comprising the steps of:
  • Electrode refers to a “cathode” or an “anode.”
  • positive electrode is used interchangeably with cathode.
  • negative electrode is used interchangeably with anode.
  • the term “acid” includes any molecule or ion that can donate a hydrogen ion to another substance, and/or contain completely or partially displaceable H + ions.
  • suitable acids include inorganic acids and organic acids.
  • suitable acids include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, hydroiodic acid, and combinations thereof.
  • organic acids include acetic acid, lactic acid, oxalic acid, citric acid, uric acid, trifluoroacetic acid, methanesulfonic acid, formic acid, propionic acid, butyric acid, valeric acid, gluconic acid, malic acid, caproic acid, and combinations thereof.
  • the term “acidic solution” refers to a solution of a soluble acid, having a pH lower than 7.0, lower than 6.5, lower than 6.0, lower than 5.0, lower than 4.0, lower than 3.0, or lower than 2.0. In some embodiments, the pH is greater than 6.0, greater than 5.0, greater than 4.0, greater than 3.0, or greater than 2.0.
  • pre-treating refers to an act of improving or altering the properties of a material, or removing any contaminants in a material by acting upon with some agents, or an act of suspending a material in some solvents.
  • dispenser refers to an act of distributing a chemical species or a solid more or less evenly throughout a fluid.
  • binder material refers to a chemical or a substance that can be used to hold the active battery electrode material and conductive agent in place.
  • homogenizer refers to an equipment that can be used for homogenization of materials.
  • homogenization refers to a process of reducing a substance or material to small particles and distributing it uniformly throughout a fluid. Any conventional homogenizers can be used for the method disclosed herein. Some non-limiting examples of the homogenizer include stirring mixers, blenders, mills (e.g., colloid mills and sand mills), ultrasonicators, atomizers, rotor-stator homogenizers, and high pressure homogenizers.
  • ultrasonicator refers to an equipment that can apply ultrasound energy to agitate particles in a sample. Any ultrasonicator that can disperse the slurry disclosed herein can be used herein. Some non-limiting examples of the ultrasonicator include an ultrasonic bath, a probe-type ultrasonicator, and an ultrasonic flow cell.
  • ultrasonic bath refers to an apparatus through which the ultrasonic energy is transmitted via the container's wall of the ultrasonic bath into the liquid sample.
  • probe-type ultrasonicator refers to an ultrasonic probe immersed into a medium for direct sonication.
  • direct sonication means that the ultrasound is directly coupled into the processing liquid.
  • ultrasonic flow cell or “ultrasonic reactor chamber” refers to an apparatus through which sonication processes can be carried out in a flow-through mode.
  • the ultrasonic flow cell is in a single-pass, multiple-pass or recirculating configuration.
  • planetary mixer refers to an equipment that can be used to mix or blend different materials for producing a homogeneous mixture, which consists of a single or double blade with a high speed dispersion blade.
  • the rotational speed can be expressed in unit of rotations per minute (rpm) which refers to the number of rotations that a rotating body completes in one minute.
  • applying refers to an act of laying or spreading a substance on a surface.
  • current collector refers to a support for coating the active battery electrode material and a chemically inactive high electron conductor for keeping an electric current flowing to electrodes during discharging or charging a secondary battery.
  • room temperature refers to indoor temperatures from about 18° C. to about 30° C., e.g., 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30° C. In some embodiments, room temperature refers to a temperature of about 20° C. +/ ⁇ 1° C. or +/ ⁇ 2° C. or +/ ⁇ 3° C. In other embodiments, room temperature refers to a temperature of about 22° C. or about 25° C.
  • C rate refers to the charging or discharging rate of a cell or battery, expressed in terms of its total storage capacity in Ah or mAh. For example, a rate of 1 C means utilization of all of the stored energy in one hour; a 0.1 C means utilization of 10% of the energy in one hour and the full energy in 10 hours; and a 5 C means utilization of the full energy in 12 minutes.
  • ampere-hour (Ah) refers to a unit used in specifying the storage capacity of a battery.
  • a battery with 1 Ah capacity can supply a current of one ampere for one hour or 0.5 A for two hours, etc. Therefore, 1 Ampere-hour (Ah) is the equivalent of 3600 coulombs of electrical charge.
  • miniampere-hour (mAh) also refers to a unit of the storage capacity of a battery and is 1/1,000 of an ampere-hour.
  • doctor blading refers to a process for fabrication of large area films on rigid or flexible substrates.
  • a coating thickness can be controlled by an adjustable gap width between a coating blade and a coating surface, which allows the deposition of variable wet layer thicknesses.
  • transfer coating or “roll coating” refers to a process for fabrication of large area films on rigid or flexible substrates.
  • a slurry is applied on the substrate by transferring a coating from the surface of a coating roller with pressure.
  • a coating thickness can be controlled by an adjustable gap width between a metering blade and a surface of the coating roller, which allows the deposition of variable wet layer thicknesses.
  • the thickness of the coating is controlled by adjusting the gap between a metering roller and a coating roller.
  • battery cycle life refers to the number of complete charge/discharge cycles a battery can perform before its nominal capacity falls below 80% of its initial rated capacity.
  • major component of a composition refers to the component that is more than 50%, more than 55%, more than 60%, more than 65%, more than 70%, more than 75%, more than 80%, more than 85%, more than 90%, or more than 95% by weight or volume, based on the total weight or volume of the composition.
  • minor component of a composition refers to the component that is less than 50%, less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5% by weight or volume, based on the total weight or volume of the composition.
  • relatively slow rate refers to the loss of solvent from the wet solid in the coated film over a relatively long period of time.
  • the time required for drying the coated film of a designated coating composition at a relatively slow rate is from about 5 minutes to about 20 minutes.
  • relatively quick drying rate refers to the loss of solvent from the wet solid in the coated film over a relatively short period of time.
  • the time required for drying the coated film of a designated coating composition at a relatively quick drying rate is from about 1 minute to about 5 minutes.
  • R R L +k*(R U ⁇ R L ), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . , 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent.
  • any numerical range defined by two R numbers as defined in the above is also specifically disclosed.
  • FIG. 1 shows an embodiment of the method disclosed herein, in which a first suspension is prepared by pre-treating an active battery electrode material in a first aqueous solution having a pH from about 2.0 to about 7.5 to form a first suspension. The first suspension is then dried to obtain a pre-treated active battery electrode material.
  • a slurry is prepared by mixing the pre-treated active battery electrode material, a conductive agent, and a binder material in a second aqueous solution. Further components may be added. The slurry is then homogenized by a homogenizer to obtain a homogenized slurry.
  • a current collector is coated with the homogenized slurry, and the coated collector is then dried to form the battery electrode.
  • the first suspension is prepared by pre-treating an active battery electrode material in a first aqueous solution having a pH from about 2.0 to about 7.5.
  • the active battery electrode material can be added to the stirring first aqueous solution at about 14° C., about 16° C., about 18° C., about 20° C., about 22° C., about 24° C., or about 26° C.
  • the pre-treating process can be performed with heating at a temperature from about 30° C. to about 80° C., from about 35° C. to about 80° C., from about 40° C. to about 80° C., from about 45° C. to about 80° C., from about 50° C. to about 80° C., from about 55° C. to about 80° C., from about 55° C.
  • the pre-treating process can be performed at a temperature below 30° C., below 25° C., below 22° C., below 20° C., below 15° C., or below 10° C.
  • the active battery electrode material is a cathode material, wherein the cathode material is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNi x Mn y O 2 , Li 1+z Ni x Mn y Co 1-x-y O 2 , LiNi x Co y Al z O 2 , LiV 2 O 5 , LiTiS 2 , LiMoS 2 , LiMnO 2 , LiCrO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4 , and combinations thereof, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2.
  • the cathode material is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNi x Mn y O 2 , Li 1+z Ni x Mn y Co 1-x-y O 2 , Li
  • the cathode material is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNi x Mn y O 2 , Li 1+z Ni x Mn y Co 1-x-y O 2 (NMC), LiNi x Co y Al z O 2 , LiV 2 O 5 , LiTiS 2 , LiMoS 2 , LiMnO 2 , LiCrO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4 , and combinations thereof, wherein each x is independently from 0.4 to 0.6; each y is independently from 0.2 to 0.4; and each z is independently from 0 to 0.1.
  • the cathode material is not LiCoO 2 , LiNiO 2 , LiV 2 O 5 , LiTiS 2 , LiMoS 2 , LiMnO 2 , LiCrO 2 , LiMn 2 O 4 , LiFeO 2 , or LiFePO 4 .
  • the cathode material is not LiNi x Mn y O 2 , Li 1+z Ni x Mn y Co 1-x-y O 2 , or LiNi x Co y Al z O 2 , wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2.
  • the cathode material is doped with a dopant selected from the group consisting of Fe, Ni, Mn, Al, Mg, Zn, Ti, La, Ce, Sn, Zr, Ru, Si, Ge, and combinations thereof.
  • the dopant is not Fe, Ni, Mn, Mg, Zn, Ti, La, Ce, Ru, Si, or Ge.
  • the dopant is not Al, Sn, or Zr.
  • the cathode material comprises or is a core-shell composite comprising a core comprising a lithium transition metal oxide and a shell formed by coating the surface of the core with a transition metal oxide.
  • the lithium transition metal oxide is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNi x Mn y O 2 , Li 1+z Ni x Mn y Co 1-x-y O 2 , LiNi x Co y Al z O 2 , LiV 2 O 5 , LiTiS 2 , LiMoS 2 , LiMnO 2 , LiCrO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4 , and combinations thereof, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2.
  • the transition metal oxide is selected from the group consisting of Fe 2 O 3 , MnO 2 , Al 2 O 3 , MgO, ZnO, TiO 2 , La 2 O 3 , CeO 2 , SnO 2 , ZrO 2 , RuO 2 , and combinations thereof.
  • the cathode material comprises or is a core-shell composite having a core and shell structure, wherein the core and the shell each independently comprise a lithium transition metal oxide selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNi x Mn y O 2 , Li 1+z Ni x Mn y Co 1-x-y O 2 , LiNi x Co y Al z O 2 , LiV 2 O 5 , LiTiS 2 , LiMoS 2 , LiMnO 2 , LiCrO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4 , and combinations thereof, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2.
  • a lithium transition metal oxide selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNi x Mn y O 2 , Li 1+z Ni
  • the core and the shell each independently comprise two or more lithium transition metal oxides.
  • the two or more lithium transition metal oxides in the core and the shell may be the same, or may be different or partially different.
  • the two or more lithium transition metal oxides are uniformly distributed over the core. In certain embodiments, the two or more lithium transition metal oxides are not uniformly distributed over the core.
  • each of the lithium transition metal oxides in the core and the shell is independently doped with a dopant selected from the group consisting of Fe, Ni, Mn, Al, Mg, Zn, Ti, La, Ce, Sn, Zr, Ru, Si, Ge, and combinations thereof.
  • the core and the shell each independently comprise two or more doped lithium transition metal oxides.
  • the two or more doped lithium transition metal oxides are uniformly distributed over the core. In certain embodiments, the two or more doped lithium transition metal oxides are not uniformly distributed over the core.
  • the diameter of the core is from about 5 ⁇ m to about 45 ⁇ m, from about 5 ⁇ m to about 35 ⁇ m, from about 5 ⁇ m to about 25 ⁇ m, from about 10 ⁇ m to about 40 ⁇ m, or from about 10 ⁇ m to about 35 ⁇ m.
  • the thickness of the shell is from about 3 ⁇ m to about 15 ⁇ m, from about 15 ⁇ m to about 45 ⁇ m, from about 15 ⁇ m to about 30 ⁇ m, from about 15 ⁇ m to about 25 ⁇ m, from about 20 ⁇ m to about 30 ⁇ m, or from about 20 ⁇ m to about 35 ⁇ m.
  • the diameter or thickness ratio of the core and the shell are in the range of 15:85 to 85:15, 25:75 to 75:25, 30:70 to 70:30, or 40:60 to 60:40.
  • the volume or weight ratio of the core and the shell is 80:20, 70:30, 60:40, 50:50, 40:60, or 30:70.
  • the first aqueous solution is a solution containing water as the major component and a volatile solvent, such as alcohols, lower aliphatic ketones, lower alkyl acetates or the like, as the minor component in addition to water.
  • a volatile solvent such as alcohols, lower aliphatic ketones, lower alkyl acetates or the like
  • the amount of water is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% to the total amount of water and solvents other than water.
  • the amount of water is at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90%, or at most 95% to the total amount of water and solvents other than water.
  • the first aqueous solution consists solely of water, that is, the proportion of water in the first aqueous solution is 100 vol. %.
  • any water-miscible solvents can be used as the minor component.
  • the minor component i.e., solvents other than water
  • the minor component include alcohols, lower aliphatic ketones, lower alkyl acetates and combinations thereof.
  • the alcohol include C 2 -C 4 alcohols, such as methanol, ethanol, isopropanol, n-propanol, butanol, and combinations thereof.
  • the lower aliphatic ketones include acetone, dimethyl ketone, and methyl ethyl ketone.
  • the lower alkyl acetates include ethyl acetate, isopropyl acetate, and propyl acetate.
  • the volatile solvent or the minor component is methyl ethyl ketone, ethanol, ethyl acetate or a combination thereof.
  • the first aqueous solution is a mixture of water and one or more water-miscible minor component.
  • the first aqueous solution is a mixture of water and a minor component selected from ethanol, isopropanol, n-propanol, t-butanol, n-butanol, and combinations thereof.
  • the volume ratio of water and the minor component is from about 51:49 to about 100:1.
  • the first aqueous solution is water.
  • water include tap water, bottled water, purified water, pure water, distilled water, de-ionized water, D 2 O, or a combination thereof.
  • the first aqueous solution is de-ionized water.
  • the first aqueous solution is free of alcohol, aliphatic ketone, alkyl acetate, or a combination thereof.
  • the first aqueous solution is acidic, slightly alkaline, or neutral, and has a pH anywhere within the range of about 2.0 to about 8.0.
  • the pH of the first aqueous solution is from about 2.0 to about 7.5, from about 3.0 to about 7.5, from about 4.0 to about 7.5, from about 4.0 to about 7.0, from about 5.0 to about 7.5, from about 6.0 to about 7.5, or from about 6.0 to about 7.0.
  • the pH of the first aqueous solution is about 7.0, about 6.5, about 6.0, about 5.5, about 5.0, or about 4.0.
  • the pH of the first aqueous solution is from about 2 to about 7, from about 2 to about 6, from about 2 to about 5, or from about 2 to about 4. In some embodiments, the pH of the first aqueous solution is less than about 7, less than about 6, less than about 5, less than about 4, or less than about 3.
  • the first aqueous solution comprises one or more acids selected from the group consisting of inorganic acids, organic acids, and combinations thereof.
  • the acid is a mixture of one or more inorganic acids and one or more organic acids, wherein a weight ratio of the one or more inorganic acids to the one or more organic acids is from about 10/1 to about 1/10, from about 8/1 to about 1/8, from about 6/1 to about 1/6, or from about 4/1 to about 1/4.
  • the one or more inorganic acids are selected from the group consisting of hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, hydroiodic acid, and combinations thereof.
  • the one or more inorganic acids are sulfuric acid, hydrochloric acid, hydrobromic acid, nitric acid, phosphoric acid, and combinations thereof.
  • the inorganic acid is hydrochloric acid.
  • the acid is free of inorganic acid such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, or hydroiodic acid.
  • inorganic acid such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, or hydroiodic acid.
  • the one or more organic acids are selected from the group consisting of acetic acid, lactic acid, oxalic acid, citric acid, uric acid, trifluoroacetic acid, methanesulfonic acid, formic acid, propionic acid, butyric acid, valeric acid, gluconic acid, malic acid, caproic acid, and combinations thereof.
  • the one or more organic acids are formic acid, acetic acid, propionic acid, and combinations thereof.
  • the organic acid is acetic acid.
  • the acid is free of organic acid such as acetic acid, lactic acid, oxalic acid, citric acid, uric acid, trifluoroacetic acid, methanesulfonic acid, formic acid, propionic acid, butyric acid, valeric acid, gluconic acid, malic acid, or caproic acid.
  • organic acid such as acetic acid, lactic acid, oxalic acid, citric acid, uric acid, trifluoroacetic acid, methanesulfonic acid, formic acid, propionic acid, butyric acid, valeric acid, gluconic acid, malic acid, or caproic acid.
  • the pH of the first aqueous solution is maintained during the addition of the active battery electrode material at a range from about 4.0 to about 7.5 by addition of one or more acids as a pH adjuster.
  • the choice of the pH adjuster is not critical. Any suitable organic or inorganic acid may be used.
  • the pH adjuster is an acid selected from the group consisting of an inorganic acid, an organic acid, and combinations thereof.
  • the pH can be monitored by a pH measuring device such as pH sensors. In some embodiments, more than one pH sensors are used for monitoring the pH value.
  • the shell of the core-shell composite When the cathode material having a core-shell structure is exposed to an aqueous acidic solution, the shell of the core-shell composite will be damaged by the acidic environment, thereby affecting the performance of the cathode material.
  • the shell of the core-shell composite is very thin and has a thickness from about 3 ⁇ m to about 15 ⁇ m. The thin layer is very fragile and can therefore easily be damaged.
  • the first aqueous solution is slightly alkaline or neutral, and has a pH anywhere within the range from about 7.0 to about 7.5 or from about 7.0 to about 8.0.
  • the core-shell composite is pre-treated in water, alcohol, or a mixture of water and alcohol.
  • the first aqueous solution is water and contaminants such as dirt and water-soluble impurities can be removed from the surface of the core-shell composite without damaging the shell.
  • the first aqueous solution is an alcohol or a mixture of water and alcohol, and contaminants such as dirt, organic compounds such as grease and oil, and water-soluble impurities can be removed from the surface of the core-shell composite without damaging the shell.
  • the alcohol is selected from the group consisting of methanol, ethanol, propanol, butanol, pentanol, and isomers and combinations thereof.
  • the use of the aqueous acidic solution for pre-treating the Ni-rich cathode material such as NMC532, NMC622, or NMC811 may result in defects on the surface of the cathode material. These defects in turn cause mild to severe degradation of electrochemical performance of an electrochemical cell. Acid pretreatment may also lead to surface irregularities of the cathode material, which in turn cause reduced cell performance or even cell failure.
  • the Ni-rich cathode material is pre-treated in a slightly alkaline or neutral environment.
  • the first aqueous solution has a pH anywhere within the range from about 7.0 to about 7.5 or from about 7.0 to about 8.0.
  • the Ni-rich cathode material is pre-treated in water, alcohol or a mixture of water and alcohol. In other embodiments, the Ni-rich cathode material is pre-treated in a slightly acidic environment having a pH from about 6.0 to about 7.0. In further embodiments, the first aqueous solution comprises an acid in an amount from about 0.001 wt. % to about 0.01 wt. %. In other embodiments, the first aqueous solution comprises an acid in an amount of less than about 0.01 wt. %. Therefore, contaminants can be removed from the surface of the Ni-rich cathode material without creating surface defects for the cathode material.
  • the mixture after adding the active battery electrode material to the first aqueous solution, can be further stirred for a time period sufficient for forming the first suspension.
  • the time period is from about 5 minutes to about 2 hours, from about 5 minutes to about 1.5 hours, from about 5 minutes to about 1 hour, from about 5 minutes to about 30 minutes, from about 5 minutes to about 15 minutes, from about 10 minutes to about 2 hours, from about 10 minutes to about 1.5 hours, from about 10 minutes to about 1 hour, from about 10 minutes to about 30 minutes, from about 15 minutes to about 1 hour, or from about 30 minutes to about 1 hour.
  • the active battery electrode material is an anode material, wherein the anode material is selected from the group consisting of natural graphite particulate, synthetic graphite particulate, Sn (tin) particulate, Li 4 Ti 5 O 12 particulate, Si (silicon) particulate, Si—C composite particulate, and combinations thereof.
  • the first suspension can be dried to obtain a pre-treated active battery electrode material.
  • Any dryer that can dry a suspension can be used herein.
  • the drying process is performed by a double-cone vacuum dryer, a microwave dryer, or a microwave vacuum dryer.
  • the cathode material is not suggested to use microwave dryer to dry as the characteristic of metal material can reflect microwave frequency.
  • the cathode material can be effectively dried and drying time can be significantly shortened, thereby lowering operational costs.
  • the drying time is from about 3 minutes to about 25 minutes.
  • drying the cathode material at high temperatures for long time may result in undesirable decomposition of the cathode material, and alter oxidation states of the cathode material.
  • the cathode material having high nickel and/or manganese content is particularly temperature sensitive. As such, the positive electrode may have reduced performance. Therefore, decreased drying times significantly reduce or eliminate degradation of the cathode material.
  • the dryer is a microwave dryer or a microwave vacuum dryer.
  • the microwave dryer or microwave vacuum dryer is operated at a power from about 500 W to about 3 kW, from about 5 kW to about 15 kW, from about 6 kW to about 20 kW, from about 7 kW to about 20 kW, from about 15 kW to about 70 kW, from about 20 kW to about 90 kW, from about 30 kW to about 100 kW, or from about 50 kW to about 100 kW.
  • the drying step can be carried out for a time period that is sufficient for drying the first suspension.
  • the drying time is from about 3 minutes to about 2 hours, from about 5 minutes to about 2 hours, from about 10 minutes to about 3 hours, from about 10 minutes to about 4 hours, from about 15 minutes to about 4 hours, or from about 20 minutes to about 5 hours.
  • a slurry can be formed by dispersing the pre-treated active battery electrode material, a conductive agent, and a binder material in a second aqueous solution.
  • the amount of the pre-treated active battery electrode material is at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% by weight or volume, based on the total weight or volume of the slurry.
  • the amount of the pre-treated active battery electrode material is at most 1%, at most 2%, at most 3%, at most 4%, at most 5%, at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90%, or at most 95% by weight or volume, based on the total weight or volume of the slurry.
  • the pre-treated active battery electrode material is the major component of the slurry. In some embodiments, the pre-treated active battery electrode material is present in an amount from about 50% to about 95% by weight or volume, from about 55% to about 95% by weight or volume, from about 60% to about 95% by weight or volume, from about 65% to about 95% by weight or volume, from about 70% to about 95% by weight or volume, from about 75% to about 95% by weight or volume, from about 80% to about 95% by weight or volume, from about 85% to about 95% by weight or volume, from about 55% to about 85% by weight or volume, from about 60% to about 85% by weight or volume, from about 65% to about 85% by weight or volume, from about 70% to about 85% by weight or volume, from about 65% to about 80% by weight or volume, or from about 70% to about 80% by weight or volume, based on the total weight or volume of the slurry.
  • the conductive agent in the slurry is for enhancing the electrically-conducting property of an electrode.
  • the conductive agent is selected from the group consisting of carbon, carbon black, graphite, expanded graphite, graphene, graphene nanoplatelets, carbon fibres, carbon nano-fibers, graphitized carbon flake, carbon tubes, carbon nanotubes, activated carbon, mesoporous carbon, and combinations thereof.
  • the conductive agent is not carbon, carbon black, graphite, expanded graphite, graphene, graphene nanoplatelets, carbon fibres, carbon nano-fibers, graphitized carbon flake, carbon tubes, carbon nanotubes, activated carbon, or mesoporous carbon.
  • the binder material in the slurry performs a role of binding the active battery electrode material and conductive agent together on the current collector.
  • the binder material is selected from the group consisting of styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), acrylonitrile copolymer, polyacrylic acid (PAA), polyacrylonitrile, poly(vinylidene fluoride)-hexafluoropropene (PVDF-HFP), latex, a salt of alginic acid, and combinations thereof.
  • the salt of alginic acid comprises a cation selected from Na, Li, K, Ca, NH 4 , Mg, Al, or a combination thereof.
  • the binder material is SBR, CMC, PAA, a salt of alginic acid, or a combination thereof.
  • the binder material is acrylonitrile copolymer.
  • the binder material is polyacrylonitrile.
  • the binder material is free of styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), acrylonitrile copolymer, polyacrylic acid (PAA), polyacrylonitrile, poly(vinylidene fluoride)-hexafluoropropene (PVDF-HFP), latex, or a salt of alginic acid.
  • the amount of each of the conductive agent and binder material is independently at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, or at least 50% by weight or volume, based on based on the total weight or volume of the slurry.
  • the amount of each of the conductive agent and binder material is independently at most 1%, at most 2%, at most 3%, at most 4%, at most 5%, at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, or at most 50% by weight or volume, based on the total weight or volume of the slurry.
  • the conductive agent is pre-treated in an alkaline or basic solution prior to step 3). Pre-treating the conductive agent before the slurry preparation can enhance wettability and dispersing capability of the conductive agent in the slurry, thus allowing homogeneous distribution of the conductive agent within the dried composite electrode. If particulates of the conductive agent are dispersed heterogeneously in the electrode, the battery performance, life, and safety will be affected.
  • the conductive agent can be pre-treated for a time period from about 30 minutes to about 2 hours, from about 30 minutes to about 1.5 hours, from about 30 minutes to about 1 hour, from about 45 minutes to about 2 hours, from about 45 minutes to about 1.5 hours, or from about 45 minutes to about 1 hour.
  • the alkaline or basic solution comprises a base selected from the group consisting of H 2 O 2 , LiOH, NaOH, KOH, NH 3 .H 2 O, Be(OH) 2 , Mg(OH) 2 , Ca(OH) 2 , Li 2 CO 3 , Na 2 CO 3 , NaHCO 3 , K 2 CO 3 , KHCO 3 , and combinations thereof.
  • the basic solution comprises an organic base.
  • the basic solution is free of organic base. In certain embodiments, the basic solution is free of H 2 O 2 , LiOH, NaOH, KOH, NH 3 .H 2 O, Be(OH) 2 , Mg(OH) 2 , Ca(OH) 2 , Li 2 CO 3 , Na 2 CO 3 , NaHCO 3 , K 2 CO 3 or KHCO 3 . It is desired to keep the particulate dispersed uniformly within a slurry. Pretreating the conductive agent with an alkaline solution can wash away impurity such as oil and grease, promote more uniform distribution of particles of the conductive agent and improve its dispensability in the slurry without accumulating the alkaline impurity which has negative impact on battery performance. Compared to adding dispersing agent, the dispersing agent will stay in the slurry and may negatively impact battery performance.
  • impurity such as oil and grease
  • the pH of the alkaline or basic solution is greater than 7, greater than 8, greater than 9, greater than 10, greater than 11, greater than 12, or greater than 13. In some embodiments, the pH of the alkaline or basic solution is less than 8, less than 9, less than 10, less than 11, less than 12, or less than 13.
  • the conductive agent is dispersed in a third aqueous solution to form a second suspension prior to step 3).
  • a conductive agent Compared to an active battery electrode material, a conductive agent has a relatively high specific surface area. Therefore, the conductive agent has a tendency to agglomerate due to its relatively high specific surface area, especially when the particulates of the conductive agent must be dispersed in a highly dense suspension of the active battery electrode material. Dispersing the conductive agent before the slurry preparation can minimize the particles from agglomerating, thus allowing more homogeneous distribution of the conductive agent within the dried composite electrode. This could reduce internal resistance and enhance electrochemical performance of electrode materials.
  • Each of the pre-treated active battery electrode material, conductive agent, and binder material can be independently added to the second aqueous solution in one portion, thereby greatly simplifying the method of the present invention.
  • the amount of the conductive agent in the second suspension is from about 0.05 wt. % to about 0.5 wt. %, from about 0.1 wt. % to about 1 wt. %, from about 0.25 wt. % to about 2.5 wt. %, from about 0.5 wt. % to about 5 wt. %, from about 2 wt. % to about 5 wt. %, from about 3 wt. % to about 7 wt. %, or from about 5 wt. % to about 10 wt. %, based on the total weight of the mixture of the conductive agent and the third aqueous solution.
  • the binder material is dissolved in a fourth aqueous solution to form a resulting solution or a binder solution prior to step 3).
  • Dispersing the solid binder material before the slurry preparation can prevent adhesion of the solid binder material to the surface of other materials, thus allowing the binder material to disperse homogeneously into the slurry. If the binder material is dispersed heterogeneously in the electrode, the performance of the battery may deteriorate.
  • the amount of the binder material in the binder solution is from about 3 wt. % to about 6 wt. %, from about 5 wt. % to about 10 wt. %, from about 7.5 wt. % to about 15 wt. %, from about 10 wt. % to about 20 wt. %, from about 15 wt. % to about 25 wt. %, from about 20 wt. % to about 40 wt. %, or from about 35 wt. % to about 50 wt. %, based on the total weight of the mixture of the binder material and the fourth aqueous solution.
  • each of the second, third and fourth aqueous solutions independently is a solution containing water as the major component and a volatile solvent, such as alcohols, lower aliphatic ketones, lower alkyl acetates or the like, as the minor component in addition to water.
  • a volatile solvent such as alcohols, lower aliphatic ketones, lower alkyl acetates or the like
  • the amount of water in each solution is independently at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% to the total amount of water and solvents other than water.
  • the amount of water is at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90%, or at most 95% to the total amount of water and solvents other than water.
  • each of the second, third and fourth aqueous solutions independently consists solely of water, that is, the proportion of water in each solution is 100 vol. %.
  • any water-miscible solvents can be used as the minor component of the second, third or fourth aqueous solution.
  • the minor component include alcohols, lower aliphatic ketones, lower alkyl acetates and combinations thereof.
  • Some non-limiting examples of the alcohol include C 2 -C 4 alcohols, such as methanol, ethanol, isopropanol, n-propanol, butanol, and combinations thereof.
  • Some non-limiting examples of the lower aliphatic ketones include acetone, dimethyl ketone, and methyl ethyl ketone.
  • the lower alkyl acetates include ethyl acetate, isopropyl acetate, and propyl acetate.
  • the volatile solvent or minor component is methyl ethyl ketone, ethanol, ethyl acetate or a combination thereof.
  • each of the second, third and fourth aqueous solutions independently is water.
  • water include tap water, bottled water, purified water, pure water, distilled water, de-ionized water, D 2 O, or a combination thereof.
  • each of the second, third and fourth aqueous solutions independently is purified water, pure water, de-ionized water, distilled water, or a combination thereof.
  • each of the second, third and fourth aqueous solutions is free of an organic solvent such as alcohols, lower aliphatic ketones, lower alkyl acetates. Since the composition of the slurry does not contain any organic solvent, expensive, restrictive and complicated handling of organic solvents is avoided during the manufacture of the slurry.
  • the pre-treated active battery electrode material, conductive agent and binder material are added to the stirring second aqueous solution at about 14° C., about 16° C., about 18° C., about 20° C., about 22° C., about 24° C., or about 26° C.
  • the dispersing process can be performed with heating at a temperature from about 30° C. to about 80° C., from about 35° C. to about 80° C., from about 40° C. to about 80° C., from about 45° C. to about 80° C., from about 50° C. to about 80° C., from about 55° C.
  • the dispersing process can be performed at a temperature below 30° C., below 25° C., below 22° C., below 20° C., below 15° C., or below 10° C.
  • Optional components may be used to assist in dispersing the pre-treated active battery electrode material, conductive agent and binder material in the slurry.
  • the optional component is a dispersing agent. Any dispersing agent that can enhance the dispersion may be added to the slurry disclosed herein.
  • the dispersing agent is selected from the group consisting of ethanol, isopropanol, n-propanol, t-butanol, n-butanol, lithium dodecyl sulfate, trimethylhexadecyl ammonium chloride, polyethylene ethoxylate, sodium dodecylbenzene sulfonate, sodium stearate, and combinations thereof.
  • the total amount of the dispersing agent is from about 0.1% to about 10%, from about 0.1% to about 8%, from about 0.1% to about 6%, from about 0.1% to about 5%, from about 0.1% to about 4%, from about 0.1% to about 3%, from about 0.1% to about 2%, or from about 0.1% to about 1% by weight, based on the total weight of the slurry.
  • each of the second, third and fourth aqueous solutions independently comprises a dispersing agent for promoting the separation of particles and/or preventing agglomeration of the particles.
  • a dispersing agent for promoting the separation of particles and/or preventing agglomeration of the particles. Any surfactant that can lower the surface tension between a liquid and a solid can be used as the dispersing agent.
  • the dispersing agent is a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, or a combination thereof.
  • suitable nonionic surfactant include an alkoxylated alcohol, a carboxylic ester, a polyethylene glycol ester, and combinations thereof.
  • suitable alkoxylated alcohol include ethoxylated and propoxylated alcohols.
  • the slurry disclosed herein is free of nonionic surfactant.
  • anionic surfactant examples include a salt of an alkyl sulfate, an alkyl polyethoxylate ether sulfate, an alkyl benzene sulfonate, an alkyl ether sulfate, a sulfonate, a sulfosuccinate, a sarcosinate, and combinations thereof.
  • the anionic surfactant comprises a cation selected from the group consisting of sodium, potassium, ammonium, and combinations thereof.
  • the slurry disclosed herein is free of anionic surfactant.
  • suitable cationic surfactant include an ammonium salt, a phosphonium salt, an imidazolium salt, a sulfonium salt, and combinations thereof.
  • suitable ammonium salt include stearyl trimethylammonium bromide (STAB), cetyl trimethylammonium bromide (CTAB), and myristyl trimethylammonium bromide (MTAB), and combinations thereof.
  • STAB stearyl trimethylammonium bromide
  • CTAB cetyl trimethylammonium bromide
  • MTAB myristyl trimethylammonium bromide
  • the slurry disclosed herein is free of cationic surfactant.
  • amphoteric surfactant are surfactants that contain both cationic and anionic groups.
  • the cationic group is ammonium, phosphonium, imidazolium, sulfonium, or a combination thereof.
  • the anionic hydrophilic group is carboxylate, sulfonate, sulfate, phosphonate, or a combination thereof.
  • the slurry disclosed herein is free of amphoteric surfactant.
  • the slurry can be homogenized by a homogenizer. Any equipment that can homogenize the slurry can be used.
  • the homogenizer is a stirring mixer, a blender, a mill, an ultrasonicator, a rotor-stator homogenizer, an atomizer, or a high pressure homogenizer.
  • the homogenizer is an ultrasonicator. Any ultrasonicator that can apply ultrasound energy to agitate and disperse particles in a sample can be used herein.
  • the ultrasonicator is a probe-type ultrasonicator or an ultrasonic flow cell.
  • the slurry is homogenized by mechanical stirring for a time period from about 2 hours to about 8 hours.
  • the stirring mixer is a planetary mixer consisting of planetary and high speed dispersion blades.
  • the rotational speed of the planetary blade is from about 20 rpm to about 200 rpm and rotational speed of the dispersion blade is from about 1,000 rpm to about 3,500 rpm.
  • the rotational speed of the planetary blade is from about 20 rpm to about 150 rpm or from about 30 rpm to about 100 rpm
  • rotational speed of the dispersion blade is from about 1,000 rpm to about 3,000 rpm or from about 1,500 rpm to about 2,500 rpm.
  • the homogenizer is a stirring mixer
  • the slurry is stirred for at least two hours to ensure sufficient dispersion. If the dispersion is not sufficient, the battery performance such as cycle life may be seriously affected.
  • the stirring time is from about 2 hours to about 6 hours, from about 3 hours to about 8 hours, from about 3 hours to about 6 hours, or from about 4 hours to about 8 hours.
  • the ultrasonic flow cell can be operated in a one-pass, multiple-pass or recirculating mode.
  • the ultrasonic flow cell can include a water-cooling jacket to help maintain the required temperature.
  • a separate heat exchanger may be used.
  • the flow cell can be made from stainless steel or glass.
  • the slurry is homogenized for a time period from about 1 hour to about 10 hours, from about 2 hours to about 4 hours, from about 15 minutes to about 4 hours, from about 30 minutes to about 4 hours, from about 1 hour to about 4 hours, from about 2 hours to about 5 hours, from about 3 hours to about 5 hours, or from about 2 hours to about 6 hours.
  • the ultrasonicator is operated at a power density from about 10 W/L to about 100 W/L, from about 20 W/L to about 100 W/L, from about 30 W/L to about 100 W/L, from about 40 W/L to about 80 W/L, from about 40 W/L to about 70 W/L, from about 40 W/L to about 50 W/L, from about 40 W/L to about 60 W/L, from about 50 W/L to about 60 W/L, from about 20 W/L to about 80 W/L, from about 20 W/L to about 60 W/L, or from about 20 W/L to about 40 W/L.
  • the continuous flow through system has several advantages over the batch-type processing.
  • the processing capacity becomes significantly higher.
  • the retention time of the material in the flow cell can be adjusted by adjusting the flow rate.
  • the material By sonication via recirculating mode, the material is recirculated many times through the flow cell in a recirculating configuration. Recirculation increases the cumulative exposure time because liquid passes through the ultrasonic flow cell only once in a single-pass configuration.
  • the multiple-pass mode has a multiple flow cell configuration. This arrangement allows for a single-pass processing without the need for recirculation or multiple passes through the system. This arrangement provides an additional productivity scale-up factor equal to the number of utilized flow cells.
  • the homogenizing step disclosed herein reduces or eliminates the potential aggregation of the active battery electrode material and the conductive agent and enhances dispersion of each ingredient in the slurry.
  • a media such as balls, pebbles, small rock, sand or other media is used in a stirred mixture along with the sample material to be mixed.
  • the particles in the mixture are mixed and reduced in size by impact with rapidly moving surfaces in a mill.
  • the ball is made of hard materials such as steel, stainless steel, ceramic or zirconium dioxide (ZrO 2 ).
  • ZrO 2 zirconium dioxide
  • the mechanical stress during the milling process causes damages to the structure of the cathode material resulting in distortion or major structural damage such as cracks.
  • the cathode material may also be abraded by the ball causing structural damage and irregularly-shaped surface. These defects in turn cause mild to severe degradation of electrochemical performance of an electrochemical cell.
  • the cathode material having a core-shell structure is even more susceptible to mechanical damages due to vulnerability of the shell.
  • the homogenized slurry can be applied on a current collector to form a coated film on the current collector.
  • the current collector acts to collect electrons generated by electrochemical reactions of the active battery electrode material or to supply electrons required for the electrochemical reactions.
  • each of the current collectors of the positive and negative electrodes which can be in the form of a foil, sheet or film, is independently stainless steel, titanium, nickel, aluminum, copper or electrically-conductive resin.
  • the current collector of the positive electrode is an aluminum thin film.
  • the current collector of the negative electrode is a copper thin film.
  • the current collector has a thickness from about 6 ⁇ m to about 100 ⁇ m since thickness will affect the volume occupied by the current collector within a battery and the amount of the active battery electrode material and hence the capacity in the battery.
  • the coating process is performed using a doctor blade coater, a slot-die coater, a transfer coater, a spray coater, a roll coater, a gravure coater, a dip coater, or a curtain coater.
  • the thickness of the coated film on the current collector is from about 10 ⁇ to about 300 ⁇ m, or from about 20 ⁇ m to about 100 ⁇ m.
  • the coated film on the current collector can be dried by a dryer to obtain the battery electrode.
  • Any dryer that can dry the coated film on the current collector can be used herein.
  • Some non-limiting examples of the dryer are a batch drying oven, a conveyor drying oven, and a microwave drying oven.
  • Some non-limiting examples of the conveyor drying oven include a conveyor hot air drying oven, a conveyor resistance drying oven, a conveyor inductive drying oven, and a conveyor microwave drying oven.
  • the conveyor drying oven for drying the coated film on the current collector includes one or more heating sections, wherein each of the heating sections is individually temperature controlled, and wherein each of the heating sections may include independently controlled heating zones.
  • the conveyor drying oven comprises a first heating section positioned on one side of the conveyor and a second heating section positioned on an opposing side of the conveyor from the first heating section, wherein each of the first and second heating sections independently comprises one or more heating elements and a temperature control system connected to the heating elements of the first heating section and the second heating section in a manner to monitor and selectively control the temperature of each heating section.
  • the conveyor drying oven comprises a plurality of heating sections, wherein each heating section includes independent heating elements that are operated to maintain a constant temperature within the heating section.
  • each of the first and second heating sections independently has an inlet heating zone and an outlet heating zone, wherein each of the inlet and outlet heating zones independently comprises one or more heating elements and a temperature control system connected to the heating elements of the inlet heating zone and the outlet heating zone in a manner to monitor and selectively control the temperature of each heating zone separately from the temperature control of the other heating zones.
  • the coated film on the current collector can be dried at a temperature from about 50° C. to about 80° C.
  • the temperature range means a controllable temperature gradient in which the temperature gradually rises from the inlet temperature of 50° C. to the outlet temperature of 80° C.
  • the controllable temperature gradient avoids the coated film on the current collector from drying too rapidly. Drying the coated film too quickly can degrade materials in the slurry. Drying the coated film too quickly can also cause stress defects in the electrode because the solvent can be removed from the coated film more quickly than the film can relax or adjust to the resulting volume changes, which can cause defects such as cracks. It is believed that avoiding such defects can generally enhance performance of the electrode. Furthermore, drying the coated film too quickly can cause the binder material to migrate and form a layer of the binder material on the surface of the electrode.
  • the coated film on the current collector is dried at a relatively slow rate. In certain embodiments, the coated film on the current collector is dried relatively slowly at a constant rate, followed by a relatively quick drying rate.
  • the coated film on the current collector can be dried at a temperature from about 45° C. to about 100° C., from about 50° C. to about 100° C., from about 55° C. to about 100° C., from about 50° C. to about 90° C., from about 55° C. to about 80° C., from about 55° C. to about 75° C., from about 55° C. to about 70° C., from about 50° C. to about 80° C., or from about 50° C. to about 70° C.
  • the coated film on the current collector may be dried at a temperature from about 40° C. to about 55° C. for a time period from about 5 minutes to about 10 minutes. The lower drying temperatures may avoid the undesirable decomposition of cathode material having high nickel and/or manganese content.
  • the conveyor moves at a speed from about 2 meter/minute to about 30 meter/minute, from about 2 meter/minute to about 25 meter/minute, from about 2 meter/minute to about 20 meter/minute, from about 2 meter/minute to about 16 meter/minute, from about 3 meter/minute to about 30 meter/minute, from about 3 meter/minute to about 20 meter/minute, or from about 3 meter/minute to about 16 meter/minute.
  • Controlling the conveyor length and speed can regulate the drying time of the coated film. Therefore, the drying time can be increased without increasing the length of the conveyor.
  • the coated film on the current collector can be dried for a time period from about 1 minute to about 30 minutes, from about 1 minute to about 25 minutes, from about 1 minute to about 20 minutes, from about 1 minute to about 15 minutes, from about 1 minute to about 10 minutes, from about 2 minutes to about 15 minutes, or from about 2 minutes to about 10 minutes.
  • the battery electrode is formed.
  • the battery electrode is compressed mechanically in order to enhance the density of the electrode.
  • the method disclosed herein has the advantage that an aqueous solvent is used in the manufacturing process, which can save process time and facilities by avoiding the need to handle or recycle hazardous organic solvents. In addition, costs are reduced by simplifying the total process. Therefore, this method is especially suited for industrial processes because of its low cost and ease of handling.
  • batteries comprising the electrodes prepared by the method disclosed herein show a capacity retention of at least about 89%, about 94%, about 95%, about 97%, or about 98% after 500 cycles when discharged at a rate of 1 C.
  • batteries show a capacity retention of at least about 83%, about 88%, about 90%, about 92%, about 94% about 95% or about 96% after 1,000 cycles when discharged at a rate of 1 C.
  • batteries show a capacity retention of at least about 73%, about 77%, about 80%, about 81%, about 88%, about 90%, or about 92% after 2,000 cycles when discharged at a rate of 1 C.
  • a particulate cathode material LiNi 0.33 Mn 0.33 Co 0.33 O 2 (obtained from Xiamen Tungsten CO. Ltd., China) was added to a stirring solution containing 50% deionized water and 50% ethanol at room temperature to form a suspension having a solid content of about 35% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 7.
  • the suspension was further stirred at room temperature for 5 hours.
  • the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • a positive electrode slurry was prepared by mixing 91 wt. % pre-treated active battery electrode material, 4 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), 4 wt. % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) and 1% isopropanol (obtained from Aladdin Industries Corporation, China) in deionized water to form a slurry having a solid content of 70 wt. %.
  • the slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Example 1 is shown in Table 1 below.
  • the homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 20 ⁇ m using a transfer coater (ZY-TSF6-6518, obtained from Jin Fan Zhanyu New Energy Technology Co. Ltd., China) with an area density of about 26 mg/cm 2 .
  • the coated films on the aluminum foil were dried for 3 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 8 meter/minute to obtain a positive electrode.
  • the temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 55° C. to the outlet temperature of 80° C.
  • a negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was coated onto both sides of a copper foil having a thickness of 9 ⁇ m using a transfer coater with an area density of about 15 mg/cm 2 .
  • the coated films on the copper foil were dried at about 50° C. for 2.4 minute by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • FIG. 2 shows the SEM image of the surface morphology of the coated cathode electrode after drying.
  • the morphology of the coated cathode electrode was characterized by a scanning electron microscope (JEOL-6300, obtained from JEOL, Ltd., Japan).
  • the SEM image clearly shows a uniform, crack-free and stable coating throughout the electrode surface.
  • the electrode shows a homogeneous distribution of the pre-treated active battery electrode material and conductive agent without large agglomerates.
  • Example 1 After drying, the resulting cathode film and anode film of Example 1 were used to prepare the cathode and anode respectively by cutting into individual electrode plates.
  • a pouch cell was assembled by stacking the cathode and anode electrode plates alternatively and then packaged in a case made of an aluminum-plastic laminated film. The cathode and anode electrode plates were kept apart by separators and the case was pre-formed. An electrolyte was then filled into the case holding the packed electrodes in high-purity argon atmosphere with moisture and oxygen content ⁇ 1 ppm.
  • the electrolyte was a solution of LiPF 6 (1 M) in a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of 1:1:1. After electrolyte filling, the pouch cells were vacuum sealed and then mechanically pressed using a punch tooling with standard square shape.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester (BTS-5V20A, obtained from Neware Electronics Co. Ltd, China) between 3.0 V and 4.3 V.
  • the nominal capacity was about 10 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.3 V. Test result of cyclability performance is shown in FIG. 3 . The capacity retention after 450 cycles was about 95.6% of the initial value. The test result is shown in Table 2 below.
  • a particulate cathode material LiMn 2 O 4 (LMO) (obtained from HuaGuan HengYuan LiTech Co. Ltd., Qingdao, China) was added to a stirring 7 wt. % solution of acetic acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 50% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 6.
  • the suspension was further stirred at room temperature for 2.5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • Carbon nanotube (NTP2003; Shenzhen Nanotech Port Co., Ltd., China) (25 g) was pretreated in 2 L of an alkaline solution containing 0.5 wt. % NaOH for about 15 minutes and then washed by deionized water (5 L). The treated carbon nanotube was then dispersed in deionized water to form a suspension having a solid content of 6.25 wt. %.
  • a positive electrode slurry was prepared by mixing 92 wt. % pre-treated active battery electrode material, 3 wt. % carbon black, 1 wt. % suspension of the treated carbon nanotube and 4 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 65 wt. %.
  • the slurry was homogenized by a circulating ultrasonic flow cell (NP8000, obtained from Guangzhou Newpower Ultrasonic Electronic Equipment Co., Ltd., China) for 8 hours operated at 1000 W to obtain a homogenized slurry.
  • the formulation of Example 3 is shown in Table 1 below.
  • the homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 20 ⁇ m using a transfer coater with an area density of about 40 mg/cm 2 .
  • the coated films on the aluminum foil were dried for 6 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 4 meter/minute to obtain a positive electrode.
  • the temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 65° C. to the outlet temperature of 90° C.
  • a negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was coated onto both sides of a copper foil having a thickness of 9 ⁇ m using a transfer coater with an area density of about 15 mg/cm 2 .
  • the coated films on the copper foil were dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • a pouch cell was prepared in the same manner as in Example 2.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.3 V.
  • the nominal capacity was about 10 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.3 V. Test result of cyclability performance is shown in FIG. 4 . The capacity retention after 2000 cycles was about 77% of the initial value. The test result is shown in Table 2 below.
  • a particulate cathode material LiNi 0.33 Mn 0.33 Co 0.33 O 2 (obtained from Shenzhen Tianjiao Technology Co. Ltd., China) was added to a stirring deionized water at room temperature to form a suspension having a solid content of about 65% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 7.
  • the suspension was further stirred at room temperature for 10 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • a positive electrode slurry was prepared by mixing 93 wt. % pre-treated active battery electrode material, 3 wt. % carbon black, 0.5 wt. % nonylphenol ethoxylate (TERGITOLTM NP-6, DOW Chemical, US) and 3.5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 75 wt. %.
  • the slurry was homogenized by a circulating ultrasonic flow cell for 8 hours operated at 1000 W to obtain a homogenized slurry.
  • the formulation of Example 5 is shown in Table 1 below.
  • the homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 20 ⁇ m using a transfer coater with an area density of about 32 mg/cm 2 .
  • the coated films on the aluminum foil were dried for 4 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 6 meter/minute to obtain a positive electrode.
  • the temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 50° C. to the outlet temperature of 75° C.
  • a negative electrode slurry was prepared by mixing 90 wt. % hard carbon, 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was coated onto both sides of a copper foil having a thickness of 9 ⁇ m using a transfer coater with an area density of about 15 mg/cm 2 .
  • the coated films on the copper foil were dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • a pouch cell was prepared in the same manner as in Example 2.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.3 V.
  • the nominal capacity was about 10 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.3 V. Test result of cyclability performance is shown in FIG. 5 . The capacity retention after 560 cycles was about 94.8% of the initial value. The test result is shown in Table 2 below.
  • a particulate cathode material LiFePO 4 (obtained from Xiamen Tungsten Co. Ltd., China) was added to a stirring 3 wt. % solution of acetic acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 50% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 3.8.
  • the suspension was further stirred at room temperature for 2.5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 700 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • a positive electrode slurry was prepared by mixing 88 wt. % pre-treated active battery electrode material, 5.5 wt. % carbon black, 0.5 wt. % nonylphenol ethoxylate (TERGITOLTM NP-6, DOW Chemical, US) and 6 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 70 wt. %.
  • the slurry was homogenized by a circulating ultrasonic flow cell for 6 hours operated at 1000 W to obtain a homogenized slurry.
  • the formulation of Example 7 is shown in Table 1 below.
  • the homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 30 ⁇ m using a transfer coater with an area density of about 56 mg/cm 2 .
  • the coated films on the aluminum foil were then dried for 6 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 4 meter/minute to obtain a positive electrode.
  • the temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 75° C. to the outlet temperature of 90° C.
  • a negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was coated onto both sides of a copper foil having a thickness of 9 ⁇ m using a transfer coater with an area density of about 15 mg/cm 2 .
  • the coated films on the copper foil were then dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • a pouch cell was prepared in the same manner as in Example 2.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 2.5 V and 3.6 V.
  • the nominal capacity was about 3.6 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 2.5 V and 3.6 V. Test result of cyclability performance is shown in FIG. 6 . The capacity retention after 3000 cycles was about 82.6% of the initial value. The test result is shown in Table 2 below.
  • the core of the core-shell cathode material was Li 1.03 Ni 0.51 Mn 0.32 Co 0.17 O 2 and was prepared by a co-precipitation method.
  • the shell of the core-shell cathode material was Li 0.95 Ni 0.53 Mn 0.29 Co 0.15 Al 0.03 O 2 and was prepared by forming a precipitate of Al(OH) 3 on the surface of the core to form a precursor, mixing the precursor with Li 2 CO 3 (obtained from Tianqi Lithium, Shenzhen, China) to obtain a mixture, and calcinating the mixture at 900° C.
  • the calcinated product was crushed by a jet mill (LNJ-6A, obtained from Mianyang Liuneng Powder Equipment Co., Ltd., Sichuan, China) for about 1 hour, followed by passing the crushed product through a 270-mesh sieve to obtain a cathode material having a particle size D50 of about 38 ⁇ m.
  • the content of aluminium in the core-shell cathode material gradiently decreased from the outer surface of the shell to the inner core.
  • the thickness of the shell was about 3 ⁇ m.
  • the core-shell cathode material (C-S NMC532) prepared above was added to a stirring solution containing 50% deionized water and 50% methanol at room temperature to form a suspension having a solid content of about 50% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 7.5.
  • the suspension was further stirred at room temperature for 3.5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • a positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; obtained from Timcal Ltd, Bodio, Switzerland) as a conductive agent, and 5 wt. % polyacrylonitrile (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) as a binder, which were dispersed in deionized water to form a slurry with a solid content of 50 wt. %.
  • the slurry was homogenized by a planetary stirring mixer for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Example 9 is shown in Table 1 below.
  • the homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 30 ⁇ m using a transfer coater with an area density of about 44 mg/cm 2 .
  • the coated films on the aluminum foil were then dried for 5 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 4 meter/minute to obtain a positive electrode.
  • the temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 67° C. to the outlet temperature of 78° C.
  • a negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was coated onto both sides of a copper foil having a thickness of 9 ⁇ m using a transfer coater with an area density of about 15 mg/cm 2 .
  • the coated films on the copper foil were then dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • a pouch cell was prepared in the same manner as in Example 2.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10.46 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in FIG. 7 . The capacity retention after 361 cycles was about 98.6% of the initial value. The test result is shown in Table 2 below.
  • the shell of the core-shell cathode material was Li 0.95 Co 1.1 O 2 and was prepared by forming a precipitate of Co(OH) 2 on the surface of the core to form a precursor, mixing the precursor with Li 2 CO 3 (obtained from Tianqi Lithium, Shenzhen, China) to obtain a mixture, and calcinating the mixture at 800° C.
  • the calcinated product was crushed by a jet mill (LNJ-6A, obtained from Mianyang Liuneng Powder Equipment Co., Ltd., Sichuan, China) for about 1 hour, followed by passing the crushed product through a 270-mesh sieve to obtain a cathode material having a particle size D50 of about 33 ⁇ m.
  • the content of cobalt in the core-shell cathode material gradiently decreased from the outer surface of the shell to the inner core.
  • the thickness of the shell was about 5 ⁇ m.
  • the core-shell cathode material prepared above was added to a stirring solution containing 70% deionized water and 30% iso-propanol at room temperature to form a suspension having a solid content of about 60% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 8.0.
  • the suspension was further stirred at room temperature for 6.5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • a positive electrode slurry was prepared by mixing 89 wt. % pre-treated active battery electrode material, 5.5 wt. % carbon black (SuperP; obtained from Timcal Ltd, Bodio, Switzerland) as a conductive agent, and 5.5 wt. % polyacrylonitrile (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) as a binder, which were dispersed in deionized water to form a slurry with a solid content of 50 wt. %.
  • the slurry was homogenized by a planetary stirring mixer for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Example 11 is shown in Table 1 below.
  • the homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 30 ⁇ m using a transfer coater with an area density of about 42 mg/cm 2 .
  • the coated films on the aluminum foil were then dried for 5.5 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 4.2 meter/minute to obtain a positive electrode.
  • the temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 62° C. to the outlet temperature of 75° C.
  • a negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was coated onto both sides of a copper foil having a thickness of 9 ⁇ m using a transfer coater with an area density of about 15 mg/cm 2 .
  • the coated films on the copper foil were then dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • a pouch cell was prepared in the same manner as in Example 2.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10.4 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in FIG. 8 . The capacity retention after 385 cycles was about 98.1% of the initial value. The test result is shown in Table 2 below.
  • a particulate cathode material LiCoO 2 (obtained from Xiamen Tungsten CO. Ltd., China) was added to a stirring solution containing 50% deionized water and 50% ethanol at room temperature to form a suspension having a solid content of about 2% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 7.0.
  • the suspension was further stirred at room temperature for 1 hour.
  • the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • a positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; obtained from Timcal Ltd, Bodio, Switzerland) as a conductive agent, and 5 wt. % polyacrylonitrile (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) as a binder, which were dispersed in deionized water to form a slurry with a solid content of 50 wt. %.
  • the slurry was homogenized by a planetary stirring mixer for 6 hours operated at a rotation speed of 30 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Example 13 is shown in Table 1 below.
  • the homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 20 ⁇ m using a transfer coater (ZY-TSF6-6518, obtained from Jin Fan Zhanyu New Energy Technology Co. Ltd., China) with an area density of about 26 mg/cm 2 .
  • the coated films on the aluminum foil were dried for 3.4 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 7 meter/minute to obtain a positive electrode.
  • the temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 70° C. to the outlet temperature of 80° C.
  • a negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was coated onto both sides of a copper foil having a thickness of 9 ⁇ m using a transfer coater with an area density of about 15 mg/cm 2 .
  • the coated films on the copper foil were dried at about 50° C. for 2.4 minute by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • a pouch cell was prepared in the same manner as in Example 2.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10.7 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 9 .
  • a pouch cell was prepared in the same manner as in Examples 1 and 2, except that cathode material LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811) (obtained from Henan Kelong NewEnergy Co., Ltd., Xinxiang, China) was used instead of NMC333, and additive was not added.
  • a positive electrode slurry was prepared by mixing 91 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), and 4 wt.
  • Example 15 % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 55 wt. %.
  • the slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Example 15 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 12.7 Ah.
  • Test result of cyclability performance is shown in Table 2 below and FIG. 10 .
  • a pouch cell was prepared in the same manner as in Examples 1 and 2, except that cathode material LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC622) (obtained from Hunan Rui Xiang New Material Co., Ltd., Changsha, China) was used instead of NMC333, and additive was not added.
  • a positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), and 5 wt.
  • Example 16 % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 60 wt. %.
  • the slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Example 16 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10 Ah.
  • Test result of cyclability performance is shown in Table 2 below and FIG. 11 .
  • a pouch cell was prepared in the same manner as in Examples 1 and 2, except that cathode material Li 1.0 Ni 0.8 Co 0.15 Al 0.05 O 2 (NCA) (obtained from Hunan Rui Xiang New Material Co., Ltd., Changsha, China) was used instead of NMC333, and additive was not added.
  • a positive electrode slurry was prepared by mixing 91 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), and 4 wt.
  • Example 17 % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 55 wt. %.
  • the slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Example 17 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10 Ah.
  • Test result of cyclability performance is shown in Table 2 below and FIG. 12 .
  • a pouch cell was prepared in the same manner as in Examples 13 and 14, except that cathode material LiNi 0.5 Mn 0.3 Co 0.2 O 2 (NMC532) (obtained from Hunan Rui Xiang New Material Co. Ltd., Changsha, China) was used instead of LiCoO 2 ; alginic acid sodium salt (sodium alginate, obtained from Aladdin Industries Corporation, China) and polyacrylonitrile were used instead of polyacrylonitrile as a cathode binder material; and additive was not added.
  • a positive electrode slurry was prepared by mixing 88 wt. % pre-treated active battery electrode material, 6 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), 2.5 wt.
  • Example 18 % alginic acid sodium salt, and 3.5 wt. % polyacrylonitrile (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Example 18 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10.7 Ah.
  • Test result of cyclability performance is shown in Table 2 below and FIG. 13 .
  • a pouch cell was prepared in the same manner as in Examples 13 and 14, except that 1.5 wt. % carboxymethyl cellulose (CMC, BSH-12, DKS Co. Ltd., Japan) and 3.5 wt. % SBR (AL-2001, NIPPON A&L INC., Japan) were used instead of 5 wt. % polyacrylonitrile as a cathode binder material, and 0.01 wt. % solution of acetic acid in water was used instead of a mixture of H 2 O and ethanol when pre-treating the cathode material.
  • a particulate cathode material LiCoO 2 obtained from Xiamen Tungsten CO. Ltd., China) was added to a stirring 0.01 wt.
  • % solution of acetic acid in water obtained from Aladdin Industries Corporation, China
  • the pH of the suspension was measured using a pH meter and the pH was about 3.4.
  • the suspension was further stirred at room temperature for 1 hour.
  • the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • a positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black, 1.5 wt.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 9.1 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 14 .
  • a pouch cell was prepared in the same manner as in Comparative Example 1, except that 2 wt. % carboxymethyl cellulose (CMC, BSH-12, DKS Co. Ltd., Japan) and 3 wt. % polyvinyl alcohol (PVA) (obtained from The Nippon Synthetic Chemical Industry Co., Ltd., Japan) were used instead of 1.5 wt. % carboxymethyl cellulose and 3.5 wt. % SBR as a cathode binder material.
  • a positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black, 2 wt. % carboxymethyl cellulose and 3 wt.
  • % PVA in deionized water to form a slurry having a solid content of 50 wt. %.
  • the slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 30 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry.
  • the formulation of Comparative Example 2 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 8.2 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 15 .
  • a pouch cell was prepared in the same manner as in Examples 13 and 14, except that ball mill was used instead of planetary mixer as a homogenizer when preparing the positive electrode slurry, and 0.01 wt. % solution of acetic acid in water was used instead of a mixture of H 2 O and ethanol when pre-treating the cathode material.
  • a particulate cathode material LiCoO 2 obtained from Xiamen Tungsten CO. Ltd., China
  • was added to a stirring 0.01 wt. % solution of acetic acid in water obtained from Aladdin Industries Corporation, China
  • room temperature to form a suspension having a solid content of about 2% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 3.4.
  • the suspension was further stirred at room temperature for 1 hour.
  • the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • ZY-4HO 2.45 GHz microwave dryer
  • a positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), and 5 wt.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 9.9 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 16 .
  • a pouch cell was prepared in the same manner as in Comparative Example 1, except that 5 wt. % polyacrylonitrile were used instead of 1.5 wt. % carboxymethyl cellulose and 3.5 wt. % SBR as a cathode binder material.
  • the formulation of Comparative Example 4 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10.1 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 17 .
  • a pouch cell was prepared in the same manner as in Example 15, except that 0.01 wt. % solution of citric acid in water was used instead of a mixture of H 2 O and ethanol when pre-treating the cathode material.
  • a particulate cathode material NMC811 was added to a stirring 0.01 wt. % solution of citric acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 2% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 3.4.
  • the suspension was further stirred at room temperature for 1 hour.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 11.4 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 18 .
  • a pouch cell was prepared in the same manner as in Example 15, except that the cathode material was not pre-treated.
  • the formulation of Comparative Example 6 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 12.5 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 19 .
  • a pouch cell was prepared in the same manner as in Example 11, except that 0.01 wt. % solution of citric acid in water was used instead of a mixture of H 2 O and iso-propanol when pre-treating the cathode material.
  • a particulate cathode material C-S LNMgO was added to a stirring 0.01 wt. % solution of citric acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 2% by weight.
  • the pH of the suspension was measured using a pH meter and the pH was about 3.6.
  • the suspension was further stirred at room temperature for 1 hour.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 20 .
  • a pouch cell was prepared in the same manner as in Example 13, except that 1.5 wt. % carboxymethyl cellulose (CMC, BSH-12, DKS Co. Ltd., Japan) and 3.5 wt. % SBR (AL-2001, NIPPON A&L INC., Japan) were used instead of 5 wt. % polyacrylonitrile as an anode binder material.
  • CMC carboxymethyl cellulose
  • SBR a wt. % SBR (AL-2001, NIPPON A&L INC., Japan) were used instead of 5 wt. % polyacrylonitrile as an anode binder material.
  • the formulation of Comparative Example 8 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 11.2 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 21 .
  • a pouch cell was prepared in the same manner as in Example 13, except that 5 wt. % polyvinylidene fluoride (PVDF; Solef® 5130, obtained from Solvay S.A., Belgium) was used instead of 5 wt. % polyacrylonitrile as an anode binder material; and N-methyl-2-pyrrolidone (NMP; purity of ⁇ 99%, Sigma-Aldrich, USA) was used instead of deionized water as a solvent.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • a negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt.
  • % PVDF in NMP to form a slurry having a solid content of 50 wt. %.
  • the slurry was coated onto both sides of a copper foil having a thickness of 9 ⁇ m using a transfer coater with an area density of about 15 mg/cm 2 .
  • the coated films on the copper foil were dried at about 87° C. for 8 minute by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 3 meter/minute to obtain a negative electrode.
  • the formulation of Comparative Example 9 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10.4 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 22 .
  • a pouch cell was prepared in the same manner as in Example 13, except that a vacuum oven (HSZK-6050, Shanghai Hasuc Instrument Manufacture Co., Ltd., China) was used instead of a microwave dryer for drying the pre-treated cathode material.
  • the pre-treated cathode material was dried in a vacuum oven at 88° C. for 8 hours.
  • the formulation of Comparative Example 10 is shown in Table 1 below.
  • the cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V.
  • the nominal capacity was about 10.3 Ah.
  • the cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 23 .
  • the comparison battery cells had a discharge capacity retention less than 80% after only less than 100 cycles when water-soluble binders such as CMC, SBR and PVA were used for preparing the aqueous slurry.
  • the batteries of Examples 1-18 had a discharge capacity retention of at least 86% after 1000 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided herein is a method for preparing a battery electrode based on an aqueous slurry. The method disclosed herein has the advantage that an aqueous solvent can be used in the manufacturing process, which can save process time and facilities by avoiding the need to handle or recycle hazardous organic solvents. Therefore, costs are reduced by simplifying the total process. In addition, the batteries having the electrodes prepared by the method disclosed herein show impressive energy retention.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuation of the International Application No. PCT/CN2016/109723, filed Dec. 13, 2016, which claims priority to U.S. Provisional Patent Application No. 62/279,841, filed Jan. 18, 2016, all of which are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • This invention relates to lithium-ion batteries in the application of sustainable energy area. More particularly, this invention relates to the use of aqueous-based slurries for preparing battery electrodes.
  • BACKGROUND OF THE INVENTION
  • Lithium-ion batteries (LIBs) have attracted extensive attention in the past two decades for a wide range of applications in portable electronic devices such as cellular phones and laptop computers. Due to rapid market development of electric vehicles (EV) and grid energy storage, high-performance, low-cost LIBs are currently offering one of the most promising options for large-scale energy storage devices.
  • In general, a lithium ion battery includes a separator, a cathode and an anode. Currently, electrodes are prepared by dispersing fine powders of an active battery electrode material, a conductive agent, and a binder material in an appropriate solvent. The dispersion can be coated onto a current collector such as a copper or aluminum metal foil, and then dried at an elevated temperature to remove the solvent. Sheets of the cathode and anode are subsequently stacked or rolled with the separator separating the cathode and anode to form a battery.
  • Polyvinylidene fluoride (PVDF) has been the most widely used binder materials for both cathode and anode electrodes. Compared to non-PVDF binder materials, PVDF provides a good electrochemical stability and high adhesion to the electrode materials and current collectors. However, PVDF can only dissolve in some specific organic solvents such as N-Methyl-2-pyrrolidone (NMP) which requires specific handling, production standards and recycling of the organic solvents in an environmentally-friendly way. This will incur significant costs in the manufacturing process.
  • The use of aqueous solutions instead of organic solvents is preferred for environmental and handling reasons and therefore water-based slurries have been considered. Water soluble binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) have been attempted. However, CMC and SBR are generally limited to anode applications.
  • U.S. Pat. No. 8,956,688 B2 describes a method of making a battery electrode. The method comprises measuring the zeta potential of the active electrode material and the conductive additive material; selecting a cationic or anionic dispersant based on the zeta potential; determining the isoelectric point (IEP) of the active electrode material and the conductive additive material; dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating. However, the method is complicated, involving measurements of the zeta potential of the active electrode material and the conductive additive material, and isoelectric point (IEP) of the active electrode material and the conductive additive material. Furthermore, an additional surface treatment step for treating the surface of the current collector is required in order to enhance the capacity retention.
  • U.S. Pat. No. 8,092,557 B2 describes a method of making an electrode for a rechargeable lithium ion battery using a water-based slurry having a pH between 7.0 and 11.7, wherein the electrode includes an electro-active material, a (polystyrenebutadiene rubber)-poly (acrylonitrile-co-acrylamide) polymer, and a conductive additive. However, this method does not provide any data for evaluating the electrochemical performance of the electrodes prepared by this method.
  • U.S. Patent Application No. 2013/0034651 A1 describes a slurry for the manufacture of an electrode, wherein the slurry comprises a combination of at least three of polyacrylic acid (PAA), carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR) and polyvinylidene fluoride (PVDF) in an aqueous solution and an electrochemically activateable compound. However, the slurry for preparing the cathode electrode comprises acetone or other organic solvents such as NMP and DMAC.
  • In view of the above, there is always a need to develop a method for preparing cathode and anode electrodes for lithium-ion battery using a simple, inexpensive and environmentally friendly method.
  • SUMMARY OF THE INVENTION
  • The aforementioned needs are met by various aspects and embodiments disclosed herein.
  • In one aspect, provided herein is a method of preparing a battery electrode, comprising the steps of:
  • 1) pre-treating an active battery electrode material in a first aqueous solution having a pH from about 2.0 to about 7.5 to form a first suspension;
  • 2) drying the first suspension to obtain a pre-treated active battery electrode material;
  • 3) dispersing the pre-treated active battery electrode material, a conductive agent, and a binder material in a second aqueous solution to form a slurry;
  • 4) homogenizing the slurry by a homogenizer to obtain a homogenized slurry;
  • 5) applying the homogenized slurry on a current collector to form a coated film on the current collector; and
  • 6) drying the coated film on the current collector to form the battery electrode.
  • In certain embodiments, the active battery electrode material is a cathode material, wherein the cathode material is selected from the group consisting of LiCoO2, LiNiO2, LiNixMnyO2, Li1+zNixMnyCo1-x-yO2, LiNixCoyAlzO2, LiV2O5, LiTiS2, LiMoS2, LiMnO2, LiCrO2, LiMn2O4, LiFeO2, LiFePO4, and combinations thereof, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2.
  • In some embodiments, the pH of the first aqueous solution is at a range from about 4 to about 7 and the first suspension is stirred for a time period from about 2 minutes to about 12 hours. In further embodiments, the first aqueous solution comprises one or more acids selected from the group consisting of H2SO4, HNO3, H3PO4, HCOOH, CH3COOH, H3C6H5O7, H2C2O4, C6H12O7, C4H6O5, and combinations thereof.
  • In certain embodiments, the first aqueous solution further comprises ethanol, isopropanol, methanol, acetone, n-propanol, t-butanol, or a combination thereof.
  • In some embodiments, the first suspension is dried by a double-cone vacuum dryer, a microwave dryer, or a microwave vacuum dryer.
  • In certain embodiments, the conductive agent is selected from the group consisting of carbon, carbon black, graphite, expanded graphite, graphene, graphene nanoplatelets, carbon fibres, carbon nano-fibers, graphitized carbon flake, carbon tubes, carbon nanotubes, activated carbon, mesoporous carbon, and combinations thereof.
  • In some embodiments, the conductive agent is pre-treated in an alkaline solution or a basic solution for a time period from about 30 minutes to about 2 hours, wherein the alkaline solution or basic solution comprises a base selected from the group consisting of H2O2, LiOH, NaOH, KOH, NH3.H2O, Be(OH)2, Mg(OH)2, Ca(OH)2, Li2CO3, Na2CO3, NaHCO3, K2CO3, KHCO3, and combinations thereof.
  • In certain embodiments, the conductive agent is dispersed in a third aqueous solution to form a second suspension prior to step 3).
  • In some embodiments, the binder material is selected from the group consisting of styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), acrylonitrile copolymer, polyacrylic acid (PAA), polyacrylonitrile, poly(vinylidene fluoride)-hexafluoropropene (PVDF-HFP), latex, a salt of alginic acid, and combinations thereof. In further embodiments, the salt of alginic acid comprises a cation selected from Na, Li, K, Ca, NH4, Mg, Al, or a combination thereof.
  • In some embodiments, the binder material is dissolved in a fourth aqueous solution to form a resulting solution prior to step 3).
  • In certain embodiments, each of the first, second, third and fourth aqueous solutions independently is purified water, pure water, de-ionized water, distilled water, or a combination thereof.
  • In some embodiments, the slurry or homogenized slurry further comprises a dispersing agent selected from the group consisting of ethanol, isopropanol, n-propanol, t-butanol, n-butanol, lithium dodecyl sulfate, trimethylhexadecyl ammonium chloride, alcohol ethoxylate, nonylphenol ethoxylate, sodium dodecylbenzene sulfonate, sodium stearate, and combinations thereof.
  • In certain embodiments, the homogenizer is a stirring mixer, a blender, a mill, an ultrasonicator, a rotor-stator homogenizer, or a high pressure homogenizer.
  • In some embodiments, the ultrasonicator is a probe-type ultrasonicator or an ultrasonic flow cell.
  • In certain embodiments, the ultrasonicator is operated at a power density from about 10 W/L to about 100 W/L, or from about 20 W/L to about 40 W/L.
  • In some embodiments, the homogenized slurry is applied on the current collector using a doctor blade coater, a slot-die coater, a transfer coater, or a spray coater.
  • In certain embodiments, each of the current collectors of the positive and negative electrodes is independently stainless steel, titanium, nickel, aluminum, copper or electrically-conductive resin. In certain embodiments, the current collector of the positive electrode is an aluminum thin film. In some embodiments, the current collector of the negative electrode is a copper thin film.
  • In some embodiments, the coated film is dried for a time period from about 1 minute to about 30 minutes, or from about 2 minutes to about 10 minutes at a temperature from about 45° C. to about 100° C., or from about 55° C. to about 75° C.
  • In certain embodiments, the coated film is dried by a conveyor hot air drying oven, a conveyor resistance drying oven, a conveyor inductive drying oven, or a conveyor microwave drying oven.
  • In some embodiments, the conveyor moves at a speed from about 2 meter/minute to about 30 meter/minute, from about 2 meter/minute to about 25 meter/minute, from about 2 meter/minute to about 20 meter/minute, from about 2 meter/minute to about 16 meter/minute, from about 3 meter/minute to about 30 meter/minute, from about 3 meter/minute to about 20 meter/minute, or from about 3 meter/minute to about 16 meter/minute.
  • In certain embodiments, the active battery electrode material is an anode material, wherein the anode material is selected from the group consisting of natural graphite particulate, synthetic graphite particulate, Sn particulate, Li4Ti5O12 particulate, Si particulate, Si—C composite particulate, and combinations thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts an embodiment of the method disclosed herein.
  • FIG. 2 depicts a SEM image of the surface morphology of Example 1, an embodiment of the coated cathode electrode disclosed herein.
  • FIG. 3 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 2.
  • FIG. 4 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 4.
  • FIG. 5 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 6.
  • FIG. 6 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 8.
  • FIG. 7 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 10.
  • FIG. 8 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 12.
  • FIG. 9 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 14.
  • FIG. 10 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 15.
  • FIG. 11 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 16.
  • FIG. 12 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 17.
  • FIG. 13 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Example 18.
  • FIG. 14 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 1.
  • FIG. 15 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 2.
  • FIG. 16 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 3.
  • FIG. 17 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 4.
  • FIG. 18 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 5.
  • FIG. 19 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 6.
  • FIG. 20 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 7.
  • FIG. 21 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 8.
  • FIG. 22 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 9.
  • FIG. 23 depicts cycling performance of an electrochemical cell containing a cathode and an anode prepared by the method described in Comparative Example 10.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Provided herein is a method of preparing a battery electrode, comprising the steps of:
  • 1) pre-treating an active battery electrode material in a first aqueous solution having a pH from about 2.0 to about 7.5 to form a first suspension;
  • 2) drying the first suspension to obtain a pre-treated active battery electrode material;
  • 3) dispersing the pre-treated active battery electrode material, a conductive agent, and a binder material in a second aqueous solution to form a slurry;
  • 4) homogenizing the slurry by a homogenizer to obtain a homogenized slurry;
  • 5) applying the homogenized slurry on a current collector to form a coated film on the current collector; and
  • 6) drying the coated film on the current collector to form the battery electrode.
  • The term “electrode” refers to a “cathode” or an “anode.”
  • The term “positive electrode” is used interchangeably with cathode. Likewise, the term “negative electrode” is used interchangeably with anode.
  • The term “acid” includes any molecule or ion that can donate a hydrogen ion to another substance, and/or contain completely or partially displaceable H+ ions. Some non-limiting examples of suitable acids include inorganic acids and organic acids. Some non-limiting examples of the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, hydroiodic acid, and combinations thereof. Some non-limiting examples of the organic acids include acetic acid, lactic acid, oxalic acid, citric acid, uric acid, trifluoroacetic acid, methanesulfonic acid, formic acid, propionic acid, butyric acid, valeric acid, gluconic acid, malic acid, caproic acid, and combinations thereof.
  • The term “acidic solution” refers to a solution of a soluble acid, having a pH lower than 7.0, lower than 6.5, lower than 6.0, lower than 5.0, lower than 4.0, lower than 3.0, or lower than 2.0. In some embodiments, the pH is greater than 6.0, greater than 5.0, greater than 4.0, greater than 3.0, or greater than 2.0.
  • The term “pre-treating” as used herein refers to an act of improving or altering the properties of a material, or removing any contaminants in a material by acting upon with some agents, or an act of suspending a material in some solvents.
  • The term “dispersing” as used herein refers to an act of distributing a chemical species or a solid more or less evenly throughout a fluid.
  • The term “binder material” refers to a chemical or a substance that can be used to hold the active battery electrode material and conductive agent in place.
  • The term “homogenizer” refers to an equipment that can be used for homogenization of materials. The term “homogenization” refers to a process of reducing a substance or material to small particles and distributing it uniformly throughout a fluid. Any conventional homogenizers can be used for the method disclosed herein. Some non-limiting examples of the homogenizer include stirring mixers, blenders, mills (e.g., colloid mills and sand mills), ultrasonicators, atomizers, rotor-stator homogenizers, and high pressure homogenizers.
  • The term “ultrasonicator” refers to an equipment that can apply ultrasound energy to agitate particles in a sample. Any ultrasonicator that can disperse the slurry disclosed herein can be used herein. Some non-limiting examples of the ultrasonicator include an ultrasonic bath, a probe-type ultrasonicator, and an ultrasonic flow cell.
  • The term “ultrasonic bath” refers to an apparatus through which the ultrasonic energy is transmitted via the container's wall of the ultrasonic bath into the liquid sample.
  • The term “probe-type ultrasonicator” refers to an ultrasonic probe immersed into a medium for direct sonication. The term “direct sonication” means that the ultrasound is directly coupled into the processing liquid.
  • The term “ultrasonic flow cell” or “ultrasonic reactor chamber” refers to an apparatus through which sonication processes can be carried out in a flow-through mode. In some embodiments, the ultrasonic flow cell is in a single-pass, multiple-pass or recirculating configuration.
  • The term “planetary mixer” refers to an equipment that can be used to mix or blend different materials for producing a homogeneous mixture, which consists of a single or double blade with a high speed dispersion blade. The rotational speed can be expressed in unit of rotations per minute (rpm) which refers to the number of rotations that a rotating body completes in one minute.
  • The term “applying” as used herein in general refers to an act of laying or spreading a substance on a surface.
  • The term “current collector” refers to a support for coating the active battery electrode material and a chemically inactive high electron conductor for keeping an electric current flowing to electrodes during discharging or charging a secondary battery.
  • The term “room temperature” refers to indoor temperatures from about 18° C. to about 30° C., e.g., 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30° C. In some embodiments, room temperature refers to a temperature of about 20° C. +/−1° C. or +/−2° C. or +/−3° C. In other embodiments, room temperature refers to a temperature of about 22° C. or about 25° C.
  • The term “C rate” refers to the charging or discharging rate of a cell or battery, expressed in terms of its total storage capacity in Ah or mAh. For example, a rate of 1 C means utilization of all of the stored energy in one hour; a 0.1 C means utilization of 10% of the energy in one hour and the full energy in 10 hours; and a 5 C means utilization of the full energy in 12 minutes.
  • The term “ampere-hour (Ah)” refers to a unit used in specifying the storage capacity of a battery. For example, a battery with 1 Ah capacity can supply a current of one ampere for one hour or 0.5 A for two hours, etc. Therefore, 1 Ampere-hour (Ah) is the equivalent of 3600 coulombs of electrical charge. Similarly, the term “miniampere-hour (mAh)” also refers to a unit of the storage capacity of a battery and is 1/1,000 of an ampere-hour.
  • The term “doctor blading” refers to a process for fabrication of large area films on rigid or flexible substrates. A coating thickness can be controlled by an adjustable gap width between a coating blade and a coating surface, which allows the deposition of variable wet layer thicknesses.
  • The term “transfer coating” or “roll coating” refers to a process for fabrication of large area films on rigid or flexible substrates. A slurry is applied on the substrate by transferring a coating from the surface of a coating roller with pressure. A coating thickness can be controlled by an adjustable gap width between a metering blade and a surface of the coating roller, which allows the deposition of variable wet layer thicknesses. In a metering roll system, the thickness of the coating is controlled by adjusting the gap between a metering roller and a coating roller.
  • The term “battery cycle life” refers to the number of complete charge/discharge cycles a battery can perform before its nominal capacity falls below 80% of its initial rated capacity.
  • The term “major component” of a composition refers to the component that is more than 50%, more than 55%, more than 60%, more than 65%, more than 70%, more than 75%, more than 80%, more than 85%, more than 90%, or more than 95% by weight or volume, based on the total weight or volume of the composition.
  • The term “minor component” of a composition refers to the component that is less than 50%, less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5% by weight or volume, based on the total weight or volume of the composition.
  • The term “relatively slow rate” as used herein refers to the loss of solvent from the wet solid in the coated film over a relatively long period of time. In some embodiments, the time required for drying the coated film of a designated coating composition at a relatively slow rate is from about 5 minutes to about 20 minutes.
  • The term “relatively quick drying rate” as used herein refers to the loss of solvent from the wet solid in the coated film over a relatively short period of time. In some embodiments, the time required for drying the coated film of a designated coating composition at a relatively quick drying rate is from about 1 minute to about 5 minutes.
  • In the following description, all numbers disclosed herein are approximate values, regardless whether the word “about” or “approximate” is used in connection therewith. They may vary by 1 percent, 2 percent, 5 percent, or, sometimes, 10 to 20 percent. Whenever a numerical range with a lower limit, RL, and an upper limit, RU, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=RL+k*(RU−RL), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . , 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed.
  • FIG. 1 shows an embodiment of the method disclosed herein, in which a first suspension is prepared by pre-treating an active battery electrode material in a first aqueous solution having a pH from about 2.0 to about 7.5 to form a first suspension. The first suspension is then dried to obtain a pre-treated active battery electrode material. A slurry is prepared by mixing the pre-treated active battery electrode material, a conductive agent, and a binder material in a second aqueous solution. Further components may be added. The slurry is then homogenized by a homogenizer to obtain a homogenized slurry. A current collector is coated with the homogenized slurry, and the coated collector is then dried to form the battery electrode.
  • In certain embodiments, the first suspension is prepared by pre-treating an active battery electrode material in a first aqueous solution having a pH from about 2.0 to about 7.5.
  • Any temperature that can pre-treat the active battery electrode material can be used herein. In some embodiments, the active battery electrode material can be added to the stirring first aqueous solution at about 14° C., about 16° C., about 18° C., about 20° C., about 22° C., about 24° C., or about 26° C. In certain embodiments, the pre-treating process can be performed with heating at a temperature from about 30° C. to about 80° C., from about 35° C. to about 80° C., from about 40° C. to about 80° C., from about 45° C. to about 80° C., from about 50° C. to about 80° C., from about 55° C. to about 80° C., from about 55° C. to about 70° C., from about 45° C. to about 85° C., or from about 45° C. to about 90° C. In some embodiments, the pre-treating process can be performed at a temperature below 30° C., below 25° C., below 22° C., below 20° C., below 15° C., or below 10° C.
  • In some embodiments, the active battery electrode material is a cathode material, wherein the cathode material is selected from the group consisting of LiCoO2, LiNiO2, LiNixMnyO2, Li1+zNixMnyCo1-x-yO2, LiNixCoyAlzO2, LiV2O5, LiTiS2, LiMoS2, LiMnO2, LiCrO2, LiMn2O4, LiFeO2, LiFePO4, and combinations thereof, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2. In certain embodiments, the cathode material is selected from the group consisting of LiCoO2, LiNiO2, LiNixMnyO2, Li1+zNixMnyCo1-x-yO2 (NMC), LiNixCoyAlzO2, LiV2O5, LiTiS2, LiMoS2, LiMnO2, LiCrO2, LiMn2O4, LiFeO2, LiFePO4, and combinations thereof, wherein each x is independently from 0.4 to 0.6; each y is independently from 0.2 to 0.4; and each z is independently from 0 to 0.1. In other embodiments, the cathode material is not LiCoO2, LiNiO2, LiV2O5, LiTiS2, LiMoS2, LiMnO2, LiCrO2, LiMn2O4, LiFeO2, or LiFePO4. In further embodiments, the cathode material is not LiNixMnyO2, Li1+zNixMnyCo1-x-yO2, or LiNixCoyAlzO2, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2.
  • In certain embodiments, the cathode material is doped with a dopant selected from the group consisting of Fe, Ni, Mn, Al, Mg, Zn, Ti, La, Ce, Sn, Zr, Ru, Si, Ge, and combinations thereof. In some embodiments, the dopant is not Fe, Ni, Mn, Mg, Zn, Ti, La, Ce, Ru, Si, or Ge. In certain embodiments, the dopant is not Al, Sn, or Zr.
  • In some embodiments, the cathode material comprises or is a core-shell composite comprising a core comprising a lithium transition metal oxide and a shell formed by coating the surface of the core with a transition metal oxide. In certain embodiments, the lithium transition metal oxide is selected from the group consisting of LiCoO2, LiNiO2, LiNixMnyO2, Li1+zNixMnyCo1-x-yO2, LiNixCoyAlzO2, LiV2O5, LiTiS2, LiMoS2, LiMnO2, LiCrO2, LiMn2O4, LiFeO2, LiFePO4, and combinations thereof, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2. In some embodiments, the transition metal oxide is selected from the group consisting of Fe2O3, MnO2, Al2O3, MgO, ZnO, TiO2, La2O3, CeO2, SnO2, ZrO2, RuO2, and combinations thereof.
  • In certain embodiments, the cathode material comprises or is a core-shell composite having a core and shell structure, wherein the core and the shell each independently comprise a lithium transition metal oxide selected from the group consisting of LiCoO2, LiNiO2, LiNixMnyO2, Li1+zNixMnyCo1-x-yO2, LiNixCoyAlzO2, LiV2O5, LiTiS2, LiMoS2, LiMnO2, LiCrO2, LiMn2O4, LiFeO2, LiFePO4, and combinations thereof, wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2. In other embodiments, the core and the shell each independently comprise two or more lithium transition metal oxides. The two or more lithium transition metal oxides in the core and the shell may be the same, or may be different or partially different. In some embodiments, the two or more lithium transition metal oxides are uniformly distributed over the core. In certain embodiments, the two or more lithium transition metal oxides are not uniformly distributed over the core.
  • In some embodiments, each of the lithium transition metal oxides in the core and the shell is independently doped with a dopant selected from the group consisting of Fe, Ni, Mn, Al, Mg, Zn, Ti, La, Ce, Sn, Zr, Ru, Si, Ge, and combinations thereof. In certain embodiments, the core and the shell each independently comprise two or more doped lithium transition metal oxides. In some embodiments, the two or more doped lithium transition metal oxides are uniformly distributed over the core. In certain embodiments, the two or more doped lithium transition metal oxides are not uniformly distributed over the core.
  • In some embodiments, the diameter of the core is from about 5 μm to about 45 μm, from about 5 μm to about 35 μm, from about 5 μm to about 25 μm, from about 10 μm to about 40 μm, or from about 10 μm to about 35 μm. In certain embodiments, the thickness of the shell is from about 3 μm to about 15 μm, from about 15 μm to about 45 μm, from about 15 μm to about 30 μm, from about 15 μm to about 25 μm, from about 20 μm to about 30 μm, or from about 20 μm to about 35 μm. In certain embodiments, the diameter or thickness ratio of the core and the shell are in the range of 15:85 to 85:15, 25:75 to 75:25, 30:70 to 70:30, or 40:60 to 60:40. In certain embodiments, the volume or weight ratio of the core and the shell is 80:20, 70:30, 60:40, 50:50, 40:60, or 30:70.
  • In certain embodiments, the first aqueous solution is a solution containing water as the major component and a volatile solvent, such as alcohols, lower aliphatic ketones, lower alkyl acetates or the like, as the minor component in addition to water. In certain embodiments, the amount of water is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% to the total amount of water and solvents other than water. In some embodiments, the amount of water is at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90%, or at most 95% to the total amount of water and solvents other than water. In some embodiments, the first aqueous solution consists solely of water, that is, the proportion of water in the first aqueous solution is 100 vol. %.
  • Any water-miscible solvents can be used as the minor component. Some non-limiting examples of the minor component (i.e., solvents other than water) include alcohols, lower aliphatic ketones, lower alkyl acetates and combinations thereof. Some non-limiting examples of the alcohol include C2-C4 alcohols, such as methanol, ethanol, isopropanol, n-propanol, butanol, and combinations thereof. Some non-limiting examples of the lower aliphatic ketones include acetone, dimethyl ketone, and methyl ethyl ketone. Some non-limiting examples of the lower alkyl acetates include ethyl acetate, isopropyl acetate, and propyl acetate.
  • In certain embodiments, the volatile solvent or the minor component is methyl ethyl ketone, ethanol, ethyl acetate or a combination thereof.
  • In some embodiments, the first aqueous solution is a mixture of water and one or more water-miscible minor component. In certain embodiments, the first aqueous solution is a mixture of water and a minor component selected from ethanol, isopropanol, n-propanol, t-butanol, n-butanol, and combinations thereof. In some embodiments, the volume ratio of water and the minor component is from about 51:49 to about 100:1.
  • In certain embodiments, the first aqueous solution is water. Some non-limiting examples of water include tap water, bottled water, purified water, pure water, distilled water, de-ionized water, D2O, or a combination thereof. In some embodiments, the first aqueous solution is de-ionized water. In certain embodiments, the first aqueous solution is free of alcohol, aliphatic ketone, alkyl acetate, or a combination thereof.
  • In some embodiments, the first aqueous solution is acidic, slightly alkaline, or neutral, and has a pH anywhere within the range of about 2.0 to about 8.0. In certain embodiments, the pH of the first aqueous solution is from about 2.0 to about 7.5, from about 3.0 to about 7.5, from about 4.0 to about 7.5, from about 4.0 to about 7.0, from about 5.0 to about 7.5, from about 6.0 to about 7.5, or from about 6.0 to about 7.0. In some embodiments, the pH of the first aqueous solution is about 7.0, about 6.5, about 6.0, about 5.5, about 5.0, or about 4.0. In other embodiments, the pH of the first aqueous solution is from about 2 to about 7, from about 2 to about 6, from about 2 to about 5, or from about 2 to about 4. In some embodiments, the pH of the first aqueous solution is less than about 7, less than about 6, less than about 5, less than about 4, or less than about 3.
  • In certain embodiments, the first aqueous solution comprises one or more acids selected from the group consisting of inorganic acids, organic acids, and combinations thereof.
  • In some embodiments, the acid is a mixture of one or more inorganic acids and one or more organic acids, wherein a weight ratio of the one or more inorganic acids to the one or more organic acids is from about 10/1 to about 1/10, from about 8/1 to about 1/8, from about 6/1 to about 1/6, or from about 4/1 to about 1/4.
  • In certain embodiments, the one or more inorganic acids are selected from the group consisting of hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, hydroiodic acid, and combinations thereof. In further embodiments, the one or more inorganic acids are sulfuric acid, hydrochloric acid, hydrobromic acid, nitric acid, phosphoric acid, and combinations thereof. In still further embodiments, the inorganic acid is hydrochloric acid. In some embodiments, the acid is free of inorganic acid such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, or hydroiodic acid.
  • In some embodiments, the one or more organic acids are selected from the group consisting of acetic acid, lactic acid, oxalic acid, citric acid, uric acid, trifluoroacetic acid, methanesulfonic acid, formic acid, propionic acid, butyric acid, valeric acid, gluconic acid, malic acid, caproic acid, and combinations thereof. In further embodiments, the one or more organic acids are formic acid, acetic acid, propionic acid, and combinations thereof. In still further embodiments, the organic acid is acetic acid. In some embodiments, the acid is free of organic acid such as acetic acid, lactic acid, oxalic acid, citric acid, uric acid, trifluoroacetic acid, methanesulfonic acid, formic acid, propionic acid, butyric acid, valeric acid, gluconic acid, malic acid, or caproic acid.
  • The pH of the first aqueous solution is maintained during the addition of the active battery electrode material at a range from about 4.0 to about 7.5 by addition of one or more acids as a pH adjuster. The choice of the pH adjuster is not critical. Any suitable organic or inorganic acid may be used. In some embodiments, the pH adjuster is an acid selected from the group consisting of an inorganic acid, an organic acid, and combinations thereof. The pH can be monitored by a pH measuring device such as pH sensors. In some embodiments, more than one pH sensors are used for monitoring the pH value.
  • When the cathode material having a core-shell structure is exposed to an aqueous acidic solution, the shell of the core-shell composite will be damaged by the acidic environment, thereby affecting the performance of the cathode material. In some embodiments, the shell of the core-shell composite is very thin and has a thickness from about 3 μm to about 15 μm. The thin layer is very fragile and can therefore easily be damaged. In certain embodiments, the first aqueous solution is slightly alkaline or neutral, and has a pH anywhere within the range from about 7.0 to about 7.5 or from about 7.0 to about 8.0. In some embodiments, the core-shell composite is pre-treated in water, alcohol, or a mixture of water and alcohol. In one embodiment, the first aqueous solution is water and contaminants such as dirt and water-soluble impurities can be removed from the surface of the core-shell composite without damaging the shell. In another embodiment, the first aqueous solution is an alcohol or a mixture of water and alcohol, and contaminants such as dirt, organic compounds such as grease and oil, and water-soluble impurities can be removed from the surface of the core-shell composite without damaging the shell. In further embodiments, the alcohol is selected from the group consisting of methanol, ethanol, propanol, butanol, pentanol, and isomers and combinations thereof.
  • The use of the aqueous acidic solution for pre-treating the Ni-rich cathode material such as NMC532, NMC622, or NMC811 may result in defects on the surface of the cathode material. These defects in turn cause mild to severe degradation of electrochemical performance of an electrochemical cell. Acid pretreatment may also lead to surface irregularities of the cathode material, which in turn cause reduced cell performance or even cell failure. In some embodiments, the Ni-rich cathode material is pre-treated in a slightly alkaline or neutral environment. In certain embodiments, the first aqueous solution has a pH anywhere within the range from about 7.0 to about 7.5 or from about 7.0 to about 8.0. In some embodiments, the Ni-rich cathode material is pre-treated in water, alcohol or a mixture of water and alcohol. In other embodiments, the Ni-rich cathode material is pre-treated in a slightly acidic environment having a pH from about 6.0 to about 7.0. In further embodiments, the first aqueous solution comprises an acid in an amount from about 0.001 wt. % to about 0.01 wt. %. In other embodiments, the first aqueous solution comprises an acid in an amount of less than about 0.01 wt. %. Therefore, contaminants can be removed from the surface of the Ni-rich cathode material without creating surface defects for the cathode material.
  • In some embodiments, after adding the active battery electrode material to the first aqueous solution, the mixture can be further stirred for a time period sufficient for forming the first suspension. In certain embodiments, the time period is from about 5 minutes to about 2 hours, from about 5 minutes to about 1.5 hours, from about 5 minutes to about 1 hour, from about 5 minutes to about 30 minutes, from about 5 minutes to about 15 minutes, from about 10 minutes to about 2 hours, from about 10 minutes to about 1.5 hours, from about 10 minutes to about 1 hour, from about 10 minutes to about 30 minutes, from about 15 minutes to about 1 hour, or from about 30 minutes to about 1 hour.
  • In certain embodiments, the active battery electrode material is an anode material, wherein the anode material is selected from the group consisting of natural graphite particulate, synthetic graphite particulate, Sn (tin) particulate, Li4Ti5O12 particulate, Si (silicon) particulate, Si—C composite particulate, and combinations thereof.
  • In some embodiments, the first suspension can be dried to obtain a pre-treated active battery electrode material. Any dryer that can dry a suspension can be used herein. In some embodiments, the drying process is performed by a double-cone vacuum dryer, a microwave dryer, or a microwave vacuum dryer.
  • Conventionally, metal material is not suggested to use microwave dryer to dry as the characteristic of metal material can reflect microwave frequency. To our surprise, when drying is performed by a microwave dryer or microwave vacuum dryer, the cathode material can be effectively dried and drying time can be significantly shortened, thereby lowering operational costs. In some embodiments, the drying time is from about 3 minutes to about 25 minutes. Furthermore, drying the cathode material at high temperatures for long time may result in undesirable decomposition of the cathode material, and alter oxidation states of the cathode material. The cathode material having high nickel and/or manganese content is particularly temperature sensitive. As such, the positive electrode may have reduced performance. Therefore, decreased drying times significantly reduce or eliminate degradation of the cathode material. In certain embodiments, the dryer is a microwave dryer or a microwave vacuum dryer. In some embodiments, the microwave dryer or microwave vacuum dryer is operated at a power from about 500 W to about 3 kW, from about 5 kW to about 15 kW, from about 6 kW to about 20 kW, from about 7 kW to about 20 kW, from about 15 kW to about 70 kW, from about 20 kW to about 90 kW, from about 30 kW to about 100 kW, or from about 50 kW to about 100 kW.
  • In some embodiments, the drying step can be carried out for a time period that is sufficient for drying the first suspension. In certain embodiments, the drying time is from about 3 minutes to about 2 hours, from about 5 minutes to about 2 hours, from about 10 minutes to about 3 hours, from about 10 minutes to about 4 hours, from about 15 minutes to about 4 hours, or from about 20 minutes to about 5 hours.
  • After formation of the pre-treated active battery electrode material by drying the first suspension, a slurry can be formed by dispersing the pre-treated active battery electrode material, a conductive agent, and a binder material in a second aqueous solution.
  • In certain embodiments, the amount of the pre-treated active battery electrode material is at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% by weight or volume, based on the total weight or volume of the slurry. In some embodiments, the amount of the pre-treated active battery electrode material is at most 1%, at most 2%, at most 3%, at most 4%, at most 5%, at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90%, or at most 95% by weight or volume, based on the total weight or volume of the slurry.
  • In some embodiments, the pre-treated active battery electrode material is the major component of the slurry. In some embodiments, the pre-treated active battery electrode material is present in an amount from about 50% to about 95% by weight or volume, from about 55% to about 95% by weight or volume, from about 60% to about 95% by weight or volume, from about 65% to about 95% by weight or volume, from about 70% to about 95% by weight or volume, from about 75% to about 95% by weight or volume, from about 80% to about 95% by weight or volume, from about 85% to about 95% by weight or volume, from about 55% to about 85% by weight or volume, from about 60% to about 85% by weight or volume, from about 65% to about 85% by weight or volume, from about 70% to about 85% by weight or volume, from about 65% to about 80% by weight or volume, or from about 70% to about 80% by weight or volume, based on the total weight or volume of the slurry.
  • The conductive agent in the slurry is for enhancing the electrically-conducting property of an electrode. In some embodiments, the conductive agent is selected from the group consisting of carbon, carbon black, graphite, expanded graphite, graphene, graphene nanoplatelets, carbon fibres, carbon nano-fibers, graphitized carbon flake, carbon tubes, carbon nanotubes, activated carbon, mesoporous carbon, and combinations thereof. In certain embodiments, the conductive agent is not carbon, carbon black, graphite, expanded graphite, graphene, graphene nanoplatelets, carbon fibres, carbon nano-fibers, graphitized carbon flake, carbon tubes, carbon nanotubes, activated carbon, or mesoporous carbon.
  • The binder material in the slurry performs a role of binding the active battery electrode material and conductive agent together on the current collector. In some embodiments, the binder material is selected from the group consisting of styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), acrylonitrile copolymer, polyacrylic acid (PAA), polyacrylonitrile, poly(vinylidene fluoride)-hexafluoropropene (PVDF-HFP), latex, a salt of alginic acid, and combinations thereof. In certain embodiments, the salt of alginic acid comprises a cation selected from Na, Li, K, Ca, NH4, Mg, Al, or a combination thereof.
  • In some embodiments, the binder material is SBR, CMC, PAA, a salt of alginic acid, or a combination thereof. In certain embodiments, the binder material is acrylonitrile copolymer. In some embodiments, the binder material is polyacrylonitrile. In certain embodiments, the binder material is free of styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), acrylonitrile copolymer, polyacrylic acid (PAA), polyacrylonitrile, poly(vinylidene fluoride)-hexafluoropropene (PVDF-HFP), latex, or a salt of alginic acid.
  • In certain embodiments, the amount of each of the conductive agent and binder material is independently at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, or at least 50% by weight or volume, based on based on the total weight or volume of the slurry. In some embodiments, the amount of each of the conductive agent and binder material is independently at most 1%, at most 2%, at most 3%, at most 4%, at most 5%, at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, or at most 50% by weight or volume, based on the total weight or volume of the slurry.
  • In some embodiments, the conductive agent is pre-treated in an alkaline or basic solution prior to step 3). Pre-treating the conductive agent before the slurry preparation can enhance wettability and dispersing capability of the conductive agent in the slurry, thus allowing homogeneous distribution of the conductive agent within the dried composite electrode. If particulates of the conductive agent are dispersed heterogeneously in the electrode, the battery performance, life, and safety will be affected.
  • In certain embodiments, the conductive agent can be pre-treated for a time period from about 30 minutes to about 2 hours, from about 30 minutes to about 1.5 hours, from about 30 minutes to about 1 hour, from about 45 minutes to about 2 hours, from about 45 minutes to about 1.5 hours, or from about 45 minutes to about 1 hour. In some embodiments, the alkaline or basic solution comprises a base selected from the group consisting of H2O2, LiOH, NaOH, KOH, NH3.H2O, Be(OH)2, Mg(OH)2, Ca(OH)2, Li2CO3, Na2CO3, NaHCO3, K2CO3, KHCO3, and combinations thereof. In certain embodiments, the basic solution comprises an organic base. In some embodiments, the basic solution is free of organic base. In certain embodiments, the basic solution is free of H2O2, LiOH, NaOH, KOH, NH3.H2O, Be(OH)2, Mg(OH)2, Ca(OH)2, Li2CO3, Na2CO3, NaHCO3, K2CO3 or KHCO3. It is desired to keep the particulate dispersed uniformly within a slurry. Pretreating the conductive agent with an alkaline solution can wash away impurity such as oil and grease, promote more uniform distribution of particles of the conductive agent and improve its dispensability in the slurry without accumulating the alkaline impurity which has negative impact on battery performance. Compared to adding dispersing agent, the dispersing agent will stay in the slurry and may negatively impact battery performance.
  • In some embodiments, the pH of the alkaline or basic solution is greater than 7, greater than 8, greater than 9, greater than 10, greater than 11, greater than 12, or greater than 13. In some embodiments, the pH of the alkaline or basic solution is less than 8, less than 9, less than 10, less than 11, less than 12, or less than 13.
  • In certain embodiments, the conductive agent is dispersed in a third aqueous solution to form a second suspension prior to step 3).
  • Compared to an active battery electrode material, a conductive agent has a relatively high specific surface area. Therefore, the conductive agent has a tendency to agglomerate due to its relatively high specific surface area, especially when the particulates of the conductive agent must be dispersed in a highly dense suspension of the active battery electrode material. Dispersing the conductive agent before the slurry preparation can minimize the particles from agglomerating, thus allowing more homogeneous distribution of the conductive agent within the dried composite electrode. This could reduce internal resistance and enhance electrochemical performance of electrode materials.
  • Each of the pre-treated active battery electrode material, conductive agent, and binder material can be independently added to the second aqueous solution in one portion, thereby greatly simplifying the method of the present invention.
  • In some embodiments, the amount of the conductive agent in the second suspension is from about 0.05 wt. % to about 0.5 wt. %, from about 0.1 wt. % to about 1 wt. %, from about 0.25 wt. % to about 2.5 wt. %, from about 0.5 wt. % to about 5 wt. %, from about 2 wt. % to about 5 wt. %, from about 3 wt. % to about 7 wt. %, or from about 5 wt. % to about 10 wt. %, based on the total weight of the mixture of the conductive agent and the third aqueous solution.
  • In certain embodiments, the binder material is dissolved in a fourth aqueous solution to form a resulting solution or a binder solution prior to step 3).
  • Dispersing the solid binder material before the slurry preparation can prevent adhesion of the solid binder material to the surface of other materials, thus allowing the binder material to disperse homogeneously into the slurry. If the binder material is dispersed heterogeneously in the electrode, the performance of the battery may deteriorate.
  • In some embodiments, the amount of the binder material in the binder solution is from about 3 wt. % to about 6 wt. %, from about 5 wt. % to about 10 wt. %, from about 7.5 wt. % to about 15 wt. %, from about 10 wt. % to about 20 wt. %, from about 15 wt. % to about 25 wt. %, from about 20 wt. % to about 40 wt. %, or from about 35 wt. % to about 50 wt. %, based on the total weight of the mixture of the binder material and the fourth aqueous solution.
  • In certain embodiments, each of the second, third and fourth aqueous solutions independently is a solution containing water as the major component and a volatile solvent, such as alcohols, lower aliphatic ketones, lower alkyl acetates or the like, as the minor component in addition to water. In certain embodiments, the amount of water in each solution is independently at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% to the total amount of water and solvents other than water. In some embodiments, the amount of water is at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90%, or at most 95% to the total amount of water and solvents other than water. In some embodiments, each of the second, third and fourth aqueous solutions independently consists solely of water, that is, the proportion of water in each solution is 100 vol. %.
  • Any water-miscible solvents can be used as the minor component of the second, third or fourth aqueous solution. Some non-limiting examples of the minor component include alcohols, lower aliphatic ketones, lower alkyl acetates and combinations thereof. Some non-limiting examples of the alcohol include C2-C4 alcohols, such as methanol, ethanol, isopropanol, n-propanol, butanol, and combinations thereof. Some non-limiting examples of the lower aliphatic ketones include acetone, dimethyl ketone, and methyl ethyl ketone. Some non-limiting examples of the lower alkyl acetates include ethyl acetate, isopropyl acetate, and propyl acetate.
  • In some embodiments, the volatile solvent or minor component is methyl ethyl ketone, ethanol, ethyl acetate or a combination thereof.
  • In some embodiments, the composition of the slurry does not require organic solvents. In certain embodiments, each of the second, third and fourth aqueous solutions independently is water. Some non-limiting examples of water include tap water, bottled water, purified water, pure water, distilled water, de-ionized water, D2O, or a combination thereof. In some embodiments, each of the second, third and fourth aqueous solutions independently is purified water, pure water, de-ionized water, distilled water, or a combination thereof. In certain embodiments, each of the second, third and fourth aqueous solutions is free of an organic solvent such as alcohols, lower aliphatic ketones, lower alkyl acetates. Since the composition of the slurry does not contain any organic solvent, expensive, restrictive and complicated handling of organic solvents is avoided during the manufacture of the slurry.
  • Any temperature that can be used in the dispersing step to form the slurry can be used herein. In some embodiments, the pre-treated active battery electrode material, conductive agent and binder material are added to the stirring second aqueous solution at about 14° C., about 16° C., about 18° C., about 20° C., about 22° C., about 24° C., or about 26° C. In certain embodiments, the dispersing process can be performed with heating at a temperature from about 30° C. to about 80° C., from about 35° C. to about 80° C., from about 40° C. to about 80° C., from about 45° C. to about 80° C., from about 50° C. to about 80° C., from about 55° C. to about 80° C., from about 55° C. to about 70° C., from about 45° C. to about 85° C., or from about 45° C. to about 90° C. In some embodiments, the dispersing process can be performed at a temperature below 30° C., below 25° C., below 22° C., below 20° C., below 15° C., or below 10° C.
  • Optional components may be used to assist in dispersing the pre-treated active battery electrode material, conductive agent and binder material in the slurry. In some embodiments, the optional component is a dispersing agent. Any dispersing agent that can enhance the dispersion may be added to the slurry disclosed herein. In certain embodiments, the dispersing agent is selected from the group consisting of ethanol, isopropanol, n-propanol, t-butanol, n-butanol, lithium dodecyl sulfate, trimethylhexadecyl ammonium chloride, polyethylene ethoxylate, sodium dodecylbenzene sulfonate, sodium stearate, and combinations thereof.
  • In some embodiments, the total amount of the dispersing agent is from about 0.1% to about 10%, from about 0.1% to about 8%, from about 0.1% to about 6%, from about 0.1% to about 5%, from about 0.1% to about 4%, from about 0.1% to about 3%, from about 0.1% to about 2%, or from about 0.1% to about 1% by weight, based on the total weight of the slurry.
  • In some embodiments, each of the second, third and fourth aqueous solutions independently comprises a dispersing agent for promoting the separation of particles and/or preventing agglomeration of the particles. Any surfactant that can lower the surface tension between a liquid and a solid can be used as the dispersing agent.
  • In certain embodiments, the dispersing agent is a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, or a combination thereof.
  • Some non-limiting examples of suitable nonionic surfactant include an alkoxylated alcohol, a carboxylic ester, a polyethylene glycol ester, and combinations thereof. Some non-limiting examples of suitable alkoxylated alcohol include ethoxylated and propoxylated alcohols. In some embodiments, the slurry disclosed herein is free of nonionic surfactant.
  • Some non-limiting examples of suitable anionic surfactant include a salt of an alkyl sulfate, an alkyl polyethoxylate ether sulfate, an alkyl benzene sulfonate, an alkyl ether sulfate, a sulfonate, a sulfosuccinate, a sarcosinate, and combinations thereof. In some embodiments, the anionic surfactant comprises a cation selected from the group consisting of sodium, potassium, ammonium, and combinations thereof. In some embodiments, the slurry disclosed herein is free of anionic surfactant.
  • Some non-limiting examples of suitable cationic surfactant include an ammonium salt, a phosphonium salt, an imidazolium salt, a sulfonium salt, and combinations thereof. Some non-limiting examples of suitable ammonium salt include stearyl trimethylammonium bromide (STAB), cetyl trimethylammonium bromide (CTAB), and myristyl trimethylammonium bromide (MTAB), and combinations thereof. In some embodiments, the slurry disclosed herein is free of cationic surfactant.
  • Some non-limiting examples of suitable amphoteric surfactant are surfactants that contain both cationic and anionic groups. The cationic group is ammonium, phosphonium, imidazolium, sulfonium, or a combination thereof. The anionic hydrophilic group is carboxylate, sulfonate, sulfate, phosphonate, or a combination thereof. In some embodiments, the slurry disclosed herein is free of amphoteric surfactant.
  • The slurry can be homogenized by a homogenizer. Any equipment that can homogenize the slurry can be used. In some embodiments, the homogenizer is a stirring mixer, a blender, a mill, an ultrasonicator, a rotor-stator homogenizer, an atomizer, or a high pressure homogenizer.
  • In some embodiments, the homogenizer is an ultrasonicator. Any ultrasonicator that can apply ultrasound energy to agitate and disperse particles in a sample can be used herein. In some embodiments, the ultrasonicator is a probe-type ultrasonicator or an ultrasonic flow cell.
  • In certain embodiments, the slurry is homogenized by mechanical stirring for a time period from about 2 hours to about 8 hours. In some embodiments, the stirring mixer is a planetary mixer consisting of planetary and high speed dispersion blades. In certain embodiments, the rotational speed of the planetary blade is from about 20 rpm to about 200 rpm and rotational speed of the dispersion blade is from about 1,000 rpm to about 3,500 rpm. In further embodiments, the rotational speed of the planetary blade is from about 20 rpm to about 150 rpm or from about 30 rpm to about 100 rpm, and rotational speed of the dispersion blade is from about 1,000 rpm to about 3,000 rpm or from about 1,500 rpm to about 2,500 rpm. When the homogenizer is a stirring mixer, the slurry is stirred for at least two hours to ensure sufficient dispersion. If the dispersion is not sufficient, the battery performance such as cycle life may be seriously affected. In further embodiments, the stirring time is from about 2 hours to about 6 hours, from about 3 hours to about 8 hours, from about 3 hours to about 6 hours, or from about 4 hours to about 8 hours.
  • In certain embodiments, the ultrasonic flow cell can be operated in a one-pass, multiple-pass or recirculating mode. In some embodiments, the ultrasonic flow cell can include a water-cooling jacket to help maintain the required temperature. Alternatively, a separate heat exchanger may be used. In certain embodiments, the flow cell can be made from stainless steel or glass.
  • In some embodiments, the slurry is homogenized for a time period from about 1 hour to about 10 hours, from about 2 hours to about 4 hours, from about 15 minutes to about 4 hours, from about 30 minutes to about 4 hours, from about 1 hour to about 4 hours, from about 2 hours to about 5 hours, from about 3 hours to about 5 hours, or from about 2 hours to about 6 hours.
  • In certain embodiments, the ultrasonicator is operated at a power density from about 10 W/L to about 100 W/L, from about 20 W/L to about 100 W/L, from about 30 W/L to about 100 W/L, from about 40 W/L to about 80 W/L, from about 40 W/L to about 70 W/L, from about 40 W/L to about 50 W/L, from about 40 W/L to about 60 W/L, from about 50 W/L to about 60 W/L, from about 20 W/L to about 80 W/L, from about 20 W/L to about 60 W/L, or from about 20 W/L to about 40 W/L.
  • The continuous flow through system has several advantages over the batch-type processing. By sonication via ultrasonic flow cell, the processing capacity becomes significantly higher. The retention time of the material in the flow cell can be adjusted by adjusting the flow rate.
  • By sonication via recirculating mode, the material is recirculated many times through the flow cell in a recirculating configuration. Recirculation increases the cumulative exposure time because liquid passes through the ultrasonic flow cell only once in a single-pass configuration.
  • The multiple-pass mode has a multiple flow cell configuration. This arrangement allows for a single-pass processing without the need for recirculation or multiple passes through the system. This arrangement provides an additional productivity scale-up factor equal to the number of utilized flow cells.
  • The homogenizing step disclosed herein reduces or eliminates the potential aggregation of the active battery electrode material and the conductive agent and enhances dispersion of each ingredient in the slurry.
  • When the slurry is homogenized by a mill, a media such as balls, pebbles, small rock, sand or other media is used in a stirred mixture along with the sample material to be mixed. The particles in the mixture are mixed and reduced in size by impact with rapidly moving surfaces in a mill. In some embodiments, the ball is made of hard materials such as steel, stainless steel, ceramic or zirconium dioxide (ZrO2). However, it is observed that the mechanical stress during the milling process causes damages to the structure of the cathode material resulting in distortion or major structural damage such as cracks. The cathode material may also be abraded by the ball causing structural damage and irregularly-shaped surface. These defects in turn cause mild to severe degradation of electrochemical performance of an electrochemical cell. The cathode material having a core-shell structure is even more susceptible to mechanical damages due to vulnerability of the shell.
  • The homogenized slurry can be applied on a current collector to form a coated film on the current collector. The current collector acts to collect electrons generated by electrochemical reactions of the active battery electrode material or to supply electrons required for the electrochemical reactions. In some embodiments, each of the current collectors of the positive and negative electrodes, which can be in the form of a foil, sheet or film, is independently stainless steel, titanium, nickel, aluminum, copper or electrically-conductive resin. In certain embodiments, the current collector of the positive electrode is an aluminum thin film. In some embodiments, the current collector of the negative electrode is a copper thin film.
  • In some embodiments, the current collector has a thickness from about 6 μm to about 100 μm since thickness will affect the volume occupied by the current collector within a battery and the amount of the active battery electrode material and hence the capacity in the battery.
  • In certain embodiments, the coating process is performed using a doctor blade coater, a slot-die coater, a transfer coater, a spray coater, a roll coater, a gravure coater, a dip coater, or a curtain coater. In some embodiments, the thickness of the coated film on the current collector is from about 10 μto about 300 μm, or from about 20 μm to about 100 μm.
  • After applying the homogenized slurry on a current collector, the coated film on the current collector can be dried by a dryer to obtain the battery electrode. Any dryer that can dry the coated film on the current collector can be used herein. Some non-limiting examples of the dryer are a batch drying oven, a conveyor drying oven, and a microwave drying oven. Some non-limiting examples of the conveyor drying oven include a conveyor hot air drying oven, a conveyor resistance drying oven, a conveyor inductive drying oven, and a conveyor microwave drying oven.
  • In some embodiments, the conveyor drying oven for drying the coated film on the current collector includes one or more heating sections, wherein each of the heating sections is individually temperature controlled, and wherein each of the heating sections may include independently controlled heating zones.
  • In certain embodiments, the conveyor drying oven comprises a first heating section positioned on one side of the conveyor and a second heating section positioned on an opposing side of the conveyor from the first heating section, wherein each of the first and second heating sections independently comprises one or more heating elements and a temperature control system connected to the heating elements of the first heating section and the second heating section in a manner to monitor and selectively control the temperature of each heating section.
  • In some embodiments, the conveyor drying oven comprises a plurality of heating sections, wherein each heating section includes independent heating elements that are operated to maintain a constant temperature within the heating section.
  • In certain embodiments, each of the first and second heating sections independently has an inlet heating zone and an outlet heating zone, wherein each of the inlet and outlet heating zones independently comprises one or more heating elements and a temperature control system connected to the heating elements of the inlet heating zone and the outlet heating zone in a manner to monitor and selectively control the temperature of each heating zone separately from the temperature control of the other heating zones.
  • In some embodiments, the coated film on the current collector can be dried at a temperature from about 50° C. to about 80° C. The temperature range means a controllable temperature gradient in which the temperature gradually rises from the inlet temperature of 50° C. to the outlet temperature of 80° C. The controllable temperature gradient avoids the coated film on the current collector from drying too rapidly. Drying the coated film too quickly can degrade materials in the slurry. Drying the coated film too quickly can also cause stress defects in the electrode because the solvent can be removed from the coated film more quickly than the film can relax or adjust to the resulting volume changes, which can cause defects such as cracks. It is believed that avoiding such defects can generally enhance performance of the electrode. Furthermore, drying the coated film too quickly can cause the binder material to migrate and form a layer of the binder material on the surface of the electrode.
  • In certain embodiments, the coated film on the current collector is dried at a relatively slow rate. In certain embodiments, the coated film on the current collector is dried relatively slowly at a constant rate, followed by a relatively quick drying rate.
  • In some embodiments, the coated film on the current collector can be dried at a temperature from about 45° C. to about 100° C., from about 50° C. to about 100° C., from about 55° C. to about 100° C., from about 50° C. to about 90° C., from about 55° C. to about 80° C., from about 55° C. to about 75° C., from about 55° C. to about 70° C., from about 50° C. to about 80° C., or from about 50° C. to about 70° C. In one embodiment, the coated film on the current collector may be dried at a temperature from about 40° C. to about 55° C. for a time period from about 5 minutes to about 10 minutes. The lower drying temperatures may avoid the undesirable decomposition of cathode material having high nickel and/or manganese content.
  • In certain embodiments, the conveyor moves at a speed from about 2 meter/minute to about 30 meter/minute, from about 2 meter/minute to about 25 meter/minute, from about 2 meter/minute to about 20 meter/minute, from about 2 meter/minute to about 16 meter/minute, from about 3 meter/minute to about 30 meter/minute, from about 3 meter/minute to about 20 meter/minute, or from about 3 meter/minute to about 16 meter/minute.
  • Controlling the conveyor length and speed can regulate the drying time of the coated film. Therefore, the drying time can be increased without increasing the length of the conveyor. In some embodiments, the coated film on the current collector can be dried for a time period from about 1 minute to about 30 minutes, from about 1 minute to about 25 minutes, from about 1 minute to about 20 minutes, from about 1 minute to about 15 minutes, from about 1 minute to about 10 minutes, from about 2 minutes to about 15 minutes, or from about 2 minutes to about 10 minutes.
  • After the coated film on the current collector is dried, the battery electrode is formed. In some embodiments, the battery electrode is compressed mechanically in order to enhance the density of the electrode.
  • The method disclosed herein has the advantage that an aqueous solvent is used in the manufacturing process, which can save process time and facilities by avoiding the need to handle or recycle hazardous organic solvents. In addition, costs are reduced by simplifying the total process. Therefore, this method is especially suited for industrial processes because of its low cost and ease of handling.
  • In some embodiments, batteries comprising the electrodes prepared by the method disclosed herein show a capacity retention of at least about 89%, about 94%, about 95%, about 97%, or about 98% after 500 cycles when discharged at a rate of 1 C. In certain embodiments, batteries show a capacity retention of at least about 83%, about 88%, about 90%, about 92%, about 94% about 95% or about 96% after 1,000 cycles when discharged at a rate of 1 C. In some embodiments, batteries show a capacity retention of at least about 73%, about 77%, about 80%, about 81%, about 88%, about 90%, or about 92% after 2,000 cycles when discharged at a rate of 1 C.
  • The following examples are presented to exemplify embodiments of the invention but are not intended to limit the invention to the specific embodiments set forth. Unless indicated to the contrary, all parts and percentages are by weight. All numerical values are approximate. When numerical ranges are given, it should be understood that embodiments outside the stated ranges may still fall within the scope of the invention. Specific details described in each example should not be construed as necessary features of the invention.
  • EXAMPLES Example 1 A) Pre-treatment of Active Battery Electrode Material
  • A particulate cathode material LiNi0.33Mn0.33Co0.33O2 (NMC333) (obtained from Xiamen Tungsten CO. Ltd., China) was added to a stirring solution containing 50% deionized water and 50% ethanol at room temperature to form a suspension having a solid content of about 35% by weight. The pH of the suspension was measured using a pH meter and the pH was about 7. The suspension was further stirred at room temperature for 5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • B) Preparation of Positive Electrode Slurry
  • A positive electrode slurry was prepared by mixing 91 wt. % pre-treated active battery electrode material, 4 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), 4 wt. % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) and 1% isopropanol (obtained from Aladdin Industries Corporation, China) in deionized water to form a slurry having a solid content of 70 wt. %. The slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Example 1 is shown in Table 1 below.
  • C) Preparation of Positive Electrode
  • The homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 20 μm using a transfer coater (ZY-TSF6-6518, obtained from Jin Fan Zhanyu New Energy Technology Co. Ltd., China) with an area density of about 26 mg/cm2. The coated films on the aluminum foil were dried for 3 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 8 meter/minute to obtain a positive electrode. The temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 55° C. to the outlet temperature of 80° C.
  • D) Preparation of Negative Electrode
  • A negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was coated onto both sides of a copper foil having a thickness of 9 μm using a transfer coater with an area density of about 15 mg/cm2. The coated films on the copper foil were dried at about 50° C. for 2.4 minute by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • Morphological Measurement of Example 1
  • FIG. 2 shows the SEM image of the surface morphology of the coated cathode electrode after drying. The morphology of the coated cathode electrode was characterized by a scanning electron microscope (JEOL-6300, obtained from JEOL, Ltd., Japan). The SEM image clearly shows a uniform, crack-free and stable coating throughout the electrode surface. Furthermore, the electrode shows a homogeneous distribution of the pre-treated active battery electrode material and conductive agent without large agglomerates.
  • Example 2 Assembling of Pouch-Type Battery
  • After drying, the resulting cathode film and anode film of Example 1 were used to prepare the cathode and anode respectively by cutting into individual electrode plates. A pouch cell was assembled by stacking the cathode and anode electrode plates alternatively and then packaged in a case made of an aluminum-plastic laminated film. The cathode and anode electrode plates were kept apart by separators and the case was pre-formed. An electrolyte was then filled into the case holding the packed electrodes in high-purity argon atmosphere with moisture and oxygen content<1 ppm. The electrolyte was a solution of LiPF6 (1 M) in a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of 1:1:1. After electrolyte filling, the pouch cells were vacuum sealed and then mechanically pressed using a punch tooling with standard square shape.
  • Electrochemical Measurements of Example 2 I) Nominal Capacity
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester (BTS-5V20A, obtained from Neware Electronics Co. Ltd, China) between 3.0 V and 4.3 V. The nominal capacity was about 10 Ah.
  • II) Cyclability Performance
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.3 V. Test result of cyclability performance is shown in FIG. 3. The capacity retention after 450 cycles was about 95.6% of the initial value. The test result is shown in Table 2 below.
  • Example 3 A) Pre-Treatment of Active Battery Electrode Material
  • A particulate cathode material LiMn2O4 (LMO) (obtained from HuaGuan HengYuan LiTech Co. Ltd., Qingdao, China) was added to a stirring 7 wt. % solution of acetic acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 50% by weight. The pH of the suspension was measured using a pH meter and the pH was about 6. The suspension was further stirred at room temperature for 2.5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • B) Preparation of Positive Electrode Slurry
  • Carbon nanotube (NTP2003; Shenzhen Nanotech Port Co., Ltd., China) (25 g) was pretreated in 2 L of an alkaline solution containing 0.5 wt. % NaOH for about 15 minutes and then washed by deionized water (5 L). The treated carbon nanotube was then dispersed in deionized water to form a suspension having a solid content of 6.25 wt. %.
  • A positive electrode slurry was prepared by mixing 92 wt. % pre-treated active battery electrode material, 3 wt. % carbon black, 1 wt. % suspension of the treated carbon nanotube and 4 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 65 wt. %. The slurry was homogenized by a circulating ultrasonic flow cell (NP8000, obtained from Guangzhou Newpower Ultrasonic Electronic Equipment Co., Ltd., China) for 8 hours operated at 1000 W to obtain a homogenized slurry. The formulation of Example 3 is shown in Table 1 below.
  • C) Preparation of Positive Electrode
  • The homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 20 μm using a transfer coater with an area density of about 40 mg/cm2. The coated films on the aluminum foil were dried for 6 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 4 meter/minute to obtain a positive electrode. The temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 65° C. to the outlet temperature of 90° C.
  • D) Preparation of Negative Electrode
  • A negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was coated onto both sides of a copper foil having a thickness of 9 μm using a transfer coater with an area density of about 15 mg/cm2. The coated films on the copper foil were dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • Example 4 Assembling of Pouch-Type Battery
  • A pouch cell was prepared in the same manner as in Example 2.
  • Electrochemical Measurements of Example 4 I) Nominal Capacity
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.3 V. The nominal capacity was about 10 Ah.
  • II) Cyclability Performance
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.3 V. Test result of cyclability performance is shown in FIG. 4. The capacity retention after 2000 cycles was about 77% of the initial value. The test result is shown in Table 2 below.
  • Example 5 A) Pre-Treatment of Active Battery Electrode Material
  • A particulate cathode material LiNi0.33Mn0.33Co0.33O2 (NMC333) (obtained from Shenzhen Tianjiao Technology Co. Ltd., China) was added to a stirring deionized water at room temperature to form a suspension having a solid content of about 65% by weight. The pH of the suspension was measured using a pH meter and the pH was about 7. The suspension was further stirred at room temperature for 10 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • B) Preparation of Positive Electrode Slurry
  • A positive electrode slurry was prepared by mixing 93 wt. % pre-treated active battery electrode material, 3 wt. % carbon black, 0.5 wt. % nonylphenol ethoxylate (TERGITOL™ NP-6, DOW Chemical, US) and 3.5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 75 wt. %. The slurry was homogenized by a circulating ultrasonic flow cell for 8 hours operated at 1000 W to obtain a homogenized slurry. The formulation of Example 5 is shown in Table 1 below.
  • C) Preparation of Positive Electrode
  • The homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 20 μm using a transfer coater with an area density of about 32 mg/cm2. The coated films on the aluminum foil were dried for 4 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 6 meter/minute to obtain a positive electrode. The temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 50° C. to the outlet temperature of 75° C.
  • D) Preparation of Negative Electrode
  • A negative electrode slurry was prepared by mixing 90 wt. % hard carbon, 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was coated onto both sides of a copper foil having a thickness of 9 μm using a transfer coater with an area density of about 15 mg/cm2. The coated films on the copper foil were dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • Example 6 Assembling of Pouch-Type Battery
  • A pouch cell was prepared in the same manner as in Example 2.
  • Electrochemical Measurements of Example 6 I) Nominal Capacity
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.3 V. The nominal capacity was about 10 Ah.
  • II) Cyclability Performance
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.3 V. Test result of cyclability performance is shown in FIG. 5. The capacity retention after 560 cycles was about 94.8% of the initial value. The test result is shown in Table 2 below.
  • Example 7 A) Pre-Treatment of Active Battery Electrode Material
  • A particulate cathode material LiFePO4 (obtained from Xiamen Tungsten Co. Ltd., China) was added to a stirring 3 wt. % solution of acetic acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 50% by weight. The pH of the suspension was measured using a pH meter and the pH was about 3.8. The suspension was further stirred at room temperature for 2.5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 700 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • B) Preparation of Positive Electrode Slurry
  • A positive electrode slurry was prepared by mixing 88 wt. % pre-treated active battery electrode material, 5.5 wt. % carbon black, 0.5 wt. % nonylphenol ethoxylate (TERGITOL™ NP-6, DOW Chemical, US) and 6 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 70 wt. %. The slurry was homogenized by a circulating ultrasonic flow cell for 6 hours operated at 1000 W to obtain a homogenized slurry. The formulation of Example 7 is shown in Table 1 below.
  • C) Preparation of Positive Electrode
  • The homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 30 μm using a transfer coater with an area density of about 56 mg/cm2. The coated films on the aluminum foil were then dried for 6 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 4 meter/minute to obtain a positive electrode. The temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 75° C. to the outlet temperature of 90° C.
  • D) Preparation of Negative Electrode
  • A negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was coated onto both sides of a copper foil having a thickness of 9 μm using a transfer coater with an area density of about 15 mg/cm2. The coated films on the copper foil were then dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • Example 8 Assembling of Pouch-Type Battery
  • A pouch cell was prepared in the same manner as in Example 2.
  • Electrochemical Measurements of Example 8 I) Nominal Capacity
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 2.5 V and 3.6 V. The nominal capacity was about 3.6 Ah.
  • II) Cyclability Performance
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 2.5 V and 3.6 V. Test result of cyclability performance is shown in FIG. 6. The capacity retention after 3000 cycles was about 82.6% of the initial value. The test result is shown in Table 2 below.
  • Example 9
  • A) Preparation of an Active Cathode Material with Core-Shell Structure
  • The core of the core-shell cathode material was Li1.03Ni0.51Mn0.32Co0.17O2 and was prepared by a co-precipitation method. The shell of the core-shell cathode material was Li0.95Ni0.53Mn0.29Co0.15Al0.03O2 and was prepared by forming a precipitate of Al(OH)3 on the surface of the core to form a precursor, mixing the precursor with Li2CO3 (obtained from Tianqi Lithium, Shenzhen, China) to obtain a mixture, and calcinating the mixture at 900° C. The calcinated product was crushed by a jet mill (LNJ-6A, obtained from Mianyang Liuneng Powder Equipment Co., Ltd., Sichuan, China) for about 1 hour, followed by passing the crushed product through a 270-mesh sieve to obtain a cathode material having a particle size D50 of about 38 μm. The content of aluminium in the core-shell cathode material gradiently decreased from the outer surface of the shell to the inner core. The thickness of the shell was about 3 μm.
  • B) Pre-Treatment of the Active Battery Electrode Material
  • The core-shell cathode material (C-S NMC532) prepared above was added to a stirring solution containing 50% deionized water and 50% methanol at room temperature to form a suspension having a solid content of about 50% by weight. The pH of the suspension was measured using a pH meter and the pH was about 7.5. The suspension was further stirred at room temperature for 3.5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • C) Preparation of Positive Electrode Slurry
  • A positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; obtained from Timcal Ltd, Bodio, Switzerland) as a conductive agent, and 5 wt. % polyacrylonitrile (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) as a binder, which were dispersed in deionized water to form a slurry with a solid content of 50 wt. %. The slurry was homogenized by a planetary stirring mixer for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Example 9 is shown in Table 1 below.
  • D) Preparation of Positive Electrode
  • The homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 30 μm using a transfer coater with an area density of about 44 mg/cm2. The coated films on the aluminum foil were then dried for 5 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 4 meter/minute to obtain a positive electrode. The temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 67° C. to the outlet temperature of 78° C.
  • E) Preparation of Negative Electrode
  • A negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was coated onto both sides of a copper foil having a thickness of 9 μm using a transfer coater with an area density of about 15 mg/cm2. The coated films on the copper foil were then dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • Example 10 Assembling of Pouch-Type Battery
  • A pouch cell was prepared in the same manner as in Example 2.
  • Electrochemical Measurements of Example 10 I) Nominal Capacity
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10.46 Ah.
  • II) Cyclability Performance
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in FIG. 7. The capacity retention after 361 cycles was about 98.6% of the initial value. The test result is shown in Table 2 below.
  • Example 11
  • A) Preparation of an Active Cathode Material with Core-Shell Structure
  • The core of the core-shell cathode material was Li1.01Ni0.96Mg0.04O2 (C—S LNMgO) and was prepared by solid state reaction in which MgO and NiOx (x=1 to 2) were mixed with LiOH followed by calcination at 850° C. The shell of the core-shell cathode material was Li0.95Co1.1O2 and was prepared by forming a precipitate of Co(OH)2 on the surface of the core to form a precursor, mixing the precursor with Li2CO3 (obtained from Tianqi Lithium, Shenzhen, China) to obtain a mixture, and calcinating the mixture at 800° C. The calcinated product was crushed by a jet mill (LNJ-6A, obtained from Mianyang Liuneng Powder Equipment Co., Ltd., Sichuan, China) for about 1 hour, followed by passing the crushed product through a 270-mesh sieve to obtain a cathode material having a particle size D50 of about 33 μm. The content of cobalt in the core-shell cathode material gradiently decreased from the outer surface of the shell to the inner core. The thickness of the shell was about 5 μm.
  • B) Pre-Treatment of the Active Battery Electrode Material
  • The core-shell cathode material prepared above was added to a stirring solution containing 70% deionized water and 30% iso-propanol at room temperature to form a suspension having a solid content of about 60% by weight. The pH of the suspension was measured using a pH meter and the pH was about 8.0. The suspension was further stirred at room temperature for 6.5 hours. Then the suspension was separated and dried by a 2.45 GHz microwave dryer at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • C) Preparation of Positive Electrode Slurry
  • A positive electrode slurry was prepared by mixing 89 wt. % pre-treated active battery electrode material, 5.5 wt. % carbon black (SuperP; obtained from Timcal Ltd, Bodio, Switzerland) as a conductive agent, and 5.5 wt. % polyacrylonitrile (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) as a binder, which were dispersed in deionized water to form a slurry with a solid content of 50 wt. %. The slurry was homogenized by a planetary stirring mixer for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Example 11 is shown in Table 1 below.
  • D) Preparation of Positive Electrode
  • The homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 30 μm using a transfer coater with an area density of about 42 mg/cm2. The coated films on the aluminum foil were then dried for 5.5 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 4.2 meter/minute to obtain a positive electrode. The temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 62° C. to the outlet temperature of 75° C.
  • E) Preparation of Negative Electrode
  • A negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was coated onto both sides of a copper foil having a thickness of 9 μm using a transfer coater with an area density of about 15 mg/cm2. The coated films on the copper foil were then dried at about 50° C. for 2.4 minutes by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • Example 12 Assembling of Pouch-Type Battery
  • A pouch cell was prepared in the same manner as in Example 2.
  • Electrochemical Measurements of Example 12 I) Nominal Capacity
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10.4 Ah.
  • II) Cyclability Performance
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in FIG. 8. The capacity retention after 385 cycles was about 98.1% of the initial value. The test result is shown in Table 2 below.
  • Example 13 A) Pre-Treatment of Active Battery Electrode Material
  • A particulate cathode material LiCoO2 (obtained from Xiamen Tungsten CO. Ltd., China) was added to a stirring solution containing 50% deionized water and 50% ethanol at room temperature to form a suspension having a solid content of about 2% by weight. The pH of the suspension was measured using a pH meter and the pH was about 7.0. The suspension was further stirred at room temperature for 1 hour. Then the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material.
  • B) Preparation of Positive Electrode Slurry
  • A positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; obtained from Timcal Ltd, Bodio, Switzerland) as a conductive agent, and 5 wt. % polyacrylonitrile (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) as a binder, which were dispersed in deionized water to form a slurry with a solid content of 50 wt. %. The slurry was homogenized by a planetary stirring mixer for 6 hours operated at a rotation speed of 30 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Example 13 is shown in Table 1 below.
  • C) Preparation of Positive Electrode
  • The homogenized slurry was coated onto both sides of an aluminum foil having a thickness of 20 μm using a transfer coater (ZY-TSF6-6518, obtained from Jin Fan Zhanyu New Energy Technology Co. Ltd., China) with an area density of about 26 mg/cm2. The coated films on the aluminum foil were dried for 3.4 minutes by a 24-meter-long conveyor hot air drying oven as a sub-module of the transfer coater operated at a conveyor speed of about 7 meter/minute to obtain a positive electrode. The temperature-programmed oven allowed a controllable temperature gradient in which the temperature gradually rose from the inlet temperature of 70° C. to the outlet temperature of 80° C.
  • D) Preparation of Negative Electrode
  • A negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % polyacrylonitrile in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was coated onto both sides of a copper foil having a thickness of 9 μm using a transfer coater with an area density of about 15 mg/cm2. The coated films on the copper foil were dried at about 50° C. for 2.4 minute by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 10 meter/minute to obtain a negative electrode.
  • Example 14 Assembling of Pouch-Type Battery
  • A pouch cell was prepared in the same manner as in Example 2.
  • Electrochemical Measurements of Example 14
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10.7 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 9.
  • Example 15
  • A pouch cell was prepared in the same manner as in Examples 1 and 2, except that cathode material LiNi0.8Mn0.1Co0.1O2 (NMC811) (obtained from Henan Kelong NewEnergy Co., Ltd., Xinxiang, China) was used instead of NMC333, and additive was not added. A positive electrode slurry was prepared by mixing 91 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), and 4 wt. % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 55 wt. %. The slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Example 15 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 12.7 Ah. Test result of cyclability performance is shown in Table 2 below and FIG. 10.
  • Example 16
  • A pouch cell was prepared in the same manner as in Examples 1 and 2, except that cathode material LiNi0.6Mn0.2Co0.2O2 (NMC622) (obtained from Hunan Rui Xiang New Material Co., Ltd., Changsha, China) was used instead of NMC333, and additive was not added. A positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), and 5 wt. % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 60 wt. %. The slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Example 16 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10 Ah. Test result of cyclability performance is shown in Table 2 below and FIG. 11.
  • Example 17
  • A pouch cell was prepared in the same manner as in Examples 1 and 2, except that cathode material Li1.0Ni0.8Co0.15Al0.05O2 (NCA) (obtained from Hunan Rui Xiang New Material Co., Ltd., Changsha, China) was used instead of NMC333, and additive was not added. A positive electrode slurry was prepared by mixing 91 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), and 4 wt. % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 55 wt. %. The slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Example 17 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10 Ah. Test result of cyclability performance is shown in Table 2 below and FIG. 12.
  • Example 18
  • A pouch cell was prepared in the same manner as in Examples 13 and 14, except that cathode material LiNi0.5Mn0.3Co0.2O2 (NMC532) (obtained from Hunan Rui Xiang New Material Co. Ltd., Changsha, China) was used instead of LiCoO2; alginic acid sodium salt (sodium alginate, obtained from Aladdin Industries Corporation, China) and polyacrylonitrile were used instead of polyacrylonitrile as a cathode binder material; and additive was not added. A positive electrode slurry was prepared by mixing 88 wt. % pre-treated active battery electrode material, 6 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), 2.5 wt. % alginic acid sodium salt, and 3.5 wt. % polyacrylonitrile (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 20 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Example 18 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10.7 Ah. Test result of cyclability performance is shown in Table 2 below and FIG. 13.
  • Comparative Example 1
  • A pouch cell was prepared in the same manner as in Examples 13 and 14, except that 1.5 wt. % carboxymethyl cellulose (CMC, BSH-12, DKS Co. Ltd., Japan) and 3.5 wt. % SBR (AL-2001, NIPPON A&L INC., Japan) were used instead of 5 wt. % polyacrylonitrile as a cathode binder material, and 0.01 wt. % solution of acetic acid in water was used instead of a mixture of H2O and ethanol when pre-treating the cathode material. A particulate cathode material LiCoO2 (obtained from Xiamen Tungsten CO. Ltd., China) was added to a stirring 0.01 wt. % solution of acetic acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 2% by weight. The pH of the suspension was measured using a pH meter and the pH was about 3.4. The suspension was further stirred at room temperature for 1 hour. Then the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material. A positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black, 1.5 wt. % carboxymethyl cellulose and 3.5 wt. % SBR in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 30 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Comparative Example 1 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 9.1 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 14.
  • Comparative Example 2
  • A pouch cell was prepared in the same manner as in Comparative Example 1, except that 2 wt. % carboxymethyl cellulose (CMC, BSH-12, DKS Co. Ltd., Japan) and 3 wt. % polyvinyl alcohol (PVA) (obtained from The Nippon Synthetic Chemical Industry Co., Ltd., Japan) were used instead of 1.5 wt. % carboxymethyl cellulose and 3.5 wt. % SBR as a cathode binder material. A positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black, 2 wt. % carboxymethyl cellulose and 3 wt. % PVA in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was homogenized by a planetary stirring mixer (200 L mixer, Chienemei Industry Co. Ltd., China) for 6 hours operated at a stirring speed of 30 rpm and a dispersing speed of 1500 rpm to obtain a homogenized slurry. The formulation of Comparative Example 2 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 8.2 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 15.
  • Comparative Example 3
  • A pouch cell was prepared in the same manner as in Examples 13 and 14, except that ball mill was used instead of planetary mixer as a homogenizer when preparing the positive electrode slurry, and 0.01 wt. % solution of acetic acid in water was used instead of a mixture of H2O and ethanol when pre-treating the cathode material. A particulate cathode material LiCoO2 (obtained from Xiamen Tungsten CO. Ltd., China) was added to a stirring 0.01 wt. % solution of acetic acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 2% by weight. The pH of the suspension was measured using a pH meter and the pH was about 3.4. The suspension was further stirred at room temperature for 1 hour. Then the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material. A positive electrode slurry was prepared by mixing 90 wt. % pre-treated active battery electrode material, 5 wt. % carbon black (SuperP; Timcal Ltd, Bodio, Switzerland), and 5 wt. % polyacrylonitrile (PAN) (LA 132, Chengdu Indigo Power Sources Co., Ltd., China) in deionized water to form a slurry having a solid content of 50 wt. %. The slurry was homogenized in a 500 mL container in a planetary-type ball mill (Changsha MITR Instrument & Equipment Co. Ltd., China) with thirty (too many?) zirconium oxide (ZrO2) balls (fifteen 5 mm and fifteen 15 mm) for 3 hours operated at a rotation speed of 150 rpm and spinning speed of 250 rpm to obtain a homogenized slurry. The formulation of Comparative Example 3 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 9.9 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 16.
  • Comparative Example 4
  • A pouch cell was prepared in the same manner as in Comparative Example 1, except that 5 wt. % polyacrylonitrile were used instead of 1.5 wt. % carboxymethyl cellulose and 3.5 wt. % SBR as a cathode binder material. The formulation of Comparative Example 4 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10.1 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 17.
  • Comparative Example 5
  • A pouch cell was prepared in the same manner as in Example 15, except that 0.01 wt. % solution of citric acid in water was used instead of a mixture of H2O and ethanol when pre-treating the cathode material. A particulate cathode material NMC811 was added to a stirring 0.01 wt. % solution of citric acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 2% by weight. The pH of the suspension was measured using a pH meter and the pH was about 3.4. The suspension was further stirred at room temperature for 1 hour. Then the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material. The formulation of Comparative Example 5 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 11.4 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 18.
  • Comparative Example 6
  • A pouch cell was prepared in the same manner as in Example 15, except that the cathode material was not pre-treated. The formulation of Comparative Example 6 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 12.5 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 19.
  • Comparative Example 7
  • A pouch cell was prepared in the same manner as in Example 11, except that 0.01 wt. % solution of citric acid in water was used instead of a mixture of H2O and iso-propanol when pre-treating the cathode material. A particulate cathode material C-S LNMgO was added to a stirring 0.01 wt. % solution of citric acid in water (obtained from Aladdin Industries Corporation, China) at room temperature to form a suspension having a solid content of about 2% by weight. The pH of the suspension was measured using a pH meter and the pH was about 3.6. The suspension was further stirred at room temperature for 1 hour. Then the suspension was separated and dried by a 2.45 GHz microwave dryer (ZY-4HO, obtained from Zhiya Industrial Microwave Equipment Co., Ltd., Guangdong, China) at 750 W for 5 minutes to obtain a pre-treated active battery electrode material. The formulation of Comparative Example 7 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 20.
  • Comparative Example 8
  • A pouch cell was prepared in the same manner as in Example 13, except that 1.5 wt. % carboxymethyl cellulose (CMC, BSH-12, DKS Co. Ltd., Japan) and 3.5 wt. % SBR (AL-2001, NIPPON A&L INC., Japan) were used instead of 5 wt. % polyacrylonitrile as an anode binder material. The formulation of Comparative Example 8 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 11.2 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 21.
  • Comparative Example 9
  • A pouch cell was prepared in the same manner as in Example 13, except that 5 wt. % polyvinylidene fluoride (PVDF; Solef® 5130, obtained from Solvay S.A., Belgium) was used instead of 5 wt. % polyacrylonitrile as an anode binder material; and N-methyl-2-pyrrolidone (NMP; purity of ≧99%, Sigma-Aldrich, USA) was used instead of deionized water as a solvent. A negative electrode slurry was prepared by mixing 90 wt. % hard carbon (HC; 99.5% purity, Ruifute Technology Ltd., Shenzhen, Guangdong, China), 5 wt. % carbon black and 5 wt. % PVDF in NMP to form a slurry having a solid content of 50 wt. %. The slurry was coated onto both sides of a copper foil having a thickness of 9 μm using a transfer coater with an area density of about 15 mg/cm2. The coated films on the copper foil were dried at about 87° C. for 8 minute by a 24-meter-long conveyor hot air dryer operated at a conveyor speed of about 3 meter/minute to obtain a negative electrode. The formulation of Comparative Example 9 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10.4 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 22.
  • Comparative Example 10
  • A pouch cell was prepared in the same manner as in Example 13, except that a vacuum oven (HSZK-6050, Shanghai Hasuc Instrument Manufacture Co., Ltd., China) was used instead of a microwave dryer for drying the pre-treated cathode material. The pre-treated cathode material was dried in a vacuum oven at 88° C. for 8 hours. The formulation of Comparative Example 10 is shown in Table 1 below.
  • The cell was tested galvanostatically at a current density of C/2 at 25° C. on a battery tester between 3.0 V and 4.2 V. The nominal capacity was about 10.3 Ah.
  • The cyclability performance of the pouch cell was tested by charging and discharging at a constant current rate of 1 C between 3.0 V and 4.2 V. Test result of cyclability performance is shown in Table 2 below and FIG. 23.
  • TABLE 1
    Cathode Pre- Cathode slurry Anode slurry
    Example material treatment Binder Solvent Homogenizer Binder Solvent
    Example 1 NMC333 H2O/ PAN H2O Planetary PAN H2O
    ethanol mixer
    Example 3 LMO Acetic PAN H2O Ultrasonic PAN H2O
    acid flow cell
    Example 5 NMC333 H2O PAN H2O Ultrasonic PAN H2O
    flow cell
    Example 7 LiFePO4 Acetic PAN H2O Ultrasonic PAN H2O
    acid flow cell
    Example 9 C—S NMC532 H2O/ PAN H2O Planetary PAN H2O
    methanol mixer
    Example 11 C—S LNMgO H2O/iso- PAN H2O Planetary PAN H2O
    propanol mixer
    Example 13 LiCoO2 H2O/ PAN H2O Planetary PAN H2O
    ethanol mixer
    Example 15 NMC811 H2O/ PAN H2O Planetary PAN H2O
    ethanol mixer
    Example 16 NMC622 H2O/ PAN H2O Planetary PAN H2O
    ethanol mixer
    Example 17 NCA H2O/ PAN H2O Planetary PAN H2O
    ethanol mixer
    Example 18 NMC532 H2O/ Alginic H2O Planetary PAN H2O
    ethanol acid + mixer
    PAN
    Comparative LiCoO2 Acetic CMC + H2O Planetary PAN H2O
    Example 1 acid SBR mixer
    Comparative LiCoO2 Acetic CMC + H2O Planetary PAN H2O
    Example 2 acid PVA mixer
    Comparative LiCoO2 Acetic PAN H2O Ball mill PAN H2O
    Example 3 acid
    Comparative LiCoO2 Acetic PAN H2O Planetary PAN H2O
    Example 4 acid mixer
    Comparative NMC811 Citric PAN H2O Planetary PAN H2O
    Example 5 acid mixer
    Comparative NMC811 / PAN H2O Planetary PAN H2O
    Example 6 mixer
    Comparative C—S LNMgO Citric PAN H2O Planetary PAN H2O
    Example 7 acid mixer
    Comparative LiCoO2 H2O/ PAN H2O Planetary CMC + H2O
    Example 8 ethanol mixer SBR
    Comparative LiCoO2 H2O/ PAN H2O Planetary PVDF NMP
    Example 9 ethanol mixer
    1Comparative LiCoO2 H2O/ PAN H2O Planetary PAN H2O
    Example 10 ethanol mixer
    Note:
    1The pre-treated cathode material was dried in a vacuum oven.
  • The cyclability performance of the pouch cells of Examples 1-18 and Comparative Examples 1-10 was tested by charging and discharging at a constant current rate of 1 C. The capacity retentions of the cells were measured during cycling and estimated by extrapolation based on the plotted results. The measured and estimated values are shown in Table 2 below.
  • TABLE 2
    Estimated values
    Measured values by extrapolation
    Capacity Capacity
    Example No. of Cycle retention (%) No. of Cycle retention (%)
    Example 2 450 95.6 2,000 80.4
    Example 4 2,000 77   / /
    Example 6 560 94.8 2,000 81.4
    Example 8 3,000 82.6 / /
    Example 10 361 98.6 2,000 92.2
    Example 12 385 98.1 2,000 90.1
    Example 14 576 94.4 2,000 80.6
    Example 15 476 95.7 2,000 81.9
    Example 16 497 94.4 2,000 77.5
    Example 17 553 93.9 2,000 77.9
    Example 18 522 93.1 2,000 73.6
    Comparative 85 78.7 / /
    Example 1
    Comparative 113 70.4 / /
    Example 2
    Comparative 506 92.1 2000 70.0
    Example 3
    Comparative 514 93.4 2,000 74.3
    Example 4
    Comparative 466 90.1 2,000 57.5
    Example 5
    Comparative 485 93.8 2,000 74.4
    Example 6
    Comparative 413 92.6 2,000 64.2
    Example 7
    Comparative 508 95.1 2,000 80.7
    Example 8
    Comparative 606 94.3 2,000 81.2
    Example 9
    Comparative 472 94.8 2,000 78.0
    Example 10
  • The comparison battery cells had a discharge capacity retention less than 80% after only less than 100 cycles when water-soluble binders such as CMC, SBR and PVA were used for preparing the aqueous slurry. In contrast, the batteries of Examples 1-18 had a discharge capacity retention of at least 86% after 1000 cycles.
  • This excellent cyclability indicates that battery cell made of cathode and anode electrodes prepared by the method disclosed herein can achieve comparable or even better stability compared to battery cell made of cathode and anode electrodes prepared by conventional method involving the use of organic solvents.
  • While the invention has been described with respect to a limited number of embodiments, the specific features of one embodiment should not be attributed to other embodiments of the invention. In some embodiments, the methods may include numerous steps not mentioned herein. In other embodiments, the methods do not include, or are substantially free of, any steps not enumerated herein. Variations and modifications from the described embodiments exist. The appended claims intend to cover all those modifications and variations as falling within the scope of the invention.

Claims (19)

1. A method of preparing a battery electrode, comprising the steps of:
1) pre-treating a cathode material in a first aqueous solution having a pH from about 7.0 to about 8.0 to form a first suspension;
2) drying the first suspension to obtain a pre-treated cathode material;
3) dispersing the pre-treated cathode material, a conductive agent, and a binder material in a second aqueous solution to form a slurry;
4) homogenizing the slurry by a homogenizer to obtain a homogenized slurry;
5) applying the homogenized slurry on a current collector to form a coated film on the current collector; and
6) drying the coated film on the current collector to form the battery electrode;
wherein the first aqueous solution is water, alcohol, or a mixture of water and alcohol; and
wherein the cathode material is a lithium transition metal oxide or a core-shell composite comprising a core comprising a lithium transition metal oxide and a shell formed by coating the surface of the core with a transition metal oxide or lithium transition metal oxide; wherein each of the lithium transition metal oxides is independently selected from the group consisting of LiCoO2, LiNiO2, LiNixMnyO2, Li1+zNixMnyCo1-x-yO2, LiNixCoyAlzO2, LiV2O5, LiTiS2, LiMoS2, LiMnO2, LiCrO2, LiMn2O4, LiFeO2, LiFePO4, and combinations thereof; wherein each x is independently from 0.3 to 0.8; each y is independently from 0.1 to 0.45; and each z is independently from 0 to 0.2; and wherein the transition metal oxide is selected from the group consisting of Fe2O3, MnO2, Al2O3, MgO, ZnO, TiO2, La2O3, CeO2, SnO2, ZrO2, RuO2, and combinations thereof.
2. The method of claim 1, wherein the cathode material is a nickel-rich cathode material selected from NMC532, NMC622, NMC811, or Li1.0Ni0.8Co0.15Al0.05O2.
3. The method of claim 1, wherein the first suspension is stirred for a time period from about 2 minutes to about 12 hours.
4. The method of claim 1, wherein the first aqueous solution is alcohol or a mixture of water and alcohol and wherein the alcohol is selected from ethanol, isopropanol, methanol, n propanol, t-butanol, or a combination thereof.
5. The method of claim 1, wherein the first suspension is dried by a double-cone vacuum dryer, a microwave dryer, or a microwave vacuum dryer.
6. The method of claim 1, wherein the conductive agent is selected from the group consisting of carbon, carbon black, graphite, expanded graphite, graphene, graphene nanoplatelets, carbon fibres, carbon nano-fibers, graphitized carbon flake, carbon tubes, carbon nanotubes, activated carbon, mesoporous carbon, and combinations thereof.
7. The method of claim 1, wherein the conductive agent is pre-treated in a basic solution for a time period from about 30 minutes to about 2 hours and wherein the basic solution comprises a base selected from the group consisting of H2O2, LiOH, NaOH, KOH, NH3.H2O, Be(OH)2, Mg(OH)2, Ca(OH)2, Li2CO3, Na2CO3, NaHCO3, K2CO3, KHCO3, and combinations thereof.
8. The method of claim 1, wherein the conductive agent is dispersed in a third aqueous solution to form a second suspension prior to step 3).
9. The method of claim 1, wherein the binder material is selected from the group consisting of styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), acrylonitrile copolymer, polyacrylic acid (PAA), polyacrylonitrile, poly(vinylidene fluoride)-hexafluoropropene (PVDF-HFP), latex, a salt of alginic acid, and combinations thereof.
10. The method of claim 9, wherein the binder material is the salt of alginic acid and wherein the salt of alginic acid comprises a cation selected from Na, Li, K, Ca, NH4, Mg, Al, or a combination thereof.
11. The method of claim 8, wherein the binder material is dissolved in a fourth aqueous solution to form a resulting solution prior to step 3).
12. The method of claim 11, wherein each of the first, the second, third and fourth aqueous solutions independently is purified water, pure water, de-ionized water, distilled water, or a combination thereof.
13. The method of claim 1, wherein the homogenizer is a stirring mixer, a planetary stirring mixer, a blender, a mill, an ultrasonicator, a rotor-stator homogenizer, or a homogenizer.
14. The method of claim 13, wherein the ultrasonicator is a probe-type ultrasonicator or an ultrasonic flow cell.
15. The method of claim 1, wherein the homogenized slurry is applied on the current collector using a doctor blade coater, a slot-die coater, a transfer coater, or a spray coater.
16. The method of claim 1, wherein the coated film is dried for a time period from about 1 minute to about 30 minutes at a temperature from about 45° C. to about 100° C.
17. The method of claim 1, wherein the cathode material is the core-shell composite comprising the core comprising the lithium transition metal oxide and the shell formed by coating the surface of the core with the lithium transition metal oxide, and wherein each of the lithium transition metal oxides in the core and the shell is independently doped with a dopant selected from the group consisting of Fe, Ni, Mn, Al, Mg, Zn, Ti, La, Ce, Sn, Zr, Ru, Si, Ge, and combinations thereof.
18. The method of claim 1, wherein the cathode material is the core-shell composite, and wherein the diameter of the core is from about 5 μm to about 45 μm and the thickness of the shell is from about 3 μm to about 15 μm
19. The method of claim 1, wherein the electrode is able to retain at least about 83% of its initial storage capacity after 1,000 cycles at a rate of 1 C at room temperature in a full cell.
US15/410,749 2016-01-18 2017-01-19 Method of preparing battery electrodes Abandoned US20170207443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/410,749 US20170207443A1 (en) 2016-01-18 2017-01-19 Method of preparing battery electrodes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662279841P 2016-01-18 2016-01-18
PCT/CN2016/109723 WO2017124859A1 (en) 2016-01-18 2016-12-13 Method of preparing battery electrodes
US15/410,749 US20170207443A1 (en) 2016-01-18 2017-01-19 Method of preparing battery electrodes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109723 Continuation WO2017124859A1 (en) 2016-01-18 2016-12-13 Method of preparing battery electrodes

Publications (1)

Publication Number Publication Date
US20170207443A1 true US20170207443A1 (en) 2017-07-20

Family

ID=59314233

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/220,404 Active US10361423B2 (en) 2016-01-18 2016-07-27 Method of preparing battery electrodes
US15/404,227 Active US9991504B2 (en) 2016-01-18 2017-01-12 Method of preparing cathode for secondary battery
US15/410,749 Abandoned US20170207443A1 (en) 2016-01-18 2017-01-19 Method of preparing battery electrodes
US16/032,087 Abandoned US20180323421A1 (en) 2016-01-18 2018-07-11 Method of manufacturing lithium-ion battery cathode

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/220,404 Active US10361423B2 (en) 2016-01-18 2016-07-27 Method of preparing battery electrodes
US15/404,227 Active US9991504B2 (en) 2016-01-18 2017-01-12 Method of preparing cathode for secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/032,087 Abandoned US20180323421A1 (en) 2016-01-18 2018-07-11 Method of manufacturing lithium-ion battery cathode

Country Status (17)

Country Link
US (4) US10361423B2 (en)
EP (3) EP3408883B1 (en)
JP (2) JP6668486B2 (en)
KR (3) KR102135603B1 (en)
CN (3) CN107342392B (en)
AU (2) AU2016387660C1 (en)
BR (2) BR112018012420B8 (en)
CA (2) CA3006869C (en)
DK (1) DK3375028T3 (en)
ES (2) ES2979030T3 (en)
HK (4) HK1243550A1 (en)
MX (2) MX2018008224A (en)
MY (2) MY194088A (en)
PL (2) PL3408883T3 (en)
SG (3) SG11201911711WA (en)
TW (2) TWI678834B (en)
WO (2) WO2017124859A1 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819096A (en) * 2017-10-12 2018-03-20 合肥国轩高科动力能源有限公司 Preparation method of normal-temperature cycle improved ternary lithium ion battery
US20180083261A1 (en) * 2016-09-22 2018-03-22 Grst International Limited Method of drying electrode assemblies
CN108258334A (en) * 2018-01-19 2018-07-06 北京大学深圳研究生院 A kind of composite and flexible electrode, preparation method and application
CN108321376A (en) * 2018-02-08 2018-07-24 合肥工业大学 A kind of N doping porous carbon nanofiber@tin dioxide lithium ion battery negative pole materials and preparation method thereof
CN108371951A (en) * 2017-12-27 2018-08-07 浙江笨鸟科技有限公司 A kind of mesoporous support type air cleaning catalyst and preparation method thereof
CN108417800A (en) * 2018-03-07 2018-08-17 深圳市本征方程石墨烯技术股份有限公司 A kind of graphene coated graphite/metal composite granule negative material and preparation method
CN108545783A (en) * 2018-04-03 2018-09-18 兰州金川新材料科技股份有限公司 A kind of preparation method for lithium ion cell anode material lithium cobaltate
CN108554434A (en) * 2018-04-16 2018-09-21 复旦大学 Metal@graphitized carbons/graphene complex electrocatalyst materials and preparation method thereof
CN108842303A (en) * 2018-06-27 2018-11-20 华南理工大学 Boehmite/polyacrylonitrile composite nano fiber diaphragm and the preparation method and application thereof
CN108878821A (en) * 2018-06-19 2018-11-23 合肥国轩高科动力能源有限公司 High-nickel ternary positive electrode material with lanthanum oxide coated surface and preparation method thereof
CN108878767A (en) * 2018-06-22 2018-11-23 中航锂电(江苏)有限公司 A kind of high capacity lithium ion battery anode sizing agent and its preparation method and application
CN109161425A (en) * 2018-08-14 2019-01-08 奇瑞汽车股份有限公司 Lube oil additive and preparation method thereof
CN109301207A (en) * 2018-09-27 2019-02-01 北京理工大学 A kind of surface layer doping Ce3+And surface layer coats CeO2NCM tertiary cathode material and preparation method thereof
CN109465009A (en) * 2018-11-01 2019-03-15 深圳永清水务有限责任公司 Catalyst and its preparation method and application for catalytic wet hydrogen peroxide oxidation method
US10270104B2 (en) * 2014-08-08 2019-04-23 Sumitomo Electric Industries, Ltd. Positive electrode for sodium ion secondary battery and sodium ion secondary battery
CN109704415A (en) * 2018-12-26 2019-05-03 惠州亿纬锂能股份有限公司 A kind of lithium-rich manganese-based presoma, and preparation method thereof and lithium-rich manganese-based anode material
CN109704414A (en) * 2018-12-19 2019-05-03 河北省科学院能源研究所 A kind of preparation method of the nickel cobalt lithium aluminate cathode material of cation doping
CN109841822A (en) * 2019-03-19 2019-06-04 中南大学 A kind of preparation method of the modified monocrystalline tertiary cathode material of lithium ion battery
CN109921010A (en) * 2019-03-12 2019-06-21 四川纳创时代新能源科技有限公司 A kind of magnesium elements doping nickelic ternary material of NCM622 type and preparation method thereof
CN110048103A (en) * 2019-04-15 2019-07-23 陕西科技大学 A kind of in-stiu coating lithium electricity monocrystalline anode nanometer sheet material and preparation method thereof
CN110112375A (en) * 2019-03-22 2019-08-09 南京大学 The double transition metal manganese base layered cathode materials of sodium-ion battery
CN110157932A (en) * 2019-04-15 2019-08-23 中国航发北京航空材料研究院 A kind of preparation method of the graphene Modified Cu base electric contact material based on fabricated in situ
CN110184456A (en) * 2018-07-24 2019-08-30 重庆东群科技有限公司 A kind of low-grade utilization method containing zinc ore crude
CN110436427A (en) * 2019-07-05 2019-11-12 合肥国轩高科动力能源有限公司 Preparation method of composite structure ferric orthophosphate for high-capacity high-compaction lithium iron phosphate
CN110783552A (en) * 2019-11-25 2020-02-11 华南理工大学 Carbon-coated titanium-doped tin dioxide material and preparation method and application thereof
CN110972482A (en) * 2018-07-24 2020-04-07 重庆东群科技有限公司 Beneficiation method for low-grade zinc-containing raw ore
CN111082023A (en) * 2019-12-30 2020-04-28 山东精工电子科技有限公司 Preparation method and application of positive electrode material with high-conductivity tubular network structure
US10777843B2 (en) * 2018-10-31 2020-09-15 Nissan North America, Inc. Regenerated lithium-ion cathode materials having modified surfaces
US10795239B2 (en) 2017-10-17 2020-10-06 Samsung Electronics Co., Ltd. Drainage structure and electronic device having same
CN111788723A (en) * 2018-02-26 2020-10-16 尤米科尔公司 Positive electrode slurry for lithium ion battery
CN111900508A (en) * 2020-07-30 2020-11-06 安徽绿沃循环能源科技有限公司 Method for recycling decommissioned ternary batteries
CN111900391A (en) * 2020-06-19 2020-11-06 温州大学新材料与产业技术研究院 Lithium ion battery cathode slurry and preparation method thereof
CN112072106A (en) * 2020-08-28 2020-12-11 浙江大学 Conductive adhesive material, preparation method thereof, negative electrode plate and lithium ion battery
CN112447961A (en) * 2020-12-12 2021-03-05 安徽嘉誉伟丰机电科技有限公司 Preparation method of high-specific-capacity lithium battery positive electrode material
US20220131153A1 (en) * 2019-03-29 2022-04-28 Tianmulake Excellent Anode Materials Co., Ltd. Ionic conductor slurry, preparation method therefor and application thereof
US11437609B2 (en) 2017-10-20 2022-09-06 Lg Chem, Ltd. Method of preparing positive electrode active material for secondary battery and secondary battery using the same
CN117720086A (en) * 2024-02-07 2024-03-19 湖南裕能新能源电池材料股份有限公司 Lithium iron manganese phosphate base material, positive electrode material, preparation method of positive electrode material and lithium battery
US11955631B2 (en) * 2018-10-04 2024-04-09 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery each containing composite cathode active material, and method of preparing composite cathode active material

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361423B2 (en) * 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes
CN107579247B (en) * 2017-09-17 2021-09-28 泰州飞荣达新材料科技有限公司 Graphene composite lithium cobaltate positive electrode material and preparation method thereof
WO2019078672A2 (en) * 2017-10-20 2019-04-25 주식회사 엘지화학 Method for producing positive electrode active material for secondary battery, and secondary battery using same
US11283068B2 (en) * 2019-12-20 2022-03-22 Enevate Corporation Electrochemically active materials and methods of preparing the same
US20190190060A1 (en) * 2017-12-19 2019-06-20 3M Innovative Properties Company Electrochemical cells
CN111542947A (en) * 2018-01-11 2020-08-14 株式会社Lg化学 Positive electrode slurry composition, positive electrode manufactured using the same, and battery including the same
PL3567658T3 (en) 2018-05-09 2021-06-14 Haldor Topsøe A/S Doped lithium positive electrode active material and process for manufacture thereof
CN108832111B (en) * 2018-06-26 2020-06-23 西南交通大学 LiNi0.8Co0.15Al0.05O2Positive electrode material and preparation method thereof
DE102018128902A1 (en) * 2018-08-08 2020-02-13 VON ARDENNE Asset GmbH & Co. KG method
CN109179512B (en) * 2018-09-13 2020-12-08 郑忆依 Treatment method of lithium iron phosphate waste
CN110970619B (en) * 2018-09-30 2021-09-14 山东欧铂新材料有限公司 Method for preparing graphene nanosheet by physical stripping method, aqueous conductive slurry for lithium ion battery cathode and preparation method of aqueous conductive slurry
WO2020091515A1 (en) * 2018-11-02 2020-05-07 주식회사 엘지화학 Lithium secondary battery
KR102567964B1 (en) * 2018-11-02 2023-08-17 주식회사 엘지에너지솔루션 Lithium secondary battery
CN109686979B (en) * 2018-12-12 2021-07-06 陕西煤业化工技术研究院有限责任公司 Silicon-carbon anode material slurry and preparation method thereof
WO2020119431A1 (en) * 2018-12-14 2020-06-18 宁德时代新能源科技股份有限公司 Lithium ion battery
CN109888287A (en) * 2019-01-25 2019-06-14 浙江野马电池股份有限公司 Alkaline manganese battery cathode additive containing wetting dispersant
CN109698040B (en) * 2019-01-29 2020-09-22 西安工程大学 Water-based electronic paste and preparation method thereof
JP2020123526A (en) * 2019-01-31 2020-08-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method for electrode thereof
WO2020248188A1 (en) * 2019-06-13 2020-12-17 Greenovelty Energy Co. Limited Method of preparing cathode for secondary battery
CN110148751B (en) * 2019-06-19 2021-01-12 桑德新能源技术开发有限公司 Silicon-carbon cathode and preparation method thereof
US11108048B2 (en) 2019-07-31 2021-08-31 Ford Global Technologies, Llc Anode binder composition for lithium ion battery performance
CN110571422A (en) * 2019-09-16 2019-12-13 广州鹏辉能源科技股份有限公司 Modified high-nickel anode material and preparation method thereof, high-nickel anode slurry, battery cell, lithium ion battery and power utilization equipment
TWI724715B (en) 2019-12-27 2021-04-11 財團法人工業技術研究院 Ion-conducting material, core-shell structure containing the same, electrode prepared by the core-shell structure and metal-ion battery empolying the electrode
EP4088331A1 (en) * 2020-03-20 2022-11-16 GRST International Limited Cathode and cathode slurry for secondary battery
WO2021184392A1 (en) * 2020-03-20 2021-09-23 Guangdong Haozhi Technology Co. Limited Method of preparing cathode for secondary battery
EP4122030A4 (en) * 2020-03-20 2024-06-19 GRST International Limited Method of preparing cathode for secondary battery
GB202004492D0 (en) * 2020-03-27 2020-05-13 Johnson Matthey Plc Cathode material and process
CN111362369B (en) * 2020-03-31 2021-02-19 南京理工大学 Lead dioxide-carbon nano tube adsorptive submicron electrochemical reactor and preparation method and application thereof
JP6870769B1 (en) * 2020-08-31 2021-05-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical elements, slurry composition for electrochemical element electrodes and manufacturing method thereof, electrodes for electrochemical elements, and electrochemical elements
CN117525418A (en) * 2020-09-28 2024-02-06 Sk新能源株式会社 Electrode for secondary battery having improved rapid charge performance, method of manufacturing the same, and secondary battery including the same
CN112382752A (en) * 2020-11-04 2021-02-19 广州汽车集团股份有限公司 High-nickel ternary aqueous positive electrode slurry, preparation method, positive plate, lithium ion battery cell, lithium ion battery pack and application thereof
KR102589078B1 (en) * 2020-11-25 2023-10-12 한국화학연구원 Positive electrode slurry using low boiling point/non-aromatic solvent, secondary battery positive electrode containing the same, and method for manufacturing the same
DE102020132661A1 (en) 2020-12-08 2022-06-09 Bayerische Motoren Werke Aktiengesellschaft Cathode active material and lithium ion battery having the cathode active material
WO2022126253A1 (en) * 2020-12-14 2022-06-23 HYDRO-QUéBEC Electrode materials comprising a lamellar metal oxide coated with a tunnel-type metal oxide, electrodes comprising same and use thereof in electrochemistry
CN114790041A (en) 2021-01-26 2022-07-26 埃科莱布美国股份有限公司 Antifreezing dispersant and manufacturing process thereof
CN113036090A (en) * 2021-03-15 2021-06-25 上海大学 Oxide-modified ternary positive electrode material, preparation method thereof and secondary battery
CN113130878B (en) * 2021-04-02 2022-11-11 中北大学 Preparation method and application of boron-doped silicon-based negative electrode material
WO2022253304A1 (en) * 2021-06-02 2022-12-08 Ppg Industries Ohio, Inc. Method of manufacturing an electrode using a continuous coating line
CN113363492B (en) * 2021-06-24 2022-11-01 巴斯夫杉杉电池材料有限公司 Composite coating modified high-nickel NCA positive electrode material and preparation method thereof
CN113500041A (en) * 2021-07-30 2021-10-15 蜂巢能源科技有限公司 Washing and drying device, washing and drying method and preparation method of ternary precursor
CN113662011B (en) * 2021-09-09 2022-08-02 江苏盛世基业环保科技有限公司 Surface long-acting antibacterial disinfectant, preparation method and application thereof
TR2021014298A2 (en) * 2021-09-13 2021-09-21 Salty Enerji Depolama Sanayi Ve Ticaret Anonim Sirketi SALT SODIUM ION ANODE AND PRODUCTION METHOD
US20230093081A1 (en) * 2021-09-16 2023-03-23 GM Global Technology Operations LLC Positive electrodes including electrically conductive carbon additives
DE102022112527A1 (en) 2022-05-18 2023-11-23 Volkswagen Aktiengesellschaft Method and device for producing a separator for a battery cell
CN115207359B (en) * 2022-09-13 2022-12-20 广州云通锂电池股份有限公司 Lithium ion battery anode slurry, preparation method thereof and lithium ion battery
DE102022212170A1 (en) 2022-11-16 2024-05-16 Volkswagen Aktiengesellschaft Process for producing a slurry for a cathode and a battery cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050175903A1 (en) * 2003-08-29 2005-08-11 Kim Ju-Yup Positive electrode having polymer film and lithium-sulfur battery employing the positive electrode
US20120064407A1 (en) * 2011-04-14 2012-03-15 International Battery, Inc. Polymer acids as ph-reducing binder or agent for aqueous lithium-ion batteries
US20140363746A1 (en) * 2013-06-10 2014-12-11 Hui He Lithium secondary batteries containing non-flammable quasi-solid electrolyte

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654005B2 (en) * 1998-09-18 2005-06-02 新神戸電機株式会社 Method for producing positive electrode plate for lithium ion secondary battery
JP2003017054A (en) 2001-06-29 2003-01-17 Sony Corp Positive electrode active material, and manufacturing method of non-aqueous electrolyte battery
CN1227757C (en) 2002-11-28 2005-11-16 宁波华天锂电池科技有限公司 Process for making electrode binding sizing agent of lithium ion secondary cell
JP2004342519A (en) 2003-05-16 2004-12-02 M & G Eco Battery Institute Co Ltd Battery using paste type thin electrode and its manufacturing method
JP2004355996A (en) 2003-05-30 2004-12-16 Hitachi Maxell Ltd Manufacturing method of positive electrode for non-aqueous secondary battery
JP4608862B2 (en) * 2003-09-05 2011-01-12 日本ゼオン株式会社 Method for producing slurry composition for lithium ion secondary battery electrode
CN101043075B (en) * 2004-06-07 2010-12-08 松下电器产业株式会社 Electrode plate of positive electrode for non-aqueous electrolyte secondary battery and manufacturing method thereof
CN100420071C (en) 2005-02-04 2008-09-17 比亚迪股份有限公司 Cell positive electrode and lithium ion cell adopting said positive electrode and preparing method
JP5008850B2 (en) * 2005-09-15 2012-08-22 住友電工ファインポリマー株式会社 Tetrafluoroethylene resin molded body, stretched tetrafluoroethylene resin molded body, manufacturing method thereof, composite, filter, impact deformation absorbing material, and sealing material
JP2007176767A (en) 2005-12-28 2007-07-12 Toray Ind Inc Purifying method for composition containing carbon nanotube
CA2622675A1 (en) 2007-02-28 2008-08-28 Sanyo Electric Co., Ltd. Method of producing active material for lithium secondary battery, method of producing electrode for lithium secondary battery, method of producing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
JP2009032656A (en) * 2007-02-28 2009-02-12 Sanyo Electric Co Ltd Method of manufacturing active material for lithium secondary battery, method of manufacturing electrode for lithium secondary battery, method of manufacturing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
JP5153200B2 (en) 2007-04-27 2013-02-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2009064564A (en) 2007-09-04 2009-03-26 Sanyo Electric Co Ltd Manufacturing method for positive electrode for nonaqueous electrolyte battery, slurry used for the method, and nonaqueous electrolyte battery
TWI466370B (en) 2008-01-17 2014-12-21 A123 Systems Inc Mixed metal olivine electrode materials for lithium ion batteries
JP4636341B2 (en) * 2008-04-17 2011-02-23 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
US8859145B2 (en) * 2008-05-23 2014-10-14 The Gillette Company Method of preparing cathode containing iron disulfide for a lithium cell
JP5514734B2 (en) 2008-11-26 2014-06-04 日本製紙株式会社 Carboxymethyl cellulose or its salt for electrode of non-aqueous electrolyte secondary battery, and aqueous solution thereof
CN102804470B (en) 2009-06-09 2015-04-15 夏普株式会社 Redox flow battery
DE102009027446A1 (en) * 2009-07-03 2011-01-05 Evonik Degussa Gmbh Modified polyolefins with a particular property profile, process for their preparation and their use
US20120225199A1 (en) 2010-02-05 2012-09-06 International Battery, Inc. Current collector coating for li-ion battery cells using aqueous binder
US7931985B1 (en) 2010-11-08 2011-04-26 International Battery, Inc. Water soluble polymer binder for lithium ion battery
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
WO2011140150A1 (en) 2010-05-03 2011-11-10 Georgia Tech Research Corporation Alginate-containing compositions for use in battery applications
JP2012022858A (en) * 2010-07-14 2012-02-02 Tokyo Electric Power Co Inc:The Method for manufacturing electrode
WO2012009859A1 (en) * 2010-07-23 2012-01-26 Lam Kwok Fai Microwave dryer and microwave drying method
EP2624341B1 (en) * 2010-09-30 2017-06-14 Asahi Glass Company, Limited Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
KR101350811B1 (en) 2010-11-17 2014-01-14 한양대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
GB2493375A (en) * 2011-08-03 2013-02-06 Leclancha S A Aqueous slurry for battery electrodes
US8956688B2 (en) 2011-10-12 2015-02-17 Ut-Battelle, Llc Aqueous processing of composite lithium ion electrode material
WO2013080938A1 (en) * 2011-11-29 2013-06-06 日本ゼオン株式会社 Electrode for lithium ion secondary battery, lithium ion secondary battery, slurry composition, and method for producing electrode for lithium ion secondary battery
JP5899945B2 (en) * 2012-01-17 2016-04-06 三菱レイヨン株式会社 Method for producing positive electrode slurry for secondary battery, method for producing positive electrode for secondary battery, and method for producing lithium ion secondary battery
US20130183579A1 (en) 2012-01-17 2013-07-18 Seung-Mo Kim Positive active material for rechargeable lithium battery and rechargeable lithium battery including the same
EP2822066A1 (en) * 2012-02-27 2015-01-07 Sumitomo Bakelite Company Limited Method for producing carbon material for negative electrodes of lithium ion secondary batteries, mixture for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN102610830B (en) * 2012-03-26 2015-03-04 龙能科技(苏州)有限公司 Lithium ion battery
JP5630669B2 (en) 2012-06-29 2014-11-26 トヨタ自動車株式会社 Lithium secondary battery
JP5783425B2 (en) * 2012-08-08 2015-09-24 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
US10839227B2 (en) * 2012-08-29 2020-11-17 Conduent Business Services, Llc Queue group leader identification
JP5838934B2 (en) * 2012-08-30 2016-01-06 株式会社デンソー Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN103715429B (en) * 2012-09-28 2016-04-27 王复民 Lithium battery
US10014518B2 (en) * 2012-12-28 2018-07-03 Johnson Controls Technology Company Cathode formed using aqueous slurry
JP2014165131A (en) * 2013-02-27 2014-09-08 Nippon Zeon Co Ltd Method for manufacturing slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, and lithium ion secondary battery
KR102038620B1 (en) * 2013-03-26 2019-10-30 삼성전자주식회사 Anode, lithium battery comprising anode, and preparation method thereof
KR102210264B1 (en) * 2013-05-15 2021-01-29 제온 코포레이션 Binder composition for positive electrodes of lithium ion secondary batteries, slurry composition for positive electrodes of lithium ion secondary batteries and production method therefor, production method for positive electrodes of lithium ion secondary batteries, and lithium ion secondary battery
US9671214B2 (en) * 2013-07-17 2017-06-06 Infineon Technologies Ag Discrete magnetic angle sensor device, a magnetic angle sensor arrangement, a method for generating an angle signal and a method for providing a sensor signal
CN103400978A (en) 2013-08-01 2013-11-20 奇瑞汽车股份有限公司 Method for modifying lithium nickel manganese oxide material, lithium nickel manganese oxide material and lithium ion battery
EP3032619B1 (en) * 2013-08-08 2019-10-09 Industry-Academia Cooperation Group of Sejong University Cathode material for lithium secondary battery, and lithium secondary battery containing same
JP5806271B2 (en) * 2013-09-24 2015-11-10 株式会社豊田自動織機 Negative electrode active material and power storage device
CN103618063B (en) 2013-09-26 2016-05-11 奇瑞新能源汽车技术有限公司 A kind of lithium ion power battery cathode slurry and close paste-making method
CN103545527B (en) * 2013-10-31 2015-08-05 河北洁神新能源科技有限公司 A kind of cell size dispersant, Preparation method and use
CN203731822U (en) 2013-12-24 2014-07-23 湖南兴瑞新材料研究发展有限公司 Microwave drying machine for drying lithium battery positive electrode material
KR102152367B1 (en) * 2014-01-24 2020-09-04 삼성에스디아이 주식회사 Method for manufacturing composite positive active material, composite positive active material obtained thereby, positive electrode and lithium battery containing the material
WO2015119843A1 (en) * 2014-02-04 2015-08-13 The Regents Of The University Of Michigan High performance lithium battery electrodes by self-assembly processing
CN103887556B (en) 2014-03-13 2015-08-19 深圳格林德能源有限公司 A kind of power energy storage polymer Li-ion battery and preparation method
KR101613606B1 (en) * 2014-06-13 2016-04-20 한양대학교 산학협력단 Gas-generating Nanoparticle
US9335989B2 (en) * 2014-07-13 2016-05-10 International Business Machines Corporation Building a pattern to define a topology and application environment using software components and software updates/fixes from external repositories from multiple vendors
US20160019734A1 (en) * 2014-07-15 2016-01-21 Lear Corporation Hands-free trunk release and vehicle entry
US9578070B2 (en) * 2014-07-17 2017-02-21 Cellco Partnersip Method for inserting background audio into voice/video call
US9460577B2 (en) * 2014-07-17 2016-10-04 Hyundai Motor Company Sharing a key for a vehicle
KR101798276B1 (en) * 2014-08-29 2017-11-15 주식회사 엘지화학 Battery module
JP5835446B1 (en) * 2014-10-28 2015-12-24 住友大阪セメント株式会社 Positive electrode material, method for producing positive electrode material, positive electrode and lithium ion battery
CN105261753A (en) 2015-08-31 2016-01-20 无锡市嘉邦电力管道厂 Water-based cathode slurry for lithium-ion battery and preparation method of water-based cathode slurry
US10361423B2 (en) * 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes
CN105762353A (en) 2016-04-08 2016-07-13 远东福斯特新能源有限公司 Lithium-ion battery with high-nickel ternary aqueous positive electrode and preparation method thereof
CN105932226B (en) 2016-05-19 2018-11-13 宁德时代新能源科技股份有限公司 Drying method of battery pole piece
CN106299280B (en) 2016-08-31 2020-05-19 中航锂电(洛阳)有限公司 Preparation method of high-capacity lithium ion battery anode slurry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050175903A1 (en) * 2003-08-29 2005-08-11 Kim Ju-Yup Positive electrode having polymer film and lithium-sulfur battery employing the positive electrode
US20120064407A1 (en) * 2011-04-14 2012-03-15 International Battery, Inc. Polymer acids as ph-reducing binder or agent for aqueous lithium-ion batteries
US20140363746A1 (en) * 2013-06-10 2014-12-11 Hui He Lithium secondary batteries containing non-flammable quasi-solid electrolyte

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Beck US 2009/0186277 A1 *
Chen CN 203731822 U. *
Hidaka US 2012/0225199 A1 *
Kelham WO 2014/001898 A1 *
Kim US 2013/0183579 A1 *
Li US 2013/0108776 A1 *
Liu US 2011/0229760 A1 *
Okamoto JP 2007176767 A. *
Sun and US 2013/0337327 A1 *
Tamaki CN 103400978 *
Yoshie US 2012/0135278 A1 *
Yushin US 2012/0088155 A1 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10270104B2 (en) * 2014-08-08 2019-04-23 Sumitomo Electric Industries, Ltd. Positive electrode for sodium ion secondary battery and sodium ion secondary battery
US20180083261A1 (en) * 2016-09-22 2018-03-22 Grst International Limited Method of drying electrode assemblies
US10199635B2 (en) * 2016-09-22 2019-02-05 Grst International Limited Method of drying electrode assemblies
CN107819096A (en) * 2017-10-12 2018-03-20 合肥国轩高科动力能源有限公司 Preparation method of normal-temperature cycle improved ternary lithium ion battery
US10795239B2 (en) 2017-10-17 2020-10-06 Samsung Electronics Co., Ltd. Drainage structure and electronic device having same
US11437609B2 (en) 2017-10-20 2022-09-06 Lg Chem, Ltd. Method of preparing positive electrode active material for secondary battery and secondary battery using the same
CN108371951A (en) * 2017-12-27 2018-08-07 浙江笨鸟科技有限公司 A kind of mesoporous support type air cleaning catalyst and preparation method thereof
CN108258334A (en) * 2018-01-19 2018-07-06 北京大学深圳研究生院 A kind of composite and flexible electrode, preparation method and application
CN108321376A (en) * 2018-02-08 2018-07-24 合肥工业大学 A kind of N doping porous carbon nanofiber@tin dioxide lithium ion battery negative pole materials and preparation method thereof
CN111788723A (en) * 2018-02-26 2020-10-16 尤米科尔公司 Positive electrode slurry for lithium ion battery
CN108417800A (en) * 2018-03-07 2018-08-17 深圳市本征方程石墨烯技术股份有限公司 A kind of graphene coated graphite/metal composite granule negative material and preparation method
CN108545783A (en) * 2018-04-03 2018-09-18 兰州金川新材料科技股份有限公司 A kind of preparation method for lithium ion cell anode material lithium cobaltate
CN108554434A (en) * 2018-04-16 2018-09-21 复旦大学 Metal@graphitized carbons/graphene complex electrocatalyst materials and preparation method thereof
CN108878821A (en) * 2018-06-19 2018-11-23 合肥国轩高科动力能源有限公司 High-nickel ternary positive electrode material with lanthanum oxide coated surface and preparation method thereof
CN108878767A (en) * 2018-06-22 2018-11-23 中航锂电(江苏)有限公司 A kind of high capacity lithium ion battery anode sizing agent and its preparation method and application
CN108842303A (en) * 2018-06-27 2018-11-20 华南理工大学 Boehmite/polyacrylonitrile composite nano fiber diaphragm and the preparation method and application thereof
CN110184456A (en) * 2018-07-24 2019-08-30 重庆东群科技有限公司 A kind of low-grade utilization method containing zinc ore crude
CN110972482A (en) * 2018-07-24 2020-04-07 重庆东群科技有限公司 Beneficiation method for low-grade zinc-containing raw ore
CN109161425A (en) * 2018-08-14 2019-01-08 奇瑞汽车股份有限公司 Lube oil additive and preparation method thereof
CN109301207A (en) * 2018-09-27 2019-02-01 北京理工大学 A kind of surface layer doping Ce3+And surface layer coats CeO2NCM tertiary cathode material and preparation method thereof
US11955631B2 (en) * 2018-10-04 2024-04-09 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery each containing composite cathode active material, and method of preparing composite cathode active material
US11394048B2 (en) 2018-10-31 2022-07-19 Nissan North America, Inc. Regenerated lithium-ion cathode materials having modified surfaces
US10777843B2 (en) * 2018-10-31 2020-09-15 Nissan North America, Inc. Regenerated lithium-ion cathode materials having modified surfaces
CN109465009A (en) * 2018-11-01 2019-03-15 深圳永清水务有限责任公司 Catalyst and its preparation method and application for catalytic wet hydrogen peroxide oxidation method
CN109704414A (en) * 2018-12-19 2019-05-03 河北省科学院能源研究所 A kind of preparation method of the nickel cobalt lithium aluminate cathode material of cation doping
CN109704415A (en) * 2018-12-26 2019-05-03 惠州亿纬锂能股份有限公司 A kind of lithium-rich manganese-based presoma, and preparation method thereof and lithium-rich manganese-based anode material
CN109921010A (en) * 2019-03-12 2019-06-21 四川纳创时代新能源科技有限公司 A kind of magnesium elements doping nickelic ternary material of NCM622 type and preparation method thereof
CN109841822A (en) * 2019-03-19 2019-06-04 中南大学 A kind of preparation method of the modified monocrystalline tertiary cathode material of lithium ion battery
CN110112375A (en) * 2019-03-22 2019-08-09 南京大学 The double transition metal manganese base layered cathode materials of sodium-ion battery
US20220131153A1 (en) * 2019-03-29 2022-04-28 Tianmulake Excellent Anode Materials Co., Ltd. Ionic conductor slurry, preparation method therefor and application thereof
CN110157932A (en) * 2019-04-15 2019-08-23 中国航发北京航空材料研究院 A kind of preparation method of the graphene Modified Cu base electric contact material based on fabricated in situ
CN110048103A (en) * 2019-04-15 2019-07-23 陕西科技大学 A kind of in-stiu coating lithium electricity monocrystalline anode nanometer sheet material and preparation method thereof
CN110436427A (en) * 2019-07-05 2019-11-12 合肥国轩高科动力能源有限公司 Preparation method of composite structure ferric orthophosphate for high-capacity high-compaction lithium iron phosphate
CN110783552A (en) * 2019-11-25 2020-02-11 华南理工大学 Carbon-coated titanium-doped tin dioxide material and preparation method and application thereof
CN111082023A (en) * 2019-12-30 2020-04-28 山东精工电子科技有限公司 Preparation method and application of positive electrode material with high-conductivity tubular network structure
CN111900391A (en) * 2020-06-19 2020-11-06 温州大学新材料与产业技术研究院 Lithium ion battery cathode slurry and preparation method thereof
CN111900508A (en) * 2020-07-30 2020-11-06 安徽绿沃循环能源科技有限公司 Method for recycling decommissioned ternary batteries
CN112072106A (en) * 2020-08-28 2020-12-11 浙江大学 Conductive adhesive material, preparation method thereof, negative electrode plate and lithium ion battery
CN112447961A (en) * 2020-12-12 2021-03-05 安徽嘉誉伟丰机电科技有限公司 Preparation method of high-specific-capacity lithium battery positive electrode material
CN117720086A (en) * 2024-02-07 2024-03-19 湖南裕能新能源电池材料股份有限公司 Lithium iron manganese phosphate base material, positive electrode material, preparation method of positive electrode material and lithium battery

Also Published As

Publication number Publication date
EP3375028A1 (en) 2018-09-19
DK3375028T3 (en) 2020-05-25
MX2018008224A (en) 2018-09-18
HK1251808A1 (en) 2019-03-22
WO2018130122A1 (en) 2018-07-19
CA3009357C (en) 2019-03-26
CN107342392A (en) 2017-11-10
EP3408883A4 (en) 2019-09-11
SG11201913493RA (en) 2020-01-30
MX368763B (en) 2019-10-15
TW201727976A (en) 2017-08-01
PL3408883T3 (en) 2024-08-12
MX2018008225A (en) 2018-09-18
CA3006869C (en) 2020-05-26
JP6668486B2 (en) 2020-03-18
CA3006869A1 (en) 2017-07-27
CN108701815B (en) 2019-09-17
WO2017124859A1 (en) 2017-07-27
SG11201911711WA (en) 2020-01-30
KR101957872B1 (en) 2019-03-13
CA3009357A1 (en) 2018-07-19
US20180323421A1 (en) 2018-11-08
AU2016387660A1 (en) 2018-08-16
BR112018012420B8 (en) 2020-09-15
US9991504B2 (en) 2018-06-05
AU2018207704B2 (en) 2018-10-18
BR112018014186A2 (en) 2018-11-06
BR112018012420B1 (en) 2020-02-11
US20170207441A1 (en) 2017-07-20
AU2016387660C1 (en) 2020-02-27
CN107431193B (en) 2021-05-04
CN107342392B (en) 2021-03-09
EP3375028B1 (en) 2020-04-08
SG10202013263PA (en) 2021-01-28
MY194088A (en) 2022-11-11
AU2016387660B2 (en) 2019-09-12
BR112018012420A2 (en) 2018-12-18
KR102135603B1 (en) 2020-07-20
EP3408883C0 (en) 2024-05-08
TW201826597A (en) 2018-07-16
PL3375028T3 (en) 2020-08-10
MY187822A (en) 2021-10-26
EP3375028A4 (en) 2019-02-06
BR112018014186B1 (en) 2019-09-17
TWI678834B (en) 2019-12-01
EP3408883A1 (en) 2018-12-05
ES2979030T3 (en) 2024-09-23
JP6547071B2 (en) 2019-07-17
HK1257073A1 (en) 2019-10-11
CN107431193A (en) 2017-12-01
EP3836253A1 (en) 2021-06-16
HK1243550A1 (en) 2018-07-13
KR20200007104A (en) 2020-01-21
ES2788425T8 (en) 2020-12-09
US10361423B2 (en) 2019-07-23
JP2019507464A (en) 2019-03-14
CN108701815A (en) 2018-10-23
JP2019503052A (en) 2019-01-31
KR20180091092A (en) 2018-08-14
ES2788425T3 (en) 2020-10-21
KR20180102100A (en) 2018-09-14
AU2018207704A1 (en) 2018-08-16
TWI640119B (en) 2018-11-01
KR102068243B1 (en) 2020-01-20
EP3408883B1 (en) 2024-05-08
HK1256006B (en) 2020-06-05
US20170207442A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
AU2016387660C1 (en) Method of preparing battery electrodes
JP7027413B2 (en) Cathode slurry for lithium-ion batteries

Legal Events

Date Code Title Description
AS Assignment

Owner name: GRST ENERGY LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WONG, SING HUNG ERIC;SHEN, PEIHUA;SIGNING DATES FROM 20170215 TO 20170220;REEL/FRAME:041291/0708

AS Assignment

Owner name: GRST INTERNATIONAL LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRST ENERGY LIMITED;REEL/FRAME:042700/0702

Effective date: 20170529

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION