JP2012022858A - Method for manufacturing electrode - Google Patents

Method for manufacturing electrode Download PDF

Info

Publication number
JP2012022858A
JP2012022858A JP2010159228A JP2010159228A JP2012022858A JP 2012022858 A JP2012022858 A JP 2012022858A JP 2010159228 A JP2010159228 A JP 2010159228A JP 2010159228 A JP2010159228 A JP 2010159228A JP 2012022858 A JP2012022858 A JP 2012022858A
Authority
JP
Japan
Prior art keywords
electrode
active material
solvent
lithium ion
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010159228A
Other languages
Japanese (ja)
Inventor
Koichi Ito
鉱一 伊藤
Hideo Dohata
日出夫 道畑
Yoko Umeda
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010159228A priority Critical patent/JP2012022858A/en
Publication of JP2012022858A publication Critical patent/JP2012022858A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode for a lithium ion secondary battery, reduced in dependence on a type of an active material and slurry preparation conditions, and capable of achieving increased battery capacity and improved electrode life.SOLUTION: In the method for manufacturing an electrode for a lithium ion secondary battery, an electrode is manufactured by coating slurry, which is obtained by mixing and dispersing at least an electrode active material and a polarizable binder into a solvent, on a collective sheet to form an electrode layer, then irradiating the electrode layer with microwaves to remove the solvent and drying the electrode layer.

Description

本発明は、リチウムイオン二次電池用電極の製造方法に関する。詳細には、電極寿命の向上が可能なリチウムイオン二次電池用電極の製造方法に関する。   The present invention relates to a method for producing an electrode for a lithium ion secondary battery. In detail, it is related with the manufacturing method of the electrode for lithium ion secondary batteries which can improve an electrode lifetime.

近年、AV機器あるいはパソコン、携帯型通信機器などのポータブル化やコードレス化が急速に促進されており、これらの電子機器やその他の動力用の駆動機器用電源として、高エネルギー密度で負荷特性の優れた二次電池が要望されており、高電圧、高エネルギー密度でサイクル特性にも優れたリチウムイオン二次電池の利用が拡大している。そして、電子機器や通信機器のより一層の多機能化や、電気自動車あるいは大型電力貯蔵装置などの新たな分野での利用に対応するため、リチウムイオン二次電池のさらなる高容量化、サイクル特性の向上が望まれている。   In recent years, portable devices and cordless devices such as AV devices, personal computers, and portable communication devices have been rapidly promoted. As power sources for these electronic devices and other power drive devices, high energy density and excellent load characteristics are available. Secondary batteries have been demanded, and the use of lithium ion secondary batteries having high voltage, high energy density and excellent cycle characteristics is expanding. And in order to cope with further multi-functionalization of electronic devices and communication devices and use in new fields such as electric vehicles or large-scale power storage devices, further increase in capacity and cycle characteristics of lithium ion secondary batteries Improvement is desired.

非水電解液を用いるリチウムイオン二次電池(以下、「非水電解液リチウムイオン二次電池」と称する。)において、電極反応は、電極活物質と電解液が接触する固体/液体界面で進行する。したがって、電極反応を円滑に効率的に進行させるためには、電極活物質粒子と電解液の界面接合が良好になるように、電極活物質が均一、均質に分布した電極を製造する必要がある。   In a lithium ion secondary battery using a nonaqueous electrolyte (hereinafter referred to as “nonaqueous electrolyte lithium ion secondary battery”), the electrode reaction proceeds at a solid / liquid interface where the electrode active material and the electrolyte are in contact with each other. To do. Therefore, in order for the electrode reaction to proceed smoothly and efficiently, it is necessary to manufacture an electrode in which the electrode active material is uniformly and uniformly distributed so that the interface bonding between the electrode active material particles and the electrolyte is good. .

一般的に、非水電解液リチウムイオン二次電池の電極は、微細粒子径の電極活物質を、バインダーを溶解した溶媒中に分散してスラリーとし、金属箔などの集電体表面に塗布した後、溶媒を除去して乾燥することで製造され、乾燥には電気炉などの加熱乾燥機が用いられる。   In general, the electrode of a non-aqueous electrolyte lithium ion secondary battery is obtained by dispersing an electrode active material having a fine particle diameter in a solvent in which a binder is dissolved to form a slurry, which is applied to the surface of a current collector such as a metal foil. Then, it is manufactured by removing the solvent and drying, and a heating dryer such as an electric furnace is used for drying.

ところが、この方法では、バインダーの種類や添加量さらには混合方法や乾燥温度・時間などの条件によって、乾燥後の電極活物質の分布状態が影響を受けやすく、条件が最適でない場合には、電極活物質の均一な分布が困難となり、電極活物質のもつ性能を十分に引き出すことができず、電池性能の低下につながることとなる。このため、非水電解液リチウムイオン二次電池の製造においては、電極活物質がより均一、均質に分布した状態で成膜できるように、活物質を含むスラリーの分散方法、分散に用いるバインダーの種類や使用量、スラリー塗膜の乾燥温度や乾燥時間などの各種条件について工夫を凝らしているのが現状である。しかしながら、こうした手法では、用いる電極活物質やスラリー粘度が異なると、その度に最適の乾燥条件を探し出す必要があり、汎用性に優れた製造方法とは言えない。   However, in this method, the distribution state of the electrode active material after drying is easily influenced by conditions such as the type and addition amount of the binder, the mixing method, and the drying temperature / time. Uniform distribution of the active material becomes difficult, and the performance of the electrode active material cannot be sufficiently obtained, leading to a decrease in battery performance. For this reason, in the production of a non-aqueous electrolyte lithium ion secondary battery, a method for dispersing a slurry containing an active material and a binder used for dispersion so that the electrode active material can be formed in a more uniformly and homogeneously distributed state. At present, various ideas such as the type and amount of use, the drying temperature and drying time of the slurry coating are devised. However, in such a method, when the electrode active material and slurry viscosity to be used are different, it is necessary to search for an optimum drying condition each time, and it cannot be said that the manufacturing method is excellent in versatility.

一方、リチウムイオン二次電池の製造において、マイクロ波を利用する方法が提案されている。例えば、特許文献1には、リチウムイオン二次電池の正極活物質である置換リチウムニッケル複合酸化物の製造において、電気炉による焼成の前に、マイクロ波を用いて乾燥することが開示されている。特許文献2には、リチウムイオン二次電池の正極活物質であるリチウム−マンガン複合酸化物の製造において、特許文献1と同様、電気炉による焼成の前に、マイクロ波を用いて乾燥することが開示されている。   On the other hand, a method using a microwave has been proposed in the manufacture of a lithium ion secondary battery. For example, Patent Document 1 discloses that in the production of a substituted lithium nickel composite oxide that is a positive electrode active material of a lithium ion secondary battery, drying is performed using a microwave before firing in an electric furnace. . In Patent Document 2, in the production of a lithium-manganese composite oxide that is a positive electrode active material of a lithium ion secondary battery, similarly to Patent Document 1, drying may be performed using a microwave before firing in an electric furnace. It is disclosed.

また、特許文献3には、全固体二次電池の製造において、低融点ガラスなどの結着剤を含有する正極材料と無機固体電解質材料と負極材料の生成形体を積層し、次いでこの積層した生成形体をマイクロ波加熱することで結着剤を選択的に溶融して結着させる方法が開示されている。   In addition, in Patent Document 3, in the production of an all-solid secondary battery, a positive electrode material containing a binder such as low-melting glass, an inorganic solid electrolyte material, and a negative electrode material are formed, and then the stacked formation is performed. A method is disclosed in which the binder is selectively melted and bound by microwave heating of the feature.

しかしながら、特許文献1〜3の方法は、正極活物質自体を製造する際にマイクロ波を利用し、あるいは、低融点ガラスを溶融して電極活物質層と電解質層を結着するためにマイクロ波を利用するものであり、電極活物質がより均一、均質に電極中に分布することを目的として、電極活物質を含むスラリーから溶媒を除去して成膜する際の乾燥方法を工夫しようとするものではない。   However, the methods of Patent Documents 1 to 3 use a microwave when manufacturing the positive electrode active material itself, or use a microwave to bind the electrode active material layer and the electrolyte layer by melting low-melting glass. In order to distribute the electrode active material more uniformly and homogeneously in the electrode, it is intended to devise a drying method for film formation by removing the solvent from the slurry containing the electrode active material. It is not a thing.

特開平11−162464号公報JP-A-11-162464 特開平10−152326号公報JP-A-10-152326 特開2001−210360号公報Japanese Patent Laid-Open No. 2001-210360

本発明は、活物質の種類やスラリーの調製条件への依存性が低く、電池の高容量化と電極寿命の向上が可能なリチウムイオン二次電池用電極の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing an electrode for a lithium ion secondary battery that is less dependent on the type of active material and slurry preparation conditions, and that can increase the capacity of the battery and improve the electrode life. To do.

上記課題を解決するため、本発明者等は鋭意検討し、少なくとも電極活物質とバインダーを溶媒中に混合分散させたスラリーを集電体シート上に塗布した後、溶媒を除去、乾燥して電極を製造する際に、分極性バインダーを用い、マイクロ波を照射して溶媒を除去し乾燥することで、電極活物質が均一、均質に分布した状態で成膜できることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors diligently studied, and after applying a slurry in which at least an electrode active material and a binder are mixed and dispersed in a solvent on a current collector sheet, the solvent is removed and dried to form an electrode. In the production of the present invention, it was found that the electrode active material can be formed in a uniformly and homogeneously distributed state by using a polarizable binder, removing the solvent by microwave irradiation and drying, and reached the present invention. .

すなわち、本発明は、リチウムイオン二次電池用電極の製造方法において、少なくとも電極活物質および分極性バインダーを溶媒に混合分散させたスラリーを、集電体シート上に塗布して電極層を形成させた後、該電極層にマイクロ波を照射して溶媒を除去し、乾燥させることを特徴とする電極の製造方法を提供する。
また、本発明は、上記の製造方法により製造された電極を使用してなることを特徴とするリチウムイオン二次電池を提供する。
That is, the present invention provides a method for producing an electrode for a lithium ion secondary battery, wherein a slurry in which at least an electrode active material and a polarizable binder are mixed and dispersed in a solvent is applied onto a current collector sheet to form an electrode layer. After that, the electrode layer is irradiated with microwaves to remove the solvent, and dried.
Moreover, this invention provides the lithium ion secondary battery characterized by using the electrode manufactured by said manufacturing method.

本発明の製造方法によれば、特別なスラリー作製技術を必要とせずに、電極活物質が均一、均質に分散した電極を製造することができるので、電池の充放電を繰り返しても電極活物質の偏在化が生じ難く、リチウムイオン二次電池のサイクル特性を向上させることができる。また、電極活物質が均一、均質に分散した状態で塗膜を厚く積層することが可能となり、単位面積当りの電極活物質の量を増大させることができるので、電池の高容量化を図ることが可能となる。   According to the manufacturing method of the present invention, an electrode in which the electrode active material is uniformly and homogeneously dispersed can be manufactured without requiring a special slurry preparation technique. Is less likely to be unevenly distributed, and the cycle characteristics of the lithium ion secondary battery can be improved. In addition, the electrode active material can be thickly laminated with the electrode active material uniformly and homogeneously dispersed, and the amount of the electrode active material per unit area can be increased, so that the capacity of the battery can be increased. Is possible.

本発明の正電極の均一性を、電気炉乾燥で得られた正電極と対比して示すSEM写真である。It is a SEM photograph which shows the uniformity of the positive electrode of this invention in contrast with the positive electrode obtained by electric furnace drying. 本発明の正電極の均質性を、電気炉乾燥で得られた正電極と対比して示すMn元素のEDX写真である。It is an EDX photograph of Mn element showing the homogeneity of the positive electrode of the present invention in comparison with the positive electrode obtained by electric furnace drying. 本発明の正電極を用いたリチウムイオン二次電池の容量を、電気炉乾燥で得られた正電極を用いた場合と対比して示すグラフである。It is a graph which shows the capacity | capacitance of the lithium ion secondary battery using the positive electrode of this invention compared with the case where the positive electrode obtained by the electric furnace drying is used.

本発明においては、分極性バインダーを用い、少なくとも電極活物質および分極性バインダーを溶媒に混合分散させたスラリーを集電体シート上に塗布して電極層を形成させた後、該電極層から溶媒を除去して成膜するためにマイクロ波を照射する。   In the present invention, a polarizable binder is used, and a slurry in which at least an electrode active material and a polarizable binder are mixed and dispersed in a solvent is applied onto a current collector sheet to form an electrode layer, and then the solvent is removed from the electrode layer. In order to remove the film and form a film, microwave irradiation is performed.

上記のスラリーには、さらに導電剤などの公知の添加剤を混合分散させることができる。   A known additive such as a conductive agent can be further mixed and dispersed in the slurry.

本発明で好適に用いられるバインダーは、電極反応に有害な官能基を有さず、電極での電気化学的酸化あるいは還元雰囲気に耐性を示すことに加えて、分極能を有するものである。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリフッ化ビニル、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体などのフッ素系樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリメタクリル酸メチルエステルなどの(メタ)アクリル酸エステル樹脂、ポリ酢酸ビニル、ポリビニルピロリドン、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリウレタン系樹脂などが挙げられる。バインダーは、1種のみを単独で用いても良く、2種以上を組み合わせて用いても良い。これらのバインダーの中でも、ポリフッ化ビニリデンが好ましい。   The binder suitably used in the present invention does not have a functional group harmful to the electrode reaction, and has polarization ability in addition to exhibiting resistance to the electrochemical oxidation or reduction atmosphere at the electrode. For example, fluororesin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyvinyl fluoride, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, polyamide resin, polyimide resin, polyacrylic acid methyl ester, Examples include (meth) acrylic acid ester resins such as polyacrylic acid ethyl ester and polymethacrylic acid methyl ester, polyvinyl acetate, polyvinyl pyrrolidone, styrene butadiene rubber, carboxymethyl cellulose, and polyurethane resins. A binder may be used individually by 1 type and may be used in combination of 2 or more type. Among these binders, polyvinylidene fluoride is preferable.

電極活物質としては公知のものを用いることができる。正極活物質としては、例えば、LiCoO、LiNiO、LiMnなどの複合酸化物、TiS、MnO、MnO、Vなどのカルコゲン化合物のうちの一種、あるいは2種以上を組合せて用いることができる。中でも好ましい電極活物質は、Co、Mn、Ni、Fe、Al、Mgからなる群から選択される少なくとも一種の元素とリチウムとを含む酸化物であって、LiCoO、LiMn、LiFePO、LiNiO、Li−Mn−Co−Ni−Oなどの複合酸化物である。正極活物質は、1種のみを単独で用いても良く、2種以上を組み合わせて用いても良い。 A well-known thing can be used as an electrode active material. As the positive electrode active material, for example, a composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , one kind of chalcogen compounds such as TiS 2 , MnO 2 , MnO 3 , V 2 O 5 , or two or more kinds are used. Can be used in combination. Among them, a preferable electrode active material is an oxide containing lithium and at least one element selected from the group consisting of Co, Mn, Ni, Fe, Al, and Mg, and LiCoO 2 , LiMn 2 O 4 , LiFePO 4. , LiNiO 2 and Li—Mn—Co—Ni—O. Only one type of positive electrode active material may be used alone, or two or more types may be used in combination.

負極活物質としては、例えば、グラファイト、カーボンブラック、アセチレンブラックなどの炭素質材料、酸化還元に不活性な元素(ホウ素、リン、アルミニウムなど)を含む酸化スズ系ガラス、リチウム/チタン複合酸化物などが挙げられる。負極活物質は、1種のみを単独で用いても良く、2種以上を組み合わせて用いても良い。   Examples of the negative electrode active material include carbonaceous materials such as graphite, carbon black, and acetylene black, tin oxide-based glass containing elements that are inactive to redox (boron, phosphorus, aluminum, etc.), lithium / titanium composite oxides, and the like. Is mentioned. Only one type of negative electrode active material may be used alone, or two or more types may be used in combination.

電極活物質は粒子状であることが好ましく、その平均粒子径は0.01〜50μmであることが好ましい。ここで、平均粒子径は体積基準のメディアン径D50である。平均粒子径が0.01μm未満の場合は、粒子の凝集が起こり易くなり電極層中の電極活物質の分散状態が不均一になりやすい。一方、粒子径が50μmを超える場合は、電極活物質の表面積が小さくなり、充電可能な電気容量が低下する。   The electrode active material is preferably in the form of particles, and the average particle diameter is preferably 0.01 to 50 μm. Here, the average particle diameter is a volume-based median diameter D50. When the average particle diameter is less than 0.01 μm, the particles are likely to aggregate and the electrode active material in the electrode layer tends to be unevenly dispersed. On the other hand, when the particle diameter exceeds 50 μm, the surface area of the electrode active material decreases, and the chargeable electric capacity decreases.

電極活物質とバインダーの混合比率としては、電極活物質90〜99重量%、バインダー1〜10重量%であることが好ましい。バインダーの量が多すぎると、形成した塗膜の強度は増大するが、充電可能な電気容量が少なくなり、バインダーの量が少なすぎると、塗膜の強度が不充分となりやすい。   The mixing ratio of the electrode active material and the binder is preferably 90 to 99% by weight of the electrode active material and 1 to 10% by weight of the binder. If the amount of the binder is too large, the strength of the formed coating film increases, but the chargeable electric capacity decreases, and if the amount of the binder is too small, the strength of the coating film tends to be insufficient.

導電剤としては、例えば、グラファイト、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、サーマルブラック、チャンネルブラックなどのカーボンブラック類、炭素繊維や金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛やチタン酸カリウムなどの導電性ウイスカー類などが挙げられる。導電剤は正極および負極のどちらにも使用できるが、特に正極活物質は電子伝導性が不足しているので、導電剤を併用するのが好ましい。導電剤を使用する場合の電極層の組成は、電極活物質65〜97重量%、導電剤2〜40重量%、バインダー1〜10重量%であることが好ましい。   Examples of the conductive agent include carbon blacks such as graphite, acetylene black, ketjen black (registered trademark), furnace black, thermal black, and channel black, conductive fibers such as carbon fiber and metal fiber, carbon fluoride, Examples thereof include metal powders such as aluminum, and conductive whiskers such as zinc oxide and potassium titanate. The conductive agent can be used for both the positive electrode and the negative electrode. However, since the positive electrode active material lacks electronic conductivity, it is preferable to use the conductive agent in combination. When the conductive agent is used, the composition of the electrode layer is preferably 65 to 97% by weight of the electrode active material, 2 to 40% by weight of the conductive agent, and 1 to 10% by weight of the binder.

溶媒は、バインダーを溶解または分散できるものであれば特に限定されず、N−メチル−2−ピロリドン、メチルエチルケトン、シクロヘキサノン、酢酸ブチル、トルエンなどが挙げられる。   The solvent is not particularly limited as long as it can dissolve or disperse the binder, and examples thereof include N-methyl-2-pyrrolidone, methyl ethyl ketone, cyclohexanone, butyl acetate, and toluene.

溶媒の量は、スラリー粘度に応じて適宜設定されるが、通常、スラリー全量を100重量部とした場合、20〜60重量部用いることが好ましい。溶媒の量が多すぎるとスラリー粘度が低くなりすぎ、集電体に塗布した場合に流れ落ちる。一方、溶媒が少なすぎるとスラリー粘度が高くなりすぎ、均一に塗布することが困難となる。   Although the quantity of a solvent is suitably set according to slurry viscosity, when a slurry whole quantity is 100 weight part, it is preferable to use 20-60 weight part normally. If the amount of the solvent is too large, the slurry viscosity becomes too low and it will flow down when applied to the current collector. On the other hand, when there is too little solvent, slurry viscosity will become high too much and it will become difficult to apply | coat uniformly.

上記スラリーを調製する方法は、特に限定されず、公知のホモジナイザー、ボールミル、サンドミル、ロールミルなどの分散機を用いて、上記に挙げたような材料から適宜選定された粉末状の電極活物質、バインダーおよび必要に応じて導電剤を、同じく上記に挙げた中から適宜選定された溶媒中に添加し、混合分散させることによって調製することができる。この場合、電極活物質を一次粒子の状態でスラリー中に分散させることが好ましく、上記の分散機を用いて一次粒子に分散させた後、分散させたスラリーを安定な分散状態に保持する処理操作を行うことが好ましい。   The method for preparing the slurry is not particularly limited, and a powdered electrode active material and binder appropriately selected from the materials listed above using a known disperser such as a homogenizer, a ball mill, a sand mill, and a roll mill. Further, if necessary, the conductive agent can be prepared by adding to a solvent appropriately selected from the above-mentioned solvents and mixing and dispersing them. In this case, it is preferable to disperse the electrode active material in the state of primary particles in the slurry, and after dispersing the primary active particles using the above-described disperser, a processing operation for maintaining the dispersed slurry in a stable dispersed state. It is preferable to carry out.

調製されたスラリーを塗布する集電体としては、正極の場合にはステンレス鋼、アルミニウム箔、負極の場合には銅箔などの公知のシート類を用いることができる。集電体の厚さは特に限定されないが、0.1〜100μmであることが好ましく、これにより電極の強度を保持しつつ、軽量化することができる。   As the current collector to which the prepared slurry is applied, known sheets such as stainless steel and aluminum foil in the case of the positive electrode and copper foil in the case of the negative electrode can be used. Although the thickness of a collector is not specifically limited, It is preferable that it is 0.1-100 micrometers, and it can reduce in weight, maintaining the intensity | strength of an electrode by this.

集電体表面にスラリーを塗布する方法も特に限定されず、公知の方法、例えばブレードコート、ナイフコート、エアーナイフコート、グラビアコート、ロールコート、ダイコート、ディップコートなどの方法を用いることができる。   A method for applying the slurry to the surface of the current collector is not particularly limited, and a known method such as blade coating, knife coating, air knife coating, gravure coating, roll coating, die coating, dip coating, or the like can be used.

集電体シート上にスラリーを塗布して電極層を形成する場合は、乾燥後の電極層の厚みを10〜200μm、好ましくは30〜150μmに調整することが好ましい。電極層の厚みを10μm以上とすることで、一定容量以上の充放電容量を確保することができ、電極層の厚みを200μm以下とすることで、均一な電極層を作製することが可能となる。   When the slurry is applied on the current collector sheet to form an electrode layer, it is preferable to adjust the thickness of the electrode layer after drying to 10 to 200 μm, preferably 30 to 150 μm. By setting the thickness of the electrode layer to 10 μm or more, a charge / discharge capacity of a certain capacity or more can be secured, and by setting the thickness of the electrode layer to 200 μm or less, a uniform electrode layer can be produced. .

上記の電極層にマイクロ波を照射して溶媒を除去し、乾燥させる。この場合、照射するマイクロ波の周波数、出力は、適宜設定することができ、周波数は1〜300GHz、出力は10W〜20kWの範囲で行うのが良い。通常、周波数2.45GHzのマイクロ波を照射する。マイクロ波の照射は、電極層の表面温度が80〜120℃の範囲で、できるだけ一定になるように、PID制御しながら連続的に照射することが好ましい。   The electrode layer is irradiated with microwaves to remove the solvent and dried. In this case, the frequency and output of the microwave to be irradiated can be set as appropriate, and the frequency is preferably 1 to 300 GHz and the output is preferably in the range of 10 W to 20 kW. Usually, microwaves with a frequency of 2.45 GHz are irradiated. The microwave irradiation is preferably performed continuously with PID control so that the surface temperature of the electrode layer is as constant as possible in the range of 80 to 120 ° C.

マイクロ波の照射時間は、マイクロ波の周波数、出力により、適宜設定されるが、通常10分〜120分である。   The microwave irradiation time is appropriately set depending on the frequency and output of the microwave, but is usually 10 minutes to 120 minutes.

本発明により製造された正極および負極は、それをポリプロピレン、ポリエチレンなどの多孔性ポリオレフィンシートなどからなるセパレーターを介在させて積層し、電池缶などに入れた後、電解液を注入することで、非水電解液リチウム電池を組立てることができる。セパレーターの厚さは、一般的に10〜100μmである。   The positive electrode and the negative electrode manufactured according to the present invention are laminated by interposing a separator made of a porous polyolefin sheet such as polypropylene or polyethylene, put into a battery can, etc., and then injected with an electrolyte solution. A water electrolyte lithium battery can be assembled. The thickness of the separator is generally 10 to 100 μm.

電解液の形態としては、液状に限定されず、例えば、ゲル状等の形態であってもよい。電解液は、非水溶媒と非水溶媒に溶解する溶質とを含有する。ゲル状の場合には、さらにゲルを形成するための高分子化合物を含有する。   The form of the electrolytic solution is not limited to a liquid form, and may be, for example, a gel form. The electrolytic solution contains a nonaqueous solvent and a solute that dissolves in the nonaqueous solvent. In the case of a gel, it further contains a polymer compound for forming a gel.

非水溶媒としては、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが好ましい。環状炭酸エステルとしては、例えば、エチレンカーボネート、プロピレンカーボネートなどが挙げられる。鎖状炭酸エステルとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などが挙げられる。環状カルボン酸エステルとしては、γ−ブチロラクトン、γ−バレロラクトンなどが挙げられる。非水溶媒は、1種のみを単独で用いても良く、2種以上を組み合わせて用いても良い。非水溶媒に対する溶質の溶解量は、0.5〜2モル/Lであることが好ましい。   As the non-aqueous solvent, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester and the like are preferable. Examples of the cyclic carbonate include ethylene carbonate and propylene carbonate. Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC). Examples of the cyclic carboxylic acid ester include γ-butyrolactone and γ-valerolactone. A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2 mol / L.

溶質としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪酸カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類などを用いることができる。溶質は、1種のみを単独で用いても良く、2種以上を組み合わせて用いても良い。 Examples of the solute include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower fatty acid carboxylate, LiCl, LiBr LiI, chloroborane lithium, borates, imide salts, and the like can be used. Only one type of solute may be used alone, or two or more types of solutes may be used in combination.

ゲルを形成するための高分子化合物としては、例えば、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリアクリレート、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などを使用することができる。   As the polymer compound for forming the gel, for example, polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyacrylate, vinylidene fluoride-hexafluoropropylene copolymer, and the like can be used.

以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to a following example.

(実施例1)
ポリフッ化ビニリデンを、N−メチル−2−ピロリドンに溶解したバインダー溶液(クレハ#1120)に、LiMn粉末61.28gおよびアセチレンブラック4gを添加し、ホモジナイザー(エスエムテー製、HF93)を用いて、5000rpmで5分間攪拌を10回行ってスラリーを調製した。さらに、得られたスラリーを、分散装置(シンキー製、ARE310)を用いて、2000rpmの条件下で40分、均一に分散させた。
得られたスラリーを幅20cmのアルミ箔上にブレードを用いて、厚みが127μmになる様に塗布した後、マイクロ波発振装置を取付けた装置内で、アルミ箔表面温度が80℃になる様に、700Wのマイクロ波を制御しながら連続的に照射して2時間乾燥を行い、正極シートを作製した。作製した正極層は、厚みが45μm、単位面積当たりの粒子の充填密度が0.02979g/cmであった。
Example 1
61.28 g of LiMn 2 O 4 powder and 4 g of acetylene black were added to a binder solution (Kureha # 1120) in which polyvinylidene fluoride was dissolved in N-methyl-2-pyrrolidone, and a homogenizer (manufactured by SMT, HF93) was used. The slurry was prepared by stirring 10 times for 5 minutes at 5000 rpm. Further, the obtained slurry was uniformly dispersed for 40 minutes under the condition of 2000 rpm using a dispersion apparatus (ARE310, manufactured by Shinky Corporation).
After applying the obtained slurry onto an aluminum foil having a width of 20 cm using a blade so that the thickness becomes 127 μm, the surface temperature of the aluminum foil is set to 80 ° C. in an apparatus equipped with a microwave oscillator. , By continuously irradiating with 700 W microwave and drying for 2 hours, a positive electrode sheet was produced. The produced positive electrode layer had a thickness of 45 μm and a packing density of particles per unit area of 0.02979 g / cm 2 .

(比較例1)
実施例1と同じ方法で調製したスラリーを、乾燥後の厚みが約50μmになるようにアルミ箔上に塗布した後、100℃に設定した電気炉中で2時間乾燥を行い、正極シートを作製した。作製した正極層には凹凸が観察された。また、正極層の単位面積当たりの粒子の充填密度は0.01755g/cmであり、実施例1の約60%であった。
(Comparative Example 1)
A slurry prepared by the same method as in Example 1 was applied on an aluminum foil so that the thickness after drying was about 50 μm, and then dried in an electric furnace set at 100 ° C. for 2 hours to produce a positive electrode sheet. did. Unevenness was observed in the produced positive electrode layer. Moreover, the packing density of the particles per unit area of the positive electrode layer was 0.01755 g / cm 2 , which was about 60% of Example 1.

(比較例2)
実施例1と同じ方法で調製したスラリーを、単位面積当たりの粒子の充填密度を上げるために、乾燥後の厚みが約300μmになるようにアルミ箔上に塗布した後、100℃に設定した電気炉中で2時間乾燥を行ったところ、作製した正極層はシートから簡単に剥がれてしまった。
(Comparative Example 2)
In order to increase the packing density of particles per unit area, the slurry prepared by the same method as in Example 1 was applied on an aluminum foil so that the thickness after drying was about 300 μm, and then the electricity set at 100 ° C. When dried in an oven for 2 hours, the produced positive electrode layer was easily peeled off from the sheet.

(電極層の評価)
実施例1の正極シートおよび比較例1の正極シートについて、電極活物質であるLiMn粒子の分布状態を測定した。SEM(走査型電子顕微鏡)を用いて粒子の分布状態の均一性を測定した結果を図1に、EDX(エネルギー分散型蛍光X線分析装置)を用いてMn元素を観察し粒子の均質性を測定した結果を図2に示す。
(Evaluation of electrode layer)
About the positive electrode sheet of Example 1 and the positive electrode sheet of Comparative Example 1, the distribution state of LiMn 2 O 4 particles as an electrode active material was measured. The results of measuring the uniformity of particle distribution using an SEM (scanning electron microscope) are shown in FIG. 1, and Mn elements are observed using an EDX (energy dispersive X-ray fluorescence spectrometer) to determine the homogeneity of the particles. The measurement results are shown in FIG.

図1より、本発明のマイクロ波を用いて作製した実施例1の正極シートは、クラックが生じることなくLiMn粒子が均一に分布しているのに対し、電気炉を用いて作製した比較例1の正極シートにはクラックが生じており、LiMn粒子の分布状態が不均一であることがわかる。 From FIG. 1, the positive electrode sheet of Example 1 produced using the microwave of the present invention was produced using an electric furnace while LiMn 2 O 4 particles were uniformly distributed without causing cracks. It can be seen that the positive electrode sheet of Comparative Example 1 has cracks and the distribution of LiMn 2 O 4 particles is non-uniform.

図2より、本発明のマイクロ波を用いて作製した実施例1の正極シートではMn元素が均一に分布しているのに対し、電気炉を用いて作製した比較例1の正極シートではMn元素が検出されない領域(写真の黒い部分)が多く、Mn元素の分布状態が均一ではないことがわかる。   From FIG. 2, in the positive electrode sheet of Example 1 manufactured using the microwave of the present invention, the Mn element is uniformly distributed, whereas in the positive electrode sheet of Comparative Example 1 manufactured using the electric furnace, the Mn element It can be seen that there are many regions where black is not detected (black portions in the photograph), and the distribution of Mn elements is not uniform.

(製造例1)
実施例1で得られた正極シート上に、同じ幅の多孔質ポリエチレンフィルムよりなるセパレーターを載置し、次いでセパレーター上に負極シート(日本製箔株式会社)を載置して、セパレーターを介して正極シートと負極シートを積層した。積層したシートを4cm×4cm角に裁断した後、ラミネートフィルム(12×8cm角)に収納し、LiPFをMECとDMCの混合溶媒(1:1(Vol%))に溶解した電解液を2cc注入して、リチウムイオン電池を組立てた。
(Production Example 1)
A separator made of a porous polyethylene film having the same width was placed on the positive electrode sheet obtained in Example 1, and then a negative electrode sheet (Nihon Foil Co., Ltd.) was placed on the separator. A positive electrode sheet and a negative electrode sheet were laminated. After the laminated sheets are cut into 4 cm × 4 cm squares, they are stored in a laminate film (12 × 8 cm squares), and 2 cc of an electrolytic solution in which LiPF 6 is dissolved in a mixed solvent of MEC and DMC (1: 1 (Vol%)). The lithium ion battery was assembled by injection.

(比較製造例1)
比較例1で得られた正極シートを用いる以外は、製造例1と同様にしてリチウムイオン電池を組立てた。
(Comparative Production Example 1)
A lithium ion battery was assembled in the same manner as in Production Example 1 except that the positive electrode sheet obtained in Comparative Example 1 was used.

(試験例1)
製造例1および比較製造例1のリチウムイオン電池について、以下の方法で電圧および容量を測定した。得られた結果を図3に示す。
(Test Example 1)
About the lithium ion battery of the manufacture example 1 and the comparative manufacture example 1, the voltage and capacity | capacitance were measured with the following method. The obtained results are shown in FIG.

電圧の測定方法;電流値を一定値に固定して充放電を行い、その際の電圧変化を測定した。   Voltage measurement method: The current value was fixed at a constant value, charging and discharging were performed, and the voltage change at that time was measured.

容量の測定方法;開始電圧を4.2Vとし、終止電圧を3.2Vとしてその際の充放電した電気量を測定し、充放電に要した時間と活物質量で算出した。   Capacity measurement method: The starting voltage was 4.2 V, the end voltage was 3.2 V, the amount of electricity charged / discharged at that time was measured, and the time required for charging / discharging and the amount of active material were calculated.

図3に示す様に、本発明のマイクロ波を用いて製造した正極を用いた製造例1のリチウムイオン電池は、電気炉を用いて製造した正極を用いた比較製造例1のリチウムイオン電池と比較して、高い容量を示すことがわかる。   As shown in FIG. 3, the lithium ion battery of Production Example 1 using the positive electrode produced using the microwave of the present invention is the same as the lithium ion battery of Comparative Production Example 1 using the positive electrode produced using an electric furnace. In comparison, it can be seen that the capacity is high.

本発明によれば、電極活物質が均一、均質に分散した電極を製造することができるので、高容量で、しかもサイクル特性に優れた非水電解液リチウムイオン二次電池用の電極として好適に使用することができる。
According to the present invention, an electrode in which the electrode active material is uniformly and homogeneously dispersed can be produced, and thus it is suitable as an electrode for a non-aqueous electrolyte lithium ion secondary battery having a high capacity and excellent cycle characteristics. Can be used.

Claims (6)

リチウムイオン二次電池用電極の製造方法において、少なくとも電極活物質および分極性バインダーを溶媒に混合分散させたスラリーを、集電体シート上に塗布して電極層を形成させた後、該電極層にマイクロ波を照射して溶媒を除去し、乾燥させることを特徴とする電極の製造方法。   In the method for producing an electrode for a lithium ion secondary battery, after applying a slurry in which at least an electrode active material and a polarizable binder are mixed and dispersed in a solvent on a current collector sheet to form an electrode layer, the electrode layer A method for producing an electrode, characterized in that the solvent is removed by irradiating with microwaves and the solvent is dried. 前記電極活物質が、Co、Mn、Ni、Fe、Al、Mgからなる群から選択される少なくとも一種の元素とリチウムとを含む酸化物である請求項1に記載の電極の製造方法。   The method for producing an electrode according to claim 1, wherein the electrode active material is an oxide containing at least one element selected from the group consisting of Co, Mn, Ni, Fe, Al, and Mg and lithium. 前記分極性バインダーが、ポリフッ化ビニリデンである請求項1または2に記載の電極の製造方法。   The method for producing an electrode according to claim 1, wherein the polarizable binder is polyvinylidene fluoride. 前記スラリー中の電極活物質の平均粒子径が0.01〜50μmの範囲である請求項1〜3いずれかに記載の電極の製造方法。   The method for producing an electrode according to claim 1, wherein an average particle diameter of the electrode active material in the slurry is in a range of 0.01 to 50 μm. マイクロ波の照射を、電極層の表面温度をPID制御しながら行う請求項1〜4いずれかに記載のリチウムイオン二次電池用電極の製造方法。   The manufacturing method of the electrode for lithium ion secondary batteries in any one of Claims 1-4 which performs microwave irradiation, controlling the surface temperature of an electrode layer by PID. 請求項1〜5いずれかに記載の電極を使用してなることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the electrode according to claim 1.
JP2010159228A 2010-07-14 2010-07-14 Method for manufacturing electrode Pending JP2012022858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159228A JP2012022858A (en) 2010-07-14 2010-07-14 Method for manufacturing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159228A JP2012022858A (en) 2010-07-14 2010-07-14 Method for manufacturing electrode

Publications (1)

Publication Number Publication Date
JP2012022858A true JP2012022858A (en) 2012-02-02

Family

ID=45776975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159228A Pending JP2012022858A (en) 2010-07-14 2010-07-14 Method for manufacturing electrode

Country Status (1)

Country Link
JP (1) JP2012022858A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
WO2013138588A1 (en) * 2012-03-16 2013-09-19 A123 Systems, Inc. Microwave drying of lithium-ion battery materials
JP2015522927A (en) * 2012-06-26 2015-08-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Microwave rapid thermal processing of electrochemical devices
JP2016072025A (en) * 2014-09-29 2016-05-09 株式会社豊田自動織機 Method of manufacturing electrode for power storage device
US9828669B2 (en) 2008-05-21 2017-11-28 Applied Materials, Inc. Microwave rapid thermal processing of electrochemical devices
WO2017214247A1 (en) * 2016-06-07 2017-12-14 Navitas Systems, Llc High loading electrodes
JP2019503052A (en) * 2016-01-18 2019-01-31 ジーアールエスティー・インターナショナル・リミテッド Method for making a battery electrode
CN115347190A (en) * 2022-09-15 2022-11-15 湖北亿纬动力有限公司 Pore-forming method of thick electrode, product and application thereof
CN115504447A (en) * 2022-09-22 2022-12-23 浙江格派钴业新材料有限公司 Preparation method of lithium titanate coated ferric sodium pyrophosphate composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2003173780A (en) * 2001-12-06 2003-06-20 Dainippon Printing Co Ltd Coating composition for anode, anode plate, and nonaqueous electrolyte solution secondary battery
JP2006066400A (en) * 2005-08-26 2006-03-09 Nippon Zeon Co Ltd Organic solvent based binder composition, electrode, and battery
JP2006100164A (en) * 2004-09-30 2006-04-13 Sony Corp Lithium/iron disulfide primary battery
JP2006107753A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Coating composition for cathode active substance layer, cathode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
JP2006225275A (en) * 2005-02-15 2006-08-31 Tokyo Electric Power Co Inc:The Method for synthesizing dimethyl ether
JP2008103098A (en) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2003173780A (en) * 2001-12-06 2003-06-20 Dainippon Printing Co Ltd Coating composition for anode, anode plate, and nonaqueous electrolyte solution secondary battery
JP2006100164A (en) * 2004-09-30 2006-04-13 Sony Corp Lithium/iron disulfide primary battery
JP2006107753A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Coating composition for cathode active substance layer, cathode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
JP2006225275A (en) * 2005-02-15 2006-08-31 Tokyo Electric Power Co Inc:The Method for synthesizing dimethyl ether
JP2006066400A (en) * 2005-08-26 2006-03-09 Nippon Zeon Co Ltd Organic solvent based binder composition, electrode, and battery
JP2008103098A (en) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828669B2 (en) 2008-05-21 2017-11-28 Applied Materials, Inc. Microwave rapid thermal processing of electrochemical devices
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
CN104521055A (en) * 2012-03-16 2015-04-15 A123系统公司 Microwave drying of lithium-ion battery materials
JP2015511056A (en) * 2012-03-16 2015-04-13 エー123 システムズ, リミテッド ライアビリティ カンパニー Microwave drying of lithium-ion battery materials
KR20150021019A (en) * 2012-03-16 2015-02-27 에이일이삼 시스템즈, 엘엘씨 Microwave drying of lithium-ion battery materials
WO2013138588A1 (en) * 2012-03-16 2013-09-19 A123 Systems, Inc. Microwave drying of lithium-ion battery materials
KR102027616B1 (en) * 2012-03-16 2019-10-01 에이일이삼 시스템즈, 엘엘씨 Microwave drying of lithium-ion battery materials
US10181599B2 (en) 2012-03-16 2019-01-15 A123 Systems, LLC Microwave drying of lithium-ion battery materials
JP2015522927A (en) * 2012-06-26 2015-08-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Microwave rapid thermal processing of electrochemical devices
CN107256945A (en) * 2012-06-26 2017-10-17 应用材料公司 The microwave rapid thermal treatment of electrochemical appliance
JP2016072025A (en) * 2014-09-29 2016-05-09 株式会社豊田自動織機 Method of manufacturing electrode for power storage device
JP2019503052A (en) * 2016-01-18 2019-01-31 ジーアールエスティー・インターナショナル・リミテッド Method for making a battery electrode
WO2017214247A1 (en) * 2016-06-07 2017-12-14 Navitas Systems, Llc High loading electrodes
US10916765B2 (en) 2016-06-07 2021-02-09 Navitas Systems, Llc High loading electrodes
US11430978B2 (en) 2016-06-07 2022-08-30 Navitas Systems, Llc High loading electrodes
US11843111B2 (en) 2016-06-07 2023-12-12 Navitas Systems, Llc High loading electrodes
CN115347190A (en) * 2022-09-15 2022-11-15 湖北亿纬动力有限公司 Pore-forming method of thick electrode, product and application thereof
CN115504447A (en) * 2022-09-22 2022-12-23 浙江格派钴业新材料有限公司 Preparation method of lithium titanate coated ferric sodium pyrophosphate composite material
CN115504447B (en) * 2022-09-22 2023-06-20 乐普钠电(上海)技术有限公司 Preparation method of lithium titanate coated sodium ferric pyrophosphate composite material

Similar Documents

Publication Publication Date Title
JP6621926B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery containing the same
CN110165284B (en) Lithium ion secondary battery
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
KR102426797B1 (en) Negative electrode active material for lithium secondary battery, method of manufacturing the same, negative electrode for lithium secondry battery and lithium secondary battery comprising the same
CN110574191B (en) Method for forming lithium metal and inorganic material composite thin film, and method for prelithiating negative electrode of lithium secondary battery using the same
CN110268557B (en) Prelithiation using lithium metal and inorganic composite layers
JP2012022858A (en) Method for manufacturing electrode
WO2011033707A1 (en) Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell
CN107636880A (en) Polymer dielectric with sandwich construction and include its all-solid-state battery
JP2020515014A (en) Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery including the same
JP2013012410A (en) Cathode material for nonaqueous electrolyte secondary battery and method for producing the same
WO2005117169A1 (en) Wound nonaqueous secondary battery and electrode plate used therein
JP5375975B2 (en) Battery electrode, battery including the battery electrode, and method for manufacturing the battery electrode
KR101697008B1 (en) Lithium secondary battery
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2022548846A (en) Cathode material for secondary battery and lithium secondary battery containing the same
WO2015151525A1 (en) Binder composition for use in secondary battery electrode, slurry composition for use in secondary battery electrode, secondary battery electrode, and secondary battery
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
JP5200329B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR20220008907A (en) All-solid-state battery and manufacturing method thereof
US20160240847A1 (en) Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2023520193A (en) Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery
JP2012252951A (en) Nonaqueous electrolyte secondary battery
US9825289B2 (en) Stabilized lithium powder, and negative electrode and lithium ion secondary battery using the same
CN104685671A (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using same, and manufacturing method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603