US20120131268A1 - Data storage device - Google Patents

Data storage device Download PDF

Info

Publication number
US20120131268A1
US20120131268A1 US13/360,681 US201213360681A US2012131268A1 US 20120131268 A1 US20120131268 A1 US 20120131268A1 US 201213360681 A US201213360681 A US 201213360681A US 2012131268 A1 US2012131268 A1 US 2012131268A1
Authority
US
United States
Prior art keywords
controller
flash
data storage
storage device
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/360,681
Inventor
Dennis Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/360,681 priority Critical patent/US20120131268A1/en
Publication of US20120131268A1 publication Critical patent/US20120131268A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1068Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices in sector programmable memories, e.g. flash disk

Definitions

  • the present invention related generally to storage devices and more particularly to a solid state disk storage devices.
  • Integrated circuits are used in a wide variety of electronics and electronic equipment.
  • NAND Flash devices are used mainly in memory sticks and consumer products, such as IPODs, digital cameras, settop boxes and the like. These are mainly 1-2 NAND Flash devices per application.
  • a flash drive is a NAND-type flash memory integrated with a USB interface and used as a removable data storage device such as a flash drive, USB Key and thumb drive. It is typically powered by a USB connection and does not require an external power source or battery power source.
  • Hard drives are mechanical, unreliable, relatively slow and consume more power than solid state disks.
  • solid state disk that can displace smaller hard drives (HD's).
  • HD's hard drives
  • Another problem with the prior art HD is that they have moving parts, are slow and unreliable.
  • the present invention provides no mechanically moving parts, is extremely reliable as it guarantees data retention, can be erased and reprogrammed ⁇ 100,000 times, are orders of magnitude faster than the fastest HD and consume much less power than HDs.
  • the present invention also provides a higher level of data integrity than HDs.
  • a flash drive can sustain only a limited number of write/erase cycles before failure. This makes the flash drive undesirable for running application software such as Excel®, Word® and Photoshop®. Also, a prior art flash drive would be precluded from running most operating systems that operate on the hard drive.
  • the present invention relates generally to data storage devices that are reliable, low-cost, low power and high performance.
  • a data storage device comprising: at least two flash devices for storing data; a circuit board, wherein each of the flash devices are integrated on the circuit board; a controller integrated on the circuit board for reading and writing to each flash devices, wherein the controller interfaces each flash devices; at least one NOR Flash device in communication with the controller through a host bus; at least one host bus memory device in communication with the controller; at least one interface in communication with the controller and adapted to physically and electrically couple to a system, receive and store data therefrom and retrieve and transmit data to the system.
  • a data storage device comprising: at least two NAND flash devices for storing data; a circuit board, wherein each of the NAND flash devices are integrated on the circuit board; a controller integrated on the circuit board for reading and writing to each flash devices, wherein the controller interfaces each flash devices; at least one NOR Flash device in communication with the controller through a host bus; at least RAM memory device in communication with the controller and at least one NOR Flash device through the host bus; at least one PCI interface in communication with the controller and adapted to physically and electrically couple to a system, receive and store data therefrom and retrieve and transmit data to the system. There may also be additional SDRAM in communication with the controller.
  • FIG. 1 depicts one embodiment according to the present invention
  • FIG. 2 depicts one embodiment according to the present invention.
  • FIG. 3 depicts one embodiment according to the present invention.
  • the device is supported on a standard single width PCI PMC module and can support up to 32 Gbytes of NAND Flash for cPCl/cPSB, VME, ATCA or proprietary baseboards.
  • the circuit board may be any board, but according to a preferred embodiment may be Peripheral component interconnect (PCI), Mezzanine Card (PMC), a Processor PMC (PPMC), and a Conduction-Cooled PMC (CCPMC).
  • the circuit board circuit board may be compatible with at least one of a Compact PCI (CPCI) baseboard, a Versa Module Eurocard (VME) baseboard, a Advanced Telecommunications Computing Architecture (ATCA) baseboard and a proprietary baseboard.
  • CPCI Compact PCI
  • VME Versa Module Eurocard
  • ATCA Advanced Telecommunications Computing Architecture
  • the controller ( 42 ) is a FPGA based NAND Flash controller and interfaces to each NAND flash device (e.g. 10-40) individually and also contains at least one programmable softcore microprocessors. There may be an interface for interfacing the controller with each flash device and wherein at least one programmable microprocessor consists of between ten (10) and twenty (20), preferably seventeen (17), programmable microprocessors and wherein each interface is controlled by an autonomous microprocessor.
  • the main microprocessor may be a softcore microprocessor.
  • the board is 149 mm in length and 74.0 mm in width.
  • the height may be X.X mm.
  • the power requirement is 3.3 v @2W typ.
  • the temperature range is 0° to 70° C. com and ⁇ 45° to 85° C. ind.
  • the specifications are IEEE 1386.1 and PCI 2.2.
  • the indicated applications are high speed, high thru-put HDD replacement, high reliability servers, gateways and wireless infrastructure ad servers, gateways and wireless infrastructures that require high thru-put.
  • OS can be writing or reading all NAND devices simultaneously; data can be “striped” across multiple NAND devices; wear leveling of NAND devices can be controlled; NAND “bad block” detection is performed concurrently across all devices via HW and is extremely fast; “bad block” detection is continued during operation as blocks continue to drop out and may detect bad blocks in each flash device concurrently; write protection and sleep mode are supported on all NAND devices; data integrity is maintained through out entire data path; parity (if provided by baseboard) on PCI interface; ECC is calculated, stored and checked with each data block written to NAND flash with multiple bit errors being corrected and the microprocessor notified of all errors; parity is used on external SRAM, FPGA; consumes very little power comparable to Hard Drive solutions; provides NOR Flash for microprocessor code and “bad block” tables; product can be updated/upgraded in the field—both field-programmable gate array (FPGA) code and microprocessor codes.
  • FPGA field-programmable gate array
  • the NAND bus may be coupling one of the flash devices to the controller being independent from the NAND bus coupling another one of the flash devices to the controller, and the controller may be further comprising a bad-block module, wherein the bad-block module detects bad blocks in each of the at least two flash devices during operation of the data storage devices
  • a data storage device comprising: at least two flash devices (e.g. 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 26 , 28 30 , 32 , 34 , 36 , 38 and 40 ) for storing data.
  • the flash devices can be any size, for example between 1 GB and 8 GB and may be NAND flash devices.
  • Each flash device may be a chip adapted for including two or more dies.
  • a solid state storage device is envisioned that is a single level cell (SLC) NAND flash devices.
  • SLC single level cell
  • each uP has direct control of its own NAND device.
  • Each flash devices having an individual interface and individual microprocessor. This provides significant processing power for each NAND and also with HW acceleration would provide very high performance for reads, programs and erases since each NAND device may be accessed simultaneously.
  • individual microprocessors 16 uPs also allows the present invention to add on additional features and applications very quickly without sacrificing performance.
  • the controller ( 42 ) may be a Field Programmable Gate Array (FPGA) which allows a high level of flexibility for the primary interface, the initial interface may be PCI but with the flexibility of an FPGA the interface may be quickly adapted the primary interface to others i.e SATA, PCIe, PATA, etc.
  • the controller ( 42 ) may be many different types including ASSP, ASIC and a structured ASIC.
  • the controller ( 42 ) may be integrated on the circuit board ( 8 ) for reading and writing to each of the flash devices (e.g.
  • the controller may read and write to each flash device concurrently.
  • the controller ( 42 ) may have a data-integrity module.
  • the controller ( 42 ) may also have a sleep-mode module, wherein the sleep-mode module enables sleep mode for the flash device(s) based on a predefined criterion.
  • the controller ( 42 ) may also have a prevention module for controlling the wear level of each said at least one flash device.
  • the controller ( 42 ) may further have a write-protection module, wherein the write-protection module provides write protection on each flash device.
  • the controller ( 42 ) may divide data into a plurality of data blocks, at least one data block being stored in a flash device from the plurality of flash devices. There may be an Error Correcting Code module integrated on the circuit-board.
  • the error correcting code module may be adaptively coupled to the controller and may detect at least one error in each data block written on each flash device; notify at least one error to the flash controller; and allow for correction of error.
  • the error correcting code module executes error correcting code and the error correcting code is selected from the group consisting of parity code, Hamming code, Reed-Solomon code, Reed-Muller code, Binary Golay code, convolutional code, and turbo code to detect the plurality of errors.
  • the error correcting code is selected from the group consisting of parity code, Hamming code, Reed-Solomon code, Reed-Muller code, Binary Golay code, convolutional code, and turbo code to detect the plurality of errors.
  • the NOR flash ( 44 ) may be at least one NOR Flash device ( 44 ) in communication with the controller ( 42 ).
  • the NOR flash ( 44 ) is used by the controller ( 42 ) as program store for internal uPs, also stores bad block tables and wear level tables.
  • the device also has at least one host bus memory device ( 46 ) in communication with the controller ( 42 ) and the NOR Flash device ( 44 ) through the host bus ( 45 ).
  • the host bus may be utilized exclusively for the NOR flash device and the host bus memory device.
  • the NOR flash ( 44 ) contains the Operating System (OS) that provides control of the softcore microprocessor(s).
  • NOR Flash ( 44 ) may also contains security algorithms, integrity, data manipulation, status and monitoring.
  • the host bus memory device is SRAM ( 46 ) and used by the controller ( 42 ) as scratch memory and stack for internal uPs.
  • the system may be any computing device or system.
  • FIG. 1 there is also a power block ( 48 ).
  • the power Block ( 48 ) is used to create voltages required to power all devices on PCB.
  • Connectors ( 50 , 52 , 54 ), as shown in FIG. 1 are PMC PCI connectors used to connect the circuit board ( 8 ) to host/mother board.
  • the PCI Interface ( 112 ) and primary interface ( 301 ) are connected to the controller ( 80 and 300 ) through an interface bus ( 110 , 302 ).
  • a SATA/SAS interface requires an external Phy.
  • a PHY is a component of an integrated circuit and serves as the electrical interface that performs the data transmission between the HDD and the host.
  • JTAG UART ( 142 , 330 ) is a JTAG interface used to debug and control internal uPs.
  • DDR 2 Controller 144 , 332
  • DDR 2 SDRAM is double data rate two synchronous dynamic random access memory.
  • the main microprocessor (Main uP ( 132 , 326 )) is the main internal microprocessor that provides for control of the primary interface and also has direct control of all other internal uPs (such as 118 and 308 , it should be understood that these are repeated 16 times and only one is depicted).
  • the main microprocessor ( 132 , 136 ) may be used for OA&M (operation, administration and maintenance) functions, control a main interface and control each of the additional microprocessors.
  • the Global Registers ( 114 , 304 ) Control and status registers that are global to each of the 16 NAND interfaces. These registers control such functions as: Check for bad blocks, check for NAND device ID, NAND write protect, HW/SW/FW version control, NAND Resets, Ready/Busy status, Interrupt status and masks, Interrupt Source, ECC status and control.
  • RAM ( 54 , 338 ) is external volatile memory used by the controller as scratch memory and stack for internal uPs.
  • the NOR Flash ( 52 , 340 ) is external NOR flash used by the controller as program store for internal uPs, and may also store bad block tables and wear leveling tables. The Wear leveling and bad blocks may be supported in FPGA.
  • the DDR 2 SDRAM ( 148 , 334 ) is external DDR 2 SDRAM used by internal uPs and primary interface for buffer storage, temporary storage of large amounts of data.
  • the PCI Interface ( 112 ) is the initial interface offered on PCI PMC board.
  • the host bus ( 58 ) is an external parallel bus used to provide access to external NOR Flash and volatile memory.
  • the DPRAM ( 116 , 306 ) is a dual port RAM used to buffer data that is going to and from NAND Flash devices.
  • the DPRAM is accessible from internal uPs and primary interface. Each interface to a NAND Flash has its own DPRAM.
  • the address and command registers ( 130 , 322 ) are internal registers are used to communicate with each NAND uP to indicate what operation to perform on its NAND Flash i.e read, write, erase, cache, etc. These registers are accessible by internal uP and primary interface.
  • the uP depict each uP associated with each NAND interface, these uPs along with HW acceleration control all aspects of the NAND Flash.
  • the NAND Flash (e.g. 120 , 122 , 124 , 126 . . . 310 ).
  • the GPIO ( 128 , 324 ) are general purpose IOs that can be user defined. Currently used to control LEDs that indicate device activity.
  • the Battery ( 56 , 336 ) may be a Li Battery used power volatile memory in case of power failure. Data stored in volatile memory will be retained until power is restored.
  • the present invention may utilize static random access memory (SRAM) or synchronous dynamic random access memory (SDRAM) in communication with the controller ( 80 ).
  • SRAM static random access memory
  • SDRAM synchronous dynamic random access memory
  • the SDRAM may be added to support large block transfers from the host. Sram may also be changed to PSRAM which is cheaper and lower power.
  • the data storage device may be compatible with a plurality of file systems, such as Journaling Flash File System (JFFS1), JFFS2, JFFS3, New Technology File System (NTFS), File Allocation Table (FAT), Hierarchical File System (HFS), HFS+ and Versioning File System.
  • the data storage device also is compatible with a plurality of Operating Systems, such as Linux, uC Linux, Windows CE, Windows NT, Windows 98, Windows XP, Windows Vista, and Windows Server. It is envisioned that the data storage device will be compatible with any Operating System.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Read Only Memory (AREA)

Abstract

A data storage device comprising: at least two flash devices for storing data; a circuit board, wherein each of the flash devices are integrated on the circuit board; a controller integrated on the circuit board for reading and writing to each flash devices, wherein the controller interfaces each flash devices; at least one NOR Flash device in communication with the controller through a host bus; at least one host bus memory device in communication with the controller and at least one NOR Flash device through the host bus; at least one interface in communication with the controller and adapted to physically and electrically couple to a system, receive and store data therefrom and retrieve and transmit data to the system.

Description

    BACKGROUND OF THE INVENTION
  • This application claims priority to and is a continuation of co-pending application Ser. No. 12/884,506 filed Sep. 17, 2010 which in turn is a continuation of patent application number 11838260 filed Aug. 14, 2007 now issued as U.S. Pat. No. 7,827,346 which in turn claims priority to provisional patent application Ser. No. 60/822,356 as filed Aug. 14, 2006 and entitled “Data Storage Device”, both of which are incorporated by reference in their entirety.
  • The present invention related generally to storage devices and more particularly to a solid state disk storage devices.
  • Integrated circuits are used in a wide variety of electronics and electronic equipment. Currently NAND Flash devices are used mainly in memory sticks and consumer products, such as IPODs, digital cameras, settop boxes and the like. These are mainly 1-2 NAND Flash devices per application. Typically a flash drive is a NAND-type flash memory integrated with a USB interface and used as a removable data storage device such as a flash drive, USB Key and thumb drive. It is typically powered by a USB connection and does not require an external power source or battery power source.
  • Applications that require large amounts of storage typically use 1.8 inch or larger hard drives to achieve their goals. Hard drives are mechanical, unreliable, relatively slow and consume more power than solid state disks. Until now, there has not been a solid state disk that can displace smaller hard drives (HD's). Another problem with the prior art HD is that they have moving parts, are slow and unreliable. In contrast, the present invention provides no mechanically moving parts, is extremely reliable as it guarantees data retention, can be erased and reprogrammed <100,000 times, are orders of magnitude faster than the fastest HD and consume much less power than HDs. The present invention also provides a higher level of data integrity than HDs. A flash drive can sustain only a limited number of write/erase cycles before failure. This makes the flash drive undesirable for running application software such as Excel®, Word® and Photoshop®. Also, a prior art flash drive would be precluded from running most operating systems that operate on the hard drive.
  • Accordingly, what is needed is a device and methods that has no moving parts, is reliable, consumes less power and adds low-cost high performance memory to a wide variety of electronic equipment.
  • SUMMARY OF THE INVENTION
  • The present invention relates generally to data storage devices that are reliable, low-cost, low power and high performance.
  • According to one embodiment of the present invention, a data storage device is provided comprising: at least two flash devices for storing data; a circuit board, wherein each of the flash devices are integrated on the circuit board; a controller integrated on the circuit board for reading and writing to each flash devices, wherein the controller interfaces each flash devices; at least one NOR Flash device in communication with the controller through a host bus; at least one host bus memory device in communication with the controller; at least one interface in communication with the controller and adapted to physically and electrically couple to a system, receive and store data therefrom and retrieve and transmit data to the system.
  • According to another embodiment of the present invention, a data storage device is provided comprising: at least two NAND flash devices for storing data; a circuit board, wherein each of the NAND flash devices are integrated on the circuit board; a controller integrated on the circuit board for reading and writing to each flash devices, wherein the controller interfaces each flash devices; at least one NOR Flash device in communication with the controller through a host bus; at least RAM memory device in communication with the controller and at least one NOR Flash device through the host bus; at least one PCI interface in communication with the controller and adapted to physically and electrically couple to a system, receive and store data therefrom and retrieve and transmit data to the system. There may also be additional SDRAM in communication with the controller.
  • These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts one embodiment according to the present invention;
  • FIG. 2 depicts one embodiment according to the present invention; and
  • FIG. 3 depicts one embodiment according to the present invention.
  • DETAILED DESRIPTION OF THE INVENTION
  • The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
  • According to one embodiment of the present invention, as depicted in FIG. 1, the device is supported on a standard single width PCI PMC module and can support up to 32 Gbytes of NAND Flash for cPCl/cPSB, VME, ATCA or proprietary baseboards. The circuit board may be any board, but according to a preferred embodiment may be Peripheral component interconnect (PCI), Mezzanine Card (PMC), a Processor PMC (PPMC), and a Conduction-Cooled PMC (CCPMC). The circuit board circuit board may be compatible with at least one of a Compact PCI (CPCI) baseboard, a Versa Module Eurocard (VME) baseboard, a Advanced Telecommunications Computing Architecture (ATCA) baseboard and a proprietary baseboard. It can support JFFS1/2/3 or NTFS file systems and interface to either 32 bit or 64 bit 66 MHZ PCI. The controller (42) is a FPGA based NAND Flash controller and interfaces to each NAND flash device (e.g. 10-40) individually and also contains at least one programmable softcore microprocessors. There may be an interface for interfacing the controller with each flash device and wherein at least one programmable microprocessor consists of between ten (10) and twenty (20), preferably seventeen (17), programmable microprocessors and wherein each interface is controlled by an autonomous microprocessor. The main microprocessor may be a softcore microprocessor.
  • According to one embodiment, the board is 149 mm in length and 74.0 mm in width. The height may be X.X mm. The power requirement is 3.3 v @2W typ. The temperature range is 0° to 70° C. com and −45° to 85° C. ind. The specifications are IEEE 1386.1 and PCI 2.2. There may be 32/64 bit 66 MHZ PCI 2.2 via PMC P11, P12 and P13 connectors communication ports. The indicated applications are high speed, high thru-put HDD replacement, high reliability servers, gateways and wireless infrastructure ad servers, gateways and wireless infrastructures that require high thru-put.
  • This allows: all 32 Gbytes to look like one large block of storage; can support different file systems i.e. JFFS1/2/3 and NTFS; can support different operating systems i.e. Linux, uC linux, windows CE or NT, etc.; concurrent reads and writes to each NAND Flash device provide the highest thru-put on the market today; limited only by the primary interface (PCI in the initial case, the interface may also be, for example, Serial Advanced Technology Attachment and Peripheral Component Interconnect). OS can be writing or reading all NAND devices simultaneously; data can be “striped” across multiple NAND devices; wear leveling of NAND devices can be controlled; NAND “bad block” detection is performed concurrently across all devices via HW and is extremely fast; “bad block” detection is continued during operation as blocks continue to drop out and may detect bad blocks in each flash device concurrently; write protection and sleep mode are supported on all NAND devices; data integrity is maintained through out entire data path; parity (if provided by baseboard) on PCI interface; ECC is calculated, stored and checked with each data block written to NAND flash with multiple bit errors being corrected and the microprocessor notified of all errors; parity is used on external SRAM, FPGA; consumes very little power comparable to Hard Drive solutions; provides NOR Flash for microprocessor code and “bad block” tables; product can be updated/upgraded in the field—both field-programmable gate array (FPGA) code and microprocessor codes. The NAND bus may be coupling one of the flash devices to the controller being independent from the NAND bus coupling another one of the flash devices to the controller, and the controller may be further comprising a bad-block module, wherein the bad-block module detects bad blocks in each of the at least two flash devices during operation of the data storage devices
  • As shown in FIG. 1, a data storage device (8) is provided comprising: at least two flash devices (e.g. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 30, 32, 34, 36, 38 and 40) for storing data. The flash devices can be any size, for example between 1 GB and 8 GB and may be NAND flash devices. Each flash device may be a chip adapted for including two or more dies. According to a preferred embodiment, a solid state storage device is envisioned that is a single level cell (SLC) NAND flash devices. Each of the NAND devices has its own interface and each NAND device has its own microprocessor. According to one embodiment there are 16 microprocessors (uPs) for 16 NANDs in the initial design. Each uP has direct control of its own NAND device. Each flash devices having an individual interface and individual microprocessor. This provides significant processing power for each NAND and also with HW acceleration would provide very high performance for reads, programs and erases since each NAND device may be accessed simultaneously. Using individual microprocessors (16 uPs) also allows the present invention to add on additional features and applications very quickly without sacrificing performance. There is a circuit board (8) and each of flash devices are integrated on the circuit board (8). The controller (42) may be a Field Programmable Gate Array (FPGA) which allows a high level of flexibility for the primary interface, the initial interface may be PCI but with the flexibility of an FPGA the interface may be quickly adapted the primary interface to others i.e SATA, PCIe, PATA, etc. The controller (42), as would be appreciate by those skilled in the art, may be many different types including ASSP, ASIC and a structured ASIC. The controller (42) may be integrated on the circuit board (8) for reading and writing to each of the flash devices (e.g. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 30, 32, 34, 36, 38 and 40), wherein the controller interfaces to each of the flash devices (e.g. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 30, 32, 34, 36, 38 and 40). The controller (42) may read and write to each flash device concurrently. The controller (42) may have a data-integrity module. The controller (42) may also have a sleep-mode module, wherein the sleep-mode module enables sleep mode for the flash device(s) based on a predefined criterion. The controller (42) may also have a prevention module for controlling the wear level of each said at least one flash device. The controller (42) may further have a write-protection module, wherein the write-protection module provides write protection on each flash device. The controller (42) may divide data into a plurality of data blocks, at least one data block being stored in a flash device from the plurality of flash devices. There may be an Error Correcting Code module integrated on the circuit-board. The error correcting code module may be adaptively coupled to the controller and may detect at least one error in each data block written on each flash device; notify at least one error to the flash controller; and allow for correction of error. The error correcting code module executes error correcting code and the error correcting code is selected from the group consisting of parity code, Hamming code, Reed-Solomon code, Reed-Muller code, Binary Golay code, convolutional code, and turbo code to detect the plurality of errors. There may be at least two die on the circuit board, wherein the at least two die may be concurrently accessed.
  • There may be at least one NOR Flash device (44) in communication with the controller (42). The NOR flash (44) is used by the controller (42) as program store for internal uPs, also stores bad block tables and wear level tables. The device also has at least one host bus memory device (46) in communication with the controller (42) and the NOR Flash device (44) through the host bus (45). The host bus may be utilized exclusively for the NOR flash device and the host bus memory device. The NOR flash (44) contains the Operating System (OS) that provides control of the softcore microprocessor(s). NOR Flash (44) may also contains security algorithms, integrity, data manipulation, status and monitoring. As shown in Figure one, the host bus memory device is SRAM (46) and used by the controller (42) as scratch memory and stack for internal uPs. There is also at least one interface (47) in communication with the controller (42) and adapted to physically and electrically couple to a system, receive and store data there from and retrieve and transmit data to the system. As would be appreciated by those skilled in the art, the system may be any computing device or system. As shown in FIG. 1, there is also a power block (48). The power Block (48) is used to create voltages required to power all devices on PCB. Connectors (50,52,54), as shown in FIG. 1, are PMC PCI connectors used to connect the circuit board (8) to host/mother board.
  • As shown in FIGS. 2 and 3, the PCI Interface (112) and primary interface (301) are connected to the controller (80 and 300) through an interface bus (110, 302). A SATA/SAS interface requires an external Phy. A PHY is a component of an integrated circuit and serves as the electrical interface that performs the data transmission between the HDD and the host. There are also host Interfaces (140, 328) that are used to interface external NOR Flash (52 and 340) and host bus memory which is external volatile memory such as RAM (54) and RAM (337) to controller. JTAG UART (142, 330) is a JTAG interface used to debug and control internal uPs. Provides direct control of internal uPs without having to use the primary interface (e.g. 112 and 301). There may be a DDR2 Controller (144, 332) which is a module that provides all of the control and timing to interface internal uPs and primary interface to external DDR2 memory (such as SDRAM (148 and 334). DDR2 SDRAM is double data rate two synchronous dynamic random access memory. The main microprocessor (Main uP (132, 326)) is the main internal microprocessor that provides for control of the primary interface and also has direct control of all other internal uPs (such as 118 and 308, it should be understood that these are repeated 16 times and only one is depicted). The main microprocessor (132, 136) may be used for OA&M (operation, administration and maintenance) functions, control a main interface and control each of the additional microprocessors. The Global Registers (114, 304) Control and status registers that are global to each of the 16 NAND interfaces. These registers control such functions as: Check for bad blocks, check for NAND device ID, NAND write protect, HW/SW/FW version control, NAND Resets, Ready/Busy status, Interrupt status and masks, Interrupt Source, ECC status and control. RAM (54, 338) is external volatile memory used by the controller as scratch memory and stack for internal uPs. The NOR Flash (52, 340) is external NOR flash used by the controller as program store for internal uPs, and may also store bad block tables and wear leveling tables. The Wear leveling and bad blocks may be supported in FPGA. The DDR2 SDRAM (148, 334) is external DDR2 SDRAM used by internal uPs and primary interface for buffer storage, temporary storage of large amounts of data. The PCI Interface (112) is the initial interface offered on PCI PMC board.
  • The host bus (58) is an external parallel bus used to provide access to external NOR Flash and volatile memory. The DPRAM (116, 306) is a dual port RAM used to buffer data that is going to and from NAND Flash devices. The DPRAM is accessible from internal uPs and primary interface. Each interface to a NAND Flash has its own DPRAM. The address and command registers (130, 322) are internal registers are used to communicate with each NAND uP to indicate what operation to perform on its NAND Flash i.e read, write, erase, cache, etc. These registers are accessible by internal uP and primary interface. The uP (118,308) depict each uP associated with each NAND interface, these uPs along with HW acceleration control all aspects of the NAND Flash. The NAND Flash (e.g. 120, 122,124,126 . . . 310). There are external NAND Flash devices. The design as shown has 16 external NANDs, but any number can be accommodated. The GPIO (128, 324) are general purpose IOs that can be user defined. Currently used to control LEDs that indicate device activity. The Battery (56, 336) may be a Li Battery used power volatile memory in case of power failure. Data stored in volatile memory will be retained until power is restored. The present invention, though, may utilize static random access memory (SRAM) or synchronous dynamic random access memory (SDRAM) in communication with the controller (80). The SDRAM may be added to support large block transfers from the host. Sram may also be changed to PSRAM which is cheaper and lower power. The data storage device may be compatible with a plurality of file systems, such as Journaling Flash File System (JFFS1), JFFS2, JFFS3, New Technology File System (NTFS), File Allocation Table (FAT), Hierarchical File System (HFS), HFS+ and Versioning File System. The data storage device also is compatible with a plurality of Operating Systems, such as Linux, uC Linux, Windows CE, Windows NT, Windows 98, Windows XP, Windows Vista, and Windows Server. It is envisioned that the data storage device will be compatible with any Operating System.
  • It should be understood that the foregoing relates to preferred embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.

Claims (21)

1. A data storage device comprising:
at least two flash devices;
a controller, wherein said controller interfaces each said at least two flash devices;
at least one NOR Flash device in communication with said controller through an independent host bus;
at least one host bus memory device in communication with said controller through said independent host bus;
at least one interface in communication with said controller and a computing system,
wherein said controller is adapted to communicate with all the flash devices simultaneously, and
wherein the host bus is utilized for communication between the controller and exclusively the NOR Flash device and the host bus memory device.
2. The data storage device of claim 1, said controller further comprising a bad-block module, wherein said bad-block module detects bad blocks in each said at least two flash devices during operation of said data storage devices
3. The data storage device of claim 1, further comprising Static Random Access Memory (SRAM) in communication with said controller.
4. The data storage device of claim 1, wherein said controller comprises at least one programmable microprocessor and further comprising an interface for interfacing said controller with each flash device and wherein said at least one programmable microprocessor consist of seventeen (17) programmable microprocessors and wherein each said interface is controlled by an autonomous microprocessor.
5. The data storage device of claim 1, wherein the controller is further comprised of a bad-block module, wherein said bad-block module detects bad blocks in each said at least one flash device during operation of said data storage devices.
6. The data storage device of claim 7, wherein said bad-block module detects bad blocks in each said at least one flash device concurrently.
7. The data storage device of claim 1, further comprising a NOR Flash drive in communication with said controller.
8. The data storage device of claim 9, further comprising at least one programmable microprocessor, wherein said NOR flash is adaptively coupled to said at least one programmable microprocessors and said controller, wherein said NOR flash has at least one code of said programmable microprocessor.
9. The data storage device of claim 8, wherein said NOR flash drive contains the Operating System (OS) that provides control of the main microprocessor(s).
10. The data storage device of claim 11, wherein said controller is a FPGA based NAND Flash controller and said microprocessor initializes, controls, provisions, maintains, and diagnoses the Flash devices and internal registers of the FPGA.
11. The data storage device of claim 1, wherein said controller further comprises a sleep-mode module, wherein said sleep-mode module enables sleep mode for said at least one flash device based on a predefined criterion.
12. The data storage device of claim 1, wherein said controller further comprises a prevention module for controlling the wear level of each said at least one flash device.
13. The data storage device of claim 1, wherein said controller further comprises write-protection module, wherein said write-protection module provides write protection on each said at least one flash device.
14. The data storage device of claim 1, wherein said controller reads and writes to each flash device concurrently.
15. The data storage device of claim 1, further comprising at least two die, wherein said at least two die may be concurrently accessed.
16. The data storage device of claim 1, wherein the controller divides data into a plurality of data blocks, at least one data block is stored in a flash device from the plurality of flash devices.
17. The data storage device of claim 1, wherein at least one said flash device is a single level cell (SLC) NAND flash device.
18. The data storage device of claim 1, further comprising Synchronous Dynamic Access Memory (SDRAM) in communication with said controller.
19. The data storage device of claim 1, wherein said controller interfaces each said at least two flash devices individually through an independent NAND bus
20. The data storage device of claim 1, further comprising a circuit board, wherein each said at least two flash devices and said controller are integrated on said circuit board;
21. The data storage device of claim 1, wherein each flash device is a chip adapted for including at least two dies.
US13/360,681 2006-08-14 2012-01-28 Data storage device Abandoned US20120131268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/360,681 US20120131268A1 (en) 2006-08-14 2012-01-28 Data storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US82235606P 2006-08-14 2006-08-14
US11/838,260 US7827346B2 (en) 2006-08-14 2007-08-14 Data storage device
US12/884,506 US8131916B2 (en) 2006-08-14 2010-09-17 Data storage device
US13/360,681 US20120131268A1 (en) 2006-08-14 2012-01-28 Data storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/884,506 Continuation US8131916B2 (en) 2006-08-14 2010-09-17 Data storage device

Publications (1)

Publication Number Publication Date
US20120131268A1 true US20120131268A1 (en) 2012-05-24

Family

ID=39052193

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/838,260 Expired - Fee Related US7827346B2 (en) 2006-08-14 2007-08-14 Data storage device
US12/884,506 Expired - Fee Related US8131916B2 (en) 2006-08-14 2010-09-17 Data storage device
US13/360,681 Abandoned US20120131268A1 (en) 2006-08-14 2012-01-28 Data storage device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/838,260 Expired - Fee Related US7827346B2 (en) 2006-08-14 2007-08-14 Data storage device
US12/884,506 Expired - Fee Related US8131916B2 (en) 2006-08-14 2010-09-17 Data storage device

Country Status (2)

Country Link
US (3) US7827346B2 (en)
WO (1) WO2008022094A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120317459A1 (en) * 2011-06-13 2012-12-13 Engling Yeo Systems and methods for operating on a storage device using a life-cycle dependent coding scheme
US20130036255A1 (en) * 2011-08-05 2013-02-07 Apple Inc. Testing memory subsystem connectivity
US8700834B2 (en) 2011-09-06 2014-04-15 Western Digital Technologies, Inc. Systems and methods for an enhanced controller architecture in data storage systems
US8707104B1 (en) 2011-09-06 2014-04-22 Western Digital Technologies, Inc. Systems and methods for error injection in data storage systems
US8713357B1 (en) * 2011-09-06 2014-04-29 Western Digital Technologies, Inc. Systems and methods for detailed error reporting in data storage systems
US20140317341A1 (en) * 2006-11-20 2014-10-23 Siliconmotion Inc. System and apparatus for flash memory data management
US9053008B1 (en) 2012-03-26 2015-06-09 Western Digital Technologies, Inc. Systems and methods for providing inline parameter service in data storage devices
US9195530B1 (en) 2011-09-06 2015-11-24 Western Digital Technologies, Inc. Systems and methods for improved data management in data storage systems
US9244842B2 (en) 2009-04-08 2016-01-26 Google Inc. Data storage device with copy command
US9760481B2 (en) * 2014-06-13 2017-09-12 Sandisk Technologies Llc Multiport memory
WO2017209912A1 (en) * 2016-06-02 2017-12-07 Baker Hughes Incorporated Memory module used in a well operation

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022094A2 (en) * 2006-08-14 2008-02-21 Plankton Technologies, Llc Data storage device
US8074145B2 (en) * 2007-11-12 2011-12-06 Harris Corporation Memory system and related method using software-defined radio with write-protected, non-volatile memory
US20090286484A1 (en) * 2008-05-19 2009-11-19 Lgc Wireless, Inc. Method and system for performing onsite maintenance of wireless communication systems
US8285919B2 (en) * 2008-05-27 2012-10-09 Initio Corporation SSD with improved bad block management
US8244961B2 (en) * 2008-05-27 2012-08-14 Initio Corporation SSD with distributed processors
US8151038B2 (en) * 2008-05-27 2012-04-03 Initio Corporation SSD with a channel multiplier
US20110040771A1 (en) * 2008-06-18 2011-02-17 Petascan Ltd. Distributed hardware-based data querying
US8380909B2 (en) 2009-04-08 2013-02-19 Google Inc. Multiple command queues having separate interrupts
US20100262979A1 (en) * 2009-04-08 2010-10-14 Google Inc. Circular command queues for communication between a host and a data storage device
US20100287217A1 (en) * 2009-04-08 2010-11-11 Google Inc. Host control of background garbage collection in a data storage device
US9390035B2 (en) 2009-12-21 2016-07-12 Sanmina-Sci Corporation Method and apparatus for supporting storage modules in standard memory and/or hybrid memory bus architectures
JP5612508B2 (en) * 2010-03-25 2014-10-22 パナソニック株式会社 Nonvolatile memory controller and nonvolatile storage device
US8949502B2 (en) * 2010-11-18 2015-02-03 Nimble Storage, Inc. PCIe NVRAM card based on NVDIMM
US20120324143A1 (en) 2011-06-15 2012-12-20 Data Design Corporation Methods and apparatus for data access by a reprogrammable circuit module
US9417894B1 (en) 2011-06-15 2016-08-16 Ryft Systems, Inc. Methods and apparatus for a tablet computer system incorporating a reprogrammable circuit module
US8880779B2 (en) * 2011-08-05 2014-11-04 Apple Inc. Debugging a memory subsystem
WO2014003764A1 (en) * 2012-06-28 2014-01-03 Hewlett-Packard Development Company, L.P. Memory module with a dual-port buffer
KR20140027859A (en) 2012-08-27 2014-03-07 삼성전자주식회사 Host device and system including the same
WO2015145647A1 (en) * 2014-03-27 2015-10-01 株式会社日立製作所 Storage device, data processing method, and storage system
US9612904B2 (en) * 2015-02-02 2017-04-04 Sandisk Technologies Llc Memory system and method for securing volatile memory during sleep mode using the same ECC module used to secure non-volatile memory during active mode
CN106407080B (en) * 2016-09-29 2019-03-12 上海航天测控通信研究所 The signal monitor device of electronic equipment on satellite based on cpci bus
CN106909519A (en) * 2017-02-24 2017-06-30 济南浪潮高新科技投资发展有限公司 A kind of Nand Flash memory mapped systems based on FPGA
CN110347621B (en) * 2019-06-24 2020-09-29 广东高云半导体科技股份有限公司 FPGA connected with PSRAM memory and storage system
CN110865773B (en) * 2019-12-09 2024-10-22 湖南君瀚信息技术有限公司 Storage control system
US11314583B2 (en) 2020-08-18 2022-04-26 Micron Technology, Inc. Memory data correction using multiple error control operations
KR102404257B1 (en) * 2020-12-23 2022-06-02 청주대학교 산학협력단 Asynchronous mass memory module with error corrction function using error correction code and error correction method of asynchronous mass memory module using error correction code

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070263469A1 (en) * 2006-05-15 2007-11-15 Apple Inc. Two Levels of Voltage Regulation Supplied for Logic and Data Programming Voltage of a Memory Device
US20070276995A1 (en) * 2006-05-23 2007-11-29 Jason Caulkins Hybrid solid state disk drive with controller
US7827346B2 (en) * 2006-08-14 2010-11-02 Plankton Technologies, Llc Data storage device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000006A (en) 1997-08-25 1999-12-07 Bit Microsystems, Inc. Unified re-map and cache-index table with dual write-counters for wear-leveling of non-volatile flash RAM mass storage
US7457897B1 (en) * 2004-03-17 2008-11-25 Suoer Talent Electronics, Inc. PCI express-compatible controller and interface for flash memory
US6768642B2 (en) * 2002-12-16 2004-07-27 Lockheed Martin Corporation VME circuit host card with triple mezzanine configuration
US7526598B2 (en) * 2003-03-03 2009-04-28 Sandisk Il, Ltd. Efficient flash memory device driver
US6927097B2 (en) * 2003-03-27 2005-08-09 Intel Corporation Package with pre-applied underfill and associated methods
US7702659B2 (en) 2003-03-27 2010-04-20 Sandisk Il Ltd. Robust, self-maintaining file system
US7073013B2 (en) 2003-07-03 2006-07-04 H-Systems Flash Disk Pioneers Ltd. Mass storage device with boot code
US7752380B2 (en) * 2003-07-31 2010-07-06 Sandisk Il Ltd SDRAM memory device with an embedded NAND flash controller
KR100498508B1 (en) * 2003-09-16 2005-07-01 삼성전자주식회사 Dual buffering memory system for reducing data transmission time and control method thereof
US8351400B2 (en) 2004-05-05 2013-01-08 Qualcomm Incorporated Method and apparatus for overhead reduction in an enhanced uplink in a wireless communication system
US7126873B2 (en) * 2004-06-29 2006-10-24 Super Talent Electronics, Inc. Method and system for expanding flash storage device capacity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070263469A1 (en) * 2006-05-15 2007-11-15 Apple Inc. Two Levels of Voltage Regulation Supplied for Logic and Data Programming Voltage of a Memory Device
US20070276995A1 (en) * 2006-05-23 2007-11-29 Jason Caulkins Hybrid solid state disk drive with controller
US7827346B2 (en) * 2006-08-14 2010-11-02 Plankton Technologies, Llc Data storage device
US20110010491A1 (en) * 2006-08-14 2011-01-13 Dennis Anderson Data storage device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140317341A1 (en) * 2006-11-20 2014-10-23 Siliconmotion Inc. System and apparatus for flash memory data management
US9405485B2 (en) * 2006-11-20 2016-08-02 Siliconmotion Inc. Method and apparatus for writing data to a flash memory
US9244842B2 (en) 2009-04-08 2016-01-26 Google Inc. Data storage device with copy command
US20120317459A1 (en) * 2011-06-13 2012-12-13 Engling Yeo Systems and methods for operating on a storage device using a life-cycle dependent coding scheme
US8751906B2 (en) * 2011-06-13 2014-06-10 Marvell World Trade Ltd. Systems and methods for operating on a storage device using a life-cycle dependent coding scheme
US20130036255A1 (en) * 2011-08-05 2013-02-07 Apple Inc. Testing memory subsystem connectivity
US8713357B1 (en) * 2011-09-06 2014-04-29 Western Digital Technologies, Inc. Systems and methods for detailed error reporting in data storage systems
US9021168B1 (en) * 2011-09-06 2015-04-28 Western Digital Technologies, Inc. Systems and methods for an enhanced controller architecture in data storage systems
US9058261B1 (en) * 2011-09-06 2015-06-16 Western Digital Technologies, Inc. Systems and methods for detailed error reporting in data storage systems
US9195530B1 (en) 2011-09-06 2015-11-24 Western Digital Technologies, Inc. Systems and methods for improved data management in data storage systems
US8707104B1 (en) 2011-09-06 2014-04-22 Western Digital Technologies, Inc. Systems and methods for error injection in data storage systems
US8700834B2 (en) 2011-09-06 2014-04-15 Western Digital Technologies, Inc. Systems and methods for an enhanced controller architecture in data storage systems
US9542287B1 (en) 2011-09-06 2017-01-10 Western Digital Technologies, Inc. Systems and methods for error injection in data storage systems
US9053008B1 (en) 2012-03-26 2015-06-09 Western Digital Technologies, Inc. Systems and methods for providing inline parameter service in data storage devices
US9760481B2 (en) * 2014-06-13 2017-09-12 Sandisk Technologies Llc Multiport memory
WO2017209912A1 (en) * 2016-06-02 2017-12-07 Baker Hughes Incorporated Memory module used in a well operation

Also Published As

Publication number Publication date
WO2008022094A2 (en) 2008-02-21
US8131916B2 (en) 2012-03-06
US20080040531A1 (en) 2008-02-14
US7827346B2 (en) 2010-11-02
WO2008022094A3 (en) 2008-10-09
US20110010491A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
US8131916B2 (en) Data storage device
US9612761B2 (en) Semiconductor device
US8671330B2 (en) Storage device, electronic device, and data error correction method
US9081718B2 (en) Systems and methods for storing and recovering controller data in non-volatile memory devices
US10459793B2 (en) Data reliability information in a non-volatile memory device
US9329931B2 (en) Solid state drive emergency pre-boot application providing expanded data recovery function
US10067844B2 (en) Method of channel content rebuild in ultra-high capacity SSD
US8250403B2 (en) Solid state disk device and related data storing and reading methods
US9436563B2 (en) Memory system for mirroring data
US20150143027A1 (en) Solid state drive with raid functions
US8489946B2 (en) Managing logically bad blocks in storage devices
US20150205541A1 (en) High-capacity solid state disk drives
US8954817B2 (en) Storage apparatus and controller
US11055189B2 (en) Replaceable memory
US20150143024A1 (en) Redundant array of independent modules
US10949361B1 (en) Multiprocessor software-defined solid-state storage drive
US11809742B2 (en) Recovery from HMB loss
US20210405886A1 (en) Methods and apparatus for enhancing uber rate for storage devices
KR20080093948A (en) Disk module
US11893275B2 (en) DRAM-less SSD with recovery from HMB loss
US11561735B2 (en) Latency on indirect admin commands

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION