US20110104329A1 - Taste potentiator compositions and edible confectionery and chewing gum products containing same - Google Patents

Taste potentiator compositions and edible confectionery and chewing gum products containing same Download PDF

Info

Publication number
US20110104329A1
US20110104329A1 US12/861,911 US86191110A US2011104329A1 US 20110104329 A1 US20110104329 A1 US 20110104329A1 US 86191110 A US86191110 A US 86191110A US 2011104329 A1 US2011104329 A1 US 2011104329A1
Authority
US
United States
Prior art keywords
sweetener
potentiator
composition
taste
chewing gum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/861,911
Inventor
Navroz Boghani
Petros Gebreselassie
Carole Ann Hargreaves
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intercontinental Great Brands LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/861,911 priority Critical patent/US20110104329A1/en
Assigned to KRAFT FOODS GLOBAL, INC. reassignment KRAFT FOODS GLOBAL, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: CADBURY ADAMS USA LLC
Assigned to KRAFT FOODS GLOBAL BRANDS LLC reassignment KRAFT FOODS GLOBAL BRANDS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRAFT FOODS GLOBAL, INC.
Publication of US20110104329A1 publication Critical patent/US20110104329A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/18Chewing gum characterised by shape, structure or physical form, e.g. aerated products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/18Chewing gum characterised by shape, structure or physical form, e.g. aerated products
    • A23G4/20Composite products, e.g. centre-filled, multi-layer, laminated
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/18Chewing gum characterised by shape, structure or physical form, e.g. aerated products
    • A23G4/20Composite products, e.g. centre-filled, multi-layer, laminated
    • A23G4/205Hollow products, e.g. with inedible or edible filling, fixed or movable within the cavity
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/60Sweeteners
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/204Aromatic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/82Acid flavourants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/88Taste or flavour enhancing agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention includes oral compositions that provide an enhanced perception of an active substance contained therein.
  • the compositions may include an active substance, such as a flavor, and a taste potentiator.
  • the taste potentiator may increase the perception of the active substance upon consumption.
  • the compositions may be incorporated into various types of edible orally delivered products, such as confectionery or chewing gum products.
  • sour, salty, sweet, bitter and umami savory or the taste of glutamate
  • the taste of a substance is sensed by taste receptor cells located in taste buds primarily on the surface of the tongue and palate in the oral cavity.
  • taste receptor cells located in taste buds primarily on the surface of the tongue and palate in the oral cavity.
  • Each of the primary taste qualities is sensed by a specific mechanism. It is believed that sour and salty tastes are detected by the passage of ions, hydrogen and sodium respectively, through the ion channels in taste bud cells. This triggers a nerve impulse that is sensed in the brain as sour or salty. In contrast, it is believed that sweet, bitter and umami tastes are perceived by physical binding to receptors.
  • GPCRs G-protein coupled receptors
  • T2R5 and T1R5 G-protein coupled receptors
  • T1R5 and T1R5 G-protein coupled receptors
  • One category of taste potentiators of particular interest are compounds that enhance sweetness.
  • carbohydrate sweeteners such as sucrose
  • sucrose are the most widely used sweeteners, they suffer from the disadvantages of high cost and high caloric content.
  • Artificial sweeteners have been designed that overcome these problems but they are sometimes rejected by the consumer for not having a sufficiently “sucrose-like” taste.
  • Artificial sweeteners have different sweetness profiles from that of sucrose and often suffer from side effects such as delays in the onset of sweetness perception and/or unpleasant aftertastes.
  • Compounds are known which, when combined with a sweetener, modify the taste of the sweetener. Such compounds are usually referred to as sweetness modifiers or potentiators. They may act to enhance or inhibit the perception of the sweetness of the sweetener or may affect the sweetness profile in some way.
  • sweetness modifiers or potentiators. They may act to enhance or inhibit the perception of the sweetness of the sweetener or may affect the sweetness profile in some way.
  • Canadian Patent No. 1208966 discloses a broad range of aromatic compounds which are claimed as sweetness modifiers.
  • 2,4-Dihydroxybenzoic acid (2,4-DHB) also is described as a sweetness potentiator, but the literature is ambiguous as to its effects.
  • U.S. Pat. No. 5,232,735 it is listed as a “substantially tasteless sweetness inhibitor” whereas in Canadian Patent No. 1208966 the addition of 0.2% 2,4-DHB to a 5% sucrose solution is said to have resulted in an increase in sweetness.
  • International Publication No. WO99/15032 describes the use of 2,4-DHB with aspartame to increase sweetness synergistically and provide a more “sucrose-like” taste and mouthfeel.
  • WO00/69282 describes the modification of the taste and physicochemical properties of the sweetener neotame by the addition of at least one taste modifying hydrophobic acid additive.
  • the taste modifying hydrophobic acid additive is limited only in that it must positively affect at least one taste characteristic imparted by neotame. These characteristics appear to be related to the sweetness profile, specifically the onset and linger period, but the examples do not describe how the characteristics have been affected. 3-HB and 2,4-DHB are listed among a very large number of such additives.
  • U.S. Pat. No. 6,955,887 to Adler et al. discloses methods for identifying taste potentiators using newly identified mammalian taste-cell-specific G-protein coupled receptors. More specifically, U.S. Pat. No. 6,955,887 teaches methods for screening target compounds that may be used to modulate the sweet taste perception.
  • compositions that include such taste potentiators.
  • compositions that control the release rate of the taste potentiator from the composition.
  • chewing gums and other related confectioneries that control the release profile of taste potentiators, as desired, to manage the release profile of the chewing gum or confectionery product.
  • it would be desirable to develop a sweetener potentiator composition that allows the quantity of natural or artificial sweetener in an orally delivered product to be reduced, thereby reducing the cost of production and the calorie content of the orally delivered product, but which avoids adverse effects on flavor.
  • a controlled-release composition including at least one active substance and at least one encapsulated taste potentiator.
  • a controlled-release composition including an encapsulated mixture of at least one taste potentiator and at least one active substance.
  • a controlled-release composition including at least one encapsulated active substance and at least one taste potentiator.
  • a controlled-release composition including at least one active substance and at least one taste potentiator.
  • a controlled-release composition includes at least one encapsulated active substance and at least one encapsulated taste potentiator.
  • a controlled-release composition including at least one intense sweetener and at least one encapsulated sweetener potentiator.
  • compositions including at least one active substance and at least one encapsulated taste potentiator.
  • compositions including an encapsulated mixture of at least one taste potentiator and at least one active substance.
  • composition including at least one encapsulated active substance and at least one taste potentiator.
  • composition including at least one active substance and at least one taste potentiator.
  • composition including at least one encapsulated active substance and at least one encapsulated taste potentiator.
  • compositions including at least one intense sweetener and at least one encapsulated sweetener potentiator.
  • compositions that modulates the activity of taste receptor cells in a mammal which includes at least one active substance and at least one encapsulated taste potentiator, wherein the at least one encapsulated taste potentiator acts in conjunction with the at least one active substance to modulate the activity of the taste receptor cells upon consumption of the composition, thereby enhancing the perception of the at least one active substance.
  • Some embodiments provide a sweetener potentiator composition, which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the first amount is equal to the second amount.
  • a sweetener potentiator composition including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains sufficient amounts of the first amount of 3-hydroxybenzoic acid and the second amount of 2,4-dihydroxybenzoic acid to create a sucrose equivalent value of at least seven %.
  • a sweetener potentiator composition which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains sufficient amounts of the first amount of 3-hydroxybenzoic acid and the second amount of 2,4-dihydroxybenzoic acid to create a sucrose equivalent value of at least eight %.
  • Some embodiments provide a sweetener potentiator composition, which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains at least 200 ppm of the first amount of 3-hydroxybenzoic acid and at least 200 ppm of the second amount of 2,4-dihydroxybenzoic acid.
  • Some embodiments provide a sweetener potentiator composition, including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains at least 400 ppm of the first amount of 3-hydroxybenzoic acid and at least 400 ppm of the second amount of 2,4-dihydroxybenzoic acid.
  • Some embodiments provide a sweetener potentiator composition, including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains at least 500 ppm of the first amount of 3-hydroxybenzoic acid and at least 500 ppm of the second amount of 2,4-dihydroxybenzoic acid.
  • Some embodiments provide a sweetener potentiator composition, which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains a ratio by weight of the first amount of 3-hydroxybenzoic acid to the second amount of 2,4-dihydroxybenzoic acid between 1:9 and 9:1.
  • sweetener potentiator composition which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition is in a form of a blended powder.
  • Some embodiments provide a sweetener potentiator composition, including a first amount of 3-hydroxybenzoic acid, a second amount of 2,4-dihydroxybenzoic acid and a third amount of 3,4-dihydroxybenzoic acid.
  • a chewing gum composition which includes:
  • composition including:
  • composition including:
  • first and second solubilities provide a controlled-release profile to the chewing gum composition selected from simultaneous release, sequential release and partially overlapping release.
  • composition comprising an encapsulated mixture of at least one taste potentiator and at least one active substance.
  • composition including:
  • composition including:
  • composition including:
  • composition including:
  • a sweetener potentiator composition further including:
  • a confectionery composition including a sweetener potentiator composition, the sweetener potentiator composition including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the first amount is equal to the second amount.
  • a confectionery composition including a sweetener potentiator composition, the sweetener potentiator composition including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid.
  • a method of reducing the cost of a sweetener system including the steps of:
  • a method of preparing a chewing gum product includes the steps of:
  • a taste potentiator composition having controlled-release upon consumption which includes the steps of:
  • FIG. 1 is a graph of 3-hydroxybenzoic acid concentration against perceived sweetness.
  • FIG. 2 is a graph of 2,4-dihydroxybenzoic acid concentration against perceived sweetness.
  • FIG. 3 is a bar chart of sucrose reduction for solutions containing 3-hydroxybenzoic acid and 2,4-dihydroxybenzoic acid in a number of different ratios.
  • FIG. 4 is a bar chart of sucrose reduction for solutions containing 3-hydroxybenzoic acid and 2,4-dihydroxybenzoic acid at a number of different concentrations.
  • FIG. 5 is a bar chart of perceived sweetness for a number of solutions containing substituted benzoic acids.
  • FIG. 6 is a bar chart of perceived sweetness for a number of solutions containing substituted benzoic acids.
  • FIG. 7 is a bar chart of perceived sweetness for a number of solutions containing 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid, in various combinations.
  • FIG. 8 is a graph of perceived sweetness for sucrose solutions containing 2,4-dihydroxybenzoic acid, its potassium salt or its sodium salt against sucrose concentration.
  • FIG. 9 is a bar chart of perceived sweetness for solutions containing intense sweeteners.
  • FIG. 10 is a bar chart of perceived sweetness for solutions containing bulk sweeteners.
  • transitional term “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps, regardless of its use in the preamble or the body of a claim.
  • bubble gum and “chewing gum” are used interchangeably and are both meant to include any gum compositions.
  • the term “confectionery base” includes any ingredient or group of ingredients that represent form the bulk of the confectionery composition and provide the confectionery composition with its structural integrity and to which other ingredients are added.
  • flavor key is a flavor component containing flavoring agents such as flavored oils, and the like, and is typically used to prepare a flavor essence.
  • flavor essence (“flavor blend”, “flavor extract”) as used herein is a flavor component generally prepared from a flavor key.
  • Embodiments described herein provide compositions for oral delivery of an active substance.
  • Numerous different active substances may be employed, such as, for example, flavors.
  • the compositions also may include a taste potentiator.
  • the taste potentiator may act in a synergistic manner when used in conjunction with the active substance to enhance the perception of the active substance during consumption.
  • the taste potentiator may be encapsulated to provide a controlled release profile, i.e., delayed or increased rate of release upon consumption. The taste potentiator accordingly may release over an extended period of time throughout the consumption of the product into which the composition is incorporated, such as, for example, chewing gum.
  • compositions may include at least one active substance and at least one taste potentiator.
  • the potentiator compositions may have controlled-release properties.
  • the taste potentiator(s) may work synergistically with the active substance(s) to enhance the perception of the active(s).
  • the active substance may be a sweetener. Delivery of the sweetener in combination with at least one taste potentiator may enhance the sweet taste upon consumption of the composition.
  • the taste potentiator(s) may function synergistically with the sweetener to enhance the sweet taste.
  • the incorporation of the potentiator(s) therefore, allows for reduced amounts of sweetener without compromising the level of sweetness provided by the composition. Due to the calories contained in many conventional sweeteners, such as sugar, these results may be highly desirable. Additionally, there may be significant cost savings associated with the reduction in sweetener amounts used in the composition.
  • taste potentiator refers to substances that may enhance the perception of an active substance during consumption of the composition.
  • the term “enhance” means to intensify, supplement, modify, modulate or potentiate.
  • Some taste potentiators may be referred to more specifically by reference to the type of active they enhance.
  • sweetener (or sweetness) potentiators enhance the perception of a sweetener during consumption
  • flavor potentiators enhance the perception of a flavor during consumption.
  • Taste potentiators may have a synergistic effect when used in conjunction with an active, i.e., by enhancing the taste effects of the active substance such that the total effect is greater than the sum of the taste effects of the individual substances alone. In addition, some taste potentiators do not introduce a characteristic taste and/or aroma perception of their own.
  • the taste potentiator(s) may enhance the sour, sweet, bitter, salty or umami taste of a composition.
  • the taste potentiator(s) also may function to enhance the effects of a variety of other active substances, as discussed in more detail below.
  • suitable taste potentiators include water-soluble taste potentiators, such as, but not limited to, neohesperidin dihydrochalcone, chlorogenic acid, alapyridaine, cynarin, miraculin, glupyridaine, pyridinium-betain compounds, glutamates, such as monosodium glutamate and monopotassium glutamate, neotame, thaumatin, tagatose, trehalose, salts, such as sodium chloride, monoammonium glycyrrhizinate, vanilla extract (in ethyl alcohol), water-soluble sugar acids, potassium chloride, sodium acid sulfate, water-soluble hydrolyzed vegetable proteins, water-soluble hydrolyzed animal proteins, water-soluble yeast extracts, adenosine monophosphate (AMP), glutathione,
  • water-soluble taste potentiators such as, but not limited to, neohesperidin dihydro
  • Suitable taste potentiators are substantially or completely insoluble in water, such as, but not limited to, citrus aurantium, vanilla oleoresin, water insoluble sugar acids, water insoluble hydrolyzed vegetable proteins, water insoluble hydrolyzed animal proteins, water insoluble yeast extracts, insoluble nucleotides, sugarcane leaf essence and combinations thereof.
  • Some other suitable taste potentiators include substances that are slightly soluble in water, such as, but not limited to, maltol, ethyl maltol, vanillin, slightly water-soluble sugar acids, slightly water-soluble hydrolyzed vegetable proteins, slightly water-soluble hydrolyzed animal proteins, slightly water-soluble yeast extracts, slightly water-soluble nucleotides and combinations thereof.
  • Suitable taste potentiators include, but are not limited to, licorice glycyrrhizinates, compounds that respond to G-protein coupled receptors (T2R5 and T1R5), G-protein coupled receptors (T2R5 and T1R5) and taste potentiator compositions that impart kokumi, as disclosed in U.S. Pat. No. 5,679,397 to Kuroda et al., which is incorporated in its entirety herein by reference. “Kokumi” refers to materials that impart “mouthfulness” and “good body”. Kokumi imparting compositions may be water-soluble, slightly water-soluble or insoluble in water.
  • sweetener potentiators which are a type of taste potentiator, enhance the taste of sweetness.
  • exemplary sweetener potentiators include, but are not limited to, monoammonium glycyrrhizinate, licorice glycyrrhizinates, citrus aurantium, alapyridaine, alapyridaine (N-(1-carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol) inner salt, miraculin, curculin, strogin, mabinlin, gymnemic acid, cynarin, glupyridaine, pyridinium-betain compounds, sugar beet extract, neotame, thaumatin, neohesperidin dihydrochalcone, tagatose, trehalose, maltol, ethyl maltol, vanilla extract, vanilla oleoresin, vanillin, sugar beet
  • Acidic peptides include peptides having a larger number of acidic amino acids, such as aspartic acid and glutamic acid, than basic amino acids, such as lysine, arginine and histidine.
  • the acidic peptides are obtained by peptide synthesis or by subjecting proteins to hydrolysis using endopeptidase, and if necessary, to deamidation.
  • Suitable proteins for use in the production of the acidic peptides or the peptides obtained by subjecting a protein to hydrolysis and deamidation include plant proteins, (e.g.
  • wheat gluten e.g., corn protein (e.g., zein and gluten meal), soybean protein isolate), animal proteins (e.g., milk proteins such as milk casein and milk whey protein, muscle proteins such as meat protein and fish meat protein, egg white protein and collagen), and microbial proteins (e.g., microbial cell protein and polypeptides produced by microorganisms).
  • animal proteins e.g., milk proteins such as milk casein and milk whey protein, muscle proteins such as meat protein and fish meat protein, egg white protein and collagen
  • microbial proteins e.g., microbial cell protein and polypeptides produced by microorganisms.
  • hydrophobic sweeteners include those of the formulae I-XI as set forth below:
  • X, Y and Z are selected from the group consisting of CH 2 , O and S;
  • X and Y are selected from the group consisting of S and O;
  • X is C or S; R is OH or H and R 1 is OCH 3 or OH;
  • R, R 2 and R 3 are OH or H and R 1 is H or COOH;
  • X is O or CH 2 and R is COOH or H;
  • R is CH 3 CH 2 , OH, N(CH 3 ) 2 or Cl;
  • Perillartine may also be added as described in U.S. Pat. No. 6,159,509 also incorporated in its entirety herein by reference.
  • taste potentiators may be used alone or in combination.
  • a sweetener potentiator composition may be provided, which includes two or more sweetener potentiators that act synergistically with one another.
  • the sweetener potentiator composition may enhance the sweetness of products into which it is incorporated by reducing the amount of sucrose needed to provide a sweetness intensity equivalent to sucrose.
  • the sweetness enhancing effect of the combination of sweetener potentiators may be greater than the effect of either compound used individually.
  • a sweetener potentiator composition comprising 3-hydroxybenzoic acid (3-HB) and 2,4-dihydroxybenzoic acid (2,4-DHB) or comestible salts thereof.
  • Comestible salts include acid (i.e. carboxylate) salts and/or hydroxylate salts, especially sodium, potassium, calcium, magnesium, and ammonium salts and the like.
  • acid i.e. carboxylate
  • hydroxylate salts especially sodium, potassium, calcium, magnesium, and ammonium salts and the like.
  • the sweetener potentiator composition employs 3-HB and/or 2,4-DHB in the form of the acid, the sodium salt or the potassium salt.
  • sufficient amounts of 3-HB and 2,4-DHB are employed in the sweetener potentiator compositions to create a sucrose equivalent value of at least about seven %, more specifically, at least about eight %.
  • 3-HB and 2,4-DHB may be used in amounts of about 200 ppm, 400 ppm or 500 ppm.
  • 3-HB and 2,4-DHB may be incorporated into sweetener potentiator compositions in equal or different amounts.
  • the sweetener potentiator composition contains 3-HB and 2,4-DHB in a ratio by weight of from 1:9 to 9:1, more specifically from 2:8 to 8:2, even more specifically from 4:6 to 6:4 and most specifically 1:1.
  • the sweetener potentiator composition may contain a further sweetener potentiator.
  • a further sweetener potentiator for instance, 3,4-dihydroxybenzoic acid (3,4-DHB) or its comestible salt may be employed.
  • the sweetener potentiator composition may be provided as a pre-blended powder or liquid, which may be added to another composition, whereas in other embodiments, the individual components of the sweetener potentiator composition may be added to another composition as individual ingredients.
  • the release rate may be based on the solubility of the taste potentiator(s) in water. Selection of a specific solubility may be used to control the release profile of the taste potentiator(s), as well as the overall composition. More specifically, taste potentiators have varying solubilities in water. Although some of these components are water-soluble, i.e., capable of being substantially or completely dissolvable in water, others exhibit poor or no solubility in water. In some embodiments, for instance, it may be desirable to select one or more taste potentiators that have low water-solubility in combination with an active known to exhibit poor solubility in water.
  • the highly insoluble taste potentiator thereby may last throughout consumption of the composition as the active substance also slowly releases therefrom.
  • a relatively highly water-soluble potentiator may be paired with a relatively highly water-soluble active substance.
  • the taste potentiator and active substance may be selected based on solubilities such that their release profiles are similar or overlap.
  • Another example may include multiple sequentially releasing taste potentiators with multiple active substances also having different solubilities in water.
  • Numerous other combinations of taste potentiators having different solubilities also may be used to provide different release profiles for the compositions.
  • the solubility of the taste potentiator(s), as well as the combination thereof with the active(s) may be used to control and tailor the release profile of the overall composition.
  • controlled-release means that the duration or manner of release is managed or modified to some degree to provide a desired release profile. More specifically, for example, controlled-release includes at least the following release profiles: delayed onset of release; pulsed release; gradual release; high initial release; sustained release; sequential release; and combinations thereof.
  • Taste potentiators and active substances having different solubilities and/or release profiles may be combined in numerous different embodiments to provide compositions having many different overall release profiles.
  • one or more taste potentiators having any of the following release profiles may be combined in any manner with one or more active substances having any of the following release profiles: delayed onset of release (“DOR”); pulsed release (“PR”); gradual release (“GR”); high initial release (“HIR”); and sustained release (“SUR”).
  • DOR delayed onset of release
  • PR pulsed release
  • GR gradual release
  • HIR high initial release
  • SUR sustained release
  • other techniques of imparting these, as well as other controlled-release profiles to taste potentiators and/or active substances may be employed. For instance, encapsulation techniques, which are discussed in more detail below, may be used.
  • taste potentiator(s) and active substance(s) that are not encapsulated may be combined with other forms of the components, such as encapsulated forms, to tailor the release profile of the potentiator compositions.
  • a sampling of hypothetical combinations is provided in Table 1 below, wherein P 1 -P 3 represent different taste potentiators and A 1 -A 3 represent different active substances. P 1 -P 3 and A 1 -A 3 may be used in their free and/or encapsulated forms.
  • Controlled-release properties also may be imparted to the compositions described herein in other manners, such as, for example, by encapsulation techniques, as mentioned above. Encapsulation may be used to impart any of the various release profiles discussed above.
  • the taste potentiator(s) and/or active substance(s) may be encapsulated to control the rate of release of the potentiator and/or active from the composition.
  • 3-HB and/or 2,4-DHB may be used in their encapsulated forms.
  • some embodiments may include at least one encapsulated taste potentiator and at least one unencapsulated active, i.e., in its free form.
  • Other embodiments may include at least one unencapsulated taste potentiator and at least one encapsulated active substance.
  • both the taste potentiator(s) and active substance(s) may be encapsulated.
  • the taste potentiator(s) and active substance(s) may be encapsulated together or separately.
  • the material used to encapsulate the components may be the same or different.
  • more than one material may be used to encapsulate the taste potentiator(s) or the active substance(s).
  • the encapsulated form of the taste potentiator(s) or active substance(s) may be used in combination with an amount of the same component in its free, i.e., unencapsulated, form.
  • the enhanced perception of the active may be provided over a longer period of time and/or perception of the active by a consumer may be improved.
  • some embodiments may include a taste potentiator that is encapsulated in combination with an amount of the same taste potentiator in its unencapsulated form.
  • the unencapsulated taste potentiator could be a different taste potentiator from the potentiator that is encapsulated.
  • a mixture of two different taste potentiators may be included in some embodiments, one of which is encapsulated and the other in its free form.
  • Encapsulation may be effected by dispersion of the components, spray drying, spray coating, fluidized bed drying, absorption, adsorption, coacervation, complexation, or any other standard technique.
  • the taste potentiator(s) and/or active substances(s) may be encapsulated by an encapsulant.
  • the term “encapsulant” refers to a material that can fully or partially coat or enrobe another substance. Encapsulation is also meant to include adsorption of a substance onto another substance and the formation of agglomerates or conglomerates between two substances.
  • any material conventionally used as an encapsulant in edible products may be employed.
  • an encapsulant that delays the release of the taste potentiator(s) such as, for example, a hydrophobic encapsulant.
  • more than one encapsulant may be used.
  • a taste potentiator or an active substance may be encapsulated by a mixture of two or more encapsulants to tailor the rate of release.
  • taste potentiators can act in conjunction with active substances to enhance their activity. In some embodiments, therefore, it may be desirable to control the release of the potentiator(s) such that it substantially coincides with that of the active substance(s) included in the composition. As discussed above, some taste potentiators have rapid release rates, whereas other taste potentiators have slower release rates. Meanwhile, some active substances have rapid release rates, whereas others have slower release rates. In some embodiments, the material used to encapsulate the taste potentiator(s) may be selected to delay or increase the release rate of the potentiator(s) based on the release profiles of both the potentiator(s) and active substance(s) selected for use together in the composition.
  • the active substance(s) contained in the composition may have a slower release profile than the taste potentiator(s) selected for use in the same composition. It may be desirable, therefore, to delay the release of the taste potentiator(s) from the composition such that it releases substantially in conjunction with the active(s).
  • the corresponding release profile may increase the effectiveness of the taste potentiator(s) in enhancing the perception of the active(s) throughout consumption.
  • Suitable encapsulants for use in delayed release embodiments include, but are not limited to, polyvinyl acetate, polyethylene, crosslinked polyvinyl pyrrolidone, polymethylmethacrylate, polylactidacid, polyhydroxyalkanoates, ethylcellulose, polyvinyl acetatephthalate, methacrylicacid-co-methylmethacrylate and combinations thereof.
  • the taste potentiator(s) may be water-soluble.
  • the following taste potentiators are water-soluble: neohesperidin dihydrochalcone, chlorogenic acid, alapyridaine, cynarin, miraculin, glupyridaine, pyridinium-betain compounds, glutamates, such as monosodium glutamate and monopotassium glutamate, neotame, thaumatin, tagatose, trehalose, salts, such as sodium chloride, monoammonium glycyrrhizinate, vanilla extract (in ethyl alcohol), water-soluble sugar acids, potassium chloride, sodium acid sulfate, water-soluble hydrolyzed vegetable proteins, water-soluble hydrolyzed animal proteins, water-soluble yeast extracts, adenosine monophosphate (AMP), glutathione, water-soluble nucleotides, such as inosine
  • water-soluble taste potentiators may be encapsulated by an encapsulant that delays the release of the potentiator(s), as provided above.
  • the taste potentiator(s) included in the composition may have a slower release rate than the active substance(s) selected for use in combination therewith. This difference in release rates may reduce the effectiveness of the taste potentiator(s). Accordingly, such taste potentiators may be encapsulated with an encapsulant that increases the rate of the potentiator's release. Thereby, the release of the potentiator(s) and the active(s) may substantially coincide during consumption.
  • Suitable encapsulants for use in increased release embodiments include, but are not limited to, cyclodextrins, sugar alcohols, starch, gum arabic, polyvinylalcohol, polyacrylic acid, gelatin, guar gum, fructose and combinations thereof.
  • the taste potentiator(s) may be substantially or completely insoluble in water.
  • the following taste potentiators are substantially or completely water-insoluble: citrus aurantium, vanilla oleoresin, water insoluble sugar acids, water insoluble hydrolyzed vegetable proteins, water insoluble hydrolyzed animal proteins, water insoluble yeast extracts, insoluble nucleotides, sugarcane leaf essence and combinations thereof. Due to their poor solubility in water, such taste potentiators may tend to release slowly from the compositions.
  • substantially or completely water-insoluble taste potentiators may be encapsulated by an encapsulant that increases the release of the potentiator(s), as provided above.
  • the encapsulated taste potentiator may include a taste potentiator and an encapsulant.
  • the encapsulant may be selected based upon the desired release profile of the taste potentiator.
  • the taste potentiator(s) may be present in amounts of about 0.01% to about 10% by weight of the composition, more specifically about 0.1% to about 2% by weight of the composition.
  • the encapsulant may be present in amounts of about 1% to about 95% by weight of the composition, more specifically about 5% to about 30% by weight of the composition.
  • the encapsulated substance i.e. encapsulated taste potentiator(s) or active(s)
  • the active substance(s) included in the potentiator compositions may be present in amounts of about 1% to about 95% by weight of the composition, more specifically about 5% to about 30% by weight of the composition.
  • the active substance(s) may be any component for which the perception is enhanced in some manner by the presence of one or more taste potentiators.
  • Suitable active substances include, but are not limited to, compounds that provide flavor, sweetness, tartness, umami, kokumi, savory, saltiness, cooling, warmth or tingling.
  • Other suitable actives include oral care agents, nutraceutical actives and pharmaceutical actives. Combinations of active substances also may be employed.
  • flavorings or flavor agents include those flavors known to the skilled artisan, such as natural and artificial flavors. These flavorings may be chosen from synthetic flavor oils and flavoring aromatics and/or oils, oleoresins and extracts derived from plants, leaves, flowers, fruits, and so forth, and combinations thereof.
  • Nonlimiting representative flavor oils include spearmint oil, cinnamon oil, oil of wintergreen (methyl salicylate), peppermint oil, Japanese mint oil, clove oil, bay oil, anise oil, eucalyptus oil, thyme oil, cedar leaf oil, oil of nutmeg, allspice, oil of sage, mace, oil of bitter almonds, and cassia oil.
  • sweetenings are artificial, natural and synthetic fruit flavors such as vanilla, and citrus oils including lemon, orange, lime, grapefruit, yazu, sudachi, and fruit essences including apple, pear, peach, grape, blueberry, strawberry, raspberry, cherry, plum, pineapple, watermelon, apricot, banana, melon, apricot, ume, cherry, raspberry, blackberry, tropical fruit, mango, mangosteen, pomegranate, papaya and so forth.
  • fruit flavors such as vanilla, and citrus oils including lemon, orange, lime, grapefruit, yazu, sudachi, and fruit essences including apple, pear, peach, grape, blueberry, strawberry, raspberry, cherry, plum, pineapple, watermelon, apricot, banana, melon, apricot, ume, cherry, raspberry, blackberry, tropical fruit, mango, mangosteen, pomegranate, papaya and so forth.
  • Other potential flavors include a milk flavor, a butter flavor, a cheese flavor, a cream flavor, and a yogurt flavor; a vanilla flavor; tea or coffee flavors, such as a green tea flavor, a oolong tea flavor, a tea flavor, a cocoa flavor, a chocolate flavor, and a coffee flavor; mint flavors, such as a peppermint flavor, a spearmint flavor, and a Japanese mint flavor; spicy flavors, such as an asafetida flavor, an ajowan flavor, an anise flavor, an angelica flavor, a fennel flavor, an allspice flavor, a cinnamon flavor, a chamomile flavor, a mustard flavor, a cardamom flavor, a caraway flavor, a cumin flavor, a clove flavor, a pepper flavor, a coriander flavor, a sassafras flavor, a savory flavor, a Zanthoxyli Fructus flavor, a perilla flavor, a juniper berry
  • flavoring agents may be used in liquid or solid form and may be used individually or in admixture.
  • Commonly used flavors include mints such as peppermint, menthol, spearmint, artificial vanilla, cinnamon derivatives, and various fruit flavors, whether employed individually or in admixture. Flavors may also provide breath freshening properties, particularly the mint flavors when used in combination with cooling agents.
  • flavorings include aldehydes and esters such as cinnamyl acetate, cinnamaldehyde, citral diethylacetal, dihydrocarvyl acetate, eugenyl formate, p-methylamisol, and so forth may be used.
  • aldehydes and esters such as cinnamyl acetate, cinnamaldehyde, citral diethylacetal, dihydrocarvyl acetate, eugenyl formate, p-methylamisol, and so forth may be used.
  • any flavoring or food additive such as those described in Chemicals Used in Food Processing, publication 1274, pages 63-258, by the National Academy of Sciences, may be used. This publication is incorporated herein by reference.
  • aldehyde flavorings include but are not limited to acetaldehyde (apple), benzaldehyde (cherry, almond), anisic aldehyde (licorice, anise), cinnamic aldehyde (cinnamon), citral, i.e., alpha-citral (lemon, lime), neral, i.e., beta-citral (lemon, lime), decanal (orange, lemon), ethyl vanillin (vanilla, cream), heliotrope, i.e., piperonal (vanilla, cream), vanillin (vanilla, cream), alpha-amyl cinnamaldehyde (spicy fruity flavors), butyraldehyde (butter, cheese), valeraldehyde (butter, cheese), citronellal (modifies, many types), decanal (citrus fruits), aldehyde C-8 (citrus fruits),
  • the flavor agent may be employed in either liquid form and/or dried form.
  • suitable drying means such as spray drying the oil may be used.
  • the flavor agent may be absorbed onto water soluble materials, such as cellulose, starch, sugar, maltodextrin, gum arabic and so forth or may be encapsulated. The actual techniques for preparing such dried forms are well-known.
  • the flavor agents may be used in many distinct physical forms well-known in the art to provide an initial burst of flavor and/or a prolonged sensation of flavor.
  • physical forms include free forms, such as spray dried, powdered, beaded forms, encapsulated forms, and mixtures thereof.
  • sweeteners or sweetening agents may include bulk sweeteners such as sugars, sugarless bulk sweeteners, or the like, or mixtures thereof.
  • Suitable sugar sweeteners generally include mono-saccharides, di-saccharides and poly-saccharides such as but not limited to, sucrose (sugar), dextrose, maltose, dextrin, xylose, ribose, glucose, lactose, mannose, galactose, fructose (levulose), invert sugar, fructo oligo saccharide syrups, partially hydrolyzed starch, corn syrup solids, isomaltulose and mixtures thereof.
  • Suitable sugarless bulk sweeteners include sugar alcohols (or polyols) such as, but not limited to, sorbitol, xylitol, mannitol, galactitol, maltitol, hydrogenated isomaltulose (ISOMALT), lactitol, erythritol, hydrogenated starch hydrolysate, stevia and mixtures thereof.
  • sugar alcohols or polyols
  • Suitable hydrogenated starch hydrolysates include those disclosed in U.S. Pat. No. 4,279,931 and various hydrogenated glucose syrups and/or powders which contain sorbitol, maltitol, hydrogenated disaccharides, hydrogenated higher polysaccharides, or mixtures thereof.
  • Hydrogenated starch hydrolysates are primarily prepared by the controlled catalytic hydrogenation of corn syrups. The resulting hydrogenated starch hydrolysates are mixtures of monomeric, dimeric, and polymeric saccharides. The ratios of these different saccharides give different hydrogenated starch hydro lysates different properties.
  • high-intensity sweeteners may be used. Without being limited to particular sweeteners, representative categories and examples include:
  • water-soluble sweetening agents such as dihydrochalcones, monellin, stevia, steviosides, rebaudioside A, glycyrrhizin, dihydroflavenol, and sugar alcohols such as sorbitol, mannitol, maltitol, xylitol, erythritol and L-aminodicarboxylic acid aminoalkenoic acid ester amides, such as those disclosed in U.S. Pat. No. 4,619,834, which disclosure is incorporated herein by reference, and mixtures thereof;
  • water-soluble sweetening agents such as dihydrochalcones, monellin, stevia, steviosides, rebaudioside A, glycyrrhizin, dihydroflavenol, and sugar alcohols such as sorbitol, mannitol, maltitol, xylitol, erythritol and L
  • water-soluble artificial sweeteners such as soluble saccharin salts, i.e., sodium or calcium saccharin salts, cyclamate salts, the sodium, ammonium or calcium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the potassium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide (Acesulfame-K), the free acid form of saccharin, and mixtures thereof;
  • dipeptide based sweeteners such as L-aspartic acid derived sweeteners, such as L-aspartyl-L-phenylalanine methyl ester (Aspartame) and materials described in U.S. Pat. No.
  • water-soluble sweeteners derived from naturally occurring water-soluble sweeteners such as chlorinated derivatives of ordinary sugar (sucrose), e.g., chlorodeoxysugar derivatives such as derivatives of chlorodeoxysucrose or chlorodeoxygalactosucrose, known, for example, under the product designation of Sucralose
  • chlorodeoxysucrose and chlorodeoxygalactosucrose derivatives include but are not limited to: 1-chloro-1′-deoxysucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-alpha-D-fructofuranoside, or 4-chloro-4-deoxygalactosucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-1-chloro-1-deoxy-beta-D-fructo-furanoside, or 4,1′-dichloro-4,1′-dideoxygal
  • protein based sweeteners such as thaumatococcus danielli (Thaumatin I and II) and talin;
  • Lo han guo (sometimes also referred to as “Lo han kuo”).
  • the intense sweetening agents may be used in many distinct physical forms well-known in the art to provide an initial burst of sweetness and/or a prolonged sensation of sweetness.
  • physical forms include free forms, such as spray dried, powdered, beaded forms, encapsulated forms, and mixtures thereof.
  • Compounds that provide tartness may include acidulants, such as acetic acid, adipic acid, ascorbic acid, butyric acid, citric acid, formic acid, fumaric acid, glyconic acid, lactic acid, phosphoric acid, malic acid, oxalic acid, succinic acid, tartaric acid and mixtures thereof.
  • acidulants such as acetic acid, adipic acid, ascorbic acid, butyric acid, citric acid, formic acid, fumaric acid, glyconic acid, lactic acid, phosphoric acid, malic acid, oxalic acid, succinic acid, tartaric acid and mixtures thereof.
  • Compounds that provide umami or savory flavor may include monosodium glutamate (MSG), glutamic acid, glutamates, aspartate, free amino acids, IMP (disodium 5′-inosine monophosphate) and GMP (disodium 5′-guanosine monophosphate), compounds that stimulate T1R1 and T1R3 receptors, mushroom flavor, fermented fish flavor, and muscle flavors, such as beef, chicken, pork, ostrich, venison and buffalo.
  • Substances that impart kokumi may include a mixture selected from: (1) gelatin and tropomyosin and/or tropomyosin peptides; (2) gelatin and paramyosin; and (3) troponin and tropomyosin and/or tropomyosin peptides, as disclosed in U.S. Pat. No. 5,679,397 to Kuroda et al., referred to above.
  • Compounds that provide saltiness may include conventional salts, such as sodium chloride, calcium chloride, potassium chloride, 1-lysine and combinations thereof.
  • Compounds that provide a cooling sensation may include physiological cooling agents.
  • a variety of well known cooling agents may be employed.
  • the useful cooling agents are included xylitol, erythritol, dextrose, sorbitol, menthane, menthone, ketals, menthone ketals, menthone glycerol ketals, substituted p-menthanes, acyclic carboxamides, mono menthyl glutarate, substituted cyclohexanamides, substituted cyclohexane carboxamides, substituted ureas and sulfonamides, substituted menthanols, hydroxymethyl and hydroxymethyl derivatives of p-menthane, 2-mercapto-cyclo-decanone, hydroxycarboxylic acids with 2-6 carbon atoms, cyclohexanamides, menthyl acetate, menthyl salicylate, N,2,3-trimethyl-2-isopropyl
  • Compounds that provide warmth may be selected from a wide variety of compounds known to provide the sensory signal of warming to the individual user. These compounds offer the perceived sensation of warmth, particularly in the oral cavity, and often enhance the perception of flavors, sweeteners and other organoleptic components.
  • Useful warming agents include those having at least one allyl vinyl component, which may bind to oral receptors.
  • Suitable warming agents include, but are not limited to: vanillyl alcohol n-butylether (TK-1000, supplied by Takasago Perfumery Company Ltd., Tokyo, Japan); vanillyl alcohol n-propylether; vanillyl alcohol isopropylether; vanillyl alcohol isobutylether; vanillyl alcohol n-aminoether; vanillyl alcohol isoamylether; vanillyl alcohol n-hexylether; vanillyl alcohol methylether; vanillyl alcohol ethylether; gingerol; shogaol; paradol; zingerone; capsaicin; dihydrocapsaicin; nordihydrocapsaicin; homocapsaicin; homodihydrocapsaicin; ethanol; isopropyl alcohol; iso-amylalcohol; benzyl alcohol; glycerine; chloroform; eugenol; cinnamon oil;
  • Tingling agents Compounds that provide a tingling sensation also are known and referred to as “tingling agents.” Tingling agents may be employed to provide a tingling, stinging or numbing sensation to the user. Tingling agents include, but are not limited to: Jambu Oleoresin or para cress ( Spilanthes sp.), in which the active ingredient is Spilanthol; Japanese pepper extract ( Zanthoxylum peperitum ), including the ingredients known as Saanshool-I, Saanshool-II and Sanshoamide; black pepper extract ( piper nigrum ), including the active ingredients chavicine and piperine; Echinacea extract; Northern Prickly Ash extract; and red pepper oleoresin.
  • Jambu Oleoresin or para cress Spilanthes sp.
  • Zanthoxylum peperitum including the ingredients known as Saanshool-I, Saanshool-II and Sanshoamide
  • black pepper extract piper nig
  • alkylamides extracted from materials such as jambu or sanshool may be included. Additionally, in some embodiments, a sensation is created due to effervescence. Such effervescence is created by combining an alkaline material with an acidic material, either or both of which may be encapsulated.
  • an alkaline material may include alkali metal carbonates, alkali metal bicarbonates, alkaline earth metal carbonates, alkaline earth metal bicarbonates and mixtures thereof.
  • an acidic material may include acetic acid, adipic acid, ascorbic acid, butyric acid, citric acid, formic acid, fumaric acid, glyconic acid, lactic acid, phosphoric acid, malic acid, oxalic acid, succinic acid, tartaric acid and combinations thereof.
  • Tingling agents are described in U.S. Pat. No. 6,780,443 to Nakatsu et al., U.S. Pat. No. 5,407,665 to McLaughlin et al., U.S. Pat. No. 6,159,509 to Johnson et al. and U.S. Pat. No. 5,545,424 to Nakatsu et al., each of which is incorporated by reference herein in its entirety.
  • Oral care agents that may be used include those actives known to the skilled artisan, such as, but not limited to, surfactants, breath freshening agents, anti-microbial agents, antibacterial agents, anti-calculus agents, anti-plaque agents, oral malodor control agents, fluoride compounds, quaternary ammonium compounds, remineralization agents and combinations thereof.
  • Suitable surfactants include, but are not limited to, salts of fatty acids selected from the group consisting of C 8 -C 24 , palmitoleic acid, oleic acid, eleosteric acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, ricinoleic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, sulfated butyl oleate, medium and long chain fatty acid esters, sodium oleate, salts of fumaric acid, potassium glomate, organic acid esters of mono- and diglycerides, stearyl monoglyceridyl citrate, succistearin, dioctyl sodium sulfosuccinate, glycerol tristearate, lecithin, hydroxylated lecithin, sodium lauryl sulfate, acetylated mono
  • Suitable antibacterial agents include, but are not limited to, chlorhexidine, alexidine, quaternary ammonium salts, benzethonium chloride, cetyl pyridinium chloride, 2,4,4′-trichloro-2′-hydroxy-diphenyl ether (triclosan) and combinations thereof.
  • Suitable fluoride compounds include, but are not limited to, sodium fluoride, sodium monofluorophosphate, stannous fluoride and combinations thereof.
  • Suitable anti-calculus agents include, but are not limited to, pyrophosphates, triphosphates, polyphosphates, polyphosphonates, dialkali metal pyrophosphate salt, tetra alkali polyphosphate salt, tetrasodium pyrophosphate, tetrapotassium pyrophosphate, sodium tripolyphosphate and combinations thereof.
  • Suitable anti-microbial agents include, but are not limited to, cetylpyridinium chloride, zinc compounds, copper compounds and combinations thereof.
  • Suitable remineralization agents include, but are not limited to casein phosphopeptide-amorphous calcium phosphate, casein phosphoprotein-calcium phosphate complex, casein phosphopeptide-stabilized calcium phosphate, and combinations thereof.
  • Pharmaceutical actives include drugs or medicaments, breath fresheners, vitamins and other dietary supplements, minerals, caffeine, nicotine, fruit juices, and the like, and mixtures thereof.
  • useful drugs include ace-inhibitors, antianginal drugs, anti-arrhythmias, anti-asthmatics, anti-cholesterolemics, analgesics, anesthetics, anti-convulsants, anti-depressants, anti-diabetic agents, anti-diarrhea preparations, antidotes, anti-histamines, anti-hypertensive drugs, anti-inflammatory agents, anti-lipid agents, anti-manics, anti-nauseants, anti-stroke agents, anti-thyroid preparations, anti-tumor drugs, anti-viral agents, acne drugs, alkaloids, amino acid preparations, anti-tussives, anti-uricemic drugs, anti-viral drugs, anabolic preparations, systemic and non-systemic anti-infective agents, anti-neoplastic
  • a mixture of at least one active substance and at least one taste potentiator is encapsulated, rather than encapsulating the taste potentiator or the active substance alone.
  • the encapsulant may be selected to delay or increase the rate of release of the mixture of components. Any of the encapsulants described above may be employed.
  • the active substance(s) may be at least one intense sweetener.
  • the intense sweetener(s) may be mixed with at least one taste potentiator, which is selected to increase the sweet taste of the intense sweetener(s). This mixture of components may then be encapsulated.
  • suitable intense sweeteners include, but are not limited to, neotame, aspartame, Acesulfame-K, sucralose, saccharin and combinations thereof.
  • the active substance(s) may be present in amounts of about 1% to about 95% by weight of the composition, more specifically about 5% to about 30% by weight.
  • the taste potentiator(s) may be present in amounts of about 0.01% to about 12% by weight of the composition, more specifically about 0.1% to about 5% by weight.
  • the encapsulant may be present in amounts of about 1% to about 95% by weight of the composition, more specifically about 10% to about 60% by weight.
  • some embodiments may include a mixture of at least one encapsulated taste potentiator and at least one taste potentiator in its free form.
  • the encapsulated and unencapsulated taste potentiators may be the same or different.
  • the encapsulated taste potentiator(s) may be encapsulated by any of the materials described above.
  • the mixture of encapsulated and unencapsulated taste potentiators may be combined with one or more active substances to provide a potentiator composition.
  • compositions that modulate the activity of taste receptor cells in a mammal.
  • Such compositions may include at least one active substance and at least one taste potentiator, as described above. These components may be encapsulated or unencapsulated, also as described above.
  • the taste potentiator(s) may modulate the activity of taste receptor cells upon consumption of the composition. More specifically, taste is perceived through sensory cells located in the taste buds. Different signaling mechanisms sense the primary tastes of salty, sour, sweet, bitter and umami. Eventually a nerve impulse is triggered in the brain that is sensed as one of these primary tastes.
  • Taste potentiators function by modulating the activity of taste receptor cells at some point in this taste signaling pathway. For instance, in some cases, taste potentiators may bind to taste receptors, such as, for example, sweet taste receptors, which thereby enhances the perception of the sweet taste. In other embodiments, for example, taste potentiators may block taste receptors, such as, for example bitter receptors, which suppresses the perception of a bitter taste and thereby enhances the perception of a sweet taste. Taste potentiator(s), therefore, modulate the activity of taste receptor cells in mammals, which thereby enhances the perception of a given taste. This activity may enhance the perception of an active substance contained in the composition when consumed in conjunction with a taste potentiator.
  • taste potentiators may bind to taste receptors, such as, for example, sweet taste receptors, which thereby enhances the perception of the sweet taste.
  • taste potentiators may block taste receptors, such as, for example bitter receptors, which suppresses the perception of a bitter taste and
  • the potentiator compositions may reside in an orally delivered product including at least one active substance and at least one taste potentiator.
  • the orally delivered product may be a foodstuff, pharmaceutical or personal care product.
  • Preferred foodstuffs include confectionery, especially chocolates, hard boilings and other sugar-based candies, jellies, soft candies, edible films, lozenges, pressed tablets, cereal bars, chewing gum, and the like.
  • Pharmaceuticals may be delivered in the form of a tablet, capsule, solution, tincture, linctus or syrup. Confectionery and solid pharmaceutical delivery forms optionally can be coated.
  • Exemplary personal products include toothpaste, mouth spray, and mouth wash.
  • the orally delivered product may be a frozen or refrigerated/perishable product.
  • frozen or refrigerated foodstuffs may include, but are not limited to, frozen desserts, frozen confections, yogurts, puddings, frozen baked goods and whipped toppings.
  • sweetened orally delivered products may include jams, jellies, peanut butter, baked goods, syrups, toppings, and sweet and salty snacks, such as sweetened roasted nuts, kettle corn, barbeque potato snacks, and the like.
  • the orally delivered product may include a confectionery base or gum base and any of the potentiator compositions described herein.
  • some or all of the active and/or the taste potentiator may be employed in a free form (e.g., unencapsulated).
  • the product may include some or all of the active and/or the taste potentiator in an encapsulated form.
  • the product may include some of the active and/or the taste potentiator in a free form and some of the active and/or the taste potentiator in an encapsulated form.
  • the product may include two or more potentiator compositions.
  • the potentiator composition used in the orally delivered product may be a sweetener potentiator composition including 3-HB and/or 2,4-DHB.
  • 3-HB and 2,4-DHB act synergistically with one another to enhance the sweetness of orally delivered products into which the potentiators are incorporated.
  • the concentration of 3-HB as calculated in the form of the free acid, generally may be up to 1500 ppm in the orally delivered product, more specifically in the range from 100 to 1500 ppm, even more specifically in the range from 200 to 1000 ppm, yet more specifically in the range from 300 to 800 ppm and most specifically in the range from 400 to 600 ppm.
  • the concentration of 2,4-DHB as calculated in the form of the free acid, generally may be up to 1500 ppm in the product, more specifically in the range from 100 to 1500 ppm, even more specifically in the range from 200 to 1000 ppm, yet more specifically in the range from 300 to 800 ppm and most specifically in the range from 400 to 600 ppm.
  • the combined concentration of 3-HB and 2,4-DHB may be no more than 1500 ppm in beverages and confectioneries.
  • the concentration of 3-HB and/or 2,4-DHB, as calculated in the form of the free acid generally may be up to 5000 ppm in the product, more specifically in the range from 100 to 5000 ppm, even more specifically in the range from 1000 to 5000 ppm, yet more specifically in the range from 2000 to 5000 ppm and most specifically in the range from 3000 to 5000 ppm.
  • the required concentrations will depend upon the nature of the orally delivered product to be sweetened, the level of sweetness required, the nature of the sweetener(s) in the product and the degree of enhancement required.
  • the product may be a comestible selected from forms such as, but not limited to, hard candy, soft candy, center-fill candy, cotton candy, pressed tablets, edible film, lozenges, and the like.
  • Confectionery compositions may include a confectionery base and any of the potentiator compositions described above, which may include at least one active substance and at least one taste potentiator.
  • the confectionery compositions also may include a variety of optional additives, as provided in more detail below.
  • the composition containing the active(s) and the taste potentiator(s) releases from the confection and provides an enhanced perception of the active(s) contained therein.
  • the active substance may be at least one sweetener, such as, a sugar sweetener, sugarless bulk sweetener, intense sweetener or any combination thereof.
  • the active substance(s) may be present in amounts of about 0.0001% to about 75% by weight of the confectionery composition.
  • the active substance(s) may be present in amounts of about 25% to about 75% by weight of the confectionery composition.
  • the taste potentiator(s) may be present in amounts of about 0.01% to about 10% by weight of the confectionery composition.
  • Some embodiments are directed to a comestible in the form of a lozenge or candy, also commonly referred to as confectioneries.
  • Such confectionery compositions may include a confectionery base including bulk sweeteners such as sugars and sugarless bulk sweeteners, or the like, or mixtures thereof.
  • Bulk sweeteners generally are present in amounts of about 0.05% to about 99% by weight of the composition.
  • Coloring agents may be used in amounts effective to produce the desired color.
  • the coloring agents may include pigments which may be incorporated in amounts up to about 6%, by weight of the composition.
  • titanium dioxide may be incorporated in amounts up to about 2%, and preferably less than about 1%, by weight of the composition.
  • the colorants may also include natural food colors and dyes suitable for food, drug and cosmetic applications. These colorants are known as F.D. & C. dyes and lakes.
  • the materials acceptable for the foregoing uses are preferably water-soluble. Illustrative nonlimiting examples include the indigoid dye known as F.D. & C.
  • F.D. & C. Green No. 1 comprises a triphenylmethane dye and is the monosodium salt of 4-[4-(N-ethyl-p-sulfoniumbenzylamino) diphenylmethylene]-[1-(N-ethyl-N-p-sulfoniumbenzyl)-delta-2,5-cyclohexadieneimine].
  • F.D. & C. colorants and their corresponding chemical structures may be found in the Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Edition, in volume 5 at pages 857-884, which text is incorporated herein by reference.
  • Lubricants also may be added in some embodiments to improve the smoothness of the comestible, such as, for example hard candy embodiments. Smoothness also is a characteristic that leads to an increased perception of hydration upon consumption. Suitable lubricants include, but are not limited to, fats, oils, aloe vera, pectin and combinations thereof.
  • the comestible may have smooth edges.
  • the comestible may have any shape, such as square, circular or diamond-shaped, however, the edges are rounded to provide a smooth comestible.
  • Another manner of lending smoothness to the comestibles is to deposit the comestible composition into moulds during the manufacturing process. Accordingly, in some embodiments, the comestible is deposited, as described in more detail below.
  • the confectionery composition may further include a sweetener selected from Lo han guo, stevia, monatin and combinations thereof.
  • confectionery compositions may be produced by batch processes. Such confections may be prepared using conventional apparatus such as fire cookers, cooking extruders, and/or vacuum cookers.
  • the bulk sweetener sucgar or sugar free
  • a solvent e.g., water
  • the slurry is heated to about 70° C. to 120° C. to dissolve any sweetener crystals or particles and to form an aqueous solution.
  • heat and vacuum are applied to cook the batch and boil off water until a residual moisture of less than about 4% is achieved.
  • the batch changes from a crystalline to an amorphous, or glassy, phase.
  • the potentiator composition then may be admixed in the batch by mechanical mixing operations, along with any other optional additives, such as coloring agents, flavorants, and the like.
  • the batch is then cooled to about 50° C. to 10° C. to attain a semi-solid or plastic-like consistency.
  • the optimum mixing required to uniformly mix the actives, potentiators, and other additives during manufacturing of hard confectionery is determined by the time needed to obtain a uniform distribution of the materials. Normally, mixing times of from four to ten minutes have been found to be acceptable.
  • the candy mass Once the candy mass has been properly tempered, it may be cut into workable regions or formed into desired shapes having the correct weight and dimensions. A variety of forming techniques may be utilized depending upon the shape and size of the final product desired. Once the desired shapes are formed, cool air is applied to allow the comestibles to set uniformly, after which they are wrapped and packaged.
  • the apparatus useful in accordance with some embodiments comprise cooking and mixing apparatus well known in the confectionery manufacturing arts, and selection of specific apparatus will be apparent to one skilled in the art.
  • various confectionery configurations with multiple regions may be employed. These configurations may include, but are not limited to, liquid center-fill, powder center-fill, hard coated, soft coated, laminated, layered and enrobed.
  • the potentiator composition may be included in one region or in multiple regions of the product.
  • the orally delivered product may be in the form of various soft confectionery formats.
  • Soft confectionery formats may include, but are not limited to, nougat, caramel, taffy, gummies and jellies.
  • Soft confectionery compositions may include a confectionery base and any of the potentiator compositions described above, which may include at least one active substance and at least one taste potentiator.
  • the soft confectionery compositions also may include a variety of optional additives, such as any of the additives set forth above in the section describing confectionery compositions.
  • the composition containing the active(s) and the taste potentiator(s) releases from the soft confection and provides an enhanced perception of the active(s) contained therein.
  • the active substance may be at least one sweetener, such as, a sugar sweetener, sugarless bulk sweetener, intense sweetener or any combination thereof.
  • the active substance(s) may be present in amounts of about 0.0001% to about 75% by weight of the soft confectionery composition.
  • the active substance(s) may be present in amounts of about 25% to about 75% by weight of the soft confectionery composition.
  • the taste potentiator(s) may be present in amounts of about 0.01% to about 10% by weight of the soft confectionery composition.
  • Some soft confectionery compositions include nougat compositions, which may include two principal components, a high-boiled candy and a frappe.
  • egg albumen or substitute thereof is combined with water and whisked to form a light foam.
  • Sugar and glucose are added to water and boiled typically at temperatures of from about 130° C. to 140° C. and the resulting boiled product is poured into a mixing machine and beaten until creamy.
  • the beaten albumen and flavoring agent are combined with the creamy product and the combination is thereafter thoroughly mixed.
  • a caramel composition may include sugar (or sugar substitute), corn syrup (or polyol syrup), partially hydrogenated fat, milk solids, water, butter, flavors, emulsifiers, and salt.
  • sugar/sugar substitute, corn syrup/polyol syrup, and water may be mixed together and dissolved over heat.
  • the milk solids may be mixed in to the mass to form a homogeneous mixture.
  • the minor ingredients may be mixed in with low heat. The heat then may be increased to boiling. Once sufficient water is removed and color/flavor developed, the mass may be cooled somewhat and temperature sensitive ingredients (including some potentiators) may be mixed in prior to discharging and forming/shaping/wrapping the finished product.
  • a taffy composition may include sugar (or sugar substitute), corn syrup (or polyol syrup), partially hydrogenated fat, water, flavors, emulsifiers, and salt.
  • sugar or sugar substitute
  • corn syrup or polyol syrup
  • partially hydrogenated fat water
  • flavors or emulsifiers
  • salt partially hydrogenated fat
  • a gummi composition may include sugar (or sugar substitute), corn syrup (or polyol syrup), gelatin (or suitable hydrocolloid), flavor, color, and optionally acid.
  • the gummi may be prepared by hydrating the gelatin or suitable hydrocolloid, heating the sugar/corn syrup (sugar substitute/polyol syrup) and combining the two components with heat. Once the combined mixture reaches its final temperature or suitable sugar solids level, components such as flavor, color, and the like may be incorporated into the mixture and then poured into molds prior to cooling, wrapping, and finishing.
  • Various surface treatments such as applications of wax or fat can be applied to decrease sticking.
  • a jelly composition may include a starch-based jelly or a pectin-based jelly.
  • jelly products may be produced by hydrating the hydrocolloid and combining the hydrated mixture with a cooked syrup component. The mixture then may be cooked to a final moisture content and minor components may be incorporated.
  • jelly candies may be poured into molds such as starch molds.
  • surface treatments such as fats or waxes, may be applied.
  • jelly candies may have dry surface treatments, such as applications of sanding sugar, acid, non-pareils, and the like.
  • various soft confectionery configurations with multiple regions may be employed. These configurations may include, but are not limited to, liquid center-fill, powder center-fill, hard coated, soft coated, laminated, layered and enrobed.
  • the potentiator composition may be included in one region or in multiple regions of the product.
  • Some embodiments provide chewing gum compositions for delivery of the potentiator compositions described above.
  • Such chewing gum compositions may include a gum base and any of the potentiator compositions described above, which may include at least one active substance and at least one taste potentiator.
  • the chewing gum compositions also may include a variety of optional additives, as provided in more detail below.
  • the composition containing the active(s) and the taste potentiator(s) releases from the chewing gum and provides an enhanced perception of the active(s) contained therein.
  • the potentiator composition generally includes at least one active substance and at least one taste potentiator.
  • the taste potentiator(s) and/or active(s) may be encapsulated, as described above, or a mixture of the active(s) and taste potentiator(s) may be encapsulated.
  • the active substance may be at least one sweetener, such as, a sugar sweetener, sugarless bulk sweetener, intense sweetener or any combination thereof.
  • the active substance(s) may be present in amounts of about 0.0001% to about 75% by weight of the chewing gum composition.
  • the active substance(s) may be present in amounts of about 25% to about 75% by weight of the chewing gum composition.
  • the taste potentiator(s) may be present in amounts of about 0.01% to about 10% by weight of the chewing gum composition.
  • the chewing gum composition may include multiple taste potentiators.
  • the taste potentiators may be encapsulated or unencapsulated and may be the same or different.
  • the multiple taste potentiators may be different.
  • Some chewing gum compositions may include one or more taste potentiators that are encapsulated in combination with one or more different taste potentiators that are unencapsulated.
  • two different encapsulated taste potentiators may be used in a chewing gum composition.
  • the chewing gum composition may include a combination of the same taste potentiator in its encapsulated and free forms.
  • the chewing gum composition also may include a gum base.
  • the gum base may include any component known in the chewing gum art. Such components may be water soluble, water-insoluble or a combination thereof.
  • the gum base may include elastomers, bulking agents, waxes, elastomer solvents, emulsifiers, plasticizers, fillers and mixtures thereof.
  • the elastomers (rubbers) employed in the gum base will vary greatly depending upon various factors such as the type of gum base desired, the consistency of gum composition desired and the other components used in the composition to make the final chewing gum product.
  • the elastomer may be any water-insoluble polymer known in the art, and includes those gum polymers utilized for chewing gums and bubble gums.
  • suitable polymers in gum bases include both natural and synthetic elastomers.
  • those polymers which are suitable in gum base compositions include, without limitation, natural substances (of vegetable origin) such as chicle, natural rubber, crown gum, nispero, rosidinha, jelutong, perillo, niger gutta, tunu, balata, guttapercha, lechi capsi, sorva, gutta kay, and the like, and mixtures thereof.
  • synthetic elastomers include, without limitation, styrene-butadiene copolymers (SBR), polyisobutylene, isobutylene-isoprene copolymers, polyethylene, polyvinyl acetate and the like, and mixtures thereof.
  • the amount of elastomer employed in the gum base may vary depending upon various factors such as the type of gum base used, the consistency of the gum composition desired and the other components used in the composition to make the final chewing gum product.
  • the elastomer will be present in the gum base in an amount from about 10% to about 60% by weight, desirably from about 35% to about 40% by weight.
  • the gum base may include wax. It softens the polymeric elastomer mixture and improves the elasticity of the gum base.
  • the waxes employed will have a melting point below about 60° C., and preferably between about 45° C. and about 55° C.
  • the low melting wax may be a paraffin wax.
  • the wax may be present in the gum base in an amount from about 6% to about 10%, and preferably from about 7% to about 9.5%, by weight of the gum base.
  • waxes having a higher melting point may be used in the gum base in amounts up to about 5%, by weight of the gum base.
  • high melting waxes include beeswax, vegetable wax, candelilla wax, carnuba wax, most petroleum waxes, and the like, and mixtures thereof.
  • the gum base may include a variety of other ingredients, such as components selected from elastomer solvents, emulsifiers, plasticizers, fillers, and mixtures thereof.
  • the gum base may contain elastomer solvents to aid in softening the elastomer component.
  • elastomer solvents may include those elastomer solvents known in the art, for example, terpinene resins such as polymers of alpha-pinene or beta-pinene, methyl, glycerol and pentaerythritol esters of rosins and modified rosins and gums such as hydrogenated, dimerized and polymerized rosins, and mixtures thereof.
  • Examples of elastomer solvents suitable for use herein may include the pentaerythritol ester of partially hydrogenated wood and gum rosin, the pentaerythritol ester of wood and gum rosin, the glycerol ester of wood rosin, the glycerol ester of partially dimerized wood and gum rosin, the glycerol ester of polymerized wood and gum rosin, the glycerol ester of tall oil rosin, the glycerol ester of wood and gum rosin and the partially hydrogenated wood and gum rosin and the partially hydrogenated methyl ester of wood and rosin, and the like, and mixtures thereof.
  • the elastomer solvent may be employed in the gum base in amounts from about 2% to about 15%, and preferably from about 7% to about 11%, by weight of the gum base.
  • the gum base may also include emulsifiers which aid in dispersing the immiscible components into a single stable system.
  • the emulsifiers useful in this invention include glyceryl monostearate, lecithin, fatty acid monoglycerides, diglycerides, propylene glycol monostearate, and the like, and mixtures thereof.
  • the emulsifier may be employed in amounts from about 2% to about 15%, and more specifically, from about 7% to about 11%, by weight of the gum base.
  • the gum base may also include plasticizers or softeners to provide a variety of desirable textures and consistency properties. Because of the low molecular weight of these ingredients, the plasticizers and softeners are able to penetrate the fundamental structure of the gum base making it plastic and less viscous.
  • plasticizers and softeners include lanolin, palmitic acid, oleic acid, stearic acid, sodium stearate, potassium stearate, glyceryl triacetate, glyceryl lecithin, glyceryl monostearate, propylene glycol monostearate, acetylated monoglyceride, glycerine, and the like, and mixtures thereof.
  • Waxes for example, natural and synthetic waxes, hydrogenated vegetable oils, petroleum waxes such as polyurethane waxes, polyethylene waxes, paraffin waxes, microcrystalline waxes, fatty waxes, sorbitan monostearate, tallow, propylene glycol, mixtures thereof, and the like, may also be incorporated into the gum base.
  • the plasticizers and softeners are generally employed in the gum base in amounts up to about 20% by weight of the gum base, and more specifically in amounts from about 9% to about 17%, by weight of the gum base.
  • Plasticizers also include hydrogenated vegetable oils, such as soybean oil and cottonseed oils, which may be employed alone or in combination. These plasticizers provide the gum base with good texture and soft chew characteristics. These plasticizers and softeners are generally employed in amounts from about 5% to about 14%, and more specifically in amounts from about 5% to about 13.5%, by weight of the gum base.
  • Anhydrous glycerin may also be employed as a softening agent, such as the commercially available United States Pharmacopeia (USP) grade.
  • Glycerin is a syrupy liquid with a sweet warm taste and has a sweetness of about 60% of that of cane sugar. Because glycerin is hygroscopic, the anhydrous glycerin may be maintained under anhydrous conditions throughout the preparation of the chewing gum composition.
  • the gum base may also include effective amounts of bulking agents such as mineral adjuvants which may serve as fillers and textural agents.
  • mineral adjuvants include calcium carbonate, magnesium carbonate, alumina, aluminum hydroxide, aluminum silicate, talc, tricalcium phosphate, dicalcium phosphate, calcium sulfate and the like, and mixtures thereof.
  • These fillers or adjuvants may be used in the gum base compositions in various amounts.
  • the amount of filler, when used will be present in an amount from about 15% to about 40%, and desirably from about 20% to about 30%, by weight of the gum base.
  • a variety of traditional ingredients may be optionally included in the gum base in effective amounts such as flavor agents and coloring agents, antioxidants, preservatives, and the like.
  • titanium dioxide and other dyes suitable for food, drug and cosmetic applications known as F. D. & C. dyes, may be utilized.
  • An anti-oxidant such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, vitamin E and mixtures thereof, may also be included.
  • BHT butylated hydroxytoluene
  • BHA butylated hydroxyanisole
  • propyl gallate vitamin E and mixtures thereof
  • Other conventional chewing gum additives known to one having ordinary skill in the chewing gum art may also be used in the gum base.
  • the chewing gum compositions may include amounts of conventional additives selected from the group consisting of sweetening agents, plasticizers, softeners, emulsifiers, waxes, fillers, bulking agents (carriers, extenders, bulk sweeteners), mineral adjuvants, flavor agents and coloring agents, antioxidants, acidulants, thickeners, medicaments, oral care actives, such as remineralization agents, antimicrobials and tooth whitening agents, as described in assignee's co-pending U.S. patent application Ser. No. 10/901,511, filed on Jul. 29, 2004 and entitled “Tooth Whitening Compositions and Delivery Systems Therefor,” which is incorporated herein by reference in its entirety, and the like, and mixtures thereof.
  • Some of these additives may serve more than one purpose.
  • a sweetener such as maltitol or other sugar alcohol, may also function as a bulking agent.
  • Bulk sweeteners include sugars, sugarless bulk sweeteners, or the like, or mixtures thereof. Bulk sweeteners generally are present in amounts of about 5% to about 99% by weight of the chewing gum composition. Suitable sugar sweeteners and sugarless bulk sweeteners, as well as intense sweeteners are provided above in the description of the potentiator compositions.
  • an effective amount of intense sweetener may be utilized to provide the level of sweetness desired, and this amount may vary with the sweetener selected.
  • the intense sweetener may be present in amounts from about 0.001% to about 3%, by weight of the chewing gum composition, depending upon the sweetener or combination of sweeteners used. The exact range of amounts for each type of sweetener may be selected by those skilled in the art.
  • the chewing gum composition may include a sweetener selected from Lo han guo, stevia, monatin and combinations thereof.
  • flavor agents generally may be present in amounts from about 0.02% to about 5%, and more specifically from about 0.1% to about 4%, and even more specifically, from about 0.8% to about 3%, by weight of the composition.
  • Coloring agents may be used in amounts effective to produce the desired color.
  • the coloring agents may include pigments which may be incorporated in amounts up to about 6%, by weight of the composition.
  • titanium dioxide may be incorporated in amounts up to about 2%, and preferably less than about 1%, by weight of the composition.
  • the colorants may also include natural food colors and dyes suitable for food, drug and cosmetic applications. Suitable coloring agents are set forth above in the description of confectionery compositions.
  • plasticizers, softening agents, mineral adjuvants, waxes and antioxidants discussed above, as being suitable for use in the gum base may also be used in the chewing gum composition.
  • examples of other conventional additives which may be used include emulsifiers, such as lecithin and glyceryl monostearate, thickeners, used alone or in combination with other softeners, such as methyl cellulose, alginates, carrageenan, xanthan gum, gelatin, carob, tragacanth, locust bean, and carboxy methyl cellulose, acidulants such as malic acid, adipic acid, citric acid, tartaric acid, fumaric acid, and mixtures thereof, and fillers, such as those discussed above under the category of mineral adjuvants.
  • emulsifiers such as lecithin and glyceryl monostearate
  • thickeners used alone or in combination with other softeners, such as methyl cellulose, alginates, carrageenan, x
  • the potentiator composition included in the chewing gum composition may include at least one active substance having a first solubility and at least one taste potentiator having a second solubility.
  • the first and second solubilities may be substantially similar or different and may be selected to provide a controlled-release profile to the chewing gum composition.
  • the selected solubilities may provide one of the following release profiles: simultaneous release, sequential release or partially overlapping release.
  • Some embodiments extend to methods of preparing a chewing gum product.
  • the products may be prepared using standard techniques and equipment known to those skilled in the art.
  • the apparatus useful in accordance with the embodiments described herein includes mixing and heating apparatus well known in the chewing gum manufacturing arts, and therefore the selection of the specific apparatus will be apparent to the artisan.
  • For general chewing gum preparation processes see U.S. Pat. Nos. 4,271,197 to Hopkins et al, 4,352,822 to Cherukuri et al and 4,497,832 to Cherukuri et al, each of which is incorporated herein by reference in its entirety.
  • At least one encapsulant and at least one taste potentiator may be mixed to form a dispersion of the components.
  • the encapsulant(s) may be melted at elevated temperatures in a high shear mixer.
  • the potentiator(s) may be added to the molten encapsulant and mixed under high shear to completely disperse the components.
  • the components may be mixed at elevated temperatures of about 50-150° C.
  • the resulting mixture of components may be cooled.
  • a plurality of encapsulated taste potentiator particles subsequently may be formed from the mixture.
  • the particles may be formed to an appropriate size as desired, generally from an average particle size range of about 50 ⁇ m to about 800 ⁇ m. This may be accomplished by any suitable means such as chopping, pulverizing, milling or grinding the particles.
  • the encapsulated particles may be prepared by spray drying methods. More specifically, the encapsulant(s) may be dissolved in water. In some embodiments, this solution may be prepared in an agitated vessel. The taste potentiator(s) then may be dispersed in the solution. The solution, or suspension, may be spray dried using a spray dryer fitted with an air atomized nozzle at elevated temperatures to form the encapsulated particles.
  • the encapsulated particles may be prepared by any suitable spray coating method as known in the art.
  • One suitable process is the Wurster process. This process provides a method for encapsulating individual particulate materials.
  • the particles to be encapsulated are suspended in a fluidizing air stream, which provides a generally cyclic flow in front of a spray nozzle.
  • the spray nozzle sprays an atomized flow of the coating solution, which may include the encapsulant(s) and a suitable solvent.
  • the atomized coating solution collides with the particles as they are carried away from the nozzle to provide a particle coating with the coating solution.
  • the temperature of the fluidizing air stream which also serves to suspend the particles to be coated, may be adjusted to evaporate the solvent shortly after the coating solution contacts the particles. This serves to solidify the coating on the particles, resulting in the desired encapsulated particle.
  • At least one active substance may be combined in the first step of the process along with the encapsulant(s) and the taste potentiator(s) to form a dispersion of all the components.
  • the active substance(s) thereby may be encapsulated with the taste potentiator(s) to form an encapsulated mixture of the components.
  • the encapsulated particles may be added to a chewing gum composition.
  • Such encapsulated particles also may be added to confectionery compositions to prepare any of the confectionery products described above.
  • the chewing gum composition may be prepared using standard techniques and equipment, as described above.
  • the encapsulated particles may be added to the chewing gum composition to enhance the perception of at least one active substance contained therein, which may be any of the actives described above.
  • individual chewing gum pieces may be formed using standard techniques known in the chewing gum art. For instance, chewing gum pieces may be prepared in the form of a slab, pellet, stick, center-fill gum, deposited, compressed chewing gum or any other suitable format.
  • center-fill chewing gum embodiments may include a center-fill region, which may be a liquid or powder or other solid, and a gum region. Some embodiments also may include an outer gum coating or shell, which typically provides a crunchiness to the piece when initially chewed. The outer coating or shell may at least partially surround the gum region.
  • the potentiator compositions described above may be incorporated into any of the regions of the center-fill chewing gum, i.e., the center-fill region, gum region and/or outer coating of the gum. Alternatively, the taste potentiator(s) may be incorporated into one region while the active substance(s) is incorporated into a different region of the center-fill gum.
  • the taste-potentiator(s) and active(s) may release from the different regions and combine as the gum is chewed.
  • Center-fill chewing gums and methods of preparing same are more fully described in assignee's co-pending U.S. patent application Ser. No. 10/925,822, filed on Aug. 24, 2004 and assignee's co-pending U.S. patent application Ser. No. 11/210,954, filed on Aug. 24, 2005, both entitled “Liquid-Filled Chewing Gum Composition,” the contents both of which are incorporated herein by reference.
  • Some other chewing gum embodiments may be in a compressed gum format, such as, for example, a pressed tablet gum.
  • Such embodiments may include a particulate chewing gum base, which may include a compressible gum base composition and a tableting powder, and any of the potentiator compositions described above.
  • the potentiator composition may be in a powdered form.
  • Compressed chewing gums are more fully described in assignee's co-pending U.S. Provisional Application No. 60/734,680, filed on Nov. 8, 2005, and entitled “Compressible Gum System,” the contents of which are incorporated herein by reference.
  • the chewing gum may have a coating thereon.
  • Such coated chewing gums are typically referred to as pellet gums.
  • the outer coating may be hard or crunchy. Any suitable coating materials known to those skilled in the art may be employed.
  • the outer coating may include sorbitol, maltitol, xylitol, isomalt, erythritol and other crystallizable polyols; sucrose may also be used.
  • the coating may include several opaque layers, such that the chewing gum composition is not visible through the coating itself, which can optionally be covered with a further one or more transparent layers for aesthetic, textural and protective purposes.
  • the outer coating may also contain small amounts of water and gum arabic.
  • the coating can be further coated with wax.
  • the coating may be applied in a conventional manner by successive applications of a coating solution, with drying in between each coat. As the coating dries it usually becomes opaque and is usually white, though other colorants may be added.
  • a polyol coating can be further coated with wax.
  • the coating can further include colored flakes or speckles. If the composition includes a coating, it is possible that one or more oral care actives can be dispersed throughout the coating. This is especially preferred if one or more oral care actives is incompatible in a single phase composition with another of the actives. Flavors may also be added to yield unique product characteristics.
  • materials may be added to the coating to achieve desired properties. These materials may include without limitations, cellulosics such as carboxymethyl cellulose, gelatin, xanthan gum and gum arabic.
  • the coating composition may be applied by any method known in the art including the method described above.
  • the coating composition may be present in an amount from about 2% to about 60%, more specifically from about 25% to about 45% by weight of the total chewing gum piece.
  • some embodiments extend to methods of preparing a taste potentiator composition having controlled-release upon consumption.
  • at least one taste potentiator may first be provided.
  • the taste potentiator(s) may be mixed with an encapsulant to form a composition having a dispersion of the components.
  • a plurality of encapsulated taste potentiator particles may be formed from the composition, as described above.
  • the material for use as the encapsulant may be selected to provide either a delayed or increased release rate of the potentiator(s) upon consumption of the composition.
  • a potentiator composition is prepared according to the formulation in Table 2 above.
  • the polyvinyl acetate is melted at a temperature of about 90° C. in a high shear mixer.
  • a single or twin screw extruder, a sigma mixer or a Banbury mixer may be used.
  • the hydrogenated oil and glycerol monostearate are added to the molten polyvinyl acetate.
  • Neohesperidindihydrochalcone (NHDC) which is a water-soluble taste potentiator, is added to the resulting mixture and mixed under high shear to completely disperse the components.
  • NHDC Neohesperidindihydrochalcone
  • the resulting filled polymer melt is cooled and ground to a particle size of less than 420 microns.
  • the encapsulated particles provide a slow releasing NHDC.
  • the particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • a potentiator composition is prepared according to the formulation in Table 3 above.
  • the polyvinyl acetate is melted at a temperature of about 90° C. in a high shear mixer.
  • a single or twin screw extruder, a sigma mixer or a Banbury mixer may be used.
  • the hydrogenated oil and glycerol monostearate are added to the molten polyvinyl acetate.
  • NHDC which is a water-soluble taste potentiator, and aspartame are added to the resulting mixture and mixed under high shear to completely disperse the components.
  • the resulting filled polymer melt is cooled and ground to a particle size of less than 420 microns.
  • the encapsulated particles provide a delayed and combined release mixture of NHDC and aspartame.
  • the particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • a potentiator composition is prepared according to the formulation in Table 4 above.
  • the maltitol is melted at a temperature of about 140° C. in a high shear mixer.
  • a single or twin screw extruder, a sigma mixer or a Banbury mixer may be used.
  • the glycerol monostearate is added to the molten maltitol.
  • the sweetener potentiator which exhibits low solubility in water, is added to the resulting mixture and mixed under high shear to completely disperse the components.
  • the resulting melt is cooled and ground to a particle size of less than 590 microns.
  • the encapsulation provides an increased release rate of the sweetener potentiator upon consumption.
  • the encapsulated particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • a potentiator composition is prepared according to the formulation in Table 5 above.
  • the maltitol and acetylated monoglyceride are dissolved in water at a temperature of about 70° C. in an agitated vessel.
  • the sweetener potentiator which exhibits low solubility in water, is dispersed in the resulting solution.
  • the solution, or suspension is spray dried using a spray dryer fitted with an air atomized nozzle (stationary or rotary) at about 105° C. to form encapsulated particles.
  • the encapsulation provides an increased release rate of the substantially water-insoluble sweetener potentiator upon consumption.
  • the encapsulated particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • a potentiator composition is prepared according to the formulation in Table 6 above.
  • the beta-cyclodextrin is dissolved in water at a temperature of about 60° C.
  • the sweetener potentiator which exhibits low solubility in water, is dissolved completely in the ethanol and the resulting solution is added to the beta-cyclodextrin solution and stirred for about three hours.
  • the resulting solution of beta-cyclodextrin complex is spray dried using a spray dryer fitted with an air atomized nozzle (stationary or rotary) at about 60° C. to form encapsulated particles.
  • the encapsulation provides an increased release rate of the substantially water-insoluble sweetener potentiator upon consumption.
  • the encapsulated particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • a chewing gum composition is prepared according to the formulation in Table 7 above.
  • the gum base is melted in a mixer.
  • the remaining components listed in Table 7 are added to the molten gum base.
  • the melted gum base and added components are mixed to completely disperse the components.
  • the resulting chewing gum composition is allowed to cool.
  • the cooled chewing gum composition is sized and conditioned for about a week, formed into individual chewing gum pieces employing conventional techniques and packaged.
  • One method of measuring the perceived sweetness of a solution is to match it with a stock sucrose solution of known concentration.
  • the compound of interest is added at a predetermined concentration to a pH 3.2 buffered solution containing 5% sucrose.
  • a number of expert panel members then taste the solution and compare it to a battery of stock sucrose solutions ranging from 3% to 15% at increments of 1%.
  • Each panel member decides which sucrose solution is equisweet with the solution containing the compound of interest.
  • the mean value is then reported as the SEV. Results are reported to 1 decimal place.
  • 3-HB was added to a pH 3.2 buffered solution containing 5% sucrose to produce solutions containing from 0 to 1000 ppm 3-HB in 100 ppm increments.
  • the SEV for each solution was plotted on a graph to produce a dose response curve ( FIG. 1 ), from which it can be seen that 3-HB enhances the sweetness of the sucrose solution within this range. From FIG. 1 it is apparent that as the dosage of 3-HB increases so does the sweetness of the resultant solution. However the effect is non-linear with each incremental addition having a diminishing effect. The maximum sweetness attainable would appear to be about 7.9% SEV (based on a 5% sucrose solution).
  • An alternative method of measuring perceived sweetness is to determine how much sucrose can be replaced through the use of the compound of interest without any perceived loss of sweetness.
  • the control was a pH 3.2 buffered solution containing 10% sucrose.
  • the compound of interest is added at a predetermined concentration to a number of sucrose solutions containing from 5% to 10% sucrose at increments of 0.5%.
  • Each panel member tastes each of the solutions, compares it to the control sample and decides which solutions are equisweet. For example, if the 8% sucrose solution containing the compound of interest is equisweet with the control, then the sucrose reduction achieved by the compound of interest is 20%.
  • sucrose solutions were prepared containing 3-HB and 2,4-DHB at a combined concentration of 1000 ppm. Each solution was evaluated using the sucrose reduction method described above to determine how much sucrose could be replaced without noticeable loss of sweetness. The results are shown in FIG. 3 .
  • sucrose solutions were prepared containing equal quantities of 3-HB and 2,4-DHB, at a combined concentration of 200, 400, 600, 800 and 1000 ppm. Each solution was evaluated using the sucrose reduction method described in Example 9 above to determine how much sucrose could be replaced without noticeable loss of sweetness. The results are shown in FIG. 4 .
  • 500 ppm of the sweetener potentiator then was added to a 5% sucrose solution containing 500 ppm 3-HB to produce a series of solutions.
  • the SEV for each solution was determined and the results are shown in FIG. 5 .
  • the composition of one embodiment (hatched) is considerably more effective than any other combination with an SEV of 8.7%.
  • the use of 500 ppm of 3-HB alone results in an SEV of 6.9% whereas in all cases but two (2,4-DHB and 3,4-DHB) the addition of a second sweetener potentiator results in a little change or even a decrease in SEV. This is highly surprising considering that all of the potentiators are shown to have SEVs greater than 5%.
  • the methodology was repeated to produce a series of solutions containing 500 ppm 2,4-DHB and 500 ppm of a second sweetener potentiator.
  • the SEV for each solution was determined and the results are shown in FIG. 6 .
  • pH 3.2 buffered solutions were prepared containing 0%, 3%, 5%, 7% and 9% sucrose.
  • 500 ppm of 2,4-DHB acid, 500 ppm of the sodium salt of 2,4-DHB and 500 ppm of the potassium salt of 2,4-DHB were added individually to each of the sucrose solutions. The SEV for each of the solutions was then determined. The results are shown in FIG. 8 .
  • the addition of 2,4-DHB enhances the sweetness of the sucrose solution in every case regardless of the original sucrose solution or whether the acid, sodium salt or potassium salt is employed.
  • the results for the acid, sodium salt and potassium salt are almost identical indicating that the sweetener potentiator composition may be prepared from the acids and/or from their comestible salts.
  • FIG. 9 shows the results of various intense sweeteners with 3-HB, 2,4-DHB and combinations thereof.
  • the combination of 3-HB and 2,4-DHB with aspartame has a significant effect on SEV, which is greater than the use of either 3-HB or 2,4-DHB separately.
  • the combination of 3-HB and 2,4-DHB enhances the perceived sweetness of the acesulfame-K, aspartame/acesulfame-K, sucralose, sucralose/acesulfame-K, saccharin and neotame solutions.
  • 3-HB enhances the sweetness to a greater degree alone than in combination with 2,4-DHB.
  • FIG. 10 shows the results of various bulk sweeteners with 3-HB, 2,4-DHB and combinations thereof.
  • the combination of 3-HB and 2,4-DHB increases the SEV of the resultant solution when used with sucrose, fructose, tagatose, maltitol or glucose to a greater extent than either 3-HB or 2,4-DHB separately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Seasonings (AREA)
  • Confectionery (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Medicinal Preparation (AREA)
  • Tea And Coffee (AREA)

Abstract

The present invention relates to compositions and edible orally delivered products, such as confectioneries and chewing gum, which include taste potentiators to enhance the perception of active substances contained therein. More specifically, some embodiments provide potentiator compositions, which include at least one active substance and at least one taste potentiator. The active substance and/or taste potentiator may be encapsulated in some embodiments to modify the release rate of the composition upon consumption.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/439,830, filed May 23, 2006, which claims the benefit of U.S. Provisional Application No. 60/683,634, filed May 23, 2005, U.S. Provisional Application No. 60/760,437, filed Jan. 20, 2006 and U.S. Provisional Application No. 60/789,667, filed Apr. 6, 2006, the contents of which are incorporated herein by reference.
  • FIELD
  • The present invention includes oral compositions that provide an enhanced perception of an active substance contained therein. In particular, the compositions may include an active substance, such as a flavor, and a taste potentiator. The taste potentiator may increase the perception of the active substance upon consumption. The compositions may be incorporated into various types of edible orally delivered products, such as confectionery or chewing gum products.
  • BACKGROUND
  • There are five primary categories of taste that are sensed by humans: sour, salty, sweet, bitter and umami (savory or the taste of glutamate). The taste of a substance is sensed by taste receptor cells located in taste buds primarily on the surface of the tongue and palate in the oral cavity. Each of the primary taste qualities is sensed by a specific mechanism. It is believed that sour and salty tastes are detected by the passage of ions, hydrogen and sodium respectively, through the ion channels in taste bud cells. This triggers a nerve impulse that is sensed in the brain as sour or salty. In contrast, it is believed that sweet, bitter and umami tastes are perceived by physical binding to receptors. In general, sweet, bitter and umami sensing taste cells have G-protein coupled receptors (GPCRs) on their surface. These receptors are activated when they bind to tastants, which initiates a series of signaling events that trigger a nerve impulse that is sensed in the brain as sweet, bitter or savory.
  • Over the past several years, there have been a number of advances in research on taste perception. New taste receptor proteins have been identified in mammals, particularly two families of G-protein coupled receptors (T2R5 and T1R5), which are believed to be involved in taste perception. Such receptors are discussed in more detail in International Publication Nos. WO 02/064631 and WO 03/001876. These publications disclose that co-expression of certain T1R receptors results in savory or sweet taste receptors that respond to savory or sweet taste stimuli, respectively.
  • Recent advances in the understanding of taste perception have created interest in identifying new compounds for stimulating these taste receptors. In particular, research efforts also have been directed to methods of identifying compounds that may enhance the primary taste perceptions, such as sweet or savory perceptions. The development of substances that provide flavor enhancement is of particular interest, and such substances are generally referred to as taste or flavor enhancers, or potentiators. These substances have been thought to contribute taste, aroma and feeling factors, as well as potentiate and suppress other flavors. The activity of taste or flavor enhancers is often referred to as synergistic because they enhance or increase the perception of another substance.
  • One category of taste potentiators of particular interest are compounds that enhance sweetness. Although naturally occurring carbohydrate sweeteners, such as sucrose, are the most widely used sweeteners, they suffer from the disadvantages of high cost and high caloric content. Artificial sweeteners have been designed that overcome these problems but they are sometimes rejected by the consumer for not having a sufficiently “sucrose-like” taste. Artificial sweeteners have different sweetness profiles from that of sucrose and often suffer from side effects such as delays in the onset of sweetness perception and/or unpleasant aftertastes.
  • Compounds are known which, when combined with a sweetener, modify the taste of the sweetener. Such compounds are usually referred to as sweetness modifiers or potentiators. They may act to enhance or inhibit the perception of the sweetness of the sweetener or may affect the sweetness profile in some way. For example, Canadian Patent No. 1208966 discloses a broad range of aromatic compounds which are claimed as sweetness modifiers.
  • European Patent No. 0132444 and U.S. Pat. No. 4,627,987 describe 3-hydroxybenzoic acid (3-HB) as a sweetness potentiator and exemplify its use with sucrose, aspartame and saccharin to enhance sweetness when employed at pH 2.0 to 5.5.
  • 2,4-Dihydroxybenzoic acid (2,4-DHB) also is described as a sweetness potentiator, but the literature is ambiguous as to its effects. In U.S. Pat. No. 5,232,735 it is listed as a “substantially tasteless sweetness inhibitor” whereas in Canadian Patent No. 1208966 the addition of 0.2% 2,4-DHB to a 5% sucrose solution is said to have resulted in an increase in sweetness. International Publication No. WO99/15032 describes the use of 2,4-DHB with aspartame to increase sweetness synergistically and provide a more “sucrose-like” taste and mouthfeel. The combination is considered peculiar, in that the same effect is not observed when 2,4-DHB is combined with the alternative artificial sweeteners, alitame, Ace-K (acesulfame potassium), saccharin or even a mixture of aspartame and Ace-K. U.S. Pat. No. 6,461,658 claims that 2,4-DHB improves the sweetness delivery profile of the artificial sweetener sucralose by significantly reducing the length of time during which sucralose sweetness is perceived. The same effect is not observed for aspartame even though this might be expected in light of International Publication No. WO99/15032. FIGS. 1 and 2 and Tables 1 and 2 of U.S. Pat. No. 6,461,658 seem to indicate that 2,4-DHB has a slightly inhibitory effect on the sweetness intensity of both sucralose and aspartame although this is not discussed in the text.
  • International Publication No. WO00/69282 describes the modification of the taste and physicochemical properties of the sweetener neotame by the addition of at least one taste modifying hydrophobic acid additive. The taste modifying hydrophobic acid additive is limited only in that it must positively affect at least one taste characteristic imparted by neotame. These characteristics appear to be related to the sweetness profile, specifically the onset and linger period, but the examples do not describe how the characteristics have been affected. 3-HB and 2,4-DHB are listed among a very large number of such additives.
  • Additionally, there have been a number of recent developments related to methods of identifying substances that function as taste potentiators. Various assays have been developed to identify target compounds that modulate the activity of taste receptors, and thus, may become successful taste potentiators. For example, International Publication Nos. WO 02/064631 and WO 03/001876, referred to above, disclose assays and high-throughput screens that measure certain T1R receptor activity in the presence of target compounds.
  • U.S. Pat. No. 6,955,887 to Adler et al. discloses methods for identifying taste potentiators using newly identified mammalian taste-cell-specific G-protein coupled receptors. More specifically, U.S. Pat. No. 6,955,887 teaches methods for screening target compounds that may be used to modulate the sweet taste perception.
  • Various other methods for screening compounds that may be used as taste potentiators are disclosed in the U.S. Patent Publication Nos. 2005/0287517A1, 2005/0084932A1, 2005/0069944A1, 2005/0032158A1, 2004/0229239A1, 2004/0209286A1, 2004/0191805A1, 2004/0185469A1, 2004/0175793A1, 2004/0175792A1, 2004/0171042A1, 2004/0132075A1, 2004/0072254A1, 2003/0232407A1, 2003/0170608A1 and 2003/0054448A1.
  • Despite progress in developing methods for identifying new taste potentiators, there is still a need for oral, particularly confectionery, compositions that include such taste potentiators. Further, there is a need for compositions that control the release rate of the taste potentiator from the composition. In particular, there is a need for chewing gums and other related confectioneries that control the release profile of taste potentiators, as desired, to manage the release profile of the chewing gum or confectionery product. Moreover, it would be desirable to develop a sweetener potentiator composition that allows the quantity of natural or artificial sweetener in an orally delivered product to be reduced, thereby reducing the cost of production and the calorie content of the orally delivered product, but which avoids adverse effects on flavor.
  • SUMMARY
  • In some embodiments there is a controlled-release composition including at least one active substance and at least one encapsulated taste potentiator.
  • In some embodiments there is a controlled-release composition including an encapsulated mixture of at least one taste potentiator and at least one active substance.
  • In some embodiments there is a controlled-release composition including at least one encapsulated active substance and at least one taste potentiator.
  • In some embodiments there is a controlled-release composition including at least one active substance and at least one taste potentiator.
  • In some embodiments, a controlled-release composition includes at least one encapsulated active substance and at least one encapsulated taste potentiator.
  • In some embodiments there is a controlled-release composition including at least one intense sweetener and at least one encapsulated sweetener potentiator.
  • In some embodiments there is a composition including at least one active substance and at least one encapsulated taste potentiator.
  • In some embodiments there is a composition including an encapsulated mixture of at least one taste potentiator and at least one active substance.
  • In some embodiments there is a composition including at least one encapsulated active substance and at least one taste potentiator.
  • In some embodiments there is a composition including at least one active substance and at least one taste potentiator.
  • In some embodiments there is a composition including at least one encapsulated active substance and at least one encapsulated taste potentiator.
  • In some embodiments there is a composition including at least one intense sweetener and at least one encapsulated sweetener potentiator.
  • In some embodiments there is a composition that modulates the activity of taste receptor cells in a mammal, which includes at least one active substance and at least one encapsulated taste potentiator, wherein the at least one encapsulated taste potentiator acts in conjunction with the at least one active substance to modulate the activity of the taste receptor cells upon consumption of the composition, thereby enhancing the perception of the at least one active substance.
  • Some embodiments provide a sweetener potentiator composition, which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the first amount is equal to the second amount.
  • In some embodiments, there is a sweetener potentiator composition, including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains sufficient amounts of the first amount of 3-hydroxybenzoic acid and the second amount of 2,4-dihydroxybenzoic acid to create a sucrose equivalent value of at least seven %.
  • In some embodiments, there is a sweetener potentiator composition, which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains sufficient amounts of the first amount of 3-hydroxybenzoic acid and the second amount of 2,4-dihydroxybenzoic acid to create a sucrose equivalent value of at least eight %.
  • Some embodiments provide a sweetener potentiator composition, which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains at least 200 ppm of the first amount of 3-hydroxybenzoic acid and at least 200 ppm of the second amount of 2,4-dihydroxybenzoic acid.
  • Some embodiments provide a sweetener potentiator composition, including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains at least 400 ppm of the first amount of 3-hydroxybenzoic acid and at least 400 ppm of the second amount of 2,4-dihydroxybenzoic acid.
  • Some embodiments provide a sweetener potentiator composition, including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains at least 500 ppm of the first amount of 3-hydroxybenzoic acid and at least 500 ppm of the second amount of 2,4-dihydroxybenzoic acid.
  • Some embodiments provide a sweetener potentiator composition, which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition contains a ratio by weight of the first amount of 3-hydroxybenzoic acid to the second amount of 2,4-dihydroxybenzoic acid between 1:9 and 9:1.
  • In some embodiments, there is a sweetener potentiator composition, which includes a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the sweetener potentiator composition is in a form of a blended powder.
  • Some embodiments provide a sweetener potentiator composition, including a first amount of 3-hydroxybenzoic acid, a second amount of 2,4-dihydroxybenzoic acid and a third amount of 3,4-dihydroxybenzoic acid.
  • In some embodiments there is a chewing gum composition, which includes:
  • (a) a gum base; and
  • (b) a composition including:
      • (i) at least one active substance; and
      • (ii) at least one encapsulated taste potentiator.
  • In some embodiments there is a chewing gum composition including:
  • (a) a gum base;
  • (b) at least one bulk sweetener;
  • (c) a composition including:
      • (i) at least one active substance; and
      • (ii) at least one encapsulated taste potentiator; and
  • (d) optionally at least one flavor.
  • In some embodiments there is a chewing gum composition including:
  • (a) a gum base; and
  • (b) a composition including:
      • (i) at least one active substance having a first solubility; and
      • (ii) at least one taste potentiator having a second solubility,
  • wherein the first and second solubilities provide a controlled-release profile to the chewing gum composition selected from simultaneous release, sequential release and partially overlapping release.
  • In some embodiments there is a chewing gum composition including:
  • (a) a gum base; and
  • (b) a composition comprising an encapsulated mixture of at least one taste potentiator and at least one active substance.
  • In some embodiments there is a chewing gum composition including:
  • (a) a gum base; and
  • (b) a composition including:
      • (i) at least one encapsulated active substance; and
      • (ii) at least one taste potentiator.
  • In some embodiments a chewing gum composition includes:
  • (a) a gum base; and
  • (b) a composition including:
      • (i) at least one active substance; and
      • (ii) at least one taste potentiator.
  • In some embodiments there is a chewing gum composition including:
  • (a) a gum base; and
  • (b) a composition including:
      • (i) at least one encapsulated active substance; and
      • (ii) at least one encapsulated taste potentiator.
  • In some embodiments there is a chewing gum composition including:
  • (a) a gum base; and
  • (b) a composition including:
      • (i) at least one intense sweetener; and
      • (ii) at least one encapsulated sweetener potentiator.
  • Some embodiments provide a chewing gum composition including:
  • (a) a gum base; and
  • (b) a sweetener potentiator composition further including:
      • (i) a first amount of 3-hydroxybenzoic acid, and
      • (ii) a second amount of 2,4-dihydroxybenzoic acid.
  • Some embodiments provide a chewing gum composition including:
  • (a) a gum base;
  • (b) at least one bulk sweetener; and
  • (c) a sweetener potentiator composition further containing:
      • (i) a first amount of 3-hydroxybenzoic acid, and
      • (ii) a second amount of 2,4-dihydroxybenzoic acid.
  • In some embodiments, there is a confectionery composition including a sweetener potentiator composition, the sweetener potentiator composition including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid, wherein the first amount is equal to the second amount.
  • In some embodiments, there is a confectionery composition including a sweetener potentiator composition, the sweetener potentiator composition including a first amount of 3-hydroxybenzoic acid and a second amount of 2,4-dihydroxybenzoic acid.
  • Some embodiments provide a confectionery composition including:
  • (a) a confectionery base; and
  • (b) a sweetener potentiator composition further containing:
      • (i) a first amount of 3-hydroxybenzoic acid, and
      • (ii) a second amount of 2,4-dihydroxybenzoic acid.
  • In some embodiments, there is a method of reducing the cost of a sweetener system including the steps of:
  • (a) determining an amount of natural or artificial sweetener in an orally delivered product that provides a desired sweetness intensity;
  • (b) reducing the amount of natural or artificial sweetener; and
  • (c) adding a quantity of a sweetener potentiator composition including 3-hydroxybenzoic acid and 2,4-dihydroxybenzoic acid such that the desired sweetness intensity is maintained.
  • Some embodiments provide a method of maintaining a desired sweetness intensity in an orally delivered product including the steps of:
  • (a) determining a desired sweetness intensity;
  • (b) adding a quantity of natural or artificial sweetener that supplies a sweetness intensity less intense than the desired sweetness intensity; and
  • (c) adding a quantity of a sweetener potentiator composition including 3-hydroxybenzoic acid and 2,4-dihydroxybenzoic acid such that the desired sweetness intensity is delivered.
  • Some embodiments provide a method of increasing the sweetness intensity of an orally delivered product including the steps of:
  • (a) adding a quantity of natural or artificial sweetener to an orally delivered product;
  • (b) determining a sweetness intensity derived from the quantity of the natural or artificial sweetener; and
  • (c) adding a quantity of a sweetener potentiator composition including 3-hydroxybenzoic acid and 2,4-dihydroxybenzoic acid such that the sweetness intensity is greater than the sweetness intensity derived from the natural or artificial sweetener.
  • Some embodiments provide a method of reducing the amount of natural or artificial sweeteners in an orally delivered product including the steps of:
  • (a) determining an amount of natural or artificial sweetener in an orally delivered product that provides a desired sweetness intensity;
  • (b) reducing the amount of natural or artificial sweetener; and
  • (c) adding a quantity of a sweetener potentiator composition including 3-hydroxybenzoic acid and 2,4-dihydroxybenzoic acid such that the desired sweetness intensity is maintained.
  • In some embodiments, a method of preparing a chewing gum product includes the steps of:
  • (a) mixing at least one encapsulant and at least one taste potentiator to form a dispersion of the components;
  • (b) forming a plurality of encapsulated taste potentiator particles from the mixture;
  • (c) adding the encapsulated particles to a chewing gum composition to enhance the perception of at least one active substance contained therein, wherein the chewing gum composition contains a gum base and at least one active substance; and
  • (d) forming individual pieces of chewing gum from the chewing gum composition.
  • In some embodiments there is a method of preparing a taste potentiator composition having controlled-release upon consumption, which includes the steps of:
  • (a) providing at least one taste potentiator;
  • (b) mixing the at least one taste potentiator with at least one encapsulant to form a composition having a dispersion of the components; and
  • (c) forming a plurality of encapsulated taste potentiator particles from the composition, thereby modifying the release rate of the at least one taste potentiator upon consumption of the composition.
  • In some embodiments there is a method of controlling the release of a composition, which includes the steps of:
  • (a) providing at least one active substance having a first solubility; and
  • (b) adding at least one taste potentiator having a second solubility, wherein the first and second solubilities are selected to impart a controlled-release profile to the composition selected from simultaneous release, sequential release and partially overlapping release.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph of 3-hydroxybenzoic acid concentration against perceived sweetness.
  • FIG. 2 is a graph of 2,4-dihydroxybenzoic acid concentration against perceived sweetness.
  • FIG. 3 is a bar chart of sucrose reduction for solutions containing 3-hydroxybenzoic acid and 2,4-dihydroxybenzoic acid in a number of different ratios.
  • FIG. 4 is a bar chart of sucrose reduction for solutions containing 3-hydroxybenzoic acid and 2,4-dihydroxybenzoic acid at a number of different concentrations.
  • FIG. 5 is a bar chart of perceived sweetness for a number of solutions containing substituted benzoic acids.
  • FIG. 6 is a bar chart of perceived sweetness for a number of solutions containing substituted benzoic acids.
  • FIG. 7 is a bar chart of perceived sweetness for a number of solutions containing 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid, in various combinations.
  • FIG. 8 is a graph of perceived sweetness for sucrose solutions containing 2,4-dihydroxybenzoic acid, its potassium salt or its sodium salt against sucrose concentration.
  • FIG. 9 is a bar chart of perceived sweetness for solutions containing intense sweeteners.
  • FIG. 10 is a bar chart of perceived sweetness for solutions containing bulk sweeteners.
  • DETAILED DESCRIPTION
  • As used herein the transitional term “comprising,” (also “comprises,” etc.) which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps, regardless of its use in the preamble or the body of a claim.
  • As used herein, the terms “bubble gum” and “chewing gum” are used interchangeably and are both meant to include any gum compositions.
  • As used herein, the term “confectionery base” includes any ingredient or group of ingredients that represent form the bulk of the confectionery composition and provide the confectionery composition with its structural integrity and to which other ingredients are added.
  • The term “flavor key” as used herein is a flavor component containing flavoring agents such as flavored oils, and the like, and is typically used to prepare a flavor essence.
  • The term “flavor essence” (“flavor blend”, “flavor extract”) as used herein is a flavor component generally prepared from a flavor key.
  • Embodiments described herein provide compositions for oral delivery of an active substance. Numerous different active substances may be employed, such as, for example, flavors. The compositions also may include a taste potentiator. The taste potentiator may act in a synergistic manner when used in conjunction with the active substance to enhance the perception of the active substance during consumption. Additionally, in some embodiments, the taste potentiator may be encapsulated to provide a controlled release profile, i.e., delayed or increased rate of release upon consumption. The taste potentiator accordingly may release over an extended period of time throughout the consumption of the product into which the composition is incorporated, such as, for example, chewing gum.
  • Potentiator Compositions
  • Embodiments described herein provide compositions that may include at least one active substance and at least one taste potentiator. The potentiator compositions may have controlled-release properties. The taste potentiator(s) may work synergistically with the active substance(s) to enhance the perception of the active(s). For instance, in some embodiments, the active substance may be a sweetener. Delivery of the sweetener in combination with at least one taste potentiator may enhance the sweet taste upon consumption of the composition. In particular, the taste potentiator(s) may function synergistically with the sweetener to enhance the sweet taste. The incorporation of the potentiator(s), therefore, allows for reduced amounts of sweetener without compromising the level of sweetness provided by the composition. Due to the calories contained in many conventional sweeteners, such as sugar, these results may be highly desirable. Additionally, there may be significant cost savings associated with the reduction in sweetener amounts used in the composition.
  • For purposes of some embodiments described herein, “taste potentiator” refers to substances that may enhance the perception of an active substance during consumption of the composition. For purposes of some embodiments described herein, the term “enhance” means to intensify, supplement, modify, modulate or potentiate. Some taste potentiators may be referred to more specifically by reference to the type of active they enhance. For example, sweetener (or sweetness) potentiators enhance the perception of a sweetener during consumption and flavor potentiators enhance the perception of a flavor during consumption. These more specific examples, however, are merely subsets of taste potentiators and are encompassed by the general term “taste potentiator” as used herein.
  • Taste potentiators may have a synergistic effect when used in conjunction with an active, i.e., by enhancing the taste effects of the active substance such that the total effect is greater than the sum of the taste effects of the individual substances alone. In addition, some taste potentiators do not introduce a characteristic taste and/or aroma perception of their own.
  • In some embodiments, for instance, the taste potentiator(s) may enhance the sour, sweet, bitter, salty or umami taste of a composition. The taste potentiator(s) also may function to enhance the effects of a variety of other active substances, as discussed in more detail below.
  • Any of a variety of known substances that function as taste potentiators may be employed in the compositions described herein. For instance, suitable taste potentiators include water-soluble taste potentiators, such as, but not limited to, neohesperidin dihydrochalcone, chlorogenic acid, alapyridaine, cynarin, miraculin, glupyridaine, pyridinium-betain compounds, glutamates, such as monosodium glutamate and monopotassium glutamate, neotame, thaumatin, tagatose, trehalose, salts, such as sodium chloride, monoammonium glycyrrhizinate, vanilla extract (in ethyl alcohol), water-soluble sugar acids, potassium chloride, sodium acid sulfate, water-soluble hydrolyzed vegetable proteins, water-soluble hydrolyzed animal proteins, water-soluble yeast extracts, adenosine monophosphate (AMP), glutathione, water-soluble nucleotides, such as inosine monophosphate, disodium inosinate, xanthosine monophosphate, guanylate monophosphate, alapyridaine (N-(1-carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol inner salt, sugar beet extract (alcoholic extract), sugarcane leaf essence (alcoholic extract), curculin, strogin, mabinlin, gymnemic acid, 2-hydroxybenzoic acid (2-HB), 3-hydroxybenzoic acid (3-HB), 4-hydroxybenzoic acid (4-HB), 2,3-dihydroxybenzoic acid (2,3-DHB), 2,4-dihydroxybenzoic acid (2,4-DHB), 2,5-dihydroxybenzoic acid (2,5-DHB), 2,6-dihydroxybenzoic acid (2,6-DHB), 3,4-dihydroxybenzoic acid (3,4-DHB), 3,5-dihydroxybenzoic acid (3,5-DHB), 2,3,4-trihydroxybenzoic acid (2,3,4-THB), 2,4,6-trihydroxybenzoic acid (2,4,6-THB), 3,4,5-trihydroxybenzoic acid (3,4,5-THB), 4-hydroxyphenylacetic acid, 2-hydroxyisocaproic acid, 3-hydroxycinnamic acid, 3-aminobenzoic acid, 4-aminobenzoic acid and combinations thereof.
  • Other suitable taste potentiators are substantially or completely insoluble in water, such as, but not limited to, citrus aurantium, vanilla oleoresin, water insoluble sugar acids, water insoluble hydrolyzed vegetable proteins, water insoluble hydrolyzed animal proteins, water insoluble yeast extracts, insoluble nucleotides, sugarcane leaf essence and combinations thereof.
  • Some other suitable taste potentiators include substances that are slightly soluble in water, such as, but not limited to, maltol, ethyl maltol, vanillin, slightly water-soluble sugar acids, slightly water-soluble hydrolyzed vegetable proteins, slightly water-soluble hydrolyzed animal proteins, slightly water-soluble yeast extracts, slightly water-soluble nucleotides and combinations thereof.
  • Additional suitable taste potentiators include, but are not limited to, licorice glycyrrhizinates, compounds that respond to G-protein coupled receptors (T2R5 and T1R5), G-protein coupled receptors (T2R5 and T1R5) and taste potentiator compositions that impart kokumi, as disclosed in U.S. Pat. No. 5,679,397 to Kuroda et al., which is incorporated in its entirety herein by reference. “Kokumi” refers to materials that impart “mouthfulness” and “good body”. Kokumi imparting compositions may be water-soluble, slightly water-soluble or insoluble in water.
  • As mentioned above, sweetener potentiators, which are a type of taste potentiator, enhance the taste of sweetness. Exemplary sweetener potentiators include, but are not limited to, monoammonium glycyrrhizinate, licorice glycyrrhizinates, citrus aurantium, alapyridaine, alapyridaine (N-(1-carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol) inner salt, miraculin, curculin, strogin, mabinlin, gymnemic acid, cynarin, glupyridaine, pyridinium-betain compounds, sugar beet extract, neotame, thaumatin, neohesperidin dihydrochalcone, tagatose, trehalose, maltol, ethyl maltol, vanilla extract, vanilla oleoresin, vanillin, sugar beet extract (alcoholic extract), sugarcane leaf essence (alcoholic extract), compounds that respond to G-protein coupled receptors (T2R5 and T1R5), 2-hydroxybenzoic acid (2-HB), 3-hydroxybenzoic acid (3-HB), 4-hydroxybenzoic acid (4-HB), 2,3-dihydroxybenzoic acid (2,3-DHB), 2,4-dihydroxybenzoic acid (2,4-DHB), 2,5-dihydroxybenzoic acid (2,5-DHB), 2,6-dihydroxybenzoic acid (2,6-DHB), 3,4-dihydroxybenzoic acid (3,4-DHB), 3,5-dihydroxybenzoic acid (3,5-DHB), 2,3,4-trihydroxybenzoic acid (2,3,4-THB), 2,4,6-trihydroxybenzoic acid (2,4,6-THB), 3,4,5-trihydroxybenzoic acid (3,4,5-THB), 4-hydroxyphenylacetic acid, 2-hydroxyisocaproic acid, 3-hydroxycinnamic acid, 3-aminobenzoic acid, 4-aminobenzoic acid and combinations thereof.
  • Additional taste potentiators for the enhancement of salt taste include acidic peptides, such as those disclosed in U.S. Pat. No. 6,974,597, herein incorporated by reference. Acidic peptides include peptides having a larger number of acidic amino acids, such as aspartic acid and glutamic acid, than basic amino acids, such as lysine, arginine and histidine. The acidic peptides are obtained by peptide synthesis or by subjecting proteins to hydrolysis using endopeptidase, and if necessary, to deamidation. Suitable proteins for use in the production of the acidic peptides or the peptides obtained by subjecting a protein to hydrolysis and deamidation include plant proteins, (e.g. wheat gluten, corn protein (e.g., zein and gluten meal), soybean protein isolate), animal proteins (e.g., milk proteins such as milk casein and milk whey protein, muscle proteins such as meat protein and fish meat protein, egg white protein and collagen), and microbial proteins (e.g., microbial cell protein and polypeptides produced by microorganisms).
  • The sensation of warming or cooling effects may also be prolonged with the use of a hydrophobic sweetener as described in U.S. Patent Publication No. 2003/0072842 A1, which is incorporated in its entirety herein by reference. For example, such hydrophobic sweeteners include those of the formulae I-XI as set forth below:
  • Figure US20110104329A1-20110505-C00001
  • wherein X, Y and Z are selected from the group consisting of CH2, O and S;
  • Figure US20110104329A1-20110505-C00002
  • wherein X and Y are selected from the group consisting of S and O;
  • Figure US20110104329A1-20110505-C00003
  • wherein X is S or O; Y is O or CH2; Z is CH2, SO2 or S; R is OCH3, OH or H; R1 is SH or OH and R2 is H or OH;
  • Figure US20110104329A1-20110505-C00004
  • wherein X is C or S; R is OH or H and R1 is OCH3 or OH;
  • Figure US20110104329A1-20110505-C00005
  • wherein R, R2 and R3 are OH or H and R1 is H or COOH;
  • Figure US20110104329A1-20110505-C00006
  • wherein X is O or CH2 and R is COOH or H;
  • Figure US20110104329A1-20110505-C00007
  • wherein R is CH3CH2, OH, N(CH3)2 or Cl;
  • Figure US20110104329A1-20110505-C00008
  • Perillartine may also be added as described in U.S. Pat. No. 6,159,509 also incorporated in its entirety herein by reference.
  • Any of the above-listed taste potentiators may be used alone or in combination.
  • Some embodiments, for instance, may include two or more taste potentiators that act synergistically with one another. For instance, in some embodiments, a sweetener potentiator composition may be provided, which includes two or more sweetener potentiators that act synergistically with one another. The sweetener potentiator composition may enhance the sweetness of products into which it is incorporated by reducing the amount of sucrose needed to provide a sweetness intensity equivalent to sucrose. The sweetness enhancing effect of the combination of sweetener potentiators may be greater than the effect of either compound used individually.
  • More specifically, according to some embodiments, there is provided a sweetener potentiator composition comprising 3-hydroxybenzoic acid (3-HB) and 2,4-dihydroxybenzoic acid (2,4-DHB) or comestible salts thereof.
  • Comestible salts include acid (i.e. carboxylate) salts and/or hydroxylate salts, especially sodium, potassium, calcium, magnesium, and ammonium salts and the like. Desirably, in some embodiments, the sweetener potentiator composition employs 3-HB and/or 2,4-DHB in the form of the acid, the sodium salt or the potassium salt.
  • Although 3-HB and 2,4-DHB have been studied individually, they have not been used in combination. The inventors have discovered that a surprisingly large sweetness enhancing effect is observed when both compounds are employed in combination with a sweetener. This effect is greater than would be predicted by the use of either compound individually.
  • In particular, in some embodiments, sufficient amounts of 3-HB and 2,4-DHB are employed in the sweetener potentiator compositions to create a sucrose equivalent value of at least about seven %, more specifically, at least about eight %.
  • In general, 3-HB and 2,4-DHB may be used in amounts of about 200 ppm, 400 ppm or 500 ppm. 3-HB and 2,4-DHB may be incorporated into sweetener potentiator compositions in equal or different amounts.
  • In some embodiments, the sweetener potentiator composition contains 3-HB and 2,4-DHB in a ratio by weight of from 1:9 to 9:1, more specifically from 2:8 to 8:2, even more specifically from 4:6 to 6:4 and most specifically 1:1.
  • The sweetener potentiator composition may contain a further sweetener potentiator. For instance, 3,4-dihydroxybenzoic acid (3,4-DHB) or its comestible salt may be employed.
  • In some embodiments, the sweetener potentiator composition may be provided as a pre-blended powder or liquid, which may be added to another composition, whereas in other embodiments, the individual components of the sweetener potentiator composition may be added to another composition as individual ingredients.
  • In some embodiments, it may be desirable to control the release rate of the taste potentiator(s) from the compositions, as well as the overall release profile of the compositions themselves. Different release rates may be desired depending on the type of final product in which the composition is being incorporated and the consumption time thereof. For instance, chewing gum products may have different chew profiles, ranging anywhere from about 15 to about 120 minutes. Depending upon the chewing gum selected, different release rates will be desired. Other confectionery formats, such as hard candy, including nougats, caramels, frappes and taffies, also may have different release rates.
  • In some embodiments, the release rate may be based on the solubility of the taste potentiator(s) in water. Selection of a specific solubility may be used to control the release profile of the taste potentiator(s), as well as the overall composition. More specifically, taste potentiators have varying solubilities in water. Although some of these components are water-soluble, i.e., capable of being substantially or completely dissolvable in water, others exhibit poor or no solubility in water. In some embodiments, for instance, it may be desirable to select one or more taste potentiators that have low water-solubility in combination with an active known to exhibit poor solubility in water. The highly insoluble taste potentiator thereby may last throughout consumption of the composition as the active substance also slowly releases therefrom. Alternatively, a relatively highly water-soluble potentiator may be paired with a relatively highly water-soluble active substance. In both of these instances, the taste potentiator and active substance may be selected based on solubilities such that their release profiles are similar or overlap.
  • In other embodiments, for example, it may be desirable to select several taste potentiators that have different solubilities in water such that the potentiators may release sequentially from the composition. Another example may include multiple sequentially releasing taste potentiators with multiple active substances also having different solubilities in water. Numerous other combinations of taste potentiators having different solubilities also may be used to provide different release profiles for the compositions. In view thereof, the solubility of the taste potentiator(s), as well as the combination thereof with the active(s), may be used to control and tailor the release profile of the overall composition.
  • For purposes of some embodiments described herein, therefore, the term “controlled-release” means that the duration or manner of release is managed or modified to some degree to provide a desired release profile. More specifically, for example, controlled-release includes at least the following release profiles: delayed onset of release; pulsed release; gradual release; high initial release; sustained release; sequential release; and combinations thereof.
  • Taste potentiators and active substances having different solubilities and/or release profiles may be combined in numerous different embodiments to provide compositions having many different overall release profiles. For example, one or more taste potentiators having any of the following release profiles may be combined in any manner with one or more active substances having any of the following release profiles: delayed onset of release (“DOR”); pulsed release (“PR”); gradual release (“GR”); high initial release (“HIR”); and sustained release (“SUR”). Moreover, other techniques of imparting these, as well as other controlled-release profiles to taste potentiators and/or active substances may be employed. For instance, encapsulation techniques, which are discussed in more detail below, may be used. Additionally, taste potentiator(s) and active substance(s) that are not encapsulated (sometimes referred to as “free” components) may be combined with other forms of the components, such as encapsulated forms, to tailor the release profile of the potentiator compositions. A sampling of hypothetical combinations is provided in Table 1 below, wherein P1-P3 represent different taste potentiators and A1-A3 represent different active substances. P1-P3 and A1-A3 may be used in their free and/or encapsulated forms.
  • TABLE 1
    Hypothetical
    Combinations P1 P2 P3 A1 A2 A3
    1 GR HIR GR HIR
    2 GR HIR GR HIR
    3 PR SUR GR PR SUR GR
    4 PR SUR PR SUR
    5 HI PR HI PR
    6 DOR HIR DOR HIR
    7 DOR HIR DOR HIR
    8 DOR PR DOR
    9 SUR HIR PR
    10 SUR HIR PR
  • Controlled-release properties also may be imparted to the compositions described herein in other manners, such as, for example, by encapsulation techniques, as mentioned above. Encapsulation may be used to impart any of the various release profiles discussed above. In some embodiments, the taste potentiator(s) and/or active substance(s) may be encapsulated to control the rate of release of the potentiator and/or active from the composition. For example, in some embodiments, 3-HB and/or 2,4-DHB may be used in their encapsulated forms.
  • For instance, some embodiments may include at least one encapsulated taste potentiator and at least one unencapsulated active, i.e., in its free form. Other embodiments may include at least one unencapsulated taste potentiator and at least one encapsulated active substance. Further, in some embodiments, both the taste potentiator(s) and active substance(s) may be encapsulated. In such embodiments, the taste potentiator(s) and active substance(s) may be encapsulated together or separately. In embodiments in which the taste potentiator(s) and active substance(s) are encapsulated separately, the material used to encapsulate the components may be the same or different. Furthermore, in any of these embodiments, more than one material may be used to encapsulate the taste potentiator(s) or the active substance(s).
  • In any of the embodiments mentioned above, the encapsulated form of the taste potentiator(s) or active substance(s) may be used in combination with an amount of the same component in its free, i.e., unencapsulated, form. By using both the free component and the encapsulated component, the enhanced perception of the active may be provided over a longer period of time and/or perception of the active by a consumer may be improved. For instance, some embodiments may include a taste potentiator that is encapsulated in combination with an amount of the same taste potentiator in its unencapsulated form. Alternatively, the unencapsulated taste potentiator could be a different taste potentiator from the potentiator that is encapsulated. Thereby, a mixture of two different taste potentiators may be included in some embodiments, one of which is encapsulated and the other in its free form. These variations also may be employed with respect to the active substance(s).
  • Encapsulation may be effected by dispersion of the components, spray drying, spray coating, fluidized bed drying, absorption, adsorption, coacervation, complexation, or any other standard technique. In general, the taste potentiator(s) and/or active substances(s) may be encapsulated by an encapsulant. For purposes of some embodiments described herein, the term “encapsulant” refers to a material that can fully or partially coat or enrobe another substance. Encapsulation is also meant to include adsorption of a substance onto another substance and the formation of agglomerates or conglomerates between two substances.
  • Any material conventionally used as an encapsulant in edible products may be employed. In some embodiments, for instance, it may be desirable to use an encapsulant that delays the release of the taste potentiator(s), such as, for example, a hydrophobic encapsulant. In contrast, in other embodiments, it may be desirable to increase the rate of release by using an encapsulant such as, for example, a hydrophilic material. Moreover, more than one encapsulant may be used. For example, a taste potentiator or an active substance may be encapsulated by a mixture of two or more encapsulants to tailor the rate of release.
  • It is believed that taste potentiators can act in conjunction with active substances to enhance their activity. In some embodiments, therefore, it may be desirable to control the release of the potentiator(s) such that it substantially coincides with that of the active substance(s) included in the composition. As discussed above, some taste potentiators have rapid release rates, whereas other taste potentiators have slower release rates. Meanwhile, some active substances have rapid release rates, whereas others have slower release rates. In some embodiments, the material used to encapsulate the taste potentiator(s) may be selected to delay or increase the release rate of the potentiator(s) based on the release profiles of both the potentiator(s) and active substance(s) selected for use together in the composition.
  • More specifically, in some embodiments, the active substance(s) contained in the composition may have a slower release profile than the taste potentiator(s) selected for use in the same composition. It may be desirable, therefore, to delay the release of the taste potentiator(s) from the composition such that it releases substantially in conjunction with the active(s). The corresponding release profile may increase the effectiveness of the taste potentiator(s) in enhancing the perception of the active(s) throughout consumption.
  • Suitable encapsulants for use in delayed release embodiments include, but are not limited to, polyvinyl acetate, polyethylene, crosslinked polyvinyl pyrrolidone, polymethylmethacrylate, polylactidacid, polyhydroxyalkanoates, ethylcellulose, polyvinyl acetatephthalate, methacrylicacid-co-methylmethacrylate and combinations thereof.
  • In some embodiments, as mentioned above, the taste potentiator(s) may be water-soluble. For example, the following taste potentiators are water-soluble: neohesperidin dihydrochalcone, chlorogenic acid, alapyridaine, cynarin, miraculin, glupyridaine, pyridinium-betain compounds, glutamates, such as monosodium glutamate and monopotassium glutamate, neotame, thaumatin, tagatose, trehalose, salts, such as sodium chloride, monoammonium glycyrrhizinate, vanilla extract (in ethyl alcohol), water-soluble sugar acids, potassium chloride, sodium acid sulfate, water-soluble hydrolyzed vegetable proteins, water-soluble hydrolyzed animal proteins, water-soluble yeast extracts, adenosine monophosphate (AMP), glutathione, water-soluble nucleotides, such as inosine monophosphate, disodium inosinate, xanthosine monophosphate, guanylate monophosphate, alapyridaine (N-(1-carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol inner salt, sugar beet extract (alcoholic extract), sugarcane leaf essence (alcoholic extract), curculin, strogin, mabinlin, gymnemic acid, 2-hydroxybenzoic acid (2-HB), 3-hydroxybenzoic acid (3-HB), 4-hydroxybenzoic acid (4-HB), 2,3-dihydroxybenzoic acid (2,3-DHB), 2,4-dihydroxybenzoic acid (2,4-DHB), 2,5-dihydroxybenzoic acid (2,5-DHB), 2,6-dihydroxybenzoic acid (2,6-DHB), 3,4-dihydroxybenzoic acid (3,4-DHB), 3,5-dihydroxybenzoic acid (3,5-DHB), 2,3,4-trihydroxybenzoic acid (2,3,4-THB), 2,4,6-trihydroxybenzoic acid (2,4,6-THB), 3,4,5-trihydroxybenzoic acid (3,4,5-THB), 4-hydroxyphenylacetic acid, 2-hydroxyisocaproic acid, 3-hydroxycinnamic acid, 3-aminobenzoic acid, 4-aminobenzoic acid and combinations thereof. Due to their water-solubility, such taste potentiators may tend to release rapidly from the compositions into which they are incorporated. As such, in some embodiments, water-soluble taste potentiators may be encapsulated by an encapsulant that delays the release of the potentiator(s), as provided above.
  • In other embodiments, it may be desirable to increase the release of the taste potentiator(s) from the composition. For instance, the taste potentiator(s) included in the composition may have a slower release rate than the active substance(s) selected for use in combination therewith. This difference in release rates may reduce the effectiveness of the taste potentiator(s). Accordingly, such taste potentiators may be encapsulated with an encapsulant that increases the rate of the potentiator's release. Thereby, the release of the potentiator(s) and the active(s) may substantially coincide during consumption.
  • Suitable encapsulants for use in increased release embodiments include, but are not limited to, cyclodextrins, sugar alcohols, starch, gum arabic, polyvinylalcohol, polyacrylic acid, gelatin, guar gum, fructose and combinations thereof.
  • In some embodiments, as mentioned above, the taste potentiator(s) may be substantially or completely insoluble in water. For example, the following taste potentiators are substantially or completely water-insoluble: citrus aurantium, vanilla oleoresin, water insoluble sugar acids, water insoluble hydrolyzed vegetable proteins, water insoluble hydrolyzed animal proteins, water insoluble yeast extracts, insoluble nucleotides, sugarcane leaf essence and combinations thereof. Due to their poor solubility in water, such taste potentiators may tend to release slowly from the compositions. As such, in some embodiments, substantially or completely water-insoluble taste potentiators may be encapsulated by an encapsulant that increases the release of the potentiator(s), as provided above.
  • In accordance with the above, the encapsulated taste potentiator may include a taste potentiator and an encapsulant. The encapsulant may be selected based upon the desired release profile of the taste potentiator. In some embodiments, the taste potentiator(s) may be present in amounts of about 0.01% to about 10% by weight of the composition, more specifically about 0.1% to about 2% by weight of the composition.
  • In some embodiments, the encapsulant may be present in amounts of about 1% to about 95% by weight of the composition, more specifically about 5% to about 30% by weight of the composition.
  • In some embodiments, the encapsulated substance, i.e. encapsulated taste potentiator(s) or active(s), may have a high tensile strength, such as at least about 6,500 psi. More specifically, the tensile strength may be about 6,500 psi to about 200,000 psi. Such tensile strengths may be suitable for controlling the release of the taste potentiator(s) and/or active substance(s) in a consistent manner over an extended period of time. Tensile strengths of encapsulated substances are described in more detail in U.S. Patent Publication No. 2005/0112236 A1, the contents of which are incorporated by reference herein.
  • In some embodiments, the active substance(s) included in the potentiator compositions may be present in amounts of about 1% to about 95% by weight of the composition, more specifically about 5% to about 30% by weight of the composition.
  • The active substance(s) may be any component for which the perception is enhanced in some manner by the presence of one or more taste potentiators. Suitable active substances include, but are not limited to, compounds that provide flavor, sweetness, tartness, umami, kokumi, savory, saltiness, cooling, warmth or tingling. Other suitable actives include oral care agents, nutraceutical actives and pharmaceutical actives. Combinations of active substances also may be employed.
  • Compounds that provide flavor (flavorings or flavor agents), which may be used include those flavors known to the skilled artisan, such as natural and artificial flavors. These flavorings may be chosen from synthetic flavor oils and flavoring aromatics and/or oils, oleoresins and extracts derived from plants, leaves, flowers, fruits, and so forth, and combinations thereof. Nonlimiting representative flavor oils include spearmint oil, cinnamon oil, oil of wintergreen (methyl salicylate), peppermint oil, Japanese mint oil, clove oil, bay oil, anise oil, eucalyptus oil, thyme oil, cedar leaf oil, oil of nutmeg, allspice, oil of sage, mace, oil of bitter almonds, and cassia oil. Also useful flavorings are artificial, natural and synthetic fruit flavors such as vanilla, and citrus oils including lemon, orange, lime, grapefruit, yazu, sudachi, and fruit essences including apple, pear, peach, grape, blueberry, strawberry, raspberry, cherry, plum, pineapple, watermelon, apricot, banana, melon, apricot, ume, cherry, raspberry, blackberry, tropical fruit, mango, mangosteen, pomegranate, papaya and so forth. Other potential flavors include a milk flavor, a butter flavor, a cheese flavor, a cream flavor, and a yogurt flavor; a vanilla flavor; tea or coffee flavors, such as a green tea flavor, a oolong tea flavor, a tea flavor, a cocoa flavor, a chocolate flavor, and a coffee flavor; mint flavors, such as a peppermint flavor, a spearmint flavor, and a Japanese mint flavor; spicy flavors, such as an asafetida flavor, an ajowan flavor, an anise flavor, an angelica flavor, a fennel flavor, an allspice flavor, a cinnamon flavor, a chamomile flavor, a mustard flavor, a cardamom flavor, a caraway flavor, a cumin flavor, a clove flavor, a pepper flavor, a coriander flavor, a sassafras flavor, a savory flavor, a Zanthoxyli Fructus flavor, a perilla flavor, a juniper berry flavor, a ginger flavor, a star anise flavor, a horseradish flavor, a thyme flavor, a tarragon flavor, a dill flavor, a capsicum flavor, a nutmeg flavor, a basil flavor, a marjoram flavor, a rosemary flavor, a bayleaf flavor, and a wasabi (Japanese horseradish) flavor; alcoholic flavors, such as a wine flavor, a whisky flavor, a brandy flavor, a rum flavor, a gin flavor, and a liqueur flavor; floral flavors; and vegetable flavors, such as an onion flavor, a garlic flavor, a cabbage flavor, a carrot flavor, a celery flavor, mushroom flavor, and a tomato flavor. These flavoring agents may be used in liquid or solid form and may be used individually or in admixture. Commonly used flavors include mints such as peppermint, menthol, spearmint, artificial vanilla, cinnamon derivatives, and various fruit flavors, whether employed individually or in admixture. Flavors may also provide breath freshening properties, particularly the mint flavors when used in combination with cooling agents.
  • Other useful flavorings include aldehydes and esters such as cinnamyl acetate, cinnamaldehyde, citral diethylacetal, dihydrocarvyl acetate, eugenyl formate, p-methylamisol, and so forth may be used. Generally any flavoring or food additive such as those described in Chemicals Used in Food Processing, publication 1274, pages 63-258, by the National Academy of Sciences, may be used. This publication is incorporated herein by reference.
  • Further examples of aldehyde flavorings include but are not limited to acetaldehyde (apple), benzaldehyde (cherry, almond), anisic aldehyde (licorice, anise), cinnamic aldehyde (cinnamon), citral, i.e., alpha-citral (lemon, lime), neral, i.e., beta-citral (lemon, lime), decanal (orange, lemon), ethyl vanillin (vanilla, cream), heliotrope, i.e., piperonal (vanilla, cream), vanillin (vanilla, cream), alpha-amyl cinnamaldehyde (spicy fruity flavors), butyraldehyde (butter, cheese), valeraldehyde (butter, cheese), citronellal (modifies, many types), decanal (citrus fruits), aldehyde C-8 (citrus fruits), aldehyde C-9 (citrus fruits), aldehyde C-12 (citrus fruits), 2-ethyl butyraldehyde (berry fruits), hexenal, i.e., trans-2 (berry fruits), tolyl aldehyde (cherry, almond), veratraldehyde (vanilla), 2,6-dimethyl-5-heptenal, i.e., melonal (melon), 2,6-dimethyloctanal (green fruit), and 2-dodecenal (citrus, mandarin), cherry, grape, strawberry shortcake, and mixtures thereof.
  • In some embodiments, the flavor agent may be employed in either liquid form and/or dried form. When employed in the latter form, suitable drying means such as spray drying the oil may be used. Alternatively, the flavor agent may be absorbed onto water soluble materials, such as cellulose, starch, sugar, maltodextrin, gum arabic and so forth or may be encapsulated. The actual techniques for preparing such dried forms are well-known.
  • In some embodiments, the flavor agents may be used in many distinct physical forms well-known in the art to provide an initial burst of flavor and/or a prolonged sensation of flavor. Without being limited thereto, such physical forms include free forms, such as spray dried, powdered, beaded forms, encapsulated forms, and mixtures thereof.
  • Compounds that provide sweetness (sweeteners or sweetening agents) may include bulk sweeteners such as sugars, sugarless bulk sweeteners, or the like, or mixtures thereof.
  • Suitable sugar sweeteners generally include mono-saccharides, di-saccharides and poly-saccharides such as but not limited to, sucrose (sugar), dextrose, maltose, dextrin, xylose, ribose, glucose, lactose, mannose, galactose, fructose (levulose), invert sugar, fructo oligo saccharide syrups, partially hydrolyzed starch, corn syrup solids, isomaltulose and mixtures thereof.
  • Suitable sugarless bulk sweeteners include sugar alcohols (or polyols) such as, but not limited to, sorbitol, xylitol, mannitol, galactitol, maltitol, hydrogenated isomaltulose (ISOMALT), lactitol, erythritol, hydrogenated starch hydrolysate, stevia and mixtures thereof.
  • Suitable hydrogenated starch hydrolysates include those disclosed in U.S. Pat. No. 4,279,931 and various hydrogenated glucose syrups and/or powders which contain sorbitol, maltitol, hydrogenated disaccharides, hydrogenated higher polysaccharides, or mixtures thereof. Hydrogenated starch hydrolysates are primarily prepared by the controlled catalytic hydrogenation of corn syrups. The resulting hydrogenated starch hydrolysates are mixtures of monomeric, dimeric, and polymeric saccharides. The ratios of these different saccharides give different hydrogenated starch hydro lysates different properties. Mixtures of hydrogenated starch hydrolysates, such as LYCASIN®, a commercially available product manufactured by Roquette Freres of France, and HYSTAR®, a commercially available product manufactured by SPI Polyols, Inc. of New Castle, Del., are also useful.
  • In some embodiments, high-intensity sweeteners may be used. Without being limited to particular sweeteners, representative categories and examples include:
  • (a) water-soluble sweetening agents such as dihydrochalcones, monellin, stevia, steviosides, rebaudioside A, glycyrrhizin, dihydroflavenol, and sugar alcohols such as sorbitol, mannitol, maltitol, xylitol, erythritol and L-aminodicarboxylic acid aminoalkenoic acid ester amides, such as those disclosed in U.S. Pat. No. 4,619,834, which disclosure is incorporated herein by reference, and mixtures thereof;
  • (b) water-soluble artificial sweeteners such as soluble saccharin salts, i.e., sodium or calcium saccharin salts, cyclamate salts, the sodium, ammonium or calcium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the potassium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide (Acesulfame-K), the free acid form of saccharin, and mixtures thereof;
  • (c) dipeptide based sweeteners, such as L-aspartic acid derived sweeteners, such as L-aspartyl-L-phenylalanine methyl ester (Aspartame) and materials described in U.S. Pat. No. 3,492,131, L-alphaaspartyl-N-(2,2,4,4-tetramethyl-3-thietanyl)-D-alaninamide hydrate (Alitame), N—[N-(3,3-dimethylbutyl)-L-aspartyl]-L-phenylalanine 1-methyl ester (Neotame), methyl esters of L-aspartyl-L-phenylglycerine and L-aspartyl-L-2,5-dihydrophenyl-glycine, L-aspartyl-2,5-dihydro-L-phenylalanine; L-aspartyl-L-(1-cyclohexen)-alanine, and mixtures thereof;
  • (d) water-soluble sweeteners derived from naturally occurring water-soluble sweeteners, such as chlorinated derivatives of ordinary sugar (sucrose), e.g., chlorodeoxysugar derivatives such as derivatives of chlorodeoxysucrose or chlorodeoxygalactosucrose, known, for example, under the product designation of Sucralose; examples of chlorodeoxysucrose and chlorodeoxygalactosucrose derivatives include but are not limited to: 1-chloro-1′-deoxysucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-alpha-D-fructofuranoside, or 4-chloro-4-deoxygalactosucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-1-chloro-1-deoxy-beta-D-fructo-furanoside, or 4,1′-dichloro-4,1′-dideoxygalactosucrose; 1′,6′-dichloro1,6′-dideoxysucrose; 4-chloro-4-deoxy-alpha-D-galactopyranosyl-1,6-dichloro-1,6-dideoxy-beta-D-fructofuranoside, or 4,1′,6′-trichloro-4,1′,6′-trideoxygalactosucrose; 4,6-dichloro-4,6-dideoxy-alpha-D-galactopyranosyl-6-chloro-6-deoxy-beta-D-fructofuranoside, or 4,6,6′-trichloro-4,6,6′-trideoxygalactosucrose; 6,1′,6′-trichloro-6,1′,6′-trideoxysucrose; 4,6-dichloro-4,6-dideoxy-alpha-D-galacto-pyranosyl-1,6-dichloro-1,6-dideoxy-beta-D-fructofuranoside, or 4,6,1′,6′-tetrachloro-4,6,1′,6′-tetradeoxygalacto-sucrose; and 4,6,1′,6′-tetradeoxy-sucrose, and mixtures thereof;
  • (e) protein based sweeteners such as thaumatococcus danielli (Thaumatin I and II) and talin;
  • (f) the sweetener monatin (2-hydroxy-2-(indol-3-ylmethyl)-4-aminoglutaric acid) and its derivatives; and
  • (g) the sweetener Lo han guo (sometimes also referred to as “Lo han kuo”).
  • The intense sweetening agents may be used in many distinct physical forms well-known in the art to provide an initial burst of sweetness and/or a prolonged sensation of sweetness. Without being limited thereto, such physical forms include free forms, such as spray dried, powdered, beaded forms, encapsulated forms, and mixtures thereof.
  • Compounds that provide tartness may include acidulants, such as acetic acid, adipic acid, ascorbic acid, butyric acid, citric acid, formic acid, fumaric acid, glyconic acid, lactic acid, phosphoric acid, malic acid, oxalic acid, succinic acid, tartaric acid and mixtures thereof.
  • Compounds that provide umami or savory flavor may include monosodium glutamate (MSG), glutamic acid, glutamates, aspartate, free amino acids, IMP (disodium 5′-inosine monophosphate) and GMP (disodium 5′-guanosine monophosphate), compounds that stimulate T1R1 and T1R3 receptors, mushroom flavor, fermented fish flavor, and muscle flavors, such as beef, chicken, pork, ostrich, venison and buffalo.
  • Substances that impart kokumi may include a mixture selected from: (1) gelatin and tropomyosin and/or tropomyosin peptides; (2) gelatin and paramyosin; and (3) troponin and tropomyosin and/or tropomyosin peptides, as disclosed in U.S. Pat. No. 5,679,397 to Kuroda et al., referred to above.
  • Compounds that provide saltiness may include conventional salts, such as sodium chloride, calcium chloride, potassium chloride, 1-lysine and combinations thereof.
  • Compounds that provide a cooling sensation may include physiological cooling agents. A variety of well known cooling agents may be employed. For example, among the useful cooling agents are included xylitol, erythritol, dextrose, sorbitol, menthane, menthone, ketals, menthone ketals, menthone glycerol ketals, substituted p-menthanes, acyclic carboxamides, mono menthyl glutarate, substituted cyclohexanamides, substituted cyclohexane carboxamides, substituted ureas and sulfonamides, substituted menthanols, hydroxymethyl and hydroxymethyl derivatives of p-menthane, 2-mercapto-cyclo-decanone, hydroxycarboxylic acids with 2-6 carbon atoms, cyclohexanamides, menthyl acetate, menthyl salicylate, N,2,3-trimethyl-2-isopropyl butanamide (WS-23), N-ethyl-p-menthane-3-carboxamide (WS-3), isopulegol, 3-(1-menthoxy)propane-1,2-diol, 3-(1-menthoxy)-2-methylpropane-1,2-diol, p-menthane-2,3-diol, p-menthane-3,8-diol, 6-isopropyl-9-methyl-1,4-dioxaspiro[4,5]decane-2-methanol, menthyl succinate and its alkaline earth metal salts, trimethylcyclohexanol, N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide, Japanese mint oil, peppermint oil, 3-(1-menthoxy)ethan-1-ol, 3-(1-menthoxy)propan-1-ol, 3-(1-menthoxy)butan-1-ol, 1-menthylacetic acid N-ethylamide, 1-menthyl-4-hydroxypentanoate, 1-menthyl-3-hydroxybutyrate, N,2,3-trimethyl-2-(1-methylethyl)-butanamide, n-ethyl-t-2-c-6 nonadienamide, N,N-dimethyl menthyl succinamide, substituted p-menthanes, substituted p-menthane-carboxamides, 2-isopropanyl-5-methylcyclohexanol (from Hisamitsu Pharmaceuticals, hereinafter “isopregol”); menthone glycerol ketals (FEMA 3807, tradename FRESCOLAT® type MGA); 3-1-menthoxypropane-1,2-diol (from Takasago, FEMA 3784); and menthyl lactate; (from Haarman & Reimer, FEMA 3748, tradename FRESCOLAT® type ML), WS-30, WS-14, Eucalyptus extract (p-Mehtha-3,8-Diol), Menthol (its natural or synthetic derivatives), Menthol PG carbonate, Menthol EG carbonate, Menthol glyceryl ether, N-tertbutyl-p-menthane-3-carboxamide, P-menthane-3-carboxylic acid glycerol ester, Methyl-2-isopryl-bicyclo (2.2.1), Heptane-2-carboxamide; and Menthol methyl ether, and menthyl pyrrolidone carboxylate among others. These and other suitable cooling agents are further described in the following U.S. patents, all of which are incorporated in their entirety by reference hereto: U.S. Pat. Nos. 4,230,688; 4,032,661; 4,459,425; 4,136,163; 5,266,592; 6,627,233.
  • Compounds that provide warmth (warming agents) may be selected from a wide variety of compounds known to provide the sensory signal of warming to the individual user. These compounds offer the perceived sensation of warmth, particularly in the oral cavity, and often enhance the perception of flavors, sweeteners and other organoleptic components. Useful warming agents include those having at least one allyl vinyl component, which may bind to oral receptors. Examples of suitable warming agents include, but are not limited to: vanillyl alcohol n-butylether (TK-1000, supplied by Takasago Perfumery Company Ltd., Tokyo, Japan); vanillyl alcohol n-propylether; vanillyl alcohol isopropylether; vanillyl alcohol isobutylether; vanillyl alcohol n-aminoether; vanillyl alcohol isoamylether; vanillyl alcohol n-hexylether; vanillyl alcohol methylether; vanillyl alcohol ethylether; gingerol; shogaol; paradol; zingerone; capsaicin; dihydrocapsaicin; nordihydrocapsaicin; homocapsaicin; homodihydrocapsaicin; ethanol; isopropyl alcohol; iso-amylalcohol; benzyl alcohol; glycerine; chloroform; eugenol; cinnamon oil; cinnamic aldehyde; phosphate derivatives thereof; and combinations thereof.
  • Compounds that provide a tingling sensation also are known and referred to as “tingling agents.” Tingling agents may be employed to provide a tingling, stinging or numbing sensation to the user. Tingling agents include, but are not limited to: Jambu Oleoresin or para cress (Spilanthes sp.), in which the active ingredient is Spilanthol; Japanese pepper extract (Zanthoxylum peperitum), including the ingredients known as Saanshool-I, Saanshool-II and Sanshoamide; black pepper extract (piper nigrum), including the active ingredients chavicine and piperine; Echinacea extract; Northern Prickly Ash extract; and red pepper oleoresin. In some embodiments, alkylamides extracted from materials such as jambu or sanshool may be included. Additionally, in some embodiments, a sensation is created due to effervescence. Such effervescence is created by combining an alkaline material with an acidic material, either or both of which may be encapsulated. In some embodiments, an alkaline material may include alkali metal carbonates, alkali metal bicarbonates, alkaline earth metal carbonates, alkaline earth metal bicarbonates and mixtures thereof. In some embodiments, an acidic material may include acetic acid, adipic acid, ascorbic acid, butyric acid, citric acid, formic acid, fumaric acid, glyconic acid, lactic acid, phosphoric acid, malic acid, oxalic acid, succinic acid, tartaric acid and combinations thereof. Examples of “tingling” type sensates can be found in U.S. Pat. No. 6,780,443, the entire contents of which are incorporated herein by reference for all purposes. Tingling agents are described in U.S. Pat. No. 6,780,443 to Nakatsu et al., U.S. Pat. No. 5,407,665 to McLaughlin et al., U.S. Pat. No. 6,159,509 to Johnson et al. and U.S. Pat. No. 5,545,424 to Nakatsu et al., each of which is incorporated by reference herein in its entirety.
  • Oral care agents that may be used include those actives known to the skilled artisan, such as, but not limited to, surfactants, breath freshening agents, anti-microbial agents, antibacterial agents, anti-calculus agents, anti-plaque agents, oral malodor control agents, fluoride compounds, quaternary ammonium compounds, remineralization agents and combinations thereof.
  • Suitable surfactants include, but are not limited to, salts of fatty acids selected from the group consisting of C8-C24, palmitoleic acid, oleic acid, eleosteric acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, ricinoleic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, sulfated butyl oleate, medium and long chain fatty acid esters, sodium oleate, salts of fumaric acid, potassium glomate, organic acid esters of mono- and diglycerides, stearyl monoglyceridyl citrate, succistearin, dioctyl sodium sulfosuccinate, glycerol tristearate, lecithin, hydroxylated lecithin, sodium lauryl sulfate, acetylated monoglycerides, succinylated monoglycerides, monoglyceride citrate, ethoxylated mono- and diglycerides, sorbitan monostearate, calcium stearyl-2-lactylate, sodium stearyl lactylate, lactylated fatty acid esters of glycerol and propylene glycerol, glycerol-lactoesters of C8-C24 fatty acids, polyglycerol esters of C8-C24 fatty acids, propylene glycol alginate, sucrose C8-C24 fatty acid esters, diacetyl tartaric and citric acid esters of mono- and diglycerides, triacetin, sarcosinate surfactants, isethionate surfactants, tautate surfactants, pluronics, polyethylene oxide condensates of alkyl phenols, products derived from the condensation of ethylene oxide with the reaction product of propylene oxide and ethylene diamine, ethylene oxide condensates of aliphatic alcohols, long chain tertiary amine oxides, long chain tertiary phosphine oxides, long chain dialkyl sulfoxides, and combinations thereof.
  • Suitable antibacterial agents include, but are not limited to, chlorhexidine, alexidine, quaternary ammonium salts, benzethonium chloride, cetyl pyridinium chloride, 2,4,4′-trichloro-2′-hydroxy-diphenyl ether (triclosan) and combinations thereof.
  • Suitable fluoride compounds include, but are not limited to, sodium fluoride, sodium monofluorophosphate, stannous fluoride and combinations thereof.
  • Suitable anti-calculus agents include, but are not limited to, pyrophosphates, triphosphates, polyphosphates, polyphosphonates, dialkali metal pyrophosphate salt, tetra alkali polyphosphate salt, tetrasodium pyrophosphate, tetrapotassium pyrophosphate, sodium tripolyphosphate and combinations thereof.
  • Suitable anti-microbial agents include, but are not limited to, cetylpyridinium chloride, zinc compounds, copper compounds and combinations thereof.
  • Suitable remineralization agents include, but are not limited to casein phosphopeptide-amorphous calcium phosphate, casein phosphoprotein-calcium phosphate complex, casein phosphopeptide-stabilized calcium phosphate, and combinations thereof.
  • Other oral care actives known to those skilled in the art are considered well within the scope of the present invention.
  • Pharmaceutical actives include drugs or medicaments, breath fresheners, vitamins and other dietary supplements, minerals, caffeine, nicotine, fruit juices, and the like, and mixtures thereof. Examples of useful drugs include ace-inhibitors, antianginal drugs, anti-arrhythmias, anti-asthmatics, anti-cholesterolemics, analgesics, anesthetics, anti-convulsants, anti-depressants, anti-diabetic agents, anti-diarrhea preparations, antidotes, anti-histamines, anti-hypertensive drugs, anti-inflammatory agents, anti-lipid agents, anti-manics, anti-nauseants, anti-stroke agents, anti-thyroid preparations, anti-tumor drugs, anti-viral agents, acne drugs, alkaloids, amino acid preparations, anti-tussives, anti-uricemic drugs, anti-viral drugs, anabolic preparations, systemic and non-systemic anti-infective agents, anti-neoplastics, anti-parkinsonian agents, anti-rheumatic agents, appetite stimulants, biological response modifiers, blood modifiers, bone metabolism regulators, cardiovascular agents, central nervous system stimulates, cholinesterase inhibitors, contraceptives, decongestants, dietary supplements, dopamine receptor agonists, endometriosis management agents, enzymes, erectile dysfunction therapies such as sildenafil citrate, which is currently marketed as Viagra®, fertility agents, gastrointestinal agents, homeopathic remedies, hormones, hypercalcemia and hypocalcemia management agents, immunomodulators, immunosuppressives, migraine preparations, motion sickness treatments, muscle relaxants, obesity management agents, osteoporosis preparations, oxytocics, parasympatholytics, parasympathomimetics, prostaglandins, psychotherapeutic agents, respiratory agents, sedatives, smoking cessation aids such as bromocryptine or nicotine, sympatholytics, tremor preparations, urinary tract agents, vasodilators, laxatives, antacids, ion exchange resins, anti-pyretics, appetite suppressants, expectorants, anti-anxiety agents, anti-ulcer agents, anti-inflammatory substances, coronary dilators, cerebral dilators, peripheral vasodilators, psycho-tropics, stimulants, anti-hypertensive drugs, vasoconstrictors, migraine treatments, antibiotics, tranquilizers, anti-psychotics, anti-tumor drugs, anti-coagulants, anti-thrombotic drugs, hypnotics, anti-emetics, anti-nauseants, anti-convulsants, neuromuscular drugs, hyper- and hypo-glycemic agents, thyroid and anti-thyroid preparations, diuretics, anti-spasmodics, terine relaxants, anti-obesity drugs, erythropoietic drugs, anti-asthmatics, cough suppressants, mucolytics, DNA and genetic modifying drugs, and combinations thereof.
  • In some embodiments, a mixture of at least one active substance and at least one taste potentiator is encapsulated, rather than encapsulating the taste potentiator or the active substance alone. Similar to above, the encapsulant may be selected to delay or increase the rate of release of the mixture of components. Any of the encapsulants described above may be employed.
  • For example, in some embodiments, the active substance(s) may be at least one intense sweetener. The intense sweetener(s) may be mixed with at least one taste potentiator, which is selected to increase the sweet taste of the intense sweetener(s). This mixture of components may then be encapsulated. Examples of suitable intense sweeteners include, but are not limited to, neotame, aspartame, Acesulfame-K, sucralose, saccharin and combinations thereof.
  • In embodiments including an encapsulated mixture of active(s) and potentiator(s), the active substance(s) may be present in amounts of about 1% to about 95% by weight of the composition, more specifically about 5% to about 30% by weight. The taste potentiator(s) may be present in amounts of about 0.01% to about 12% by weight of the composition, more specifically about 0.1% to about 5% by weight. The encapsulant may be present in amounts of about 1% to about 95% by weight of the composition, more specifically about 10% to about 60% by weight.
  • As mentioned above, some embodiments may include a mixture of at least one encapsulated taste potentiator and at least one taste potentiator in its free form. The encapsulated and unencapsulated taste potentiators may be the same or different. The encapsulated taste potentiator(s) may be encapsulated by any of the materials described above. The mixture of encapsulated and unencapsulated taste potentiators may be combined with one or more active substances to provide a potentiator composition.
  • Some other embodiments provide compositions that modulate the activity of taste receptor cells in a mammal. Such compositions may include at least one active substance and at least one taste potentiator, as described above. These components may be encapsulated or unencapsulated, also as described above. The taste potentiator(s) may modulate the activity of taste receptor cells upon consumption of the composition. More specifically, taste is perceived through sensory cells located in the taste buds. Different signaling mechanisms sense the primary tastes of salty, sour, sweet, bitter and umami. Eventually a nerve impulse is triggered in the brain that is sensed as one of these primary tastes.
  • Taste potentiators function by modulating the activity of taste receptor cells at some point in this taste signaling pathway. For instance, in some cases, taste potentiators may bind to taste receptors, such as, for example, sweet taste receptors, which thereby enhances the perception of the sweet taste. In other embodiments, for example, taste potentiators may block taste receptors, such as, for example bitter receptors, which suppresses the perception of a bitter taste and thereby enhances the perception of a sweet taste. Taste potentiator(s), therefore, modulate the activity of taste receptor cells in mammals, which thereby enhances the perception of a given taste. This activity may enhance the perception of an active substance contained in the composition when consumed in conjunction with a taste potentiator.
  • Edible Orally Delivered Products
  • In some embodiments, the potentiator compositions may reside in an orally delivered product including at least one active substance and at least one taste potentiator.
  • The orally delivered product may be a foodstuff, pharmaceutical or personal care product. Preferred foodstuffs include confectionery, especially chocolates, hard boilings and other sugar-based candies, jellies, soft candies, edible films, lozenges, pressed tablets, cereal bars, chewing gum, and the like. Pharmaceuticals may be delivered in the form of a tablet, capsule, solution, tincture, linctus or syrup. Confectionery and solid pharmaceutical delivery forms optionally can be coated. Exemplary personal products include toothpaste, mouth spray, and mouth wash.
  • In some embodiments, the orally delivered product may be a frozen or refrigerated/perishable product. Such frozen or refrigerated foodstuffs may include, but are not limited to, frozen desserts, frozen confections, yogurts, puddings, frozen baked goods and whipped toppings.
  • In still other embodiments, sweetened orally delivered products may include jams, jellies, peanut butter, baked goods, syrups, toppings, and sweet and salty snacks, such as sweetened roasted nuts, kettle corn, barbeque potato snacks, and the like.
  • In some embodiments, the orally delivered product may include a confectionery base or gum base and any of the potentiator compositions described herein. In some embodiments, some or all of the active and/or the taste potentiator may be employed in a free form (e.g., unencapsulated). Alternatively, the product may include some or all of the active and/or the taste potentiator in an encapsulated form. As a further alternative, the product may include some of the active and/or the taste potentiator in a free form and some of the active and/or the taste potentiator in an encapsulated form. In some embodiments, the product may include two or more potentiator compositions.
  • In some embodiments, the potentiator composition used in the orally delivered product may be a sweetener potentiator composition including 3-HB and/or 2,4-DHB. As mentioned above, 3-HB and 2,4-DHB act synergistically with one another to enhance the sweetness of orally delivered products into which the potentiators are incorporated.
  • For beverages and confectionery products, the concentration of 3-HB, as calculated in the form of the free acid, generally may be up to 1500 ppm in the orally delivered product, more specifically in the range from 100 to 1500 ppm, even more specifically in the range from 200 to 1000 ppm, yet more specifically in the range from 300 to 800 ppm and most specifically in the range from 400 to 600 ppm.
  • For beverages and confectionery products, the concentration of 2,4-DHB, as calculated in the form of the free acid, generally may be up to 1500 ppm in the product, more specifically in the range from 100 to 1500 ppm, even more specifically in the range from 200 to 1000 ppm, yet more specifically in the range from 300 to 800 ppm and most specifically in the range from 400 to 600 ppm.
  • In general, the combined concentration of 3-HB and 2,4-DHB may be no more than 1500 ppm in beverages and confectioneries.
  • For chewing gums, the concentration of 3-HB and/or 2,4-DHB, as calculated in the form of the free acid, generally may be up to 5000 ppm in the product, more specifically in the range from 100 to 5000 ppm, even more specifically in the range from 1000 to 5000 ppm, yet more specifically in the range from 2000 to 5000 ppm and most specifically in the range from 3000 to 5000 ppm.
  • Of course, the required concentrations will depend upon the nature of the orally delivered product to be sweetened, the level of sweetness required, the nature of the sweetener(s) in the product and the degree of enhancement required.
  • Confectionery Compositions
  • When the orally delivery product is a confectionery composition, the product may be a comestible selected from forms such as, but not limited to, hard candy, soft candy, center-fill candy, cotton candy, pressed tablets, edible film, lozenges, and the like.
  • Confectionery compositions may include a confectionery base and any of the potentiator compositions described above, which may include at least one active substance and at least one taste potentiator. The confectionery compositions also may include a variety of optional additives, as provided in more detail below. Upon consumption, the composition containing the active(s) and the taste potentiator(s) releases from the confection and provides an enhanced perception of the active(s) contained therein.
  • For example, in some embodiments, the active substance may be at least one sweetener, such as, a sugar sweetener, sugarless bulk sweetener, intense sweetener or any combination thereof. In general, the active substance(s) may be present in amounts of about 0.0001% to about 75% by weight of the confectionery composition. In some embodiments, which include actives other than intense sweeteners, the active substance(s) may be present in amounts of about 25% to about 75% by weight of the confectionery composition. The taste potentiator(s) may be present in amounts of about 0.01% to about 10% by weight of the confectionery composition.
  • Some embodiments are directed to a comestible in the form of a lozenge or candy, also commonly referred to as confectioneries. Such confectionery compositions may include a confectionery base including bulk sweeteners such as sugars and sugarless bulk sweeteners, or the like, or mixtures thereof. Bulk sweeteners generally are present in amounts of about 0.05% to about 99% by weight of the composition.
  • A variety of traditional ingredients also may be included in the confectioneries in effective amounts such as coloring agents, antioxidants, preservatives, sweeteners, and the like. Coloring agents may be used in amounts effective to produce the desired color. The coloring agents may include pigments which may be incorporated in amounts up to about 6%, by weight of the composition. For example, titanium dioxide may be incorporated in amounts up to about 2%, and preferably less than about 1%, by weight of the composition. The colorants may also include natural food colors and dyes suitable for food, drug and cosmetic applications. These colorants are known as F.D. & C. dyes and lakes. The materials acceptable for the foregoing uses are preferably water-soluble. Illustrative nonlimiting examples include the indigoid dye known as F.D. & C. Blue No. 2, which is the disodium salt of 5,5-indigotindisulfonic acid. Similarly, the dye known as F.D. & C. Green No. 1 comprises a triphenylmethane dye and is the monosodium salt of 4-[4-(N-ethyl-p-sulfoniumbenzylamino) diphenylmethylene]-[1-(N-ethyl-N-p-sulfoniumbenzyl)-delta-2,5-cyclohexadieneimine]. A full recitation of all F.D. & C. colorants and their corresponding chemical structures may be found in the Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Edition, in volume 5 at pages 857-884, which text is incorporated herein by reference.
  • Lubricants also may be added in some embodiments to improve the smoothness of the comestible, such as, for example hard candy embodiments. Smoothness also is a characteristic that leads to an increased perception of hydration upon consumption. Suitable lubricants include, but are not limited to, fats, oils, aloe vera, pectin and combinations thereof.
  • Similarly, in some embodiments, the comestible may have smooth edges. In such embodiments, the comestible may have any shape, such as square, circular or diamond-shaped, however, the edges are rounded to provide a smooth comestible. Another manner of lending smoothness to the comestibles is to deposit the comestible composition into moulds during the manufacturing process. Accordingly, in some embodiments, the comestible is deposited, as described in more detail below.
  • In some embodiments, the confectionery composition may further include a sweetener selected from Lo han guo, stevia, monatin and combinations thereof.
  • Other conventional additives known to one having ordinary skill in the art also may be used in the confectionery compositions.
  • In some embodiments, confectionery compositions may be produced by batch processes. Such confections may be prepared using conventional apparatus such as fire cookers, cooking extruders, and/or vacuum cookers. In some embodiments, the bulk sweetener (sugar or sugar free) and a solvent (e.g., water), are combined in a mixing vessel to form a slurry. The slurry is heated to about 70° C. to 120° C. to dissolve any sweetener crystals or particles and to form an aqueous solution. Once dissolved, heat and vacuum are applied to cook the batch and boil off water until a residual moisture of less than about 4% is achieved. The batch changes from a crystalline to an amorphous, or glassy, phase. The potentiator composition then may be admixed in the batch by mechanical mixing operations, along with any other optional additives, such as coloring agents, flavorants, and the like. The batch is then cooled to about 50° C. to 10° C. to attain a semi-solid or plastic-like consistency.
  • The optimum mixing required to uniformly mix the actives, potentiators, and other additives during manufacturing of hard confectionery is determined by the time needed to obtain a uniform distribution of the materials. Normally, mixing times of from four to ten minutes have been found to be acceptable. Once the candy mass has been properly tempered, it may be cut into workable regions or formed into desired shapes having the correct weight and dimensions. A variety of forming techniques may be utilized depending upon the shape and size of the final product desired. Once the desired shapes are formed, cool air is applied to allow the comestibles to set uniformly, after which they are wrapped and packaged.
  • Alternatively, various continuous cooking processes utilizing thin film evaporators and injection ports for incorporation of ingredients including the potentiator compositions are known in the art and may be used as well.
  • The apparatus useful in accordance with some embodiments comprise cooking and mixing apparatus well known in the confectionery manufacturing arts, and selection of specific apparatus will be apparent to one skilled in the art.
  • Additionally, in some embodiments, various confectionery configurations with multiple regions may be employed. These configurations may include, but are not limited to, liquid center-fill, powder center-fill, hard coated, soft coated, laminated, layered and enrobed. In some embodiments, the potentiator composition may be included in one region or in multiple regions of the product.
  • Soft Confectionery Compositions
  • In some embodiments, the orally delivered product may be in the form of various soft confectionery formats. Soft confectionery formats may include, but are not limited to, nougat, caramel, taffy, gummies and jellies.
  • Soft confectionery compositions may include a confectionery base and any of the potentiator compositions described above, which may include at least one active substance and at least one taste potentiator. The soft confectionery compositions also may include a variety of optional additives, such as any of the additives set forth above in the section describing confectionery compositions. Upon consumption, the composition containing the active(s) and the taste potentiator(s) releases from the soft confection and provides an enhanced perception of the active(s) contained therein.
  • For example, in some embodiments, the active substance may be at least one sweetener, such as, a sugar sweetener, sugarless bulk sweetener, intense sweetener or any combination thereof. In general, the active substance(s) may be present in amounts of about 0.0001% to about 75% by weight of the soft confectionery composition. In some embodiments, which include actives other than intense sweeteners, the active substance(s) may be present in amounts of about 25% to about 75% by weight of the soft confectionery composition. The taste potentiator(s) may be present in amounts of about 0.01% to about 10% by weight of the soft confectionery composition.
  • Some soft confectionery compositions include nougat compositions, which may include two principal components, a high-boiled candy and a frappe. By way of example, egg albumen or substitute thereof is combined with water and whisked to form a light foam. Sugar and glucose are added to water and boiled typically at temperatures of from about 130° C. to 140° C. and the resulting boiled product is poured into a mixing machine and beaten until creamy. The beaten albumen and flavoring agent are combined with the creamy product and the combination is thereafter thoroughly mixed.
  • In some embodiments, a caramel composition may include sugar (or sugar substitute), corn syrup (or polyol syrup), partially hydrogenated fat, milk solids, water, butter, flavors, emulsifiers, and salt. To prepare the caramel, the sugar/sugar substitute, corn syrup/polyol syrup, and water may be mixed together and dissolved over heat. Then, the milk solids may be mixed in to the mass to form a homogeneous mixture. Next, the minor ingredients may be mixed in with low heat. The heat then may be increased to boiling. Once sufficient water is removed and color/flavor developed, the mass may be cooled somewhat and temperature sensitive ingredients (including some potentiators) may be mixed in prior to discharging and forming/shaping/wrapping the finished product.
  • In some embodiments, a taffy composition may include sugar (or sugar substitute), corn syrup (or polyol syrup), partially hydrogenated fat, water, flavors, emulsifiers, and salt. The process for preparing taffy can be similar to that for caramel and, optionally, the final taffy mass may be pulled to develop its desired texture.
  • In some embodiments, a gummi composition may include sugar (or sugar substitute), corn syrup (or polyol syrup), gelatin (or suitable hydrocolloid), flavor, color, and optionally acid. The gummi may be prepared by hydrating the gelatin or suitable hydrocolloid, heating the sugar/corn syrup (sugar substitute/polyol syrup) and combining the two components with heat. Once the combined mixture reaches its final temperature or suitable sugar solids level, components such as flavor, color, and the like may be incorporated into the mixture and then poured into molds prior to cooling, wrapping, and finishing. Various surface treatments such as applications of wax or fat can be applied to decrease sticking.
  • In some embodiments, a jelly composition may include a starch-based jelly or a pectin-based jelly. As with gummies, jelly products may be produced by hydrating the hydrocolloid and combining the hydrated mixture with a cooked syrup component. The mixture then may be cooked to a final moisture content and minor components may be incorporated. As with gummies, jelly candies may be poured into molds such as starch molds. As with gummies, surface treatments, such as fats or waxes, may be applied. Additionally, jelly candies may have dry surface treatments, such as applications of sanding sugar, acid, non-pareils, and the like.
  • Additionally, in some embodiments, various soft confectionery configurations with multiple regions may be employed. These configurations may include, but are not limited to, liquid center-fill, powder center-fill, hard coated, soft coated, laminated, layered and enrobed. In some embodiments, the potentiator composition may be included in one region or in multiple regions of the product.
  • Chewing Gum Compositions
  • Some embodiments provide chewing gum compositions for delivery of the potentiator compositions described above. Such chewing gum compositions may include a gum base and any of the potentiator compositions described above, which may include at least one active substance and at least one taste potentiator. The chewing gum compositions also may include a variety of optional additives, as provided in more detail below. Upon consumption, the composition containing the active(s) and the taste potentiator(s) releases from the chewing gum and provides an enhanced perception of the active(s) contained therein.
  • As described in detail above, in some embodiments, the potentiator composition generally includes at least one active substance and at least one taste potentiator. In some embodiments, the taste potentiator(s) and/or active(s) may be encapsulated, as described above, or a mixture of the active(s) and taste potentiator(s) may be encapsulated. These components may be selected from any of those described above. For example, in some embodiments, the active substance may be at least one sweetener, such as, a sugar sweetener, sugarless bulk sweetener, intense sweetener or any combination thereof. In general, the active substance(s) may be present in amounts of about 0.0001% to about 75% by weight of the chewing gum composition. In some embodiments, which include actives other than intense sweeteners, the active substance(s) may be present in amounts of about 25% to about 75% by weight of the chewing gum composition. The taste potentiator(s) may be present in amounts of about 0.01% to about 10% by weight of the chewing gum composition.
  • In some embodiments, the chewing gum composition may include multiple taste potentiators. The taste potentiators may be encapsulated or unencapsulated and may be the same or different. In some embodiments, the multiple taste potentiators may be different. Some chewing gum compositions, for instance, may include one or more taste potentiators that are encapsulated in combination with one or more different taste potentiators that are unencapsulated. In some embodiments, two different encapsulated taste potentiators may be used in a chewing gum composition. Alternatively, in some other embodiments, the chewing gum composition may include a combination of the same taste potentiator in its encapsulated and free forms.
  • The chewing gum composition also may include a gum base. The gum base may include any component known in the chewing gum art. Such components may be water soluble, water-insoluble or a combination thereof. For example, the gum base may include elastomers, bulking agents, waxes, elastomer solvents, emulsifiers, plasticizers, fillers and mixtures thereof.
  • The elastomers (rubbers) employed in the gum base will vary greatly depending upon various factors such as the type of gum base desired, the consistency of gum composition desired and the other components used in the composition to make the final chewing gum product. The elastomer may be any water-insoluble polymer known in the art, and includes those gum polymers utilized for chewing gums and bubble gums. Illustrative examples of suitable polymers in gum bases include both natural and synthetic elastomers. For example, those polymers which are suitable in gum base compositions include, without limitation, natural substances (of vegetable origin) such as chicle, natural rubber, crown gum, nispero, rosidinha, jelutong, perillo, niger gutta, tunu, balata, guttapercha, lechi capsi, sorva, gutta kay, and the like, and mixtures thereof. Examples of synthetic elastomers include, without limitation, styrene-butadiene copolymers (SBR), polyisobutylene, isobutylene-isoprene copolymers, polyethylene, polyvinyl acetate and the like, and mixtures thereof.
  • The amount of elastomer employed in the gum base may vary depending upon various factors such as the type of gum base used, the consistency of the gum composition desired and the other components used in the composition to make the final chewing gum product. In general, the elastomer will be present in the gum base in an amount from about 10% to about 60% by weight, desirably from about 35% to about 40% by weight.
  • In some embodiments, the gum base may include wax. It softens the polymeric elastomer mixture and improves the elasticity of the gum base. When present, the waxes employed will have a melting point below about 60° C., and preferably between about 45° C. and about 55° C. The low melting wax may be a paraffin wax. The wax may be present in the gum base in an amount from about 6% to about 10%, and preferably from about 7% to about 9.5%, by weight of the gum base.
  • In addition to the low melting point waxes, waxes having a higher melting point may be used in the gum base in amounts up to about 5%, by weight of the gum base. Such high melting waxes include beeswax, vegetable wax, candelilla wax, carnuba wax, most petroleum waxes, and the like, and mixtures thereof.
  • In addition to the components set out above, the gum base may include a variety of other ingredients, such as components selected from elastomer solvents, emulsifiers, plasticizers, fillers, and mixtures thereof.
  • The gum base may contain elastomer solvents to aid in softening the elastomer component. Such elastomer solvents may include those elastomer solvents known in the art, for example, terpinene resins such as polymers of alpha-pinene or beta-pinene, methyl, glycerol and pentaerythritol esters of rosins and modified rosins and gums such as hydrogenated, dimerized and polymerized rosins, and mixtures thereof. Examples of elastomer solvents suitable for use herein may include the pentaerythritol ester of partially hydrogenated wood and gum rosin, the pentaerythritol ester of wood and gum rosin, the glycerol ester of wood rosin, the glycerol ester of partially dimerized wood and gum rosin, the glycerol ester of polymerized wood and gum rosin, the glycerol ester of tall oil rosin, the glycerol ester of wood and gum rosin and the partially hydrogenated wood and gum rosin and the partially hydrogenated methyl ester of wood and rosin, and the like, and mixtures thereof. The elastomer solvent may be employed in the gum base in amounts from about 2% to about 15%, and preferably from about 7% to about 11%, by weight of the gum base.
  • The gum base may also include emulsifiers which aid in dispersing the immiscible components into a single stable system. The emulsifiers useful in this invention include glyceryl monostearate, lecithin, fatty acid monoglycerides, diglycerides, propylene glycol monostearate, and the like, and mixtures thereof. The emulsifier may be employed in amounts from about 2% to about 15%, and more specifically, from about 7% to about 11%, by weight of the gum base.
  • The gum base may also include plasticizers or softeners to provide a variety of desirable textures and consistency properties. Because of the low molecular weight of these ingredients, the plasticizers and softeners are able to penetrate the fundamental structure of the gum base making it plastic and less viscous. Useful plasticizers and softeners include lanolin, palmitic acid, oleic acid, stearic acid, sodium stearate, potassium stearate, glyceryl triacetate, glyceryl lecithin, glyceryl monostearate, propylene glycol monostearate, acetylated monoglyceride, glycerine, and the like, and mixtures thereof. Waxes, for example, natural and synthetic waxes, hydrogenated vegetable oils, petroleum waxes such as polyurethane waxes, polyethylene waxes, paraffin waxes, microcrystalline waxes, fatty waxes, sorbitan monostearate, tallow, propylene glycol, mixtures thereof, and the like, may also be incorporated into the gum base. The plasticizers and softeners are generally employed in the gum base in amounts up to about 20% by weight of the gum base, and more specifically in amounts from about 9% to about 17%, by weight of the gum base.
  • Plasticizers also include hydrogenated vegetable oils, such as soybean oil and cottonseed oils, which may be employed alone or in combination. These plasticizers provide the gum base with good texture and soft chew characteristics. These plasticizers and softeners are generally employed in amounts from about 5% to about 14%, and more specifically in amounts from about 5% to about 13.5%, by weight of the gum base.
  • Anhydrous glycerin may also be employed as a softening agent, such as the commercially available United States Pharmacopeia (USP) grade. Glycerin is a syrupy liquid with a sweet warm taste and has a sweetness of about 60% of that of cane sugar. Because glycerin is hygroscopic, the anhydrous glycerin may be maintained under anhydrous conditions throughout the preparation of the chewing gum composition.
  • In some embodiments, the gum base may also include effective amounts of bulking agents such as mineral adjuvants which may serve as fillers and textural agents. Useful mineral adjuvants include calcium carbonate, magnesium carbonate, alumina, aluminum hydroxide, aluminum silicate, talc, tricalcium phosphate, dicalcium phosphate, calcium sulfate and the like, and mixtures thereof. These fillers or adjuvants may be used in the gum base compositions in various amounts. Preferably the amount of filler, when used, will be present in an amount from about 15% to about 40%, and desirably from about 20% to about 30%, by weight of the gum base.
  • A variety of traditional ingredients may be optionally included in the gum base in effective amounts such as flavor agents and coloring agents, antioxidants, preservatives, and the like. For example, titanium dioxide and other dyes suitable for food, drug and cosmetic applications, known as F. D. & C. dyes, may be utilized. An anti-oxidant such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, vitamin E and mixtures thereof, may also be included. Other conventional chewing gum additives known to one having ordinary skill in the chewing gum art may also be used in the gum base.
  • The chewing gum compositions may include amounts of conventional additives selected from the group consisting of sweetening agents, plasticizers, softeners, emulsifiers, waxes, fillers, bulking agents (carriers, extenders, bulk sweeteners), mineral adjuvants, flavor agents and coloring agents, antioxidants, acidulants, thickeners, medicaments, oral care actives, such as remineralization agents, antimicrobials and tooth whitening agents, as described in assignee's co-pending U.S. patent application Ser. No. 10/901,511, filed on Jul. 29, 2004 and entitled “Tooth Whitening Compositions and Delivery Systems Therefor,” which is incorporated herein by reference in its entirety, and the like, and mixtures thereof. Some of these additives may serve more than one purpose. For example, in sugarless gum compositions, a sweetener, such as maltitol or other sugar alcohol, may also function as a bulking agent.
  • Bulk sweeteners include sugars, sugarless bulk sweeteners, or the like, or mixtures thereof. Bulk sweeteners generally are present in amounts of about 5% to about 99% by weight of the chewing gum composition. Suitable sugar sweeteners and sugarless bulk sweeteners, as well as intense sweeteners are provided above in the description of the potentiator compositions.
  • In general, an effective amount of intense sweetener may be utilized to provide the level of sweetness desired, and this amount may vary with the sweetener selected. The intense sweetener may be present in amounts from about 0.001% to about 3%, by weight of the chewing gum composition, depending upon the sweetener or combination of sweeteners used. The exact range of amounts for each type of sweetener may be selected by those skilled in the art.
  • In some embodiments, the chewing gum composition may include a sweetener selected from Lo han guo, stevia, monatin and combinations thereof.
  • Any of the flavor agents discussed above as being suitable for use in the potentiator compositions also may be used in the chewing gum compositions. In chewing gum compositions, flavor agents generally may be present in amounts from about 0.02% to about 5%, and more specifically from about 0.1% to about 4%, and even more specifically, from about 0.8% to about 3%, by weight of the composition.
  • Coloring agents may be used in amounts effective to produce the desired color. The coloring agents may include pigments which may be incorporated in amounts up to about 6%, by weight of the composition. For example, titanium dioxide may be incorporated in amounts up to about 2%, and preferably less than about 1%, by weight of the composition. The colorants may also include natural food colors and dyes suitable for food, drug and cosmetic applications. Suitable coloring agents are set forth above in the description of confectionery compositions.
  • The plasticizers, softening agents, mineral adjuvants, waxes and antioxidants discussed above, as being suitable for use in the gum base, may also be used in the chewing gum composition. Examples of other conventional additives which may be used include emulsifiers, such as lecithin and glyceryl monostearate, thickeners, used alone or in combination with other softeners, such as methyl cellulose, alginates, carrageenan, xanthan gum, gelatin, carob, tragacanth, locust bean, and carboxy methyl cellulose, acidulants such as malic acid, adipic acid, citric acid, tartaric acid, fumaric acid, and mixtures thereof, and fillers, such as those discussed above under the category of mineral adjuvants.
  • Other conventional gum additives known to one having ordinary skill in the chewing gum art also may be used in the chewing gum compositions.
  • In some embodiments, the potentiator composition included in the chewing gum composition may include at least one active substance having a first solubility and at least one taste potentiator having a second solubility. The first and second solubilities may be substantially similar or different and may be selected to provide a controlled-release profile to the chewing gum composition. In particular, the selected solubilities may provide one of the following release profiles: simultaneous release, sequential release or partially overlapping release.
  • Some embodiments extend to methods of preparing a chewing gum product. The products may be prepared using standard techniques and equipment known to those skilled in the art. The apparatus useful in accordance with the embodiments described herein includes mixing and heating apparatus well known in the chewing gum manufacturing arts, and therefore the selection of the specific apparatus will be apparent to the artisan. For general chewing gum preparation processes see U.S. Pat. Nos. 4,271,197 to Hopkins et al, 4,352,822 to Cherukuri et al and 4,497,832 to Cherukuri et al, each of which is incorporated herein by reference in its entirety.
  • More specifically, in accordance with some embodiments, at least one encapsulant and at least one taste potentiator may be mixed to form a dispersion of the components. In particular, the encapsulant(s) may be melted at elevated temperatures in a high shear mixer. The potentiator(s) may be added to the molten encapsulant and mixed under high shear to completely disperse the components. The components may be mixed at elevated temperatures of about 50-150° C. The resulting mixture of components may be cooled. A plurality of encapsulated taste potentiator particles subsequently may be formed from the mixture. The particles may be formed to an appropriate size as desired, generally from an average particle size range of about 50 μm to about 800 μm. This may be accomplished by any suitable means such as chopping, pulverizing, milling or grinding the particles.
  • Alternatively, the encapsulated particles may be prepared by spray drying methods. More specifically, the encapsulant(s) may be dissolved in water. In some embodiments, this solution may be prepared in an agitated vessel. The taste potentiator(s) then may be dispersed in the solution. The solution, or suspension, may be spray dried using a spray dryer fitted with an air atomized nozzle at elevated temperatures to form the encapsulated particles.
  • In other embodiments, the encapsulated particles may be prepared by any suitable spray coating method as known in the art. One suitable process is the Wurster process. This process provides a method for encapsulating individual particulate materials. First, the particles to be encapsulated are suspended in a fluidizing air stream, which provides a generally cyclic flow in front of a spray nozzle. The spray nozzle sprays an atomized flow of the coating solution, which may include the encapsulant(s) and a suitable solvent. The atomized coating solution collides with the particles as they are carried away from the nozzle to provide a particle coating with the coating solution. The temperature of the fluidizing air stream, which also serves to suspend the particles to be coated, may be adjusted to evaporate the solvent shortly after the coating solution contacts the particles. This serves to solidify the coating on the particles, resulting in the desired encapsulated particle.
  • In some embodiments, at least one active substance may be combined in the first step of the process along with the encapsulant(s) and the taste potentiator(s) to form a dispersion of all the components. The active substance(s) thereby may be encapsulated with the taste potentiator(s) to form an encapsulated mixture of the components.
  • Once the encapsulated particles are obtained, they may be added to a chewing gum composition. Such encapsulated particles also may be added to confectionery compositions to prepare any of the confectionery products described above. The chewing gum composition may be prepared using standard techniques and equipment, as described above. The encapsulated particles may be added to the chewing gum composition to enhance the perception of at least one active substance contained therein, which may be any of the actives described above. Once the encapsulated particles are mixed into the chewing gum composition, individual chewing gum pieces may be formed using standard techniques known in the chewing gum art. For instance, chewing gum pieces may be prepared in the form of a slab, pellet, stick, center-fill gum, deposited, compressed chewing gum or any other suitable format.
  • For instance, center-fill chewing gum embodiments may include a center-fill region, which may be a liquid or powder or other solid, and a gum region. Some embodiments also may include an outer gum coating or shell, which typically provides a crunchiness to the piece when initially chewed. The outer coating or shell may at least partially surround the gum region. The potentiator compositions described above may be incorporated into any of the regions of the center-fill chewing gum, i.e., the center-fill region, gum region and/or outer coating of the gum. Alternatively, the taste potentiator(s) may be incorporated into one region while the active substance(s) is incorporated into a different region of the center-fill gum. Upon consumption, the taste-potentiator(s) and active(s) may release from the different regions and combine as the gum is chewed. Center-fill chewing gums and methods of preparing same are more fully described in assignee's co-pending U.S. patent application Ser. No. 10/925,822, filed on Aug. 24, 2004 and assignee's co-pending U.S. patent application Ser. No. 11/210,954, filed on Aug. 24, 2005, both entitled “Liquid-Filled Chewing Gum Composition,” the contents both of which are incorporated herein by reference.
  • Some other chewing gum embodiments may be in a compressed gum format, such as, for example, a pressed tablet gum. Such embodiments may include a particulate chewing gum base, which may include a compressible gum base composition and a tableting powder, and any of the potentiator compositions described above. In such embodiments, the potentiator composition may be in a powdered form. Compressed chewing gums are more fully described in assignee's co-pending U.S. Provisional Application No. 60/734,680, filed on Nov. 8, 2005, and entitled “Compressible Gum System,” the contents of which are incorporated herein by reference.
  • In some embodiments, the chewing gum may have a coating thereon. Such coated chewing gums are typically referred to as pellet gums. The outer coating may be hard or crunchy. Any suitable coating materials known to those skilled in the art may be employed. Typically, the outer coating may include sorbitol, maltitol, xylitol, isomalt, erythritol and other crystallizable polyols; sucrose may also be used. Furthermore the coating may include several opaque layers, such that the chewing gum composition is not visible through the coating itself, which can optionally be covered with a further one or more transparent layers for aesthetic, textural and protective purposes. The outer coating may also contain small amounts of water and gum arabic. The coating can be further coated with wax. The coating may be applied in a conventional manner by successive applications of a coating solution, with drying in between each coat. As the coating dries it usually becomes opaque and is usually white, though other colorants may be added. A polyol coating can be further coated with wax. The coating can further include colored flakes or speckles. If the composition includes a coating, it is possible that one or more oral care actives can be dispersed throughout the coating. This is especially preferred if one or more oral care actives is incompatible in a single phase composition with another of the actives. Flavors may also be added to yield unique product characteristics.
  • Other materials may be added to the coating to achieve desired properties. These materials may include without limitations, cellulosics such as carboxymethyl cellulose, gelatin, xanthan gum and gum arabic.
  • The coating composition may be applied by any method known in the art including the method described above. The coating composition may be present in an amount from about 2% to about 60%, more specifically from about 25% to about 45% by weight of the total chewing gum piece.
  • Similarly, some embodiments extend to methods of preparing a taste potentiator composition having controlled-release upon consumption. In accordance therewith, at least one taste potentiator may first be provided. The taste potentiator(s) may be mixed with an encapsulant to form a composition having a dispersion of the components. Once the components are fully dispersed, a plurality of encapsulated taste potentiator particles may be formed from the composition, as described above. As a consequence of the encapsulation, the release rate of the potentiator(s) will be modified. The material for use as the encapsulant may be selected to provide either a delayed or increased release rate of the potentiator(s) upon consumption of the composition.
  • The features and advantages of the present invention are more fully shown by the following examples which are provided for purposes of illustration, and are not to be construed as limiting the invention in any way.
  • EXAMPLES Example 1
  • TABLE 2
    Encapsulated Water-Soluble Taste Potentiator
    Component Weight %
    Polyvinyl acetate (encapsulant) 65.00
    Hydrogenated Oil 3.75
    Glycerol Monostearate 1.25
    Neohesperidindihydrochalcone 30.00
  • A potentiator composition is prepared according to the formulation in Table 2 above.
  • The polyvinyl acetate is melted at a temperature of about 90° C. in a high shear mixer. A single or twin screw extruder, a sigma mixer or a Banbury mixer may be used. The hydrogenated oil and glycerol monostearate are added to the molten polyvinyl acetate. Neohesperidindihydrochalcone (NHDC), which is a water-soluble taste potentiator, is added to the resulting mixture and mixed under high shear to completely disperse the components. The resulting filled polymer melt is cooled and ground to a particle size of less than 420 microns. The encapsulated particles provide a slow releasing NHDC. The particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • Example 2
  • TABLE 3
    Encapsulated Mixture of Taste Potentiator and Sweetener
    Component Weight %
    Polyvinyl acetate (encapsulant) 65.00
    Hydrogenated Oil 3.75
    Glycerol Monostearate 1.25
    Aspartame 26.00
    Neohesperidindihydrochalcone 4.00
  • A potentiator composition is prepared according to the formulation in Table 3 above.
  • The polyvinyl acetate is melted at a temperature of about 90° C. in a high shear mixer. A single or twin screw extruder, a sigma mixer or a Banbury mixer may be used. The hydrogenated oil and glycerol monostearate are added to the molten polyvinyl acetate. NHDC, which is a water-soluble taste potentiator, and aspartame are added to the resulting mixture and mixed under high shear to completely disperse the components. The resulting filled polymer melt is cooled and ground to a particle size of less than 420 microns. The encapsulated particles provide a delayed and combined release mixture of NHDC and aspartame. The particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • Example 3
  • TABLE 4
    Encapsulated Low Water-Soluble Taste Potentiator
    Component Weight %
    Maltitol (encapsulant) 90.00
    Sweetener Potentiator 9.00
    Glycerol Monostearate 1.00
  • A potentiator composition is prepared according to the formulation in Table 4 above.
  • The maltitol is melted at a temperature of about 140° C. in a high shear mixer. A single or twin screw extruder, a sigma mixer or a Banbury mixer may be used. The glycerol monostearate is added to the molten maltitol. The sweetener potentiator, which exhibits low solubility in water, is added to the resulting mixture and mixed under high shear to completely disperse the components. The resulting melt is cooled and ground to a particle size of less than 590 microns. The encapsulation provides an increased release rate of the sweetener potentiator upon consumption. The encapsulated particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • Example 4
  • TABLE 5
    Encapsulated Low Water-Soluble Taste Potentiator
    Component Weight %
    Water 60.00
    Maltitol (encapsulant) 34.00
    Acetylated monoglyceride 3.00
    Sweetener Potentiator 3.00
  • A potentiator composition is prepared according to the formulation in Table 5 above.
  • The maltitol and acetylated monoglyceride are dissolved in water at a temperature of about 70° C. in an agitated vessel. The sweetener potentiator, which exhibits low solubility in water, is dispersed in the resulting solution. The solution, or suspension, is spray dried using a spray dryer fitted with an air atomized nozzle (stationary or rotary) at about 105° C. to form encapsulated particles. The encapsulation provides an increased release rate of the substantially water-insoluble sweetener potentiator upon consumption. The encapsulated particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • Example 5
  • TABLE 6
    Encapsulated Low Water-Soluble Taste Potentiator
    Component Weight %
    Beta-cyclodextrin (encapsulant) 25.00
    Sweetener Potentiator 5.00
    Water 50
    Ethanol 20.00
  • A potentiator composition is prepared according to the formulation in Table 6 above.
  • The beta-cyclodextrin is dissolved in water at a temperature of about 60° C. The sweetener potentiator, which exhibits low solubility in water, is dissolved completely in the ethanol and the resulting solution is added to the beta-cyclodextrin solution and stirred for about three hours. The resulting solution of beta-cyclodextrin complex is spray dried using a spray dryer fitted with an air atomized nozzle (stationary or rotary) at about 60° C. to form encapsulated particles. The encapsulation provides an increased release rate of the substantially water-insoluble sweetener potentiator upon consumption. The encapsulated particles are stored in air tight containers with low humidity below 35° C. until they are incorporated into consumable products, such as chewing gum.
  • Example 6
  • TABLE 7
    Chewing Gum Containing Encapsulated Taste Potentiator
    Component Weight %
    Gum base 39.00
    Sorbitol 45.58
    Mannitol 9.00
    Flavor 3.67
    Glycerin 1.50
    Lecithin 0.20
    High intensity sweeteners1 1.00
    Encapsulated NHDC2 0.05
    1Aspartame, Acesulfame-K and/or sucralose
    2From Example 1
  • A chewing gum composition is prepared according to the formulation in Table 7 above.
  • The gum base is melted in a mixer. The remaining components listed in Table 7 are added to the molten gum base. The melted gum base and added components are mixed to completely disperse the components. The resulting chewing gum composition is allowed to cool. The cooled chewing gum composition is sized and conditioned for about a week, formed into individual chewing gum pieces employing conventional techniques and packaged.
  • Example 7 Sucrose Equivalent Value (SEV)
  • One method of measuring the perceived sweetness of a solution is to match it with a stock sucrose solution of known concentration. In the present experiments, the compound of interest is added at a predetermined concentration to a pH 3.2 buffered solution containing 5% sucrose. A number of expert panel members then taste the solution and compare it to a battery of stock sucrose solutions ranging from 3% to 15% at increments of 1%. Each panel member decides which sucrose solution is equisweet with the solution containing the compound of interest. The mean value is then reported as the SEV. Results are reported to 1 decimal place.
  • Dose Response Curve for 3-Hydroxybenzoic Acid
  • In accordance with this methodology, 3-HB was added to a pH 3.2 buffered solution containing 5% sucrose to produce solutions containing from 0 to 1000 ppm 3-HB in 100 ppm increments. The SEV for each solution was plotted on a graph to produce a dose response curve (FIG. 1), from which it can be seen that 3-HB enhances the sweetness of the sucrose solution within this range. From FIG. 1 it is apparent that as the dosage of 3-HB increases so does the sweetness of the resultant solution. However the effect is non-linear with each incremental addition having a diminishing effect. The maximum sweetness attainable would appear to be about 7.9% SEV (based on a 5% sucrose solution).
  • Example 8 Dose Response Curve for 2,4-Dihydroxybenzoic Acid
  • The same methodology as described in Example 7 was repeated with 2,4-DHB in place of 3-HB, to produce the dose response curve for 2,4-DHB (FIG. 2). From FIG. 2 it can be seen that 2,4-DHB also enhances the sweetness of the sucrose solution but there is little difference between the 400 ppm solution (SEV 6.5%) and the 1000 ppm solution (SEV 6.7%). The maximum attainable sweetness would appear to be about 6.7% SEV (based on a 5% sucrose solution).
  • Example 9 Sucrose Reduction Method
  • An alternative method of measuring perceived sweetness is to determine how much sucrose can be replaced through the use of the compound of interest without any perceived loss of sweetness. In the present experiments the control was a pH 3.2 buffered solution containing 10% sucrose. The compound of interest is added at a predetermined concentration to a number of sucrose solutions containing from 5% to 10% sucrose at increments of 0.5%. Each panel member tastes each of the solutions, compares it to the control sample and decides which solutions are equisweet. For example, if the 8% sucrose solution containing the compound of interest is equisweet with the control, then the sucrose reduction achieved by the compound of interest is 20%.
  • Effect of Relative Concentration on Sucrose Reduction for 3-HB, 2,4-DHB mixtures
  • A series of sucrose solutions were prepared containing 3-HB and 2,4-DHB at a combined concentration of 1000 ppm. Each solution was evaluated using the sucrose reduction method described above to determine how much sucrose could be replaced without noticeable loss of sweetness. The results are shown in FIG. 3.
  • As shown in FIG. 3, the greatest reduction is observed when equal quantities of 3-HB and 2,4-DHB are employed. This ratio results in the very significant sucrose reduction of 45%. This figure is highly surprising considering that the use of 1000 ppm of 3-HB or 2,4-DHB individually results in a reduction of just 25% and 15% respectively. The other ratios 3-HB:2,4-DHB (8:2, 6:4, 4:6 and 2:8) are also very effective; each combination results in a sucrose reduction of at least 35%.
  • Example 10 Effect of Concentration on Sucrose Reduction for 1:1 3-HB:2,4-DHB Mixtures
  • A series of sucrose solutions were prepared containing equal quantities of 3-HB and 2,4-DHB, at a combined concentration of 200, 400, 600, 800 and 1000 ppm. Each solution was evaluated using the sucrose reduction method described in Example 9 above to determine how much sucrose could be replaced without noticeable loss of sweetness. The results are shown in FIG. 4.
  • Increasing the total quantity of 3-HB and 2,4-DHB while retaining a 1:1 ratio increases the sweetness enhancing effect. As shown above 500 ppm 3-HB+500 ppm 2,4-DHB results in 45% of the sucrose being replaced without loss of sweetness. However, the combination of 3-HB and 2,4-DHB is effective even at very low concentration. The use of just 200 ppm of each of 3-HB and 2,4-DHB allows the sucrose content to be reduced by 22%.
  • Example 11 Sucrose Equivalent Values for Various Benzoic Acid Derivatives and Combinations Thereof
  • 500 ppm of a sweetener potentiator was added to a pH 3.2 buffered solution containing 5% sucrose and the SEV of the resultant solution determined. The results are shown in Table 8.
  • TABLE 8
    Sweetness potentiator SEV (%)
    2-hydroxybenzoic acid (2-HB) 5.6
    3-hydroxybenzoic acid (3-HB) 6.9
    4-hydroxybenzoic acid (4-HB) 5.2
    2,3-dihydroxybenzoic acid (2,3-DHB) 6.3
    2,4-dihydroxybenzoic acid (2,4-DHB) 6.5
    2,5-dihydroxybenzoic acid (2,5-DHB) 5.3
    2,6-dihydroxybenzoic acid (2,6-DHB) 5.3
    3,4-dihydroxybenzoic acid (3,4-DHB) 6.4
    3,5-dihydroxybenzoic acid (3,5-DHB) 5.3
    2,3,4-trihydroxybenzoic acid (2,3,4-THB) 5.4
    2,4,6-trihydroxybenzoic acid (2,4,6-THB) 5.4
    3,4,5-tryhydroxybenzoic acid (3,4,5-THB) 5.1
  • 500 ppm of the sweetener potentiator then was added to a 5% sucrose solution containing 500 ppm 3-HB to produce a series of solutions. The SEV for each solution was determined and the results are shown in FIG. 5. As shown in FIG. 5, the composition of one embodiment (hatched) is considerably more effective than any other combination with an SEV of 8.7%. The use of 500 ppm of 3-HB alone results in an SEV of 6.9% whereas in all cases but two (2,4-DHB and 3,4-DHB) the addition of a second sweetener potentiator results in a little change or even a decrease in SEV. This is highly surprising considering that all of the potentiators are shown to have SEVs greater than 5%.
  • The methodology was repeated to produce a series of solutions containing 500 ppm 2,4-DHB and 500 ppm of a second sweetener potentiator. The SEV for each solution was determined and the results are shown in FIG. 6.
  • Again the combination (hatched) of 3-HB and 2,4-DHB results in by far the greatest sweetness enhancement. It might be expected that 2-HB or 4-HB could be used in place of 3-HB but these combinations result in solutions with SEVs of just 6.3% and 6.2% respectively. The use of 500 ppm 2,4-DHB alone results in a solution with an SEV of 6.5%. The addition of a second sweetener potentiator appears to inhibit its effect in most cases and only the addition of 3-HB has a significant positive effect.
  • 500 ppm of 3-HB, 500 ppm of 2,4-DHB and 500 ppm of 3,4-dihydroxybenzoic acid
  • (3,4-DHB) were added to a pH 3.2 buffered solution containing 5% sucrose and the SEV determined. The results are shown in FIG. 7 together with other combinations of 3-HB, 2,4-DHB and 3,4-DHB for comparison. The solution containing the combination of 3-HB and 2,4-DHB (hatched) has a much higher SEV (8.7%) than the combination of either 3,4-DHB and 3-HB (7.6%) or the combination of 3,4-DHB and 2,4-DHB (6.8%). The three-way combination of the embodiment (hatched) is better still with an SEV of 9.8%.
  • Example 12 Comparison of Different Forms of 2,4-DHB
  • pH 3.2 buffered solutions were prepared containing 0%, 3%, 5%, 7% and 9% sucrose. 500 ppm of 2,4-DHB acid, 500 ppm of the sodium salt of 2,4-DHB and 500 ppm of the potassium salt of 2,4-DHB were added individually to each of the sucrose solutions. The SEV for each of the solutions was then determined. The results are shown in FIG. 8.
  • As shown in FIG. 8, the addition of 2,4-DHB enhances the sweetness of the sucrose solution in every case regardless of the original sucrose solution or whether the acid, sodium salt or potassium salt is employed. The results for the acid, sodium salt and potassium salt are almost identical indicating that the sweetener potentiator composition may be prepared from the acids and/or from their comestible salts.
  • Example 13 Sweetness Enhancing Effect of 3-HB and 2,4-DHB on Non-Sucrose Sweeteners
  • Solutions were prepared at a pH of 3.2 containing a sufficient quantity of a non-sucrose sweetener so that the resulting solution had an SEV of about 5%. The SEV of each sweetener solution was then evaluated after the addition 500 ppm of 3-HB, the addition of 500 ppm of 2,4-DHB and the addition of both 500 ppm 3-HB and 2,4-DHB. The results are shown in FIGS. 9 and 10.
  • FIG. 9 shows the results of various intense sweeteners with 3-HB, 2,4-DHB and combinations thereof. As shown in FIG. 9, the combination of 3-HB and 2,4-DHB with aspartame has a significant effect on SEV, which is greater than the use of either 3-HB or 2,4-DHB separately. Similarly, the combination of 3-HB and 2,4-DHB enhances the perceived sweetness of the acesulfame-K, aspartame/acesulfame-K, sucralose, sucralose/acesulfame-K, saccharin and neotame solutions. With respect to the saccharin solution, however, 3-HB enhances the sweetness to a greater degree alone than in combination with 2,4-DHB.
  • FIG. 10 shows the results of various bulk sweeteners with 3-HB, 2,4-DHB and combinations thereof. As seen in FIG. 10, the combination of 3-HB and 2,4-DHB increases the SEV of the resultant solution when used with sucrose, fructose, tagatose, maltitol or glucose to a greater extent than either 3-HB or 2,4-DHB separately.
  • Example 14 Sucrose Equivalent Values for Aminobenzoic Acid Derivatives
  • 500 ppm of 3-aminobenzoic acid and 500 ppm of 4-aminobenzoic acid were individually added to separate pH 3.2 buffered solutions containing 5% sucrose and the SEVs of the resultant solutions were determined. The SEV of 3-aminobenzoic acid was about 7%, i.e., increased the sweetness intensity of 5% sucrose to about 7%. The SEV of 4-aminobenzoic acid was about 5.5-6%, i.e., increased the sweetness intensity of 5% sucrose to about 5.5-6%.

Claims (24)

1. A chewing gum composition, comprising:
a gum base; and
an encapsulated sweetener potentiator; wherein the sweetener potentiator is selected from the group consisting of 3-aminobenzoic acid, 4-aminobenzoic acid, and combinations thereof; and
an unencapsulated sweetener.
2. The chewing gum composition of claim 1, wherein the sweetener potentiator is 3-aminobenzoic acid.
3. The chewing gum composition of claim 1, wherein the sweetener potentiator is 4-aminobenzoic acid.
4. The chewing gum composition of claim 1, wherein the sweetener potentiator is a combination of 3-aminobenzoic acid and 4-aminobenzoic acid.
5. The chewing gum composition of claim 1, wherein the unencapsulated sweetener comprises a bulk sweetener.
6. The chewing gum composition of claim 1, wherein the unencapsulated sweetener is selected from the group consisting of sucrose, dextrose, maltose, dextrin, xylose, ribose, glucose, lactose, mannose, galactose, fructose, invert sugar, fructooligosaccharide syrups, partially hydrolyzed starch, corn syrup solids, isomaltulose, and mixtures thereof.
7. The chewing gum composition of claim 1, wherein the unencapsulated sweetener is selected from the group consisting of sorbitol, xylitol, erythritol, mannitol, maltitol, hydrogenated starch hydrolysate, and mixtures thereof.
8. The chewing gum composition of claim 1, wherein the unencapsulated sweetener is selected from the group consisting of dihydrochalcones, monellin, stevia, steviosides, rebaudioside A, glycyrrhizin, dihydroflavenol, saccharin, sodium saccharin, calcium saccharin, cyclamate salts, the sodium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the ammonium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the ammonium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the potassium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, L-aspartyl-L-phenylalanine methyl ester, L-alpha-aspartyl-N-(2,2,4,4-tetramethyl-3-thietanyl)-D-alaninamide hydrate, L-aspartyl-L-phenylglycine methyl ester, L-aspartyl-L-2,5-dihydrophenylglycine methyl ester, L-aspartyl-2,5-dihydro-L-phenylalanine, L-aspartyl-L-(1-cyclohexen)-alanine, chlorodeoxysugar derivatives, thaumatococcus danielli, talin, monatin, and lo han guo.
9. The chewing gum composition of claim 1, wherein the unencapsulated sweetener is selected from the group consisting of Lo han guo, stevia, monatin, and combinations thereof.
10. The chewing gum composition of claim 1, wherein the encapsulated sweetener potentiator comprises an encapsulant selected from the group consisting of polyvinyl acetate, polyethylene, crosslinked polyvinyl pyrrolidone, polymethylmethacrylate, polylacticacid, polyhydroxyalkanoates, ethylcellulose, polyvinyl acetatephthalate, poly(methacrylicacid-co-methylmethacrylate), and combinations thereof.
11. The chewing gum composition of claim 1, wherein the encapsulated sweetener potentiator comprises an encapsulant comprising polyvinyl acetate.
12. The chewing gum composition of claim 1, comprising about 0.01% to about 10% by weight of the encapsulated sweetener potentiator, based on the weight of the chewing gum composition.
13. A confectionery composition, comprising:
an encapsulated sweetener potentiator; wherein the sweetener potentiator is selected from the group consisting of 3-aminobenzoic acid, 4-aminobenzoic acid, and combinations thereof; and
an unencapsulated sweetener.
14. The confectionery composition of claim 13, wherein the sweetener potentiator is 3-aminobenzoic acid.
15. The confectionery composition of claim 13, wherein the sweetener potentiator is 4-aminobenzoic acid.
16. The confectionery composition of claim 13, wherein the sweetener potentiator is a combination of 3-aminobenzoic acid and 4-aminobenzoic acid.
17. The confectionery composition of claim 13, wherein the unencapsulated sweetener comprises a bulk sweetener.
18. The confectionery composition of claim 13, wherein the unencapsulated sweetener is selected from the group consisting of sucrose, dextrose, maltose, dextrin, xylose, ribose, glucose, lactose, mannose, galactose, fructose, invert sugar, fructooligosaccharide syrups, partially hydrolyzed starch, corn syrup solids, isomaltulose, and mixtures thereof.
19. The confectionery composition of claim 13, wherein the unencapsulated sweetener is selected from the group consisting of sorbitol, xylitol, erythritol, mannitol, maltitol, hydrogenated starch hydrolysate, and mixtures thereof.
20. The confectionery composition of claim 13, wherein the unencapsulated sweetener is selected from the group consisting of dihydrochalcones, monellin, stevia, steviosides, rebaudioside A, glycyrrhizin, dihydroflavenol, saccharin, sodium saccharin, calcium saccharin, cyclamate salts, the sodium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the ammonium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the ammonium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, the potassium salt of 3,4-dihydro-6-methyl-1,2,3-oxathiazine-4-one-2,2-dioxide, L-aspartyl-L-phenylalanine methyl ester, L-alpha-aspartyl-N-(2,2,4,4-tetramethyl-3-thietanyl)-D-alaninamide hydrate, L-aspartyl-L-phenylglycine methyl ester, L-aspartyl-L-2,5-dihydrophenylglycine methyl ester, L-aspartyl-2,5-dihydro-L-phenylalanine, L-aspartyl-L-(1-cyclohexen)-alanine, chlorodeoxysugar derivatives, thaumatococcus danielli, talin, monatin, and lo han guo.
21. The confectionery composition of claim 1, wherein the encapsulated sweetener potentiator comprises an encapsulant comprising polyvinyl acetate.
22. The confectionery composition of claim 13, wherein the unencapsulated sweetener is selected from the group consisting of Lo han guo, stevia, monatin, and combinations thereof.
23. The confectionery composition of claim 13, wherein the encapsulated sweetener potentiator comprises an encapsulant selected from the group consisting of polyvinyl acetate, polyethylene, crosslinked polyvinyl pyrrolidone, polymethylmethacrylate, polylacticacid, polyhydroxyalkanoates, ethylcellulose, polyvinyl acetatephthalate, poly(methacrylicacid-co-methylmethacrylate), and combinations thereof.
24. The confectionery composition of claim 13, comprising about 0.01% to about 10% by weight of the encapsulated sweetener potentiator, based on the weight of the confectionery composition.
US12/861,911 2005-05-23 2010-08-24 Taste potentiator compositions and edible confectionery and chewing gum products containing same Abandoned US20110104329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/861,911 US20110104329A1 (en) 2005-05-23 2010-08-24 Taste potentiator compositions and edible confectionery and chewing gum products containing same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US68363405P 2005-05-23 2005-05-23
US76043706P 2006-01-20 2006-01-20
US78966706P 2006-04-06 2006-04-06
US11/439,830 US7851000B2 (en) 2005-05-23 2006-05-23 Taste potentiator compositions and edible confectionery and chewing gum products containing same
US12/861,911 US20110104329A1 (en) 2005-05-23 2010-08-24 Taste potentiator compositions and edible confectionery and chewing gum products containing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/439,830 Continuation US7851000B2 (en) 2005-05-23 2006-05-23 Taste potentiator compositions and edible confectionery and chewing gum products containing same

Publications (1)

Publication Number Publication Date
US20110104329A1 true US20110104329A1 (en) 2011-05-05

Family

ID=36950866

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/439,830 Expired - Fee Related US7851000B2 (en) 2005-05-23 2006-05-23 Taste potentiator compositions and edible confectionery and chewing gum products containing same
US11/439,811 Expired - Fee Related US7879376B2 (en) 2005-05-23 2006-05-23 Taste potentiator compositions and edible confectionery and chewing gum products containing same
US12/861,911 Abandoned US20110104329A1 (en) 2005-05-23 2010-08-24 Taste potentiator compositions and edible confectionery and chewing gum products containing same
US12/941,328 Active US8455033B2 (en) 2005-05-23 2010-11-08 Taste potentiator compositions and edible confectionery and chewing gum products containing same
US12/941,344 Abandoned US20110274735A1 (en) 2005-05-23 2010-11-08 Taste potentiator compositions and edible confectionery and chewing gum products containing same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/439,830 Expired - Fee Related US7851000B2 (en) 2005-05-23 2006-05-23 Taste potentiator compositions and edible confectionery and chewing gum products containing same
US11/439,811 Expired - Fee Related US7879376B2 (en) 2005-05-23 2006-05-23 Taste potentiator compositions and edible confectionery and chewing gum products containing same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/941,328 Active US8455033B2 (en) 2005-05-23 2010-11-08 Taste potentiator compositions and edible confectionery and chewing gum products containing same
US12/941,344 Abandoned US20110274735A1 (en) 2005-05-23 2010-11-08 Taste potentiator compositions and edible confectionery and chewing gum products containing same

Country Status (11)

Country Link
US (5) US7851000B2 (en)
EP (3) EP1903890B1 (en)
JP (3) JP4500874B2 (en)
CN (1) CN102845804A (en)
AR (2) AR053295A1 (en)
AU (3) AU2006249857B2 (en)
CA (2) CA2604760C (en)
ES (1) ES2399059T3 (en)
MX (3) MX2007014636A (en)
PL (1) PL1903890T3 (en)
WO (3) WO2006127934A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455033B2 (en) 2005-05-23 2013-06-04 Kraft Foods Global Brands Llc Taste potentiator compositions and edible confectionery and chewing gum products containing same
EP3040000A1 (en) 2015-01-05 2016-07-06 Gruppo Cimbali S.p.A. Method and apparatus for dispensing frothed milk
CN108882736A (en) * 2016-03-01 2018-11-23 Wm.雷格利Jr.公司 Lasting sweetener formulation
US10159268B2 (en) 2013-02-08 2018-12-25 General Mills, Inc. Reduced sodium food products
EP3664626A4 (en) * 2017-08-08 2020-08-26 eBio Nutritional Sciences LLC Sweetener composition and methods of making it
US11503848B2 (en) * 2017-07-27 2022-11-22 Healthtech Bio Actives, S.L.U Sweetening and taste-masking compositions, products and uses thereof

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851006B2 (en) 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
US7851005B2 (en) 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
IL169678A (en) 2005-07-14 2010-11-30 Innova Sa Sweetener compositions
US9101160B2 (en) 2005-11-23 2015-08-11 The Coca-Cola Company Condiments with high-potency sweetener
EP1894477B1 (en) * 2006-08-31 2009-07-15 Nestec S.A. Food protein and charged emulsifier interaction
WO2008033545A2 (en) * 2006-09-15 2008-03-20 Redpoint Bio Corporation Triphenylphosphine oxide derivatives and uses thereof
US8017168B2 (en) 2006-11-02 2011-09-13 The Coca-Cola Company High-potency sweetener composition with rubisco protein, rubiscolin, rubiscolin derivatives, ace inhibitory peptides, and combinations thereof, and compositions sweetened therewith
US20080226787A1 (en) * 2007-03-14 2008-09-18 Concentrate Manufacturing Company Of Ireland Ammoniated Glycyrrhizin Modified Sweetened Beverage Products
US8084073B2 (en) 2007-03-14 2011-12-27 Concentrate Manufacturing Company Of Ireland Anisic acid modified steviol glycoside sweetened beverage products
US20080226796A1 (en) * 2007-03-14 2008-09-18 Concentrate Manufacturing Company Of Ireland Non-nutritive sweetened beverages with lhg juice concentrate
US8029846B2 (en) 2007-03-14 2011-10-04 The Concentrate Manufacturing Company Of Ireland Beverage products
US9314048B2 (en) 2007-03-14 2016-04-19 The Concentrate Manufacturing Company Of Ireland Beverage products with non-nutritive sweetener and bitterant
US9877500B2 (en) 2007-03-14 2018-01-30 Concentrate Manufacturing Company Of Ireland Natural beverage products
AU2012201261B8 (en) * 2007-05-14 2013-03-28 Intercontinental Great Brands Llc Taste potentiator compositions in oral delivery systems
JP2010527242A (en) * 2007-05-14 2010-08-12 キャドバリー アダムス ユーエスエー エルエルシー Taste enhancer composition in oral delivery system
US20080292765A1 (en) * 2007-05-22 2008-11-27 The Coca-Cola Company Sweetness Enhancers, Sweetness Enhanced Sweetener Compositions, Methods for Their Formulation, and Uses
US8709521B2 (en) * 2007-05-22 2014-04-29 The Coca-Cola Company Sweetener compositions having enhanced sweetness and improved temporal and/or flavor profiles
GB0713297D0 (en) * 2007-07-10 2007-08-15 Cadbury Schweppes Plc Chocolate compositions having improved flavour characteristics
GB0715226D0 (en) * 2007-08-01 2007-09-12 Cadbury Schweppes Plc Sweetener compositions
JP2009131228A (en) * 2007-12-03 2009-06-18 Ezaki Glico Co Ltd Method for preventing occurrence of green smell of fruit flavor food
US20110003711A1 (en) * 2008-02-01 2011-01-06 Chromocell Corporation Cell lines expressing gaba receptor and methods using them
MX345970B (en) * 2008-02-27 2017-02-28 Intercontinental Great Brands Llc Multi-region confectionery.
BRPI0921625A2 (en) 2008-11-04 2016-01-05 Univ Kentucky Res Foundation Inc d-tagatose-based compositions and methods for preventing and treating atherosclerosis, metabolic syndrome, and symptoms thereof
EP2355665A1 (en) * 2008-11-12 2011-08-17 Kraft Foods Global Brands LLC Sensate- plated sanding composition and products made therefrom
EP2215936A1 (en) 2009-02-09 2010-08-11 Stichting Top Institute Food and Nutrition Drinking container and method for a pulsed delivery of a tastant
EP2400852A2 (en) 2009-02-27 2012-01-04 CSM Nederland B.V. Flour-based bakery product with inhomogeneous nacl bulk distribution and method for making such food product
FR2944790B1 (en) * 2009-04-23 2012-06-01 Mane Fils V NOVEL COMPOUNDS WITH PHYSIOLOGICAL EFFECT
US8962057B2 (en) * 2009-04-29 2015-02-24 The Procter & Gamble Company Methods for improving taste and oral care compositions with improved taste
US20110189360A1 (en) * 2010-02-04 2011-08-04 Pepsico, Inc. Method to Increase Solubility Limit of Rebaudioside D in an Aqueous Solution
KR20120125524A (en) * 2010-02-08 2012-11-15 더 코카콜라 컴파니 Solubility enhanced terpene glycosides
AU2011245142B2 (en) * 2010-04-30 2016-10-06 Allovate, Llc Methods, articles and kits for allergic desensitization via the oral mucosa
US8474637B2 (en) 2010-07-07 2013-07-02 Pepsico, Inc. Releasable entrapment of aroma using a polymeric matrix
MX349338B (en) 2010-10-01 2017-07-21 The Procter & Gamble Company * Oral care compositions with improved flavor.
US8691190B2 (en) 2010-10-01 2014-04-08 The Procter & Gamble Company Oral care compositions with improved sweetness
JP5714938B2 (en) * 2011-02-25 2015-05-07 株式会社Mizkan Holdings Inosinic acid-enhanced food using neocrine
CA2831001A1 (en) * 2011-04-18 2012-10-26 Nestec S.A. Nutritional compositions comprising alpha-hydroxyisocaproic acid
US8183227B1 (en) 2011-07-07 2012-05-22 Chemo S. A. France Compositions, kits and methods for nutrition supplementation
US8168611B1 (en) 2011-09-29 2012-05-01 Chemo S.A. France Compositions, kits and methods for nutrition supplementation
WO2013055670A2 (en) 2011-10-11 2013-04-18 Kraft Foods Global Brands Llc Encapsulated sweetener composition, method for the preparation thereof, and chewing gum comprising same
EP4215185A1 (en) 2011-12-07 2023-07-26 MSM Innovations, Inc. Method for bowel preparation
MX359560B (en) * 2012-02-06 2018-10-01 The Additive Advantage Llc Oral delivery products including three-dimensional objects.
US9456916B2 (en) 2013-03-12 2016-10-04 Medibotics Llc Device for selectively reducing absorption of unhealthy food
CN109260455A (en) * 2012-08-03 2019-01-25 Msm创新有限公司 Flavoring kit
MX370090B (en) 2013-02-01 2019-10-25 Centro De Investig En Alimentacion Y Desarrollo A C Method and system for the integral treatment of wastewater from the maize industry.
US9011365B2 (en) 2013-03-12 2015-04-21 Medibotics Llc Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food
US9067070B2 (en) 2013-03-12 2015-06-30 Medibotics Llc Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type
GB201315558D0 (en) * 2013-08-02 2013-10-16 Tate & Lyle Ingredients Sweetener compositions
GB201315559D0 (en) * 2013-08-02 2013-10-16 Tate & Lyle Ingredients Sweetener compositions
KR102381295B1 (en) 2013-11-15 2022-03-31 아케비아 테라퓨틱스 인코포레이티드 Solid forms of {[5-(3-chlorophenyl)-3-hydroxypyridine-2-carbonyl]amino}acetic acid, compositions, and uses thereof
US10207004B2 (en) 2014-04-04 2019-02-19 Douxmatok Ltd Method for producing sweetener compositions and sweetener compositions
US10231476B2 (en) 2014-04-04 2019-03-19 Douxmatok Ltd Sweetener compositions and foods, beverages, and consumable products made thereof
US20160242439A1 (en) 2014-04-04 2016-08-25 Douxmatok Ltd Method for producing sweetener compositions and sweetener compositions
SG11201609600UA (en) 2014-06-12 2016-12-29 Four LLC Sweet taste receptor antagonist compositions
CN106107396A (en) * 2016-06-27 2016-11-16 汉臣氏(沈阳)儿童制品有限公司 A kind of antioxidation solid beverage containing Haematocoocus Pluvialls black currant powder
CN106418050A (en) * 2016-10-13 2017-02-22 南京康凯生物科技有限公司 Rosa roxburghii juice and preparation method thereof
US11524268B2 (en) 2016-11-09 2022-12-13 Pepsico, Inc. Carbonated beverage makers, methods, and systems
JP2018153134A (en) * 2017-03-17 2018-10-04 株式会社エルビー Black tea drink
US10301275B2 (en) 2017-03-17 2019-05-28 Altria Client Services Llc Sweet taste modulators
JP6918606B2 (en) 2017-06-29 2021-08-11 株式会社ロッテ Sustained release composition of water-soluble substances
CN111356373A (en) 2017-10-06 2020-06-30 嘉吉公司 Organoleptic modifier compounds
BR112020012819A2 (en) * 2018-03-22 2020-11-24 Firmenich S.A. flavored articles that have a low ph
CN109100449B (en) * 2018-10-31 2021-06-25 广西德保新贝侬酒厂有限公司 Kiwi fruit wine sensory quality evaluation method
IL278422B (en) * 2019-03-14 2022-09-01 Neuroenergy Ventures Inc Taste-masking formulation for ketone body compounds
BR112021019811A2 (en) 2019-04-06 2021-12-07 Cargill Inc Steviol glycoside composition, beverage, methods for reducing an undesirable sensory attribute of an aqueous steviol glycoside solution, for reducing the persistence of sweetness of a steviol glycoside component in an edible composition, and for reducing the bitterness of a steviol glycoside component. steviol glycoside in an edible composition, and, aqueous solutions of steviol glycoside with reduced persistence of sweetness and aqueous solutions of steviol glycoside with reduced bitterness
US11524939B2 (en) 2019-11-13 2022-12-13 Akebia Therapeutics, Inc. Solid forms of {[5-(3-chlorophenyl)-3-hydroxypyridine-2-carbonyl]amino} acetic acid
KR102227749B1 (en) * 2020-02-24 2021-03-15 함상호 Manufacturing method snack for child and snack for child thereof
JP2024514002A (en) * 2021-04-15 2024-03-27 ジボダン エス エー Taste modifiers
KR102432886B1 (en) * 2022-03-25 2022-08-18 (주)벨슨 Cosmetic container with a nutricosmetic inner film providing part
KR102432888B1 (en) * 2022-04-11 2022-08-17 (주)벨슨 Edible film and skin care method using the same

Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427380A (en) * 1966-11-23 1969-02-11 Procter & Gamble Oral compositions for retarding dental plaque formation comprising para-aminobenzoic acid
US3574826A (en) * 1968-02-27 1971-04-13 Nat Patent Dev Corp Hydrophilic polymers having vitamins absorbed therein
US3930026A (en) * 1974-08-28 1975-12-30 Squibb & Sons Inc Chewing gum having enhanced flavor
US3974293A (en) * 1975-11-26 1976-08-10 Life Savers, Inc. Non-adhesive chewing gum composition
US3984574A (en) * 1975-04-11 1976-10-05 Wm. Wrigley Jr. Company Non-tack chewing gum composition
US4187320A (en) * 1978-05-01 1980-02-05 Warner-Lambert Company Process for preparing chewing gum base using solid elastomer
US4252830A (en) * 1979-06-18 1981-02-24 Life Savers, Inc. Chewable calorie-free chewing gum base
US4352823A (en) * 1981-04-13 1982-10-05 Nabisco Brands, Inc. Coextruded chewing gum containing a soft non-SBR gum core portion
US4613512A (en) * 1982-09-30 1986-09-23 General Foods Corporation Edible material containing m-aminobenzoic acid or salt
US4614654A (en) * 1984-08-24 1986-09-30 Wm. Wrigley Jr. Company Taffy-like chewing gum confection and method
US4724151A (en) * 1986-10-24 1988-02-09 Warner-Lambert Company Chewing gum compositions having prolonged breath-freshening
US4741905A (en) * 1986-06-19 1988-05-03 Warner-Lambert Company Chewing gum candy
US4800095A (en) * 1985-03-29 1989-01-24 Nabisco Brands, Inc. Stabilized APM in comestibles
US4971806A (en) * 1984-01-31 1990-11-20 Warner-Lambert Company Multi-layered chewing gum composition having different rates of flavor release
US5085850A (en) * 1990-11-09 1992-02-04 Warner-Lambert Company Anti-plaque compositions comprising a combination of morpholinoamino alcohol and metal salts
US5192563A (en) * 1986-10-22 1993-03-09 Wm. Wrigley, Jr. Company Strongly mint-flavored chewing gums with reduced bitterness and harshness
US5334397A (en) * 1992-07-14 1994-08-02 Amurol Products Company Bubble gum formulation
US5364627A (en) * 1989-10-10 1994-11-15 Wm. Wrigley Jr. Company Gradual release structures made from fiber spinning techniques
US5603971A (en) * 1993-04-16 1997-02-18 Mccormick & Company, Inc. Encapsulation compositions
US5626892A (en) * 1993-11-24 1997-05-06 Nabisco, Inc. Method for production of multi-flavored and multi-colored chewing gum
US5667828A (en) * 1994-10-13 1997-09-16 Florida Dept. Of Citrus System and method for pasteurizing citrus juice using microwave energy
US5693334A (en) * 1995-10-05 1997-12-02 Church & Dwight Co., Inc. Chewing gum product with dental health benefits
US5795616A (en) * 1995-12-21 1998-08-18 Wm. Wrigley Jr. Company Enhanced flavors using 2'-hydroxypropiophenone
US5912030A (en) * 1995-10-16 1999-06-15 Leaf Inc. Comestible products having extended release of addititives and method of making
US6027746A (en) * 1997-04-23 2000-02-22 Warner-Lambert Company Chewable soft gelatin-encapsulated pharmaceutical adsorbates
US6251193B1 (en) * 1998-03-12 2001-06-26 International Flavors & Fragrances Inc. Use of spray-dried and freeze-dried sugarcane leaf essence
US20020054859A1 (en) * 1998-02-06 2002-05-09 Biocosmetic, S.L. Composition for the treatment of halitosis
US20030059519A1 (en) * 1998-07-07 2003-03-27 Merkel Carolyn M. Method of improving sweetness delivery of sucralose
US6586023B1 (en) * 1998-12-15 2003-07-01 Wm. Wrigley Jr. Company Process for controlling release of active agents from a chewing gum coating and product thereof
US6627234B1 (en) * 1998-12-15 2003-09-30 Wm. Wrigley Jr. Company Method of producing active agent coated chewing gum products
US6761879B1 (en) * 1999-07-16 2004-07-13 Sanofi-Synthelabo Titanium derived compounds, preparation and use thereof
US6761919B2 (en) * 2000-05-15 2004-07-13 Lipton, Division Of Conopco, Inc. Ambient stable beverage
US20040146599A1 (en) * 2001-03-23 2004-07-29 Lone Andersen Coated degradable chewing gum with improved shelf life and process for preparing same
US20040175489A1 (en) * 2003-03-03 2004-09-09 Wm. Wrigley Jr. Company Fast flavor release coating for confectionery
US20040238993A1 (en) * 2002-01-10 2004-12-02 Daniel Benczedi Process for the preparation of extruded delivery systems
US20050013915A1 (en) * 2003-07-14 2005-01-20 Riha William E. Mixtures with a sweetness and taste profile of high fructose corn syrup (HFCS) 55 comprising HFCS 42 and acesulfame K
US20050037121A1 (en) * 2003-08-11 2005-02-17 Susanne Rathjen Mixtures of high fructose corn syrup (HFCS) 42 or HFCS 55 and high-intensity sweeteners with a taste profile of pure sucrose
US20050084506A1 (en) * 2003-08-06 2005-04-21 Catherine Tachdjian Novel flavors, flavor modifiers, tastants, taste enhancers, umami or sweet tastants, and/or enhancers and use thereof
US20050260266A1 (en) * 2003-11-21 2005-11-24 Cadbury Adams Usa, Llc. Controlled release oral delivery systems
US20060193896A1 (en) * 2005-02-25 2006-08-31 Cadbury Adams Usa Llc Process for manufacturing a delivery system for active components as part of an edible composition
US20060263477A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Edible composition including a delivery system for active components
US20060263473A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Compressed delivery system for active components as part of an edible composition
US20060263478A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Coated delivery system for active components as part of an edible composition
US20060263413A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Delivery system for active components and a material having preselected hydrophobicity as part of an edible composition
US20060263479A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Delivery system for active components as part of an edible composition including a ratio of encapsulating material and active component
US20060263472A1 (en) * 2005-05-23 2006-11-23 Cadbury Adam Usa Llc Delivery system for coated active components as part of an edible composition
US20060263480A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Delivery system for active components as part of an edible composition having selected particle size
US20090148568A1 (en) * 2005-06-08 2009-06-11 Satomi Kawamura Candy composition with excellent sweetness and candy using the same
US7851006B2 (en) * 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
US7851005B2 (en) * 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
US7851000B2 (en) * 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and edible confectionery and chewing gum products containing same

Family Cites Families (321)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124459A (en) * 1964-03-10 Organoleptic compositions
US1633336A (en) 1925-09-28 1927-06-21 Winford P Larson Dentifrice
US1936456A (en) 1929-05-01 1933-11-21 Wm S Merrell Co Therapeutic preparation
US2191199A (en) 1937-09-17 1940-02-20 Hall Lab Inc Abrasive detergent composition
US2197719A (en) * 1938-12-07 1940-04-16 Wrigley W M Jun Co Chewing gum
NL202309A (en) 1954-11-24
US3004897A (en) 1955-02-09 1961-10-17 Shore Joseph Dental preparation
US2886441A (en) 1956-07-03 1959-05-12 Gen Foods Corp Product and process
US2886440A (en) 1956-07-03 1959-05-12 Gen Foods Corp Chewing gum and method of producing
US2886442A (en) 1956-07-27 1959-05-12 Gen Foods Corp Chewing gum and method of producing
US2886444A (en) 1956-08-15 1959-05-12 Gen Foods Corp Process of preparing a chewing gum and the resulting product
US2886443A (en) 1956-08-15 1959-05-12 Gen Foods Corp Process for making chewing gum and product
US2886445A (en) 1958-12-08 1959-05-12 Gen Foods Corp Process for making chewing gum and product
US2886446A (en) 1958-12-08 1959-05-12 Gen Foods Corp Process for making chewing gum and product
US2886449A (en) 1959-03-10 1959-05-12 Gen Foods Corp Method of making chewing gum and the resulting product
GB875763A (en) 1959-05-01 1961-08-23 Gen Foods Corp Chewing gum having controlled flavour release
US3052552A (en) 1959-09-16 1962-09-04 Beech Nut Life Savers Inc Printing on confection items and the resulting product
US3117027A (en) 1960-01-08 1964-01-07 Wisconsin Alumni Res Found Apparatus for coating particles in a fluidized bed
US3159585A (en) 1961-04-12 1964-12-01 Nat Starch Chem Corp Method of encapsulating water insoluble oils and product thereof
US3241520A (en) 1964-10-19 1966-03-22 Wisconsin Alumni Res Found Particle coating apparatus
US3492131A (en) 1966-04-18 1970-01-27 Searle & Co Peptide sweetening agents
US3475533A (en) 1966-05-19 1969-10-28 Extar Co Water-free toothpastes containing metaphosphates,calcium carbonate,and mineral oil
US3538230A (en) 1966-12-05 1970-11-03 Lever Brothers Ltd Oral compositions containing silica xerogels as cleaning and polishing agents
US3664963A (en) 1969-10-22 1972-05-23 Balchem Corp Encapsulation process
US3819838A (en) 1970-08-04 1974-06-25 Bush Boake Allen Ltd Encapsulated flavoring composition
US3677771A (en) 1970-09-21 1972-07-18 Ralston Purina Co Process for the manufacture of caramels
US3795744A (en) 1970-10-21 1974-03-05 Lotte Co Ltd Flavor variable chewing gum and methods of preparing the same
US3826847A (en) 1970-10-21 1974-07-30 Lotte Co Ltd Process for preparation of flavor durable chewing gum
US3821417A (en) 1970-11-09 1974-06-28 Warner Lambert Co Flavor preservation in chewing gum compositions and candy products
US3664962A (en) 1971-01-11 1972-05-23 Jerry D Kelly Stain remover
US3962416A (en) 1971-01-25 1976-06-08 Sol Katzen Preserved nutrients and products
US4136163A (en) 1971-02-04 1979-01-23 Wilkinson Sword Limited P-menthane carboxamides having a physiological cooling effect
US3878938A (en) 1971-04-08 1975-04-22 Lever Brothers Ltd Toothpastes
US3962463A (en) 1972-04-03 1976-06-08 Life Savers, Inc. Chewing gum having surface impregnated, microencapsulated flavor particles
GB1421743A (en) 1972-04-18 1976-01-21 Wilkinson Sword Ltd Ingestible topical and other compositions
CA1027347A (en) 1972-07-20 1978-03-07 David G. Rowsell Compounds having a physiological cooling effect and compositions containing them
US3943258A (en) * 1972-10-05 1976-03-09 General Foods Corporation Chewing gums of longer lasting sweetness and flavor
US3872021A (en) 1972-11-13 1975-03-18 Audrey M Mcknight Cleaning composition
US3857964A (en) 1973-02-09 1974-12-31 Brook D Controlled release flavor compositions
US3862307A (en) 1973-04-09 1975-01-21 Procter & Gamble Dentifrices containing a cationic therapeutic agent and improved silica abrasive
GB1444024A (en) * 1973-07-20 1976-07-28 Passwaterr A Food and feed supplents
US3912817A (en) 1973-10-03 1975-10-14 Topps Chewing Gum Inc Gum product and method of making the same
US4045581A (en) 1975-05-15 1977-08-30 Life Savers, Inc. Long-lasting mint-flavored chewing gum
GB1501484A (en) 1975-10-24 1978-02-15 Tate & Lyle Ltd Icing mixture
US4083995A (en) * 1976-07-22 1978-04-11 The United States Of America As Represented By The Secretary Of Agriculture (Z)-9-Tetradecen-1-ol formate and its use as a communication disruptant for Heliothis
US4130638A (en) 1976-11-03 1978-12-19 Richardson-Merrell Inc. Mouthwash compositions
US4107360A (en) 1976-11-04 1978-08-15 Sagapha A. G. Process for packing a pasty stain remover in portion capsules
US4122195A (en) * 1977-01-24 1978-10-24 General Foods Corporation Fixation of APM in chewing gum
JPS53136566A (en) * 1977-05-04 1978-11-29 Ajinomoto Kk Novel composite seasoning
US4217368A (en) 1977-07-08 1980-08-12 Life Savers, Inc. Long-lasting chewing gum and method
US4156715A (en) 1977-11-28 1979-05-29 General Mills, Inc. Plaque inhibiting composition and method
US4157385A (en) 1977-11-28 1979-06-05 General Mills, Inc. Plaque inhibiting composition and method
US4148872A (en) 1977-11-28 1979-04-10 General Mills, Inc. Plaque inhibiting composition and method
US4160054A (en) 1977-11-28 1979-07-03 General Mills, Inc. Plaque inhibiting composition and method
US4156716A (en) 1977-11-28 1979-05-29 General Mills, Inc. Plaque inhibiting composition and method
US4159315A (en) 1977-11-28 1979-06-26 General Mills, Inc. Plaque inhibiting composition and method
US4150112A (en) 1977-11-28 1979-04-17 General Mills, Inc. Plaque inhibiting composition and method
US4160820A (en) 1977-11-28 1979-07-10 General Mills, Inc. Plaque inhibiting composition and method
US4208431A (en) 1978-05-05 1980-06-17 Life Savers, Inc. Long-lasting chewing gum having good processibility and method
US4276312A (en) 1978-05-25 1981-06-30 Merritt Carleton G Encapsulation of materials
US4224345A (en) 1978-10-16 1980-09-23 Lotte Co., Ltd Chewing gum base and a combination of a chewing gum with fatty matter
FR2444080A1 (en) 1978-12-11 1980-07-11 Roquette Freres NON-CARIOGENIC HYDROGENIC STARCH HYDROLYSATE FOR CONFECTIONERY AND PROCESS FOR PREPARING THIS HYDROLYSATE
US4340583A (en) 1979-05-23 1982-07-20 J. M. Huber Corporation High fluoride compatibility dentifrice abrasives and compositions
US4295845A (en) 1979-06-18 1981-10-20 Lever Brothers Company Pretreatment composition for stain removal
US4363756A (en) 1979-06-18 1982-12-14 Lever Brothers Company Pretreatment composition for stain removal
US4314990A (en) * 1979-10-15 1982-02-09 The Procter & Gamble Company Toothpaste compositions
US4271199A (en) 1979-11-23 1981-06-02 Life Savers, Inc. Sugar-containing chewing gum having smooth texture and long-lasting sweetness
US4457857A (en) 1980-10-20 1984-07-03 Lever Brothers Company Pretreatment composition for stain removal
US4352825A (en) 1981-02-23 1982-10-05 Nabisco Brands, Inc. Coextruded chewing gum containing a soft core portion
US4384004A (en) 1981-06-02 1983-05-17 Warner-Lambert Company Encapsulated APM and method of preparation
JPS5888334A (en) 1981-11-20 1983-05-26 Takasago Corp 3-l-menthoxypropane-1,2-diol
US4386106A (en) 1981-12-01 1983-05-31 Borden, Inc. Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4515769A (en) 1981-12-01 1985-05-07 Borden, Inc. Encapsulated flavorant material, method for its preparation, and food and other compositions incorporating same
US4452821A (en) 1981-12-18 1984-06-05 Gerhard Gergely Confectionery product, particularly chewing gum, and process for its manufacture
RO85679B1 (en) 1982-12-16 1984-11-30 Constantin Nistor Smoking control device
US4673577A (en) 1983-02-18 1987-06-16 Wm. Wrigley Jr. Company Shellac encapsulant for high-potency sweeteners in chewing gum
US4871570A (en) 1983-03-22 1989-10-03 General Foods Corp. Foodstuffs containing hydrobenzene organic acids as sweetness modifying agents
US4627987A (en) 1983-03-22 1986-12-09 General Foods Corporation Edible material containing meta-hydroxybenzoic or salts
US4485118A (en) 1983-04-21 1984-11-27 Warner-Lambert Company Gum composition with plural time releasing flavors and method of preparation
US4513012A (en) * 1983-05-13 1985-04-23 Warner-Lambert Company Powdered center-filled chewing gum compositions
ZA855107B (en) * 1983-07-13 1985-01-14
ZA835105B (en) * 1983-07-13 1985-01-14 General Foods Corporation Foodstuffs containing sweetness modifying agents
CA1208966A (en) * 1983-07-13 1986-08-05 Ronald E. Barnett Foodstuffs containing sweetness modifying agents
US4751095A (en) 1983-07-28 1988-06-14 Karl Curtis L Aspartame stabilization with cyclodextrin
US4518615A (en) 1983-08-23 1985-05-21 Warner-Lambert Company Non-adhesive chewing gum base composition
US4749575A (en) 1983-10-03 1988-06-07 Bio-Dar Ltd. Microencapsulated medicament in sweet matrix
US4614649A (en) 1983-12-09 1986-09-30 Sterling Drug Inc. Antiplaque saccharin salt dentrifices and method of use thereof
FR2559755A1 (en) 1984-02-20 1985-08-23 Rhone Poulenc Spec Chim CERIC OXIDE WITH NEW MORPHOLOGICAL CHARACTERISTICS AND METHOD OF OBTAINING THE SAME
US4590075A (en) 1984-08-27 1986-05-20 Warner-Lambert Company Elastomer encapsulation of flavors and sweeteners, long lasting flavored chewing gum compositions based thereon and process of preparation
US4828857A (en) 1984-10-05 1989-05-09 Warner-Lambert Company Novel sweetener delivery systems
US4804548A (en) * 1984-10-05 1989-02-14 Warner-Lambert Company Novel sweetener delivery systems
US4597970A (en) 1984-10-05 1986-07-01 Warner-Lambert Company Chewing gum compositions containing novel sweetener delivery systems and method of preparation
US4585649A (en) 1984-12-21 1986-04-29 Ici Americas Inc. Dentifrice formulation and method of treating teeth, mouth and throat therewith to reduce plaque accumulation and irritation
US4676989A (en) 1984-12-27 1987-06-30 General Foods Corporation Sweetening with cycloalkyl ethers and thioethers of dipeptides
US4622417A (en) 1984-12-27 1986-11-11 General Foods Corporation L-aminodicarboxylic-(O-cycloalkyl)-L-aminocarboxylate alkyl ester sweeteners
US4654219A (en) 1984-12-27 1987-03-31 General Foods Corporation L-aminodicarboxylic-(O-cycloalkyl)-L-aminocarboxylate alkyl ester sweeteners
US4678674A (en) 1985-04-15 1987-07-07 General Foods Corporation Sweetening with L-aminodicarboxylic acid amides
US4781927A (en) 1985-04-15 1988-11-01 General Foods Corporation Sweetening with l-aminodicarboxylic acid esters
US4636396A (en) * 1985-04-15 1987-01-13 General Foods Corporation Foodstuff with L-aminodicarboxylic acid gem-diamines
US4822635A (en) 1985-04-15 1989-04-18 General Foods Corporation Sweetening with L-aminodicarboxylic acid esters
US4622232A (en) 1985-05-06 1986-11-11 General Foods Corporation L-aminodicarboxylic acid alkanes
US4678675A (en) 1985-05-06 1987-07-07 General Foods Corporation Sweetening with L-aminodicarboxylic acid alkenes
US4788073A (en) 1985-05-06 1988-11-29 General Foods Corporation Sweetening with L-aminodicarboxylic acid alkenes
US4619834A (en) 1985-05-06 1986-10-28 General Foods Corporation Sweetening with L-aminodicarboxylic acid aminoalkenoic acid ester amides
US4701552A (en) 1985-05-06 1987-10-20 General Foods Corporation L-aminodicarboxylic acid alkanes
US4603012A (en) 1985-05-06 1986-07-29 General Foods Corporation L-aminodicarboxylic acid alkanes
US4652457A (en) 1985-05-06 1987-03-24 General Foods Corporation L-aminodicarboxylic acid aminoalkenoic acid ester amides
US4650688A (en) 1985-05-24 1987-03-17 General Foods Corporation Sweetening with L-aminodicarboxylic acid amides of alkoxyalkylamines
JPH0788519B2 (en) 1985-06-07 1995-09-27 ダウブランズ・インコーポレーテッド Stain and stain remover for laundry
US4634593A (en) 1985-07-31 1987-01-06 Nabisco Brands, Inc. Composition and method for providing controlled release of sweetener in confections
US4711784A (en) * 1986-01-07 1987-12-08 Warner-Lambert Company Encapsulation composition for use with chewing gum and edible products
US4740376A (en) 1986-01-07 1988-04-26 Warner-Lambert Company Encapsulation composition for use with chewing gum and edible products
US4929447A (en) 1986-01-07 1990-05-29 Warner-Lambert Company Encapsulation composition for use with chewing gum and edible products
US4758443A (en) 1986-06-18 1988-07-19 General Foods Corporation Thietanyl-substituted amides and use thereof as sweeteners
CA1295874C (en) 1986-06-19 1992-02-18 Zdravko Dokuzovic Flavor emulsions and chewing gum compositions containing the same
ZA874574B (en) 1986-06-25 1988-03-30 Nabisco Brands Inc Encapsulated active ingredients and use in ingested products
GB8617222D0 (en) 1986-07-15 1986-08-20 Tate & Lyle Plc Sweetener
US4726953A (en) 1986-10-01 1988-02-23 Nabisco Brands, Inc. Sweet flavorful soft flexible sugarless chewing gum
GB8627139D0 (en) 1986-11-13 1986-12-10 Tate & Lyle Plc Sweetening composition
US4800087A (en) 1986-11-24 1989-01-24 Mehta Atul M Taste-masked pharmaceutical compositions
US4915958A (en) 1986-12-10 1990-04-10 Warner-Lambert Company High-base gum composition with extended flavor release
US4828845A (en) 1986-12-16 1989-05-09 Warner-Lambert Company Xylitol coated comestible and method of preparation
US4753790A (en) 1986-12-16 1988-06-28 Warner-Lambert Company Sorbitol coated comestible and method of preparation
US4824681A (en) 1986-12-19 1989-04-25 Warner-Lambert Company Encapsulated sweetener composition for use with chewing gum and edible products
US4911934A (en) * 1986-12-19 1990-03-27 Warner-Lambert Company Chewing gum composition with encapsulated sweetener having extended flavor release
US4722845A (en) * 1986-12-23 1988-02-02 Warner-Lambert Company Stable cinnamon-flavored chewing gum composition
US5004595A (en) * 1986-12-23 1991-04-02 Warner-Lambert Company Multiple encapsulated flavor delivery system and method of preparation
US4981698A (en) * 1986-12-23 1991-01-01 Warner-Lambert Co. Multiple encapsulated sweetener delivery system and method of preparation
US4816265A (en) 1986-12-23 1989-03-28 Warner-Lambert Company Sweetener delivery systems containing polyvinyl acetate
US4933190A (en) 1986-12-23 1990-06-12 Warner-Lambert Co. Multiple encapsulated sweetener delivery system
US4931293A (en) 1986-12-23 1990-06-05 Warner-Lambert Company Food acid delivery systems containing polyvinyl acetate
US5043154A (en) 1987-01-30 1991-08-27 Colgate-Palmolive Co. Antibacterial, antiplaque, anticalculus oral composition
US4771784A (en) 1987-02-17 1988-09-20 Kuibyshevksy Politekhnichesky Institut Ophthalmorheographic transducer
US4986991A (en) 1987-05-15 1991-01-22 Wm Wrigley, Jr., Company Chewing gum having an extended sweetness
US4822599A (en) 1987-08-26 1989-04-18 The Procter & Gamble Company Oral compositions
US4803082A (en) * 1987-10-28 1989-02-07 Warner-Lambert Company Flavor and sweetness enhancement delivery systems and method of preparation
DK505588D0 (en) 1988-02-26 1988-09-09 Jesper Hamburger MEDIUM AND USE OF SAME
US6056992A (en) 1988-06-02 2000-05-02 Campbell Soup Company Encapsulated additives
US4919841A (en) * 1988-06-06 1990-04-24 Lever Brothers Company Wax encapsulated actives and emulsion process for their production
US4952407A (en) 1988-09-12 1990-08-28 Wm. Wrigley Jr. Company Chewing gum containing glycerol mono laurate
JPH02227044A (en) * 1988-11-07 1990-09-10 Mitajiri Kagaku Kogyo Kk Seasoning containing high-purity miraculin and food containing same
US5057328A (en) 1988-11-14 1991-10-15 Warner-Lambert Company Food acid delivery systems containing polyvinyl acetate
DE68912529T2 (en) 1988-11-25 1994-05-26 Procter & Gamble Chewing gum.
WO1989003170A2 (en) * 1988-12-09 1989-04-20 Wm. Wrigley Jr. Company Method of controlling release of acesulfame k in chewing gum and gum produced thereby
US4904482A (en) 1988-12-22 1990-02-27 Wm. Wrigley Jr. Company Chewing gums containing hydrated emulsifier and methods of preparation
US4971797A (en) 1988-12-22 1990-11-20 Warner-Lambert Company Stabilized sucralose complex
US5202112A (en) * 1991-08-01 1993-04-13 Colgate-Palmolive Company Viscoelastic dentifrice composition
US5334375A (en) 1988-12-29 1994-08-02 Colgate Palmolive Company Antibacterial antiplaque oral composition
US5273741A (en) 1988-12-29 1993-12-28 Colgate-Palmolive Company Packaged anti-plaque oral compositions
US4997659A (en) 1989-03-28 1991-03-05 The Wm. Wrigley Jr. Company Alitame stability in chewing gum by encapsulation
US5057327A (en) 1989-12-29 1991-10-15 Wm. Wrigley Jr. Company Chewing gum with longer lasting sweetness using alitame
US5169658A (en) 1989-04-19 1992-12-08 Wm. Wrigley Jr. Company Polyvinyl acetate encapsulation of crystalline sucralose for use in chewing gum
US4978537A (en) 1989-04-19 1990-12-18 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5198251A (en) * 1989-04-19 1993-03-30 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5229148A (en) 1989-04-19 1993-07-20 Wm. Wrigley Jr. Company Method of combining active ingredients with polyvinyl acetates
US5139794A (en) * 1989-04-19 1992-08-18 Wm. Wrigley Jr. Company Use of encapsulated salts in chewing gum
US5154939A (en) 1989-04-19 1992-10-13 Wm. Wrigley Jr. Company Use of salt to improve extrusion encapsulation of chewing gum ingredients
US4923684A (en) 1989-05-08 1990-05-08 Beecham, Inc. Tripolyphosphate-containing anti-calculus toothpaste
US4985236A (en) * 1989-05-08 1991-01-15 Beecham Inc. Tripolyphosphate-containing anti-calculus toothpaste
US5084278A (en) 1989-06-02 1992-01-28 Nortec Development Associates, Inc. Taste-masked pharmaceutical compositions
US5009893A (en) * 1989-07-17 1991-04-23 Warner-Lambert Company Breath-freshening edible compositions of methol and a carboxamide
DK365389D0 (en) 1989-07-24 1989-07-24 Fertin Lab As ANTIFUNGAL CHEMICAL GUM PREPARATION
WO1989011212A2 (en) * 1989-08-30 1989-11-30 Wm. Wrigley Jr. Company Method of controlling release of cyclamate in chewing gum and gum produced thereby
US5009900A (en) 1989-10-02 1991-04-23 Nabisco Brands, Inc. Glassy matrices containing volatile and/or labile components, and processes for preparation and use thereof
US5082671A (en) 1989-10-27 1992-01-21 Warner-Lambert Company Low moisture sucralose sweetened chewing gum
US5059429A (en) 1989-10-27 1991-10-22 Warner-Lambert Company Sucralose sweetened chewing gum
WO1990007859A2 (en) * 1989-11-22 1990-07-26 Wm. Wrigley Jr. Company Method of controlling release of sucralose in chewing gum and gum produced thereby
GB9001621D0 (en) 1990-01-24 1990-03-21 Procter & Gamble Confectionery product
AT399226B (en) 1990-04-11 1995-04-25 Sitte Hellmuth AUTOMATIC CUTTING DEVICE FOR MICROTOMES, IN PARTICULAR ULTRAMICROTOMAS
US5085671A (en) * 1990-05-02 1992-02-04 Minnesota Mining And Manufacturing Company Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same
US5043169A (en) 1990-05-25 1991-08-27 Warner-Lambert Company Stabilized Sweetner Composition
US5637618A (en) 1990-06-01 1997-06-10 Bioresearch, Inc. Specific eatable taste modifiers
US5232735A (en) 1990-06-01 1993-08-03 Bioresearch, Inc. Ingestibles containing substantially tasteless sweetness inhibitors as bitter taste reducers or substantially tasteless bitter inhibitors as sweet taste reducers
US5139793A (en) 1990-07-10 1992-08-18 Wm. Wrigley Jr. Company Method of prolonging flavor in chewing gum by the use of cinnamic aldehyde propylene glycol acetal
WO1990013994A2 (en) * 1990-07-17 1990-11-29 Wm. Wrigley Jr. Company Controlled release of dihydrochalcones in chewing gum
US5096699A (en) 1990-12-20 1992-03-17 Colgate-Palmolive Company Anticalculus oral compositions
US5208009A (en) 1990-12-20 1993-05-04 Colgate-Palmolive Company Anticalculus oral compositions
US5064658A (en) 1990-10-31 1991-11-12 Warner-Lamber Company Encapsulated synergistic sweetening agent compositions comprising aspartame and acesulfame-K and methods for preparing same
US5100678A (en) 1990-11-15 1992-03-31 Wm. Wrigley Jr. Company Chewing gum with prolonged flavor release incorporating unsaturated, purified monoglycerides
US5139798A (en) 1990-11-21 1992-08-18 Wm. Wrigley Jr. Company Polyvinyl acetate encapsulation of codried sucralose for use in chewing gum
IT1243391B (en) 1990-11-23 1994-06-10 Savio Spa THREAD POSITIONING DEVICE WITH ROTATING THREAD GUIDING ELEMENTS ON TWO CONVERGENT INCLINED PLANS
US5096701A (en) * 1990-12-18 1992-03-17 The Procter & Gamble Company Oral compositions
US5176900A (en) 1990-12-18 1993-01-05 The Procter & Gamble Company Compositions for reducing calculus
US5126151A (en) 1991-01-24 1992-06-30 Warner-Lambert Company Encapsulation matrix
US5108763A (en) 1991-04-03 1992-04-28 Warner-Lambert Company Microencapsulated high intensity sweetening agents having prolonged sweetness release and methods for preparing same
DE4110973A1 (en) 1991-04-05 1992-10-08 Haarmann & Reimer Gmbh MEDIUM WITH A PHYSIOLOGICAL COOLING EFFECT AND EFFECTIVE COMPOUNDS SUITABLE FOR THIS MEDIUM
US5227182A (en) 1991-07-17 1993-07-13 Wm. Wrigley Jr. Company Method of controlling release of sucralose in chewing gum using cellulose derivatives and gum produced thereby
US5169657A (en) 1991-07-17 1992-12-08 Wm. Wrigley Jr. Company Polyvinyl acetate encapsulation of sucralose from solutions for use in chewing gum
US5385729A (en) 1991-08-01 1995-01-31 Colgate Palmolive Company Viscoelastic personal care composition
JPH05184302A (en) * 1991-08-02 1993-07-27 Yoshie Kurihara Chewing gum
US5256402A (en) 1991-09-13 1993-10-26 Colgate-Palmolive Company Abrasive tooth whitening dentifrice of improved stability
US5391315A (en) * 1991-09-27 1995-02-21 Ashkin; Abraham Solid cake detergent carrier composition
US5164210A (en) 1991-10-08 1992-11-17 Wm. Wrigley Jr. Company Zein/shellac encapsulation of high intensity sweeteners in chewing gum
US5240697A (en) 1991-10-17 1993-08-31 Colgate-Palmolive Company Desensitizing anti-tartar dentifrice
US5266336A (en) 1991-11-12 1993-11-30 Wm. Wrigley Jr. Company High flavor impact non-tack chewing gum with reduced plasticization
US5462754A (en) 1992-03-03 1995-10-31 Wm. Wrigley Jr. Company Abhesive chewing gum with improved sweetness profile
US5286500A (en) 1992-03-03 1994-02-15 Wm. Wrigley Jr. Company Wax-free chewing gum base
NZ252445A (en) 1992-05-18 1997-03-24 Procter & Gamble Sensory coolant compositions: a ketal and menthol or a carboxamide as a secondary coolant
ES2105293T3 (en) 1992-06-17 1997-10-16 Procter & Gamble REFRESHING COMPOSITIONS WITH REDUCED IRRITATING EFFECT.
US5424080A (en) 1992-06-30 1995-06-13 Wm. Wrigley Jr. Company Wax-free chewing gum base
US5334396A (en) 1992-10-19 1994-08-02 Wm. Wrigley Jr. Company Chewing gum sweetened with alitame and having a high level of lecithin
FR2697844B1 (en) 1992-11-12 1995-01-27 Claude Nofre New compounds derived from dipeptides or dipeptide analogues useful as sweetening agents, process for their preparation.
US5380530A (en) * 1992-12-29 1995-01-10 Whitehill Oral Technologies Oral care composition coated gum
US5370882A (en) * 1993-01-26 1994-12-06 Nestec S.A. Taste-enhancement of sodium chloride-reduced compositions
US5437876A (en) 1993-03-02 1995-08-01 Wm. Wrigley Jr. Company Wax-free chewing gums with controlled sweetener release
US5372824A (en) 1993-03-25 1994-12-13 The Wm. Wrigley Jr. Company Mint flavored chewing gum having reduced bitterness and methods for making same
ZA944294B (en) 1993-06-23 1995-02-13 Nabisco Inc Chewing gum containing hydrophobic flavorant encapsulated in a hydrophilic shell
US5589194A (en) 1993-09-20 1996-12-31 Minnesota Mining And Manufacturing Company Method of encapsulation and microcapsules produced thereby
US5437878A (en) 1993-11-10 1995-08-01 Nabisco, Inc. Chewing gum exhibiting reduced adherence to dental work
US5498378A (en) 1993-11-12 1996-03-12 Lever Brothers Company, Division Of Conopco, Inc. Process for preparing capsules with structuring agents
US5407665A (en) 1993-12-22 1995-04-18 The Procter & Gamble Company Ethanol substitutes
US5458879A (en) 1994-03-03 1995-10-17 The Procter & Gamble Company Oral vehicle compositions
EP0672354B1 (en) 1994-03-18 2000-07-12 Ajinomoto Co., Inc. Proteinaceous material for enhancing food taste quality
WO1996037182A1 (en) 1995-05-26 1996-11-28 Tom Kalili Chewing gum with fluoride and citric acid
US5413799A (en) 1994-04-12 1995-05-09 Wm. Wrigley Jr. Company Method of making fruit-flavored chewing with prolonged flavor intensity
PH31445A (en) 1994-04-12 1998-11-03 Wrigley W M Jun Co Fruit flavored chewing gum with prolonged flavor intensity.
US5431930A (en) 1994-08-18 1995-07-11 Wm. Wrigley Jr. Co. Chewing gum containing medium chain triglycerides
US5505933A (en) * 1994-06-27 1996-04-09 Colgate Palmolive Company Desensitizing anti-tartar dentifrice
ES2080703B1 (en) 1994-08-25 1996-10-16 Farmalider Sa STABILIZATION METHODS OF DRUG SUBSTANCES INCORPORATED IN CHEWING PILLS.
US5603920A (en) * 1994-09-26 1997-02-18 The Proctor & Gamble Company Dentifrice compositions
US5545424A (en) 1994-10-12 1996-08-13 Takasago International Corporation 4-(1-menthoxymethyl)-2-phenyl-1,3-dioxolane or its derivatives and flavor composition containing the same
US5474787A (en) 1994-10-21 1995-12-12 The Wm. Wrigley Jr. Company Chewing gum containing a lecithin/glycerol triacetate blend
US5599527A (en) * 1994-11-14 1997-02-04 Colgate-Palmolive Company Dentifrice compositions having improved anticalculus properties
WO1996017527A1 (en) * 1994-12-09 1996-06-13 Cultor Ltd. Flavor modifying composition
FR2729967A1 (en) 1995-01-30 1996-08-02 Oreal COMPOSITIONS BASED ON AN ABRASIVE SYSTEM AND A SURFACE-ACTIVE SYSTEM
US6238690B1 (en) 1995-03-29 2001-05-29 Warner-Lambert Company Food products containing seamless capsules and methods of making the same
US5676932A (en) 1995-05-02 1997-10-14 J.M. Huber Corporation Silica abrasive compositions
US5589160A (en) 1995-05-02 1996-12-31 The Procter & Gamble Company Dentifrice compositions
US5658553A (en) 1995-05-02 1997-08-19 The Procter & Gamble Company Dentifrice compositions
US5651958A (en) 1995-05-02 1997-07-29 The Procter & Gamble Company Dentifrice compositions
US5582816A (en) 1995-06-01 1996-12-10 Colgate Palmolive Company Preparation of a visually clear gel dentifrice
US5800848A (en) 1995-06-20 1998-09-01 The Wm. Wrigley Jr. Company Chewing gum containing sucrose polyesters
US5702687A (en) 1995-10-03 1997-12-30 Church & Dwight Co., Inc. Chewing gum product with plaque-inhibiting benefits
US5618517A (en) 1995-10-03 1997-04-08 Church & Dwight Co., Inc. Chewing gum product with dental care benefits
US5645821A (en) 1995-10-06 1997-07-08 Libin; Barry M. Alkaline oral hygiene composition
US5713738A (en) 1995-12-12 1998-02-03 Britesmile, Inc. Method for whitening teeth
US5629035A (en) 1995-12-18 1997-05-13 Church & Dwight Co., Inc. Chewing gum product with encapsulated bicarbonate and flavorant ingredients
US5879728A (en) * 1996-01-29 1999-03-09 Warner-Lambert Company Chewable confectionary composition and method of preparing same
US5736175A (en) 1996-02-28 1998-04-07 Nabisco Technology Co. Chewing gums containing plaque disrupting ingredients and method for preparing it
US5912007A (en) 1996-02-29 1999-06-15 Warner-Lambert Company Delivery system for the localized administration of medicaments to the upper respiratory tract and methods for preparing and using same
US5891421A (en) * 1996-03-22 1999-04-06 J.M. Huber Corporation Precipitated silicas having improved dentifrice performance characteristics and methods of preparation
US5716601A (en) 1996-03-22 1998-02-10 The Procter & Gamble Company Dentifrice compositions
JP3549366B2 (en) * 1996-06-20 2004-08-04 株式会社林原生物化学研究所 Method for enhancing taste and / or umami from salt in food and drink
US5789002A (en) 1996-10-03 1998-08-04 Warner-Lambert Company Gum sweetener/acid processing system
JP3881699B2 (en) * 1996-10-09 2007-02-14 ジボーダン―ルール(アンテルナシヨナル)ソシエテ アノニム Method for producing beads as food additive
US8828432B2 (en) * 1996-10-28 2014-09-09 General Mills, Inc. Embedding and encapsulation of sensitive components into a matrix to obtain discrete controlled release particles
US6159509A (en) 1996-10-28 2000-12-12 Wm. Wrigley Jr. Company Method of making chewing gum products containing perillartine
US7025999B2 (en) 2001-05-11 2006-04-11 Wm. Wrigley Jr. Company Chewing gum having prolonged sensory benefits
US6190644B1 (en) 1996-11-21 2001-02-20 The Procter & Gamble Company Dentifrice compositions containing polyphosphate and monofluorophosphate
US6475469B1 (en) 1996-11-21 2002-11-05 Applied Dental Sciences, Inc. Compositions for removing tooth stains
DE19653100A1 (en) 1996-12-19 1998-07-23 Adolf Metz Improved lactose-containing magnetic capsules for intestinal use
GB9711643D0 (en) 1997-06-05 1997-07-30 Janssen Pharmaceutica Nv Glass thermoplastic systems
US5824291A (en) 1997-06-30 1998-10-20 Media Group Chewing gum containing a teeth whitening agent
US6627233B1 (en) 1997-09-18 2003-09-30 Wm. Wrigley Jr. Company Chewing gum containing physiological cooling agents
EP1017289A1 (en) * 1997-09-24 2000-07-12 Holland Sweetener Company V.o.F. Sweetening composition comprising aspartame and 2,4-dihydroxybenzoic acid
US6261540B1 (en) 1997-10-22 2001-07-17 Warner-Lambert Company Cyclodextrins and hydrogen peroxide in dental products
US5939051A (en) 1998-02-27 1999-08-17 Colgate-Palmolive Company Dental abrasive
US6174514B1 (en) 1999-04-12 2001-01-16 Fuisz Technologies Ltd. Breath Freshening chewing gum with encapsulations
IN191070B (en) 1998-05-28 2003-09-13 Internat Dev Res Ct
US6692778B2 (en) * 1998-06-05 2004-02-17 Wm. Wrigley Jr. Company Method of controlling release of N-substituted derivatives of aspartame in chewing gum
DE19845247A1 (en) 1998-10-01 2000-04-06 Henkel Kgaa Liquid tooth cleaning gel
AT411958B8 (en) * 1998-11-19 2004-09-27 Jhs Privatstiftung REFRESHING DRINK TO INCREASE ALCOHOL DEGRADING CAPACITY
JP3667640B2 (en) 1999-04-01 2005-07-06 ダブリューエム リグリー ジュニア カンパニー Long flavor duration release structure for chewing gum
US6177514B1 (en) * 1999-04-09 2001-01-23 Sulzer Carbomedics Inc. Blocked functional reagants for cross-linking biological tissues
WO2000069283A1 (en) 1999-05-13 2000-11-23 The Nutrasweet Company USE OF ADDITIVES TO MODIFY THE TASTE CHARACTERISTICS OF N-NEOHEXYL-α-ASPARTYL-L-PHENYLALANINE METHYL ESTER
WO2000069282A1 (en) * 1999-05-13 2000-11-23 The Nutrasweet Company Modification of the taste and physicochemical properties of neotame using hydrophobic acid additives
US6299925B1 (en) * 1999-06-29 2001-10-09 Xel Herbaceuticals, Inc. Effervescent green tea extract formulation
ES2213949T3 (en) 1999-07-02 2004-09-01 Cognis Iberia, S.L. MICROCAPSULES I.
DE60033504D1 (en) 1999-11-29 2007-04-05 Kyowa Hakko Food Specialties C METHOD AND AGENT FOR FLAVORING SODIUM CHLORIDE, SUGAR WITH SODIUM CHLORIDE FLAVORING, AND FOODSTUFFS WITH AMPLIFIED SODIUM CHLORIDE TASTE
GB0001309D0 (en) 2000-01-20 2000-03-08 Nestle Sa Valve arrangement
US6780443B1 (en) 2000-02-04 2004-08-24 Takasago International Corporation Sensate composition imparting initial sensation upon contact
TW201006846A (en) 2000-03-07 2010-02-16 Senomyx Inc T1R taste receptor and genes encidung same
US6471945B2 (en) 2000-03-10 2002-10-29 Warner-Lambert Company Stain removing chewing gum and confectionery compositions, and methods of making and using the same
US7041277B2 (en) 2000-03-10 2006-05-09 Cadbury Adams Usa Llc Chewing gum and confectionery compositions with encapsulated stain removing agent compositions, and methods of making and using the same
US6479071B2 (en) 2000-03-10 2002-11-12 Warner-Lambert Company Chewing gum and confectionery compositions with encapsulated stain removing agent compositions, and methods of making and using the same
US6485739B2 (en) 2000-03-10 2002-11-26 Warner-Lambert Company Stain removing chewing gum and confectionery compositions, and methods of making and using the same
WO2001077676A1 (en) * 2000-04-07 2001-10-18 Senomyx, Inc. T2r taste receptors and genes encoding same
IT1320188B1 (en) 2000-04-26 2003-11-26 Perfetti Spa CHEWING GUM.
US6290933B1 (en) 2000-05-09 2001-09-18 Colgate-Palmolive Company High cleaning dentifrice
US6365209B2 (en) * 2000-06-06 2002-04-02 Capricorn Pharma, Inc. Confectionery compositions and methods of making
US6555145B1 (en) 2000-06-06 2003-04-29 Capricorn Pharma, Inc. Alternate encapsulation process and products produced therefrom
CN100433988C (en) 2000-09-12 2008-11-19 Wm.雷格利Jr.公司 Chewing gum formulations including encapsulated aspartame and sodium pyrophosphate
US6379654B1 (en) * 2000-10-27 2002-04-30 Colgate Palmolive Company Oral composition providing enhanced tooth stain removal
WO2002047489A1 (en) 2000-12-15 2002-06-20 Wm. Wrigley Jr. Company Encapsulated acid mixtures and products including same
TW201022287A (en) 2001-01-03 2010-06-16 Senomyx Inc T1R taste receptors and genes encoding same
CA2435366C (en) 2001-02-15 2009-02-03 Ferag Ag Device and method for disassembling a pile of flat objects
US7368285B2 (en) 2001-03-07 2008-05-06 Senomyx, Inc. Heteromeric umami T1R1/T1R3 taste receptors and isolated cells that express same
US7301009B2 (en) 2001-06-26 2007-11-27 Senomyx, Inc. Isolated (T1R1/T1R3) umami taste receptors that respond to umami taste stimuli
US7309577B2 (en) 2001-03-07 2007-12-18 Senomyx, Inc. Binding assays that use the T1R1/T1R3 (umami) taste receptor to identify compounds that elicit or modulate umami taste
US6955887B2 (en) 2001-03-30 2005-10-18 Senomyx, Inc. Use of T1R hetero-oligomeric taste receptor to screen for compounds that modulate taste signaling
JP3553521B2 (en) * 2001-04-26 2004-08-11 高砂香料工業株式会社 Coating agent and coating powder
WO2002087306A2 (en) 2001-05-01 2002-11-07 Senomyx, Inc. High throughput cell-based assay for monitoring sodium channel activity and discovery of salty taste modulating compounds
BR0209447B1 (en) 2001-05-01 2014-04-15 Pepsico Inc USE OF ERYTHRITOL AND D-TAGATOSIS IN FOOD PRODUCTS AND BEVERAGES OF ZERO OR LOW CALORIE
ES2190875B1 (en) 2001-06-12 2005-03-01 Cafosa Gum, S.A. DEGRADABLE BASE RUBBER AND THE GIRLS OBTAINED WITH THE SAME.
US20030004215A1 (en) * 2001-06-15 2003-01-02 Van Laere Katrien Maria Jozefa Dietetic preparation and method for inhibiting intestinal carbohydrate absorption
US6416744B1 (en) 2001-06-21 2002-07-09 Colgate Palmolive Company Tooth whitening chewing gum
EP2293067B1 (en) 2001-06-26 2016-04-20 Senomyx, Inc. T1R hetero-oligomeric taste receptors and cell lines that express said receptors and use thereof for identification of taste compounds
DK2327985T3 (en) 2001-06-26 2016-09-05 Senomyx Inc H1 Oligomeric T1R Taste Receptors and Cell Lines Expressing the Receptors, and Their Use to Identify Taste Compounds
IL159640A0 (en) 2001-07-10 2004-06-01 Senomyx Inc Use of specific t2r taste receptors to identify compounds that block bitter taste
US6558722B2 (en) 2001-07-18 2003-05-06 Wm. Wrigley Jr. Company Use of powdered gum in making a coating for a confection
EP1291342A1 (en) * 2001-09-06 2003-03-12 Societe Des Produits Nestle S.A. Pyridinium-betain compounds as taste enhancer
US20030077362A1 (en) * 2001-10-23 2003-04-24 Panhorst Dorothy A. Encapsulated flavors as inclusion in candy confections
EP1565065B1 (en) 2002-07-23 2006-09-13 Wm. Wrigley Jr. Company Encapsulated flavors and chewing gum using same
US7445769B2 (en) * 2002-10-31 2008-11-04 Cadbury Adams Usa Llc Compositions for removing stains from dental surfaces and methods of making and using the same
US6685916B1 (en) 2002-10-31 2004-02-03 Cadbury Adams Usa Llc Compositions for removing stains from dental surfaces, and methods of making and using the same
JP4517197B2 (en) * 2002-11-06 2010-08-04 ノルディック シュガー オイ. Edible flavor improver, method for producing and using the same
CA2513504A1 (en) * 2003-03-10 2004-09-23 Nestec S.A. Pyridinium-betain compounds and their use
US20050170041A1 (en) * 2003-08-14 2005-08-04 Cargill, Inc. Chewing gum compositions comprising monatin and methods for making same
GB2388581A (en) 2003-08-22 2003-11-19 Danisco Coated aqueous beads
EP1657985A1 (en) * 2003-08-25 2006-05-24 Cargill Inc. Beverage compositions comprising monatin and methods of making same
US20050112236A1 (en) 2003-11-21 2005-05-26 Navroz Boghani Delivery system for active components as part of an edible composition having preselected tensile strength
US8591974B2 (en) 2003-11-21 2013-11-26 Kraft Foods Global Brands Llc Delivery system for two or more active components as part of an edible composition
ATE377958T1 (en) * 2004-01-23 2007-11-15 Firmenich & Cie LARGE GLASS-LIKE BEADS
WO2005087020A1 (en) * 2004-03-05 2005-09-22 Richmond Chemical Corporation High-intensity sweetener-polyol compositions
US20050202143A1 (en) * 2004-03-12 2005-09-15 Soumya Roy Dry mix compositions and method for making and utilizing the same having an enhanced anti-microbial shelf life
US20060159820A1 (en) 2005-01-14 2006-07-20 Susanne Rathjen Sweetener compositions with a sweetness and taste profile comparable to HFCS 55
WO2006079056A1 (en) * 2005-01-20 2006-07-27 Stephen Holt Herbal compositions containing hoodia
US9198448B2 (en) * 2005-02-07 2015-12-01 Intercontinental Great Brands Llc Stable tooth whitening gum with reactive ingredients
US20110097741A1 (en) 2006-04-20 2011-04-28 Jay Patrick Slack Partial t1r2 nucleic acid sequence, receptor protein and its use in screening assays
KR101356892B1 (en) 2006-04-20 2014-01-28 지보당 에스아 Functional method to identify tastants
KR101356914B1 (en) 2006-04-20 2014-01-28 지보당 에스아 Method relating to sweetness enhancement

Patent Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427380A (en) * 1966-11-23 1969-02-11 Procter & Gamble Oral compositions for retarding dental plaque formation comprising para-aminobenzoic acid
US3574826A (en) * 1968-02-27 1971-04-13 Nat Patent Dev Corp Hydrophilic polymers having vitamins absorbed therein
US3930026A (en) * 1974-08-28 1975-12-30 Squibb & Sons Inc Chewing gum having enhanced flavor
US3984574A (en) * 1975-04-11 1976-10-05 Wm. Wrigley Jr. Company Non-tack chewing gum composition
US3974293A (en) * 1975-11-26 1976-08-10 Life Savers, Inc. Non-adhesive chewing gum composition
US4187320A (en) * 1978-05-01 1980-02-05 Warner-Lambert Company Process for preparing chewing gum base using solid elastomer
US4252830A (en) * 1979-06-18 1981-02-24 Life Savers, Inc. Chewable calorie-free chewing gum base
US4352823A (en) * 1981-04-13 1982-10-05 Nabisco Brands, Inc. Coextruded chewing gum containing a soft non-SBR gum core portion
US4613512A (en) * 1982-09-30 1986-09-23 General Foods Corporation Edible material containing m-aminobenzoic acid or salt
US4971806A (en) * 1984-01-31 1990-11-20 Warner-Lambert Company Multi-layered chewing gum composition having different rates of flavor release
US4614654A (en) * 1984-08-24 1986-09-30 Wm. Wrigley Jr. Company Taffy-like chewing gum confection and method
US4800095A (en) * 1985-03-29 1989-01-24 Nabisco Brands, Inc. Stabilized APM in comestibles
US4741905A (en) * 1986-06-19 1988-05-03 Warner-Lambert Company Chewing gum candy
US5192563A (en) * 1986-10-22 1993-03-09 Wm. Wrigley, Jr. Company Strongly mint-flavored chewing gums with reduced bitterness and harshness
US4724151A (en) * 1986-10-24 1988-02-09 Warner-Lambert Company Chewing gum compositions having prolonged breath-freshening
US5364627A (en) * 1989-10-10 1994-11-15 Wm. Wrigley Jr. Company Gradual release structures made from fiber spinning techniques
US5085850A (en) * 1990-11-09 1992-02-04 Warner-Lambert Company Anti-plaque compositions comprising a combination of morpholinoamino alcohol and metal salts
US5334397A (en) * 1992-07-14 1994-08-02 Amurol Products Company Bubble gum formulation
US5603971A (en) * 1993-04-16 1997-02-18 Mccormick & Company, Inc. Encapsulation compositions
US5626892A (en) * 1993-11-24 1997-05-06 Nabisco, Inc. Method for production of multi-flavored and multi-colored chewing gum
US5667828A (en) * 1994-10-13 1997-09-16 Florida Dept. Of Citrus System and method for pasteurizing citrus juice using microwave energy
US5693334A (en) * 1995-10-05 1997-12-02 Church & Dwight Co., Inc. Chewing gum product with dental health benefits
US5912030A (en) * 1995-10-16 1999-06-15 Leaf Inc. Comestible products having extended release of addititives and method of making
US5795616A (en) * 1995-12-21 1998-08-18 Wm. Wrigley Jr. Company Enhanced flavors using 2'-hydroxypropiophenone
US6027746A (en) * 1997-04-23 2000-02-22 Warner-Lambert Company Chewable soft gelatin-encapsulated pharmaceutical adsorbates
US20020054859A1 (en) * 1998-02-06 2002-05-09 Biocosmetic, S.L. Composition for the treatment of halitosis
US6251193B1 (en) * 1998-03-12 2001-06-26 International Flavors & Fragrances Inc. Use of spray-dried and freeze-dried sugarcane leaf essence
US20030059519A1 (en) * 1998-07-07 2003-03-27 Merkel Carolyn M. Method of improving sweetness delivery of sucralose
US6586023B1 (en) * 1998-12-15 2003-07-01 Wm. Wrigley Jr. Company Process for controlling release of active agents from a chewing gum coating and product thereof
US6627234B1 (en) * 1998-12-15 2003-09-30 Wm. Wrigley Jr. Company Method of producing active agent coated chewing gum products
US6761879B1 (en) * 1999-07-16 2004-07-13 Sanofi-Synthelabo Titanium derived compounds, preparation and use thereof
US6761919B2 (en) * 2000-05-15 2004-07-13 Lipton, Division Of Conopco, Inc. Ambient stable beverage
US20040146599A1 (en) * 2001-03-23 2004-07-29 Lone Andersen Coated degradable chewing gum with improved shelf life and process for preparing same
US20040238993A1 (en) * 2002-01-10 2004-12-02 Daniel Benczedi Process for the preparation of extruded delivery systems
US20040175489A1 (en) * 2003-03-03 2004-09-09 Wm. Wrigley Jr. Company Fast flavor release coating for confectionery
US20050013915A1 (en) * 2003-07-14 2005-01-20 Riha William E. Mixtures with a sweetness and taste profile of high fructose corn syrup (HFCS) 55 comprising HFCS 42 and acesulfame K
US20050084506A1 (en) * 2003-08-06 2005-04-21 Catherine Tachdjian Novel flavors, flavor modifiers, tastants, taste enhancers, umami or sweet tastants, and/or enhancers and use thereof
US20050037121A1 (en) * 2003-08-11 2005-02-17 Susanne Rathjen Mixtures of high fructose corn syrup (HFCS) 42 or HFCS 55 and high-intensity sweeteners with a taste profile of pure sucrose
US20050260266A1 (en) * 2003-11-21 2005-11-24 Cadbury Adams Usa, Llc. Controlled release oral delivery systems
US20060193896A1 (en) * 2005-02-25 2006-08-31 Cadbury Adams Usa Llc Process for manufacturing a delivery system for active components as part of an edible composition
US20060263480A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Delivery system for active components as part of an edible composition having selected particle size
US20060263477A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Edible composition including a delivery system for active components
US20060263478A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Coated delivery system for active components as part of an edible composition
US20060263413A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Delivery system for active components and a material having preselected hydrophobicity as part of an edible composition
US20060263479A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Delivery system for active components as part of an edible composition including a ratio of encapsulating material and active component
US20060263472A1 (en) * 2005-05-23 2006-11-23 Cadbury Adam Usa Llc Delivery system for coated active components as part of an edible composition
US20060263473A1 (en) * 2005-05-23 2006-11-23 Cadbury Adams Usa Llc Compressed delivery system for active components as part of an edible composition
US20110280990A1 (en) * 2005-05-23 2011-11-17 Navroz Boghani Taste potentiator compositions and edible confectionery and chewing gum products containing same
US7851000B2 (en) * 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and edible confectionery and chewing gum products containing same
US7851005B2 (en) * 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
US7851006B2 (en) * 2005-05-23 2010-12-14 Cadbury Adams Usa Llc Taste potentiator compositions and beverages containing same
US7879376B2 (en) * 2005-05-23 2011-02-01 Cadbury Adams Usa Llc Taste potentiator compositions and edible confectionery and chewing gum products containing same
US20110274735A1 (en) * 2005-05-23 2011-11-10 Navroz Boghani Taste potentiator compositions and edible confectionery and chewing gum products containing same
US20090148568A1 (en) * 2005-06-08 2009-06-11 Satomi Kawamura Candy composition with excellent sweetness and candy using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ghosh, Premamoy. Polymer Science and Technology. Tata McGraw-Hill. 2002. pp. 317. *
Willaims, Robert. Advanced Drug Formulation Design to Optimize Therapeutic Outcomes. 2008. pp. 228. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455033B2 (en) 2005-05-23 2013-06-04 Kraft Foods Global Brands Llc Taste potentiator compositions and edible confectionery and chewing gum products containing same
US10159268B2 (en) 2013-02-08 2018-12-25 General Mills, Inc. Reduced sodium food products
US11540539B2 (en) 2013-02-08 2023-01-03 General Mills, Inc. Reduced sodium food products
EP3040000A1 (en) 2015-01-05 2016-07-06 Gruppo Cimbali S.p.A. Method and apparatus for dispensing frothed milk
CN108882736A (en) * 2016-03-01 2018-11-23 Wm.雷格利Jr.公司 Lasting sweetener formulation
US11503848B2 (en) * 2017-07-27 2022-11-22 Healthtech Bio Actives, S.L.U Sweetening and taste-masking compositions, products and uses thereof
EP3664626A4 (en) * 2017-08-08 2020-08-26 eBio Nutritional Sciences LLC Sweetener composition and methods of making it
US11304433B2 (en) 2017-08-08 2022-04-19 eBIO Nutritional Sciences LLC Sweetener composition and methods of making it
EP4252550A3 (en) * 2017-08-08 2023-11-29 eBio Nutritional Sciences LLC Sweetener composition and methods of making it

Also Published As

Publication number Publication date
US20110274735A1 (en) 2011-11-10
US20110280990A1 (en) 2011-11-17
US8455033B2 (en) 2013-06-04
US20060286203A1 (en) 2006-12-21
US7879376B2 (en) 2011-02-01
EP1903890B1 (en) 2012-11-07
AR053295A1 (en) 2007-04-25
CA2604560C (en) 2012-06-26
MX349340B (en) 2017-07-24
WO2006127936A2 (en) 2006-11-30
EP1903890A2 (en) 2008-04-02
AU2010212298B2 (en) 2011-07-28
CN102845804A (en) 2013-01-02
JP2011067225A (en) 2011-04-07
EP1901622B1 (en) 2014-07-16
JP2009505635A (en) 2009-02-12
AU2006249857B2 (en) 2010-05-13
MX2007014632A (en) 2008-01-24
WO2006127934A2 (en) 2006-11-30
CA2604760C (en) 2012-06-26
JP4500874B2 (en) 2010-07-14
WO2006127935A1 (en) 2006-11-30
MX2007014636A (en) 2008-01-22
JP2008539805A (en) 2008-11-20
WO2006127936A3 (en) 2007-03-08
JP4750184B2 (en) 2011-08-17
EP1901622A1 (en) 2008-03-26
WO2006127934A3 (en) 2007-03-08
US7851000B2 (en) 2010-12-14
AU2006249856A1 (en) 2006-11-30
EP2305046A3 (en) 2014-04-09
AR053296A1 (en) 2007-04-25
US20060286202A1 (en) 2006-12-21
CA2604560A1 (en) 2006-11-30
AU2006249857A1 (en) 2006-11-30
PL1903890T3 (en) 2013-04-30
JP5243563B2 (en) 2013-07-24
EP2305046A2 (en) 2011-04-06
AU2010212298A1 (en) 2010-09-02
AU2006249856B2 (en) 2010-06-10
CA2604760A1 (en) 2006-11-30
ES2399059T3 (en) 2013-03-25

Similar Documents

Publication Publication Date Title
US8455033B2 (en) Taste potentiator compositions and edible confectionery and chewing gum products containing same
EP2774492B1 (en) Sweetener potentiator compositions
AU2008251279B2 (en) Taste potentiator compositions in oral delivery systems
CA2616225C (en) Coated chewable confection
US20110052755A1 (en) Sweetener compositions
EP2224820B1 (en) Comestible products
US20110052776A1 (en) Chocolate compositions having improved flavour characteristics
AU2012201261B8 (en) Taste potentiator compositions in oral delivery systems
US20160100606A1 (en) Chewing gum with hard, amorphous inclusions; and methods of making thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: KRAFT FOODS GLOBAL, INC., ILLINOIS

Free format text: MERGER;ASSIGNOR:CADBURY ADAMS USA LLC;REEL/FRAME:025833/0596

Effective date: 20101222

AS Assignment

Owner name: KRAFT FOODS GLOBAL BRANDS LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRAFT FOODS GLOBAL, INC.;REEL/FRAME:026034/0923

Effective date: 20110101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION