US20050186469A1 - Chemical protection of a lithium surface - Google Patents

Chemical protection of a lithium surface Download PDF

Info

Publication number
US20050186469A1
US20050186469A1 US11/092,781 US9278105A US2005186469A1 US 20050186469 A1 US20050186469 A1 US 20050186469A1 US 9278105 A US9278105 A US 9278105A US 2005186469 A1 US2005186469 A1 US 2005186469A1
Authority
US
United States
Prior art keywords
lithium
protective layer
metal
electrode
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/092,781
Inventor
Lutgard De Jonghe
Steven Visco
Yevgeniy Nimon
A. Sukeshini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplus Battery Co Inc
Original Assignee
Polyplus Battery Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplus Battery Co Inc filed Critical Polyplus Battery Co Inc
Priority to US11/092,781 priority Critical patent/US20050186469A1/en
Assigned to POLYPLUS BATTERY COMPANY reassignment POLYPLUS BATTERY COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUKESHINI, A. MARY, DE JONGHE, LUTGARD, NIMON, YEVGENIY S., VISCO, STEVEN J.
Publication of US20050186469A1 publication Critical patent/US20050186469A1/en
Priority to US11/944,906 priority patent/US20080113261A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3494Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising other salts, e.g. sulfate, phosphate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D3/00Chemical treatment of the metal surfaces prior to coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates generally to surface treatments to facilitate the processing of lithium (or other alkali) metal or alloys, such as for incorporation in electrochemical devices.
  • Lithium is an attractive material for use as an electrode component in electrochemical devices, such as batteries and capacitors, due to its very high energy density and low equivalent weight.
  • lithium is highly reactive in ambient conditions and thus requires special handling during processing.
  • lithium battery manufacture is conducted in inert environments in order to guard against degradation of lithium until it is hermetically sealed within a battery cell container.
  • lithium may detrimentally react with incompatible materials in the processing environment.
  • rechargeable lithium metal batteries have been prone to cell cycling problems.
  • lithium “dendrites” have been found to gradually grow out from the lithium metal electrode, through the electrolyte, and ultimately contact the positive electrode. This causes an internal short circuit in the battery, rendering the battery unusable after a relatively few cycles.
  • lithium electrodes may also grow “mossy” deposits which can dislodge from the negative electrode and thereby reduce the battery's capacity.
  • the electrolyte facing side of the lithium negative electrode be coated with a “protective layer.”
  • a protective layer may be envisioned for producing such a protective layer, but the processing methods by which such layers are produced may not be compatible with the lithium metal.
  • lithium metal surface As a means for protecting lithium electrodes.
  • a bare lithium metal electrode surface is reacted with a nitrogen plasma to form a surface layer of polycrystalline lithium nitride (Li 3 N).
  • This nitride layer conducts lithium ions and at least partially protects the bulk lithium of the negative electrode from a liquid electrolyte.
  • a process for nitriding lithium battery electrodes it is described in R&D Magazine, September 1997, p 65 (describing the work of S. A. Anders, M. Dickinson, and M. Rubin at Lawrence Berkeley National Laboratory).
  • lithium nitride decomposes when exposed to moisture. While lithium metal batteries employ nonaqueous electrolytes, it is very difficult to remove all traces of moisture from the electrolyte. Thus, trace moisture will ultimately compromise the protective properties of the lithium nitride.
  • LiPON lithium phosphorus oxynitride
  • U.S. Pat. No. 5,314,765 (issued to Bates on May 24, 1994) describes a lithium electrode containing a thin layer of sputtered lithium phosphorus oxynitride (“LiPON”) or related material.
  • LiPON is a single ion (lithium ion) conducting glass. It is typically deposited by reactive sputtering of a lithium phosphate in the presence of nitrogen. The nitrogen, however, attacks the lithium surface, thereby making the process of direct deposition of the glass film impossible.
  • potential protective layers may include the deposition of polymer layers that involve solvents or monomers that are incompatible with lithium.
  • the present invention alleviates the problem of reaction of lithium or other alkali or alkaline earth metals with incompatible processing and operating environments by creating a ionically conductive chemical protective layer on the lithium or other reactive metal surface.
  • a chemically produced surface layer can protect lithium metal from reacting with oxygen, nitrogen or moisture in ambient atmosphere thereby allowing the lithium material to be handled outside of a controlled atmosphere, such as a dry room.
  • Production processes involving lithium are thereby very considerably simplified.
  • One example of such a process is the processing of lithium to form negative electrodes for lithium metal batteries.
  • the invention relates to a composition
  • a composition comprising a lithium or other alkali or alkaline earth metal layer having a surface coated with a chemical protective layer, which protective layer is, at least transiently, physically and chemically stable in an ambient air environment and protects the lithium metal from further chemical reaction, which protective layer is covalently bonded to the metal surface, and which protective layer conducts ions of the metal.
  • the metal layer is lithium or a lithium alloy and forms part of a negative battery electrode.
  • the invention in another aspect, relates to a method of providing a chemical protective layer on a surface of a lithium or other alkali or alkaline earth metal.
  • the method includes introducing the lithium or other reactive metal into a reaction chamber, introducing one or more precursors of the protective layer into the reaction chamber and into contact with the metal, and conducting a reaction involving the one or more precursors to form the chemical protective layer on the metal surface, wherein the protective layer is, at least transiently, physically and chemically stable in an ambient air environment and protects the metal surface from further chemical reaction, the protective layer is covalently bonded to the surface, and the protective layer conducts ions of the metal.
  • the chemical protective layer may be a phosphate or a carbonate. It may be formed by a liquid, vapor or gas phase surface treatment with a chemical precursor. It may be formed ex situ or in situ (for example, by incorporation of a protective layer-forming chemical precursor in an electrolyte) in a battery cell. Application of the chemical protective layer may be followed by application of a glassy protective layer, such as LiPON, and facilitates this process.
  • a glassy protective layer such as LiPON
  • FIG. 1 is a block diagram of a lithium/liquid electrolyte/sulfur cell in accordance with one embodiment of this invention.
  • FIG. 2 is a process flow diagram of a method of providing a chemical protective layer on a metal in accordance with a specific embodiment of the present invention.
  • FIG. 3 is a process flow diagram of an in situ method of providing a chemical protective layer on a metal in accordance with a specific embodiment of the present invention.
  • FIG. 4 is a block diagram of a battery cell incorporating a chemically protected negative electrode in accordance with the present invention.
  • FIG. 5A is a graph of impedance at the interface between a Li electrode chemically protected with a lithium phosphate-based film and a solution of 0.5 M LiTFSI in a mixture of DME and 1,3-Dioxolane (9:1) measured after different storage durations.
  • FIG. 5B is a graph of impedance at the interface between an untreated (standard) Li electrode and the solution of 0.5 M LiTFSI salt in the mixture of DME and 1,3-Dioxolane (9:1) measured after different storage durations.
  • FIG. 6 is a graph of impedance at the interface between a Li electrode chemically protected with a lithium phosphate-based film and directly coated with LiPON and a solution of 10 M sulfur as Li 2 S 8 , 0.5 M LiTFSI dissolved in a mixture of DME and 1,3-Dioxolane (9:1).
  • the present invention alleviates the problem of reaction of lithium or other alkali or alkaline earth metals with incompatible processing and operating environments by creating a ionically conductive chemical protective layer on the lithium or other reactive metal surface.
  • a chemically produced surface layer can protect lithium metal from reacting with oxygen, nitrogen or moisture in ambient atmosphere thereby allowing the lithium material to be handled outside of a controlled atmosphere, such as a dry room.
  • Production processes involving lithium are thereby very considerably simplified.
  • One example of such a process is the processing of lithium to form negative electrodes for lithium metal batteries.
  • the present invention will be described herein primarily with reference to a lithium metal battery electrode, a preferred embodiment. However, it should be understood that methods and compositions described may be equally applicable to other alkali metals (e.g., sodium and potassium) or alloys, or alkaline earth metals (e.g., calcium or magnesium) or alloys, as would be apparent to one of skill in the art. Also, the invention may be applicable more generally to lithium metal substrates used in other electrochemical or non-electrochemical devices or compositions.
  • alkali metals e.g., sodium and potassium
  • alkaline earth metals e.g., calcium or magnesium
  • the surface of a metallic negative electrode is modified to include a chemical protective layer on the electrolyte side.
  • This protective layer should be at least transiently physically and chemically stable in an ambient air environment and protect the lithium metal from further chemical reaction, be covalently bonded to the first surface, and conduct lithium ions.
  • the protective layer may preformed (prior to battery fabrication) or formed in situ (e.g., incorporated in electrolyte).
  • the invention is described in terms of certain specific compositions, configurations, and processes to help explain how it may be practiced. The invention is not limited to these specific embodiments.
  • FIG. 1 illustrates a negative electrode 10 in accordance with this invention. Shown in cross-section, negative electrode 10 includes three components; a backing layer 14 , a metal layer 16 and a chemical protective layer 18 .
  • the backing layer 14 includes a first surface 20 a which is exposed to the ambient and a second surface 20 b which intimately contacts the metal layer 16 .
  • Backing layer 14 will typically serve as a current collector.
  • Metal layer 16 includes a first surface 22 a which forms the interface with backing layer 14 . It also includes a second surface 22 b which intimately contacts protective layer 18 .
  • protective layer 18 includes a first surface 24 a which contacts second surface 22 b of metal layer 16 .
  • protective layer 18 includes a second surface 24 b which is exposed to the ambient.
  • the interfaces at surfaces 22 a and 22 b of metal layer 16 should be sufficiently continuous or intimate that moisture, air, electrolyte, and other agents from the ambient are prevented from contacting alkali metal 16 .
  • the interface at first surface 22 a should provide a low resistance electronic contact between backing layer 14 and metal layer 16 .
  • Backing layer 14 is provided on the side of negative electrode 10 which faces away from the electrolyte. It should be electronically conductive and unreactive to moisture, gases in the atmosphere (e.g., oxygen and carbon dioxide), electrolytes and other agents it is likely to encounter prior to, during, and after fabrication of a battery. In addition, backing material 14 should be compatible with the metal in layer 16 at potentials encountered in the battery. In this regard, the material in backing layer 18 should not easily migrate into or otherwise detrimentally effect the electrochemical properties of metal layer 16 . Examples of suitable materials for backing layer 14 include foils or other thin metal layers of copper, stainless steel, nickel, zinc, chromium, and compatible alloys thereof. In addition, such metals may be provided as metallization layers on plastics such as polyethylene terephthalate (PET), polypropylene, polyethylene, polyvinylchloride (PVC), polyolefins, polyimides, etc.
  • PET polyethylene terephthalate
  • PVC polyvinylchloride
  • conductive backing layer 14 is replaced with a non-electronically conductive outer layer such as a second protective layer.
  • a current collector or terminal must still be affixed to the alkali metal electrode. This may take the form of a metal tab or other electronically conductive member that extends beyond the protective layers.
  • metal layer 16 can comprise any metal, any mixture of metal capable of functioning as a negative electrode.
  • the protective layers of this invention will find most use in protecting highly reactive metals such as alkali metals and alkaline earth metals.
  • the materials for the negative electrodes include a metal such lithium or sodium or an alloy of one of these with one or more additional alkali metals (e.g., potassium) and/or alkaline earth metals (e.g., calcium and magnesium).
  • Preferred alloys include lithium aluminum alloys, lithium silicon alloys, lithium tin alloys, and sodium lead alloys (e.g., Na 4 Pb).
  • protective layer 18 should form a continuous and intimate interface with metal layer 16 to protect it from various agents in the environment.
  • most alkali metals are so reactive that very soon after they are produced in pure form, their surfaces react with any moisture, oxygen, and carbon dioxide in the environment.
  • lithium typically develops a thin layer of oxide, hydroxide, carbonate, etc. Unfortunately, such materials may hamper formation of a highly protective glass surface layer.
  • preferred processes of this invention form chemical protective layers
  • protective layers e.g., inorganic ionically conductive glass, such as LiPON
  • inorganic ionically conductive glass such as LiPON
  • the chemical protective layer may be formed directly on the chemically protected alkali metal surfaces immediately after the chemical protective layer is itself formed—possibly in a single vacuum chamber—or in a separate chamber—with the chemical protective layer providing protection to the metal surface during the intervening period.
  • a thin,preferably between about 1 nm and 10 microns, more preferably between 10 nm and 1 micron, even more preferably between 50 nm and 0.1 micron, chemically protective layer on the lithium or other reactive metal surface helps to solve the problem of reaction of the metal surface with incompatible processing environment, in particular, in ambient conditions containing oxygen, nitrogen or moisture, or with gaseous nitrogen during direct deposition of a LiPON glass layer onto lithium by reactive sputtering of lithium phosphate.
  • the chemical protective layer 18 may be composed of any suitable material that reacts with lithium without degrading its surface (i.e., the reaction product does not block lithium ion transport) to form a coating that prevents further reaction.
  • suitable material that reacts with lithium without degrading its surface (i.e., the reaction product does not block lithium ion transport) to form a coating that prevents further reaction.
  • Particularly preferred examples include ionically conductive metal salts such as carbonates, phosphates, metaphosphates, phosphites, dithionates, fluorides, metasilicates and orthosilicates.
  • lithium phosphate or lithium carbonate on lithium or lithium alloy surfaces are used.
  • Such coatings may be permanent or transient, depending on the quality of the lithium surface being coated. For example, a very high quality surface, that is, one that is flat and smooth, will support a longer lasting or permanent coating. A lower quality, rougher surface may only support a coating having a briefer lifetime. However, even a coating providing transient protection (e.g., a few hours or even minutes) may provide a significant advantage in handling and processing highly reactive materials such as lithium. For example, a coating that is effective long enough to move the substrate from one reaction chamber to another or through one or more process steps that would otherwise result in deleterious reaction of the lithium with components of the ambient or process environment is very advantageous.
  • Chemical protective coatings in accordance with the present invention should be applied in a controlled environment, free of materials that would react deleteriously with lithium, such as a processing chamber or glove box, as are well known to those of skill in the art.
  • the coatings may be applied by reaction of the lithium with liquid, vapor or gas phase precursors.
  • the use of vapor or gas phase precursors may be particularly advantageous to facilitate single chamber processing of lithium.
  • a method 200 of providing a chemical protective layer on a metal in accordance with a specific embodiment of the present invention is illustrated and described.
  • An alkali or alkaline earth metal is introduced into a reaction chamber ( 201 ).
  • one or more precursors of the protective layer are introduced into the reaction chamber and into contact with a first surface of the metal ( 203 ).
  • a reaction involving the one or more precursors and the metal is conducted to form the chemical protective layer on the metal surface ( 205 ).
  • the protective layer is ionically conductive and is covalently bonded to the metal surface. It is physically and chemically stable in an ambient air or processing environment so that it protects the metal from further chemical reaction with the ambient air environment.
  • Protective layer precursors may be contacted with reactive metal surfaces in liquid, vapor or gas phase according to various techniques such as are well known in the art.
  • a layer of lithium phosphate may be formed chemically by bringing the lithium surface into contact with anhydrous phosphoric acid in a suitable organic solvent.
  • organic solvents suitable for incorporation of phosphate forming additives such as anhydrous phosphoric acid, are DME, various glymes (e.g., mono-, di- and tri-glymes), ether, and other compatible aprotic solvents, such as THF, commonly know in the field. Concentrations of anhydrous phosphate forming additives may range from 5 ppm to 30 vol % of the solvent.
  • a layer of phosphate may be formed by vapor-based processes such as sputtering or electron beam deposition, organometallic methods, sol-gel methods, or any other methods such as commonly known for forming thin layers on surfaces, such as described further below.
  • a layer of lithium carbonate may be formed by bringing the lithium metal surface into contact with gaseous CO 2 , CO 2 and O 2 mixtures, or liquid organic carbonates, in particular, alkyl carbonates (propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and others).
  • LiPO 3 lithium metaphosphate
  • Li 2 S 2 O 4 lithium dithionate
  • LiF lithium fluoride
  • Li 2 SiO 3 lithium metasilicate
  • Li 2 SiO 4 Lithium orthosilicate
  • a variety of processes may be used to form a chemical protective layer on an active metal (e.g., lithium) surface in accordance with the present invention. These include:
  • protection of the lithium (or other metal) surface may also be improved by incorporation of a chemical protective layer precursor (e.g., phosphoric acid) directly into the electrolyte or catholyte of a lithium anode battery, for example in an amount of about 5 ppm-30 vol.%, preferably from 5 ppm to 5000 ppm, more preferably form 100 to 3000 ppm, even more preferably from 500 to 2000 ppm.
  • a method 300 of providing a chemical protective layer on a negative metal electrode is illustrated and described.
  • An electrochemical structure including a negative electrode comprising an alkali or alkaline earth metal, a positive electrode, a separator disposed between the negative and positive electrodes, and current collectors on the negative and positive electrodes is formed and placed in a battery cell package ( 301 ).
  • a liquid electrolyte or catholyte incorporating one or more precursors of a protective layer is introduced into the battery cell package and into contact with an exposed surface of the negative metal electrode ( 303 ). Then a reaction is conducted involving the one or more precursors to form the chemical protective layer on the exposed surface of the negative metal electrode ( 305 ).
  • In situ protection in batteries and related electrochemical devices of the pre-formed protective surface layer may be further enhanced by incorporating such precursors in the electrolyte of such battery or device.
  • the chemical protective layer of the present invention advantageously provides protection for the lithium from deleterious reactions with incompatible processing environments (for example, ambient air atmospheres containing oxygen, nitrogen (particularly in the case of LiPON deposition) or moisture) by creating a chemical protective layer on the lithium metal surface.
  • incompatible processing environments for example, ambient air atmospheres containing oxygen, nitrogen (particularly in the case of LiPON deposition) or moisture
  • a physical protective layer such as a glass or amorphous material that is conductive to alkali metal ions of the alkali metal comprising layer 16 . Examples of such glassy protective layer materials are provided in U.S. Pat.
  • inorganic ionically conductive glass include phosphorus-based glass, oxide-based glass, sulpher-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium based glass, and glass-ceramic active metal ion conductors, sodium beta-alumina or lithium beta-alumina.
  • ionically conductive protective glasses examples include lithium phosphorus oxynitride (LiPON), Li 3 PO 4 .Li 2 S.SiS 2 , Li 2 S.GeS 2 .Ga 2 S 3 and Li 1-x-y Al x Ti 2-x Si y P 3-y O 12 , LISICON, NASICON, sodium and lithium beta-alumina.
  • LiPON lithium phosphorus oxynitride
  • Li 3 PO 4 .Li 2 S.SiS 2 Li 2 S.GeS 2 .Ga 2 S 3
  • Li 1-x-y Al x Ti 2-x Si y P 3-y O 12 LISICON, NASICON, sodium and lithium beta-alumina.
  • These protective glasses may also act as a solid electrolyte where the metal is used as a negative electrode in a battery cell. Such an electrode may also alternatively be combined with a solid polymer electrolyte.
  • chemical protective layer precursors may be incorporated in the electrolytes of battery cells having negative alkali metal electrodes with glassy protective layers, such as LiPON.
  • glassy protective layers such as LiPON.
  • the presence of such precursors allows for the formation of a “healing” chemical protective layer in the event of a crack or other defect or damage to the glassy protective layer.
  • Cell 400 includes a negative current collector 412 which is formed of an electronically conductive material.
  • the current collector serves to conduct electrons between a cell terminal (not shown) and a negative electrode 414 to which current collector 412 is affixed.
  • Negative electrode 414 is made from lithium or other similarly active metal alloy material, and includes a chemical protective layer 408 formed opposite current collector 412 .
  • Protective layer 408 contacts an electrolyte in an electrolyte region 416 .
  • the electrolyte may be liquid, gel, or solid (e.g., polymer).
  • electrolyte will be referred to as “liquid electrolyte” or just “electrolyte.”
  • An example of a solid electrolyte is polyethylene oxide.
  • An example of gel electrode is polyethylene oxide containing a significant quantity of entrained liquid such as an aprotic solvent.
  • An optional separator in region 416 prevents electronic contact between the positive and negative electrodes.
  • a positive electrode 418 abuts the side of separator layer 416 opposite negative electrode 414 .
  • electrolyte region 416 is an electronic insulator and an ionic conductor
  • positive electrode 418 is ionically coupled to but electronically insulated from negative electrode 414 .
  • the side of positive electrode 418 opposite electrolyte region 416 is affixed to a positive current collector 420 .
  • Current collector 420 provides an electronic connection between a positive cell terminal (not shown) and positive electrode 418 .
  • the current collectors are sheets of conductive material such as aluminum or stainless steel.
  • the positive electrode may be attached to the current collector by directly forming it on the current collector or by pressing a pre-formed electrode onto the current collector. Positive electrode mixtures formed directly onto current collectors preferably have good adhesion. Positive electrode films can also be cast or pressed onto expanded metal sheets. Alternately, metal leads can be attached to the positive electrode by crimp-sealing, metal spraying, sputtering or other techniques known to those skilled in the art. Some positive electrode can be pressed together with the electrolyte separator sandwiched between the electrodes. In order to provide good electrical conductivity between the positive electrode and a metal container, an electronically conductive matrix of, for example, carbon or aluminum powders or fibers or metal mesh may be used.
  • a separator may occupy all or some part of electrolyte compartment 416 .
  • it will be a highly porous/permeable material such as a felt, paper, or microporous plastic film. It should also resist attack by the electrolyte and other cell components under the potentials experienced within the cell.
  • suitable separators include glass, plastic, ceramic, and porous membranes thereof among other separators known to those in the art.
  • the separator is Celgard 2300 or Celgard 2400 available from Hoechst Celanese of Dallas, Tex.
  • a solid electrolyte or glassy protective layer such as LiPON, on the negative electrode prevents the positive and negative electrodes from contacting one another and serves the function of a separator.
  • the protective layer should be tough. It may be relatively thick and made from a material that resists cracking and abrasion.
  • the cell may be characterized as a “thin film” or “thin layer” cell.
  • Such cells possess relatively thin electrodes and electrolyte separators.
  • the positive electrode is no thicker than about 300 ⁇ m, more preferably no thicker than about 150 ⁇ m, and most preferably no thicker than about 100 ⁇ m.
  • the negative electrode preferably is no thicker than about 100 ⁇ m and more preferably no thicker than about 100 ⁇ m.
  • the electrolyte separator (when in a fully assembled cell) is no thicker than about 100 ⁇ m and more preferably no thicker than about 40 ⁇ m.
  • the sulfur positive electrodes preferably include in their theoretically fully charged state sulfur and an electronically conductive material. At some state of discharge, the positive electrode will include one or more polysulfides and possibly sulfides, which are polysulfides and sulfides of the metal or metals found in the negative electrode. In some embodiments, the fully charged electrode may also include some amount of such sulfides and/or polysulfides.
  • the positive electrode is fabricated such that it permits electrons to easily move between the sulfur and the electronically conductive material, and permits ions to move between the electrolyte and the sulfur. Thus, high sulfur utilization is realized, even after many cycles.
  • the positive electrode should include an electronic conductor (e.g., carbon) and an ionic conductor (e.g., polyethylene oxide) in addition to the sulfur electroactive material.
  • the positive electrode may require only an electronic conductor in addition to the sulfur electroactive material. The electrolyte itself permeates the electrode and acts as the ionic conductor.
  • the battery design may assume two formats: (1) all active sulfur (elemental sulfur, polysulfides and sulfides of the positive electrode) is dissolved in electrolyte solution (one phase positive electrode) and (2) the active sulfur is distributed between a solid phase (sometimes precipitated) and a liquid phase.
  • the lithium-sulfur battery cells in accordance with this invention include a liquid electrolyte
  • that electrolyte should keep many or all of sulfur discharge products in solution and therefore available for electrochemical reaction.
  • they preferably solubilize lithium sulfide and relatively low molecular weight polysulfides.
  • the electrolyte solvent has repeating ethoxy units (CH 2 CH 2 O). This may be a glyme or related compound.
  • Such solvents are believed to strongly coordinate lithium and thereby increase the solubility of discharge products of lithium-sulfur batteries.
  • Suitable liquid electrolyte solvents are described in more detail in U.S. patent application Ser. No. 08/948,969, previously incorporated by reference.
  • electrolyte solvents of this invention may also include cosolvents.
  • additional cosolvents include sulfolane, dimethyl sulfone, dialkyl carbonates, tetrahydrofuran (THF), dioxolane, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), butyrolactone, N-methylpyrrolidinone, dimethoxyethane (DME or glyme), hexamethylphosphoramide, pyridine, N,N-diethylacetamide, N,N-diethylformamide, dimethylsulfoxide, tetramethylurea, N,N-dimethylacetamide, N,N-dimethylformamide, tributylphosphate, trimethylphosphate, N,N,N′,N′-tetraethylsulfamide, tetraethylenediamine, tetramethylpropylenediamine, penta
  • the protective layers employed in this invention may allow the use of electrolyte solvents that work well with sulfides and polysulfides but may attack lithium.
  • solvents in this category include amine solvents such as diethyl amine, ethylene diamine, tributyl amine, amides such as dimethyl acetamide and hexamethyl phosphoramide (HMPA), etc.
  • Exemplary but optional electrolyte salts for the battery cells incorporating the electrolyte solvents of this invention include, for example, lithium trifluoromethanesulfonimide (LiN(CF 3 SO 2 ) 2 ), lithium triflate (LiCF 3 SO 3 ), lithium perchlorate (LiClO 4 ), LiPF 6 , LiBF 4 , and LiAsF 6 , as well as corresponding salts depending on the choice of metal for the negative electrode, for example, the corresponding sodium salts.
  • the battery cells of this invention may include a solid-state electrolyte.
  • An exemplary solid-state electrolyte separator is a ceramic or glass electrolyte separator which contains essentially no liquid.
  • Specific examples of solid-state ceramic electrolyte separators include beta alumina-type materials such as sodium beta alumina, NasiconTM or LisiconTM glass or ceramic.
  • Polymeric electrolytes, porous membranes, or combinations thereof are exemplary of a type of electrolyte separator to which an aprotic organic plasticizer liquid can be added according to this invention for the formation of a solid-state electrolyte separator generally containing less than 20% liquid.
  • Suitable polymeric electrolytes include polyethers, polyimines, polythioethers, polyphosphazenes, polymer blends, and the like and mixtures and copolymers thereof in which an appropriate electrolyte salt has optionally been added.
  • Preferred polyethers are polyalkylene oxides, more preferably, polyethylene oxide.
  • the electrolyte separator In the gel-state, the electrolyte separator generally contains at least 20% (weight percentage) of an organic liquid (see the above listed liquid electrolytes for examples), with the liquid being immobilized by the inclusion of a gelling agent.
  • gelling agents such as polyacrylonitrile, polyvinylidene difluoride (PVDF), or polyethylene oxide (PEO), can be used.
  • the fully charged state of some cells of this invention need not require that the positive electrode be entirely converted to elemental sulfur. It may be possible in some cases to have the positive electrode be a highly oxidized form of lithium polysulfide, for example, as in Li 2 S x where x is five or greater.
  • the fully charged positive electrode may also include a mixture of such polysulfides together with elemental sulfur and possibly even some sulfide. It should be understood that during charge, the positive electrode would generally not be of uniform composition. That is, there will be some amount of sulfide, sulfur, and an assortment of polysulfides with various values of x. Also, while the electrochemically active material includes some substantial fraction of “sulfur,” this does not mean that the positive electrode must rely exclusively upon sulfur for its electrochemical energy.
  • the electronic conductor in the positive electrode preferably forms an interconnected matrix so that there is always a clear current path from the positive current collector to any position in the electronic conductor. This provides high availability of electroactive sites and maintained accessibility to charge carriers over repeated cycling. Often such electronic conductors will be fibrous materials such as a felt or paper. Examples of suitable materials include a carbon paper from Lydall Technical Papers Corporation of Rochester, N.H. and a graphite felt available from Electrosynthesis Company of Lancaster, N.Y.
  • the sulfur is preferably uniformly dispersed in a composite matrix containing an electronically conductive material.
  • Preferred weight ratios of sulfur to electronic conductor in the sulfur-based positive electrodes of this invention in a fully charged state are at most about 50:1, more preferably at most about 10:1, and most preferably at most about 5:1.
  • the sulfur considered in these ratios includes both precipitated or solid phase sulfur as well as sulfur dissolved in the electrolyte.
  • the per weight ratio of electronic conductor to binder is at least about 1:1 and more preferably at least about 2:1.
  • the composite sulfur-based positive electrode may further optionally include performance enhancing additives such as binders, electrocatalysts (e.g., phthalocyanines, metallocenes, brilliant yellow (Reg. No. 3051-11-4 from Aldrich Catalog Handbook of Fine Chemicals; Aldrich Chemical Company, Inc., 1001 West Saint Paul Avenue, Milwaukee, Wis.) among other electrocatalysts), surfactants, dispersants (for example, to improve the homogeneity of the electrode's ingredients), and protective layer forming additives to protect a lithium negative electrode (e.g., organosulfur compounds, phosphates, iodides, iodine, metal sulfides, nitrides, and fluorides).
  • performance enhancing additives such as binders, electrocatalysts (e.g., phthalocyanines, metallocenes, brilliant yellow (Reg. No. 3051-11-4 from Aldrich Catalog Handbook of Fine Chemicals; Aldrich Chemical Company
  • Preferred binders (1) do not swell in the liquid electrolyte and (2) allow partial but not complete wetting of the sulfur by the liquid electrolyte.
  • suitable binders include Kynar available from Elf Atochem of Philadelphia, Pa., polytetrafluoroethylene dispersions, and polyethylene oxide (of about 900 k molecular weight for example).
  • Other additives include electroactive organodisulfide compounds employing a disulfide bond in the compound's backbone. Electrochemical energy is generated by reversibly breaking the disulfide bonds in the compound's backbone. During charge, the disulfide bonds are reformed. Examples of organodisulfide compounds suitable for use with this invention are presented in U.S. Pat. Nos. 4,833,048 and 4,917,974 issued to De Jonghe et al. and U.S. Pat. No. 5,162,175 issued to Visco et al.
  • the Li electrode surface (125 micron foil from Cyprus Foote) was treated with dry DME containing anhydrous phosphoric acid (1500 ppm) for a treatment time of 45 seconds.
  • Surface treatment was conducted by coating of the Li foil pressed onto SS current collector with this solution followed by DME evaporation. About 1.0 ml of the solution was put on Li surface. After Li reaction with phosphoric acid and formation of lithium phosphate layer on the Li surface, DME was allowed to evaporate at room temperature. Residual unreacted phosphoric acid on the surface was rinsed out by a large volume of DME.
  • Tyvek fabric (1509 B). All described operations were conducted in an argon-filled glove box.
  • Electrochemical cells containing a Li electrode coated with a lithium phosphate chemical protective underlayer were assembled and tested.
  • the impedance of the interface between the Li electrode and a solution of 0.5 M LiTFSI in the mixture of DME and 1,3-Dioxolane (9:1) was measured after different storage periods.
  • the electrode pretreated with phosphoric acid exhibited relatively small and stable impedance.
  • the interface impedance for cells having an untreated Li electrode grew rapidly during storage. ( FIG. 5B ) This indicates that the formed lithium phosphate surface layer can protect the Li electrode from reacting with the active components of the electrolyte.
  • Li electrode surface (125 um foil from Cyprus Foote) was treated with dry DME containing anhydrous phosphoric acid as described in Example 1.
  • Li foil was transferred to the sputtering chamber for reactive RF sputtering of LiPON glass layer using lithium phosphate target of 8 inch diameter in the presence of nitrogen.
  • RF power was 100 W, and duration of sputtering was about 1.5 hrs.
  • No evidence of reaction between nitrogen and Li and formation of black lithium nitride reaction product was observed and the LiPON layer was successfully deposited onto Li surface.
  • Li pre-treatment with acid was not used, the Li surface was attacked with nitrogen and almost immediately covered with black lithium nitride film. Therefore, Li chemical treatment with phosphoric acid creates a protective underlayer that allows for direct reactive sputtering of LiPON onto Li.
  • Li/C electrochemical cells containing a Li electrode coated with a lithium phosphate underlayer and the LiPON film produced as described above were assembled and tested.
  • the impedance of the interface between the Li electrode and 10 M sulfur as Li 2 S 8 dissolved in a mixture of DME and 1,3-Dioxolane (9:1) was measured after different periods of storage.
  • the electrode pretreated with phosphoric acid and coated with lithium phosphate before LiPON sputtering exhibits relatively low resistance of about 225-250 Ohm*cm 2 . After cell storage the interface resistance was practically the same as for the freshly made cell. This indicates that the formed surface film can protect the Li electrode from reacting with the dissolved lithium polysulfides.
  • the Li electrode (125 micron foil from Cyprus Foote) was transferred to the sputtering chamber and lithium phosphate was sputtered onto the Li surface.
  • Sputtering was conducted in an atmosphere of pure Ar at RF power 100 W.
  • nitrogen was introduced into the chamber and the LiPON layer about 0.1 micron thick was sputtered onto the Li surface. No evidence of reaction between nitrogen and Li and formation of black lithium nitride reaction product was observed. This demonstrates that Li surface coating with dense lithium phosphate underlayer protects Li surface from nitrogen attack and allows for direct LiPON sputtering onto Li.
  • the Li electrode surface (125 um foil from Cyprus Foote) was treated with dry DME containing anhydrous phosphoric acid as described in Example 1, then the Li electrode was transferred to the sputtering chamber and lithium phosphate was sputtered onto the Li surface in an atmosphere of pure Ar exactly as described in Example 3. After that Ar was replaced with nitrogen in the sputtering chamber and the LiP ON layer about 0.1 micron thick was sputtered onto the Li surface at 100 W. No evidence of reaction between nitrogen and Li and formation of lithium nitride was observed except for the edges of the Li foil that became black. These edges were coated with the tape and were not exposed during Li treatment with DME containing anhydrous phosphoric acid. As a result, nitrogen reacted with Li along the edges during lithium phosphate sputtering in nitrogen atmosphere.
  • the desired catholytes were prepared by addition of appropriate amounts (500 and 1500 ppm) of anhydrous phosphoric acid to the solution of 10 M sulfur as Li 2 S 8 in the mixture of DME and 1,3-Dioxolane (9:1). It was shown that the presence of phosphoric acid did not affect the intrinsic stability of the electrolyte system. In particular it did not initiate polymerization of Dioxolane.
  • Li/C electrochemical cells containing plain Li electrode and the catholytes with and without phosphoric acid were assembled and tested. It was found that the interface impedance for the cells with phosphoric acid additives was small and stable. At the same time the interface impedance for the cells without these additives grew rapidly during storage. This shows that protection of Li surface can be improved by incorporation of phosphoric acid that can react with Li surface forming a protective layer based on lithium phosphate. In the case of Li electrodes coated with the LiP ON layer, phosphoric acid may effectively heal cracks which form in the glassy layer during cycling.
  • the Li electrode surface (125 ⁇ m foil from Cyprus Foote pressed onto SS current collector) was treated with dry gaseous CO 2 (99.99% purity from Matheson Tri-Gas Inc.). Surface treatment was conducted in the specially designed SS reactor. This reactor was loaded with the Li electrodes in the Ar-filled dry box, hermetically sealed, and taken out of the box. The Li electrode surface was treated with CO 2 by passing the gas through the reactor for about 30 minutes. During this treatment positive pressure of about 15 psi was maintained inside the reactor. After Li reaction with CO 2 and formation of lithium carbonate layer on the Li surface, the Li electrodes were transferred to the sputtering chamber.
  • dry gaseous CO 2 99.99% purity from Matheson Tri-Gas Inc.
  • Reactive RF sputtering of LiPON glass layer was performed in the presence of nitrogen by use lithium phosphate target of 8 inch diameter.
  • RF power was 200 W, and duration of sputtering was about 13 hrs.
  • the Li substrates were rotated during sputtering in order to improve uniformity of the LiPON coating. No evidence of reaction between nitrogen and Li and formation of black lithium nitride reaction product was observed and the LiPON layer was successfully deposited onto Li surface.
  • Li pre-treatment with CO 2 was not used, the Li surface was attacked with nitrogen and almost immediately covered with black lithium nitride film. Therefore, Li chemical treatment with gaseous CO 2 creates a protective underlayer that allows for direct reactive sputtering of LiPON onto Li.
  • the chemically protected metal electrodes of the present invention have the advantage that they can be handled in ambient atmosphere without deterioration of the metal electrode surface, and can have additional films deposited onto them in atmospheres that would typically attack the metal surface if it were not for the protective film described herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed are compositions and methods for alleviating the problem of reaction of lithium or other alkali or alkaline earth metals with incompatible processing and operating environments by creating a ionically conductive chemical protective layer on the lithium or other reactive metal surface. Such a chemically produced surface layer can protect lithium metal from reacting with oxygen, nitrogen or moisture in ambient atmosphere thereby allowing the lithium material to be handled outside of a controlled atmosphere, such as a dry room. Production processes involving lithium are thereby very considerably simplified. One example of such a process is the processing of lithium to form negative electrodes for lithium metal batteries.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 10/327,682, filed Dec. 20, 2002, which claims priority to U.S. Provisional Patent Application No. 60/342,326 filed Dec. 21, 2001, titled CHEMICAL PROTECTION OF A LITHIUM SURFACE. These applications are incorporated herein by reference for all purposes.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to surface treatments to facilitate the processing of lithium (or other alkali) metal or alloys, such as for incorporation in electrochemical devices.
  • 2. Description of Related Art
  • Lithium is an attractive material for use as an electrode component in electrochemical devices, such as batteries and capacitors, due to its very high energy density and low equivalent weight. However, lithium is highly reactive in ambient conditions and thus requires special handling during processing. Typically, lithium battery manufacture is conducted in inert environments in order to guard against degradation of lithium until it is hermetically sealed within a battery cell container.
  • Even with these precautions, lithium may detrimentally react with incompatible materials in the processing environment. For example, rechargeable lithium metal batteries have been prone to cell cycling problems. On repeated charge and discharge cycles, lithium “dendrites” have been found to gradually grow out from the lithium metal electrode, through the electrolyte, and ultimately contact the positive electrode. This causes an internal short circuit in the battery, rendering the battery unusable after a relatively few cycles. While cycling, lithium electrodes may also grow “mossy” deposits which can dislodge from the negative electrode and thereby reduce the battery's capacity. To address these problems, some researchers have proposed that the electrolyte facing side of the lithium negative electrode be coated with a “protective layer.” Several methods may be envisioned for producing such a protective layer, but the processing methods by which such layers are produced may not be compatible with the lithium metal.
  • Some research has focused on “nitridation” of the lithium metal surface as a means for protecting lithium electrodes. In such process, a bare lithium metal electrode surface is reacted with a nitrogen plasma to form a surface layer of polycrystalline lithium nitride (Li3N). This nitride layer conducts lithium ions and at least partially protects the bulk lithium of the negative electrode from a liquid electrolyte. A process for nitriding lithium battery electrodes it is described in R&D Magazine, September 1997, p 65 (describing the work of S. A. Anders, M. Dickinson, and M. Rubin at Lawrence Berkeley National Laboratory). Unfortunately, in addition to structural and electrical problems with this approach, lithium nitride decomposes when exposed to moisture. While lithium metal batteries employ nonaqueous electrolytes, it is very difficult to remove all traces of moisture from the electrolyte. Thus, trace moisture will ultimately compromise the protective properties of the lithium nitride.
  • Other pre-formed lithium protective layers have been contemplated. Most notably, U.S. Pat. No. 5,314,765 (issued to Bates on May 24, 1994) describes a lithium electrode containing a thin layer of sputtered lithium phosphorus oxynitride (“LiPON”) or related material. LiPON is a single ion (lithium ion) conducting glass. It is typically deposited by reactive sputtering of a lithium phosphate in the presence of nitrogen. The nitrogen, however, attacks the lithium surface, thereby making the process of direct deposition of the glass film impossible.
  • Other examples of potential protective layers may include the deposition of polymer layers that involve solvents or monomers that are incompatible with lithium.
  • Accordingly, it would facilitate handling of metallic lithium, lithium alloy or other alkali metal or metal alloys to provide an adequate surface protective layer. In particular fabrication processing and successful operation of alkali metals as battery electrodes would be enhanced by the provision of such a protective layer.
  • SUMMARY OF THE INVENTION
  • The present invention alleviates the problem of reaction of lithium or other alkali or alkaline earth metals with incompatible processing and operating environments by creating a ionically conductive chemical protective layer on the lithium or other reactive metal surface. Such a chemically produced surface layer can protect lithium metal from reacting with oxygen, nitrogen or moisture in ambient atmosphere thereby allowing the lithium material to be handled outside of a controlled atmosphere, such as a dry room. Production processes involving lithium are thereby very considerably simplified. One example of such a process is the processing of lithium to form negative electrodes for lithium metal batteries.
  • In one aspect, the invention relates to a composition comprising a lithium or other alkali or alkaline earth metal layer having a surface coated with a chemical protective layer, which protective layer is, at least transiently, physically and chemically stable in an ambient air environment and protects the lithium metal from further chemical reaction, which protective layer is covalently bonded to the metal surface, and which protective layer conducts ions of the metal. In a preferred embodiment, the metal layer is lithium or a lithium alloy and forms part of a negative battery electrode.
  • In another aspect, the invention relates to a method of providing a chemical protective layer on a surface of a lithium or other alkali or alkaline earth metal. The method includes introducing the lithium or other reactive metal into a reaction chamber, introducing one or more precursors of the protective layer into the reaction chamber and into contact with the metal, and conducting a reaction involving the one or more precursors to form the chemical protective layer on the metal surface, wherein the protective layer is, at least transiently, physically and chemically stable in an ambient air environment and protects the metal surface from further chemical reaction, the protective layer is covalently bonded to the surface, and the protective layer conducts ions of the metal.
  • In preferred embodiments, the chemical protective layer may be a phosphate or a carbonate. It may be formed by a liquid, vapor or gas phase surface treatment with a chemical precursor. It may be formed ex situ or in situ (for example, by incorporation of a protective layer-forming chemical precursor in an electrolyte) in a battery cell. Application of the chemical protective layer may be followed by application of a glassy protective layer, such as LiPON, and facilitates this process.
  • These and other features of the invention will further described below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a lithium/liquid electrolyte/sulfur cell in accordance with one embodiment of this invention.
  • FIG. 2 is a process flow diagram of a method of providing a chemical protective layer on a metal in accordance with a specific embodiment of the present invention.
  • FIG. 3 is a process flow diagram of an in situ method of providing a chemical protective layer on a metal in accordance with a specific embodiment of the present invention.
  • FIG. 4 is a block diagram of a battery cell incorporating a chemically protected negative electrode in accordance with the present invention.
  • FIG. 5A is a graph of impedance at the interface between a Li electrode chemically protected with a lithium phosphate-based film and a solution of 0.5 M LiTFSI in a mixture of DME and 1,3-Dioxolane (9:1) measured after different storage durations.
  • FIG. 5B is a graph of impedance at the interface between an untreated (standard) Li electrode and the solution of 0.5 M LiTFSI salt in the mixture of DME and 1,3-Dioxolane (9:1) measured after different storage durations.
  • FIG. 6 is a graph of impedance at the interface between a Li electrode chemically protected with a lithium phosphate-based film and directly coated with LiPON and a solution of 10 M sulfur as Li2S8, 0.5 M LiTFSI dissolved in a mixture of DME and 1,3-Dioxolane (9:1).
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • Reference will now be made in detail to specific embodiments of the invention. Examples of the specific embodiments are illustrated in the accompanying drawings. While the invention will be described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to such specific embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
  • The present invention alleviates the problem of reaction of lithium or other alkali or alkaline earth metals with incompatible processing and operating environments by creating a ionically conductive chemical protective layer on the lithium or other reactive metal surface. Such a chemically produced surface layer can protect lithium metal from reacting with oxygen, nitrogen or moisture in ambient atmosphere thereby allowing the lithium material to be handled outside of a controlled atmosphere, such as a dry room. Production processes involving lithium are thereby very considerably simplified. One example of such a process is the processing of lithium to form negative electrodes for lithium metal batteries.
  • The present invention will be described herein primarily with reference to a lithium metal battery electrode, a preferred embodiment. However, it should be understood that methods and compositions described may be equally applicable to other alkali metals (e.g., sodium and potassium) or alloys, or alkaline earth metals (e.g., calcium or magnesium) or alloys, as would be apparent to one of skill in the art. Also, the invention may be applicable more generally to lithium metal substrates used in other electrochemical or non-electrochemical devices or compositions.
  • Techniques and equipment for forming and coating lithium metal substrates, for example for use as negative battery electrodes, are known in the art and will not be further described here in order not to unnecessarily obscure the present invention. For example, U.S. Pat. No. 6,025,094, entitled PROTECTIVE COATINGS FOR NEGATIVE ELECTRODES, to Visco et al., incorporated by reference herein in its entirety and for all purposes, describes lithium metal battery electrode and cell fabrication techniques application to implement the present invention
  • General Electrode Structure
  • In accordance with the present invention, the surface of a metallic negative electrode is modified to include a chemical protective layer on the electrolyte side. This protective layer should be at least transiently physically and chemically stable in an ambient air environment and protect the lithium metal from further chemical reaction, be covalently bonded to the first surface, and conduct lithium ions. The protective layer may preformed (prior to battery fabrication) or formed in situ (e.g., incorporated in electrolyte). In the description that follows, the invention is described in terms of certain specific compositions, configurations, and processes to help explain how it may be practiced. The invention is not limited to these specific embodiments.
  • FIG. 1 illustrates a negative electrode 10 in accordance with this invention. Shown in cross-section, negative electrode 10 includes three components; a backing layer 14, a metal layer 16 and a chemical protective layer 18. The backing layer 14 includes a first surface 20 a which is exposed to the ambient and a second surface 20 b which intimately contacts the metal layer 16. Backing layer 14 will typically serve as a current collector. Metal layer 16 includes a first surface 22 a which forms the interface with backing layer 14. It also includes a second surface 22 b which intimately contacts protective layer 18. In turn, protective layer 18 includes a first surface 24a which contacts second surface 22 b of metal layer 16. Finally, protective layer 18 includes a second surface 24 b which is exposed to the ambient. The interfaces at surfaces 22 a and 22 b of metal layer 16 should be sufficiently continuous or intimate that moisture, air, electrolyte, and other agents from the ambient are prevented from contacting alkali metal 16. In addition, the interface at first surface 22 a should provide a low resistance electronic contact between backing layer 14 and metal layer 16.
  • Backing layer 14 is provided on the side of negative electrode 10 which faces away from the electrolyte. It should be electronically conductive and unreactive to moisture, gases in the atmosphere (e.g., oxygen and carbon dioxide), electrolytes and other agents it is likely to encounter prior to, during, and after fabrication of a battery. In addition, backing material 14 should be compatible with the metal in layer 16 at potentials encountered in the battery. In this regard, the material in backing layer 18 should not easily migrate into or otherwise detrimentally effect the electrochemical properties of metal layer 16. Examples of suitable materials for backing layer 14 include foils or other thin metal layers of copper, stainless steel, nickel, zinc, chromium, and compatible alloys thereof. In addition, such metals may be provided as metallization layers on plastics such as polyethylene terephthalate (PET), polypropylene, polyethylene, polyvinylchloride (PVC), polyolefins, polyimides, etc.
  • In an alternative embodiment, conductive backing layer 14 is replaced with a non-electronically conductive outer layer such as a second protective layer. In this embodiment, a current collector or terminal must still be affixed to the alkali metal electrode. This may take the form of a metal tab or other electronically conductive member that extends beyond the protective layers.
  • Most generally, metal layer 16 can comprise any metal, any mixture of metal capable of functioning as a negative electrode. However, the protective layers of this invention will find most use in protecting highly reactive metals such as alkali metals and alkaline earth metals.
  • In one preferred embodiment, the materials for the negative electrodes include a metal such lithium or sodium or an alloy of one of these with one or more additional alkali metals (e.g., potassium) and/or alkaline earth metals (e.g., calcium and magnesium). Preferred alloys include lithium aluminum alloys, lithium silicon alloys, lithium tin alloys, and sodium lead alloys (e.g., Na4Pb).
  • As indicated above, protective layer 18 should form a continuous and intimate interface with metal layer 16 to protect it from various agents in the environment. Unfortunately, most alkali metals are so reactive that very soon after they are produced in pure form, their surfaces react with any moisture, oxygen, and carbon dioxide in the environment. Even when handled in a dry box, lithium typically develops a thin layer of oxide, hydroxide, carbonate, etc. Unfortunately, such materials may hamper formation of a highly protective glass surface layer. As will be explained in more detail below, preferred processes of this invention form chemical protective layers
  • Thereafter, other protective layers (e.g., inorganic ionically conductive glass, such as LiPON) may be formed directly on the chemically protected alkali metal surfaces immediately after the chemical protective layer is itself formed—possibly in a single vacuum chamber—or in a separate chamber—with the chemical protective layer providing protection to the metal surface during the intervening period.
  • Chemical Protective Layer Composition
  • Creation of a thin,preferably between about 1 nm and 10 microns, more preferably between 10 nm and 1 micron, even more preferably between 50 nm and 0.1 micron, chemically protective layer on the lithium or other reactive metal surface helps to solve the problem of reaction of the metal surface with incompatible processing environment, in particular, in ambient conditions containing oxygen, nitrogen or moisture, or with gaseous nitrogen during direct deposition of a LiPON glass layer onto lithium by reactive sputtering of lithium phosphate.
  • The chemical protective layer 18 may be composed of any suitable material that reacts with lithium without degrading its surface (i.e., the reaction product does not block lithium ion transport) to form a coating that prevents further reaction. Particularly preferred examples include ionically conductive metal salts such as carbonates, phosphates, metaphosphates, phosphites, dithionates, fluorides, metasilicates and orthosilicates. In specific embodiments, lithium phosphate or lithium carbonate on lithium or lithium alloy surfaces are used.
  • Such coatings may be permanent or transient, depending on the quality of the lithium surface being coated. For example, a very high quality surface, that is, one that is flat and smooth, will support a longer lasting or permanent coating. A lower quality, rougher surface may only support a coating having a briefer lifetime. However, even a coating providing transient protection (e.g., a few hours or even minutes) may provide a significant advantage in handling and processing highly reactive materials such as lithium. For example, a coating that is effective long enough to move the substrate from one reaction chamber to another or through one or more process steps that would otherwise result in deleterious reaction of the lithium with components of the ambient or process environment is very advantageous.
  • Chemical protective coatings in accordance with the present invention should be applied in a controlled environment, free of materials that would react deleteriously with lithium, such as a processing chamber or glove box, as are well known to those of skill in the art. The coatings may be applied by reaction of the lithium with liquid, vapor or gas phase precursors. The use of vapor or gas phase precursors may be particularly advantageous to facilitate single chamber processing of lithium.
  • Referring to the flow chart of FIG. 2, a method 200 of providing a chemical protective layer on a metal in accordance with a specific embodiment of the present invention is illustrated and described. An alkali or alkaline earth metal is introduced into a reaction chamber (201). Then, one or more precursors of the protective layer are introduced into the reaction chamber and into contact with a first surface of the metal (203). A reaction involving the one or more precursors and the metal is conducted to form the chemical protective layer on the metal surface (205). The protective layer is ionically conductive and is covalently bonded to the metal surface. It is physically and chemically stable in an ambient air or processing environment so that it protects the metal from further chemical reaction with the ambient air environment.
  • Protective layer precursors may be contacted with reactive metal surfaces in liquid, vapor or gas phase according to various techniques such as are well known in the art.
  • In one specific embodiment, a layer of lithium phosphate may be formed chemically by bringing the lithium surface into contact with anhydrous phosphoric acid in a suitable organic solvent. Examples of organic solvents suitable for incorporation of phosphate forming additives such as anhydrous phosphoric acid, are DME, various glymes (e.g., mono-, di- and tri-glymes), ether, and other compatible aprotic solvents, such as THF, commonly know in the field. Concentrations of anhydrous phosphate forming additives may range from 5 ppm to 30 vol % of the solvent.
  • Alternatively, a layer of phosphate may be formed by vapor-based processes such as sputtering or electron beam deposition, organometallic methods, sol-gel methods, or any other methods such as commonly known for forming thin layers on surfaces, such as described further below. In other embodiments, a layer of lithium carbonate may be formed by bringing the lithium metal surface into contact with gaseous CO2, CO2 and O2 mixtures, or liquid organic carbonates, in particular, alkyl carbonates (propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and others).
  • Other possible protective layers include lithium metaphosphate (LiPO3), lithium dithionate (Li2S2O4), lithium fluoride (LiF), lithium metasilicate (Li2SiO3), and Lithium orthosilicate (Li2SiO4), which could be reacted with the lithium (or other) metal surface in the acid form, (e.g., HF+lithium metal=lithium metal-LiF+H2 evolution).
  • A variety of processes may be used to form a chemical protective layer on an active metal (e.g., lithium) surface in accordance with the present invention. These include:
      • Vapor phase processes, in which a gas (e.g., CO2 or SO2 (plus small amount of O2)) is introduced into a chamber containing a lithium metal foil. The lithium surface reacts with the CO2 to form Li2CO3, or with SO2 to form Li2SO4 or Li2S2O4. For a phosphorus-based film, red phosphorus may be sublimed in the presence of oxygen to form lithium phosphate on the surface of the lithium;
      • Organometallic processes in which an organic molecule containing phosphorus, sulfur, fluorine, etc. are dissolved in an organic solvent. The solution is contacted with lithium in a suitable processing environment and allowed to react with the lithium to form LiF, Li3PO4, Li2SO4, etc. (e.g., MeO3P+Li
        Figure US20050186469A1-20050825-P00900
        Li3PO4+MeOH);
      • Sol-gel processes in which a glass and/or ceramic precursor dissolved in an organic solvent, such as tetraethylorthosilicate (TEOS) in DME, is aerosol-sprayed, dip-coated, or spun onto a lithium surface, allowing reaction with the lithium surface to form an ionically conductive lithium silicate glass (e.g., Li4SiO4);
      • Sputtering processes in which a protective layer precursor is sputtered onto to a lithium surface in an inert sputtering environment, such as provided by pure argon, to form the protective layer (e.g., Li3P04 or LF); and
      • Electron beam processes in which an e-beam is used to evaporate a protective layer precursor to form the protective layer (e.g., Li3P04 or LF).
  • Further, as noted above, protection of the lithium (or other metal) surface may also be improved by incorporation of a chemical protective layer precursor (e.g., phosphoric acid) directly into the electrolyte or catholyte of a lithium anode battery, for example in an amount of about 5 ppm-30 vol.%, preferably from 5 ppm to 5000 ppm, more preferably form 100 to 3000 ppm, even more preferably from 500 to 2000 ppm. Referring to FIG. 3, a method 300 of providing a chemical protective layer on a negative metal electrode is illustrated and described. An electrochemical structure including a negative electrode comprising an alkali or alkaline earth metal, a positive electrode, a separator disposed between the negative and positive electrodes, and current collectors on the negative and positive electrodes is formed and placed in a battery cell package (301). A liquid electrolyte or catholyte incorporating one or more precursors of a protective layer is introduced into the battery cell package and into contact with an exposed surface of the negative metal electrode (303). Then a reaction is conducted involving the one or more precursors to form the chemical protective layer on the exposed surface of the negative metal electrode (305).
  • In situ protection in batteries and related electrochemical devices of the pre-formed protective surface layer may be further enhanced by incorporating such precursors in the electrolyte of such battery or device.
  • Glassy Protective Layer
  • Where the invention is implemented as a negative electrode for a lithium (or other alkali) metal battery it may be desirable to provide a further physical protective coating on the electrode. As noted above, the chemical protective layer of the present invention advantageously provides protection for the lithium from deleterious reactions with incompatible processing environments (for example, ambient air atmospheres containing oxygen, nitrogen (particularly in the case of LiPON deposition) or moisture) by creating a chemical protective layer on the lithium metal surface. This allows the lithium material to be handled outside of a controlled atmosphere, such as a dry room, facilitating application of a physical protective layer, such as a glass or amorphous material that is conductive to alkali metal ions of the alkali metal comprising layer 16. Examples of such glassy protective layer materials are provided in U.S. Pat. No. 6,025,094, previously incorporated by reference. Preferred types of inorganic ionically conductive glass include phosphorus-based glass, oxide-based glass, sulpher-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium based glass, and glass-ceramic active metal ion conductors, sodium beta-alumina or lithium beta-alumina. Examples of suitable ionically conductive protective glasses include lithium phosphorus oxynitride (LiPON), Li3PO4.Li2S.SiS2, Li2S.GeS2.Ga2S3 and Li1-x-yAlxTi2-xSiyP3-yO12, LISICON, NASICON, sodium and lithium beta-alumina. These protective glasses may also act as a solid electrolyte where the metal is used as a negative electrode in a battery cell. Such an electrode may also alternatively be combined with a solid polymer electrolyte.
  • As noted above, it is further contemplated that chemical protective layer precursors may be incorporated in the electrolytes of battery cells having negative alkali metal electrodes with glassy protective layers, such as LiPON. The presence of such precursors allows for the formation of a “healing” chemical protective layer in the event of a crack or other defect or damage to the glassy protective layer.
  • Battery Cells
  • Referring now to FIG. 4, a battery cell 400 incorporating a chemically protected negative electrode, in accordance with a preferred embodiment of the present invention is shown. Cell 400 includes a negative current collector 412 which is formed of an electronically conductive material. The current collector serves to conduct electrons between a cell terminal (not shown) and a negative electrode 414 to which current collector 412 is affixed. Negative electrode 414 is made from lithium or other similarly active metal alloy material, and includes a chemical protective layer 408 formed opposite current collector 412. Protective layer 408 contacts an electrolyte in an electrolyte region 416. As mentioned, the electrolyte may be liquid, gel, or solid (e.g., polymer). To simplify the discussion of FIG. 4, the electrolyte will be referred to as “liquid electrolyte” or just “electrolyte.” An example of a solid electrolyte is polyethylene oxide. An example of gel electrode is polyethylene oxide containing a significant quantity of entrained liquid such as an aprotic solvent.
  • An optional separator in region 416 prevents electronic contact between the positive and negative electrodes. A positive electrode 418 abuts the side of separator layer 416 opposite negative electrode 414. As electrolyte region 416 is an electronic insulator and an ionic conductor, positive electrode 418 is ionically coupled to but electronically insulated from negative electrode 414. Finally, the side of positive electrode 418 opposite electrolyte region 416 is affixed to a positive current collector 420. Current collector 420 provides an electronic connection between a positive cell terminal (not shown) and positive electrode 418.
  • Current collector 420, which provides the current connection to the positive electrode, should resist degradation in the electrochemical environment of the cell and should remain substantially unchanged during discharge and charge. In one embodiment, the current collectors are sheets of conductive material such as aluminum or stainless steel. The positive electrode may be attached to the current collector by directly forming it on the current collector or by pressing a pre-formed electrode onto the current collector. Positive electrode mixtures formed directly onto current collectors preferably have good adhesion. Positive electrode films can also be cast or pressed onto expanded metal sheets. Alternately, metal leads can be attached to the positive electrode by crimp-sealing, metal spraying, sputtering or other techniques known to those skilled in the art. Some positive electrode can be pressed together with the electrolyte separator sandwiched between the electrodes. In order to provide good electrical conductivity between the positive electrode and a metal container, an electronically conductive matrix of, for example, carbon or aluminum powders or fibers or metal mesh may be used.
  • A separator may occupy all or some part of electrolyte compartment 416. Preferably, it will be a highly porous/permeable material such as a felt, paper, or microporous plastic film. It should also resist attack by the electrolyte and other cell components under the potentials experienced within the cell. Examples of suitable separators include glass, plastic, ceramic, and porous membranes thereof among other separators known to those in the art. In one specific embodiment, the separator is Celgard 2300 or Celgard 2400 available from Hoechst Celanese of Dallas, Tex.
  • In an alternative embodiment, no separator is employed and a solid electrolyte or glassy protective layer, such as LiPON, on the negative electrode prevents the positive and negative electrodes from contacting one another and serves the function of a separator. In such cases, the protective layer should be tough. It may be relatively thick and made from a material that resists cracking and abrasion.
  • In some embodiments of the invention, the cell may be characterized as a “thin film” or “thin layer” cell. Such cells possess relatively thin electrodes and electrolyte separators. Preferably, the positive electrode is no thicker than about 300 μm, more preferably no thicker than about 150 μm, and most preferably no thicker than about 100 μm. The negative electrode preferably is no thicker than about 100 μm and more preferably no thicker than about 100 μm. Finally, the electrolyte separator (when in a fully assembled cell) is no thicker than about 100 μm and more preferably no thicker than about 40 μm.
  • Lithium-Sulfur Batteries
  • Sulfur positive electrodes and metal-sulfur batteries are described in U.S. Pat. No. 5,686,201 issued to Chu on Nov. 11, 1997 and U.S. patent application Ser. No. 08/948,969 naming Chu et al. as inventors, filed on Oct. 10, 1997. Both of these documents are incorporated by reference for all purposes. The sulfur positive electrodes preferably include in their theoretically fully charged state sulfur and an electronically conductive material. At some state of discharge, the positive electrode will include one or more polysulfides and possibly sulfides, which are polysulfides and sulfides of the metal or metals found in the negative electrode. In some embodiments, the fully charged electrode may also include some amount of such sulfides and/or polysulfides.
  • The positive electrode is fabricated such that it permits electrons to easily move between the sulfur and the electronically conductive material, and permits ions to move between the electrolyte and the sulfur. Thus, high sulfur utilization is realized, even after many cycles. If the lithium-sulfur battery employs a solid or gel state electrolyte, the positive electrode should include an electronic conductor (e.g., carbon) and an ionic conductor (e.g., polyethylene oxide) in addition to the sulfur electroactive material. If the battery employs a liquid electrolyte, the positive electrode may require only an electronic conductor in addition to the sulfur electroactive material. The electrolyte itself permeates the electrode and acts as the ionic conductor. In the case of a liquid electrolyte cell, the battery design may assume two formats: (1) all active sulfur (elemental sulfur, polysulfides and sulfides of the positive electrode) is dissolved in electrolyte solution (one phase positive electrode) and (2) the active sulfur is distributed between a solid phase (sometimes precipitated) and a liquid phase.
  • When the lithium-sulfur battery cells in accordance with this invention include a liquid electrolyte, that electrolyte should keep many or all of sulfur discharge products in solution and therefore available for electrochemical reaction. Thus, they preferably solubilize lithium sulfide and relatively low molecular weight polysulfides. In a particularly preferred embodiment, the electrolyte solvent has repeating ethoxy units (CH2CH2O). This may be a glyme or related compound. Such solvents are believed to strongly coordinate lithium and thereby increase the solubility of discharge products of lithium-sulfur batteries. Suitable liquid electrolyte solvents are described in more detail in U.S. patent application Ser. No. 08/948,969, previously incorporated by reference.
  • It should be understood that the electrolyte solvents of this invention may also include cosolvents. Examples of such additional cosolvents include sulfolane, dimethyl sulfone, dialkyl carbonates, tetrahydrofuran (THF), dioxolane, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), butyrolactone, N-methylpyrrolidinone, dimethoxyethane (DME or glyme), hexamethylphosphoramide, pyridine, N,N-diethylacetamide, N,N-diethylformamide, dimethylsulfoxide, tetramethylurea, N,N-dimethylacetamide, N,N-dimethylformamide, tributylphosphate, trimethylphosphate, N,N,N′,N′-tetraethylsulfamide, tetraethylenediamine, tetramethylpropylenediamine, pentamethyldiethylenetriamine, methanol, ethylene glycol, polyethylene glycol, nitromethane, trifluoroacetic acid, trifluoromethanesulfonic acid, sulfur dioxide, boron trifluoride, and combinations of such liquids.
  • The protective layers employed in this invention may allow the use of electrolyte solvents that work well with sulfides and polysulfides but may attack lithium. Examples of solvents in this category include amine solvents such as diethyl amine, ethylene diamine, tributyl amine, amides such as dimethyl acetamide and hexamethyl phosphoramide (HMPA), etc.
  • Exemplary but optional electrolyte salts for the battery cells incorporating the electrolyte solvents of this invention include, for example, lithium trifluoromethanesulfonimide (LiN(CF3SO2)2), lithium triflate (LiCF3SO3), lithium perchlorate (LiClO4), LiPF6, LiBF4, and LiAsF6, as well as corresponding salts depending on the choice of metal for the negative electrode, for example, the corresponding sodium salts. As indicated above, the electrolyte salt is optional for the battery cells of this invention, in that upon discharge of the battery, the metal sulfides or polysulfides formed can act as electrolyte salts, for example, Mx/zS wherein x=0 to 2 and z is the valence of the metal.
  • As mentioned, the battery cells of this invention may include a solid-state electrolyte. An exemplary solid-state electrolyte separator is a ceramic or glass electrolyte separator which contains essentially no liquid. Specific examples of solid-state ceramic electrolyte separators include beta alumina-type materials such as sodium beta alumina, Nasicon™ or Lisicon™ glass or ceramic. Polymeric electrolytes, porous membranes, or combinations thereof are exemplary of a type of electrolyte separator to which an aprotic organic plasticizer liquid can be added according to this invention for the formation of a solid-state electrolyte separator generally containing less than 20% liquid. Suitable polymeric electrolytes include polyethers, polyimines, polythioethers, polyphosphazenes, polymer blends, and the like and mixtures and copolymers thereof in which an appropriate electrolyte salt has optionally been added. Preferred polyethers are polyalkylene oxides, more preferably, polyethylene oxide.
  • In the gel-state, the electrolyte separator generally contains at least 20% (weight percentage) of an organic liquid (see the above listed liquid electrolytes for examples), with the liquid being immobilized by the inclusion of a gelling agent. Many gelling agents such as polyacrylonitrile, polyvinylidene difluoride (PVDF), or polyethylene oxide (PEO), can be used.
  • It should be understood that some systems employing liquid electrolytes are commonly referred to as having “polymer” separator membranes. Such systems are considered liquid electrolyte systems within the context of this invention. The membrane separators employed in these systems actually serve to hold liquid electrolyte in small pores by capillary action. Essentially, a porous or microporous network provides a region for entraining liquid electrolyte. Such separators are described in U.S. Pat. No. 3,351,495 assigned to W. R. Grace & Co. and U.S. Pat. Nos. 5,460,904, 5,540,741, and 5,607,485 all assigned to Bellcore, for example. Each of these patents is incorporated herein by reference for all purposes.
  • The fully charged state of some cells of this invention need not require that the positive electrode be entirely converted to elemental sulfur. It may be possible in some cases to have the positive electrode be a highly oxidized form of lithium polysulfide, for example, as in Li2Sx where x is five or greater. The fully charged positive electrode may also include a mixture of such polysulfides together with elemental sulfur and possibly even some sulfide. It should be understood that during charge, the positive electrode would generally not be of uniform composition. That is, there will be some amount of sulfide, sulfur, and an assortment of polysulfides with various values of x. Also, while the electrochemically active material includes some substantial fraction of “sulfur,” this does not mean that the positive electrode must rely exclusively upon sulfur for its electrochemical energy.
  • The electronic conductor in the positive electrode preferably forms an interconnected matrix so that there is always a clear current path from the positive current collector to any position in the electronic conductor. This provides high availability of electroactive sites and maintained accessibility to charge carriers over repeated cycling. Often such electronic conductors will be fibrous materials such as a felt or paper. Examples of suitable materials include a carbon paper from Lydall Technical Papers Corporation of Rochester, N.H. and a graphite felt available from Electrosynthesis Company of Lancaster, N.Y.
  • The sulfur is preferably uniformly dispersed in a composite matrix containing an electronically conductive material. Preferred weight ratios of sulfur to electronic conductor in the sulfur-based positive electrodes of this invention in a fully charged state are at most about 50:1, more preferably at most about 10:1, and most preferably at most about 5:1. The sulfur considered in these ratios includes both precipitated or solid phase sulfur as well as sulfur dissolved in the electrolyte. Preferably, the per weight ratio of electronic conductor to binder is at least about 1:1 and more preferably at least about 2:1.
  • The composite sulfur-based positive electrode may further optionally include performance enhancing additives such as binders, electrocatalysts (e.g., phthalocyanines, metallocenes, brilliant yellow (Reg. No. 3051-11-4 from Aldrich Catalog Handbook of Fine Chemicals; Aldrich Chemical Company, Inc., 1001 West Saint Paul Avenue, Milwaukee, Wis.) among other electrocatalysts), surfactants, dispersants (for example, to improve the homogeneity of the electrode's ingredients), and protective layer forming additives to protect a lithium negative electrode (e.g., organosulfur compounds, phosphates, iodides, iodine, metal sulfides, nitrides, and fluorides). Preferred binders (1) do not swell in the liquid electrolyte and (2) allow partial but not complete wetting of the sulfur by the liquid electrolyte. Examples of suitable binders include Kynar available from Elf Atochem of Philadelphia, Pa., polytetrafluoroethylene dispersions, and polyethylene oxide (of about 900 k molecular weight for example). Other additives include electroactive organodisulfide compounds employing a disulfide bond in the compound's backbone. Electrochemical energy is generated by reversibly breaking the disulfide bonds in the compound's backbone. During charge, the disulfide bonds are reformed. Examples of organodisulfide compounds suitable for use with this invention are presented in U.S. Pat. Nos. 4,833,048 and 4,917,974 issued to De Jonghe et al. and U.S. Pat. No. 5,162,175 issued to Visco et al.
  • EXAMPLES
  • Various experiments were conducted to demonstrate the advantages provided by the various aspects of this invention. The examples presented here are intended to better illustrate the invention as described herein and are non-limiting.
  • Example 1 Production of Protective Lithium Phosphate Film by Li Surface Treatment with Phosphoric Acid
  • The Li electrode surface (125 micron foil from Cyprus Foote) was treated with dry DME containing anhydrous phosphoric acid (1500 ppm) for a treatment time of 45 seconds. Surface treatment was conducted by coating of the Li foil pressed onto SS current collector with this solution followed by DME evaporation. About 1.0 ml of the solution was put on Li surface. After Li reaction with phosphoric acid and formation of lithium phosphate layer on the Li surface, DME was allowed to evaporate at room temperature. Residual unreacted phosphoric acid on the surface was rinsed out by a large volume of DME. In some experiments before treatment with phosphoric acid Li surface was polished with Tyvek fabric (1509 B). All described operations were conducted in an argon-filled glove box.
  • Electrochemical cells containing a Li electrode coated with a lithium phosphate chemical protective underlayer were assembled and tested. The impedance of the interface between the Li electrode and a solution of 0.5 M LiTFSI in the mixture of DME and 1,3-Dioxolane (9:1) was measured after different storage periods. As can be seen from FIG. 5A, the electrode pretreated with phosphoric acid exhibited relatively small and stable impedance. At the same time the interface impedance for cells having an untreated Li electrode grew rapidly during storage. (FIG. 5B) This indicates that the formed lithium phosphate surface layer can protect the Li electrode from reacting with the active components of the electrolyte.
  • Example 2 Production of Protective Lithium Phosphate Underlayer by Li Surface Treatment with Phosphoric Acid
  • The Li electrode surface (125 um foil from Cyprus Foote) was treated with dry DME containing anhydrous phosphoric acid as described in Example 1. After the pre-treatment Li foil was transferred to the sputtering chamber for reactive RF sputtering of LiPON glass layer using lithium phosphate target of 8 inch diameter in the presence of nitrogen. RF power was 100 W, and duration of sputtering was about 1.5 hrs. No evidence of reaction between nitrogen and Li and formation of black lithium nitride reaction product was observed and the LiPON layer was successfully deposited onto Li surface. In experiments where described Li pre-treatment with acid was not used, the Li surface was attacked with nitrogen and almost immediately covered with black lithium nitride film. Therefore, Li chemical treatment with phosphoric acid creates a protective underlayer that allows for direct reactive sputtering of LiPON onto Li.
  • Li/C electrochemical cells containing a Li electrode coated with a lithium phosphate underlayer and the LiPON film produced as described above were assembled and tested. The impedance of the interface between the Li electrode and 10 M sulfur as Li2S8 dissolved in a mixture of DME and 1,3-Dioxolane (9:1) was measured after different periods of storage. As can be seen from FIG. 6, the electrode pretreated with phosphoric acid and coated with lithium phosphate before LiPON sputtering exhibits relatively low resistance of about 225-250 Ohm*cm2. After cell storage the interface resistance was practically the same as for the freshly made cell. This indicates that the formed surface film can protect the Li electrode from reacting with the dissolved lithium polysulfides.
  • Example 3 Production of Protective Lithium Phosphate Underlayer by Sputtering of Lithium Phosphate onto Li Surface
  • The Li electrode (125 micron foil from Cyprus Foote) was transferred to the sputtering chamber and lithium phosphate was sputtered onto the Li surface. Sputtering was conducted in an atmosphere of pure Ar at RF power 100 W. After about 1 hr of sputtering, nitrogen was introduced into the chamber and the LiPON layer about 0.1 micron thick was sputtered onto the Li surface. No evidence of reaction between nitrogen and Li and formation of black lithium nitride reaction product was observed. This demonstrates that Li surface coating with dense lithium phosphate underlayer protects Li surface from nitrogen attack and allows for direct LiPON sputtering onto Li.
  • Example 4 Production of Protective Lithium Phosphate Underlayer by Combination of Li Surface Treatment with Phosphoric Acid and Sputtering of Lithium Phosphate onto Li Surface
  • The Li electrode surface (125 um foil from Cyprus Foote) was treated with dry DME containing anhydrous phosphoric acid as described in Example 1, then the Li electrode was transferred to the sputtering chamber and lithium phosphate was sputtered onto the Li surface in an atmosphere of pure Ar exactly as described in Example 3. After that Ar was replaced with nitrogen in the sputtering chamber and the LiP ON layer about 0.1 micron thick was sputtered onto the Li surface at 100 W. No evidence of reaction between nitrogen and Li and formation of lithium nitride was observed except for the edges of the Li foil that became black. These edges were coated with the tape and were not exposed during Li treatment with DME containing anhydrous phosphoric acid. As a result, nitrogen reacted with Li along the edges during lithium phosphate sputtering in nitrogen atmosphere.
  • Example 5 Incorporation of Phosphoric Acid into the Battery's Catholyte
  • The desired catholytes were prepared by addition of appropriate amounts (500 and 1500 ppm) of anhydrous phosphoric acid to the solution of 10 M sulfur as Li2S8 in the mixture of DME and 1,3-Dioxolane (9:1). It was shown that the presence of phosphoric acid did not affect the intrinsic stability of the electrolyte system. In particular it did not initiate polymerization of Dioxolane.
  • Li/C electrochemical cells containing plain Li electrode and the catholytes with and without phosphoric acid were assembled and tested. It was found that the interface impedance for the cells with phosphoric acid additives was small and stable. At the same time the interface impedance for the cells without these additives grew rapidly during storage. This shows that protection of Li surface can be improved by incorporation of phosphoric acid that can react with Li surface forming a protective layer based on lithium phosphate. In the case of Li electrodes coated with the LiP ON layer, phosphoric acid may effectively heal cracks which form in the glassy layer during cycling.
  • Example 6 Producing Protective Lithium Carbonate Underlayer by Li Surface Treatment with CO2
  • The Li electrode surface (125 μm foil from Cyprus Foote pressed onto SS current collector) was treated with dry gaseous CO2 (99.99% purity from Matheson Tri-Gas Inc.). Surface treatment was conducted in the specially designed SS reactor. This reactor was loaded with the Li electrodes in the Ar-filled dry box, hermetically sealed, and taken out of the box. The Li electrode surface was treated with CO2 by passing the gas through the reactor for about 30 minutes. During this treatment positive pressure of about 15 psi was maintained inside the reactor. After Li reaction with CO2 and formation of lithium carbonate layer on the Li surface, the Li electrodes were transferred to the sputtering chamber. Reactive RF sputtering of LiPON glass layer was performed in the presence of nitrogen by use lithium phosphate target of 8 inch diameter. RF power was 200 W, and duration of sputtering was about 13 hrs. The Li substrates were rotated during sputtering in order to improve uniformity of the LiPON coating. No evidence of reaction between nitrogen and Li and formation of black lithium nitride reaction product was observed and the LiPON layer was successfully deposited onto Li surface. In experiments where described Li pre-treatment with CO2 was not used, the Li surface was attacked with nitrogen and almost immediately covered with black lithium nitride film. Therefore, Li chemical treatment with gaseous CO2 creates a protective underlayer that allows for direct reactive sputtering of LiPON onto Li.
  • Conclusion
  • The chemically protected metal electrodes of the present invention have the advantage that they can be handled in ambient atmosphere without deterioration of the metal electrode surface, and can have additional films deposited onto them in atmospheres that would typically attack the metal surface if it were not for the protective film described herein.
  • Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. It should be noted that there are many alternative ways of implementing both the process and compositions of the present invention. For example, while the invention is primarily described with reference to lithium, the chemical protective coatings of the present invention may also advantageously be applied to other alkali metals (e.g., sodium and potassium) and alloys or to alkaline earth metals (e.g., calcium and magnesium) or alloys. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
  • All references cited herein are incorporated by reference for all purposes.

Claims (28)

1. A stand alone metallic negative electrode, comprising:
an alkali metal layer having a first surface; and
a chemical protective layer coating the first surface, which protective layer comprises an alkali metal phosphate;
a physical protective layer adjacent to the chemical protective layer, the physical protective layer comprising a glass ionically conductive to ions of the alkali metal.
2. The electrode of claim 1, wherein the metal layer comprises an alkali metal selected from the group consisting of lithium, sodium and potassium and alloys thereof.
3. The electrode of claim 1, further comprising an electronically conductive current collector intimately contacting a second surface of said metal layer which is opposite the first surface of the metal layer.
4. The electrode of claim 3, wherein the current collector is copper.
5. The electrode of claim 1, wherein said ionically conductive glass comprises a material selected from the group consisting of phosphorus-based glass, oxide-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium based glass, and glass-ceramic active metal ion conductors, sodium beta-alumina and lithium beta-alumina.
6. The electrode of claim 5, wherein the ionically conductive glass comprises a material selected from the group consisting of lithium phosphorus oxynitride (LiPON), Li3PO4.Li2S.SiS2, Li2S.GeS2.Ga2S3 and Li1-x-yAlxTi2-xSiyP3-yO12, LISICON, NASICON, sodium and lithium beta-alumina.
7. The electrode of claim 1, wherein the alkali metal layer comprises lithium or a lithium alloy.
8. The electrode of claim 1, further comprising a polymer electrolyte disposed on the protective layer.
9. The electrode of claim 1, wherein the chemical protective layer has a thickness between about 10 nm and 1 micron.
10. The electrode of claim 1, wherein the chemical protective layer has a thickness between about 50 nm and 0.1 micron.
11. A method of providing a chemical protective layer on a metal, comprising:
introducing an alkali metal into a reaction chamber;
introducing one or more organic phosphate precursors of the protective layer into the reaction chamber and into contact with a first surface of the metal; and
conducting a reaction involving the one or more precursors to form an alkali metal phosphate chemical protective layer on the metal.
12. The method of claim 11, wherein the metal comprises an alkali metal selected from the group consisting of lithium, sodium and potassium and alloys thereof.
13. The method of claim 12, wherein the alkali metal layer is lithium or lithium alloy, the protective layer is lithium phosphate and the one or more precursors is anhydrous phosphoric acid in an organic solvent.
14. The method of claim 13, wherein the solvent is selected from the group consisting of DME, mono-, di- and tri-glymes, ether, and THF.
15. The method of claim 11, further comprising providing an ionically conductive protective inorganic glass adjacent to the chemical protective layer.
16. The method of claim 15, wherein the ionically conductive protective inorganic glass is selected from the group consisting of phosphorus-based glass, oxide-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium based glass, and glass-ceramic active metal ion conductors, sodium beta-alumina or lithium beta-alumina.
17. The method of claim 16, wherein the ionically conductive protective inorganic glass is selected from the group consisting of lithium phosphorus oxynitride (LiPON), Li3PO4.Li2S.SiS2, Li2S.GeS2.Ga2S3 and Li1-x-yAlxTi2-xSiyP3-yO12, LISICON NASICON, sodium and lithium beta-alumina.
18. The method of claim 17, wherein the ionically conductive protective inorganic glass is lithium phosphorus oxynitride (LiPON).
19. The method of claim 11, further comprising depositing a polymer electrolyte on the protective layer.
20. The method of claim 11, further comprising bonding an electronically conductive backing on a second surface of said metal layer which is opposite the first surface of the alkali metal layer.
21. The method of claim 11, wherein the metal forms at least part of a negative electrode.
22. The method of claim 11, wherein the chemical protective layer has a thickness between about 10 nm and 1 micron.
23. The method of claim 11, wherein the chemical protective layer has a thickness between about 50 nm and 0.1 micron.
24. A method of providing a chemical protective layer on a negative metal electrode, comprising:
forming and placing in a battery cell package an electrochemical structure comprising,
a negative electrode comprising an alkali metal,
a positive electrode,
a separator disposed between the negative and positive electrodes, and
current collectors on the negative and positive electrodes;
introducing a liquid electrolyte or catholyte comprising one or more organic phosphate precursors of the chemical protective layer into the battery cell package and into contact with an exposed surface of the negative metal electrode; and
conducting a reaction involving the one or more chemical protective layer precursors to form the chemical protective layer on the exposed surface of the negative metal electrode.
25. The method of claim 24, wherein the alkali metal layer is lithium or lithium alloy, the protective layer is lithium phosphate and the one or more precursors is anhydrous phosphoric acid in an organic solvent.
26. The method of claim 24, further comprising providing an ionically conductive protective inorganic glass adjacent to the chemical protective layer.
27. A battery cell, comprising:
a negative electrode comprising an alkali metal and having a chemical protective layer coating a first surface, which protective layer comprises an alkali metal phosphate;
a physical protective layer adjacent to the chemical protective layer, the physical protective layer comprising a glass ionically conductive to ions of the alkali metal;
a positive electrode selected from the group consisting of a sulfur-based positive electrode, a metal oxide based positive electrode, and a metal sulfide based positive electrode;
an electrolyte disposed between the negative and positive electrodes; and
current collectors on the negative and positive electrodes.
28. The cell of claim 27, wherein the alkali metal layer comprises lithium or a lithium alloy.
US11/092,781 2001-12-21 2005-03-28 Chemical protection of a lithium surface Abandoned US20050186469A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/092,781 US20050186469A1 (en) 2001-12-21 2005-03-28 Chemical protection of a lithium surface
US11/944,906 US20080113261A1 (en) 2001-12-21 2007-11-26 Chemical protection of a lithium surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34232601P 2001-12-21 2001-12-21
US10/327,682 US6911280B1 (en) 2001-12-21 2002-12-20 Chemical protection of a lithium surface
US11/092,781 US20050186469A1 (en) 2001-12-21 2005-03-28 Chemical protection of a lithium surface

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/327,682 Continuation US6911280B1 (en) 2001-12-21 2002-12-20 Chemical protection of a lithium surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/944,906 Division US20080113261A1 (en) 2001-12-21 2007-11-26 Chemical protection of a lithium surface

Publications (1)

Publication Number Publication Date
US20050186469A1 true US20050186469A1 (en) 2005-08-25

Family

ID=34681193

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/327,682 Expired - Fee Related US6911280B1 (en) 2001-12-21 2002-12-20 Chemical protection of a lithium surface
US11/092,781 Abandoned US20050186469A1 (en) 2001-12-21 2005-03-28 Chemical protection of a lithium surface
US11/944,906 Abandoned US20080113261A1 (en) 2001-12-21 2007-11-26 Chemical protection of a lithium surface

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/327,682 Expired - Fee Related US6911280B1 (en) 2001-12-21 2002-12-20 Chemical protection of a lithium surface

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/944,906 Abandoned US20080113261A1 (en) 2001-12-21 2007-11-26 Chemical protection of a lithium surface

Country Status (1)

Country Link
US (3) US6911280B1 (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248009A1 (en) * 2003-06-04 2004-12-09 Polyplus Battery Company Alleviation of voltage delay in lithium-liquid depolarizer/electrolyte solvent battery cells
US20040253510A1 (en) * 2003-06-04 2004-12-16 Polyplus Battery Company Aliovalent protective layers for active metal anodes
WO2005089352A2 (en) * 2004-03-16 2005-09-29 Toyota Technical Canter Usa, Inc. Battery with molten salt electrolyte and protected lithium-based negative electrode material
WO2007049871A1 (en) * 2005-10-26 2007-05-03 Lg Chem, Ltd. Secondary battery of improved life characteristics
US20080050656A1 (en) * 2006-08-25 2008-02-28 Eisenbeiser Kurt W Thin film battery having textured layer
US20080057386A1 (en) * 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US20080057399A1 (en) * 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US20080057387A1 (en) * 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US20080052898A1 (en) * 2003-10-14 2008-03-06 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US20080113261A1 (en) * 2001-12-21 2008-05-15 Polyplus Battery Corporation Chemical protection of a lithium surface
US20080283155A1 (en) * 2007-05-16 2008-11-20 Fmc Corporation, Lithium Division Stabilized lithium metal powder for Li-ion application, composition and process
US20090181303A1 (en) * 2008-01-11 2009-07-16 Neudecker Bernd J Thin Film Encapsulation for Thin Film Batteries and Other Devices
US20100151329A1 (en) * 2006-10-12 2010-06-17 Toshitada Sato Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US7829212B2 (en) 2004-02-06 2010-11-09 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US20100326814A1 (en) * 2009-06-24 2010-12-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for eliminating metallic lithium
US20110014524A1 (en) * 1999-11-23 2011-01-20 Sion Power Corporation Protection of anodes for electrochemical cells
US20110135810A1 (en) * 2009-12-03 2011-06-09 Marina Yakovleva Finely deposited lithium metal powder
US7998626B2 (en) 2003-11-10 2011-08-16 Polyplus Battery Company Active metal fuel cells
US20110229772A1 (en) * 2008-09-11 2011-09-22 Tatsuo Fujinami Electrolyte solution and use therefor
JP2012084515A (en) * 2010-10-08 2012-04-26 Samsung Electronics Co Ltd Lithium ion conductor, method of producing the same and lithium air battery including the same
US8182943B2 (en) 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
US20120263929A1 (en) * 2011-04-13 2012-10-18 Saint-Gobain Ceramic & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US8323820B2 (en) 2008-06-16 2012-12-04 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells
US20120318664A1 (en) * 2011-06-17 2012-12-20 Applied Materials, Inc. Pinhole-Free Dielectric Thin Film Fabrication
US20130017432A1 (en) * 2011-07-11 2013-01-17 Roumi Farshid Novel separators for electrochemical systems
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8603680B2 (en) 2006-03-22 2013-12-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US8617748B2 (en) 2006-12-04 2013-12-31 Sion Power Corporation Separation of electrolytes
US8623557B2 (en) 1999-11-23 2014-01-07 Sion Power Corporation Lithium anodes for electrochemical cells
US20140023940A1 (en) * 2010-12-01 2014-01-23 Hydro-Quebec Lithium-air battery
US8652692B2 (en) 2005-11-23 2014-02-18 Polyplus Battery Company Li/Air non-aqueous batteries
WO2014130725A1 (en) * 2013-02-21 2014-08-28 Robert Bosch Gmbh Lithium battery with composite solid electrolyte
US8828573B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrode structures for aqueous electrolyte lithium sulfur batteries
US8828575B2 (en) 2011-11-15 2014-09-09 PolyPlus Batter Company Aqueous electrolyte lithium sulfur batteries
US8828574B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
WO2015021373A1 (en) * 2013-08-08 2015-02-12 Sion Power Corporation Self-healing electrode protection in electrochemical cells
US20150079481A1 (en) * 2011-06-17 2015-03-19 Applied Materials, Inc. Solid state electrolyte and barrier on lithium metal and its methods
US9005311B2 (en) 2012-11-02 2015-04-14 Sion Power Corporation Electrode active surface pretreatment
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
US9379368B2 (en) 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
JP2017503323A (en) * 2014-01-02 2017-01-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Solid electrolyte and barrier on lithium metal and method
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US9825328B2 (en) 2015-11-24 2017-11-21 Sion Power Corporation Ionically conductive compounds and related uses
US20170365854A1 (en) * 2016-06-21 2017-12-21 Applied Materials, Inc. Interphase layer for improved lithium metal cycling
US9905860B2 (en) 2013-06-28 2018-02-27 Polyplus Battery Company Water activated battery system having enhanced start-up behavior
US9991492B2 (en) 2013-11-18 2018-06-05 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
JP2018523263A (en) * 2015-06-05 2018-08-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Battery separator having a dielectric coating
CN110190254A (en) * 2019-05-15 2019-08-30 华南理工大学 A kind of preparation method of lithium phosphate coated lithium ion battery tertiary cathode material
US10461372B2 (en) 2015-05-20 2019-10-29 Sion Power Corporation Protective layers for electrochemical cells
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
US10879527B2 (en) 2016-05-20 2020-12-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
US11038178B2 (en) 2014-09-09 2021-06-15 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
US11251501B2 (en) 2017-05-24 2022-02-15 Sion Power Corporation Lithium metal sulfide and lithium metal sulfide argyrodite ionically conductive compounds and related uses
US11271214B2 (en) 2015-12-02 2022-03-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
US11557753B2 (en) 2014-10-23 2023-01-17 Sion Power Corporation Ion-conductive composite for electrochemical cells
CN115928011A (en) * 2022-12-26 2023-04-07 中节能万润股份有限公司 Sodium metal negative electrode protection method and battery
US11631840B2 (en) 2019-04-26 2023-04-18 Applied Materials, Inc. Surface protection of lithium metal anode
US11631922B2 (en) 2017-08-17 2023-04-18 Applied Materials, Inc. Olefin separator free Li-ion battery
US11688851B2 (en) 2015-01-09 2023-06-27 Applied Materials, Inc. Method of forming an anode structure with dielectric coating
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390591B2 (en) 2002-10-15 2008-06-24 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
KR100467436B1 (en) * 2002-10-18 2005-01-24 삼성에스디아이 주식회사 Negative electrode for lithium-sulfur battery, method of preparing same, and lithium-sulfur battery comprising same
JP4777593B2 (en) * 2002-11-29 2011-09-21 株式会社オハラ Method for producing lithium ion secondary battery
KR100522694B1 (en) * 2003-08-23 2005-10-19 삼성에스디아이 주식회사 Lithium-sulfur battery
US7608178B2 (en) * 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
US7227235B2 (en) * 2003-11-18 2007-06-05 Lucent Technologies Inc. Electrowetting battery having a nanostructured electrode surface
US7749646B2 (en) * 2004-03-18 2010-07-06 Alcatel-Lucent Usa Inc. Reversibly-activated nanostructured battery
US20060078790A1 (en) * 2004-10-05 2006-04-13 Polyplus Battery Company Solid electrolytes based on lithium hafnium phosphate for active metal anode protection
US7678495B2 (en) * 2005-01-31 2010-03-16 Alcatel-Lucent Usa Inc. Graphitic nanostructured battery
US20060194115A1 (en) * 2005-02-14 2006-08-31 Polyplus Battery Company Intercalation anode protection for cells with dissolved lithium polysulfides
US7781100B2 (en) * 2005-05-10 2010-08-24 Advanced Lithium Electrochemistry Co., Ltd Cathode material for manufacturing rechargeable battery
US7892676B2 (en) * 2006-05-11 2011-02-22 Advanced Lithium Electrochemistry Co., Ltd. Cathode material for manufacturing a rechargeable battery
US20090220857A1 (en) * 2005-09-02 2009-09-03 Toyota Motor Engineering & Manufacturing North America, Inc. Chemical protection of metal surface
US20070082268A1 (en) * 2005-09-02 2007-04-12 Kurt Star Chemical protection of metal surface
US7776385B2 (en) * 2006-09-19 2010-08-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method of chemical protection of metal surface
WO2008133642A2 (en) * 2006-10-13 2008-11-06 Ceramatec, Inc. Advanced metal-air battery having a ceramic membrane electrolyte
US20100239893A1 (en) * 2007-09-05 2010-09-23 John Howard Gordon Sodium-sulfur battery with a substantially non-porous membrane and enhanced cathode utilization
WO2009032313A1 (en) * 2007-09-05 2009-03-12 Ceramatec, Inc. Lithium-sulfur battery with a substantially non- porous membrane and enhanced cathode utilization
US8012621B2 (en) * 2007-11-26 2011-09-06 Ceramatec, Inc. Nickel-metal hydride battery using alkali ion conducting separator
US9209445B2 (en) 2007-11-26 2015-12-08 Ceramatec, Inc. Nickel-metal hydride/hydrogen hybrid battery using alkali ion conducting separator
WO2009070600A2 (en) 2007-11-27 2009-06-04 Ceramatec, Inc. Substantially solid, flexible electrolyte for alkili-metal-ion batteries
WO2009070593A1 (en) * 2007-11-27 2009-06-04 Ceramatec, Inc. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides
US10320033B2 (en) 2008-01-30 2019-06-11 Enlighten Innovations Inc. Alkali metal ion battery using alkali metal conductive ceramic separator
US20090189567A1 (en) * 2008-01-30 2009-07-30 Joshi Ashok V Zinc Anode Battery Using Alkali Ion Conducting Separator
JP5288816B2 (en) * 2008-01-31 2013-09-11 株式会社オハラ Solid battery
JP4692556B2 (en) * 2008-02-12 2011-06-01 トヨタ自動車株式会社 All-solid lithium secondary battery
US20160111715A9 (en) * 2008-06-20 2016-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Electrode material with core-shell structure
US8323817B2 (en) * 2008-09-12 2012-12-04 Ceramatec, Inc. Alkali metal seawater battery
US9475998B2 (en) 2008-10-09 2016-10-25 Ceramatec, Inc. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides
EP2475042A4 (en) * 2009-08-10 2014-01-22 Ulvac Inc Process for production of thin film lithium secondary battery
DE102009041508A1 (en) * 2009-09-14 2011-03-24 Li-Tec Battery Gmbh Electrochemical energy storage with a container
WO2011057135A2 (en) 2009-11-05 2011-05-12 Ceramatec, Inc Solid-state sodium-based secondary cell having a sodium ion conductive ceramic separator
FR2953270B1 (en) 2009-11-30 2013-02-22 Areva TUBULAR CANALIZATION FOR TRANSPORTING SODIUM LIQUID
US20110200864A1 (en) * 2010-02-17 2011-08-18 U.S. Nanocorp, Inc. Stable electrolytes for high voltage batteries and the batteries derived therefrom
US8753545B2 (en) 2010-03-03 2014-06-17 3M Innovative Properties Company Composite negative electrode materials
US8865354B2 (en) * 2010-03-30 2014-10-21 West Virginia University Inorganic solid electrolyte glass phase composite and a battery containing an inorganic solid electrolyte glass phase composite
FR2961636B1 (en) * 2010-06-17 2013-10-18 Commissariat Energie Atomique LITHIUM ELECTROCHEMICAL ACCUMULATOR WITH SPECIFIC BIPOLAR ARCHITECTURE
US8758914B2 (en) 2010-06-18 2014-06-24 Polyplus Battery Company Li-Ion/polysulfide flow battery
CN102315420B (en) 2010-07-05 2014-09-10 中国科学院上海硅酸盐研究所 Metal cathode structure with protection layer and preparation method thereof
WO2012021323A2 (en) 2010-08-11 2012-02-16 Ceramatec, Inc. Alkali metal aqueous battery
US20120052398A1 (en) * 2010-08-24 2012-03-01 Battelle Memorial Institute Electrochemical Energy Storage Devices Having a Metallic Interfacial Conducting Agent at the Electrode-Electrolyte Interface
EP2614547B1 (en) 2010-09-09 2020-07-08 California Institute of Technology Three-dimensional electrode array and method of making it
KR101940337B1 (en) 2010-12-01 2019-01-18 필드 업그레이딩 유에스에이, 인코포레이티드 Moderate temperature sodium battery
US20140079873A1 (en) * 2011-06-01 2014-03-20 Toyota Jidosha Kabushiki Kaisha Method for producing electrode active material and electrode active material
CN102263269B (en) * 2011-06-22 2015-04-01 广东博特动力能源有限公司 Cathode active material, inclined pull-net cathode matrix and cathode of nickel-zinc batteries and preparation method of cathode
CN102881862B (en) 2011-07-12 2015-03-25 中国科学院上海硅酸盐研究所 Protective metal anode structure and preparation method thereof
GB2493022B (en) * 2011-07-21 2014-04-23 Ilika Technologies Ltd Vapour deposition process for the preparation of a phosphate compound
KR20230116967A (en) * 2012-04-10 2023-08-04 캘리포니아 인스티튜트 오브 테크놀로지 Novel separators for electrochemical systems
DE102012208316A1 (en) * 2012-05-18 2013-11-21 Robert Bosch Gmbh Lithium electrode for a lithium-ion battery and method for producing such
US10854929B2 (en) 2012-09-06 2020-12-01 Field Upgrading Usa, Inc. Sodium-halogen secondary cell
CN103794794B (en) * 2012-10-30 2016-08-10 华为技术有限公司 Lithium battery anode and preparation method thereof, lithium battery and preparation method and application
US8920925B2 (en) * 2012-11-09 2014-12-30 Corning Incorporated Stabilized lithium composite particles
EP2973806B1 (en) * 2013-03-15 2019-05-08 Sion Power Corporation Protective structures for electrodes
US10511013B2 (en) 2014-09-23 2019-12-17 Applied Materials, Inc. Electrochemical cell with protected negative electrode
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US12051824B2 (en) 2020-07-10 2024-07-30 Polyplus Battery Company Methods of making glass constructs
US11177470B2 (en) 2015-03-30 2021-11-16 Ses Holdings Pte. Ltd. Composite coating systems and methods for lithium metal anodes in battery applications
EP3304635A4 (en) * 2015-06-01 2018-12-19 Pneumaticoat Technologies LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
US11996564B2 (en) 2015-06-01 2024-05-28 Forge Nano Inc. Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
US12027661B2 (en) 2015-06-01 2024-07-02 Forge Nano Inc. Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
US10347904B2 (en) 2015-06-19 2019-07-09 Solidenergy Systems, Llc Multi-layer polymer coated Li anode for high density Li metal battery
WO2017176936A1 (en) * 2016-04-05 2017-10-12 Massachusetts Institute Of Technology Lithium metal electrodes and batteries thereof
WO2017197039A1 (en) 2016-05-10 2017-11-16 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
CN107579275B (en) * 2016-07-04 2022-02-11 松下知识产权经营株式会社 Solid electrolyte containing oxynitride and secondary battery using the same
KR102155025B1 (en) * 2017-01-11 2020-09-11 주식회사 엘지화학 Deposition of LiF on Li metal surface and Li secondary battery using thereof
US11387450B2 (en) 2017-04-05 2022-07-12 Massachusetts Institute Of Technology Electrolytes for lithium metal electrodes and rechargeable batteries using same
WO2018224334A1 (en) * 2017-06-09 2018-12-13 Robert Bosch Gmbh Battery cell with anode protective layer
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
JP6853132B2 (en) * 2017-07-13 2021-03-31 武蔵エナジーソリューションズ株式会社 Electrode manufacturing method, capacitor manufacturing method, battery manufacturing method, and electrode protection method
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
KR102148507B1 (en) 2017-07-26 2020-08-26 주식회사 엘지화학 Lithium Metal Electrode and Method for Preparing the Same
KR102305482B1 (en) 2017-10-16 2021-09-27 주식회사 엘지에너지솔루션 Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
US20190393482A1 (en) * 2018-06-21 2019-12-26 Nanotek Instruments, Inc. Method of protecting the lithium anode layer in a lithium metal secondary battery
CN109148826B (en) * 2018-09-12 2021-05-25 桑德新能源技术开发有限公司 Negative electrode, preparation method thereof and lithium battery
CN109244369A (en) * 2018-10-24 2019-01-18 桑德集团有限公司 Lithium anode and preparation method thereof and all-solid lithium-ion battery
CN109449494B (en) * 2018-11-06 2022-12-20 成都市银隆新能源产业技术研究有限公司 Preparation method of solid electrolyte interface layer of lithium ion battery and lithium ion battery
KR102415166B1 (en) 2019-01-11 2022-06-29 주식회사 엘지에너지솔루션 Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
EP3993099A4 (en) * 2019-06-28 2022-08-03 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
CN110429281A (en) * 2019-08-01 2019-11-08 浙江锋锂新能源科技有限公司 A kind of high-energy density all-solid-state battery based on sulfide solid electrolyte
US11437624B2 (en) 2019-08-13 2022-09-06 Graphenix Development, Inc. Anodes for lithium-based energy storage devices, and methods for making same
WO2021034916A1 (en) 2019-08-20 2021-02-25 Graphenix Development, Inc. Structured anodes for lithium-based energy storage devices
US11489154B2 (en) 2019-08-20 2022-11-01 Graphenix Development, Inc. Multilayer anodes for lithium-based energy storage devices
US11495782B2 (en) 2019-08-26 2022-11-08 Graphenix Development, Inc. Asymmetric anodes for lithium-based energy storage devices
KR20210029556A (en) * 2019-09-06 2021-03-16 주식회사 엘지화학 Pre-lithiation-pre-sodiation method of anode electrodes, pre-sodiated-pre-lithiated anode, and lithium secondary battery comprising the same
US20210126247A1 (en) * 2019-10-28 2021-04-29 Applied Materials, Inc. Dielectric coated lithium metal anode
GB202000467D0 (en) 2020-01-13 2020-02-26 Sigma Lithium Ltd Alkali metal materials
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
WO2022018710A1 (en) * 2020-07-21 2022-01-27 Savari Rathinam Sahaya Prabaharan Monolithic protected lithium cassette anode
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
US12034116B2 (en) 2020-08-04 2024-07-09 Polyplus Battery Company Glass solid electrolyte layer, methods of making glass solid electrolyte layer and electrodes and battery cells thereof
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402995A (en) * 1982-01-28 1983-09-06 Ray-O-Vac Corporation Treatment of lithium anodes
US4405416A (en) * 1980-07-18 1983-09-20 Raistrick Ian D Molten salt lithium cells
US5315765A (en) * 1992-04-27 1994-05-31 Melvin Holst High-efficiency fabric dryer
US5549988A (en) * 1995-03-10 1996-08-27 Motorola, Inc. Polymer electrolytes and electrochemical cells using same
US5789108A (en) * 1994-11-23 1998-08-04 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6025094A (en) * 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
US6030720A (en) * 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
US6068950A (en) * 1997-11-19 2000-05-30 Wilson Greatbatch Ltd. Organic phosphate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6096447A (en) * 1997-11-05 2000-08-01 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6200701B1 (en) * 1999-01-25 2001-03-13 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
US6203942B1 (en) * 1998-10-22 2001-03-20 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6214061B1 (en) * 1998-05-01 2001-04-10 Polyplus Battery Company, Inc. Method for forming encapsulated lithium electrodes having glass protective layers
US6225002B1 (en) * 1999-02-05 2001-05-01 Polyplus Battery Company, Inc. Dioxolane as a proctector for lithium electrodes
US6280598B1 (en) * 1995-03-13 2001-08-28 Magnesium Technology Limited Anodization of magnesium and magnesium based alloys
US6413284B1 (en) * 1999-11-01 2002-07-02 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
US6489055B1 (en) * 1999-06-25 2002-12-03 Sanyo Electric Co., Ltd. Lithium secondary battery
US6495285B2 (en) * 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
US6511772B2 (en) * 2001-01-17 2003-01-28 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US6911280B1 (en) * 2001-12-21 2005-06-28 Polyplus Battery Company Chemical protection of a lithium surface

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703415A (en) * 1971-06-01 1972-11-21 Gen Electric Primary sodium-water battery
US3976509A (en) * 1975-04-04 1976-08-24 Lockheed Missiles & Space Company, Inc. Electrolyte compositions
US4020240A (en) * 1975-09-03 1977-04-26 P. R. Mallory & Co., Inc. Electrochemical cell with clovoborate salt in electrolyte and method of operation and composition of matter
US4007057A (en) * 1975-12-29 1977-02-08 Lockheed Missiles & Space Company, Inc. Cell comprising an alkali metal and aqueous electrolyte
US4162202A (en) * 1976-03-08 1979-07-24 P. R. Mallory & Co. Inc. Means for improving contact between Li and the anode current collector
US4163084A (en) * 1978-07-27 1979-07-31 Lockheed Missiles & Space Company, Inc. Electrochemically stable cathode
US4366616A (en) * 1978-10-10 1983-01-04 Catanzarite Vincent Owen Coating for lithium anode, thionyl chloride active cathode electrochemical cell
US4503088A (en) * 1982-01-28 1985-03-05 Rayovac Corporation Treatment of lithium anodes
US4414293A (en) * 1982-09-20 1983-11-08 The United States Of America As Represented By The United States Department Of Energy Parasitic corrosion resistant anode for use in metal/air or metal/O2 cells
US4981672A (en) * 1983-06-27 1991-01-01 Voltaix, Inc. Composite coating for electrochemical electrode and method
US4833048A (en) * 1988-03-31 1989-05-23 The United States Of America As Represented By The United States Department Of Energy Metal-sulfur type cell having improved positive electrode
US4985317A (en) * 1988-11-30 1991-01-15 Japan Synthetic Rubber Co., Ltd. Lithium ion-conductive solid electrolyte containing lithium titanium phosphate
US5108856A (en) * 1989-03-13 1992-04-28 Westinghouse Electric Corp. Electrolyte compositions and methods
US4917974A (en) * 1989-04-14 1990-04-17 The United States Of America As Represented By The Department Of Energy Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same
US5525442A (en) * 1990-09-14 1996-06-11 Westinghouse Electric Corporation Alkali metal battery
US5427873A (en) * 1990-09-14 1995-06-27 Westinghouse Electric Corporation Lithium-water battery
US5100523A (en) * 1990-12-17 1992-03-31 Ford Motor Company Use of amorphous carbon to promote adhesion between electroactive polymer films and conductive substrates
US5213908A (en) * 1991-09-26 1993-05-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen
US5336384A (en) * 1991-11-14 1994-08-09 The Dow Chemical Company Membrane-electrode structure for electrochemical cells
US5182177A (en) * 1992-02-20 1993-01-26 Battery Engineering, Inc. Primary cell having minimized drop in the start-up potential
US5338625A (en) * 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
CA2110097C (en) * 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
US5409786A (en) * 1993-02-05 1995-04-25 Eveready Battery Company, Inc. Inactive electrochemical cell having an ionically nonconductive polymeric composition activated by electrolyte salt solution
EP0614239A3 (en) * 1993-03-01 1996-10-16 Tadiran Ltd Non-aqueous safe secondary cell.
US5342710A (en) * 1993-03-30 1994-08-30 Valence Technology, Inc. Lakyer for stabilization of lithium anode
US5387479A (en) * 1993-06-16 1995-02-07 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
US5314765A (en) * 1993-10-14 1994-05-24 Martin Marietta Energy Systems, Inc. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
US5569520A (en) * 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5648187A (en) * 1994-02-16 1997-07-15 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5961672A (en) * 1994-02-16 1999-10-05 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5516598A (en) * 1994-07-28 1996-05-14 Polyplus Battery Company, Inc. Secondary cell using organosulfur/metal charge transfer materials as positive electrode
US6376123B1 (en) * 1994-11-23 2002-04-23 Polyplus Battery Company Rechargeable positive electrodes
US5814420A (en) * 1994-11-23 1998-09-29 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US5523179A (en) * 1994-11-23 1996-06-04 Polyplus Battery Company Rechargeable positive electrode
US6017651A (en) * 1994-11-23 2000-01-25 Polyplus Battery Company, Inc. Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries
US6358643B1 (en) * 1994-11-23 2002-03-19 Polyplus Battery Company Liquid electrolyte lithium-sulfur batteries
US5510209A (en) * 1995-01-05 1996-04-23 Eic Laboratories, Inc. Solid polymer electrolyte-based oxygen batteries
US5665481A (en) * 1995-11-14 1997-09-09 Northrop Grumman Corporation Metal-air battery
US5652068A (en) * 1995-11-14 1997-07-29 Northrop Grumman Corporation Metal-air battery with improved air supply
DE69720640T2 (en) * 1996-10-28 2004-03-18 Kabushiki Kaisha Ohara, Sagamihara Lithium-ion conductive glass ceramics and electrical cells and glass sensors manufactured with them
US5882812A (en) * 1997-01-14 1999-03-16 Polyplus Battery Company, Inc. Overcharge protection systems for rechargeable batteries
DE19748788A1 (en) * 1997-11-05 1999-05-06 Willi Mennicken Spacers, especially for insertion between glass panes
US6402795B1 (en) * 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
US6210832B1 (en) * 1998-09-01 2001-04-03 Polyplus Battery Company, Inc. Mixed ionic electronic conductor coatings for redox electrodes
US6200704B1 (en) * 1998-09-01 2001-03-13 Polyplus Battery Company, Inc. High capacity/high discharge rate rechargeable positive electrode
US6955866B2 (en) * 1998-09-03 2005-10-18 Polyplus Battery Company Coated lithium electrodes
US6198701B1 (en) * 1998-09-03 2001-03-06 Polyplus Battery Company, Inc. Electrochemical timer
US6537701B1 (en) * 1998-09-03 2003-03-25 Polyplus Battery Company, Inc. Coated lithium electrodes
US6110236A (en) * 1998-09-11 2000-08-29 Polyplus Battery Company, Inc. Method of preparing electrodes having evenly distributed component mixtures
US6194098B1 (en) * 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
US6358651B1 (en) * 1999-02-26 2002-03-19 Reveo, Inc. Solid gel membrane separator in rechargeable electrochemical cells
US6228527B1 (en) * 1999-03-02 2001-05-08 The United States Of America As Represented By The Secretary Of The Navy Magnesium solution phase catholyte seawater electrochemical system
US6413285B1 (en) * 1999-11-01 2002-07-02 Polyplus Battery Company Layered arrangements of lithium electrodes
US7247408B2 (en) * 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US6632573B1 (en) * 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
JP2002256093A (en) * 2001-02-28 2002-09-11 Nitto Denko Corp Porous film, production method thereof and usage thereof
US6537698B2 (en) 2001-03-21 2003-03-25 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
US7070632B1 (en) * 2001-07-25 2006-07-04 Polyplus Battery Company Electrochemical device separator structures with barrier layer on non-swelling membrane
US20030044680A1 (en) * 2001-08-24 2003-03-06 Im&T Research, Inc. Polymer materials for use in an electrode
US6991662B2 (en) * 2001-09-10 2006-01-31 Polyplus Battery Company Encapsulated alloy electrodes
US6737193B2 (en) * 2001-12-20 2004-05-18 Im&T Research, Inc. Tetraketopiperazine unit-containing compound as an active material in batteries
JP3729155B2 (en) * 2002-05-27 2005-12-21 ソニー株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
US7282302B2 (en) * 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US7390591B2 (en) * 2002-10-15 2008-06-24 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7645543B2 (en) * 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
WO2004036669A2 (en) * 2002-10-15 2004-04-29 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US7608178B2 (en) * 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
US7491458B2 (en) * 2003-11-10 2009-02-17 Polyplus Battery Company Active metal fuel cells
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US7691536B2 (en) * 2004-02-20 2010-04-06 Excellatron Solid State, Llc Lithium oxygen batteries and method of producing same

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405416A (en) * 1980-07-18 1983-09-20 Raistrick Ian D Molten salt lithium cells
US4402995A (en) * 1982-01-28 1983-09-06 Ray-O-Vac Corporation Treatment of lithium anodes
US5315765A (en) * 1992-04-27 1994-05-31 Melvin Holst High-efficiency fabric dryer
US5789108A (en) * 1994-11-23 1998-08-04 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6025094A (en) * 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
US6030720A (en) * 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
US5549988A (en) * 1995-03-10 1996-08-27 Motorola, Inc. Polymer electrolytes and electrochemical cells using same
US6280598B1 (en) * 1995-03-13 2001-08-28 Magnesium Technology Limited Anodization of magnesium and magnesium based alloys
US6096447A (en) * 1997-11-05 2000-08-01 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6274269B1 (en) * 1997-11-19 2001-08-14 Wilson Greatbatch Ltd. Method for reducing voltage delay in alkali metal electrochemical cells activated with a nonaqueous electrolyte having a phosphate additive
US6068950A (en) * 1997-11-19 2000-05-30 Wilson Greatbatch Ltd. Organic phosphate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6214061B1 (en) * 1998-05-01 2001-04-10 Polyplus Battery Company, Inc. Method for forming encapsulated lithium electrodes having glass protective layers
US6203942B1 (en) * 1998-10-22 2001-03-20 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6200701B1 (en) * 1999-01-25 2001-03-13 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
US6495285B2 (en) * 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
US6225002B1 (en) * 1999-02-05 2001-05-01 Polyplus Battery Company, Inc. Dioxolane as a proctector for lithium electrodes
US6489055B1 (en) * 1999-06-25 2002-12-03 Sanyo Electric Co., Ltd. Lithium secondary battery
US6413284B1 (en) * 1999-11-01 2002-07-02 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
US6737197B2 (en) * 1999-11-01 2004-05-18 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
US6511772B2 (en) * 2001-01-17 2003-01-28 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US6911280B1 (en) * 2001-12-21 2005-06-28 Polyplus Battery Company Chemical protection of a lithium surface

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069146B2 (en) 1999-11-23 2018-09-04 Sion Power Corporation Lithium anodes for electrochemical cells
US9653735B2 (en) 1999-11-23 2017-05-16 Sion Power Corporation Lithium anodes for electrochemical cells
US9397342B2 (en) 1999-11-23 2016-07-19 Sion Power Corporation Lithium anodes for electrochemical cells
US8728661B2 (en) 1999-11-23 2014-05-20 Sion Power Corporation Lithium anodes for electrochemical cells
US20110014524A1 (en) * 1999-11-23 2011-01-20 Sion Power Corporation Protection of anodes for electrochemical cells
US8623557B2 (en) 1999-11-23 2014-01-07 Sion Power Corporation Lithium anodes for electrochemical cells
US9065149B2 (en) 1999-11-23 2015-06-23 Sion Power Corporation Lithium anodes for electrochemical cells
US20080113261A1 (en) * 2001-12-21 2008-05-15 Polyplus Battery Corporation Chemical protection of a lithium surface
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US20080057387A1 (en) * 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US20080057399A1 (en) * 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US8114171B2 (en) 2002-10-15 2012-02-14 Polyplus Battery Company In situ formed ionically conductive membranes for protection of active metal anodes and battery cells
US8778522B2 (en) 2002-10-15 2014-07-15 Polyplus Battery Company Protected lithium electrodes based on sintered ceramic or glass ceramic membranes
US20080057386A1 (en) * 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US9362538B2 (en) 2002-10-15 2016-06-07 Polyplus Battery Company Advanced lithium ion batteries based on solid state protected lithium electrodes
US7858223B2 (en) 2002-10-15 2010-12-28 Polyplus Battery Company Electrochemical device component with protected alkali metal electrode
US7838144B2 (en) 2002-10-15 2010-11-23 Polyplus Battery Company Protective composite battery separator and electrochemical device component with red phosphorus
US7674558B2 (en) * 2003-06-04 2010-03-09 Polyplus Battery Company Alleviation of voltage delay in lithium-liquid depolarizer/electrolyte solvent battery cells
US20040253510A1 (en) * 2003-06-04 2004-12-16 Polyplus Battery Company Aliovalent protective layers for active metal anodes
US20090071835A1 (en) * 2003-06-04 2009-03-19 Polyplus Battery Company Alleviation of voltage delay in lithium-liquid depolarizer/electrolyte solvent battery cells
US20040248009A1 (en) * 2003-06-04 2004-12-09 Polyplus Battery Company Alleviation of voltage delay in lithium-liquid depolarizer/electrolyte solvent battery cells
US7482096B2 (en) * 2003-06-04 2009-01-27 Polyplus Battery Company Alleviation of voltage delay in lithium-liquid depolarizer/electrolyte solvent battery cells
US7666233B2 (en) 2003-10-14 2010-02-23 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US20080052898A1 (en) * 2003-10-14 2008-03-06 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US9136568B2 (en) 2003-10-14 2015-09-15 Polyplus Battery Company Protected lithium electrodes having tape cast ceramic and glass-ceramic membranes
US9601779B2 (en) 2003-10-14 2017-03-21 Polyplus Battery Company Battery cells with lithium ion conducting tape-cast ceramic, glass and glass-ceramic membranes
US8048571B2 (en) 2003-10-14 2011-11-01 Polyplus Battery Company Active metal / aqueous electrochemical cells and systems
US20100104934A1 (en) * 2003-10-14 2010-04-29 Polyplus Battery Company Active metal / aqueous electrochemical cells and systems
US9419299B2 (en) 2003-10-14 2016-08-16 Polyplus Battery Company Battery cells with lithium ion conducting tape-cast ceramic, glass and glass-ceramic membranes
US8202649B2 (en) 2003-10-14 2012-06-19 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US8709679B2 (en) 2003-11-10 2014-04-29 Polyplus Battery Company Active metal fuel cells
US7998626B2 (en) 2003-11-10 2011-08-16 Polyplus Battery Company Active metal fuel cells
US8361664B2 (en) 2003-11-10 2013-01-29 Polyplus Battery Company Protected lithium electrode fuel cell system incorporating a PEM fuel cell
US11646472B2 (en) 2004-02-06 2023-05-09 Polyplus Battery Company Making lithium metal—seawater battery cells having protected lithium electrodes
US10916753B2 (en) 2004-02-06 2021-02-09 Polyplus Battery Company Lithium metal—seawater battery cells having protected lithium electrodes
US8293398B2 (en) 2004-02-06 2012-10-23 Polyplus Battery Company Protected active metal electrode and battery cell with ionically conductive protective architecture
US9123941B2 (en) 2004-02-06 2015-09-01 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US7829212B2 (en) 2004-02-06 2010-11-09 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US8501339B2 (en) 2004-02-06 2013-08-06 Polyplus Battery Company Protected lithium electrodes having a polymer electrolyte interlayer and battery cells thereof
US9666850B2 (en) 2004-02-06 2017-05-30 Polyplus Battery Company Safety enhanced Li-ion and lithium metal battery cells having protected lithium electrodes with enhanced separator safety against dendrite shorting
US10529971B2 (en) 2004-02-06 2020-01-07 Polyplus Battery Company Safety enhanced li-ion and lithium metal battery cells having protected lithium electrodes with enhanced separator safety against dendrite shorting
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
WO2005089352A2 (en) * 2004-03-16 2005-09-29 Toyota Technical Canter Usa, Inc. Battery with molten salt electrolyte and protected lithium-based negative electrode material
US7514180B2 (en) * 2004-03-16 2009-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. Battery with molten salt electrolyte and protected lithium-based negative electrode material
WO2005089352A3 (en) * 2004-03-16 2006-09-08 Toyota Technical Canter Usa In Battery with molten salt electrolyte and protected lithium-based negative electrode material
US20060019167A1 (en) * 2004-03-16 2006-01-26 Wen Li Battery with molten salt electrolyte and protected lithium-based negative electrode material
WO2007049871A1 (en) * 2005-10-26 2007-05-03 Lg Chem, Ltd. Secondary battery of improved life characteristics
US8652692B2 (en) 2005-11-23 2014-02-18 Polyplus Battery Company Li/Air non-aqueous batteries
US8182943B2 (en) 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
US8334075B2 (en) 2005-12-19 2012-12-18 Polyplus Battery Company Substantially impervious lithium super ion conducting membranes
US8652686B2 (en) 2005-12-19 2014-02-18 Polyplus Battery Company Substantially impervious lithium super ion conducting membranes
US11575124B2 (en) 2006-03-22 2023-02-07 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable, lithium batteries
US9040201B2 (en) 2006-03-22 2015-05-26 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US8603680B2 (en) 2006-03-22 2013-12-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US7682733B2 (en) * 2006-08-25 2010-03-23 Motorola, Inc. Thin film battery having textured layer
US20080050656A1 (en) * 2006-08-25 2008-02-28 Eisenbeiser Kurt W Thin film battery having textured layer
US20100151329A1 (en) * 2006-10-12 2010-06-17 Toshitada Sato Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8334073B2 (en) * 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US10629954B2 (en) 2006-12-04 2020-04-21 Sion Power Corporation Separation of electrolytes
US11316204B2 (en) 2006-12-04 2022-04-26 Sion Power Corporation Separation of electrolytes
US8617748B2 (en) 2006-12-04 2013-12-31 Sion Power Corporation Separation of electrolytes
US8021496B2 (en) 2007-05-16 2011-09-20 Fmc Corporation Stabilized lithium metal powder for Li-ion application, composition and process
US8377236B2 (en) 2007-05-16 2013-02-19 Fmc Corporation Stabilized lithium metal powder for Li-ion application, composition and process
US20080283155A1 (en) * 2007-05-16 2008-11-20 Fmc Corporation, Lithium Division Stabilized lithium metal powder for Li-ion application, composition and process
US9287573B2 (en) 2007-06-29 2016-03-15 Polyplus Battery Company Lithium battery cell with protective membrane having a garnet like structure
US8518581B2 (en) * 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US20090181303A1 (en) * 2008-01-11 2009-07-16 Neudecker Bernd J Thin Film Encapsulation for Thin Film Batteries and Other Devices
US20130309556A1 (en) * 2008-01-11 2013-11-21 Infinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US9029012B2 (en) * 2008-01-11 2015-05-12 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US20150349301A1 (en) * 2008-01-11 2015-12-03 Sapurast Reseach LLC Thin film encapsulation for thin film batteries and other devices
US9786873B2 (en) * 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US8389147B2 (en) 2008-06-16 2013-03-05 Polyplus Battery Company Hydrogels for aqueous lithium/air battery cells
US8455131B2 (en) 2008-06-16 2013-06-04 Polyplus Battery Company Cathodes and reservoirs for aqueous lithium/air battery cells
US8323820B2 (en) 2008-06-16 2012-12-04 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells
US8658304B2 (en) 2008-06-16 2014-02-25 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells
US8673477B2 (en) 2008-06-16 2014-03-18 Polyplus Battery Company High energy density aqueous lithium/air-battery cells
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
KR101328317B1 (en) 2008-09-11 2013-11-11 고쿠리츠 다이가꾸 호우진 시즈오까 다이가꾸 Electrolyte solution and use thereof
US8986896B2 (en) * 2008-09-11 2015-03-24 Toyota Jidosha Kabushiki Kaisha Electrolyte solution and use therefor
US20110229772A1 (en) * 2008-09-11 2011-09-22 Tatsuo Fujinami Electrolyte solution and use therefor
US9243332B2 (en) * 2009-06-24 2016-01-26 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for eliminating metallic lithium
US20100326814A1 (en) * 2009-06-24 2010-12-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for eliminating metallic lithium
US20110135810A1 (en) * 2009-12-03 2011-06-09 Marina Yakovleva Finely deposited lithium metal powder
JP2012084515A (en) * 2010-10-08 2012-04-26 Samsung Electronics Co Ltd Lithium ion conductor, method of producing the same and lithium air battery including the same
KR101930442B1 (en) * 2010-12-01 2018-12-18 하이드로-퀘벡 Lithium-air battery
EP2647081A4 (en) * 2010-12-01 2016-08-10 Hydro Québec Lithium-air battery
US11398656B2 (en) * 2010-12-01 2022-07-26 Hydro-Quebec Lithium-air battery
US20140023940A1 (en) * 2010-12-01 2014-01-23 Hydro-Quebec Lithium-air battery
JP2014504428A (en) * 2010-12-01 2014-02-20 ハイドロ−ケベック Lithium air battery
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9714185B2 (en) 2011-03-11 2017-07-25 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9796630B2 (en) 2011-03-30 2017-10-24 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US20120263929A1 (en) * 2011-04-13 2012-10-18 Saint-Gobain Ceramic & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US9216928B2 (en) * 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US20150079481A1 (en) * 2011-06-17 2015-03-19 Applied Materials, Inc. Solid state electrolyte and barrier on lithium metal and its methods
US9593405B2 (en) * 2011-06-17 2017-03-14 Applied Materials, Inc. Pinhole-free dielectric thin film fabrication
US11456459B2 (en) 2011-06-17 2022-09-27 Sion Power Corporation Plating technique for electrode
CN106947948A (en) * 2011-06-17 2017-07-14 应用材料公司 Pin-free dielectric film manufacture
CN103608966A (en) * 2011-06-17 2014-02-26 应用材料公司 Pinhole-free dielectric thin film fabrication
US20120318664A1 (en) * 2011-06-17 2012-12-20 Applied Materials, Inc. Pinhole-Free Dielectric Thin Film Fabrication
US9379368B2 (en) 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
US20130017432A1 (en) * 2011-07-11 2013-01-17 Roumi Farshid Novel separators for electrochemical systems
US9954213B2 (en) 2011-07-11 2018-04-24 California Institute Of Technology Electrochemical systems with at least one electronically and ionically conductive layer
US11527802B2 (en) 2011-07-11 2022-12-13 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator
US10693117B2 (en) 2011-07-11 2020-06-23 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator
JP2014528139A (en) * 2011-07-11 2014-10-23 カリフォルニア インスティチュート オブ テクノロジー New separator for electrochemical systems
US10158110B2 (en) * 2011-07-11 2018-12-18 California Institute Of Technology Separators for electrochemical systems
JP2018067543A (en) * 2011-07-11 2018-04-26 カリフォルニア インスティチュート オブ テクノロジー Novel separators for electrochemical systems
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US8828575B2 (en) 2011-11-15 2014-09-09 PolyPlus Batter Company Aqueous electrolyte lithium sulfur batteries
US8828573B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrode structures for aqueous electrolyte lithium sulfur batteries
US8828574B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9902653B2 (en) 2012-01-11 2018-02-27 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
US9005311B2 (en) 2012-11-02 2015-04-14 Sion Power Corporation Electrode active surface pretreatment
CN105594051A (en) * 2013-02-21 2016-05-18 罗伯特·博世有限公司 Lithium battery with composite solid electrolyte
WO2014130725A1 (en) * 2013-02-21 2014-08-28 Robert Bosch Gmbh Lithium battery with composite solid electrolyte
US9905860B2 (en) 2013-06-28 2018-02-27 Polyplus Battery Company Water activated battery system having enhanced start-up behavior
US10020479B2 (en) 2013-08-08 2018-07-10 Sion Power Corporation Self-healing electrode protection in electrochemical cells
WO2015021373A1 (en) * 2013-08-08 2015-02-12 Sion Power Corporation Self-healing electrode protection in electrochemical cells
JP2016529671A (en) * 2013-08-08 2016-09-23 シオン・パワー・コーポレーション Self-healing electrode protection in electrochemical cells
US10573869B2 (en) 2013-08-08 2020-02-25 Sion Power Corporation Self-healing electrode protection in electrochemical cells
US11177537B2 (en) 2013-11-18 2021-11-16 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
US9991492B2 (en) 2013-11-18 2018-06-05 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
JP2017503323A (en) * 2014-01-02 2017-01-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Solid electrolyte and barrier on lithium metal and method
US11038178B2 (en) 2014-09-09 2021-06-15 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
US11557753B2 (en) 2014-10-23 2023-01-17 Sion Power Corporation Ion-conductive composite for electrochemical cells
US11688851B2 (en) 2015-01-09 2023-06-27 Applied Materials, Inc. Method of forming an anode structure with dielectric coating
US12057574B2 (en) 2015-01-09 2024-08-06 Applied Materials, Inc. Method of forming an anode structure with dielectric coating
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making
US10535902B2 (en) 2015-05-20 2020-01-14 Sion Power Corporation Protective layers for electrochemical cells
US11239504B2 (en) 2015-05-20 2022-02-01 Sion Power Corporation Protective layers for electrochemical cells
US10461372B2 (en) 2015-05-20 2019-10-29 Sion Power Corporation Protective layers for electrochemical cells
JP2018523263A (en) * 2015-06-05 2018-08-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Battery separator having a dielectric coating
US9947963B2 (en) 2015-11-24 2018-04-17 Sion Power Corporation Ionically conductive compounds and related uses
US10388987B2 (en) 2015-11-24 2019-08-20 Sion Power Corporation Ionically conductive compounds and related uses
US9825328B2 (en) 2015-11-24 2017-11-21 Sion Power Corporation Ionically conductive compounds and related uses
US10122043B2 (en) 2015-11-24 2018-11-06 Sion Power Corporation Ionically conductive compounds and related uses
US11271214B2 (en) 2015-12-02 2022-03-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
US11894562B2 (en) 2015-12-02 2024-02-06 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
US11581530B2 (en) 2016-05-20 2023-02-14 Sion Power Corporation Protective layers for electrodes and electrochemical cells
US10879527B2 (en) 2016-05-20 2020-12-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
US11742477B2 (en) 2016-05-20 2023-08-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
CN109328413A (en) * 2016-06-21 2019-02-12 应用材料公司 The boundary layer that lithium metal for improvement recycles
US20170365854A1 (en) * 2016-06-21 2017-12-21 Applied Materials, Inc. Interphase layer for improved lithium metal cycling
US11251501B2 (en) 2017-05-24 2022-02-15 Sion Power Corporation Lithium metal sulfide and lithium metal sulfide argyrodite ionically conductive compounds and related uses
US12129171B2 (en) 2017-05-24 2024-10-29 Sion Power Corporation Lithium metal sulfide and lithium metal sulfide argyrodite ionically conductive compounds and related uses
US11631922B2 (en) 2017-08-17 2023-04-18 Applied Materials, Inc. Olefin separator free Li-ion battery
US11631840B2 (en) 2019-04-26 2023-04-18 Applied Materials, Inc. Surface protection of lithium metal anode
CN110190254A (en) * 2019-05-15 2019-08-30 华南理工大学 A kind of preparation method of lithium phosphate coated lithium ion battery tertiary cathode material
CN115928011A (en) * 2022-12-26 2023-04-07 中节能万润股份有限公司 Sodium metal negative electrode protection method and battery

Also Published As

Publication number Publication date
US6911280B1 (en) 2005-06-28
US20080113261A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
US6911280B1 (en) Chemical protection of a lithium surface
EP1093672B1 (en) Encapsulated lithium electrodes having glass protective layers and method for their preparation
US6991662B2 (en) Encapsulated alloy electrodes
US6737197B2 (en) Encapsulated lithium alloy electrodes having barrier layers
AU743685B2 (en) Plating metal negative electrodes under protective coatings
US7070632B1 (en) Electrochemical device separator structures with barrier layer on non-swelling membrane
KR100508945B1 (en) Negative electrode for lithium battery, method of preparing same, and lithium battery comprising same
US6413285B1 (en) Layered arrangements of lithium electrodes
US7838144B2 (en) Protective composite battery separator and electrochemical device component with red phosphorus
US7390591B2 (en) Ionically conductive membranes for protection of active metal anodes and battery cells
US6025094A (en) Protective coatings for negative electrodes
KR20110131278A (en) Ionically conductive composites for protection of active metal anodes
WO2002067344A2 (en) Electrolytes with strong oxidizing additives for lithium/sulfur batteries
MXPA00008067A (en) Plating metal negative electrodes under protective coatings

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLYPLUS BATTERY COMPANY, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE JONGHE, LUTGARD;VISCO, STEVEN J.;NIMON, YEVGENIY S.;AND OTHERS;REEL/FRAME:016431/0532;SIGNING DATES FROM 20030115 TO 20030313

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION