US20070082268A1 - Chemical protection of metal surface - Google Patents
Chemical protection of metal surface Download PDFInfo
- Publication number
- US20070082268A1 US20070082268A1 US11/457,525 US45752506A US2007082268A1 US 20070082268 A1 US20070082268 A1 US 20070082268A1 US 45752506 A US45752506 A US 45752506A US 2007082268 A1 US2007082268 A1 US 2007082268A1
- Authority
- US
- United States
- Prior art keywords
- carbons
- groups
- anode
- halogens
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 7
- 239000002184 metal Substances 0.000 title claims description 7
- 239000000126 substance Substances 0.000 title description 2
- 239000002243 precursor Substances 0.000 claims abstract description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000001301 oxygen Substances 0.000 claims abstract description 27
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 27
- 239000011241 protective layer Substances 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 14
- 239000007769 metal material Substances 0.000 claims abstract description 14
- 239000003792 electrolyte Substances 0.000 claims abstract description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 51
- 150000002367 halogens Chemical group 0.000 claims description 51
- 125000000217 alkyl group Chemical group 0.000 claims description 40
- 125000003118 aryl group Chemical group 0.000 claims description 35
- 125000003545 alkoxy group Chemical group 0.000 claims description 33
- -1 iso-octyl Chemical group 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 27
- 229910052744 lithium Inorganic materials 0.000 claims description 19
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 239000000460 chlorine Substances 0.000 claims description 4
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 4
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 4
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 4
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 239000011630 iodine Substances 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 3
- 150000002902 organometallic compounds Chemical group 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 11
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 10
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 239000012925 reference material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- JZPDBTOWHLZQFC-UHFFFAOYSA-N chloro-di(propan-2-yl)phosphane Chemical compound CC(C)P(Cl)C(C)C JZPDBTOWHLZQFC-UHFFFAOYSA-N 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004566 IR spectroscopy Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- INJBDKCHQWVDGT-UHFFFAOYSA-N chloro(diethyl)phosphane Chemical compound CCP(Cl)CC INJBDKCHQWVDGT-UHFFFAOYSA-N 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- HWPLJWHPJDICQU-UHFFFAOYSA-N BrC(BC)Br Chemical compound BrC(BC)Br HWPLJWHPJDICQU-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- OHBTULDTCSOWOY-UHFFFAOYSA-N [C].C=C Chemical compound [C].C=C OHBTULDTCSOWOY-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002203 sulfidic glass Substances 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
- Y10T29/49115—Electric battery cell making including coating or impregnating
Definitions
- the invention relates to chemical Protection of a metal surface.
- Electrochemical cells containing a metallic anode, a cathode and a solid or solvent-containing electrolyte are known in the art. Such batteries have limitations over repeated charge/discharge cycles and may have drops in their charge and discharge capacity over repeated cycles as compared to their initial charge and discharge capacity. Additionally, an initial capacity of solid batteries is often less than desirable. There is therefore a need in the art for an improved battery having a high initial capacity and maintains such a capacity on repeated charge and discharge cycles.
- Dendrites may be formed on the anode when the electrochemical cell is charged.
- the dendrite may grow over repeated cycles and lead to a reduced performance of the battery or a short circuit not allowing the charge and discharge of the battery.
- An electrochemical cell includes an anode having a metal material having an oxygen containing layer.
- the electrochemical cell also includes a cathode and an electrolyte.
- the anode includes a chemically bonded protective layer formed by reacting a D or P block precursor with the oxygen containing layer.
- FIG. 1 is a IR spectroscopy plot of the wavelength versus the intensity for a lithium metal before and after application of the protective layer;
- FIG. 2 is a differential scanning calorimetry plot for a lithium metal having the protective layer
- FIG. 3 is a diagram of an experimental setup for impedance testing
- FIG. 4 is a plot of the impedance for chlorotrimethylsilane precursor forming a protective layer and a reference material
- FIG. 5 is a plot of the impedance for chlorodiisopropylphosphine precursor forming a protective layer and a reference material
- FIG. 6 is a plot of the impedance for chlorodiethylphosphine precursor forming a protective layer and a reference material
- FIG. 7 is a plot of the impedance for dromodimethylborane precursor forming a protective layer and a reference material
- FIG. 8 is a plot of the resistance for chlorotrimethylsilane, chlorodiisopropylphosphine, chlorodiethylphosphine, dromodimethylborane precursor forming a protective layer and a reference material.
- electrochemical cell refers to a device having an anode, cathode and an ion-conducting electrolyte interposed between the two.
- the electrochemical cell may be a battery, capacitor or other such device.
- the battery may be of a primary or secondary chemistry.
- the battery may have a solid electrolyte or a liquid electrolyte.
- anode as used herein refers to an electrode, which oxidizes during a discharge cycle.
- an electrochemical cell having an anode including a metal material having an oxygen containing layer.
- the anode metal material may be alkaline metals or alkaline earth metals as indicated in the periodic table.
- metal materials include: lithium, aluminum, sodium, and magnesium.
- the metal material is lithium.
- the oxygen containing layer may be formed by exposing the metal material to the atmosphere or may otherwise be formed on the metal material.
- the electrochemical cell also includes a cathode, which may be formed of any suitable material.
- An electrolyte is interposed between the anode and cathode and may be of any suitable form including solid electrolytes liquid electrolytes and gel polymer electrolytes, which are a polymer matrix swollen with solvent and salt. Solid electrolytes could be polymer-type, inorganic layer or mixtures of these two. Examples of polymer electrolytes include, PEO-based, and PEG based polymers.
- Inorganic electrolytes could be composed of sulfide glasses, phosphide glasses, oxide glasses and mixtures thereof
- An example of a liquid electrolyte includes carbonate solvent with dissolved metal-ion salt, for example 1M LiPF6 in ethylene carbon/diethyl carbonate (EC/DEC).
- the anode of the electrochemical cell includes a chemically bonded protective layer formed thereon by reacting a D or P block precursor with the oxygen containing layer.
- D or P block precursor includes compounds that have elements in the D or P block of the periodic table. Examples of D or P block elements include phosphorus, boron, silicon, titanium, molybdenum, tantalum, vanadium to name a few.
- the D or P block precursor may be an organo-metallic compound. Examples of organo-metallic compounds include: inter-metaltic compounds, alloys and metals having organic substituents bonded thereon. In a preferred aspect of the invention D or P block precursors may include silicon, boron or phosphorous.
- the D or P block precursors react with the oxygen containing layer of the metal material to form the protective layer.
- the D or P block precursor may be a chemical compound of the formula: AR 1 R 2 X wherein A is selected from phosphorous or boron, X is a halogen or halogen containing compound and R 1 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons, R 2 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons.
- the halogen may be chlorine, bromine, fluorine, and iodine.
- the alkyl, alkoxy, and aromatic groups may be fluorinated or partially fluorinated.
- the alcyl group may be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, tert-pentyl, iso-octyl, tert-octyl, 2-ethyhexyl, nonyl, decyl, undecyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 1-methylcyclopentyl, 1-methylcyclohexyl, 1-methylcyclohexyl, and 1-methyl-4-isopropylcyclohexyl, although other alkyl groups not listed may be used by the invention.
- the alkyl group may also be functionalized. Suitable functional groups include: ether, sulfide, sulfoxide to name a few.
- the aromatic group may be phenyl groups, phenyl groups having alkyl substituents in the para, meta or ortho position, and polyaromatic compounds.
- suitable polyaromatic compounds include naphthalene derivatives.
- the D or P block precursor may be a chemical compound of the formula: AR 1 R 2 R 3 R 4 X wherein A is phosphorous, X is a halogen or halogen containing compound and R 1 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, aromatic groups having from 1 to 20 carbons, or oxygen R 2 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, aromatic groups having from 1 to 20 carbons, or oxygen, R3 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, aromatic groups having from 1 to 20 carbons, or oxygen, R4 is selected from halogens, alcyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, aromatic groups having from 1 to 20 carbons, or oxygen.
- A is phosphorous
- X is a hal
- the number of R groups may be less than four total.
- the D or P block precursor may be a chemical compound of the formula: SiR 1 R 2 R 3 X wherein, X is a halogen or halogen containing compound and R 1 is selected from hydrogen, halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons, R 2 is selected from hydrogen, halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons R 3 is selected from hydrogen, halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons.
- lithium metal strips were exposed to various precursor compounds.
- the lithium strips were placed in a sealed flask at room temperature in an inert atmosphere containing the precursor compound.
- the strips were exposed to the precursor a suitable period of time for the precursor to react with the metal oxygen containing layer on the lithium to form the protective layer.
- Various analysis procedures were performed including: impedance tests, IR spectroscopy tests, and differential scanning calorimetry tests on the various samples.
- FIG. 1 An untreated sample of the lithium metal and a sample treated with chlorotrimethyl silane for 240 seconds according to the above procedure were analyzed using IR spectroscopy, as shown in FIG. 1 .
- the peak correspond to a lithium hydroxide bond is shown in the 3600 cm ⁇ 1 range for the untreated sample. This peak is not shown for the treated sample which includes a peak in the 1100 cm ⁇ 1 range corresponding to a silicon oxygen bond. This relationship indicates the precursor compound has reacted with the metal oxygen containing to form a silicon oxygen bond.
- An untreated sample of the lithium metal and a sample treated with chlorotrimethyl silane according to the above procedure were analyzed using differential scanning calorimetry, as shown in FIG. 2 .
- the samples were placed in aluminum pans with nitrogen gas flowing around the samples. The samples were heated to above the melting point and cooled below the melting point repetitively to determine whether the lithium was protected from the environment.
- the untreated lithium sample reacted with the aluminum pan and did not show melting and solidification representative of pure lithium metal.
- the treated sample, as shown in FIG. 2 exhibits very clear melting and solidification of lithium at or very near the melting point of lithium (the slight amount of superheating or supercooling at the melting point is heating rate dependent). The narrow peaks indicate that the lithium metal is protected and has not reacted with its environment in contrast to the unprotected sample.
- FIG. 4 shows the impedance plot for a sample treated with a chlorotrimethylsilane precursor forming a protective layer.
- FIG. 5 is a plot of the impedance for a chlorodiisopropylphosphine precursor forming a protective layer.
- FIG. 6 is a plot of the impedance for a chlorodiethylphosphine precursor forming a protective layer.
- FIG. 7 is a plot of the impedance for a dibromodimethylborane precursor forming a protective layer.
- the treated samples all have an impedance curve with a slope less than the reference samples. This behavior indicates an improved performance in comparison to the untreated samples.
- the impedance values were used to calculate a resistance of the various samples, which are displayed in FIG. 8 for the various samples. As can be seen in the figure, the resistance for all the treated samples is less than the untreated reference.
- the various elements and R groups of the precursor material has an affect on the resistance of the samples.
- the chlorodiisopropylphosphine sample shows the lowest resistance of the treated samples. A lower resistance metal material is desirable for use as an anode in an electrochemical cell.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
- This application claims priority of U.S. Provisional Patent Applications Ser. No. 60/713,688 filed Sep. 2, 2005 and Ser. No. 60/739,499 filed Nov. 23, 2005, which are incorporated herein by reference.
- The invention relates to chemical Protection of a metal surface.
- Electrochemical cells containing a metallic anode, a cathode and a solid or solvent-containing electrolyte are known in the art. Such batteries have limitations over repeated charge/discharge cycles and may have drops in their charge and discharge capacity over repeated cycles as compared to their initial charge and discharge capacity. Additionally, an initial capacity of solid batteries is often less than desirable. There is therefore a need in the art for an improved battery having a high initial capacity and maintains such a capacity on repeated charge and discharge cycles.
- Another problem associated with electrochemical cells is the generation of dendrites over repeat charge and discharge cycles. Dendrites may be formed on the anode when the electrochemical cell is charged. The dendrite may grow over repeated cycles and lead to a reduced performance of the battery or a short circuit not allowing the charge and discharge of the battery. There is therefore a need in the art for a battery and electrode with an improved cycle life and limits the formation of a dendrite.
- An electrochemical cell includes an anode having a metal material having an oxygen containing layer. The electrochemical cell also includes a cathode and an electrolyte. The anode includes a chemically bonded protective layer formed by reacting a D or P block precursor with the oxygen containing layer.
-
FIG. 1 is a IR spectroscopy plot of the wavelength versus the intensity for a lithium metal before and after application of the protective layer; -
FIG. 2 is a differential scanning calorimetry plot for a lithium metal having the protective layer; -
FIG. 3 is a diagram of an experimental setup for impedance testing; -
FIG. 4 is a plot of the impedance for chlorotrimethylsilane precursor forming a protective layer and a reference material; -
FIG. 5 is a plot of the impedance for chlorodiisopropylphosphine precursor forming a protective layer and a reference material; -
FIG. 6 is a plot of the impedance for chlorodiethylphosphine precursor forming a protective layer and a reference material; -
FIG. 7 is a plot of the impedance for dromodimethylborane precursor forming a protective layer and a reference material; -
FIG. 8 is a plot of the resistance for chlorotrimethylsilane, chlorodiisopropylphosphine, chlorodiethylphosphine, dromodimethylborane precursor forming a protective layer and a reference material. - The term electrochemical cell as used herein refers to a device having an anode, cathode and an ion-conducting electrolyte interposed between the two. The electrochemical cell may be a battery, capacitor or other such device. The battery may be of a primary or secondary chemistry. The battery may have a solid electrolyte or a liquid electrolyte. The term anode as used herein refers to an electrode, which oxidizes during a discharge cycle.
- There is disclosed an electrochemical cell having an anode including a metal material having an oxygen containing layer. The anode metal material may be alkaline metals or alkaline earth metals as indicated in the periodic table. Non-limiting examples of metal materials include: lithium, aluminum, sodium, and magnesium. In a preferred aspect of the invention the metal material is lithium.
- The oxygen containing layer may be formed by exposing the metal material to the atmosphere or may otherwise be formed on the metal material. The electrochemical cell also includes a cathode, which may be formed of any suitable material. An electrolyte is interposed between the anode and cathode and may be of any suitable form including solid electrolytes liquid electrolytes and gel polymer electrolytes, which are a polymer matrix swollen with solvent and salt. Solid electrolytes could be polymer-type, inorganic layer or mixtures of these two. Examples of polymer electrolytes include, PEO-based, and PEG based polymers. Inorganic electrolytes could be composed of sulfide glasses, phosphide glasses, oxide glasses and mixtures thereof An example of a liquid electrolyte includes carbonate solvent with dissolved metal-ion salt, for example 1M LiPF6 in ethylene carbon/diethyl carbonate (EC/DEC).
- The anode of the electrochemical cell includes a chemically bonded protective layer formed thereon by reacting a D or P block precursor with the oxygen containing layer. The term D or P block precursor includes compounds that have elements in the D or P block of the periodic table. Examples of D or P block elements include phosphorus, boron, silicon, titanium, molybdenum, tantalum, vanadium to name a few. The D or P block precursor may be an organo-metallic compound. Examples of organo-metallic compounds include: inter-metaltic compounds, alloys and metals having organic substituents bonded thereon. In a preferred aspect of the invention D or P block precursors may include silicon, boron or phosphorous. The D or P block precursors react with the oxygen containing layer of the metal material to form the protective layer.
- In one embodiment, the D or P block precursor may be a chemical compound of the formula: AR1R2X wherein A is selected from phosphorous or boron, X is a halogen or halogen containing compound and R1 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons, R2 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons.
- The halogen may be chlorine, bromine, fluorine, and iodine. The alkyl, alkoxy, and aromatic groups may be fluorinated or partially fluorinated.
- The alcyl group may be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, tert-pentyl, iso-octyl, tert-octyl, 2-ethyhexyl, nonyl, decyl, undecyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 1-methylcyclopentyl, 1-methylcyclohexyl, 1-methylcyclohexyl, and 1-methyl-4-isopropylcyclohexyl, although other alkyl groups not listed may be used by the invention. The alkyl group may also be functionalized. Suitable functional groups include: ether, sulfide, sulfoxide to name a few.
- The aromatic group may be phenyl groups, phenyl groups having alkyl substituents in the para, meta or ortho position, and polyaromatic compounds. Examples of suitable polyaromatic compounds include naphthalene derivatives.
- In another embodiment of the invention, the D or P block precursor may be a chemical compound of the formula: AR1R2 R3 R4X wherein A is phosphorous, X is a halogen or halogen containing compound and R1 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, aromatic groups having from 1 to 20 carbons, or oxygen R2 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, aromatic groups having from 1 to 20 carbons, or oxygen, R3 is selected from halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, aromatic groups having from 1 to 20 carbons, or oxygen, R4 is selected from halogens, alcyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, aromatic groups having from 1 to 20 carbons, or oxygen.
- In the case where the compound includes double bonded oxygen or other double bonded substituent, the number of R groups may be less than four total.
- As with the previously described embodiment, the description of the halogens, alkyl, alkoxy and aromatic groups are the same and are not repeated.
- In another embodiment of the invention, the D or P block precursor may be a chemical compound of the formula: SiR1R2R3X wherein, X is a halogen or halogen containing compound and R1 is selected from hydrogen, halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons, R2 is selected from hydrogen, halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons R3 is selected from hydrogen, halogens, alkyl groups having from 1 to 20 carbons, alkoxy groups containing 1 to 20 carbons, or aromatic groups having from 1 to 20 carbons.
- As with the previously described embodiments, the description of the halogens, alkyl, alkoxy and aromatic groups are the same and are not repeated.
- In the experiments detailed in the examples section, lithium metal strips were exposed to various precursor compounds. The lithium strips were placed in a sealed flask at room temperature in an inert atmosphere containing the precursor compound. The strips were exposed to the precursor a suitable period of time for the precursor to react with the metal oxygen containing layer on the lithium to form the protective layer. Various analysis procedures were performed including: impedance tests, IR spectroscopy tests, and differential scanning calorimetry tests on the various samples.
- An untreated sample of the lithium metal and a sample treated with chlorotrimethyl silane for 240 seconds according to the above procedure were analyzed using IR spectroscopy, as shown in
FIG. 1 . The peak correspond to a lithium hydroxide bond is shown in the 3600 cm−1 range for the untreated sample. This peak is not shown for the treated sample which includes a peak in the 1100 cm−1 range corresponding to a silicon oxygen bond. This relationship indicates the precursor compound has reacted with the metal oxygen containing to form a silicon oxygen bond. - An untreated sample of the lithium metal and a sample treated with chlorotrimethyl silane according to the above procedure were analyzed using differential scanning calorimetry, as shown in
FIG. 2 . The samples were placed in aluminum pans with nitrogen gas flowing around the samples. The samples were heated to above the melting point and cooled below the melting point repetitively to determine whether the lithium was protected from the environment. The untreated lithium sample reacted with the aluminum pan and did not show melting and solidification representative of pure lithium metal. The treated sample, as shown inFIG. 2 , exhibits very clear melting and solidification of lithium at or very near the melting point of lithium (the slight amount of superheating or supercooling at the melting point is heating rate dependent). The narrow peaks indicate that the lithium metal is protected and has not reacted with its environment in contrast to the unprotected sample. - Impedance tests were performed on various treated samples of lithium and untreated lithium as a reference. The experimental setup used is shown in
FIG. 3 . The various samples were formed using the procedure described above. The lithium samples were tested in the experimental setup with the sample placed in the positive electrode position. The impedance plots for various samples are shown inFIGS. 4-7 .FIG. 4 shows the impedance plot for a sample treated with a chlorotrimethylsilane precursor forming a protective layer.FIG. 5 is a plot of the impedance for a chlorodiisopropylphosphine precursor forming a protective layer.FIG. 6 is a plot of the impedance for a chlorodiethylphosphine precursor forming a protective layer.FIG. 7 is a plot of the impedance for a dibromodimethylborane precursor forming a protective layer. As can be seen in the figures the treated samples all have an impedance curve with a slope less than the reference samples. This behavior indicates an improved performance in comparison to the untreated samples. The impedance values were used to calculate a resistance of the various samples, which are displayed inFIG. 8 for the various samples. As can be seen in the figure, the resistance for all the treated samples is less than the untreated reference. The various elements and R groups of the precursor material has an affect on the resistance of the samples. The chlorodiisopropylphosphine sample shows the lowest resistance of the treated samples. A lower resistance metal material is desirable for use as an anode in an electrochemical cell. - The invention has been described in an illustrative manner. It is to be understood that the terminology, which has been used, is intended to be in the nature of words of description rather than limitation. Many modifications and variations of the invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the invention may be practiced other than as specifically described.
Claims (24)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/457,525 US20070082268A1 (en) | 2005-09-02 | 2006-07-14 | Chemical protection of metal surface |
PCT/US2007/012613 WO2008008130A2 (en) | 2006-07-14 | 2007-05-24 | Chemical protection of metal surface |
KR1020097002913A KR101501565B1 (en) | 2006-07-14 | 2007-05-24 | Chemical protection of metal surface |
CN2007800325285A CN101542782B (en) | 2006-07-14 | 2007-05-24 | Chemical protection of metal surface |
JP2009519433A JP5336363B2 (en) | 2006-07-14 | 2007-05-24 | Chemical protection of metal surfaces |
US12/396,223 US20090220857A1 (en) | 2005-09-02 | 2009-03-02 | Chemical protection of metal surface |
US14/156,241 US20140134488A1 (en) | 2006-07-14 | 2014-01-15 | Chemical protection of metal surface |
US14/163,536 US8840688B2 (en) | 2006-07-14 | 2014-01-24 | Chemical protection of metal surface |
US14/513,507 US20150026967A1 (en) | 2006-07-14 | 2014-10-14 | Chemical protection of metal surface |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71368805P | 2005-09-02 | 2005-09-02 | |
US73949905P | 2005-11-23 | 2005-11-23 | |
US11/457,525 US20070082268A1 (en) | 2005-09-02 | 2006-07-14 | Chemical protection of metal surface |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/396,223 Continuation-In-Part US20090220857A1 (en) | 2005-09-02 | 2009-03-02 | Chemical protection of metal surface |
US14/163,536 Continuation US8840688B2 (en) | 2006-07-14 | 2014-01-24 | Chemical protection of metal surface |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070082268A1 true US20070082268A1 (en) | 2007-04-12 |
Family
ID=38923729
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/457,525 Abandoned US20070082268A1 (en) | 2005-09-02 | 2006-07-14 | Chemical protection of metal surface |
US14/163,536 Active US8840688B2 (en) | 2006-07-14 | 2014-01-24 | Chemical protection of metal surface |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/163,536 Active US8840688B2 (en) | 2006-07-14 | 2014-01-24 | Chemical protection of metal surface |
Country Status (5)
Country | Link |
---|---|
US (2) | US20070082268A1 (en) |
JP (1) | JP5336363B2 (en) |
KR (1) | KR101501565B1 (en) |
CN (1) | CN101542782B (en) |
WO (1) | WO2008008130A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080069944A1 (en) * | 2006-09-19 | 2008-03-20 | Toyota Engineering & Manufacturing North America, Inc. | Method of chemical protection of metal surface |
US20090220857A1 (en) * | 2005-09-02 | 2009-09-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Chemical protection of metal surface |
WO2013104787A1 (en) | 2012-01-13 | 2013-07-18 | Chemetall Gmbh | Stabilized lithium metal impressions coated with alloy-forming elements and method for production thereof |
WO2013104788A1 (en) | 2012-01-13 | 2013-07-18 | Chemetall Gmbh | Phosphorous-coated lithium metal products, method for production and use thereof |
DE102014207396A1 (en) | 2013-04-19 | 2014-10-23 | Rockwood Lithium GmbH | Stabilized nitrogen-containing shell-coated lithium metal impressions and methods of making the same |
US20220216462A1 (en) * | 2019-05-13 | 2022-07-07 | Korea Electrotechnology Research Institute | Anode active material comprising metal phosphide coating on surface of carbon material, preparation method therefor, nonaqueous lithium secondary battery comprising anode active material, and manufacturing method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8217930B2 (en) | 2009-08-27 | 2012-07-10 | 3M Innovative Properties Company | Fast transitions of large area cholesteric displays |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5354631A (en) * | 1993-06-08 | 1994-10-11 | Valence Technology, Inc. | Enhanced lithium surface |
US5648187A (en) * | 1994-02-16 | 1997-07-15 | Moltech Corporation | Stabilized anode for lithium-polymer batteries |
US5824434A (en) * | 1992-11-30 | 1998-10-20 | Canon Kabushiki Kaisha | Secondary battery |
US20020028384A1 (en) * | 2000-09-07 | 2002-03-07 | Front Edge Technology, Inc. | Thin film battery and method of manufacture |
US6511772B2 (en) * | 2001-01-17 | 2003-01-28 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture |
US6537698B2 (en) * | 2001-03-21 | 2003-03-25 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture |
US6547778B1 (en) * | 2000-07-21 | 2003-04-15 | Joseph H. Sklar | Graft ligament strand tensioner |
US20030211358A1 (en) * | 1997-07-22 | 2003-11-13 | Sumitomo Chemical Company, Ltd. | Hole transporting polymer and organic electroluminescence device using the same |
US20040058232A1 (en) * | 2002-09-23 | 2004-03-25 | Samsung Sdi Co., Ltd. | Negative electrode for lithium battery and lithium battery comprising same |
US20040081894A1 (en) * | 2001-02-20 | 2004-04-29 | Polyplus Battery Company | Electrolytes with strong oxidizing additives for lithium/sulfur batteries |
US6737197B2 (en) * | 1999-11-01 | 2004-05-18 | Polyplus Battery Company | Encapsulated lithium alloy electrodes having barrier layers |
US20040096737A1 (en) * | 2002-11-16 | 2004-05-20 | Samsung Sdi Co., Ltd. | Non-aqueous electrolyte and lithium battery using the same |
US6777132B2 (en) * | 2000-04-27 | 2004-08-17 | Valence Technology, Inc. | Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials |
US20040186255A1 (en) * | 2001-05-07 | 2004-09-23 | Uckert Frank P. | Electroactive Fluorene polymers having perfluoroalkyl groups, process for preparing such polymers and devices made with such polymers |
US6878487B2 (en) * | 2001-09-05 | 2005-04-12 | Samsung Sdi, Co., Ltd. | Active material for battery and method of preparing same |
US6911280B1 (en) * | 2001-12-21 | 2005-06-28 | Polyplus Battery Company | Chemical protection of a lithium surface |
US20060063073A1 (en) * | 2003-01-23 | 2006-03-23 | Atsumichi Kawashima | Electrode and battery |
US7041239B2 (en) * | 2003-04-03 | 2006-05-09 | Valence Technology, Inc. | Electrodes comprising mixed active particles |
US7066971B1 (en) * | 1999-11-23 | 2006-06-27 | Sion Power Corporation | Methods of preparing electrochemical cells |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3530544B2 (en) * | 1992-09-14 | 2004-05-24 | キヤノン株式会社 | Rechargeable battery |
JP3417054B2 (en) * | 1994-04-28 | 2003-06-16 | 株式会社デンソー | Manufacturing method of non-aqueous electrolyte secondary battery |
JP4770053B2 (en) * | 2001-02-02 | 2011-09-07 | ダイキン工業株式会社 | Electrode surface film forming agent |
JP4174816B2 (en) * | 2001-02-28 | 2008-11-05 | 住友電気工業株式会社 | Inorganic solid electrolyte and lithium battery member |
JP4367001B2 (en) * | 2002-06-25 | 2009-11-18 | 三菱化学株式会社 | Non-aqueous electrolyte secondary battery |
JP4450550B2 (en) * | 2002-11-21 | 2010-04-14 | 三井化学株式会社 | Non-aqueous electrolyte and secondary battery using the same |
JP2005063731A (en) * | 2003-08-08 | 2005-03-10 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery and its manufacturing method |
US7776385B2 (en) * | 2006-09-19 | 2010-08-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Method of chemical protection of metal surface |
-
2006
- 2006-07-14 US US11/457,525 patent/US20070082268A1/en not_active Abandoned
-
2007
- 2007-05-24 CN CN2007800325285A patent/CN101542782B/en not_active Expired - Fee Related
- 2007-05-24 KR KR1020097002913A patent/KR101501565B1/en not_active IP Right Cessation
- 2007-05-24 JP JP2009519433A patent/JP5336363B2/en not_active Expired - Fee Related
- 2007-05-24 WO PCT/US2007/012613 patent/WO2008008130A2/en active Application Filing
-
2014
- 2014-01-24 US US14/163,536 patent/US8840688B2/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5824434A (en) * | 1992-11-30 | 1998-10-20 | Canon Kabushiki Kaisha | Secondary battery |
US6395423B1 (en) * | 1992-11-30 | 2002-05-28 | Canon Kabushiki Kaisha | High energy density secondary battery for repeated use |
US5354631A (en) * | 1993-06-08 | 1994-10-11 | Valence Technology, Inc. | Enhanced lithium surface |
US5648187A (en) * | 1994-02-16 | 1997-07-15 | Moltech Corporation | Stabilized anode for lithium-polymer batteries |
US20030211358A1 (en) * | 1997-07-22 | 2003-11-13 | Sumitomo Chemical Company, Ltd. | Hole transporting polymer and organic electroluminescence device using the same |
US6737197B2 (en) * | 1999-11-01 | 2004-05-18 | Polyplus Battery Company | Encapsulated lithium alloy electrodes having barrier layers |
US7066971B1 (en) * | 1999-11-23 | 2006-06-27 | Sion Power Corporation | Methods of preparing electrochemical cells |
US6777132B2 (en) * | 2000-04-27 | 2004-08-17 | Valence Technology, Inc. | Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials |
US6547778B1 (en) * | 2000-07-21 | 2003-04-15 | Joseph H. Sklar | Graft ligament strand tensioner |
US20020028384A1 (en) * | 2000-09-07 | 2002-03-07 | Front Edge Technology, Inc. | Thin film battery and method of manufacture |
US6511772B2 (en) * | 2001-01-17 | 2003-01-28 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture |
US20040081894A1 (en) * | 2001-02-20 | 2004-04-29 | Polyplus Battery Company | Electrolytes with strong oxidizing additives for lithium/sulfur batteries |
US6537698B2 (en) * | 2001-03-21 | 2003-03-25 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture |
US20040186255A1 (en) * | 2001-05-07 | 2004-09-23 | Uckert Frank P. | Electroactive Fluorene polymers having perfluoroalkyl groups, process for preparing such polymers and devices made with such polymers |
US6878487B2 (en) * | 2001-09-05 | 2005-04-12 | Samsung Sdi, Co., Ltd. | Active material for battery and method of preparing same |
US6911280B1 (en) * | 2001-12-21 | 2005-06-28 | Polyplus Battery Company | Chemical protection of a lithium surface |
US20040058232A1 (en) * | 2002-09-23 | 2004-03-25 | Samsung Sdi Co., Ltd. | Negative electrode for lithium battery and lithium battery comprising same |
US20040096737A1 (en) * | 2002-11-16 | 2004-05-20 | Samsung Sdi Co., Ltd. | Non-aqueous electrolyte and lithium battery using the same |
US20060063073A1 (en) * | 2003-01-23 | 2006-03-23 | Atsumichi Kawashima | Electrode and battery |
US7041239B2 (en) * | 2003-04-03 | 2006-05-09 | Valence Technology, Inc. | Electrodes comprising mixed active particles |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090220857A1 (en) * | 2005-09-02 | 2009-09-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Chemical protection of metal surface |
US20080069944A1 (en) * | 2006-09-19 | 2008-03-20 | Toyota Engineering & Manufacturing North America, Inc. | Method of chemical protection of metal surface |
US7776385B2 (en) * | 2006-09-19 | 2010-08-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Method of chemical protection of metal surface |
US20110104366A1 (en) * | 2006-09-19 | 2011-05-05 | Toyota Motor Engineering & Manufacturing North America, Inc. | Method of chemical protection of metal surface |
US8383190B2 (en) * | 2006-09-19 | 2013-02-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | Method of chemical protection of metal surface |
WO2010101856A1 (en) * | 2009-03-02 | 2010-09-10 | Toyota Motor Engineering & Manufacturing North America, Inc. | Chemical protection of metal surface |
CN102405543A (en) * | 2009-03-02 | 2012-04-04 | 丰田自动车工程及制造北美公司 | Chemical protection of metal surface |
JP2012519368A (en) * | 2009-03-02 | 2012-08-23 | トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド | Chemical protection of metal surfaces |
WO2013104787A1 (en) | 2012-01-13 | 2013-07-18 | Chemetall Gmbh | Stabilized lithium metal impressions coated with alloy-forming elements and method for production thereof |
WO2013104788A1 (en) | 2012-01-13 | 2013-07-18 | Chemetall Gmbh | Phosphorous-coated lithium metal products, method for production and use thereof |
DE102013200416A1 (en) | 2012-01-13 | 2013-07-18 | Chemetall Gmbh | Stabilized alloy-forming elements coated lithium metal impressions and methods of making the same |
DE102013200414A1 (en) | 2012-01-13 | 2014-01-09 | Chemetall Gmbh | Phosphorus-coated lithium metal products, process for their preparation and use |
US9601762B2 (en) | 2012-01-13 | 2017-03-21 | Rockwood Lithium GmbH | Phosphorous-coated lithium metal products, method for production and use thereof |
US11018334B2 (en) | 2012-01-13 | 2021-05-25 | Albemarle Germany Gmbh | Stabilized lithium metal impressions coated with alloy-forming elements and method for production thereof |
DE102014207396A1 (en) | 2013-04-19 | 2014-10-23 | Rockwood Lithium GmbH | Stabilized nitrogen-containing shell-coated lithium metal impressions and methods of making the same |
WO2014170429A1 (en) | 2013-04-19 | 2014-10-23 | Rockwood Lithium GmbH | Stabilised lithium metal formations coated with a shell containing nitrogen, and a method for the production of same |
US20220216462A1 (en) * | 2019-05-13 | 2022-07-07 | Korea Electrotechnology Research Institute | Anode active material comprising metal phosphide coating on surface of carbon material, preparation method therefor, nonaqueous lithium secondary battery comprising anode active material, and manufacturing method therefor |
US12107264B2 (en) * | 2019-05-13 | 2024-10-01 | Korea Electrotechnology Research Institute | Anode active material comprising metal phosphide coating on surface of carbon material, preparation method therefor, nonaqueous lithium secondary battery comprising anode active material, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2009544115A (en) | 2009-12-10 |
WO2008008130A3 (en) | 2008-04-10 |
WO2008008130A2 (en) | 2008-01-17 |
KR101501565B1 (en) | 2015-03-11 |
CN101542782B (en) | 2012-03-21 |
CN101542782A (en) | 2009-09-23 |
KR20090058504A (en) | 2009-06-09 |
JP5336363B2 (en) | 2013-11-06 |
US20140141157A1 (en) | 2014-05-22 |
US8840688B2 (en) | 2014-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8840688B2 (en) | Chemical protection of metal surface | |
US8383190B2 (en) | Method of chemical protection of metal surface | |
US8895193B2 (en) | Plastic crystal electrolyte with a broad potential window | |
Rohan et al. | Dinitrile–mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles | |
KR20170046698A (en) | Ionic liquid and plastic crystal | |
Bolloli et al. | Fluorinated carbamates as suitable solvents for LiTFSI-based lithium-ion electrolytes: physicochemical properties and electrochemical characterization | |
Schoetz et al. | Aluminium deposition in EMImCl-AlCl3 ionic liquid and ionogel for improved aluminium batteries | |
Murugan et al. | Stable Cycling of Room‐Temperature Sodium‐Sulfur Batteries Based on an In Situ Crosslinked Gel Polymer Electrolyte | |
US20150026967A1 (en) | Chemical protection of metal surface | |
Kwon et al. | A chronocoulometric method to measure the corrosion rate on zinc metal electrodes | |
US10497973B2 (en) | Polymer compositions that conduct lithium ions for electrochemical lithium generator | |
JP6973477B2 (en) | Polymer electrolyte composition and polymer secondary battery | |
JP2012518260A (en) | Galvanic cell having an electrolyte with lithium metal or lithium metal-containing alloy and lithium bis (oxalato) borate and at least one other lithium complex salt as anode material | |
Ochel et al. | Physicochemical and electrochemical investigations of the ionic liquid N-butyl-N-methyl-pyrrolidinium 4, 5-dicyano-2-(trifluoromethyl) imidazole | |
JP2020187887A (en) | Composition, electrode, and secondary battery | |
KR20080009500A (en) | Electrochemical device with high safety |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUNN, BRUCE S.;WUHL, FRED;STAR, KURT;AND OTHERS;REEL/FRAME:018697/0122;SIGNING DATES FROM 20060717 TO 20060719 Owner name: TOYOTA ENGINEERING & MANUFACTURING NORTH AMERICA, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MULDOON, JOHN;RICHARD, MONIQUE;STAMM, KIMBER L.;REEL/FRAME:018697/0085 Effective date: 20061222 |
|
AS | Assignment |
Owner name: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AME Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 018697 FRAME 0085;ASSIGNORS:MULDOON, JOHN;RICHARD, MONIQUE;STAMM, KIMBER L.;REEL/FRAME:019828/0001 Effective date: 20061222 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |