US20010005208A1 - Scheme for interactive video manipulation and display of moving object on background image - Google Patents
Scheme for interactive video manipulation and display of moving object on background image Download PDFInfo
- Publication number
- US20010005208A1 US20010005208A1 US09/776,374 US77637401A US2001005208A1 US 20010005208 A1 US20010005208 A1 US 20010005208A1 US 77637401 A US77637401 A US 77637401A US 2001005208 A1 US2001005208 A1 US 2001005208A1
- Authority
- US
- United States
- Prior art keywords
- time
- playback
- video
- background image
- program code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T13/00—Animation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
Definitions
- the present invention relates to a scheme for interactive video manipulation and display in which a background image is displayed on a computer screen on which a position is interactively specified by a user using a pointing device such as mouse, touch screen, etc., and a partial image of a moving object that is set in correspondence to that specified position is synthetically displayed at that specified position so as to express a series of actions of the moving object on the background image.
- the conventionally known examples for carrying out some manipulations related to the video display on a computer includes that which displays a corresponding frame image by manipulating a time axis with respect to a video image.
- a time axis cursor a time axis cursor corresponding to a time axis
- FIG. 1 shows a frame image corresponding to the specified time.
- there is no manipulation related to the image space so that it is an example for expressing the video solely on the time axis basis.
- the QuickTimeVR player of the Apple Computer Inc. is an interface in which a panorama image of large aspect ratio is viewed through a window, which employs a mechanism by which a hidden portion located outside the window can be displayed according to a right or left movement of a mouse cursor (field of view moving cursor), as shown in FIG. 2.
- the window is virtually moved with respect to the background image according to an amount and a direction of relative displacement of a mouse.
- the conventional schemes such as those described above are mostly examples in which only a time axis is manipulated on solely time axis basis as in the example of FIG. 1, and even in the example of FIG. 2 which is not directed to the manipulation on time axis basis, the direction and the relative amount of displacement for the mouse cursor manipulation are used only for manipulating a field of view of the window and there is no manipulation of information that is directly related to a position on the actual background image.
- the video playback speed can be changed to a prescribed playback speed as in the case of the fast forward playback mode in a general video playback device or to arbitrary playback speed in some devices, where the video is playbacked from a current position until a stop request is issued according to inputs from buttons, jog shuttle, slider, etc.
- most of the conventionally known devices only offer the video display.
- the playback end point is not to be specified in advance, so that when a user carries out the fast playback, for example, it is necessary for the user to watch the displayed video image carefully in order to judge a proper playback end point and therefore there is a heavy load on the user.
- a method for specifying the playback end point it is possible to consider a method in which a time code or a frame number of the video image is to be entered, but this method lacks the intuitive feel, so that there is a need for a method in which an input can be made while visually checking the video image of the playback end point.
- a method in which the video image is divided at equal intervals and top images of the divided intervals are arranged as static images is not desirable as it would require a separate region or monitor for displaying the playbacked video image.
- an apparatus for interactive video manipulation and display comprising: a background image storage unit for storing a background image; a display unit for displaying the background image stored in the background image storage unit; a partial image storage unit for storing partial images which are set in correspondence to spatial positions on the background image and representing an object moving on the background image; a setting unit for setting a manipulation target spatial position on a screen of the display unit; a specifying unit for uniquely specifying a partial image to be synthesized and displayed according to the manipulation target spatial position set by the setting unit; and a synthesis display unit for reading out the partial image as specified by the specifying unit from the partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the background image displayed by the display unit.
- a method for interactive video manipulation and display comprising the steps of: reading out a background image stored in a background image storage unit and displaying the background image on a screen; setting a manipulation target spatial position on the screen; uniquely specifying a partial image to be synthesized and displayed from partial images which are set in correspondence to spatial positions on the background image and representing an object moving on the background image, according to the manipulation target spatial position set by the setting step; and reading out the partial image as specified by the specifying step from a partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the background image.
- an article of manufacture comprising: a computer usable medium having computer readable program code means embodied therein for causing a computer to function as an apparatus for interactive video manipulation and display, the computer readable program code means includes: first computer readable program code means for causing said computer to read out a background image stored in a background image storage unit and display the background image on a screen; second computer readable program code means for causing said computer to set a manipulation target spatial position on the screen; third computer readable program code means for causing said computer to uniquely specify a partial image to be synthesized and displayed from partial images which are setin correspondence to spatial positions on the background image and representing an object moving on the background image, according to the manipulation target spatial position set by the second computer readable program code means; and fourth computer readable program code means for causing said computer to read out the partial image as specified by the third computer readable program code means from a partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the
- an apparatus for interactive video manipulation and display comprising: an input unit for entering a start point and an end point on a time axis; a playback speed calculation unit for calculating a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and a playback unit for playbacking the video at the playback speed.
- a method for interactive video manipulation and display comprising the steps of: entering a start point and an end point on a time axis; calculating a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and playbacking the video at the playback speed.
- an article of manufacture comprising: a computer usable medium having computer readable program code means embodied therein for causing a computer to function as an apparatus for interactive video manipulation and display, the computer readable program code means includes: first computer readable program code means for causing said computer to enter a start point and an end point on a time axis; second computer readable program code means for causing said computer to calculate a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and third computer readable program code means for causing said computer to playback the video at the playback speed.
- FIG. 1 is a diagram showing one exemplary conventional video display scheme using a manipulation on the time axis basis.
- FIG. 2 is a diagram showing another exemplary conventional video display scheme using a field of view manipulation.
- FIG. 3 is a block diagram showing an exemplary configuration of an interactive video manipulation and display device according to the first embodiment of the present invention.
- FIG. 4 is a flow chart of a preparatory processing to be carried out by the interactive video manipulation and display device of FIG. 3.
- FIG. 5 is a diagram for explaining a method for producing a panorama background image from an original video obtained by panning a camera in the interactive video manipulation and display device of FIG. 3.
- FIG. 6 is a diagram showing a moving object trajectory, a simplified moving object trajectory, and a mapping from background image spatial positions to a partial image time positions which are obtained by the preparatory processing of FIG. 3.
- FIG. 7 is a flow chart of a manipulation event processing to be carried out by the interactive video manipulation and display device of FIG. 3.
- FIG. 8 is a diagram showing an exemplary mapping from background image spatial positions to partial image time positions which is to be handled by the manipulation event processing of FIG. 7.
- FIG. 9 is a diagram showing an exemplary case of interactive manipulation using a display integral touch screen as a pointing device in the interactive video manipulation and display device of FIG. 3.
- FIG. 10 is a block diagram showing one exemplary configuration of an interactive video manipulation and display device according to the second embodiment of the present invention.
- FIG. 11 is a flow chart of a processing to be carried out by the interactive video manipulation and display device of FIG. 10.
- FIG. 12 is a diagram showing an exemplary panorama image used in the interactive video manipulation and display device of FIG. 10.
- FIGS. 13A, 13B and 13 C are diagrams for explaining a sound thinning processing and a sound interpolation processing used in the interactive video manipulation and display device of FIG. 10.
- FIG. 14 is a block diagram showing another exemplary configuration of an interactive video manipulation and display device according to the second embodiment of the present invention.
- FIG. 3 to Fig. FIG. 9, the first embodiment of an interactive video manipulation and display scheme according to the present invention will be described in detail.
- FIG. 3 shows an exemplary configuration of an interactive video manipulation and display device according to the first embodiment, which comprises a background image storage unit 1 , a video display unit 2 , a partial image storage unit 3 , a manipulation target spatial position input unit 4 , a synthesizing image mapping unit 5 , and an image synthesis processing unit 6 .
- FIG. 4 shows a flow chart for the procedure of a preparatory processing for the purpose of realizing the interactive processing in the interactive video manipulation and display device of FIG. 3.
- the initial preparation step 11 carries out initial preparation and setting of various basic data.
- the background image is stored in the background image storage unit 1 .
- the video image produced by separate means can be used, but it is also possible to produce the background image automatically by the processing as disclosed in Japanese Patent Application Laid Open No. 6-98206 (1994), for example.
- the background image can be automatically produced by checking displacements among frame images by analyzing stripe patterns corresponding to the camera operation as produced by the background objects in a spatio-temporal image of that video image, and splicing the frame images while displacing them as much as the checked displacements respectively.
- FIG. 5 shows an exemplary background image production processing in which the background image is produced from the video image that is acquired while panning the camera to the right according to the above described procedure.
- the frame images 30 are spliced sequentially, non-overlapping portions of the frame images 30 form the background image 31 .
- an object image (partial image) 32 along with a position information with respect to each frame, by carrying out region recognition, extraction and tracing either manually or automatically with respect to a moving object within that video image at the same time.
- the object specific partial image 32 so obtained is an image in which both image content and position are changing in time, and it is possible to create an image 33 which is useful in comprehending a motion of that object within the background image by synthesizing this partial image 32 at the originally extracted positions again, on the background image 31 from which it is originally extracted.
- the partial image used in this. invention is basically inseparable from the background image, and sequentially related to corresponding positions at respective times.
- the partial image produced in advance as described above is stored in the partial image storage unit 3 along with its extraction position information.
- the extraction position information is an information for uniquely identifying a position of the object such as that which indicates a coordinate position on the background image of a center of gravity or a lower left corner of a circumscribed quadrilateral containing the object at a time of extracting the image.
- a part (a) of FIG. 6 shows a trajectory 35 of the object which exhibits a complicated motion within the background image.
- the motion trajectory data 35 of the partial image (also referred to as a target object hereinbelow) on the background image as obtained through the above described processing procedure are entered as P(ti), where ti denotes a time position 40 corresponding to each frame of the partial image, and 0 ⁇ i ⁇ N for a prescribed integer N, for example.
- ti denotes a time position 40 corresponding to each frame of the partial image
- N 0 ⁇ i ⁇ N for a prescribed integer N, for example.
- expansion frames 37 obtained by expanding the target object positions in ⁇ directions by a deviation ⁇ ( ⁇ x 38 and ⁇ y 39 in vector notation) are to be used, and to this end a value of ⁇ is set according to the selection made by a user or a system side in advance.
- the processing corresponding to each time is carried out.
- the target object initial position P(ti), the motion trajectory trace point position Q(ti), the expansion frame Wi obtained by expanding the target object positions by a deviation ⁇ , and a time position ts for the already ascertained trace point are set to initial values using an initial time t 0 at the initial setting step 12 of FIG. 4.
- step 14 P(ti+1) is newly set as the trace point Q(ti+1) and a section between Q(ts) and Q(ti+1) is interpolated so as to determine the trace position at each time position within that section.
- the interpolation method can be selected according to the required smoothness, from the known methods such as the simple linear interpolation, the Bezier curve approximation, etc.
- ti is newly set as ts while the expansion frame is also newly set, and after the variable i is incremented by one at the step 15 , the step 13 is repeated again.
- step 13 whether i+1 becomes equal to N is checked, and when it reached to the last time position tN for the target object, after the interpolation processing is carried out at the step 14 , the preparatory processing 10 is finished at the step 16 .
- a new trace trajectory 42 (indicated as a dotted line) as shown in a part (b) of FIG. 6 can be obtained.
- this trace trajectory 42 is a curve which is simplified at portions where the motion trajectory 35 involves loops. This result can be depicted as a mapping from a spatial position 44 to a time position 43 , as shown in a part (c) of FIG. 6, where only one dimension along the X axis is expressed as the spatial position for the same of simplicity.
- the manipulation event processing 17 of FIG. 7 is activated. This event is set to occur when a point within the background image is specifically pointed during a mouse input event processing, for example.
- the partial image to be used for image synthesis is determine.
- a manipulation target spatial position information is acquired in relation to the event at the step 18 .
- the time positions 53 at which the target object exists in correspondence to the pointed manipulation target spatial position Pi 52 are listed (as t 1 , t 2 and t 3 in the example of FIG. 8) according to the mapping 55 between the time position 50 and the spatial position 51 as shown in FIG. 8.
- the space is represented one dimensionally by the horizontal axis for the same of simplicity, but the case of using two or more dimensions can be handled similarly.
- the partial image to be synthesized is determined by selecting one time position among those listed by the step 19 .
- various rules can be used in making this selection. For example, using a display indicators 57 as shown in FIG. 8, the earliest time t 1 is simply selected first, and then the time to be selected is changed sequentially in response to the double click, from a set of times listed by this display indicators 57 . It is also possible to synthesize the partial image continuously from the immediately previous operation by selecting a value closest in time to a time position corresponding to the spatial position specified by the immediately previous operation, by mapping the successive manipulation target spatial positions into corresponding continuous time positions when the successive manipulation target spatial positions are specified continuously.
- the partial image 58 which is the target object corresponding to each manipulation target spatial position can be uniquely specified by the time position determined from the mapping 55 . Also, at this point, at the step 21 , the background image portion corresponding to the selected partial image is to be stored for the purpose of later use.
- the selected partial image is read out from the partial image storage unit 3 at the step 22 , and then synthesized and displayed at an original position of that partial image within the background image at the step 23 .
- the synthesis can be realized by changing the synthesis method depending on the purpose of expression, from the available synthesis methods such as a method in which the partial image is overwritten with respect to the background image, a method for mixing the partial image with the background image at some transparency rate, etc.
- the manipulation event processing 17 is finished at the step 25 .
- the display form variously according to the expression effect, such as a form in which the image already synthesized at the current position is to be immediately erased, a form in which it is erased only for a predetermined period of time, a form in which it is left there subsequently, and so on.
- the background image portion stored at the step 21 is used in erasing the already synthesized partial image at the step 24 .
- the image synthesis processing unit can synthesize and display the partial image and the background image by enlarging or contracting the partial image and the background image, depending on an enlarging or contracting mode specified from a user.
- the playback of sounds at a time of tracing will be described.
- the time position at which the target object exists is obtained from the current manipulation target spatial position at appropriately short time interval.
- a method for obtaining the time position can be the same as in the case of handling the image described above, For example, when the time interval is set to be 0.5 sec., the time position is obtained at every 0.5 sec. Then, the sound data corresponding to a period between the current time position and the immediately previous time position are entered and playbacked such that the playback can be finished just within the time interval, by compressing or expanding the entered sound data depending on whether the difference between the current time position and the immediately previous time position is longer or shorter than the time interval.
- the compression/expansion of the sound data can be realized by a method for thinning or thickening the sound data at appropriate interval, but the thinning makes the pitch of the entire sounds higher while the thickening makes the pitch of the entire sounds lower so that the resulting sounds may become hard to listen to. For this reason, it is also possible to use the following method which only processes portions at which the frequency characteristics of the sound data are redundant in time.
- the entered sound data are segmented into segments in units of several tens of milli-seconds, and correlations among the segments are obtained. When the correlation between the neighboring segments is high, these segments are judged as redundant, and data of these segments are thinned or thickened.
- the redundancy is often found in the sound data corresponding to the vowel sounds of the speech, so that it is possible to realize the efficient processing by detecting the vowel sounds before obtaining the correlations and subjecting the detected portions alone to the further processing.
- the spectrum of the vowel sound has the harmonic structure in which peaks appear at integer multiples of the fundamental frequency, so that it is possible to detect a position of the vowel sound by detecting the harmonic structure using a comb filter and the like. Note however that the harmonic structure can also be observed in the musical sound and the like so that it is necessary to remove the musical sound components in advance.
- the musical sound has the characteristic that the frequency variation in time is smaller compared with the speech so that the musical sound components can be removed by obtaining the spectrogram of the sound data and deleting peaks of the spectra which are stable in the frequency direction over a prescribed period of time. Note that peaks of the spectrum can be obtained by utilizing the characteristic that a difference of the adjacent spectrum values in the frequency direction is large for a peak.
- FIG. 9 shows an exemplary case of carrying out the manipulation interactively according to the above described processing, using a display integral touch screen as a pointing device for entering the manipulation target spatial position.
- a finger 62 specifies the manipulation target spatial position on the background image 60 , and the partial image 61 is synthesized at the specified position.
- the display integral touch screen is used as in FIG. 9, it is possible for a user to control the video image of the moving object interactively within the background image in such a manner that it appears as if the target object is touched and moved by the finger.
- the manipulation target spatial position In the case of carrying out such a manipulation, it is possible to separate the manipulation target spatial position from the target object for arbitrary distance in order to prevent an image of the target object from being hidden by the finger. Also, in the case of using a mouse and the like as the pointing device, the target object may be hidden behind a cursor, so that it is possible to display the cursor in a transparent form showing only its contour, at a time of specifying the manipulation target spatial position.
- the processing procedures of FIG. 4 and FIG. 7, the procedure for generating the video image from the background image to be stored, and the procedure for extracting the partial image to be stored from the original images from which the background image is produced as described in the first embodiment can be conveniently implemented in forms of software package.
- Such a software package can be a computer program product which employs a storage medium including stored computer code which is used to program a computer to perform the disclosed function and process of the present invention.
- the storage medium may include, but is not limited to, any type of conventional floppy disks, optical disks, CD-ROMs, magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, or any other suitable media for storing electronic instructions.
- the background image is displayed on a display screen, and a user specifies the manipulation target spatial position on the display screen using a pointing device such as mouse. Then, the partial image to be synthesized is uniquely determined from the manipulation target spatial position, and then synthesized and displayed at the specified spatial position. Consequently, when the user sequentially changes the manipulation target spatial position, a series of partial images that are set in correspondences to the respective positions within the background image are displayed. From a viewpoint of the user, this scheme largely differs from the conventional scheme in that the manipulation can be carried out by using the background image as a clue at a time of displaying a series of partial images that are set in correspondences to the respective positions within the background image.
- FIG. 10 to FIG. 14 the second embodiment of an interactive video manipulation and display scheme according to the present invention will be described in detail.
- FIG. 10 shows an exemplary configuration of an interactive video manipulation and display device according to the second embodiment, which comprises a playback start/end input unit 101 for entering a start point and an end point of the video playback; a video storage unit 102 for storing video data; a speech detection unit 102 for detecting speeches; a playback speed calculation unit 104 for calculating a playback speed; and a video playback unit 105 for playbacking the video at the calculated playback speed.
- the processing of the video playback unit 105 can also be carried out with respect to the speech section detected by the speech detection unit 103 alone.
- the video data are read out from the video storage unit 102 and a panorama image corresponding to a section through which the camera moves is displayed at the video playback unit 105 .
- the video playback unit 105 is capable of displaying the video by setting the coordinates for displaying the video at the input coordinates entered at the playback start/end input unit 101 .
- FIG. 12 shows an exemplary panorama image displayed at the video playback unit 105 .
- This FIG. 12 shows an exemplary panorama image 301 in the case of panning the camera to the right direction as the time elapses.
- An image actually imaged by the camera at one moment is roughly a portion enclosed by a dotted frame 302 , and the panorama image 301 can be produced by calculating the sequential amounts of movement of the camera and splicing sequentially obtained images with respective displacements corresponding to the sequential amounts of movement of the camera as the time elapses.
- a method for producing the panorama image it is possible to use a method as disclosed by A. Akutsu and Y. Tonomura, “Video Tomography: An Efficient Method for Camerawork Extraction and Motion Analysis”, ACM Multimedia 94 Proc., pp. 349-356, October 1994, for example.
- the video playback start and end points are entered from the playback start/end input unit 101 according to the panorama image 301 displayed at the video playback unit 105 .
- FIG. 12 shows the playback start point 303 and the playback end point 304 . These points can be entered using a pointing device such as mouse.
- the coordinates and the video frames are set in correspondence so that it is possible to specify the video playback start and end points from the coordinates of the specified points.
- the speech detection processing is applied to the sound data for an interval between the playback start and end points at the speech detection unit 103 .
- the spectrogram of the sound data is calculates, and peaks of the spectra which are stable in the frequency direction over a prescribed period of time are detected.
- peaks can be detected by utilizing the characteristic that a difference of the adjacent power spectrum values in the frequency direction is large for a peak.
- the spectrum for speech usually have large variations in the frequency direction so that peaks which are stable in the frequency direction are very likely not those of the speech, so that these peaks are deleted.
- the detection of harmonic structure is carried out with respect to the spectrogram from which the peaks stable in the frequency direction are deleted.
- the voiced sounds such as vowel sounds contained in the speech have the harmonics components which are integer multiples of the fundamental frequency, so that the speech can be detected by detecting the harmonic structure.
- a difference between the time at which the playback end point is specified and the time at which the playback start point is specified is calculated as the specified playback required time SP at the step 204
- the time required for playbacking at the normal speed is calculated as the normal playback required time NP at the step 205 according to the video frames (information regarding frame images to which the playback start and end points correspond) and the frame rate of the video (information regarding a rate at which frames of the video are imaged).
- NP and SP are multiplied by arbitrary coefficients, and resulting values are compared at the step 206 .
- the values resulting from the multiplication of the coefficients are denoted as SP′ and NP′.
- the video playback positions and the video playback time are both determined by specifying the playback start and end points, but it is also possible to determine the video playback positions by specifying the playback start and end points first, and then further specify start and end points for the purpose of calculating the playback speed at the arbitrary positions on the screen.
- FIGS. 13A and 13C show the waveforms 401 and 403 obtained by the sound thinning processing and the sound interpolation processing from an original sound waveform 402 shown in FIG. 13B.
- the section having similar frequency characteristics are obtained from the original sound waveform 402 first, using the correlation and the like as the measure of similarity.
- the sound thinning processing deletes a part in necessary length of the section 405 to produce a thinned section 404 , so as to obtain the thinned waveform 401 as shown in FIG. 13A.
- the sound interpolation processing a copy of a part in necessary length of the section 405 is inserted to produce an interpolated section 406 , so as to obtain the interpolated waveform 403 as shown in FIG. 13C.
- the sound thinning processing and the sound interpolation processing of the steps 207 and 208 can be applied only with respect to the speech section detected by the speech detection processing of the step 203 . Note that these processings are carried out at the microscopic level with respect to the waveform.
- the video is playbacked at the video playback unit 105 .
- the video to be playbacked can be playbacked in association with the camera motion on the panorama image, or on a separate monitor.
- FIG. 14 shows another exemplary configuration of an interactive video manipulation and display device according to the second embodiment, which comprises an input device 501 , a video storage device 502 , a video playback mechanism 503 , a recording medium 504 , and a data processing device 505 .
- the input device 501 is a device for entering the video playback start and end points on the time axis.
- the video storage unit 502 corresponds to the video storage unit 102 of FIG. 10.
- the video playback mechanism 503 is a mechanism for playbacking video such as VTR, LD, etc.
- the recording medium 504 is a medium such as FD, CD-ROM, semiconductor memory, etc., which records software programs for the playback start/end input processing, the speech detection processing, the playback speed calculation processing, and the video playback processing as described above with references to FIG. 10 and FIG. 11.
- the data processing device 505 reads these programs from the recording medium 504 and executes these programs.
- the recording medium 504 can be a computer program product which employs a storage medium including stored computer code which is used to program a computer to perform the disclosed function and process of the present invention.
- the storage medium may include, but is not limited to, any type of conventional floppy disks, optical disks, CD-ROMs, magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, or any other suitable media for storing electronic instructions.
- the video playback start and end points are entered on the time axis and the playback speed is calculated, and then the video is playbacked at the calculated playback speed so that it is possible for the user to set up the video playback positions and the video playback speed visually in accordance with the preference of the user at a time of playbacking the video.
- the normal playback time required in playbacking the video at the normal speed from the playback start point to the playback end point is calculated, while the playback start/end input time since the playback start point is entered until the playback end point is entered is calculated. Then, either one or both of the normal playback time and the playback start/end input time are multiplied by arbitrary numerical values and compared with each other, and the video playback speed is calculated according to their difference and the size relationship between them, so that the user can set up the playback speed intuitively according to a time interval between the input of the playback start point and the input of the playback end point.
- a numerical value that can make the normal playback time equal to the playback start/end input time is calculated and multiplied to the normal playback time or the playback start/end input time so as to normalize the playback start/end input time, so that it is possible to enter the playback start and end points within a time period which is much shorter than the normal playback time even when the normal playback time is quite long.
- the playback speed is calculated from a time required in entering arbitrary start point and arbitrary end point on the time axis and the actual time between the start point and the end point, so that it is possible to carry out the input of the video playback positions separately from the input of the playback speed, and therefore the hesitation at a time of specifying the playback end point will not affect the playback speed.
- this second embodiment it is possible to playback a series of video portions at partially different playback speeds by calculating the playback speed for each video portion from a time required in entering the consecutively entered playback start and end points and the actual time between the playback start and end points, and storing the calculated playback speed for each video portion.
- This feature can be utilized for the purpose of checking a body form of an athlete, for example, by repeatedly displaying the same playback pattern.
- the amount of movement of the camera that imaged the video is calculated from the amount of movement of the background image, and the displayed panorama image is used as a time axis while sequentially displacing the video frames as much as the calculated amount of movement, so that it is possible to handle the time visually.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Studio Circuits (AREA)
- Processing Or Creating Images (AREA)
- Television Signal Processing For Recording (AREA)
Abstract
A scheme for interactive video manipulation and display of a moving object on a background image is disclosed. In this scheme a background image stored in a background image storage unit is read out and displayed on a screen, and a manipulation target spatial position is set on the screen. Then, a partial image to be synthesized and displayed is uniquely specified from partial images which are set in correspondence to spatial positions on the background image and representing an object moving on the background image, according to the manipulation target spatial position set by the setting step, and the partial image as specified by the specifying step is read out from a partial image storage unit, and synthesized and displayed at the manipulation target spatial position on the background image. A scheme for realizing a variable speed video playback with a playback speed different from a normal one is also disclosed.
Description
- 1. Field of the Invention
- The present invention relates to a scheme for interactive video manipulation and display in which a background image is displayed on a computer screen on which a position is interactively specified by a user using a pointing device such as mouse, touch screen, etc., and a partial image of a moving object that is set in correspondence to that specified position is synthetically displayed at that specified position so as to express a series of actions of the moving object on the background image.
- 2. Description of the Background Art
- The conventionally known examples for carrying out some manipulations related to the video display on a computer includes that which displays a corresponding frame image by manipulating a time axis with respect to a video image. For example, in the QuickTime player of the Apple Computer Inc., as shown in FIG. 1, when a slider (a time axis cursor) corresponding to a time axis is manipulated to specify a specific time, a frame image corresponding to the specified time is displayed on a display window. In this example, there is no manipulation related to the image space so that it is an example for expressing the video solely on the time axis basis.
- On the other hand, the QuickTimeVR player of the Apple Computer Inc. is an interface in which a panorama image of large aspect ratio is viewed through a window, which employs a mechanism by which a hidden portion located outside the window can be displayed according to a right or left movement of a mouse cursor (field of view moving cursor), as shown in FIG. 2. In this case, the window is virtually moved with respect to the background image according to an amount and a direction of relative displacement of a mouse. In this example, there is no time axis information and no manipulation on the displayed image itself, and only the field of view of the window is manipulated.
- From a viewpoint of the interactive display of video, in particular, the conventional schemes such as those described above are mostly examples in which only a time axis is manipulated on solely time axis basis as in the example of FIG. 1, and even in the example of FIG. 2 which is not directed to the manipulation on time axis basis, the direction and the relative amount of displacement for the mouse cursor manipulation are used only for manipulating a field of view of the window and there is no manipulation of information that is directly related to a position on the actual background image.
- Thus conventionally there has been no interface for interactively manipulating the display on basis of positions on the background image.
- Now, the video playback speed can be changed to a prescribed playback speed as in the case of the fast forward playback mode in a general video playback device or to arbitrary playback speed in some devices, where the video is playbacked from a current position until a stop request is issued according to inputs from buttons, jog shuttle, slider, etc. At this point, most of the conventionally known devices only offer the video display.
- In the prior art, the playback end point is not to be specified in advance, so that when a user carries out the fast playback, for example, it is necessary for the user to watch the displayed video image carefully in order to judge a proper playback end point and therefore there is a heavy load on the user. As a method for specifying the playback end point, it is possible to consider a method in which a time code or a frame number of the video image is to be entered, but this method lacks the intuitive feel, so that there is a need for a method in which an input can be made while visually checking the video image of the playback end point. In this regard, a method in which the video image is divided at equal intervals and top images of the divided intervals are arranged as static images is not desirable as it would require a separate region or monitor for displaying the playbacked video image.
- Moreover, in the case of playbacking sounds, there is a problem that the sounds as a whole will become difficult to listen to as they will be pitched higher in the case of fast playback or lower in the case of slow playback.
- It is therefore an object of the present invention to provide a scheme for interactive video manipulation and display of a moving object on a background image, which is capable of expressing an object image interactively at positions sequentially occupied by the object on the background image in such cases where the object exhibits a series of actions within the background image, by removing restrictions of the prior art.
- It is another object of the present invention to provide a scheme for interactive video manipulation and display capable of realizing a variable speed video playback with a playback speed different from a normal one in which, when a user specifies the playback start and end points visually, a playback speed is set up from a continuous range according to a time taken in specifying the playback start and end points while the frequency variation of sounds at a time of fast or slow playback is suppressed.
- According to one aspect of the present invention there is provided an apparatus for interactive video manipulation and display, comprising: a background image storage unit for storing a background image; a display unit for displaying the background image stored in the background image storage unit; a partial image storage unit for storing partial images which are set in correspondence to spatial positions on the background image and representing an object moving on the background image; a setting unit for setting a manipulation target spatial position on a screen of the display unit; a specifying unit for uniquely specifying a partial image to be synthesized and displayed according to the manipulation target spatial position set by the setting unit; and a synthesis display unit for reading out the partial image as specified by the specifying unit from the partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the background image displayed by the display unit.
- According to another aspect of the present invention there is provided a method for interactive video manipulation and display, comprising the steps of: reading out a background image stored in a background image storage unit and displaying the background image on a screen; setting a manipulation target spatial position on the screen; uniquely specifying a partial image to be synthesized and displayed from partial images which are set in correspondence to spatial positions on the background image and representing an object moving on the background image, according to the manipulation target spatial position set by the setting step; and reading out the partial image as specified by the specifying step from a partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the background image.
- According to another aspect of the present invention there is provided an article of manufacture, comprising: a computer usable medium having computer readable program code means embodied therein for causing a computer to function as an apparatus for interactive video manipulation and display, the computer readable program code means includes: first computer readable program code means for causing said computer to read out a background image stored in a background image storage unit and display the background image on a screen; second computer readable program code means for causing said computer to set a manipulation target spatial position on the screen; third computer readable program code means for causing said computer to uniquely specify a partial image to be synthesized and displayed from partial images which are setin correspondence to spatial positions on the background image and representing an object moving on the background image, according to the manipulation target spatial position set by the second computer readable program code means; and fourth computer readable program code means for causing said computer to read out the partial image as specified by the third computer readable program code means from a partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the background image.
- According to another aspect of the present invention there is provided an apparatus for interactive video manipulation and display, comprising: an input unit for entering a start point and an end point on a time axis; a playback speed calculation unit for calculating a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and a playback unit for playbacking the video at the playback speed.
- According to another aspect of the present invention there is provided a method for interactive video manipulation and display, comprising the steps of: entering a start point and an end point on a time axis; calculating a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and playbacking the video at the playback speed.
- According to another aspect of the present invention there is provided an article of manufacture, comprising: a computer usable medium having computer readable program code means embodied therein for causing a computer to function as an apparatus for interactive video manipulation and display, the computer readable program code means includes: first computer readable program code means for causing said computer to enter a start point and an end point on a time axis; second computer readable program code means for causing said computer to calculate a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and third computer readable program code means for causing said computer to playback the video at the playback speed.
- Other features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings.
- FIG. 1 is a diagram showing one exemplary conventional video display scheme using a manipulation on the time axis basis.
- FIG. 2 is a diagram showing another exemplary conventional video display scheme using a field of view manipulation.
- FIG. 3 is a block diagram showing an exemplary configuration of an interactive video manipulation and display device according to the first embodiment of the present invention.
- FIG. 4 is a flow chart of a preparatory processing to be carried out by the interactive video manipulation and display device of FIG. 3.
- FIG. 5 is a diagram for explaining a method for producing a panorama background image from an original video obtained by panning a camera in the interactive video manipulation and display device of FIG. 3.
- FIG. 6 is a diagram showing a moving object trajectory, a simplified moving object trajectory, and a mapping from background image spatial positions to a partial image time positions which are obtained by the preparatory processing of FIG. 3.
- FIG. 7 is a flow chart of a manipulation event processing to be carried out by the interactive video manipulation and display device of FIG. 3.
- FIG. 8 is a diagram showing an exemplary mapping from background image spatial positions to partial image time positions which is to be handled by the manipulation event processing of FIG. 7.
- FIG. 9 is a diagram showing an exemplary case of interactive manipulation using a display integral touch screen as a pointing device in the interactive video manipulation and display device of FIG. 3.
- FIG. 10 is a block diagram showing one exemplary configuration of an interactive video manipulation and display device according to the second embodiment of the present invention.
- FIG. 11 is a flow chart of a processing to be carried out by the interactive video manipulation and display device of FIG. 10.
- FIG. 12 is a diagram showing an exemplary panorama image used in the interactive video manipulation and display device of FIG. 10.
- FIGS. 13A, 13B and13C are diagrams for explaining a sound thinning processing and a sound interpolation processing used in the interactive video manipulation and display device of FIG. 10.
- FIG. 14 is a block diagram showing another exemplary configuration of an interactive video manipulation and display device according to the second embodiment of the present invention.
- Referring now to FIG. 3 to Fig. FIG. 9, the first embodiment of an interactive video manipulation and display scheme according to the present invention will be described in detail.
- FIG. 3 shows an exemplary configuration of an interactive video manipulation and display device according to the first embodiment, which comprises a background
image storage unit 1, avideo display unit 2, a partialimage storage unit 3, a manipulation target spatialposition input unit 4, a synthesizingimage mapping unit 5, and an imagesynthesis processing unit 6. - FIG. 4 shows a flow chart for the procedure of a preparatory processing for the purpose of realizing the interactive processing in the interactive video manipulation and display device of FIG. 3.
- In this
preparatory processing 10 of FIG. 3, theinitial preparation step 11 carries out initial preparation and setting of various basic data. For example, the background image is stored in the backgroundimage storage unit 1. To this end, the video image produced by separate means can be used, but it is also possible to produce the background image automatically by the processing as disclosed in Japanese Patent Application Laid Open No. 6-98206 (1994), for example. In this processing, using the video image obtained by the camera operation such as panning (an operation for swinging the camera right and left), the background image can be automatically produced by checking displacements among frame images by analyzing stripe patterns corresponding to the camera operation as produced by the background objects in a spatio-temporal image of that video image, and splicing the frame images while displacing them as much as the checked displacements respectively. - FIG. 5 shows an exemplary background image production processing in which the background image is produced from the video image that is acquired while panning the camera to the right according to the above described procedure. In this example, when the
frame images 30 are spliced sequentially, non-overlapping portions of theframe images 30 form thebackground image 31. - In this background image production processing, it is also possible to record an object image (partial image)32 along with a position information with respect to each frame, by carrying out region recognition, extraction and tracing either manually or automatically with respect to a moving object within that video image at the same time. The object specific
partial image 32 so obtained is an image in which both image content and position are changing in time, and it is possible to create animage 33 which is useful in comprehending a motion of that object within the background image by synthesizing thispartial image 32 at the originally extracted positions again, on thebackground image 31 from which it is originally extracted. Thus the partial image used in this. invention is basically inseparable from the background image, and sequentially related to corresponding positions at respective times. - The partial image produced in advance as described above is stored in the partial
image storage unit 3 along with its extraction position information. Here, the extraction position information is an information for uniquely identifying a position of the object such as that which indicates a coordinate position on the background image of a center of gravity or a lower left corner of a circumscribed quadrilateral containing the object at a time of extracting the image. - A part (a) of FIG. 6 shows a
trajectory 35 of the object which exhibits a complicated motion within the background image. In theinitial preparation step 11, themotion trajectory data 35 of the partial image (also referred to as a target object hereinbelow) on the background image as obtained through the above described processing procedure are entered as P(ti), where ti denotes atime position 40 corresponding to each frame of the partial image, and 0≦i≦N for a prescribed integer N, for example. In addition, in order to trace the motion trajectory of the target object as an outline trajectory in which minute fluctuations are suppressed as shown in a part (b) of FIG. 6, expansion frames 37 obtained by expanding the target object positions in ± directions by a deviation ε(εx 38 andεy 39 in vector notation) are to be used, and to this end a value of ε is set according to the selection made by a user or a system side in advance. - Next, the processing corresponding to each time is carried out. For the processing target ti, the target object initial position P(ti), the motion trajectory trace point position Q(ti), the expansion frame Wi obtained by expanding the target object positions by a deviation ε, and a time position ts for the already ascertained trace point are set to initial values using an initial time t0 at the
initial setting step 12 of FIG. 4. - Then, as a processing at each ti, whether the target object position P(ti+1) at the time ti+1 is going to be located outside the current expansion frame centered around the already ascertained trace point Q(ts) or not is judged at the
step 13. If it is not going to be located outside the current expansion frame, the variable i is incremented by one at thestep 15 next, and then thestep 13 is repeated. - On the other hand, if it is going to be located outside the current expansion frame as in the cases of the expansion frames41 shown in a part (b) of FIG. 6, next at the
step 14, P(ti+1) is newly set as the trace point Q(ti+1) and a section between Q(ts) and Q(ti+1) is interpolated so as to determine the trace position at each time position within that section. Here, the interpolation method can be selected according to the required smoothness, from the known methods such as the simple linear interpolation, the Bezier curve approximation, etc. Also, at thestep 14, ti is newly set as ts while the expansion frame is also newly set, and after the variable i is incremented by one at thestep 15, thestep 13 is repeated again. - Also, at the
step 13, whether i+1 becomes equal to N is checked, and when it reached to the last time position tN for the target object, after the interpolation processing is carried out at thestep 14, thepreparatory processing 10 is finished at thestep 16. - As a result of the preparatory processing described above, a new trace trajectory42 (indicated as a dotted line) as shown in a part (b) of FIG. 6 can be obtained. When compared with the
motion trajectory 35 of a part (a) of FIG. 6, thistrace trajectory 42 is a curve which is simplified at portions where themotion trajectory 35 involves loops. This result can be depicted as a mapping from aspatial position 44 to atime position 43, as shown in a part (c) of FIG. 6, where only one dimension along the X axis is expressed as the spatial position for the same of simplicity. - After this preparatory processing is completed, the interactive processing (the manipulation event processing) at a time of actual use of the device is carried out according to the flow chart of FIG. 7.
- First, among events that occur as the user carries out some manipulations, when a specific event that is pre-defined to be directed to this manipulation event processing occurs, the
manipulation event processing 17 of FIG. 7 is activated. This event is set to occur when a point within the background image is specifically pointed during a mouse input event processing, for example. - Then, the partial image to be used for image synthesis is determine. In the following, the processing for an exemplary case of more complicated mapping as shown in FIG. 8 in which a plurality of time positions exist in a vicinity of one and the same spatial position will be described. For example, a manipulation target spatial position information is acquired in relation to the event at the
step 18. Also, at thestep 19, the time positions 53 at which the target object exists in correspondence to the pointed manipulation targetspatial position Pi 52 are listed (as t1, t2 and t3 in the example of FIG. 8) according to themapping 55 between thetime position 50 and thespatial position 51 as shown in FIG. 8. In the example of FIG. 8, the space is represented one dimensionally by the horizontal axis for the same of simplicity, but the case of using two or more dimensions can be handled similarly. - Then, at a the
step 20, the partial image to be synthesized is determined by selecting one time position among those listed by thestep 19. Here, various rules can be used in making this selection. For example, using adisplay indicators 57 as shown in FIG. 8, the earliest time t1 is simply selected first, and then the time to be selected is changed sequentially in response to the double click, from a set of times listed by thisdisplay indicators 57. It is also possible to synthesize the partial image continuously from the immediately previous operation by selecting a value closest in time to a time position corresponding to the spatial position specified by the immediately previous operation, by mapping the successive manipulation target spatial positions into corresponding continuous time positions when the successive manipulation target spatial positions are specified continuously. - In this
step 20, thepartial image 58 which is the target object corresponding to each manipulation target spatial position can be uniquely specified by the time position determined from themapping 55. Also, at this point, at thestep 21, the background image portion corresponding to the selected partial image is to be stored for the purpose of later use. - Next, the selected partial image is read out from the partial
image storage unit 3 at thestep 22, and then synthesized and displayed at an original position of that partial image within the background image at thestep 23. Here, the synthesis can be realized by changing the synthesis method depending on the purpose of expression, from the available synthesis methods such as a method in which the partial image is overwritten with respect to the background image, a method for mixing the partial image with the background image at some transparency rate, etc. - Using the specified manipulation target spatial position as a starting position, when the position is displaced further (while pressing the mouse button, for example), it is possible to trace over the trace line on the mapping of FIG. 8 in a state of maintaining the continuity. When the tracing goes off the trace line as the manipulation target spatial position is sequentially displaced, the
manipulation event processing 17 is finished at thestep 25. Here, it is possible to devise the display form variously according to the expression effect, such as a form in which the image already synthesized at the current position is to be immediately erased, a form in which it is erased only for a predetermined period of time, a form in which it is left there subsequently, and so on. In the case of erasing, the background image portion stored at thestep 21 is used in erasing the already synthesized partial image at thestep 24. - It is also possible to synthesize and display successive partial images continuously or at constant time interval for a prescribed period of time starting from or ending at a time position corresponding to the specified manipulation target spatial position, without tracing, when an arbitrary position playback mode setting a playback direction setting are made by specifying a single manipulation target spatial position and a forward or backward direction.
- In addition, there can be cases where the displayed background image has such a large aspect ratio that it cannot be displayed entirely at once, or cases where it is desired to watch details of a particular portion, and in such cases, it is also possible for the image synthesis processing unit to synthesize and display the partial image and the background image by enlarging or contracting the partial image and the background image, depending on an enlarging or contracting mode specified from a user.
- Next, the playback of sounds at a time of tracing will be described. In this first embodiment, while trancing is carried out, the time position at which the target object exists is obtained from the current manipulation target spatial position at appropriately short time interval. Here, a method for obtaining the time position can be the same as in the case of handling the image described above, For example, when the time interval is set to be 0.5 sec., the time position is obtained at every 0.5 sec. Then, the sound data corresponding to a period between the current time position and the immediately previous time position are entered and playbacked such that the playback can be finished just within the time interval, by compressing or expanding the entered sound data depending on whether the difference between the current time position and the immediately previous time position is longer or shorter than the time interval.
- Here, the compression/expansion of the sound data can be realized by a method for thinning or thickening the sound data at appropriate interval, but the thinning makes the pitch of the entire sounds higher while the thickening makes the pitch of the entire sounds lower so that the resulting sounds may become hard to listen to. For this reason, it is also possible to use the following method which only processes portions at which the frequency characteristics of the sound data are redundant in time. First, the entered sound data are segmented into segments in units of several tens of milli-seconds, and correlations among the segments are obtained. When the correlation between the neighboring segments is high, these segments are judged as redundant, and data of these segments are thinned or thickened.
- In the case of the sound data for human speech in particular, the redundancy is often found in the sound data corresponding to the vowel sounds of the speech, so that it is possible to realize the efficient processing by detecting the vowel sounds before obtaining the correlations and subjecting the detected portions alone to the further processing. The spectrum of the vowel sound has the harmonic structure in which peaks appear at integer multiples of the fundamental frequency, so that it is possible to detect a position of the vowel sound by detecting the harmonic structure using a comb filter and the like. Note however that the harmonic structure can also be observed in the musical sound and the like so that it is necessary to remove the musical sound components in advance. The musical sound has the characteristic that the frequency variation in time is smaller compared with the speech so that the musical sound components can be removed by obtaining the spectrogram of the sound data and deleting peaks of the spectra which are stable in the frequency direction over a prescribed period of time. Note that peaks of the spectrum can be obtained by utilizing the characteristic that a difference of the adjacent spectrum values in the frequency direction is large for a peak.
- FIG. 9 shows an exemplary case of carrying out the manipulation interactively according to the above described processing, using a display integral touch screen as a pointing device for entering the manipulation target spatial position. In FIG. 9, a
finger 62 specifies the manipulation target spatial position on thebackground image 60, and thepartial image 61 is synthesized at the specified position. When the display integral touch screen is used as in FIG. 9, it is possible for a user to control the video image of the moving object interactively within the background image in such a manner that it appears as if the target object is touched and moved by the finger. - In the case of carrying out such a manipulation, it is possible to separate the manipulation target spatial position from the target object for arbitrary distance in order to prevent an image of the target object from being hidden by the finger. Also, in the case of using a mouse and the like as the pointing device, the target object may be hidden behind a cursor, so that it is possible to display the cursor in a transparent form showing only its contour, at a time of specifying the manipulation target spatial position.
- It is also to be noted that the above described first embodiment according to the present invention may be conveniently implemented using conventional general purpose digital computers programmed according to the teachings of the present specification, as will be apparent to those skilled in the computer art. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art.
- In particular, the processing procedures of FIG. 4 and FIG. 7, the procedure for generating the video image from the background image to be stored, and the procedure for extracting the partial image to be stored from the original images from which the background image is produced as described in the first embodiment can be conveniently implemented in forms of software package.
- Such a software package can be a computer program product which employs a storage medium including stored computer code which is used to program a computer to perform the disclosed function and process of the present invention. The storage medium may include, but is not limited to, any type of conventional floppy disks, optical disks, CD-ROMs, magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, or any other suitable media for storing electronic instructions.
- As described, according to this first embodiment, in the case where an object exhibits a series of actions within the background image, it is possible to express an image of that object on basis of positions sequentially occupied by that object in time, by directly specifying the spatial positions on the background image such as a panorama image, instead of utilizing the video playback based on indirect time axis control.
- In other words, according to this first embodiment, the background image is displayed on a display screen, and a user specifies the manipulation target spatial position on the display screen using a pointing device such as mouse. Then, the partial image to be synthesized is uniquely determined from the manipulation target spatial position, and then synthesized and displayed at the specified spatial position. Consequently, when the user sequentially changes the manipulation target spatial position, a series of partial images that are set in correspondences to the respective positions within the background image are displayed. From a viewpoint of the user, this scheme largely differs from the conventional scheme in that the manipulation can be carried out by using the background image as a clue at a time of displaying a series of partial images that are set in correspondences to the respective positions within the background image.
- Referring now to FIG. 10 to FIG. 14, the second embodiment of an interactive video manipulation and display scheme according to the present invention will be described in detail.
- FIG. 10 shows an exemplary configuration of an interactive video manipulation and display device according to the second embodiment, which comprises a playback start/
end input unit 101 for entering a start point and an end point of the video playback; avideo storage unit 102 for storing video data; aspeech detection unit 102 for detecting speeches; a playbackspeed calculation unit 104 for calculating a playback speed; and avideo playback unit 105 for playbacking the video at the calculated playback speed. The processing of thevideo playback unit 105 can also be carried out with respect to the speech section detected by thespeech detection unit 103 alone. - Next, the procedure of the processing by the interactive video manipulation and display device of FIG. 10 will be described according to the flow chart of FIG. 11.
- First, at the
step 201, the video data are read out from thevideo storage unit 102 and a panorama image corresponding to a section through which the camera moves is displayed at thevideo playback unit 105. Thevideo playback unit 105 is capable of displaying the video by setting the coordinates for displaying the video at the input coordinates entered at the playback start/end input unit 101. FIG. 12 shows an exemplary panorama image displayed at thevideo playback unit 105. This FIG. 12 shows anexemplary panorama image 301 in the case of panning the camera to the right direction as the time elapses. An image actually imaged by the camera at one moment is roughly a portion enclosed by adotted frame 302, and thepanorama image 301 can be produced by calculating the sequential amounts of movement of the camera and splicing sequentially obtained images with respective displacements corresponding to the sequential amounts of movement of the camera as the time elapses. As a method for producing the panorama image, it is possible to use a method as disclosed by A. Akutsu and Y. Tonomura, “Video Tomography: An Efficient Method for Camerawork Extraction and Motion Analysis”, ACM Multimedia 94 Proc., pp. 349-356, October 1994, for example. - Next, at the
step 202, the video playback start and end points are entered from the playback start/end input unit 101 according to thepanorama image 301 displayed at thevideo playback unit 105. FIG. 12 shows theplayback start point 303 and theplayback end point 304. These points can be entered using a pointing device such as mouse. At a time of producing thepanorama image 301, the coordinates and the video frames are set in correspondence so that it is possible to specify the video playback start and end points from the coordinates of the specified points. - Next, at the speech
detection processing step 203, the speech detection processing is applied to the sound data for an interval between the playback start and end points at thespeech detection unit 103. First, the spectrogram of the sound data is calculates, and peaks of the spectra which are stable in the frequency direction over a prescribed period of time are detected. Here, peaks can be detected by utilizing the characteristic that a difference of the adjacent power spectrum values in the frequency direction is large for a peak. The spectrum for speech usually have large variations in the frequency direction so that peaks which are stable in the frequency direction are very likely not those of the speech, so that these peaks are deleted. Then, the detection of harmonic structure is carried out with respect to the spectrogram from which the peaks stable in the frequency direction are deleted. The voiced sounds such as vowel sounds contained in the speech have the harmonics components which are integer multiples of the fundamental frequency, so that the speech can be detected by detecting the harmonic structure. For the detection of harmonic structure, it is possible to use a comb filter. - Next, at the playback
speed calculation unit 104, a difference between the time at which the playback end point is specified and the time at which the playback start point is specified is calculated as the specified playback required time SP at thestep 204, while the time required for playbacking at the normal speed is calculated as the normal playback required time NP at thestep 205 according to the video frames (information regarding frame images to which the playback start and end points correspond) and the frame rate of the video (information regarding a rate at which frames of the video are imaged). Then, either one or both of NP and SP are multiplied by arbitrary coefficients, and resulting values are compared at thestep 206. Here, the values resulting from the multiplication of the coefficients are denoted as SP′ and NP′. - Then, when SP′ is smaller than NP′, the sound data is shortened by the sound thinning processing at the
step 207 so that the sound data can be playbacked just by the duration of SP′. On the other hand, when SP′ is larger than NP′, the sound data is elongated by the sound interpolation processing at thestep 208 so that the sound data can be playback just by the duration of SP′. - Note that, for the arbitrary coefficient to be used in the above procedure, it is also possible to calculate such a coefficient that SP becomes equal to NP upon multiplying this coefficient to either one of SP and NP. By multiplying such a coefficient, it is possible to make the specified playback required time sufficiently long even when the actual input time is short.
- Note also that, in the above described procedure, the video playback positions and the video playback time are both determined by specifying the playback start and end points, but it is also possible to determine the video playback positions by specifying the playback start and end points first, and then further specify start and end points for the purpose of calculating the playback speed at the arbitrary positions on the screen.
- FIGS. 13A and 13C show the
waveforms original sound waveform 402 shown in FIG. 13B. In these processings, the section having similar frequency characteristics are obtained from theoriginal sound waveform 402 first, using the correlation and the like as the measure of similarity. When thesection 405 shown in FIG. 13B is the section having the similar frequency characteristics, the sound thinning processing deletes a part in necessary length of thesection 405 to produce a thinnedsection 404, so as to obtain the thinnedwaveform 401 as shown in FIG. 13A. In the case of the sound interpolation processing, a copy of a part in necessary length of thesection 405 is inserted to produce an interpolatedsection 406, so as to obtain the interpolatedwaveform 403 as shown in FIG. 13C. Here, the sound thinning processing and the sound interpolation processing of thesteps step 203. Note that these processings are carried out at the microscopic level with respect to the waveform. - Returning to FIG. 11, finally at the
step 209, the video is playbacked at thevideo playback unit 105. Here, the video to be playbacked can be playbacked in association with the camera motion on the panorama image, or on a separate monitor. - Also, by repeating the series of processing as described above continually by taking the playback start and end points to be infinitesimally close to each other, it is possible to carry out the input of the playback start/end points in a form of sliding over the panorama image, and playback the video in synchronization with the playback start/end points so entered.
- FIG. 14 shows another exemplary configuration of an interactive video manipulation and display device according to the second embodiment, which comprises an
input device 501, avideo storage device 502, avideo playback mechanism 503, arecording medium 504, and adata processing device 505. - The
input device 501 is a device for entering the video playback start and end points on the time axis. Thevideo storage unit 502 corresponds to thevideo storage unit 102 of FIG. 10. Thevideo playback mechanism 503 is a mechanism for playbacking video such as VTR, LD, etc. Therecording medium 504 is a medium such as FD, CD-ROM, semiconductor memory, etc., which records software programs for the playback start/end input processing, the speech detection processing, the playback speed calculation processing, and the video playback processing as described above with references to FIG. 10 and FIG. 11. Thedata processing device 505 reads these programs from therecording medium 504 and executes these programs. - In this configuration of FIG. 14, the above described second embodiment according to the present invention can be conveniently implemented using conventional general purpose digital computers programmed according to the teachings of the present specification, as will be apparent to those skilled in the computer art. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art.
- The
recording medium 504 can be a computer program product which employs a storage medium including stored computer code which is used to program a computer to perform the disclosed function and process of the present invention. The storage medium may include, but is not limited to, any type of conventional floppy disks, optical disks, CD-ROMs, magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, or any other suitable media for storing electronic instructions. - As described, according to this second embodiment, the video playback start and end points are entered on the time axis and the playback speed is calculated, and then the video is playbacked at the calculated playback speed so that it is possible for the user to set up the video playback positions and the video playback speed visually in accordance with the preference of the user at a time of playbacking the video.
- Also, according to this second embodiment, the normal playback time required in playbacking the video at the normal speed from the playback start point to the playback end point is calculated, while the playback start/end input time since the playback start point is entered until the playback end point is entered is calculated. Then, either one or both of the normal playback time and the playback start/end input time are multiplied by arbitrary numerical values and compared with each other, and the video playback speed is calculated according to their difference and the size relationship between them, so that the user can set up the playback speed intuitively according to a time interval between the input of the playback start point and the input of the playback end point.
- Also, according to this second embodiment, a numerical value that can make the normal playback time equal to the playback start/end input time is calculated and multiplied to the normal playback time or the playback start/end input time so as to normalize the playback start/end input time, so that it is possible to enter the playback start and end points within a time period which is much shorter than the normal playback time even when the normal playback time is quite long.
- Also, according to this second embodiment, the playback speed is calculated from a time required in entering arbitrary start point and arbitrary end point on the time axis and the actual time between the start point and the end point, so that it is possible to carry out the input of the video playback positions separately from the input of the playback speed, and therefore the hesitation at a time of specifying the playback end point will not affect the playback speed.
- Also, according to this second embodiment, it is possible to playback a series of video portions at partially different playback speeds by calculating the playback speed for each video portion from a time required in entering the consecutively entered playback start and end points and the actual time between the playback start and end points, and storing the calculated playback speed for each video portion. This feature can be utilized for the purpose of checking a body form of an athlete, for example, by repeatedly displaying the same playback pattern.
- Also, according to this second embodiment, it is possible to playback each video portion at the same playback speed as that entered in the past, by playbacking each video portion according to the stored playback speed for each video portion.
- Also, according to this second embodiment, at a time of entering the video playback start and end points, the amount of movement of the camera that imaged the video is calculated from the amount of movement of the background image, and the displayed panorama image is used as a time axis while sequentially displacing the video frames as much as the calculated amount of movement, so that it is possible to handle the time visually.
- Also, according to this second embodiment, at a time of playbacking the video at the speed slower than the normal one, it is possible to extend the playback time without lowering the pitch of the sounds by producing the sound data having the frequency characteristics similar to the sound data of the section for which the level of similarity of the frequency characteristics is maintained for a prescribed period of time and increasing the section that has the high similarity.
- Also, according to this second embodiment, at a time of playbacking the video at the speed faster than the usual one, it is possible to shorten the playback time without raising the pitch of the sounds by thinning a part of the sound data in the section for which the level of similarity of the frequency characteristics is maintained for a prescribed period of time.
- Also, according to this second embodiment, it is possible to change the playback time efficiently by calculating the spectrogram of the sound data, deleting the spectra which are stable in the frequency direction, detecting the harmonic structure of the spectrum using a comb filter, and applying the processing for thinning or thickening the sound data only to the sections at which the harmonic structure is detected.
- It is to be noted that, besides those already mentioned above, many modifications and variations of the above embodiments may be made without departing from the novel and advantageous features of the present invention. Accordingly, all such modifications and variations are intended to be included within the scope of the appended claims.
Claims (73)
1. An apparatus for interactive video manipulation and display, comprising:
a background image storage unit for storing a background image;
a display unit for displaying the background image stored in the background image storage unit;
a partial image storage unit for storing partial images which are set in correspondence to spatial positions on the background image and representing an object moving on the background image;
a setting unit for setting a manipulation target spatial position on a screen of the display unit;
a specifying unit for uniquely specifying a partial image to be synthesized and displayed according to the manipulation target spatial position set by the setting unit; and
a synthesis display unit for reading out the partial image as specified by the specifying unit from the partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the background image displayed by the display unit.
2. The apparatus of , wherein the setting unit is provided in a form of a display integral touch screen.
claim 1
3. The apparatus of , further comprising a unit for producing the background image to be stored in the background image storage unit from an original video containing consecutive frame images.
claim 1
4. The apparatus of , further comprising a unit for extracting the partial images to be stored in the partial image storage unit from an original video from which the background image is produced.
claim 1
5. The apparatus of , wherein the specifying unit defines a mapping for continuously mapping the manipulation target spatial position into a time position for specifying the partial image, and specifies the partial image by continuously tracing a line on the mapping when the setting unit sets successive manipulation target spatial positions continuously.
claim 1
6. The apparatus of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, the specifying unit converts sections of the mapping which are close to each other in time into one-to-one mapping.
claim 5
7. The apparatus of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, the specifying unit selects one value from multiple values according to a prescribed rule.
claim 5
8. The apparatus of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, if the setting unit sets successive manipulation target spatial positions continuously, the specifying unit maps the successive manipulation target spatial positions into corresponding continuous time positions, and if the setting unit sets successive manipulation target spatial positions discontinuously, the specifying unit selects one value from multiple values according to a prescribed rule.
claim 5
9. The apparatus of , wherein the synthesis display unit synthesizes and displays the partial image and the background image by enlarging or contracting the partial image and the background image, when an enlarging or contracting mode is specified.
claim 1
10. The apparatus of , wherein the synthesis display unit synthesizes and displays successive partial images continuously or at constant time interval for a prescribed period of time starting from or ending at a time position corresponding to the manipulation target spatial position set by the setting unit, when an arbitrary position playback mode setting and a playback direction setting are made.
claim 1
11. The apparatus of , wherein the synthesis display unit erases the partial image that is synthesized and displayed once after a prescribed period of time.
claim 1
12. The apparatus of , further comprising a sound playback unit for sequentially obtaining time positions at which the partial image to be synthesized and displayed exists sequentially at a prescribed time interval according to manipulation target spatial positions sequentially set by the setting unit, obtaining sound data corresponding to a period between a current time position and an immediately previous time position, and playbacking the sound data within the prescribed time interval.
claim 1
13. The apparatus of , wherein the sound playback unit playbacks the sound data by compressing the sound data when a difference between the current time position and the immediately previous time position is longer than the prescribed time interval or by expanding the sound data when the difference is shorter than the prescribed time interval, so that a playback of the sound data is finished within the prescribed time interval.
claim 12
14. The apparatus of , wherein the setting unit is provided in a form of a pointing device for moving a cursor displayed by the display unit, and the display unit displays the cursor in a transparent form showing only a contour at a time of setting the manipulation target spatial position.
claim 1
15. A method for interactive video manipulation and display, comprising the steps of:
reading out a background image stored in a background image storage unit and displaying the background image on a screen;
setting a manipulation target spatial position on the screen;
uniquely specifying a partial image to be synthesized and displayed from partial images which are set in correspondence to spatial positions on the background image and representing an object moving on the background image, according to the manipulation target spatial position set by the setting step; and
reading out the partial image as specified by the specifying step from a partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the background image.
16. The method of , further comprising the step of producing the background image to be stored in the background image storage unit from an original video containing consecutive frame images.
claim 15
17. The method of , further comprising the step of extracting the partial images to be stored in the partial image storage unit from an original video from which the background image is produced.
claim 15
18. The method of , wherein the specifying step defines a mapping for continuously mapping the manipulation target spatial position into a time position for specifying the partial image, and specifies the partial image by continuously tracing a line on the mapping when the setting step sets successive manipulation target spatial positions continuously.
claim 15
19. The method of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, the specifying step converts sections of the mapping which are close to each other in time into one-to-one mapping.
claim 18
20. The method of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, the specifying step selects one value from multiple values according to a prescribed rule.
claim 18
21. The method of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, if the setting step sets successive manipulation target spatial positions continuously, the specifying step maps the successive manipulation target spatial positions into corresponding continuous time positions, and if the setting step sets successive manipulation target spatial positions discontinuously, the specifying step selects one value from multiple values according to a prescribed rule.
claim 18
22. The method of , wherein the synthesizing and displaying step synthesizes and displays the partial image and the background image by enlarging or contracting the partial image and the background image, when an enlarging or contracting mode is specified.
claim 15
23. The method of , wherein the synthesizing and displaying step synthesizes and displays successive partial images continuously or at constant time interval for a prescribed period of time starting from or ending at a time position corresponding to the manipulation target spatial position set by the setting step, when an arbitrary position playback mode setting and a playback direction setting are made.
claim 15
24. The method of , wherein the synthesizing and displaying step erases the partial image that is synthesized and displayed once after a prescribed period of time.
claim 15
25. The method of , further comprising the step of sequentially obtaining time positions at which the partial image to be synthesized and displayed exists sequentially at a prescribed time interval according to manipulation target spatial positions sequentially set by the setting step, obtaining sound data corresponding to a period between a current time position and an immediately previous time position, and playbacking the sound data within the prescribed time interval.
claim 15
26. The method of , wherein the playbacking step playbacks the sound data by compressing the sound data when a difference between the current time position and the immediately previous time position is longer than the prescribed time interval or by expanding the sound data when the difference is shorter than the prescribed time interval, so that a playback of the sound data is finished within the prescribed time interval.
claim 25
27. The method of , wherein the setting step sets the manipulation target spatial position using a pointing device for moving a cursor displayed on the screen, which is displayed in a transparent form showing only a contour at a time of setting the manipulation target spatial position.
claim 15
28. An article of manufacture, comprising:
a computer usable medium having computer readable program code means embodied therein for causing a computer to function as an apparatus for interactive video manipulation and display, the computer readable program code means includes:
first computer readable program code means for causing said computer to read out a background image stored in a background image storage unit and display the background image on a screen;
second computer readable program code means for causing said computer to set a manipulation target spatial position on the screen;
third computer readable program code means for causing said computer to uniquely specify a partial image to be synthesized and displayed from partial images which are set in correspondence to spatial positions on the background image and representing an object moving on the background image, according to the manipulation target spatial position set by the second computer readable program code means; and
fourth computer readable program code means for causing said computer to read out the partial image as specified by the third computer readable program code means from a partial image storage unit, and synthesizing and displaying the partial image at the manipulation target spatial position on the background image.
29. The article of manufacture of , further comprising fifth computer readable program code means for causing said computer to produce the background image to be stored in the background image storage unit from an original video containing consecutive frame images.
claim 28
30. The article of manufacture of , further comprising fifth computer readable program code means for causing said computer to extract the partial images to be stored in the partial image storage unit from an original video from which the background image is produced.
claim 28
31. The article of manufacture of , wherein the third computer readable program code means defines a mapping for continuously mapping the manipulation target spatial position into a time position for specifying the partial image, and specifies the partial image by continuously tracing a line on the mapping when the second computer readable program code means sets successive manipulation target spatial positions continuously.
claim 28
32. The article of manufacture of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, the third computer readable program code means converts sections of the mapping which are close to each other in time into oneto-one mapping.
claim 31
33. The article of manufacture of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, the third computer readable program code means selects one value from multiple values according to a prescribed rule.
claim 31
34. The article of manufacture of , wherein when the mapping from the manipulation target spatial position to the time position becomes multi-valued, if the setting step sets successive manipulation target spatial positions continuously, the specifying step maps the successive manipulation target spatial positions into corresponding continuous time positions, and if the setting step sets successive manipulation target spatial positions discontinuously, the specifying step selects one value from multiple values according to a prescribed rule.
claim 31
35. The article of manufacture of , wherein the fourth computer readable program code means synthesizes and displays the partial image and the background image by enlarging or contracting the partial image and the background image, when an enlarging or contracting mode is specified.
claim 28
36. The article of manufacture of , wherein the fourth computer readable program code means synthesizes and displays successive partial images continuously or at constant time interval for a prescribed period of time starting from or ending at a time position corresponding to the manipulation target spatial position set by the second computer readable program code means, when an arbitrary position playback mode setting and a playback direction setting are made.
claim 28
37. The article of manufacture of , wherein the fourth computer readable program code means erases the partial image that is synthesized and displayed once after a prescribed period of time.
claim 28
38. The article of manufacture of , further comprising the fifth computer readable program code means for causing said computer to sequentially obtain time positions at which the partial image to be synthesized and displayed exists sequentially at a prescribed time interval according to manipulation target spatial positions sequentially set by the second computer readable program code means, obtain sound data corresponding to a period between a current time position and an immediately previous time position, and playback the sound data within the prescribed time interval.
claim 28
39. The article of manufacture of , wherein the fifth computer readable program code means causes playbacks the sound data by compressing the sound data when a difference between the current time position and the immediately previous time position is longer than the prescribed time interval or by expanding the sound data when the difference is shorter than the prescribed time interval, so that a playback of the sound data is finished within the prescribed time interval.
claim 38
40. The article of manufacture of , wherein the second computer readable program code means sets the manipulation target spatial position using a pointing device for moving a cursor displayed on the screen, which is displayed in a transparent form showing only a contour at a time of setting the manipulation target spatial position.
claim 28
41. An apparatus for interactive video manipulation and display, comprising:
an input unit for entering a start point and an end point on a time axis;
a playback speed calculation unit for calculating a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and
a playback unit for playbacking the video at the playback speed.
42. The apparatus of , wherein the playback speed calculation unit calculates the input time and a normal playback time required in playbacking the video from the start point to the end point at a normal speed, compares the input time and the normal playback time after multiplying arbitrary numerical values to either one or both of the input time and the normal playback time, and calculates the playback speed according to a difference and a size relationship between the input time and the normal playback time after the arbitrary numerical values are multiplied.
claim 41
43. The apparatus of , wherein the playback speed calculation unit calculates a numerical value that can make the normal playback time equal to the input time upon multiplying the numerical value to either one of the normal playback time and the input time, and multiplies the numerical to either one of the normal playback time and the input time.
claim 41
44. The apparatus of , wherein the start point and the end point entered by the input unit are a playback start point and a playback end point, and the playback unit playbacks the video from the playback start point to the playback end point.
claim 41
45. The apparatus of , wherein the input unit also enters a playback start point and a playback end point for the video on the time axis, separately from the start point and the end point, and the playback unit playbacks the video from the playback start point to the playback end point.
claim 41
46. The apparatus of , wherein the playback speed calculation unit calculates the playback speed for each video portion specified by the start point and the end point which are entered consecutively, from the input time and an actual time interval between the start point and the end point, and stores the playback speed for each video portion.
claim 41
47. The apparatus of , wherein the playback unit playbacks each video portion according to the playback speed for each video portion stored by the playback speed calculation unit.
claim 46
48. The apparatus of , wherein the input unit utilizes a panorama image as the time axis.
claim 41
49. The apparatus of , wherein the playback unit processes sound data contained in the video at a time of playbacking the video at a speed slower than a normal speed, by interpolating the sound data at a section in which the frequency characteristics remain similar.
claim 41
50. The apparatus of , wherein the playback unit processes sound data contained in the video at a time of playbacking the video at a speed faster than a normal speed, by thinning the sound data at a section in which the frequency characteristics remain similar.
claim 41
51. The apparatus of , wherein the playback unit calculates a spectrogram of sound data contained in the video, deletes peaks of spectra which are stable in a frequency direction, detects a harmonic structure in each spectrum, and applies a processing for thinning or thickening the sound data to sections at which the harmonic structure is detected.
claim 41
52. A method for interactive video manipulation and display, comprising the steps of:
entering a start point and an end point on a time axis;
calculating a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and
playbacking the video at the playback speed.
53. The method of , wherein the calculating step calculates the input time and a normal playback time required in playbacking the video from the start point to the end point at a normal speed, compares the input time and the normal playback time after multiplying arbitrary numerical values to either one or both of the input time and the normal playback time, and calculates the playback speed according to a difference and a size relationship between the input time and the normal playback time after the arbitrary numerical values are multiplied.
claim 52
54. The method of , wherein the calculating step calculates a numerical value that can make the normal playback time equal to the input time upon multiplying the numerical value to either one of the normal playback time and the input time, and multiplies the numerical to either one of the normal playback time and the input time.
claim 52
55. The method of , wherein the start point and the end point entered by the entering step are a playback start point and a playback end point, and the playbacking step playbacks the video from the playback start point to the playback end point.
claim 52
56. The method of , wherein the entering step also enters a playback start point and a playback end point for the video on the time axis, separately from the start point and the end point, and the playbacking step playbacks the video from the playback start point to the playback end point.
claim 52
57. The method of , wherein the calculating step calculates the playback speed for each video portion specified by the start point and the end point which are entered consecutively, from the input time and an actual time interval between the start point and the end point, and stores the playback speed for each video portion.
claim 52
58. The method of , wherein the playbacking step playbacks each video portion according to the playback speed for each video portion stored by the playback speed calculation unit.
claim 57
59. The method of , wherein the entering step utilizes a panorama image as the time axis.
claim 52
60. The method of , wherein the playbacking step processes sound data contained in the video at a time of playbacking the video at a speed slower than a normal speed, by interpolating the sound data at a section in which the frequency characteristics remain similar.
claim 52
61. The method of , wherein the playbacking step processes sound data contained in the video at a time of playbacking the video at a speed faster than a normal speed, by thinning the sound data at a section in which the frequency characteristics remain similar.
claim 52
62. The method of , wherein the playbacking step calculates a spectrogram of sound data contained in the video, deletes peaks of spectra which are stable in a frequency direction, detects a harmonic structure in each spectrum, and applies a processing for thinning or thickening the sound data to sections at which the harmonic structure is detected.
claim 52
63. An article of manufacture, comprising:
a computer usable medium having computer readable program code means embodied therein for causing a computer to function as an apparatus for interactive video manipulation and display, the computer readable program code means includes:
first computer readable program code means for causing said computer to enter a start point and an end point on a time axis;
second computer readable program code means for causing said computer to calculate a playback speed for a video according to the start point, the end point, and an input time taken since the start point is entered until the end point is entered; and
third computer readable program code means for causing said computer to playback the video at the playback speed.
64. The article of manufacture of , wherein the second computer readable program code means calculates the input time and a normal playback time required in playbacking the video from the playback start point to the playback end point at a normal speed, compares the input time and the normal playback time after multiplying arbitrary numerical values to either one or both of the input time and the normal playback time, and calculates the playback speed according to a difference and a size relationship between the input time and the normal playback time after the arbitrary numerical values are multiplied.
claim 63
65. The article of manufacture of , wherein the second computer readable program code means calculates a numerical value that can make the normal playback time equal to the input time upon multiplying the numerical value to either one of the normal playback time and the input time, and multiplies the numerical to either one of the normal playback time and the input time.
claim 63
66. The article of manufacture of , wherein the start point and the end point entered by the first computer readable program code means are a playback start point and a playback end point, and the third computer readable program code means playbacks the video from the playback start point to the playback end point.
claim 63
67. The article of manufacture of , wherein the first computer readable program code means also enters a playback start point and a playback end point for the video on the time axis, separately from the start point and the end point, and the third computer readable program code means playbacks the video from the playback start point to the playback end point.
claim 63
68. The article of manufacture of , wherein the second computer readable program code means calculates the playback speed for each video portion specified by the start point and the end point which are entered consecutively, from the input time and an actual time interval between the start point and the end point, and stores the playback speed for each video portion.
claim 63
69. The article of manufacture of , wherein the third computer readable program code means playbacks each video portion according to the playback speed for each video portion stored by the playback speed calculation unit.
claim 68
70. The article of manufacture of , wherein the first computer readable program code means utilizes a panorama image as the time axis.
claim 63
71. The article of manufacture of , wherein the third computer readable program code means processes sound data contained in the video at a time of playbacking the video at a speed slower than a normal speed, by interpolating the sound data at a section in which the frequency characteristics remain similar.
claim 63
72. The article of manufacture of , wherein the third computer readable program code means processes sound data contained in the video at a time of playbacking the video at a speed faster than a normal speed, by thinning the sound data at a section in which the frequency characteristics remain similar.
claim 63
73. The article of manufacture of , wherein the third computer readable program code means calculates a spectrogram of sound data contained in the video, deletes peaks of spectra which are stable in a frequency direction, detects a harmonic structure in each spectrum, and applies a processing for thinning or thickening the sound data to sections at which the harmonic structure is detected.
claim 63
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/776,374 US6388669B2 (en) | 1997-06-20 | 2001-02-02 | Scheme for interactive video manipulation and display of moving object on background image |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16363297 | 1997-06-20 | ||
JPP9-163632 | 1997-06-20 | ||
JP35114597A JP3439101B2 (en) | 1997-12-19 | 1997-12-19 | Variable speed video playback method and apparatus, and recording medium storing variable speed video playback program |
JPP9-351145 | 1997-12-19 | ||
US09/099,189 US6215505B1 (en) | 1997-06-20 | 1998-06-18 | Scheme for interactive video manipulation and display of moving object on background image |
US09/776,374 US6388669B2 (en) | 1997-06-20 | 2001-02-02 | Scheme for interactive video manipulation and display of moving object on background image |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/099,189 Division US6215505B1 (en) | 1997-06-20 | 1998-06-18 | Scheme for interactive video manipulation and display of moving object on background image |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010005208A1 true US20010005208A1 (en) | 2001-06-28 |
US6388669B2 US6388669B2 (en) | 2002-05-14 |
Family
ID=26489019
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/099,189 Expired - Lifetime US6215505B1 (en) | 1997-06-20 | 1998-06-18 | Scheme for interactive video manipulation and display of moving object on background image |
US09/776,374 Expired - Fee Related US6388669B2 (en) | 1997-06-20 | 2001-02-02 | Scheme for interactive video manipulation and display of moving object on background image |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/099,189 Expired - Lifetime US6215505B1 (en) | 1997-06-20 | 1998-06-18 | Scheme for interactive video manipulation and display of moving object on background image |
Country Status (5)
Country | Link |
---|---|
US (2) | US6215505B1 (en) |
EP (1) | EP0886245B1 (en) |
CN (1) | CN1107292C (en) |
CA (1) | CA2241074C (en) |
DE (1) | DE69837366T2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003058960A1 (en) * | 2002-01-08 | 2003-07-17 | Cernium, Inc. | Object selective video recording |
US20040179034A1 (en) * | 2003-02-26 | 2004-09-16 | Burritt David Ray | Apparatus and method for displaying background images (themes) for computer and handheld computer devices |
US20070006063A1 (en) * | 2005-07-01 | 2007-01-04 | Microsoft Corporation | Synchronization aspects of interactive multimedia presentation management |
US7164423B1 (en) * | 2003-04-30 | 2007-01-16 | Apple Computer, Inc. | Method and apparatus for providing an animated representation of a reorder operation |
US20070035623A1 (en) * | 2005-07-22 | 2007-02-15 | Cernium Corporation | Directed attention digital video recordation |
US20070104383A1 (en) * | 2002-11-14 | 2007-05-10 | Microsoft Corporation | Stabilization of objects within a video sequence |
US20070182730A1 (en) * | 2003-05-28 | 2007-08-09 | Ken Mashitani | Stereoscopic image display apparatus and program |
US20080201416A1 (en) * | 2003-04-05 | 2008-08-21 | Lipton Daniel I | Method and apparatus for allowing a media client to obtain media data from a media server |
EP2073539A1 (en) * | 2007-08-24 | 2009-06-24 | Sony Corporation | Image processing device, dynamic image reproduction device, and processing method and program in them |
US20090290013A1 (en) * | 2008-05-20 | 2009-11-26 | Sony Corporation | Image pickup apparatus, image pickup method, playback control apparatus, playback control method, and program |
EP2129112A1 (en) * | 2008-01-21 | 2009-12-02 | Sony Corporation | Image processor, and processing method and program for the same |
US20090315897A1 (en) * | 2008-06-24 | 2009-12-24 | Microsoft Corporation | Animation platform |
US20100060639A1 (en) * | 2008-09-09 | 2010-03-11 | Pierre-Felix Breton | Animatable Graphics Lighting Analysis |
US20100060638A1 (en) * | 2008-09-09 | 2010-03-11 | Pierre-Felix Breton | Animatable Graphics Lighting Analysis Reporting |
US20100104217A1 (en) * | 2008-10-27 | 2010-04-29 | Sony Corporation | Image processing apparatus, image processing method, and program |
US20100111429A1 (en) * | 2007-12-07 | 2010-05-06 | Wang Qihong | Image processing apparatus, moving image reproducing apparatus, and processing method and program therefor |
US20100118160A1 (en) * | 2007-12-27 | 2010-05-13 | Sony Corporation | Image pickup apparatus, controlling method and program for the same |
US20100118161A1 (en) * | 2007-12-21 | 2010-05-13 | Shingo Tsurumi | Image processing apparatus, dynamic picture reproduction apparatus, and processing method and program for the same |
US20100315522A1 (en) * | 2007-12-07 | 2010-12-16 | Sony Corporation | Image processing apparatus, dynamic picture reproduction apparatus, and processing method and program for the same |
US7911482B1 (en) * | 2006-01-06 | 2011-03-22 | Videomining Corporation | Method and system for efficient annotation of object trajectories in image sequences |
US20120162063A1 (en) * | 2010-12-24 | 2012-06-28 | Casio Computer Co., Ltd. | Information display apparatus, information display method, and storage medium storing program for displaying information |
US20120169840A1 (en) * | 2009-09-16 | 2012-07-05 | Noriyuki Yamashita | Image Processing Device and Method, and Program |
US9215467B2 (en) | 2008-11-17 | 2015-12-15 | Checkvideo Llc | Analytics-modulated coding of surveillance video |
US20160062563A1 (en) * | 2014-08-27 | 2016-03-03 | Lg Electronics Inc. | Display device and method of controlling therefor |
EP2645922A4 (en) * | 2010-11-29 | 2016-11-09 | Ucansi Inc | System and method for vision evaluation |
EP3160132A1 (en) * | 2015-10-21 | 2017-04-26 | Lg Electronics Inc. | Mobile terminal for image composition |
US11039088B2 (en) | 2017-11-15 | 2021-06-15 | Advanced New Technologies Co., Ltd. | Video processing method and apparatus based on augmented reality, and electronic device |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11219446A (en) * | 1998-02-03 | 1999-08-10 | Matsushita Electric Ind Co Ltd | Video/sound reproducing system |
JP4146938B2 (en) * | 1998-09-08 | 2008-09-10 | オリンパス株式会社 | Panorama image synthesis apparatus and recording medium storing panorama image synthesis program |
JP4240343B2 (en) * | 1998-12-19 | 2009-03-18 | 株式会社セガ | Image generating apparatus and image generating method |
JP2000261647A (en) * | 1999-03-04 | 2000-09-22 | Fuji Xerox Co Ltd | Image processing unit |
US6437785B1 (en) * | 1999-04-30 | 2002-08-20 | Intel Corporation | Method of conveying a relationship between objects in a scene |
JP3721867B2 (en) * | 1999-07-07 | 2005-11-30 | 日本電気株式会社 | Video display device and display method |
JP3424204B2 (en) * | 1999-07-23 | 2003-07-07 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Method and apparatus for accessing video content using trajectory of object |
US6681043B1 (en) * | 1999-08-16 | 2004-01-20 | University Of Washington | Interactive video object processing environment which visually distinguishes segmented video object |
JP2004500756A (en) * | 1999-11-24 | 2004-01-08 | ダートフィッシュ エルティーディー. | Coordination and composition of video sequences with space-time normalization |
JP2001197366A (en) * | 2000-01-12 | 2001-07-19 | Hitachi Ltd | Picture synthesis method and recording medium recording picture synthesis program |
DE10018143C5 (en) * | 2000-04-12 | 2012-09-06 | Oerlikon Trading Ag, Trübbach | DLC layer system and method and apparatus for producing such a layer system |
JP4380042B2 (en) * | 2000-09-04 | 2009-12-09 | ソニー株式会社 | Animation generation method and apparatus |
US6990452B1 (en) | 2000-11-03 | 2006-01-24 | At&T Corp. | Method for sending multi-media messages using emoticons |
US6976082B1 (en) | 2000-11-03 | 2005-12-13 | At&T Corp. | System and method for receiving multi-media messages |
US6963839B1 (en) | 2000-11-03 | 2005-11-08 | At&T Corp. | System and method of controlling sound in a multi-media communication application |
US7203648B1 (en) | 2000-11-03 | 2007-04-10 | At&T Corp. | Method for sending multi-media messages with customized audio |
US20080040227A1 (en) | 2000-11-03 | 2008-02-14 | At&T Corp. | System and method of marketing using a multi-media communication system |
US7091976B1 (en) | 2000-11-03 | 2006-08-15 | At&T Corp. | System and method of customizing animated entities for use in a multi-media communication application |
US7035803B1 (en) | 2000-11-03 | 2006-04-25 | At&T Corp. | Method for sending multi-media messages using customizable background images |
US7671861B1 (en) * | 2001-11-02 | 2010-03-02 | At&T Intellectual Property Ii, L.P. | Apparatus and method of customizing animated entities for use in a multi-media communication application |
JP4148671B2 (en) * | 2001-11-06 | 2008-09-10 | ソニー株式会社 | Display image control processing apparatus, moving image information transmission / reception system, display image control processing method, moving image information transmission / reception method, and computer program |
DE10213535A1 (en) * | 2002-03-26 | 2003-10-16 | Siemens Ag | Device for position-dependent information display |
JP4114720B2 (en) * | 2002-10-25 | 2008-07-09 | 株式会社ソニー・コンピュータエンタテインメント | Image generation method and image generation apparatus |
US7082572B2 (en) * | 2002-12-30 | 2006-07-25 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and apparatus for interactive map-based analysis of digital video content |
US7221366B2 (en) * | 2004-08-03 | 2007-05-22 | Microsoft Corporation | Real-time rendering system and process for interactive viewpoint video |
US7142209B2 (en) * | 2004-08-03 | 2006-11-28 | Microsoft Corporation | Real-time rendering system and process for interactive viewpoint video that was generated using overlapping images of a scene captured from viewpoints forming a grid |
CN100337473C (en) * | 2004-09-30 | 2007-09-12 | 中国科学院计算技术研究所 | Panorama composing method for motion video |
FR2883692A1 (en) * | 2005-03-25 | 2006-09-29 | Thomson Licensing Sa | METHOD OF SENDING CONTROL TO A SERVER OF DIGITAL DATA STREAMS AND APPARATUS IMPLEMENTING THE METHOD |
US20070124766A1 (en) * | 2005-11-30 | 2007-05-31 | Broadcom Corporation | Video synthesizer |
KR100827230B1 (en) * | 2006-06-09 | 2008-05-07 | 삼성전자주식회사 | Portable device and method for providing menu icon |
US20090060464A1 (en) * | 2007-08-31 | 2009-03-05 | James Russell Hornsby | Handheld video playback device |
US20090183101A1 (en) * | 2008-01-10 | 2009-07-16 | International Business Machines Corporation | Method, Apparatus and Program Storage Device for Providing a Gauge for Displaying Data that Includes Historical-Based Data |
US8447065B2 (en) | 2008-09-16 | 2013-05-21 | Cyberlink Corp. | Method of facial image reproduction and related device |
JP4679647B2 (en) * | 2009-02-27 | 2011-04-27 | 株式会社東芝 | Video / audio playback apparatus and video / audio playback method |
KR101164730B1 (en) * | 2010-02-04 | 2012-07-12 | 삼성전자주식회사 | Method and apparatus for displaying the character object of terminal including touch screen |
CN102184070A (en) * | 2010-06-22 | 2011-09-14 | 上海盈方微电子有限公司 | Method and device for displaying cursor of hardware support |
US20130057536A1 (en) * | 2011-09-02 | 2013-03-07 | Xiaoyun Li | Method for relieving eye strain using animation |
CN104115487A (en) * | 2012-02-20 | 2014-10-22 | 索尼公司 | Image processing device, image processing method, and program |
CN103513905B (en) * | 2012-06-28 | 2017-10-03 | 展讯通信(上海)有限公司 | Information processing method, equipment and portable terminal |
DE102012014174A1 (en) * | 2012-07-16 | 2014-01-16 | Rational Aktiengesellschaft | Method for displaying parameters of a cooking process and display device for a cooking appliance |
USD738889S1 (en) | 2013-06-09 | 2015-09-15 | Apple Inc. | Display screen or portion thereof with animated graphical user interface |
USD747344S1 (en) | 2013-08-02 | 2016-01-12 | Apple Inc. | Display screen with graphical user interface |
USD789382S1 (en) * | 2013-11-25 | 2017-06-13 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD759668S1 (en) * | 2014-01-13 | 2016-06-21 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
KR102129798B1 (en) * | 2014-05-08 | 2020-07-03 | 엘지전자 주식회사 | Vehicle and method for controlling the same |
USD771112S1 (en) | 2014-06-01 | 2016-11-08 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD752624S1 (en) | 2014-09-01 | 2016-03-29 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD771123S1 (en) | 2014-09-01 | 2016-11-08 | Apple Inc. | Display screen or portion thereof with multi-state graphical user interface |
USD735754S1 (en) | 2014-09-02 | 2015-08-04 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD762659S1 (en) | 2014-09-02 | 2016-08-02 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD760746S1 (en) | 2015-06-04 | 2016-07-05 | Apple Inc. | Display screen or portion thereof with animated graphical user interface |
USD805540S1 (en) * | 2016-01-22 | 2017-12-19 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
USD804502S1 (en) | 2016-06-11 | 2017-12-05 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD843442S1 (en) | 2017-09-10 | 2019-03-19 | Apple Inc. | Type font |
USD870774S1 (en) | 2017-09-29 | 2019-12-24 | Apple Inc. | Wearable device with animated graphical user interface |
US10789913B2 (en) | 2018-01-04 | 2020-09-29 | Qualcomm Incorporated | Arbitrary block rendering and display frame reconstruction |
USD863337S1 (en) | 2018-06-03 | 2019-10-15 | Apple Inc. | Electronic device with animated graphical user interface |
USD902221S1 (en) | 2019-02-01 | 2020-11-17 | Apple Inc. | Electronic device with animated graphical user interface |
USD900871S1 (en) | 2019-02-04 | 2020-11-03 | Apple Inc. | Electronic device with animated graphical user interface |
USD910050S1 (en) | 2019-03-22 | 2021-02-09 | Apple Inc. | Electronic device with graphical user interface |
CN113469200A (en) | 2020-03-30 | 2021-10-01 | 阿里巴巴集团控股有限公司 | Data processing method and system, storage medium and computing device |
USD951287S1 (en) | 2020-06-19 | 2022-05-10 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD942509S1 (en) | 2020-06-19 | 2022-02-01 | Apple Inc. | Display screen or portion thereof with graphical user interface |
USD954732S1 (en) | 2020-06-20 | 2022-06-14 | Apple Inc. | Display screen or portion thereof with graphical user interface |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4602286A (en) * | 1982-01-15 | 1986-07-22 | Quantel Limited | Video processing for composite images |
US4573014A (en) * | 1983-11-09 | 1986-02-25 | Duke University | NMR Imaging method and apparatus |
US4641255A (en) * | 1985-05-22 | 1987-02-03 | Honeywell Gmbh | Apparatus for simulation of visual fields of view |
GB8822062D0 (en) * | 1988-09-20 | 1988-10-19 | Quantel Ltd | Video processing |
JP2784811B2 (en) * | 1989-08-25 | 1998-08-06 | ソニー株式会社 | Image creation device |
GB2256568B (en) * | 1991-06-05 | 1995-06-07 | Sony Broadcast & Communication | Image generation system for 3-D simulations |
US5345313A (en) * | 1992-02-25 | 1994-09-06 | Imageware Software, Inc | Image editing system for taking a background and inserting part of an image therein |
US5850352A (en) * | 1995-03-31 | 1998-12-15 | The Regents Of The University Of California | Immersive video, including video hypermosaicing to generate from multiple video views of a scene a three-dimensional video mosaic from which diverse virtual video scene images are synthesized, including panoramic, scene interactive and stereoscopic images |
-
1998
- 1998-06-18 US US09/099,189 patent/US6215505B1/en not_active Expired - Lifetime
- 1998-06-19 EP EP98111358A patent/EP0886245B1/en not_active Expired - Lifetime
- 1998-06-19 CA CA002241074A patent/CA2241074C/en not_active Expired - Fee Related
- 1998-06-19 CN CN98114944A patent/CN1107292C/en not_active Expired - Fee Related
- 1998-06-19 DE DE69837366T patent/DE69837366T2/en not_active Expired - Lifetime
-
2001
- 2001-02-02 US US09/776,374 patent/US6388669B2/en not_active Expired - Fee Related
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003058960A1 (en) * | 2002-01-08 | 2003-07-17 | Cernium, Inc. | Object selective video recording |
US7680353B2 (en) * | 2002-11-14 | 2010-03-16 | Microsoft Corporation | Stabilization of objects within a video sequence |
US20070104383A1 (en) * | 2002-11-14 | 2007-05-10 | Microsoft Corporation | Stabilization of objects within a video sequence |
US20040179034A1 (en) * | 2003-02-26 | 2004-09-16 | Burritt David Ray | Apparatus and method for displaying background images (themes) for computer and handheld computer devices |
US20080201416A1 (en) * | 2003-04-05 | 2008-08-21 | Lipton Daniel I | Method and apparatus for allowing a media client to obtain media data from a media server |
US8037401B2 (en) * | 2003-04-05 | 2011-10-11 | Apple Inc. | Method and apparatus for allowing a media client to obtain media data from a media server |
US7164423B1 (en) * | 2003-04-30 | 2007-01-16 | Apple Computer, Inc. | Method and apparatus for providing an animated representation of a reorder operation |
US7800618B1 (en) | 2003-04-30 | 2010-09-21 | Apple Inc. | Method and apparatus for providing an animated representation of a reorder operation |
US20070182730A1 (en) * | 2003-05-28 | 2007-08-09 | Ken Mashitani | Stereoscopic image display apparatus and program |
US8799757B2 (en) * | 2005-07-01 | 2014-08-05 | Microsoft Corporation | Synchronization aspects of interactive multimedia presentation management |
US20070006063A1 (en) * | 2005-07-01 | 2007-01-04 | Microsoft Corporation | Synchronization aspects of interactive multimedia presentation management |
US20070035623A1 (en) * | 2005-07-22 | 2007-02-15 | Cernium Corporation | Directed attention digital video recordation |
US8587655B2 (en) | 2005-07-22 | 2013-11-19 | Checkvideo Llc | Directed attention digital video recordation |
US8026945B2 (en) | 2005-07-22 | 2011-09-27 | Cernium Corporation | Directed attention digital video recordation |
US7911482B1 (en) * | 2006-01-06 | 2011-03-22 | Videomining Corporation | Method and system for efficient annotation of object trajectories in image sequences |
US8754959B2 (en) * | 2007-08-24 | 2014-06-17 | Sony Corporation | Image processing device, dynamic image reproduction device, and processing method and program in them |
EP2073539A4 (en) * | 2007-08-24 | 2011-08-10 | Sony Corp | Image processing device, dynamic image reproduction device, and processing method and program in them |
EP2073539A1 (en) * | 2007-08-24 | 2009-06-24 | Sony Corporation | Image processing device, dynamic image reproduction device, and processing method and program in them |
US20100066860A1 (en) * | 2007-08-24 | 2010-03-18 | Sony Corporation | Image processing device, dynamic image reproduction device, and processing method and program in them |
US20100315522A1 (en) * | 2007-12-07 | 2010-12-16 | Sony Corporation | Image processing apparatus, dynamic picture reproduction apparatus, and processing method and program for the same |
US20100111429A1 (en) * | 2007-12-07 | 2010-05-06 | Wang Qihong | Image processing apparatus, moving image reproducing apparatus, and processing method and program therefor |
US8768097B2 (en) * | 2007-12-07 | 2014-07-01 | Sony Corporation | Image processing apparatus, moving image reproducing apparatus, and processing method and program therefor |
EP2219372A4 (en) * | 2007-12-07 | 2011-07-20 | Sony Corp | Image processing device, dynamic image reproduction device, and processing method and program used in the devices |
US9402015B2 (en) | 2007-12-07 | 2016-07-26 | Sony Corporation | Image processing apparatus, dynamic picture reproduction apparatus, and processing method and program for the same |
EP2219372A1 (en) * | 2007-12-07 | 2010-08-18 | Sony Corporation | Image processing device, dynamic image reproduction device, and processing method and program used in the devices |
US8570390B2 (en) * | 2007-12-07 | 2013-10-29 | Sony Corporation | Image processing apparatus, dynamic picture reproduction apparatus, and processing method and program for the same |
US8810708B2 (en) | 2007-12-21 | 2014-08-19 | Sony Corporation | Image processing apparatus, dynamic picture reproduction apparatus, and processing method and program for the same |
EP2222080A4 (en) * | 2007-12-21 | 2011-11-23 | Sony Corp | Image processor, animation reproduction apparatus, and processing method and program for the processor and apparatus |
EP2222080A1 (en) * | 2007-12-21 | 2010-08-25 | Sony Corporation | Image processor, animation reproduction apparatus, and processing method and program for the processor and apparatus |
US20100118161A1 (en) * | 2007-12-21 | 2010-05-13 | Shingo Tsurumi | Image processing apparatus, dynamic picture reproduction apparatus, and processing method and program for the same |
US8305457B2 (en) | 2007-12-21 | 2012-11-06 | Sony Corporation | Image processing apparatus, dynamic picture reproduction apparatus, and processing method and program for the same |
EP2227011A1 (en) * | 2007-12-27 | 2010-09-08 | Sony Corporation | Imaging apparatus, and control method and program for the same |
US20100118160A1 (en) * | 2007-12-27 | 2010-05-13 | Sony Corporation | Image pickup apparatus, controlling method and program for the same |
EP2227011A4 (en) * | 2007-12-27 | 2011-08-10 | Sony Corp | Imaging apparatus, and control method and program for the same |
US8350929B2 (en) | 2007-12-27 | 2013-01-08 | Sony Corporation | Image pickup apparatus, controlling method and program for the same |
US20100111499A1 (en) * | 2008-01-21 | 2010-05-06 | Sony Corporation | Picture processing apparatus, processing method for use therewith, and program |
US8599320B2 (en) * | 2008-01-21 | 2013-12-03 | Sony Corporatiion | Picture processing apparatus, processing method for use therewith, and program |
EP2129112A1 (en) * | 2008-01-21 | 2009-12-02 | Sony Corporation | Image processor, and processing method and program for the same |
US8717504B2 (en) | 2008-01-21 | 2014-05-06 | Sony Corporation | Picture processing apparatus, processing method for use therewith, and program |
EP2129112A4 (en) * | 2008-01-21 | 2010-12-15 | Sony Corp | Image processor, and processing method and program for the same |
US8350892B2 (en) | 2008-05-20 | 2013-01-08 | Sony Corporation | Image pickup apparatus, image pickup method, playback control apparatus, playback control method, and program |
EP2282313A1 (en) * | 2008-05-20 | 2011-02-09 | Sony Corporation | Image pickup apparatus, image pickup method, playback control apparatus, playback control method, and program |
US20130195419A1 (en) * | 2008-05-20 | 2013-08-01 | Sony Corporation | Image pickup apparatus, image pickup method, playback control apparatus, playback control method, and program |
EP2128868A3 (en) * | 2008-05-20 | 2010-05-26 | Sony Corporation | Image pickup apparatus, image pickup method, playback control apparatus, playback control method, and program |
US20090290013A1 (en) * | 2008-05-20 | 2009-11-26 | Sony Corporation | Image pickup apparatus, image pickup method, playback control apparatus, playback control method, and program |
US20090315897A1 (en) * | 2008-06-24 | 2009-12-24 | Microsoft Corporation | Animation platform |
US20100060639A1 (en) * | 2008-09-09 | 2010-03-11 | Pierre-Felix Breton | Animatable Graphics Lighting Analysis |
US20100060638A1 (en) * | 2008-09-09 | 2010-03-11 | Pierre-Felix Breton | Animatable Graphics Lighting Analysis Reporting |
US8405657B2 (en) * | 2008-09-09 | 2013-03-26 | Autodesk, Inc. | Animatable graphics lighting analysis |
US9495796B2 (en) | 2008-09-09 | 2016-11-15 | Autodesk, Inc. | Animatable graphics lighting analysis reporting |
US9106872B2 (en) * | 2008-10-27 | 2015-08-11 | Sony Corporation | Image processing apparatus, image processing method, and program |
US20100104217A1 (en) * | 2008-10-27 | 2010-04-29 | Sony Corporation | Image processing apparatus, image processing method, and program |
US12051212B1 (en) | 2008-11-17 | 2024-07-30 | Check Video LLC | Image analysis and motion detection using interframe coding |
US11172209B2 (en) | 2008-11-17 | 2021-11-09 | Checkvideo Llc | Analytics-modulated coding of surveillance video |
US9215467B2 (en) | 2008-11-17 | 2015-12-15 | Checkvideo Llc | Analytics-modulated coding of surveillance video |
US20120169840A1 (en) * | 2009-09-16 | 2012-07-05 | Noriyuki Yamashita | Image Processing Device and Method, and Program |
EP2645922A4 (en) * | 2010-11-29 | 2016-11-09 | Ucansi Inc | System and method for vision evaluation |
US9098394B2 (en) * | 2010-12-24 | 2015-08-04 | Casio Computer Co., Ltd. | Information display apparatus, information display method, and storage medium storing program for displaying information |
US20120162063A1 (en) * | 2010-12-24 | 2012-06-28 | Casio Computer Co., Ltd. | Information display apparatus, information display method, and storage medium storing program for displaying information |
US20160062563A1 (en) * | 2014-08-27 | 2016-03-03 | Lg Electronics Inc. | Display device and method of controlling therefor |
US10567648B2 (en) * | 2014-08-27 | 2020-02-18 | Lg Electronics Inc. | Display device and method of controlling therefor |
EP3160132A1 (en) * | 2015-10-21 | 2017-04-26 | Lg Electronics Inc. | Mobile terminal for image composition |
US10298850B2 (en) | 2015-10-21 | 2019-05-21 | Lg Electronics Inc. | Mobile terminal and method for generating background images |
US11039088B2 (en) | 2017-11-15 | 2021-06-15 | Advanced New Technologies Co., Ltd. | Video processing method and apparatus based on augmented reality, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
EP0886245A3 (en) | 2004-07-21 |
CA2241074A1 (en) | 1998-12-20 |
EP0886245B1 (en) | 2007-03-21 |
CN1206165A (en) | 1999-01-27 |
DE69837366T2 (en) | 2007-12-20 |
CN1107292C (en) | 2003-04-30 |
EP0886245A2 (en) | 1998-12-23 |
US6215505B1 (en) | 2001-04-10 |
CA2241074C (en) | 2002-08-20 |
DE69837366D1 (en) | 2007-05-03 |
US6388669B2 (en) | 2002-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6215505B1 (en) | Scheme for interactive video manipulation and display of moving object on background image | |
US7194676B2 (en) | Performance retiming effects on synchronized data in an editing system | |
Alemi et al. | Groovenet: Real-time music-driven dance movement generation using artificial neural networks | |
EP2127368B1 (en) | Concurrent presentation of video segments enabling rapid video file comprehension | |
US5613056A (en) | Advanced tools for speech synchronized animation | |
EP1000410B1 (en) | Method and system for editing or modifying 3d animations in a non-linear editing environment | |
JP3390979B2 (en) | Method and apparatus for editing video programs | |
US7453035B1 (en) | Methods and systems for providing musical interfaces | |
JP3171744B2 (en) | Voice and video search device | |
JP2002538642A (en) | Method and apparatus for authoring and linking video documents | |
JP2005506643A (en) | Media production system and method | |
JP2003052011A (en) | Video editing method and system for editing video project | |
JP2995745B2 (en) | Motion information extraction device | |
US7890866B2 (en) | Assistant editing display method for media clips | |
JP2008123672A (en) | Editing system | |
EP0916136B1 (en) | Graphical user interface for a motion video planning and editing system for a computer | |
US20050156932A1 (en) | Time cues for animation | |
JP3579111B2 (en) | Information processing equipment | |
Aigrain et al. | Representation-based user interfaces for the audiovisual library of the year 2000 | |
JP3629047B2 (en) | Information processing device | |
JP4644157B2 (en) | Additional image generation device and additional image composition device | |
CA2354116C (en) | Scheme for interactive video manipulation and display of moving object on background image | |
JP3523784B2 (en) | Interactive image operation display apparatus and method, and program storage medium | |
US6469702B1 (en) | Method and system for editing function curves in two dimensions | |
JP2765270B2 (en) | Video presentation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140514 |