TWI827958B - Evaluation system and evaluation method for suitable height range of high heels - Google Patents

Evaluation system and evaluation method for suitable height range of high heels Download PDF

Info

Publication number
TWI827958B
TWI827958B TW110127232A TW110127232A TWI827958B TW I827958 B TWI827958 B TW I827958B TW 110127232 A TW110127232 A TW 110127232A TW 110127232 A TW110127232 A TW 110127232A TW I827958 B TWI827958 B TW I827958B
Authority
TW
Taiwan
Prior art keywords
sole
heel
critical
height
foot
Prior art date
Application number
TW110127232A
Other languages
Chinese (zh)
Other versions
TW202304341A (en
Inventor
林伯星
黃怡婷
Original Assignee
國立臺北大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北大學 filed Critical 國立臺北大學
Priority to TW110127232A priority Critical patent/TWI827958B/en
Publication of TW202304341A publication Critical patent/TW202304341A/en
Application granted granted Critical
Publication of TWI827958B publication Critical patent/TWI827958B/en

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

An evaluation system and an evaluation method for suitable height range of high heels are provided. The system includes a plurality of pressure sensors, a processor and a storage medium. The storage medium stores a regression model, wherein: a user's foot is placed on the plurality of pressure sensors, and a height from the back heel of the foot to a horizontal plane is at least one critical back heel height. The processor obtains at least one critical pressure value of the foot from at least one critical pressure sensor. The processor inputs the at least one critical pressure value to the regression model, and evaluates a suitable height range of high heels for the foot according to an output result of the regression model.

Description

高跟鞋適合高度範圍評估系統及高跟鞋適合高度範圍評估方法High-heeled shoes suitable height range evaluation system and high-heeled shoes suitable height range evaluation method

本揭露是有關於一種高跟鞋適合高度範圍評估系統及高跟鞋適合高度範圍評估方法。The present disclosure relates to a system for evaluating the suitable height range of high heels and a method for evaluating the suitable height range of high heels.

許多女性會因為愛美或工作的關係長時間穿著高跟鞋。但是,穿著不合適高度的高跟鞋會對身體帶來不良的負擔及影響。除此之外,女性在評估高跟鞋適合高度範圍時,通常會依據自己的喜好來選擇,但是正確的高跟鞋適合高度要由專業醫師才有辦法診斷出,在鞋店也無法有效地找出適合自己的高跟鞋適合高度範圍。因此,需要一個有效率的高跟鞋適合高度範圍評估系統及高跟鞋適合高度範圍評估方法。Many women wear high heels for long periods of time due to beauty or work reasons. However, wearing high heels of inappropriate height will bring adverse burden and impact on the body. In addition, when women evaluate the suitable height range of high-heeled shoes, they usually choose according to their own preferences. However, the correct suitable height of high-heeled shoes must be diagnosed by a professional doctor, and it is impossible to effectively find out the suitable height for them in a shoe store. The heels are suitable for a range of heights. Therefore, an efficient high-heeled shoes suitable height range assessment system and a high-heeled shoes suitable height range assessment method are needed.

本揭露提供一種高跟鞋適合高度範圍評估系統及高跟鞋適合高度範圍評估方法,可讓使用者有效率地找出能夠承受的高跟鞋適合高度範圍。The present disclosure provides a system and method for evaluating the suitable height range of high heels, which can allow users to efficiently find out the suitable height range of high heels that they can withstand.

本揭露的高跟鞋適合高度範圍評估系統包括多個壓力感測器、處理器以及儲存媒體。處理器通訊連接多個壓力感測器。儲存媒體耦接處理器,儲存媒體儲存迴歸模型,其中:使用者的腳底被放置於多個壓力感測器,其中腳底的後腳跟距離水平面的高度為至少一關鍵後腳跟高度,其中多個壓力感測器分別獲得腳底的多個腳底壓力值;處理器從至少一關鍵壓力感測器獲得腳底的至少一關鍵腳底壓力值,其中至少一關鍵壓力感測器屬於多個壓力感測器的其中之一,其中至少一關鍵壓力感測器獲得腳底的至少一關鍵腳底壓力值;以及處理器將至少一關鍵腳底壓力值輸入至迴歸模型,並且根據迴歸模型的輸出結果,評估腳底的高跟鞋適合高度範圍。The disclosed high-heeled shoes suitable height range evaluation system includes multiple pressure sensors, a processor, and a storage medium. The processor communicates with multiple pressure sensors. The storage medium is coupled to the processor, and the storage medium stores the regression model, wherein: the sole of the user's foot is placed on a plurality of pressure sensors, wherein the height of the heel of the sole of the foot from the horizontal plane is at least a critical heel height, wherein a plurality of pressure sensors The sensors respectively obtain multiple sole pressure values of the sole of the foot; the processor obtains at least one key sole pressure value of the sole of the foot from at least one key pressure sensor, wherein the at least one key pressure sensor belongs to one of the plurality of pressure sensors. One, wherein at least one key pressure sensor obtains at least one key sole pressure value of the sole of the foot; and the processor inputs at least one key sole pressure value to the regression model, and evaluates the suitable height of the high-heeled shoes of the sole according to the output result of the regression model Scope.

本揭露的高跟鞋適合高度範圍評估方法包括:放置使用者的腳底於多個壓力感測器,其中腳底的後腳跟距離水平面的高度為至少一關鍵後腳跟高度,其中多個壓力感測器分別獲得腳底的多個腳底壓力值;由處理器從至少一關鍵壓力感測器獲得腳底的至少一關鍵腳底壓力值,其中至少一關鍵壓力感測器屬於多個壓力感測器的其中之一,其中至少一關鍵壓力感測器獲得腳底的至少一關鍵腳底壓力值,其中儲存媒體儲存迴歸模型;以及由處理器將至少一關鍵腳底壓力值輸入至迴歸模型,並且根據迴歸模型的輸出結果,評估腳底的高跟鞋適合高度範圍。The disclosed method for evaluating the suitable height range of high heels includes: placing the sole of the user's foot on multiple pressure sensors, wherein the height of the rear heel of the sole of the foot from the horizontal plane is at least a critical rear heel height, and the multiple pressure sensors obtain the Multiple sole pressure values of the sole of the foot; the processor obtains at least one key sole pressure value of the sole of the foot from at least one key pressure sensor, wherein the at least one key pressure sensor belongs to one of the plurality of pressure sensors, wherein At least one critical pressure sensor obtains at least one critical sole pressure value of the sole of the foot, wherein the storage medium stores the regression model; and the processor inputs at least one critical sole pressure value to the regression model, and evaluates the sole of the foot according to the output result of the regression model The heels are suitable for a range of heights.

基於上述,本揭露的高跟鞋適合高度範圍評估系統及高跟鞋適合高度範圍評估方法可預先獲得評估腳底的高跟鞋適合高度範圍的關鍵因子,關鍵因子可包括關鍵後腳跟高度、對應關鍵後腳跟高度的關鍵壓力感測器以及關鍵腳底資料等。基此,使用者僅需測量(提供)此些關鍵因子,即可有效率地找出使用者能夠承受的高跟鞋適合高度範圍。Based on the above, the disclosed high-heeled shoes suitable height range evaluation system and the high-heeled shoes suitable height range evaluation method can obtain in advance the key factors for evaluating the suitable height range of high-heeled shoes on the soles of the feet. The key factors may include the key heel height and the key pressure corresponding to the key heel height. Sensors and key sole data, etc. Based on this, users only need to measure (provide) these key factors to effectively find out the suitable height range of high heels that the user can bear.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present disclosure more obvious and understandable, embodiments are given below and described in detail with reference to the attached drawings.

圖1是根據本揭露一範例實施例的高跟鞋適合高度範圍評估系統100的示意圖。請參照圖1,高跟鞋適合高度範圍評估系統100包括多個壓力感測器(即,壓力感測器112-1~壓力感測器112-N,其中N為正整數)、處理器122以及儲存媒體123。FIG. 1 is a schematic diagram of a high-heeled shoe suitable height range evaluation system 100 according to an exemplary embodiment of the present disclosure. Referring to FIG. 1 , the high-heeled shoes suitable height range evaluation system 100 includes a plurality of pressure sensors (ie, pressure sensors 112-1 ~ pressure sensors 112-N, where N is a positive integer), a processor 122 and storage Media123.

壓力感測器112-1~壓力感測器112-N例如是力敏電阻(FSR,Force Sensing Resistor),本揭露不限制壓力感測器的種類。在使用者腳底放置於壓力感測器112-1~壓力感測器112-N上之後,壓力感測器112-1~壓力感測器112-N可分別獲得使用者腳底的多個腳底壓力值。The pressure sensors 112-1 to 112-N are, for example, Force Sensing Resistors (FSR), and the present disclosure does not limit the types of pressure sensors. After the soles of the user's feet are placed on the pressure sensors 112-1 to 112-N, the pressure sensors 112-1 to 112-N can respectively obtain multiple sole pressures of the soles of the user's feet. value.

處理器122例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、場域可程式閘陣列(Field Programmable Gate Array,FPGA)、可程式化邏輯控制器(Programmable Logic Controller,PLC)或其他類似裝置或這些裝置的組合,而可載入並執行儲存媒體123中儲存的程式,以執行本揭露實施例的高跟鞋適合高度範圍評估方法。處理器122可通訊連接(例如以有線或無線的方式)壓力感測器112-1~壓力感測器112-N。The processor 122 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose microprocessor (Microprocessor), digital signal processor (Digital Signal Processor, DSP), programmable controller, Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), Programmable Logic Controller (PLC) or other similar devices Or a combination of these devices, and can load and execute the program stored in the storage medium 123 to execute the high-heeled shoes suitable height range evaluation method according to the embodiment of the present disclosure. The processor 122 can communicate with (for example, in a wired or wireless manner) the pressure sensors 112-1 to 112-N.

儲存媒體123例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash Memory)、硬碟或其他類似裝置或這些裝置的組合,而用以儲存可由處理器122執行的程式。儲存媒體123可耦接處理器122。儲存媒體123可儲存迴歸模型121。The storage medium 123 is, for example, any type of fixed or removable random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), flash memory (Flash Memory), hardware disk or other similar device, or a combination of these devices, for storing programs executable by the processor 122. The storage medium 123 may be coupled to the processor 122 . The storage medium 123 can store the regression model 121.

圖2是根據本揭露一範例實施例的多個壓力感測器(壓力感測器112-1~壓力感測器112-42)的示意圖。FIG. 2 is a schematic diagram of multiple pressure sensors (pressure sensors 112-1 to 112-42) according to an exemplary embodiment of the present disclosure.

請參照圖2,壓力感測器112-1~壓力感測器112-42例如可設置於供使用者放置左腳的左腳區域110L及供使用者放置右腳的右腳區域110R。圖2以N為42(即,左腳區域110L與右腳區域110R共包括42個壓力感測器)為例作為說明。左腳區域110L可包括壓力感測器112-1~壓力感測器112-21,右腳區域110R可包括壓力感測器112-22~壓力感測器112-42。換句話說,左腳區域110L及右腳區域110R可具有相同數量的壓力感測器,且左腳區域110L的壓力感測器的位置與右腳區域110R的壓力感測器的位置可為一一對應。Referring to FIG. 2 , the pressure sensors 112 - 1 to 112 - 42 may be provided, for example, in the left foot area 110L for the user to place the left foot and the right foot area 110R for the user to place the right foot. FIG. 2 takes N as 42 (that is, the left foot area 110L and the right foot area 110R include a total of 42 pressure sensors) as an example for illustration. The left foot area 110L may include pressure sensors 112-1 to 112-21, and the right foot area 110R may include pressure sensors 112-22 to 112-42. In other words, the left foot area 110L and the right foot area 110R may have the same number of pressure sensors, and the positions of the pressure sensors in the left foot area 110L and the positions of the pressure sensors in the right foot area 110R may be the same. One correspondence.

在此需說明的是,圖2中雖以N為42作為示意,然而本揭露不限制N的數量,本揭露也不限制各壓力感測器的位置。It should be noted here that although N is 42 in FIG. 2 as an illustration, the disclosure does not limit the number of N, nor does the disclosure limit the position of each pressure sensor.

處理器122可利用訓練資料集訓練迴歸模型121。訓練資料集可包括多個訓練資料提供者的每一者的訓練腳底資料、在多個後腳跟高度時(多個後腳跟高度的每一者指示後腳跟距離水平面的高度)分別由壓力感測器112-1~壓力感測器112-42獲得的多個訓練腳底壓力值以及訓練高跟鞋適合高度範圍。The processor 122 may train the regression model 121 using the training data set. The training data set may include training sole data from each of a plurality of training data providers, respectively sensed by pressure at a plurality of rear heel heights (each of the plurality of rear heel heights indicating a height of the rear heel from the horizontal plane) The multiple training sole pressure values obtained by the device 112-1 ~ the pressure sensor 112-42 and the suitable height range of the training high-heeled shoes.

舉例來說,若訓練資料提供者是100位女性,處理器122可經由此100位女性的每一者(即每一位成年女性)獲得迴歸模型121的訓練資料。For example, if the training data providers are 100 women, the processor 122 can obtain the training data of the regression model 121 through each of the 100 women (ie, each adult woman).

進一步而言,假設此100位女性中的第一位女性為女性A。首先,可測量並記錄此女性A的訓練腳底資料。訓練腳底資料例如是此女性A的腳底長度、腳底寬度、腳底弓率(Arch Rate)、大拇指外翻嚴重程度(Valgus of Toes)或後足跟骨內翻角度(Calcaneus Varus Angle of Rearfoot)等。處理器122可獲得此些訓練腳底資料。本揭露不限制訓練腳底資料的種類。Further, assume that the first woman among these 100 women is woman A. First, the training sole data of female A can be measured and recorded. The training sole information is, for example, female A's sole length, sole width, sole arch rate (Arch Rate), thumb valgus severity (Valgus of Toes) or rear foot heel bone varus angle (Calcaneus Varus Angle of Rearfoot), etc. . The processor 122 can obtain the training sole data. This disclosure does not limit the types of sole training materials.

圖3A是根據本揭露一範例實施例的左腳區域110L的示意圖。圖3A雖是以左腳區域110L說明,右腳區域110R也可與左腳區域110L相同的方式實施。在此需說明的是,圖3A所示的左腳區域110L(及/或右腳區域110R)是以能夠放入高跟鞋200內的鞋墊的形式實作,然而本揭露並不限制左腳區域110L(及/或右腳區域110R)的實作方式。FIG. 3A is a schematic diagram of the left foot area 110L according to an exemplary embodiment of the present disclosure. Although FIG. 3A illustrates the left foot area 110L, the right foot area 110R can also be implemented in the same manner as the left foot area 110L. It should be noted here that the left foot area 110L (and/or the right foot area 110R) shown in FIG. 3A is implemented in the form of an insole that can be placed in the high heels 200 . However, the present disclosure does not limit the left foot area 110L. (and/or right foot area 110R).

此女性A可在多個後腳跟高度H時分別放置腳底於左腳區域110L(及/或右腳區域110R),以由壓力感測器112-1~壓力感測器112-42分別獲得多個訓練腳底壓力值。多個後腳跟高度H可以是從0公分每次依序升高0.5公分直到10公分為止(即,共21個不同的後腳跟高度H)。例如,此女性A可如圖3所示在左腳區域110L(及/或右腳區域110R)放入21個不同的後腳跟高度H的高跟鞋200之後,將腳底放入左腳區域110L(及/或右腳區域110R)分別測量腳底壓力以由壓力感測器112-1~壓力感測器112-42分別獲得多個訓練腳底壓力值。The woman A can place her soles on the left foot area 110L (and/or the right foot area 110R) at multiple heel heights H to obtain multiple measurements from the pressure sensors 112-1 to 112-42 respectively. A training foot pressure value. Multiple heel heights H can be sequentially increased from 0 cm by 0.5 cm each time until 10 cm (ie, a total of 21 different heel heights H). For example, as shown in FIG. 3 , the woman A can put 21 high-heeled shoes 200 with different heel heights H in the left foot area 110L (and/or the right foot area 110R), and then put the soles of her feet into the left foot area 110L (and/or the right foot area 110R). /or the right foot area 110R) respectively measures the sole pressure to obtain a plurality of training sole pressure values from the pressure sensors 112-1 to 112-42 respectively.

即,此女性A可將腳底放置於左腳區域110L(及/或右腳區域110R)且後腳跟高度H為0公分以由壓力感測器112-1獲得訓練腳底壓力值112-1-(0公分)-p、由壓力感測器112-2獲得訓練腳底壓力值112-2-(0公分)-p、由壓力感測器112-3獲得訓練腳底壓力值112-3-(0公分)-p,依此類推,直到由壓力感測器112-42獲得訓練腳底壓力值112-42-(0公分)-p。接著,此女性A可將腳底放置於左腳區域110L(及/或右腳區域110R)且後腳跟高度H為0.5公分以由壓力感測器112-1獲得訓練腳底壓力值112-1-(0.5公分)-p、由壓力感測器112-2獲得訓練腳底壓力值112-2-(0.5公分)-p、由壓力感測器112-3獲得訓練腳底壓力值112-3-(0.5公分)-p,依此類推,直到由壓力感測器112-42獲得訓練腳底壓力值112-42-(0.5公分)-p。在對不同的後腳跟高度H)重覆上述操作之後,最後,此女性A可將腳底放置於左腳區域110L(及/或右腳區域110R)且後腳跟高度H為10公分以由壓力感測器112-1獲得訓練腳底壓力值112-1-(10公分)-p、由壓力感測器112-2獲得訓練腳底壓力值112-2-(10公分)-p、由壓力感測器112-3獲得訓練腳底壓力值112-3-(10公分)-p,依此類推,直到由壓力感測器112-42獲得訓練腳底壓力值112-42-(10公分)-p。處理器122可獲得上述各訓練腳底壓力值。That is, the female A can place the sole of her foot on the left foot area 110L (and/or the right foot area 110R) and the height H of the back heel is 0 cm to obtain the training foot sole pressure value 112-1-( 0 cm)-p, the pressure value of the training sole is obtained from the pressure sensor 112-2 112-2-(0 cm)-p, the pressure value of the training sole is obtained from the pressure sensor 112-3 112-3-(0 cm) )-p, and so on until the training foot sole pressure value 112-42-(0 cm)-p is obtained from the pressure sensor 112-42. Then, the female A can place the sole of her foot on the left foot area 110L (and/or the right foot area 110R) with the heel height H of 0.5 cm to obtain the training foot sole pressure value 112-1-( 0.5 cm)-p, the pressure value of the training sole is obtained by the pressure sensor 112-2 112-2-(0.5 cm)-p, the pressure value of the training sole is obtained by the pressure sensor 112-3 112-3-(0.5 cm) )-p, and so on until the training foot sole pressure value 112-42-(0.5 cm)-p is obtained from the pressure sensor 112-42. After repeating the above operation for different heel heights H), finally, the woman A can place the sole of her foot on the left foot area 110L (and/or the right foot area 110R) with the back heel height H of 10 cm to feel the pressure. The pressure sensor 112-1 obtains the training sole pressure value 112-1-(10 cm)-p, and the pressure sensor 112-2 obtains the training sole pressure value 112-2-(10 cm)-p. 112-3 obtains the training sole pressure value 112-3-(10 cm)-p, and so on, until the pressure sensor 112-42 obtains the training sole pressure value 112-42-(10 cm)-p. The processor 122 can obtain each training foot pressure value mentioned above.

如圖3A所示,左腳區域110L(及/或右腳區域110R)中的壓力感測器112-1~壓力感測器112-42例如可通過訊號發射器124來將上述各訓練腳底壓力值利用無線的方式傳送給處理器122。As shown in FIG. 3A , the pressure sensors 112 - 1 to 112 - 42 in the left foot area 110L (and/or the right foot area 110R) can, for example, use the signal transmitter 124 to transmit the above-mentioned training sole pressure. The value is transmitted to processor 122 wirelessly.

圖3B是根據本揭露另一範例實施例的左腳區域110L的示意圖。如圖3B所示,左腳區域110L(及/或右腳區域110R)中的壓力感測器112-1~壓力感測器112-42例如可將上述各訓練腳底壓力值利用有線的方式傳送給處理器122。FIG. 3B is a schematic diagram of the left foot area 110L according to another exemplary embodiment of the present disclosure. As shown in FIG. 3B , the pressure sensors 112 - 1 to 112 - 42 in the left foot area 110L (and/or the right foot area 110R) can, for example, transmit the above training sole pressure values in a wired manner. to processor 122.

另外,此女性A可由醫生的醫學判斷而獲得訓練高跟鞋適合高度範圍。由於女性的腳底舟骨在穿著高跟鞋的高度到達極限高度時會變形,醫學判斷例如可以是醫生在發現此女性A的腳底舟骨變形後,而獲得此女性A的高跟鞋極限高度範圍。處理器122可獲得此訓練高跟鞋適合高度範圍。此(由醫學判斷所得出的)訓練高跟鞋適合高度範圍可視為用來訓練迴歸模型121的訓練資料之中的答案。In addition, this female A can obtain a suitable height range for training high heels based on the medical judgment of a doctor. Since a woman's navicular bone will deform when the height of wearing high heels reaches the extreme height, medical judgment may be, for example, that the doctor obtains the extreme height range of female A's high-heeled shoes after discovering that the navicular bone of female A's foot is deformed. Processor 122 may obtain a suitable height range for the training high heel shoe. This suitable height range for training heels (derived from medical judgment) can be considered as the answer in the training data used to train the regression model 121 .

在由訓練資料提供者中的第一位女性(女性A)的獲得迴歸模型121的訓練資料(即上述的訓練腳底資料、在多個後腳跟高度H時由壓力感測器112-1~壓力感測器112-42分別獲得的多個訓練腳底壓力值以及訓練高跟鞋適合高度範圍)之後,處理器122可由其他訓練資料提供者(即,其它99位女性)獲得迴歸模型121的訓練資料。The first female (female A) among the training data providers obtains the training data of the regression model 121 (i.e., the above-mentioned training sole data) by the pressure sensor 112-1~pressure at multiple rear heel heights H After the sensors 112-42 respectively obtain multiple training sole pressure values and training high heel shoes suitable height range), the processor 122 can obtain the training data of the regression model 121 from other training data providers (ie, other 99 women).

在如前述獲得所有訓練資料提供者的訓練資料後,處理器122可利用包括該些訓練資料的訓練資料集訓練迴歸模型121。After obtaining the training data from all training data providers as mentioned above, the processor 122 can use the training data set including the training data to train the regression model 121 .

在訓練(及建立)迴歸模型121之後,儲存媒體123可儲存迴歸模型121。After the regression model 121 is trained (and established), the storage medium 123 may store the regression model 121 .

處理器122可根據迴歸模型121決定關鍵後腳跟高度。處理器122還可根據迴歸模型121決定對應於關鍵後腳跟高度的關鍵壓力感測器。The processor 122 may determine the critical heel height based on the regression model 121 . The processor 122 may also determine the critical pressure sensor corresponding to the critical heel height based on the regression model 121 .

表1是迴歸模型121的一個範例。 表1 迴歸模型121的一個範例 關鍵後腳跟高度:10公分 關鍵壓力感測器(左腳) 壓力感測器112-4 壓力感測器112-5 壓力感測器112-6 壓力感測器112-7 壓力感測器112-8 壓力感測器112-13 壓力感測器112-16 壓力感測器112-17 關鍵壓力感測器(右腳) 壓力感測器112-23 壓力感測器112-25 壓力感測器112-26 壓力感測器112-27 壓力感測器112-30 壓力感測器112-35 壓力感測器112-38 壓力感測器112-41 壓力感測器112-42 Table 1 is an example of regression model 121. Table 1 An example of regression model 121 Key heel height: 10 cm Key pressure sensor (left foot) Pressure sensor 112-4 Pressure sensor 112-5 Pressure sensor 112-6 Pressure sensor 112-7 Pressure sensor 112-8 Pressure sensor 112-13 Pressure sensor 112-16 Pressure sensor 112-17 Key pressure sensor (right foot) Pressure sensor 112-23 Pressure sensor 112-25 Pressure sensor 112-26 Pressure sensor 112-27 Pressure sensor 112-30 Pressure sensor 112-35 Pressure sensor 112-38 Pressure sensor 112-41 Pressure sensor 112-42

處理器122可根據如表1所示的迴歸模型121決定出關鍵後腳跟高度為10公分(即,在前述從0公分每次依序升高0.5公分直到10公分為止的共21個不同的後腳跟高度H之中,後腳跟高度H為10公分時所測量到的腳底壓力值是評估腳底的高跟鞋適合高度範圍的關鍵因子)。除此之外,處理器122還可根據迴歸模型121決定對應於此關鍵後腳跟高度H的關鍵壓力感測器為壓力感測器112-4、壓力感測器112-5、壓力感測器112-6、壓力感測器112-7、壓力感測器112-8、壓力感測器112-13、壓力感測器112-16、壓力感測器112-17、壓力感測器112-23、壓力感測器112-25、壓力感測器112-26、壓力感測器112-27、壓力感測器112-30、壓力感測器112-35、壓力感測器112-38、壓力感測器112-41、壓力感測器112-42(即,後腳跟高度H為10公分時所測量到的各腳底壓力值中,僅有此些關鍵壓力感測器所獲得的關鍵腳底壓力值是評估腳底的高跟鞋適合高度範圍的關鍵因子)。The processor 122 can determine the critical heel height to be 10 centimeters based on the regression model 121 shown in Table 1 (that is, a total of 21 different heel heights that increase from 0 centimeters by 0.5 centimeters each time until 10 centimeters. Among the heel height H, the foot pressure value measured when the rear heel height H is 10 cm is a key factor in evaluating the suitable height range of high-heeled shoes.) In addition, the processor 122 can also determine based on the regression model 121 that the key pressure sensors corresponding to the key heel height H are the pressure sensor 112-4, the pressure sensor 112-5, and the pressure sensor 112-4. 112-6, pressure sensor 112-7, pressure sensor 112-8, pressure sensor 112-13, pressure sensor 112-16, pressure sensor 112-17, pressure sensor 112- 23. Pressure sensor 112-25, pressure sensor 112-26, pressure sensor 112-27, pressure sensor 112-30, pressure sensor 112-35, pressure sensor 112-38, Pressure sensors 112-41 and 112-42 (that is, among the foot pressure values measured when the heel height H is 10 cm, only the key foot pressure values obtained by these key pressure sensors are Pressure value is a key factor in evaluating the suitable height range of high heels on the sole of the foot).

需說明的是,關鍵後腳跟高度可以不只一個高度。例如,處理器122可根據迴歸模型121決定出關鍵後腳跟高度為0公分及10公分(即,在前述從0公分每次依序升高0.5公分直到10公分為止的共21個不同的後腳跟高度H之中,後腳跟高度H為0公分時所測量到的腳底壓力值以及後腳跟高度H為10公分時所測量到的腳底壓力值是評估腳底的高跟鞋適合高度範圍的關鍵因子),以及對應於此兩個關鍵後腳跟高度(0公分及10公分)的關鍵壓力感測器。It should be noted that the key heel height can be more than one height. For example, the processor 122 can determine based on the regression model 121 that the key heel heights are 0 cm and 10 cm (that is, a total of 21 different heel heights are sequentially increased from 0 cm by 0.5 cm each time until 10 cm). Among the heights H, the sole pressure value measured when the rear heel height H is 0 cm and the sole pressure value measured when the rear heel height H is 10 cm are the key factors for evaluating the suitable height range of high heels), and The key pressure sensors correspond to these two key heel heights (0 cm and 10 cm).

在另一實施例中,處理器122可根據前述的訓練腳底資料以及(由醫學判斷所得出的)訓練高跟鞋適合高度範圍,經由統計分析決定出在訓練腳底資料之中,有哪些關鍵腳底資料是評估腳底的高跟鞋適合高度範圍的關鍵因子。如前述實施例所說明的,訓練腳底資料例如是腳底長度、腳底寬度、腳底弓率、大拇指外翻嚴重程度或後足跟骨內翻角度等。處理器122例如可根據統計分析模型中的P值(P Value)是否小於特定事先給定的P值門檻值,來決定出在訓練腳底資料之中,有哪些關鍵腳底資料是評估腳底的高跟鞋適合高度範圍的關鍵因子。例如,處理器122可決定出關鍵腳底資料為腳底長度以及後足跟骨內翻角度。In another embodiment, the processor 122 can determine, through statistical analysis, which key sole data among the training sole data are based on the aforementioned training sole data and the suitable height range of training high heels (derived from medical judgment). Key factors in assessing the appropriate height range of high heels for your feet. As explained in the foregoing embodiments, the training sole data includes, for example, sole length, sole width, sole arch rate, big toe valgus severity, or rear heel bone varus angle. For example, the processor 122 can determine which key sole data among the training sole data are suitable for evaluating the suitability of high-heeled shoes based on whether the P value (P Value) in the statistical analysis model is less than a specific predetermined P value threshold. Key factor for height range. For example, the processor 122 may determine that the key sole information is sole length and rear heel bone varus angle.

利用前述實施例所說明的方式,處理器122例如可得出如表2所示的迴歸模型121。即,決定出關鍵後腳跟高度為0公分及10公分、對應於此兩個關鍵後腳跟高度(0公分及10公分)的關鍵壓力感測器以及腳底長度與後足跟骨內翻角度(關鍵腳底資料)是評估腳底的高跟鞋適合高度範圍的關鍵因子。 表2 迴歸模型121的另一個範例 關鍵後腳跟高度:0公分及10公分 關鍵壓力感測器(左腳) 壓力感測器112-2 壓力感測器112-4 壓力感測器112-5 壓力感測器112-6 壓力感測器112-13 壓力感測器112-16 壓力感測器112-17 關鍵壓力感測器(右腳) 壓力感測器112-23 壓力感測器112-24 壓力感測器112-25 壓力感測器112-26 壓力感測器112-27 壓力感測器112-30 壓力感測器112-31 壓力感測器112-35 壓力感測器112-38 壓力感測器112-41 壓力感測器112-42 關鍵腳底資料 腳底長度 後足跟骨內翻角度 Using the method described in the foregoing embodiments, the processor 122 can, for example, derive the regression model 121 shown in Table 2. That is, determine the key heel heights of 0 cm and 10 cm, the key pressure sensors corresponding to these two key heel heights (0 cm and 10 cm), as well as the sole length and heel bone varus angle (key Sole information) is a key factor in evaluating the suitable height range of high heels for the soles of the feet. Table 2 Another example of regression model 121 Key heel height: 0 cm and 10 cm Key pressure sensor (left foot) Pressure sensor 112-2 Pressure sensor 112-4 Pressure sensor 112-5 Pressure sensor 112-6 Pressure sensor 112-13 Pressure sensor 112-16 Pressure sensor 112-17 Key pressure sensor (right foot) Pressure sensor 112-23 Pressure sensor 112-24 Pressure sensor 112-25 Pressure sensor 112-26 Pressure sensor 112-27 Pressure sensor 112-30 Pressure sensor 112-31 Pressure sensor 112-35 Pressure sensor 112-38 Pressure sensor 112-41 Pressure sensor 112-42 Key sole information sole length Hindfoot heel bone varus angle

前述的處理器122由壓力感測器112-1~壓力感測器112-42分別獲得多個訓練腳底壓力值訓練(及建立)迴歸模型121僅為本揭露一範例實施例。在另一實施例中,多個壓力感測器可依其位置分組。以圖2所示左腳區域110L為例,多個壓力感測器例如可依照位置分組為壓力感測器群組A(原壓力感測器112-1以及原壓力感測器112-2)、壓力感測器群組B(原壓力感測器112-3、原壓力感測器112-4、原壓力感測器112-7以及原壓力感測器112-8)、壓力感測器群組C(原壓力感測器112-5、原壓力感測器112-6、原壓力感測器112-9以及原壓力感測器112-10)、壓力感測器群組D(原壓力感測器112-11~原壓力感測器112-14)、壓力感測器群組E(原壓力感測器112-15、原壓力感測器112-16、原壓力感測器112-19以及原壓力感測器112-20)以及壓力感測器群組F(原壓力感測器112-17、原壓力感測器112-18以及原壓力感測器112-21)。壓力感測器群組A~壓力感測器群組F的訓練腳底壓力值可以分別是原壓力感測器所獲得的訓練腳底壓力值的平均值(例如,壓力感測器群組A的訓練腳底壓力值可以是壓力感測器112-1所獲得的訓練腳底壓力值和壓力感測器112-2所獲得的訓練腳底壓力值的平均值)。基此,處理器122可由壓力感測器群組A~壓力感測器群組F分別獲得多個訓練腳底壓力值來訓練(及建立)迴歸模型121。The aforementioned processor 122 obtains a plurality of training sole pressure values from the pressure sensors 112-1 to 112-42 to train (and establish) the regression model 121, which is only an example embodiment of the present disclosure. In another embodiment, multiple pressure sensors can be grouped according to their location. Taking the left foot area 110L shown in FIG. 2 as an example, multiple pressure sensors can be grouped into pressure sensor group A (original pressure sensor 112-1 and original pressure sensor 112-2) according to location, for example. , pressure sensor group B (original pressure sensor 112-3, original pressure sensor 112-4, original pressure sensor 112-7 and original pressure sensor 112-8), pressure sensor Group C (original pressure sensor 112-5, original pressure sensor 112-6, original pressure sensor 112-9, and original pressure sensor 112-10), pressure sensor group D (original pressure sensor Pressure sensor 112-11 ~ original pressure sensor 112-14), pressure sensor group E (original pressure sensor 112-15, original pressure sensor 112-16, original pressure sensor 112 -19 and the original pressure sensor 112-20) and the pressure sensor group F (the original pressure sensor 112-17, the original pressure sensor 112-18 and the original pressure sensor 112-21). The training sole pressure values of pressure sensor group A~pressure sensor group F can respectively be the average value of the training sole pressure values obtained by the original pressure sensors (for example, the training sole pressure value of pressure sensor group A The foot pressure value may be an average of the training foot pressure value obtained by the pressure sensor 112-1 and the training foot pressure value obtained by the pressure sensor 112-2). Based on this, the processor 122 can obtain a plurality of training foot pressure values from the pressure sensor group A to the pressure sensor group F respectively to train (and establish) the regression model 121 .

針對欲得知高跟鞋適合高度範圍的使用者,本揭露的高跟鞋適合高度範圍評估系統100可根據如前述表2的(迴歸模型121中的)關鍵後腳跟高度、關鍵壓力感測器以及關鍵腳底資料,評估此使用者的高跟鞋適合高度範圍。For users who want to know the suitable height range of high-heeled shoes, the disclosed high-heeled shoes suitable height range evaluation system 100 can be based on the key heel heights (in the regression model 121) of Table 2, key pressure sensors and key sole data. , evaluate the suitable height range of high heels for this user.

圖4是根據本揭露一範例實施例的高跟鞋適合高度範圍評估方法的流程圖。Figure 4 is a flow chart of a method for evaluating a suitable height range of high heels according to an exemplary embodiment of the present disclosure.

在步驟S401中,放置使用者的腳底於多個壓力感測器,其中腳底的後腳跟距離水平面的高度為至少一關鍵後腳跟高度,其中多個壓力感測器分別獲得腳底的多個腳底壓力值。In step S401, the sole of the user's foot is placed on a plurality of pressure sensors, wherein the height of the rear heel of the sole of the foot from the horizontal plane is at least a critical heel height, and the plurality of pressure sensors respectively obtain multiple sole pressures of the sole of the foot. value.

在步驟S402中,由處理器從至少一關鍵壓力感測器獲得腳底的至少一關鍵腳底壓力值,其中至少一關鍵壓力感測器屬於多個壓力感測器的其中之一,其中至少一關鍵壓力感測器獲得腳底的至少一關鍵腳底壓力值,其中儲存媒體儲存迴歸模型。In step S402, the processor obtains at least one key sole pressure value of the sole of the foot from at least one key pressure sensor, wherein the at least one key pressure sensor belongs to one of a plurality of pressure sensors, wherein at least one key The pressure sensor obtains at least one key sole pressure value of the sole of the foot, and the storage medium stores the regression model.

具體來說,使用者的腳底可放置於壓力感測器112-1~壓力感測器112-N,且使用者的腳底的後腳跟距離水平面的高度為關鍵後腳跟高度。Specifically, the soles of the user's feet can be placed on the pressure sensors 112-1 to 112-N, and the height of the back heel of the user's soles from the horizontal plane is the critical heel height.

處理器122可從關鍵壓力感測器獲得腳底的關鍵腳底壓力值,其中關鍵壓力感測器屬於壓力感測器112-1~壓力感測器112-42的其中之一,其中關鍵壓力感測器獲得腳底的關鍵腳底壓力值。The processor 122 can obtain the key sole pressure value of the foot from the key pressure sensor, where the key pressure sensor belongs to one of the pressure sensor 112-1~pressure sensor 112-42, where the key pressure sensor The device obtains the key sole pressure value of the sole of the foot.

以表2所示迴歸模型121為例,使用者可在腳底的後腳跟距離水平面的後腳跟高度H為0公分時由壓力感測器112-1~壓力感測器112-42測量一次腳底壓力值,處理器122可從表2所示的各關鍵壓力感測器分別獲得關鍵腳底壓力值。處理器122例如可根據如圖3A或圖3B繪示的實施方式獲得後腳跟高度H為0公分時的各關鍵腳底壓力值。Taking the regression model 121 shown in Table 2 as an example, the user can measure the pressure of the sole of the foot by the pressure sensor 112-1~pressure sensor 112-42 when the height H of the heel of the sole of the foot is 0 cm from the heel of the horizontal plane. value, the processor 122 may obtain the key sole pressure value from each key pressure sensor shown in Table 2. For example, the processor 122 may obtain each key sole pressure value when the heel height H is 0 cm according to the implementation shown in FIG. 3A or FIG. 3B .

接著,使用者可在腳底的後腳跟距離水平面的後腳跟高度H為10公分時由壓力感測器112-1~壓力感測器112-42再測量一次腳底壓力值,處理器122可從表2所示的各關鍵壓力感測器分別獲得關鍵腳底壓力值。處理器122例如可根據如圖3A或圖3B繪示的實施方式獲得後腳跟高度H為10公分時的各關鍵腳底壓力值。Then, the user can measure the pressure value of the sole of the foot again by the pressure sensor 112-1~pressure sensor 112-42 when the height H of the rear heel of the sole of the foot is 10 centimeters from the rear heel of the horizontal plane, and the processor 122 can measure the pressure value of the sole of the foot from the table. Each key pressure sensor shown in 2 obtains key foot pressure values respectively. For example, the processor 122 may obtain each key sole pressure value when the heel height H is 10 centimeters according to the implementation shown in FIG. 3A or FIG. 3B .

在步驟S403中,由處理器將至少一關鍵腳底壓力值輸入至迴歸模型,並且根據迴歸模型的輸出結果,評估腳底的高跟鞋適合高度範圍。換句話說,處理器122可將關鍵腳底壓力值輸入至迴歸模型121,並且根據迴歸模型121的輸出結果,評估腳底的高跟鞋適合高度範圍。In step S403, the processor inputs at least one key sole pressure value into the regression model, and evaluates the suitable height range of the high heels for the sole of the foot based on the output result of the regression model. In other words, the processor 122 may input key plantar pressure values into the regression model 121 and, based on the output results of the regression model 121, evaluate the suitable height range of the high heel sole of the foot.

處理器122更可將對應於腳底的關鍵腳底資料輸入至迴歸模型121,並且根據迴歸模型121的輸出結果,評估腳底的高跟鞋適合高度範圍。以表2所示迴歸模型121為例,使用者還可提供其腳底長度與後足跟骨內翻角度(即,關鍵腳底資料),處理器122可將前述關鍵腳底壓力值以及此些關鍵腳底資料同時輸入至迴歸模型121,並且根據迴歸模型121的輸出結果,評估腳底的高跟鞋適合高度範圍。The processor 122 may further input key sole data corresponding to the sole of the foot into the regression model 121, and evaluate the suitable height range of the high-heeled shoes for the sole of the foot based on the output result of the regression model 121. Taking the regression model 121 shown in Table 2 as an example, the user can also provide the sole length and heel bone varus angle of the rear foot (ie, key sole data), and the processor 122 can combine the aforementioned key sole pressure values and these key sole values. The data is simultaneously input into the regression model 121, and based on the output results of the regression model 121, the suitable height range of the high-heeled shoes is evaluated.

綜上所述,本揭露的高跟鞋適合高度範圍評估系統及高跟鞋適合高度範圍評估方法可預先獲得評估腳底的高跟鞋適合高度範圍的關鍵因子,關鍵因子可包括關鍵後腳跟高度、對應關鍵後腳跟高度的關鍵壓力感測器以及關鍵腳底資料等。基此,使用者僅需測量(提供)此些關鍵因子,即可有效率地找出使用者能夠承受的高跟鞋適合高度範圍。To sum up, the high-heeled shoes suitable height range evaluation system and the high-heeled shoes suitable height range evaluation method disclosed in the present disclosure can obtain in advance the key factors for evaluating the suitable height range of high-heeled shoes for the soles of the feet. The key factors may include the key rear heel height and the corresponding key rear heel height. Main pressure sensors and main sole data, etc. Based on this, users only need to measure (provide) these key factors to effectively find out the suitable height range of high heels that the user can bear.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the disclosure has been disclosed above through embodiments, they are not intended to limit the disclosure. Anyone with ordinary knowledge in the technical field may make slight changes and modifications without departing from the spirit and scope of the disclosure. Therefore, The scope of protection of this disclosure shall be determined by the scope of the appended patent application.

100:高跟鞋適合高度範圍評估系統 112-1~112-N、112-1~112-42:壓力感測器 121:迴歸模型 122:處理器 123:儲存媒體 110L:左腳區域 110R:右腳區域 124:訊號發射器 H:後腳跟高度 200:高跟鞋 S401~S403:步驟 100: High-heeled shoes suitable height range evaluation system 112-1~112-N, 112-1~112-42: Pressure sensor 121:Regression model 122: Processor 123:Storage media 110L: Left foot area 110R: Right foot area 124:Signal transmitter H: Heel height 200:High heels S401~S403: steps

圖1是根據本揭露一範例實施例的高跟鞋適合高度範圍評估系統的示意圖。 圖2是根據本揭露一範例實施例的多個壓力感測器的示意圖。 圖3A是根據本揭露一範例實施例的左腳區域的示意圖。 圖3B是根據本揭露另一範例實施例的左腳區域的示意圖。 圖4是根據本揭露一範例實施例的高跟鞋適合高度範圍評估方法的流程圖。 FIG. 1 is a schematic diagram of a high-heeled shoe suitable height range evaluation system according to an exemplary embodiment of the present disclosure. FIG. 2 is a schematic diagram of multiple pressure sensors according to an exemplary embodiment of the present disclosure. FIG. 3A is a schematic diagram of the left foot area according to an exemplary embodiment of the present disclosure. FIG. 3B is a schematic diagram of the left foot area according to another exemplary embodiment of the present disclosure. FIG. 4 is a flow chart of a method for evaluating the suitable height range of high heels according to an exemplary embodiment of the present disclosure.

S401~S403:步驟 S401~S403: steps

Claims (8)

一種高跟鞋適合高度範圍評估系統,包括:多個壓力感測器;處理器,通訊連接所述多個壓力感測器;以及儲存媒體,耦接所述處理器,所述儲存媒體儲存迴歸模型,其中:使用者的腳底被放置於所述多個壓力感測器,其中所述腳底的後腳跟距離水平面的高度包括多個關鍵後腳跟高度,其中所述多個壓力感測器分別獲得所述腳底的多個腳底壓力值;所述處理器根據所述迴歸模型決定所述多個關鍵後腳跟高度;所述處理器從至少一關鍵壓力感測器獲得所述腳底的多個關鍵腳底壓力值,其中所述至少一關鍵壓力感測器屬於所述多個壓力感測器的其中之一,其中所述至少一關鍵壓力感測器獲得所述腳底的所述多個關鍵腳底壓力值,其中所述多個關鍵腳底壓力值包括第一關鍵腳底壓力值與第二關鍵腳底壓力值,所述多個關鍵後腳跟高度包括第一關鍵後腳跟高度與第二關鍵後腳跟高度,所述第一關鍵後腳跟高度不同於所述第二關鍵後腳跟高度,所述第一關鍵腳底壓力值是於所述腳底的所述後腳跟距離所述水平面的所述高度為所述第一關鍵後腳跟高度時進行量測而獲得,且所述第二關鍵腳底壓力值是於所述腳底的所述後腳跟距離所述水平面的所述高度為所述第二關鍵後 腳跟高度時進行量測而獲得;以及所述處理器將所述多個關鍵腳底壓力值輸入至所述迴歸模型,並且根據所述迴歸模型的輸出結果,評估所述使用者適合穿著的高跟鞋的高度範圍。 A high-heeled shoes suitable height range evaluation system includes: a plurality of pressure sensors; a processor that communicates with the plurality of pressure sensors; and a storage medium that is coupled to the processor, and the storage medium stores a regression model, Wherein: the sole of the user's foot is placed on the plurality of pressure sensors, wherein the height of the rear heel of the sole of the foot from the horizontal plane includes a plurality of critical heel heights, wherein the plurality of pressure sensors respectively obtain the Multiple sole pressure values of the sole of the foot; the processor determines the multiple critical heel heights based on the regression model; the processor obtains multiple critical sole pressure values of the sole of the foot from at least one critical pressure sensor , wherein the at least one key pressure sensor belongs to one of the plurality of pressure sensors, wherein the at least one key pressure sensor obtains the plurality of key sole pressure values of the sole of the foot, wherein The plurality of critical sole pressure values include a first critical sole pressure value and a second critical sole pressure value, the plurality of critical heel heights include a first critical heel height and a second critical heel height, and the first The critical heel height is different from the second critical heel height, and the first critical sole pressure value is the height of the heel of the sole of the foot from the horizontal plane, which is the first critical heel height. The second critical foot sole pressure value is obtained when the height of the rear heel of the sole of the foot from the horizontal plane is the second critical rear heel. The processor inputs the multiple key plantar pressure values into the regression model, and evaluates the quality of the high heels suitable for the user based on the output results of the regression model. height range. 如請求項1所述的高跟鞋適合高度範圍評估系統,其中所述處理器更將對應於所述腳底的關鍵腳底資料輸入至所述迴歸模型,並且根據所述迴歸模型的輸出結果,評估所述使用者適合穿著的所述高跟鞋的所述高度範圍。 The high-heeled shoes suitable height range evaluation system according to claim 1, wherein the processor further inputs key sole data corresponding to the sole of the foot into the regression model, and evaluates the The height range of the high heels suitable for wearing by the user. 如請求項1所述的高跟鞋適合高度範圍評估系統,其中所述處理器利用訓練資料集訓練所述迴歸模型,其中所述訓練資料集包括多個訓練資料提供者的每一者的訓練腳底資料、在多個後腳跟高度時由所述多個壓力感測器分別獲得的多個訓練腳底壓力值以及訓練高跟鞋適合高度範圍,其中所述多個後腳跟高度的每一者指示後腳跟距離水平面的高度。 The high-heeled shoe fit height range evaluation system of claim 1, wherein the processor trains the regression model using a training data set, wherein the training data set includes training sole data from each of a plurality of training data providers. , a plurality of training sole pressure values respectively obtained by the plurality of pressure sensors at a plurality of rear heel heights and a training high heel suitable height range, wherein each of the plurality of rear heel heights indicates a rear heel distance from a horizontal plane the height of. 如請求項1所述的高跟鞋適合高度範圍評估系統,其中所述處理器根據所述迴歸模型決定對應於所述多個關鍵後腳跟高度的所述至少一關鍵壓力感測器。 The high-heeled shoe fit height range evaluation system of claim 1, wherein the processor determines the at least one key pressure sensor corresponding to the plurality of key heel heights based on the regression model. 一種高跟鞋適合高度範圍評估方法,包括: 放置使用者的腳底於多個壓力感測器,其中所述腳底的後腳跟距離水平面的高度包括多個關鍵後腳跟高度,其中所述多個壓力感測器分別獲得所述腳底的多個腳底壓力值;由處理器從至少一關鍵壓力感測器獲得所述腳底的多個關鍵腳底壓力值,其中所述至少一關鍵壓力感測器屬於所述多個壓力感測器的其中之一,其中所述至少一關鍵壓力感測器獲得所述腳底的所述多個關鍵腳底壓力值,其中儲存媒體儲存迴歸模型;由所述處理器根據所述迴歸模型決定所述多個關鍵後腳跟高度,其中所述多個關鍵腳底壓力值包括第一關鍵腳底壓力值與第二關鍵腳底壓力值,所述多個關鍵後腳跟高度包括第一關鍵後腳跟高度與第二關鍵後腳跟高度,所述第一關鍵後腳跟高度不同於所述第二關鍵後腳跟高度,所述第一關鍵腳底壓力值是於所述腳底的所述後腳跟距離所述水平面的所述高度為所述第一關鍵後腳跟高度時進行量測而獲得,且所述第二關鍵腳底壓力值是於所述腳底的所述後腳跟距離所述水平面的所述高度為所述第二關鍵後腳跟高度時進行量測而獲得;以及由所述處理器將所述多個關鍵腳底壓力值輸入至所述迴歸模型,並且根據所述迴歸模型的輸出結果,評估所述使用者適合穿著的高跟鞋的高度範圍。 A method for assessing the suitable height range of high heels, including: Place the soles of the user's feet on a plurality of pressure sensors, wherein the height of the heel of the sole of the foot from the horizontal plane includes a plurality of critical heel heights, and the plurality of pressure sensors respectively obtain multiple soles of the sole of the foot. pressure value; obtaining, by a processor, a plurality of key sole pressure values of the sole of the foot from at least one key pressure sensor, wherein the at least one key pressure sensor belongs to one of the plurality of pressure sensors, The at least one critical pressure sensor obtains the multiple critical sole pressure values of the sole of the foot, wherein the storage medium stores a regression model; the processor determines the multiple critical heel heights according to the regression model , wherein the plurality of critical sole pressure values include a first critical sole pressure value and a second critical sole pressure value, the plurality of critical heel heights include a first critical heel height and a second critical heel height, The first critical heel height is different from the second critical heel height, and the first critical sole pressure value is when the height of the heel of the sole of the foot from the horizontal plane is the first critical heel height. The second critical sole pressure value is measured when the height of the heel of the sole of the foot from the horizontal plane is the second critical heel height. Obtain; and the processor inputs the plurality of key plantar pressure values into the regression model, and evaluates the height range of high heels suitable for the user according to the output results of the regression model. 如請求項5所述的高跟鞋適合高度範圍評估方法,更包括: 由所述處理器將對應於所述腳底的關鍵腳底資料輸入至所述迴歸模型,並且根據所述迴歸模型的輸出結果,評估所述使用者適合穿著的所述高跟鞋的所述高度範圍。 The method for evaluating the suitable height range of high heels as described in request 5, further includes: The processor inputs key sole data corresponding to the sole of the foot into the regression model, and evaluates the height range of the high heels suitable for wearing by the user based on the output of the regression model. 如請求項5所述的高跟鞋適合高度範圍評估方法,更包括:由所述處理器利用訓練資料集訓練所述迴歸模型,其中所述訓練資料集包括多個訓練資料提供者的每一者的訓練腳底資料、在多個後腳跟高度時由所述多個壓力感測器分別獲得的多個訓練腳底壓力值以及訓練高跟鞋適合高度範圍,其中所述多個後腳跟高度的每一者指示後腳跟距離水平面的高度。 The high-heeled shoes fit height range assessment method of claim 5, further comprising: training the regression model by the processor using a training data set, wherein the training data set includes data from each of a plurality of training data providers. Training sole data, a plurality of training sole pressure values respectively obtained by the plurality of pressure sensors at a plurality of rear heel heights, and a training high heel suitable height range, wherein each of the plurality of rear heel heights indicates a rear heel height. The height of the heel from the horizontal surface. 如請求項5所述的高跟鞋適合高度範圍評估方法,更包括:由所述處理器根據所述迴歸模型決定對應於所述多個關鍵後腳跟高度的所述至少一關鍵壓力感測器。 The method for evaluating the suitable height range of high heels according to claim 5 further includes: the processor determines the at least one key pressure sensor corresponding to the plurality of key heel heights according to the regression model.
TW110127232A 2021-07-23 2021-07-23 Evaluation system and evaluation method for suitable height range of high heels TWI827958B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110127232A TWI827958B (en) 2021-07-23 2021-07-23 Evaluation system and evaluation method for suitable height range of high heels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127232A TWI827958B (en) 2021-07-23 2021-07-23 Evaluation system and evaluation method for suitable height range of high heels

Publications (2)

Publication Number Publication Date
TW202304341A TW202304341A (en) 2023-02-01
TWI827958B true TWI827958B (en) 2024-01-01

Family

ID=86661492

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127232A TWI827958B (en) 2021-07-23 2021-07-23 Evaluation system and evaluation method for suitable height range of high heels

Country Status (1)

Country Link
TW (1) TWI827958B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI440836B (en) * 2006-09-21 2014-06-11 Msd Consumer Care Inc Foot care product dispensing kiosk
TW201929712A (en) * 2018-01-03 2019-08-01 黃建斌 Foot-detecting wearable device, method and storage medium for facilitating user health or sports risk management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI440836B (en) * 2006-09-21 2014-06-11 Msd Consumer Care Inc Foot care product dispensing kiosk
TW201929712A (en) * 2018-01-03 2019-08-01 黃建斌 Foot-detecting wearable device, method and storage medium for facilitating user health or sports risk management

Also Published As

Publication number Publication date
TW202304341A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
TWI629012B (en) Intelligent insole
US7493230B2 (en) Method and apparatus for customizing insoles for footwear
Mandato et al. The effects of increasing heel height on forefoot peak pressure
Arts et al. Twelve steps per foot are recommended for valid and reliable in-shoe plantar pressure data in neuropathic diabetic patients wearing custom made footwear
Barton et al. Development and evaluation of a tool for the assessment of footwear characteristics
Razeghi et al. Foot type classification: a critical review of current methods
Ledoux et al. Relationship between foot type, foot deformity, and ulcer occurrence in the high-risk diabetic foot
Dufour et al. Characteristics associated with hallux valgus in a population‐based foot study of older adults
Praet et al. The influence of shoe design on plantar pressures in neuropathic feet
Mey et al. How foot morphology changes influence shoe comfort and plantar pressure before and after long distance running?
KR101856077B1 (en) Walking Calibrator Using Smart Insole
US20140309534A1 (en) Pressure plate device for orthotic selection
US20150025332A1 (en) Body balance correction system
Shimizu et al. Effect of heel height on the foot in unilateral standing
TWI827958B (en) Evaluation system and evaluation method for suitable height range of high heels
KR102309534B1 (en) 3d insole modeling method and server for foot-fit
JP4933365B2 (en) Ankle joint dynamic alignment evaluation system and ankle joint dynamic alignment evaluation method
Rangra et al. The influence of walking speed and heel height on peak plantar pressure in the forefoot of healthy adults: a pilot study
Almeida et al. Comparison of two types of insoles on musculoskeletal symptoms and plantar pressure distribution in a work environment: a randomized clinical trial
Blazer et al. Does the shoe fit? Considerations for proper shoe fitting
CN111713806A (en) Insole matching method and system based on depth camera, intelligent terminal and storage medium
US20120304492A1 (en) Last, method for manufacturing the last and footwear made from the last
KR100697327B1 (en) Method for selecting wedge of insole by pressure distribution of sole of foot
McPoil et al. Variability of the center of pressure pattern integral during walking
KR102553715B1 (en) The device of making Personalized insole