TWI811910B - Isolated switching converter with secondary side modulation and control method - Google Patents

Isolated switching converter with secondary side modulation and control method Download PDF

Info

Publication number
TWI811910B
TWI811910B TW110148198A TW110148198A TWI811910B TW I811910 B TWI811910 B TW I811910B TW 110148198 A TW110148198 A TW 110148198A TW 110148198 A TW110148198 A TW 110148198A TW I811910 B TWI811910 B TW I811910B
Authority
TW
Taiwan
Prior art keywords
signal
primary
valley
circuit
input terminal
Prior art date
Application number
TW110148198A
Other languages
Chinese (zh)
Other versions
TW202230952A (en
Inventor
李暉
王斯然
馮林
Original Assignee
美商茂力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商茂力科技股份有限公司 filed Critical 美商茂力科技股份有限公司
Publication of TW202230952A publication Critical patent/TW202230952A/en
Application granted granted Critical
Publication of TWI811910B publication Critical patent/TWI811910B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)
  • Stereo-Broadcasting Methods (AREA)

Abstract

It is disclosed an isolated switching converter and the control circuit and control method thereof. The switching converter has a transformer having a primary winding and a secondary winding, a primary switch coupled to the primary winding, a secondary switch coupled to the secondary winding and an isolated circuit. The control method including: generating a pulse frequency modulation signal based on a feedback signal indicative of an output voltage; coupling to the secondary switch and generating a valley pulse signal by detecting one or more valleys of a resonant voltage; generating a target valley number based on the pulse frequency modulation signal, the valley pulse signal and a last-cycle valley number and providing a valley enable signal corresponding to the target valley number; generating a primary on enable signal based on the valley enable signal, the pulse frequency modulation signal and the valley pulse signal; sending the primary on enable signal to an input terminal of the isolation circuit and generating a synchronous signal electrically isolated from the primary on enable signal; and generating a primary control signal to control the primary switch based on the synchronous signal.

Description

隔離式開關變換器及其控制器和控制方法Isolated switching converter and controller and control method thereof

本發明係有關電子電路,尤其有關準諧振控制的隔離式開關變換器及其控制器和控制方法。The present invention relates to electronic circuits, and in particular to a quasi-resonance controlled isolated switching converter and its controller and control method.

隔離式開關電源通常包括具有初級繞組和次級繞組的變壓器,以提供隔離。初級開關管耦接至初級繞組,控制儲存在初級繞組的能量向次級繞組傳遞。次級開關管耦接至次級繞組,作為同步整流管取代傳統的整流二極體來降低損耗,提高隔離式開關電源的效率。圖1為現有的同步整流技術的波形圖,其中,Vds為次級開關管的汲極源極電壓,Isec為流過次級繞組的電流,DRVS為次級開關管的控制信號。Vds被用作分別與兩個閾值電壓,例如-70 mV和-500mV進行比較。 如圖1所示,當次級開關管的體二極體導通,使得Vds小於-500mV時,次級開關管被導通;當初級開關管導通,使得Vds大於-70mV時,次級開關管一被關斷。然而,這樣容易導致初級開關管和次級開關管同時導通(直通,Shoot through),降低開關電源的效率甚至造成開關電源損壞。此外,在高頻應用中,開關管的開關動作會產生開關損耗和電磁干擾,從而進一步影響隔離式開關電源的效率。 Isolated switching power supplies typically include a transformer with a primary and secondary winding to provide isolation. The primary switch tube is coupled to the primary winding and controls the energy stored in the primary winding to be transferred to the secondary winding. The secondary switch tube is coupled to the secondary winding and serves as a synchronous rectifier tube to replace the traditional rectifier diode to reduce losses and improve the efficiency of the isolated switching power supply. Figure 1 is a waveform diagram of the existing synchronous rectification technology, in which Vds is the drain-source voltage of the secondary switch tube, Isec is the current flowing through the secondary winding, and DRVS is the control signal of the secondary switch tube. Vds is compared to two threshold voltages, such as -70 mV and -500mV respectively. As shown in Figure 1, when the body diode of the secondary switch tube is turned on so that Vds is less than -500mV, the secondary switch tube is turned on; when the primary switch tube is turned on so that Vds is greater than -70mV, the secondary switch tube is turned on. is turned off. However, this can easily cause the primary switch tube and the secondary switch tube to be turned on at the same time (shoot through), reducing the efficiency of the switching power supply and even causing damage to the switching power supply. In addition, in high-frequency applications, the switching action of the switching tube will produce switching losses and electromagnetic interference, which further affects the efficiency of the isolated switching power supply.

針對現有技術中存在的一個或多個問題,本發明的目的在於提供能夠有效避免直通和/或能提高效率且避免電磁干擾的隔離式開關變換器及其控制器和控制方法。 根據本發明實施例的一種用於隔離式開關變換器的控制器,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至初級繞組的初級開關管以及耦接至次級繞組的次級開關管,該控制器包括:波谷檢測電路,耦接至次級開關管以檢測開關變換器諧振電壓的波形,並輸出表示諧振電壓波谷的波谷脈衝信號;脈衝頻率調變電路,接收代表開關變換器輸出信號的反饋信號,產生脈衝頻率調變信號;初級開通致能電路,其中,當變換器操作在準諧振模式時,初級開通致能電路基於脈衝頻率調變信號和波谷脈衝信號,在輸出端輸出初級開通致能信號,當開關變換器操作在電流連續模式時,初級開通致能電路將脈衝頻率調變信號作為初級開通致能信號在輸出端輸出;初級關斷檢測電路,檢測初級開關管是否關斷,產生初級關斷檢測信號;過零檢測電路,檢測流過次級開關管的電流是否過零,並產生過零檢測信號;以及次級邏輯電路,耦接至初級關斷檢測電路、過零檢測電路和初級開通致能電路以接收初級關斷檢測信號、過零檢測信號和初級開通致能信號,產生次級控制信號以控制次級開關管;隔離電路,具有接收初級開通致能信號的輸入端,在輸出端產生與初級開通致能信號電隔離的同步信號;以及初級邏輯電路,耦接至隔離電路的輸出端以接收同步信號,並基於同步信號產生初級控制信號以控制初級開關管。 根據本發明實施例的一種用於隔離式開關變換器的控制器,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至初級繞組的初級開關管、耦接至次級繞組的次級開關管以及隔離電路,該控制器包括:波谷檢測電路,耦接至次級開關管以檢測開關變換器諧振電壓的波形,並輸出表示諧振電壓波谷的波谷脈衝信號;脈衝頻率調變電路,接收代表開關變換器輸出信號的反饋信號,產生脈衝頻率調變信號;波谷選定電路,具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收脈衝頻率調變信號,第二輸入端接收波谷脈衝信號,波谷選定電路基於脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並在輸出端提供回應於目標波谷數的波谷致能信號;初級開通致能電路,具有第一輸入端、第二輸入端、第三輸入端和輸出端,其中,第一輸入端接收脈衝頻率調變信號,第二輸入端接收波谷脈衝信號,第三輸入端接收波谷致能信號,基於頻率調變信號、波谷脈衝信號以及波谷致能信號,在輸出端產生初級開通致能信號至隔離電路的輸入端;初級關斷檢測電路,檢測初級開關管是否關斷,產生初級關斷檢測信號;過零檢測電路,檢測流過次級開關管的電流是否過零,並產生過零檢測信號;次級邏輯電路,耦接至初級關斷檢測電路和過零檢測電路以接收初級關斷檢測信號和過零檢測信號,並基於初級關斷檢測信號與過零檢測信號產生次級控制信號以控制次級開關管;以及初級邏輯電路,耦接至隔離電路的輸出端以接收與初級開通致能信號電隔離的同步信號,並基於同步信號產生初級控制信號以控制初級開關管。 根據本發明實施例的一種隔離式開關變換器,包括如前所述的控制器。 根據本發明實施例的一種隔離式開關變換器的控制方法,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至初級繞組的初級開關管、耦接至次級繞組的次級開關管以及隔離電路,該控制方法包括:接收代表開關變換器輸出信號的反饋信號,產生與反饋信號有關的脈衝頻率調變信號;耦接至次級開關管以檢測開關變換器的諧振電壓波形,產生表示諧振電壓波谷的波谷脈衝信號;基於脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並提供回應於目標波谷數的波谷致能信號;基於波谷致能信號、脈衝頻率調變信號和波谷脈衝信號,產生初級開通致能信號;將初級開通致能信號送入隔離電路,產生與初級開通致能信號電隔離的同步信號;以及基於同步信號,產生初級控制信號以控制初級開關管。 在本發明的實施例中,引入準諧振控制,基於脈衝頻率調變信號和波谷脈衝信號產生初級開通致能信號,並透過與初級開通致能信號電隔離的同步信號控制初級開關管谷底導通,大大減小了開關損耗和電磁干擾。同時,基於該初級開通致能信號和初級關斷檢測電路來控制次級開關管,並基於與初級開通致能信號電隔離的同步信號控制初級開關管,可以準確控制初級開關管和次級開關管的導通與關斷,無需在初級開關管導通後才關斷次級開關管,有效地避免了直通。 In view of one or more problems existing in the prior art, the purpose of the present invention is to provide an isolated switching converter and its controller and control method that can effectively avoid shoot-through and/or improve efficiency and avoid electromagnetic interference. According to an embodiment of the present invention, a controller is used for an isolated switching converter. The switching converter includes a transformer with a primary winding and a secondary winding, a primary switching tube coupled to the primary winding, and a switching transistor coupled to the secondary winding. The secondary switch tube, the controller includes: a valley detection circuit, coupled to the secondary switch tube to detect the waveform of the resonant voltage of the switching converter, and output a valley pulse signal indicating the valley of the resonant voltage; a pulse frequency modulation circuit, receiving a feedback signal representing the output signal of the switching converter, generating a pulse frequency modulation signal; a primary turn-on enable circuit, wherein when the converter operates in a quasi-resonant mode, the primary turn-on enable circuit is based on the pulse frequency modulation signal and the valley pulse signal , the primary turn-on enable signal is output at the output end. When the switching converter operates in the current continuous mode, the primary turn-on enable circuit outputs the pulse frequency modulation signal as the primary turn-on enable signal at the output end; the primary turn-off detection circuit, Detect whether the primary switch tube is turned off and generate a primary turn-off detection signal; a zero-crossing detection circuit detects whether the current flowing through the secondary switch tube crosses zero and generate a zero-crossing detection signal; and a secondary logic circuit is coupled to the primary The shutdown detection circuit, the zero-crossing detection circuit and the primary turn-on enable circuit receive the primary turn-off detection signal, the zero-crossing detection signal and the primary turn-on enable signal, and generate a secondary control signal to control the secondary switch tube; the isolation circuit has An input terminal that receives the primary turn-on enable signal and generates a synchronization signal electrically isolated from the primary turn-on enable signal at the output terminal; and a primary logic circuit coupled to the output terminal of the isolation circuit to receive the synchronization signal and generate a primary primary logic circuit based on the synchronization signal. Control signal to control the primary switching tube. A controller for an isolated switching converter according to an embodiment of the present invention. The switching converter includes a transformer with a primary winding and a secondary winding, a primary switching tube coupled to the primary winding, and a switching transistor coupled to the secondary winding. The secondary switch tube and isolation circuit, the controller includes: a valley detection circuit, coupled to the secondary switch tube to detect the waveform of the resonant voltage of the switching converter, and output a valley pulse signal indicating the valley of the resonant voltage; the pulse frequency modulation power supply circuit, which receives a feedback signal representing the output signal of the switching converter and generates a pulse frequency modulation signal; the valley selection circuit has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the pulse frequency modulation signal. , the second input terminal receives the trough pulse signal, the trough selection circuit generates the target trough number based on the pulse frequency modulation signal and the trough number of the previous cycle, and provides a trough enable signal in response to the target trough number at the output end; the primary is turned on The enabling circuit has a first input terminal, a second input terminal, a third input terminal and an output terminal, wherein the first input terminal receives the pulse frequency modulation signal, the second input terminal receives the valley pulse signal, and the third input terminal receives The valley enable signal, based on the frequency modulation signal, the valley pulse signal and the valley enable signal, generates a primary turn-on enable signal at the output end and sends it to the input end of the isolation circuit; the primary turn-off detection circuit detects whether the primary switch tube is turned off. Generate a primary turn-off detection signal; a zero-crossing detection circuit detects whether the current flowing through the secondary switch tube crosses zero and generate a zero-crossing detection signal; a secondary logic circuit coupled to the primary turn-off detection circuit and the zero-crossing detection circuit to receive the primary turn-off detection signal and the zero-crossing detection signal, and generate a secondary control signal based on the primary turn-off detection signal and the zero-crossing detection signal to control the secondary switch; and a primary logic circuit coupled to the output end of the isolation circuit To receive a synchronization signal that is electrically isolated from the primary turn-on enable signal, and generate a primary control signal based on the synchronization signal to control the primary switch tube. An isolated switching converter according to an embodiment of the present invention includes the controller as described above. According to a control method of an isolated switching converter according to an embodiment of the present invention, the switching converter includes a transformer with a primary winding and a secondary winding, a primary switching tube coupled to the primary winding, and a secondary switching tube coupled to the secondary winding. Switch tube and isolation circuit, the control method includes: receiving a feedback signal representing the output signal of the switching converter, generating a pulse frequency modulation signal related to the feedback signal; coupling to the secondary switch tube to detect the resonant voltage waveform of the switching converter , generate a trough pulse signal representing the resonant voltage trough; generate a target trough number based on the pulse frequency modulation signal and the trough number of the previous cycle, and provide a trough enable signal in response to the target trough number; based on the trough enable signal, pulse The frequency modulation signal and the valley pulse signal generate a primary turn-on enable signal; the primary turn-on enable signal is sent to the isolation circuit to generate a synchronization signal electrically isolated from the primary turn-on enable signal; and based on the synchronization signal, a primary control signal is generated to Control the primary switching tube. In the embodiment of the present invention, quasi-resonant control is introduced, the primary turn-on enable signal is generated based on the pulse frequency modulation signal and the valley pulse signal, and the valley conduction of the primary switch tube is controlled through a synchronization signal electrically isolated from the primary turn-on enable signal. Switching losses and electromagnetic interference are greatly reduced. At the same time, the secondary switch tube is controlled based on the primary turn-on enable signal and the primary turn-off detection circuit, and the primary switch tube is controlled based on the synchronization signal electrically isolated from the primary turn-on enable signal, which can accurately control the primary switch tube and the secondary switch. There is no need to turn off the secondary switch tube after the primary switch tube is turned on to turn on and off the tube, effectively avoiding shoot-through.

下面將詳細描述本發明的具體實施例,應當注意,這裡描述的實施例只用於舉例說明,並不用於限制本發明。在以下描述中,為了提供對本發明的透徹理解,闡述了大量特定細節。然而,對於本領域普通技術人員顯而易見的是,不必採用這些特定細節來實行本發明。在其他實例中,為了避免混淆本發明,未具體描述公知的電路、材料或方法。 在整個說明書中,對“一個實施例”、“實施例”、“一個示例”或“示例”的提及意味著:結合該實施例或示例描述的特定特徵、結構或特性被包含在本發明至少一個實施例中。因此,在整個說明書的各個地方出現的短語“在一個實施例中”、“在實施例中”、“一個示例”或“示例”不一定都指同一個實施例或示例。此外,可以以任何適當的組合和/或子組合將特定的特徵、結構或特性組合在一個或多個實施例或示例中。此外,本領域普通技術人員應當理解,在此提供的圖式都是為了說明的目的,並且圖式不一定是按比例繪製的。應當理解,當稱“元件”“連接到”或“耦接”到另一元件時,它可以是直接連接或耦接到另一元件或者可以存在中間元件。相反,當稱元件“直接連接到”或“直接耦接到”另一元件時,不存在中間元件。相同的圖式標記指示相同的元件。這裡使用的術語“和/或”包括一個或多個相關列出的專案的任何和所有組合。 本發明可以被應用於任何隔離式變換器。在接下來的詳細描述中,為了簡潔起見,僅以反激變換器(flyback converter)為例來解釋本發明的具體操作原理。 圖2為根據本發明一實施例的隔離式開關變換器200的方塊圖。如圖2所示,隔離式開關變換器200包括變壓器T1、初級開關管MP、次級開關管MS以及控制器。變壓器T1具有初級繞組和次級繞組,其中,初級繞組和次級繞組均具有第一端和第二端,初級繞組的第一端接收輸入電壓Vin,次級繞組的第一端提供直流輸出電壓Vo,第二端耦接至次級參考地。初級開關管MP耦接在初級繞組的第二端與初級參考地之間。次級開關管MS耦接在次級繞組的第二端與負載之間。然而,本領域技術人員可知,次級開關管MS也可耦接在次級繞組的第一端與負載之間。 在圖2所示的實施例中,隔離式開關變換器200的控制器引入了準諧振控制。在準諧振控制中,開關變換器操作在非電流連續模式,當流過儲能元件(變壓器T1)的電流下降至零後,儲能元件與初級開關管MP的寄生電容器開始諧振,諧振電壓波形隨之產生。當初級開關管MP兩端的諧振電壓在其最小值時,初級開關管MP被導通(通常被成為谷底導通),從而減小開關變換器200的開關損耗和電磁干擾。 控制器包括波谷檢測電路201、脈衝頻率調變電路202、初級開通致能電路203、初級關斷檢測電路204、過零檢測電路205、次級邏輯電路206、隔離電路207以及初級邏輯電路208。在一些實施例中,控制器與次級開關管MS整合在同一個晶片內。 在圖2所示的隔離開關變換器200中,由位於變壓器次級側的波谷檢測電路201來檢測諧振電壓的波形。在一個實施例中,波谷檢測電路201耦接至次級開關管MS以檢測諧振電壓的波形,並輸出表示諧振電壓波谷的波谷脈衝信號Valley_Pulse。脈衝頻率調變電路202基於代表開關變換器200輸出電壓Vo的反饋信號,產生脈衝頻率調變信號PFM。初級開通致能電路203接收模式指示信號CCM、波谷脈衝信號Valley_Pulse和脈衝頻率控制信號PFM,在輸出端提供初級開通致能信號PRON。當模式指示信號CCM有效,開關變換器200操作在電流連續模式,初級開通致能電路203允許脈衝頻率調變信號PFM通過,作為初級開通致能信號PRON在輸出端輸出。當模式指示信號CCM無效,開關變換器200操作在準諧振模式時,初級開通致能電路203基於脈衝頻率調變信號PFM和波谷脈衝信號Valley_Pulse,在輸出端輸出初級開通致能信號PRON。 初級關斷檢測電路204檢測初級開關管MP是否關斷,產生初級關斷檢測信號PROFF。初級關斷檢測電路204可以基於次級開關管MS的汲極源極電壓、流過次級開關管MS的電流、次級繞組兩端的電壓等電參數來判斷初級開關管MP是否關斷。初級關斷檢測電路204也可以透過其他方式從初級側獲取指示初級開關管MP是否關斷的信號。 過零檢測電路205檢測流過次級開關管MS的電流是否過零,並產生過零檢測信號ZCD。次級邏輯電路206具有第一輸入端、第二輸入端、第三輸入端和輸出端,其中,第一輸入端耦接至初級關斷檢測電路204以接收初級關斷檢測信號PROFF,第二輸入端耦接至過零檢測電路205的輸出端以接收過零檢測信號ZCD,第三輸入端耦接至初級開通致能電路203以接收初級開通致能信號PRON。次級邏輯電路206基於初級關斷檢測信號PROFF、過零檢測信號ZCD以及初級開通致能信號PRON,在輸出端產生次級控制信號CTRLS以控制次級開關管MS。 隔離電路207具有輸入端和輸出端,其中,輸入端耦接至初級開通致能電路203的輸出端以接收初級開通致能信號PRON。隔離電路207基於初級開通致能信號PRON,在輸出端產生與初級開通致能信號PRON電隔離的同步信號SYNC。隔離電路207可以包括光電耦合器、變壓器、容性隔離裝置或任何其他合適的電隔離裝置。在其他的實施例中,隔離電路202可以設置在控制器積體電路的外部。 初級邏輯電路208具有輸入端和輸出端,其中,輸入端耦接至隔離電路207的輸出端以接收同步信號SYNC。初級邏輯電路208基於同步信號SYNC,在輸出端產生初級控制信號CTRLP以控制初級開關管MP。 在準諧振控制下,次級邏輯電路206在過零檢測電路205檢測到流過次級開關管MS的電流過零時,將次級開關管MS關斷。在電流連續模式下,次級邏輯電路206基於初級開通致能信號PRON的上升邊緣,將次級開關管MS關斷。同時,次級開關管MP基於初級開通致能信號PRON導通。 無論在非電流連續模式下的準諧振控制還是電流連續模式下,圖2所示的隔離式開關變換器200均無需在初級開關管MP導通後才關斷次級開關管MS,從原理上避免了直通。 在一些實施例中,為了確保初級開關管MP在次級開關管MS關斷後才被導通,延時電路被耦接在初級開通致能電路203和隔離電路207之間,或隔離電路207和初級邏輯電路208之間。 圖3為根據本發明一實施例的隔離式開關變換器300的方塊圖。與圖2所示的開關變換器200類似地,開關變換器300包括變壓器T1、初級開關管MP、次級開關管MS、波谷檢測電路301、脈衝頻率調變電路302、初級開通致能電路303、初級關斷檢測電路304、過零檢測電路305、次級邏輯電路306、隔離電路307以及初級邏輯電路308。 其中,脈衝頻率調變電路302包括誤差放大電路3021、調變信號產生電路3022和第一比較電路3023。誤差放大電路3021具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收代表開關變換器輸出信號(例如,輸出電壓、輸出電流、輸出功率)的反饋信號FB,第二輸入端接收參考信號VREF。誤差放大電路3021基於反饋信號FB和參考信號VREF之差,在輸出端產生補償信號COMP。調變信號產生電路3022產生調變信號VM,該調變信號VM可以為鋸齒波信號、三角波信號或其他合適的信號。第一比較電路3023具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端耦接至誤差放大電路3021的輸出端以接收補償信號COMP,第二輸入端耦接至調變信號產生電路3022以接收調變信號VM。第一比較電路3023將補償信號COMP與調變信號VM進行比較,在輸出端產生脈衝頻率調變信號PFM。 此外,開關變換器300還包括第二比較電路309。第二比較電路309具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收代表流過初級開關管MP電流的初級電流取樣信號ISENP,第二輸入端接收第一閾值電壓VTH1。第二比較電路309將初級電流取樣信號ISENP與第一閾值電壓VTH1進行比較,在輸出端產生第二比較信號CMPO2。初級邏輯電路308耦接至第二比較電路309的輸出端以接收第二比較信號CMPO2,並基於第二比較信號CMPO2和同步信號SYNC,產生初級控制信號CTRLP以控制初級開關管MP。第一閾值電壓VTH1可以為恆定值,也可隨隔離信號SYNC變化而變化。在一個實施例中,開關變換器300還包括閾值產生電路310。閾值產生電路310具有輸入端和輸出端,其中,輸入端耦接至隔離電路307的輸出端以接收同步信號SYNC,輸出端耦接至第二比較電路309的第二輸入端。閾值產生電路310基於同步信號SYNC在輸出端產生第一閾值電壓VTH1。 在一些實施例中,為了限制開關變換器300的開關頻率,限頻電路3024被耦接在第一比較電路3023的輸出端與調變信號產生電路3022之間。限頻電路3024具有輸入端和輸出端,其中,輸入端耦接至第一比較電路3023的輸出端以接收脈衝頻率調變信號PFM,輸出端耦接至調變信號產生電路3022以提供限頻信號FLMT。限頻電路3024透過限頻信號FLMT對調變信號VM的頻率和脈衝調變信號PFM的頻率進行限制,從而進一步限制初級開關管MP切換的最大頻率。 圖4為根據本發明一實施例的隔離式開關變換器400的電路原理圖。如圖4所示,波谷檢測電路401包括比較器COM1和單脈衝產生電路4011。比較器COM1的同相輸入端接收次級開關管MS的汲極電壓VSRD,反相輸入端接收第二閾值電壓VTH2,輸出端耦接至單脈衝產生電路4011的輸入端,在單脈衝產生電路4011的輸出端提供波谷脈衝信號Valley_Pulse。 脈衝頻率調變電路402包括誤差放大電路4021、調變信號產生電路4022、第一比較電路4023以及限頻電路4024。其中,誤差放大電路4021包括誤差放大器EA。誤差放大器EA的反相輸入端接收代表輸出電壓Vo的反饋信號FB,同相輸入端接收參考信號VREF,輸出端耦接至第一比較電路4023以提供補償信號COMP。調變信號產生電路4022包括電容器C1、開關管S1和電流源IS1。電容器C1具有第一端和第二端,其中,第一端耦接至第一比較電路4023以提供調變信號VM,第二端耦接至次級參考地。開關管S1具有第一端、第二端和控制端,其中,第一端耦接至電容器C1的第一端,第二端耦接至次級參考地,控制端透過限頻電路4024耦接至第一比較電路4023的輸出端。電流源Is1具有輸入端和輸出端,其中,輸入端耦接至次級參考地,輸出端耦接至電容器C1的第一端。在一個實施例中,調變信號產生電路4023還包括齊納二極體ZD1。齊納二極體ZD1的陰極耦接至電容器C1的第一端,陽極耦接至次級參考地。第一比較電路4023包括比較器COM2。比較器COM2的同相輸入端耦接至調變信號產生電路4022以接收調變信號VM,反相輸入端耦接至誤差放大電路4021以接收補償信號COMP,輸出端耦接至初級開通致能電路403以提供脈衝頻率調變信號PFM。 初級開通致能電路403包括D觸發器4031、或閘OR1以及及閘AND1。D觸發器4031具有輸入端、時鐘端和輸出端,其中,輸入端耦接至波谷檢測電路401的輸出端以接收波谷脈衝信號Valley_Pulse,時鐘端耦接至脈衝頻率調變電路402的輸出端以接收脈衝頻率調變信號PFM,輸出端耦接至或閘OR1的第一輸入端。或閘OR1的第二輸入端接收模式指示信號CCM,或閘OR1的輸出端耦接至及閘AND1的第一輸入端。及閘AND1的第二輸入端接收脈衝頻率調變信號PFM,輸出端耦接至隔離電路407和次級邏輯電路406以提供初級開通致能信號PRON。 初級關斷檢測電路404包括比較器COM3。比較器COM3的同相輸入端接收次級開關管MS的汲極電壓VSRD,反相輸入端接收第三閾值電壓VTH3,輸出端耦接至次級邏輯電路406以提供初級關斷檢測信號PROFF。過零檢測電路405包括比較器COM4。比較器COM4的同相輸入端耦接收第四閾值電壓VTH4,反相輸入端接收代表流過次級開關管MS電流的次級電流取樣信號ISENS,輸出端耦接至次級邏輯電路406以提供過零檢測信號ZCD。在其他實施例中,過零檢測電路405檢測到次級開關管MS的汲極電壓VSRD由負電壓變為正電壓時,產生的過零檢測信號ZCD由低電平變為高電平時,以關斷次級開關管。 次級邏輯電路406包括或閘OR2以及觸發器FF2。或閘OR2具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端耦接至過零檢測電路405以接收過零檢測信號ZCD,第二輸入端耦接至初級開通致能電路403以接收初級開通致能信號PRON。觸發器FF2具有設定端、重定端和輸出端,其中,設定端耦接至初級關斷檢測電路404的輸出端以接收初級關斷檢測信號PROFF,重定端耦接至或閘OR2的輸出端,輸出端耦接至次級開關管MS的閘極以提供次級控制信號CTRLS。 初級邏輯電路408包括觸發器FF1。觸發器FF1具有設定端、重定端和輸出端,其中,設定端耦接至隔離電路407的輸出端以接收同步信號SYNC,重定端耦接至第二比較電路409的輸出端以接收第二比較信號CMPO2,輸出端耦接至初級開關管MP的閘極以提供初級控制信號CTRLP。第二比較電路409包括比較器COM5。比較器COM5的同相輸入端接收初級電流取樣信號ISENP,反相輸入端耦接至閾值產生電路410以接收第一閾值電壓VTH1,輸出端耦接至初級邏輯電路408以提供第二比較信號CMPO2。 圖5為根據本發明實施例的圖4所示隔離式開關變換器400的操作波形圖。如圖5所示,在次級開關管MS的關斷期間,當汲級電壓VSRD大於第二閾值VTH2時,波谷檢測電路401提供波谷脈衝信號Valley_Pulse,該波谷脈衝信號Valley_Pulse的脈衝數取決於諧振電壓波形的波谷數。 當模式指示信號CCM為低電平,開關變換器400操作在準諧振模式,在脈衝頻率調變信號PFM的上升邊緣來臨後的下個波谷脈衝來臨時,初級開通致能信號PRON有效,初級開通致能信號PRON由低電平變為高電平。幾乎與此同時,隔離電路407輸出的同步信號SYNC也由低電平變為高電平,觸發器FF1被設定,初級控制信號CTRLP由低電平變為高電平,初級開關管MP被導通。流過初級開關管MP的電流增大,初級電流取樣信號ISENP也增大。當初級電流取樣信號ISENP增大至第一閾值電壓VTH1時,觸發器FF1被重定,初級控制信號CTRLP由高電平變為低電平,初級開關管MP被關斷。在初級開關管MP被關斷後,次級開關管MS的汲極電壓VSRD由正電壓變為負電壓,汲級電壓VSRD減小到第三閾值VTH3,觸發器FF2被設定,次級控制信號CTRLS由低電平變為高電平,次級開關管MS被導通。變壓器電流從初級傳遞到次級,流過次級開關管MS的電流開始減小,次級電流取樣信號ISENS也減小。一旦檢測到次級電流取樣信號ISENS減小至第四閾值電壓VTH4時,例如過零時,觸發器FF2被重定,次級控制信號CTRLS由高電平變為低電平,次級開關管MS被關斷。當流過初級和次級的電流都為零時,儲能元件與開關管的寄生電容器開始諧振,產生諧振電壓,該諧振電壓的波形由位於次級側波谷檢測電路401檢測到,產生波谷脈衝信號Valley_Pulse。以上步驟不斷重複,直到模式指示信號CCM變為高電平為止。 當模式指示信號CCM由低電平變為高電平,開關變換器400進入電流連續模式,初級開通致能電路403允許脈衝頻率調變信號PFM作為初級開通致能信號PRON輸出。次級開關管MS也在初級開通致能信號PRON的上升邊緣被關斷。當初級開通致能信號PRON的上升邊緣來臨,幾乎與此同時,隔離電路407輸出的同步信號SYNC也由低電平變為高電平,初級控制信號CTRLP由低電平變為高電平,初級開關管MP被導通。當初級電流取樣信號ISENP增大至第一閾值電壓VTH1時,初級開關管MP被關斷。在初級開關管MP被關斷後,次級開關管MS的汲極電壓VSRD由正電壓變為負電壓,次級開關管MS被導通。以上步驟不斷重複,直到模式指示信號CCM由高電平變為低電平為止。 圖6為根據本發明一實施例的隔離式開關變換器500的電路原理圖。與圖4所示的開關變換器400類似地,開關變換器500包括變壓器T1、初級開關管MP、次級開關管MS、波谷檢測電路501、脈衝頻率調變電路502、初級開通致能電路503、初級關斷檢測電路504、過零檢測電路505、次級邏輯電路506、隔離電路507、初級邏輯電路508、第二比較電路509以及閾值產生電路510。此外,開關變換器500還包括波谷選定電路511。波谷選定電路511具有第一輸入端、第二輸入端和第一輸出端,其中,第一輸入端接收波谷脈衝信號Valley_Pulse,第二輸入端接收脈衝頻率調變信號PFM,波谷選定電路511基於脈衝頻率調變信號PFM與上一週期的波谷數VALLEY_LOCK(n-1),產生目標波谷數VALLEY_LOCK(n),並在輸出端提供對應於目標波谷數的波谷致能信號VEN。在一個實施例中,波谷選定電路511將脈衝頻率調變信號PFM上升邊緣來臨時所累計的波谷數與上一週期的波谷數VALLEY_LOCK(n-1)進行比較,根據比較結果選擇繼續保持或切換至另一合適的波谷數。在另一個實施例中,波谷選定電路511還具有第二輸出端,基於目標波谷數的數值,產生模式指示信號CCM。其中,當目標波谷數的數值為0時,模式指示信號CCM為高電平,指示電流連續模式。 在圖6所示的實施例中,波谷檢測電路501包括波谷比較器COM5、下降邊緣觸發電路5011、觸發器FF3、及閘AND2以及單脈衝產生電路5012。其中,波谷比較器COM5的同相輸入端耦接至次級開關管MS以接收次級開關管的汲極電壓VSRD,反相輸入端接收開關變換器的輸出電壓Vo,波谷比較器COM5將次級開關管的汲極電壓VSRD與輸出電壓Vo進行比較,在輸出端產生波谷比較信號。觸發器FF3具有設定端、重定端和反向輸出端,其中,設定端接收初級開通致能信號PRON,重定端經下降邊緣觸發電路5011接收次級控制信號CTRLS。及閘AND2具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端耦接至波谷比較器COM5的輸出端以接收波谷比較信號,第二輸入端耦接至觸發器FF3的反向輸出端。單脈衝產生電路5012具有輸入端和輸出端,其中,輸入端耦接至及閘AND2的輸出端,在輸出端提供波谷脈衝信號Valley_Pulse。 圖7為根據本發明一實施例的圖6所示波谷檢測電路501的操作波形圖。如圖7所示,當初級開通致能信號PRON有效,初級控制信號CTRL由低電平變為高電平,觸發器FF3被設定,其反向輸出端輸出低電平,波谷比較信號被遮罩或禁止。當次級控制信號CTRLS的下降邊緣來臨時,即次級控制信號CTRLS由高電平變為低電平,次級開關管MS被關斷,觸發器FF3被重定,其反向輸出端輸出高電平,允許波谷比較信號透過及閘AND2傳輸到單脈衝產生電路5012。並由單脈衝產生電路5012在波谷比較信號的上升邊緣產生具有預定脈衝寬度的波谷脈衝信號Valley_Pulse。在一些實施例中,為了確保初級開關管MP在波谷處導通,一延時電路被耦接在及閘AND2與單脈衝產生電路5012之間。 圖8為根據本發明一實施例的波谷選定電路511的電路原理圖。在圖8所示的實施例中,波谷選定電路511包括第一計數器5110、第一暫存器5111、目標波谷數產生器5112以及數位比較器5113。第一計數器5110具有時鐘端,重定端和輸出端,其中,時鐘端接收波谷脈衝信號Valley_Pulse,重定端接收初級開通致能信號PRON,第一計數器5110對一週期內波谷脈衝信號Valley_Pulse的脈衝個數進行計數,在輸出端提供第一數值VALLEY_CNT。第一暫存器5111具有輸入端,時鐘端和輸出端,其中,輸入端接收第一數值VALLEY_CNT,時鐘端接收脈衝頻率調變信號PFM,在輸出端產生第二數值VALLEY_PFM。目標波谷數產生器5112將第二數值VALLEY_PFM與上一週期的波谷數VALLEY_LOCK(n-1)進行比較,根據比較結果在輸出端產生目標波谷數VALLEY_LOCK(n)。數位比較器5113將第一數值VALLEY_CNT與目標波谷數VALLEY_LOCK(n)進行比較,當第一數值VALLEY_CNT大於或等於目標波谷數VALLEY_LOCK(n)時,在輸出端提供波谷致能信號VEN。 當目標波谷數VALLEY_LOCK(n)=0時,波谷選定電路511提供的模式識別信號CCM由低電平變為高電平,表示開關變換器進入電流連續模式。 在圖8所示的實施例中,目標波谷數產生器5112包括第一多路選擇器521、第二多路選擇器522、第二暫存器523和減法器524。在其他實施例中,目標波谷產生器5112採用其他形式的數位電路來實現。 在初級開關管MP關斷時,或者每一個初級關斷檢測信號PROFF的上升邊緣來臨時,目標波谷產生器5112產生目標波谷數VALLEY_LOCK(n),並暫存在第二暫存器523中。 當第二數值VALLEY_PFM大於上一週期波谷數VALLEY_LOCK(n-1)時,VALLEY_LOCK(n)=VALLEY_ LOCK(n-1)+1。在一個實施例中,當上一週期的波谷數VALLEY_LOCK(n-1)大於3且比第二數值VALLEY_PFM大2時,VALLEY_LOCK(n)=VALLEY_LOCK(n-1)-1。此外,當上一週期的波谷數VALLEY_LOCK(n-1)為2或1,同時脈衝頻率調變信號PFM的上升邊緣來臨時刻比第一波谷脈衝提早一預設時長到達時,目標波谷數VALLEY_LOCK(n) =VALLEY_LOCK(n-1)-1。在其他情形下,目標波谷數VALLEY_LOCK(n)保持上一週期的波谷數VALLEY_LOCK (n-1)不變。 繼續如圖6所示,初級開通致能電路503包括及閘AND3、或閘OR3和及閘AND4。其中,及閘AND3具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收波谷脈衝信號Valley_Pulse,第二輸入端耦接至波谷選定電路511的第一輸出端以接收波谷致能信號VEN。或閘OR3具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端耦接至及閘AND3的輸出端、第二輸入端耦接至波谷選定電路511的第二輸出端以接收模式指示信號CCM。及閘AND4具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收脈衝頻率調變信號PFM,第二輸入端耦接至或閘OR3的輸出端,在輸出端提供初級開通致能信號PRON。 在電流連續模式下,初級開通致能電路503允許脈衝頻率調變信號PFM通過,作為初級開通致能信號PRON在輸出端輸出。在準諧振模式下,初級開通致能電路503在波谷致能信號VEN有效且脈衝頻率調變信號PFM的上升邊緣來臨時,輸出有效的初級開通致能信號PRON,控制初級開關管MP導通。 圖9為根據本發明一實施例的圖6所示隔離式開關變換器500的操作波形圖。 當模式指示信號CCM為低電平,在次級開關管MS的每個關斷期間內,波谷檢測電路501基於次級開關管的汲級電壓VSRD與輸出電壓Vo的比較結果,產生波谷脈衝信號Valley_Pulse。第一計數器5110對每個週期內的波谷脈衝進行計數,作為第一數值VALLEY_CNT。第一暫存器5111記錄脈衝頻率調變信號PFM上升邊緣來臨時的第一數值VALLEY_CNT,提供第二數值VALLEY_PFM。根據目標波谷數產生器5112的控制原理,產生目標波谷數VALLEY_LOCK。初級開關管MP根據對應於目標波谷數的初級開通致能信號PRON導通。 當模式指示信號CCM變高,脈衝頻率調變信號PFM作為初級開通致能信號PRON來控制初級開關管MP導通。 上述實施例均有關既可操作在電流連續模式又可在非電流連續模式下準諧振操作的隔離式開關變換器。本發明的實施例僅需要稍作改變就可以用於僅採用準諧振控制的隔離式開關變換器。僅採用準諧振控制的隔離式反激變換器同樣滿足本發明的精神和保護範圍。 圖10為根據本發明一實施例的準諧振控制的隔離式開關變換器的控制方法900的方法流程圖。該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至初級繞組的初級開關管、耦接至次級繞組的次級開關管以及隔離電路,該控制方法包括步驟901至906。 在步驟901,接收代表開關變換器輸出信號的反饋信號,產生與反饋信號有關的脈衝頻率調變信號。 在步驟902,耦接至次級開關管以檢測開關變換器的諧振電壓波形,產生表示諧振電壓波谷的波谷脈衝信號。 在步驟903,基於脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並提供回應於目標波谷數的波谷致能信號。在一個實施例中,將脈衝頻率調變信號上升邊緣來臨時所累計的波谷數與上一週期的波谷數相比較,選擇繼續保持或切換至另一合適的波谷數。 在步驟904,基於波谷致能信號、脈衝頻率調變信號和波谷脈衝信號,產生初級開通致能信號。 在步驟905,將初級開通致能信號送入隔離電路,產生與初級開通致能信號電隔離的同步信號。 在步驟906,基於同步信號,產生初級控制信號以控制初級開關管。 控制方法900進一步包括:檢測初級開關管是否關斷,產生初級關斷檢測信號;檢測流過次級開關管的電流是否過零,產生過零檢測信號;以及基於初級關斷檢測信號和過零檢測信號,產生次級控制信號以控制次級開關管。 在一個實施例中,步驟903包括:接收波谷脈衝信號,對一週期內波谷脈衝信號的脈衝進行計數,提供第一數值;記錄脈衝頻率調變信號上升邊緣來臨時的第一數值,作為第二數值;將第二數值與上一週期波谷數進行比較,根據比較結果產生目標波谷數;以及將第一數值與目標波谷數進行比較,當第一數值大於或等於目標波谷數時,在輸出端提供波谷致能信號。 在說明書中,相關術語例如第一和第二等可以只是用於將一個實體或動作與另一個實體或動作區分開,而不必或不意味著在這些實體或動作之間的任意實體這種關係或者順序。數字順序例如“第一”、“第二”、“第三”等僅僅指的是多個中的不同個體,並不意味著任何順序或序列,除非請求項語言有具體限定。在任何一個請求項中的文本的順序並不意問這處理步驟必須以根據這種順序的臨時或邏輯順序進行,除非請求項語言有具體規定。在不脫離本發明範圍的情況下,這些處理步驟可以按照任意順序互換,只要這種互換不會是的請求項語言矛盾並且不會出現邏輯上荒謬。 上述說明書和實施方式僅僅是示例性的,並不用於限定本發明的範圍。對於揭示的實施例進行變化和修改都是可能的,其他可行的選擇性實施例和對實施例中元件的等同變化可以被本技術領域的普通技術人員所瞭解。本發明所揭示的實施例的其他變化和修改並不超出本發明的精神和保護範圍。 Specific embodiments of the present invention will be described in detail below. It should be noted that the embodiments described here are only for illustration and are not intended to limit the present invention. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that these specific details need not be employed in order to practice the invention. In other instances, well-known circuits, materials or methods have not been described in detail in order to avoid obscuring the present invention. Throughout this specification, reference to "one embodiment," "an embodiment," "an example," or "an example" means that a particular feature, structure, or characteristic described in connection with the embodiment or example is included in the invention. In at least one embodiment. Thus, appearances of the phrases "in one embodiment," "in an embodiment," "one example," or "example" in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, particular features, structures, or characteristics may be combined in one or more embodiments or examples in any suitable combination and/or subcombination. Furthermore, those of ordinary skill in the art will appreciate that the drawings provided herein are for illustrative purposes and that the drawings are not necessarily drawn to scale. It will be understood that when an "element" is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present. Identical drawing numbers indicate identical elements. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. The invention can be applied to any isolated converter. In the following detailed description, for the sake of simplicity, only a flyback converter is taken as an example to explain the specific operating principle of the present invention. FIG. 2 is a block diagram of an isolated switching converter 200 according to an embodiment of the present invention. As shown in FIG. 2 , the isolated switching converter 200 includes a transformer T1, a primary switch MP, a secondary switch MS, and a controller. The transformer T1 has a primary winding and a secondary winding, wherein the primary winding and the secondary winding each have a first end and a second end, the first end of the primary winding receives the input voltage Vin, and the first end of the secondary winding provides a DC output voltage. Vo, the second terminal is coupled to the secondary reference ground. The primary switch MP is coupled between the second end of the primary winding and the primary reference ground. The secondary switch MS is coupled between the second end of the secondary winding and the load. However, those skilled in the art know that the secondary switch MS can also be coupled between the first end of the secondary winding and the load. In the embodiment shown in FIG. 2 , the controller of the isolated switching converter 200 introduces quasi-resonant control. In quasi-resonant control, the switching converter operates in the non-current continuous mode. When the current flowing through the energy storage element (transformer T1) drops to zero, the parasitic capacitor between the energy storage element and the primary switch MP begins to resonate, and the resonant voltage waveform Result. When the resonant voltage across the primary switch MP is at its minimum value, the primary switch MP is turned on (usually called valley conduction), thereby reducing the switching loss and electromagnetic interference of the switching converter 200 . The controller includes a valley detection circuit 201, a pulse frequency modulation circuit 202, a primary turn-on enable circuit 203, a primary turn-off detection circuit 204, a zero-crossing detection circuit 205, a secondary logic circuit 206, an isolation circuit 207 and a primary logic circuit 208 . In some embodiments, the controller and the secondary switch MS are integrated in the same chip. In the isolation switching converter 200 shown in FIG. 2, the waveform of the resonant voltage is detected by the valley detection circuit 201 located on the secondary side of the transformer. In one embodiment, the valley detection circuit 201 is coupled to the secondary switch MS to detect the waveform of the resonant voltage and output a valley pulse signal Valley_Pulse representing the valley of the resonant voltage. The pulse frequency modulation circuit 202 generates a pulse frequency modulation signal PFM based on the feedback signal representative of the output voltage Vo of the switching converter 200 . The primary turn-on enable circuit 203 receives the mode indication signal CCM, the valley pulse signal Valley_Pulse and the pulse frequency control signal PFM, and provides the primary turn-on enable signal PRON at the output end. When the mode indication signal CCM is valid, the switching converter 200 operates in the current continuous mode, the primary turn-on enable circuit 203 allows the pulse frequency modulation signal PFM to pass, and the primary turn-on enable signal PRON is output at the output end. When the mode indication signal CCM is invalid and the switching converter 200 operates in the quasi-resonant mode, the primary turn-on enable circuit 203 outputs the primary turn-on enable signal PRON at the output end based on the pulse frequency modulation signal PFM and the valley pulse signal Valley_Pulse. The primary turn-off detection circuit 204 detects whether the primary switch MP is turned off and generates the primary turn-off detection signal PROFF. The primary turn-off detection circuit 204 can determine whether the primary switch MP is turned off based on electrical parameters such as the drain-source voltage of the secondary switch MS, the current flowing through the secondary switch MS, and the voltage across the secondary winding. The primary turn-off detection circuit 204 can also obtain a signal indicating whether the primary switch MP is turned off from the primary side through other methods. The zero-crossing detection circuit 205 detects whether the current flowing through the secondary switch MS crosses zero, and generates a zero-crossing detection signal ZCD. The secondary logic circuit 206 has a first input terminal, a second input terminal, a third input terminal and an output terminal, wherein the first input terminal is coupled to the primary turn-off detection circuit 204 to receive the primary turn-off detection signal PROFF, and the second The input terminal is coupled to the output terminal of the zero-crossing detection circuit 205 to receive the zero-crossing detection signal ZCD, and the third input terminal is coupled to the primary turn-on enable circuit 203 to receive the primary turn-on enable signal PRON. The secondary logic circuit 206 generates a secondary control signal CTRLS at the output end to control the secondary switch MS based on the primary turn-off detection signal PROFF, the zero-crossing detection signal ZCD, and the primary turn-on enable signal PRON. The isolation circuit 207 has an input terminal and an output terminal, wherein the input terminal is coupled to the output terminal of the primary turn-on enable circuit 203 to receive the primary turn-on enable signal PRON. Based on the primary turn-on enable signal PRON, the isolation circuit 207 generates a synchronization signal SYNC at the output end that is electrically isolated from the primary turn-on enable signal PRON. Isolation circuit 207 may include an optocoupler, a transformer, a capacitive isolation device, or any other suitable electrical isolation device. In other embodiments, isolation circuit 202 may be provided external to the controller integrated circuit. The primary logic circuit 208 has an input terminal and an output terminal, wherein the input terminal is coupled to the output terminal of the isolation circuit 207 to receive the synchronization signal SYNC. Based on the synchronization signal SYNC, the primary logic circuit 208 generates a primary control signal CTRLP at the output end to control the primary switch MP. Under quasi-resonant control, the secondary logic circuit 206 turns off the secondary switch MS when the zero-crossing detection circuit 205 detects that the current flowing through the secondary switch MS crosses zero. In the current continuous mode, the secondary logic circuit 206 turns off the secondary switch MS based on the rising edge of the primary turn-on enable signal PRON. At the same time, the secondary switch MP is turned on based on the primary turn-on enable signal PRON. Regardless of the quasi-resonant control in the non-current continuous mode or the current continuous mode, the isolated switching converter 200 shown in Figure 2 does not need to turn off the secondary switch MS after the primary switch MP is turned on, which is avoided in principle. Direct access. In some embodiments, in order to ensure that the primary switch MP is turned on after the secondary switch MS is turned off, the delay circuit is coupled between the primary turn-on enabling circuit 203 and the isolation circuit 207, or the isolation circuit 207 and the primary between logic circuits 208. FIG. 3 is a block diagram of an isolated switching converter 300 according to an embodiment of the present invention. Similar to the switching converter 200 shown in Figure 2, the switching converter 300 includes a transformer T1, a primary switch MP, a secondary switch MS, a valley detection circuit 301, a pulse frequency modulation circuit 302, and a primary turn-on enabling circuit. 303. Primary turn-off detection circuit 304, zero-crossing detection circuit 305, secondary logic circuit 306, isolation circuit 307 and primary logic circuit 308. Among them, the pulse frequency modulation circuit 302 includes an error amplification circuit 3021, a modulation signal generation circuit 3022 and a first comparison circuit 3023. The error amplification circuit 3021 has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the feedback signal FB representing the output signal (for example, output voltage, output current, output power) of the switching converter, and the second The input terminal receives the reference signal VREF. The error amplifier circuit 3021 generates a compensation signal COMP at the output end based on the difference between the feedback signal FB and the reference signal VREF. The modulation signal generation circuit 3022 generates a modulation signal VM, which may be a sawtooth wave signal, a triangle wave signal, or other suitable signals. The first comparison circuit 3023 has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the error amplifier circuit 3021 to receive the compensation signal COMP, and the second input terminal is coupled to the modulation signal COMP. The signal generation circuit 3022 receives the modulation signal VM. The first comparison circuit 3023 compares the compensation signal COMP with the modulation signal VM, and generates a pulse frequency modulation signal PFM at the output end. In addition, the switching converter 300 further includes a second comparison circuit 309 . The second comparison circuit 309 has a first input terminal, a second input terminal and an output terminal. The first input terminal receives the primary current sampling signal ISENP representing the current flowing through the primary switch MP, and the second input terminal receives the first threshold voltage. VTH1. The second comparison circuit 309 compares the primary current sampling signal ISENP with the first threshold voltage VTH1 and generates a second comparison signal CMPO2 at the output end. The primary logic circuit 308 is coupled to the output end of the second comparison circuit 309 to receive the second comparison signal CMPO2, and generates the primary control signal CTRLP to control the primary switch MP based on the second comparison signal CMPO2 and the synchronization signal SYNC. The first threshold voltage VTH1 may be a constant value, or may change with the change of the isolation signal SYNC. In one embodiment, the switching converter 300 further includes a threshold generation circuit 310 . The threshold generation circuit 310 has an input terminal and an output terminal, wherein the input terminal is coupled to the output terminal of the isolation circuit 307 to receive the synchronization signal SYNC, and the output terminal is coupled to the second input terminal of the second comparison circuit 309 . The threshold generation circuit 310 generates the first threshold voltage VTH1 at the output end based on the synchronization signal SYNC. In some embodiments, in order to limit the switching frequency of the switching converter 300, the frequency limiting circuit 3024 is coupled between the output terminal of the first comparison circuit 3023 and the modulation signal generating circuit 3022. The frequency limiting circuit 3024 has an input terminal and an output terminal, wherein the input terminal is coupled to the output terminal of the first comparison circuit 3023 to receive the pulse frequency modulation signal PFM, and the output terminal is coupled to the modulation signal generating circuit 3022 to provide frequency limiting. Signal FLMT. The frequency limiting circuit 3024 limits the frequency of the modulation signal VM and the frequency of the pulse modulation signal PFM through the frequency limiting signal FLMT, thereby further limiting the maximum switching frequency of the primary switch MP. FIG. 4 is a schematic circuit diagram of an isolated switching converter 400 according to an embodiment of the present invention. As shown in FIG. 4 , the valley detection circuit 401 includes a comparator COM1 and a single pulse generation circuit 4011 . The non-inverting input terminal of the comparator COM1 receives the drain voltage VSRD of the secondary switch MS, the inverting input terminal receives the second threshold voltage VTH2, and the output terminal is coupled to the input terminal of the single pulse generating circuit 4011. In the single pulse generating circuit 4011 The output terminal provides the valley pulse signal Valley_Pulse. The pulse frequency modulation circuit 402 includes an error amplification circuit 4021, a modulation signal generation circuit 4022, a first comparison circuit 4023 and a frequency limiting circuit 4024. Among them, the error amplification circuit 4021 includes an error amplifier EA. The inverting input terminal of the error amplifier EA receives the feedback signal FB representing the output voltage Vo, the non-inverting input terminal receives the reference signal VREF, and the output terminal is coupled to the first comparison circuit 4023 to provide the compensation signal COMP. The modulation signal generating circuit 4022 includes a capacitor C1, a switch S1 and a current source IS1. The capacitor C1 has a first terminal and a second terminal, wherein the first terminal is coupled to the first comparison circuit 4023 to provide the modulation signal VM, and the second terminal is coupled to the secondary reference ground. The switch S1 has a first terminal, a second terminal and a control terminal. The first terminal is coupled to the first terminal of the capacitor C1, the second terminal is coupled to the secondary reference ground, and the control terminal is coupled through the frequency limiting circuit 4024. to the output terminal of the first comparison circuit 4023. The current source Is1 has an input terminal and an output terminal, wherein the input terminal is coupled to the secondary reference ground and the output terminal is coupled to the first terminal of the capacitor C1. In one embodiment, the modulation signal generation circuit 4023 further includes a Zener diode ZD1. The cathode of the Zener diode ZD1 is coupled to the first terminal of the capacitor C1, and the anode is coupled to the secondary reference ground. The first comparison circuit 4023 includes a comparator COM2. The non-inverting input end of the comparator COM2 is coupled to the modulation signal generation circuit 4022 to receive the modulation signal VM, the inverting input end is coupled to the error amplifier circuit 4021 to receive the compensation signal COMP, and the output end is coupled to the primary turn-on enable circuit. 403 to provide a pulse frequency modulation signal PFM. The primary turn-on enable circuit 403 includes a D flip-flop 4031, an OR gate OR1 and an AND gate AND1. The D flip-flop 4031 has an input terminal, a clock terminal and an output terminal, wherein the input terminal is coupled to the output terminal of the valley detection circuit 401 to receive the valley pulse signal Valley_Pulse, and the clock terminal is coupled to the output terminal of the pulse frequency modulation circuit 402 To receive the pulse frequency modulation signal PFM, the output terminal is coupled to the first input terminal of the OR gate OR1. The second input terminal of the OR gate OR1 receives the mode indication signal CCM, and the output terminal of the OR gate OR1 is coupled to the first input terminal of the AND gate AND1. The second input terminal of the AND gate AND1 receives the pulse frequency modulation signal PFM, and the output terminal is coupled to the isolation circuit 407 and the secondary logic circuit 406 to provide the primary turn-on enable signal PRON. Primary off detection circuit 404 includes comparator COM3. The non-inverting input terminal of the comparator COM3 receives the drain voltage VSRD of the secondary switch MS, the inverting input terminal receives the third threshold voltage VTH3, and the output terminal is coupled to the secondary logic circuit 406 to provide the primary turn-off detection signal PROFF. Zero-crossing detection circuit 405 includes comparator COM4. The non-inverting input terminal of the comparator COM4 is coupled to receive the fourth threshold voltage VTH4, the inverting input terminal receives the secondary current sampling signal ISENS representing the current flowing through the secondary switch MS, and the output terminal is coupled to the secondary logic circuit 406 to provide Zero detection signal ZCD. In other embodiments, when the zero-crossing detection circuit 405 detects that the drain voltage VSRD of the secondary switch MS changes from negative voltage to positive voltage, the generated zero-crossing detection signal ZCD changes from low level to high level. Turn off the secondary switch. The secondary logic circuit 406 includes an OR gate OR2 and a flip-flop FF2. The OR gate OR2 has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the zero-crossing detection circuit 405 to receive the zero-crossing detection signal ZCD, and the second input terminal is coupled to the primary turn-on enable The circuit 403 receives the primary turn-on enable signal PRON. The flip-flop FF2 has a setting terminal, a resetting terminal and an output terminal, wherein the setting terminal is coupled to the output terminal of the primary turn-off detection circuit 404 to receive the primary turn-off detection signal PROFF, and the resetting terminal is coupled to the output terminal of the OR gate OR2, The output terminal is coupled to the gate of the secondary switch MS to provide the secondary control signal CTRLS. Primary logic circuit 408 includes flip-flop FF1. The flip-flop FF1 has a setting terminal, a resetting terminal and an output terminal. The setting terminal is coupled to the output terminal of the isolation circuit 407 to receive the synchronization signal SYNC, and the resetting terminal is coupled to the output terminal of the second comparison circuit 409 to receive the second comparison. The output terminal of the signal CMPO2 is coupled to the gate of the primary switch MP to provide the primary control signal CTRLP. The second comparison circuit 409 includes a comparator COM5. The non-inverting input terminal of the comparator COM5 receives the primary current sampling signal ISENP, the inverting input terminal is coupled to the threshold generation circuit 410 to receive the first threshold voltage VTH1, and the output terminal is coupled to the primary logic circuit 408 to provide the second comparison signal CMPO2. FIG. 5 is an operation waveform diagram of the isolated switching converter 400 shown in FIG. 4 according to an embodiment of the present invention. As shown in Figure 5, during the turn-off period of the secondary switch MS, when the drain voltage VSRD is greater than the second threshold VTH2, the valley detection circuit 401 provides the valley pulse signal Valley_Pulse. The number of pulses of the valley pulse signal Valley_Pulse depends on the resonance. The number of troughs in the voltage waveform. When the mode indication signal CCM is low level, the switching converter 400 operates in the quasi-resonant mode. When the next valley pulse comes after the rising edge of the pulse frequency modulation signal PFM, the primary turn-on enable signal PRON is valid, and the primary turn-on The enable signal PRON changes from low level to high level. Almost at the same time, the synchronization signal SYNC output by the isolation circuit 407 also changes from low level to high level, the flip-flop FF1 is set, the primary control signal CTRLP changes from low level to high level, and the primary switch MP is turned on. . The current flowing through the primary switch MP increases, and the primary current sampling signal ISENP also increases. When the primary current sampling signal ISENP increases to the first threshold voltage VTH1, the flip-flop FF1 is reset, the primary control signal CTRLP changes from high level to low level, and the primary switch MP is turned off. After the primary switch MP is turned off, the drain voltage VSRD of the secondary switch MS changes from a positive voltage to a negative voltage, the drain voltage VSRD decreases to the third threshold VTH3, the flip-flop FF2 is set, and the secondary control signal CTRLS changes from low level to high level, and the secondary switch MS is turned on. The transformer current is transferred from the primary to the secondary, the current flowing through the secondary switch MS begins to decrease, and the secondary current sampling signal ISENS also decreases. Once it is detected that the secondary current sampling signal ISENS decreases to the fourth threshold voltage VTH4, for example, when it crosses zero, the flip-flop FF2 is reset, the secondary control signal CTRLS changes from high level to low level, and the secondary switch MS is turned off. When the current flowing through the primary and secondary is zero, the energy storage element and the parasitic capacitor of the switching tube begin to resonate, generating a resonant voltage. The waveform of the resonant voltage is detected by the valley detection circuit 401 on the secondary side, generating a valley pulse. SignalValley_Pulse. The above steps are repeated until the mode indication signal CCM changes to high level. When the mode indication signal CCM changes from low level to high level, the switching converter 400 enters the current continuous mode, and the primary turn-on enable circuit 403 allows the pulse frequency modulation signal PFM to be output as the primary turn-on enable signal PRON. The secondary switch MS is also turned off at the rising edge of the primary turn-on enable signal PRON. When the rising edge of the primary turn-on enable signal PRON comes, almost at the same time, the synchronization signal SYNC output by the isolation circuit 407 also changes from low level to high level, and the primary control signal CTRLP changes from low level to high level. The primary switch MP is turned on. When the primary current sampling signal ISENP increases to the first threshold voltage VTH1, the primary switch MP is turned off. After the primary switch MP is turned off, the drain voltage VSRD of the secondary switch MS changes from a positive voltage to a negative voltage, and the secondary switch MS is turned on. The above steps are repeated until the mode indication signal CCM changes from high level to low level. FIG. 6 is a schematic circuit diagram of an isolated switching converter 500 according to an embodiment of the present invention. Similar to the switching converter 400 shown in FIG. 4 , the switching converter 500 includes a transformer T1, a primary switch MP, a secondary switch MS, a valley detection circuit 501, a pulse frequency modulation circuit 502, and a primary turn-on enabling circuit. 503. Primary turn-off detection circuit 504, zero-crossing detection circuit 505, secondary logic circuit 506, isolation circuit 507, primary logic circuit 508, second comparison circuit 509 and threshold generation circuit 510. In addition, the switching converter 500 further includes a valley selection circuit 511 . The valley selection circuit 511 has a first input terminal, a second input terminal and a first output terminal, wherein the first input terminal receives the valley pulse signal Valley_Pulse, the second input terminal receives the pulse frequency modulation signal PFM, and the valley selection circuit 511 is based on the pulse The frequency modulation signal PFM and the valley number VALLEY_LOCK(n-1) of the previous cycle generate the target valley number VALLEY_LOCK(n), and the valley enable signal VEN corresponding to the target valley number is provided at the output end. In one embodiment, the valley selection circuit 511 compares the number of valleys accumulated when the rising edge of the pulse frequency modulation signal PFM arrives with the number of valleys VALLEY_LOCK (n-1) in the previous cycle, and selects to continue to maintain or switch based on the comparison result. to another appropriate trough number. In another embodiment, the trough selection circuit 511 also has a second output terminal, and generates the mode indication signal CCM based on the value of the target trough number. Wherein, when the value of the target trough number is 0, the mode indication signal CCM is high level, indicating the current continuous mode. In the embodiment shown in FIG. 6 , the valley detection circuit 501 includes a valley comparator COM5 , a falling edge trigger circuit 5011 , a flip-flop FF3 , an AND gate AND2 and a single pulse generation circuit 5012 . Among them, the non-inverting input terminal of the valley comparator COM5 is coupled to the secondary switch MS to receive the drain voltage VSRD of the secondary switch tube, and the inverting input terminal receives the output voltage Vo of the switching converter. The valley comparator COM5 The drain voltage VSRD of the switch tube is compared with the output voltage Vo, and a valley comparison signal is generated at the output end. The flip-flop FF3 has a setting end, a resetting end and a reverse output end. The setting end receives the primary turn-on enable signal PRON, and the resetting end receives the secondary control signal CTRLS through the falling edge trigger circuit 5011. The AND gate AND2 has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the valley comparator COM5 to receive the valley comparison signal, and the second input terminal is coupled to the flip-flop FF3 Reverse output terminal. The single pulse generation circuit 5012 has an input terminal and an output terminal, wherein the input terminal is coupled to the output terminal of the AND gate AND2, and the valley pulse signal Valley_Pulse is provided at the output terminal. FIG. 7 is an operation waveform diagram of the valley detection circuit 501 shown in FIG. 6 according to an embodiment of the present invention. As shown in Figure 7, when the primary turn-on enable signal PRON is valid, the primary control signal CTRL changes from low level to high level, flip-flop FF3 is set, its reverse output terminal outputs low level, and the valley comparison signal is blocked. Covered or prohibited. When the falling edge of the secondary control signal CTRLS comes, that is, the secondary control signal CTRLS changes from high level to low level, the secondary switch MS is turned off, the flip-flop FF3 is reset, and its reverse output terminal outputs high level, allowing the valley comparison signal to be transmitted to the single pulse generation circuit 5012 through the AND gate AND2. And the single pulse generation circuit 5012 generates a valley pulse signal Valley_Pulse with a predetermined pulse width at the rising edge of the valley comparison signal. In some embodiments, in order to ensure that the primary switch MP is turned on at the valley, a delay circuit is coupled between the AND gate AND2 and the single pulse generating circuit 5012. FIG. 8 is a circuit schematic diagram of the valley selection circuit 511 according to an embodiment of the present invention. In the embodiment shown in FIG. 8 , the valley selection circuit 511 includes a first counter 5110 , a first register 5111 , a target valley number generator 5112 and a digital comparator 5113 . The first counter 5110 has a clock terminal, a reset terminal and an output terminal. The clock terminal receives the valley pulse signal Valley_Pulse, and the reset terminal receives the primary turn-on enable signal PRON. The first counter 5110 counts the number of pulses of the valley pulse signal Valley_Pulse in one cycle. Counting is carried out and the first value VALLEY_CNT is provided at the output. The first register 5111 has an input terminal, a clock terminal and an output terminal. The input terminal receives the first value VALLEY_CNT, the clock terminal receives the pulse frequency modulation signal PFM, and the output terminal generates the second value VALLEY_PFM. The target valley number generator 5112 compares the second value VALLEY_PFM with the valley number VALLEY_LOCK(n-1) of the previous cycle, and generates the target valley number VALLEY_LOCK(n) at the output end according to the comparison result. The digital comparator 5113 compares the first value VALLEY_CNT with the target valley number VALLEY_LOCK(n). When the first value VALLEY_CNT is greater than or equal to the target valley number VALLEY_LOCK(n), a valley enable signal VEN is provided at the output end. When the target valley number VALLEY_LOCK(n)=0, the mode recognition signal CCM provided by the valley selection circuit 511 changes from low level to high level, indicating that the switching converter enters the current continuous mode. In the embodiment shown in FIG. 8 , the target trough number generator 5112 includes a first multiplexer 521 , a second multiplexer 522 , a second register 523 and a subtractor 524 . In other embodiments, the target valley generator 5112 is implemented using other forms of digital circuits. When the primary switch MP is turned off, or when the rising edge of each primary turn-off detection signal PROFF comes, the target valley generator 5112 generates the target valley number VALLEY_LOCK(n), and temporarily stores it in the second register 523 . When the second value VALLEY_PFM is greater than the trough number VALLEY_LOCK(n-1) of the previous period, VALLEY_LOCK(n)=VALLEY_ LOCK(n-1)+1. In one embodiment, when the trough number VALLEY_LOCK(n-1) in the previous cycle is greater than 3 and greater than the second value VALLEY_PFM by 2, VALLEY_LOCK(n)=VALLEY_LOCK(n-1)-1. In addition, when the valley number VALLEY_LOCK(n-1) of the previous cycle is 2 or 1, and the rising edge of the pulse frequency modulation signal PFM arrives a preset time earlier than the first valley pulse, the target valley number VALLEY_LOCK (n) =VALLEY_LOCK(n-1)-1. In other cases, the target valley number VALLEY_LOCK(n) remains unchanged from the valley number VALLEY_LOCK (n-1) of the previous period. Continuing as shown in FIG. 6 , the primary turn-on enabling circuit 503 includes an AND gate AND3, an OR gate OR3 and an AND gate AND4. Among them, the AND gate AND3 has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the valley pulse signal Valley_Pulse, and the second input terminal is coupled to the first output terminal of the valley selection circuit 511 to receive the valley pulse signal. Enable signal VEN. The OR gate OR3 has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the AND gate AND3, and the second input terminal is coupled to the second output terminal of the valley selection circuit 511. Receive mode indication signal CCM. The AND gate AND4 has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the pulse frequency modulation signal PFM, the second input terminal is coupled to the output terminal of the OR gate OR3, and the output terminal provides a primary Turn on the enabling signal PRON. In the current continuous mode, the primary turn-on enable circuit 503 allows the pulse frequency modulation signal PFM to pass, and outputs the primary turn-on enable signal PRON at the output end. In the quasi-resonant mode, when the valley enable signal VEN is valid and the rising edge of the pulse frequency modulation signal PFM comes, the primary turn-on enable circuit 503 outputs a valid primary turn-on enable signal PRON to control the primary switch MP to turn on. FIG. 9 is an operation waveform diagram of the isolated switching converter 500 shown in FIG. 6 according to an embodiment of the present invention. When the mode indication signal CCM is low level, during each off period of the secondary switch MS, the valley detection circuit 501 generates a valley pulse signal based on the comparison result between the drain voltage VSRD of the secondary switch MS and the output voltage Vo. Valley_Pulse. The first counter 5110 counts the valley pulses in each cycle as a first value VALLEY_CNT. The first register 5111 records the first value VALLEY_CNT when the rising edge of the pulse frequency modulation signal PFM comes, and provides the second value VALLEY_PFM. According to the control principle of the target valley number generator 5112, the target valley number VALLEY_LOCK is generated. The primary switch MP is turned on according to the primary turn-on enable signal PRON corresponding to the target trough number. When the mode indication signal CCM becomes high, the pulse frequency modulation signal PFM serves as the primary turn-on enable signal PRON to control the conduction of the primary switch MP. The above-described embodiments all relate to an isolated switching converter that can operate in a current continuous mode and a quasi-resonant operation in a non-current continuous mode. Embodiments of the present invention require only slight modifications and can be used in isolated switching converters using only quasi-resonant control. An isolated flyback converter that only uses quasi-resonant control also meets the spirit and protection scope of the present invention. FIG. 10 is a method flowchart of a control method 900 for a quasi-resonant controlled isolated switching converter according to an embodiment of the present invention. The switching converter includes a transformer with a primary winding and a secondary winding, a primary switch tube coupled to the primary winding, a secondary switch tube coupled to the secondary winding, and an isolation circuit. The control method includes steps 901 to 906. In step 901, a feedback signal representing the output signal of the switching converter is received, and a pulse frequency modulation signal related to the feedback signal is generated. In step 902, the secondary switching transistor is coupled to detect the resonant voltage waveform of the switching converter, and a valley pulse signal representing the resonant voltage valley is generated. In step 903, a target trough number is generated based on the pulse frequency modulation signal and the trough number of the previous cycle, and a trough enabling signal in response to the target trough number is provided. In one embodiment, the number of accumulated troughs when the rising edge of the pulse frequency modulation signal comes is compared with the number of troughs in the previous cycle, and the selection is continued or switched to another appropriate trough number. In step 904, a primary turn-on enable signal is generated based on the valley enable signal, the pulse frequency modulation signal and the valley pulse signal. In step 905, the primary turn-on enable signal is sent to the isolation circuit to generate a synchronization signal electrically isolated from the primary turn-on enable signal. In step 906, based on the synchronization signal, a primary control signal is generated to control the primary switch. The control method 900 further includes: detecting whether the primary switch tube is turned off, and generating a primary turn-off detection signal; detecting whether the current flowing through the secondary switch tube crosses zero, and generating a zero-crossing detection signal; and based on the primary turn-off detection signal and the zero-crossing detection signal. Detect the signal and generate a secondary control signal to control the secondary switch tube. In one embodiment, step 903 includes: receiving the valley pulse signal, counting the pulses of the valley pulse signal within one cycle, and providing a first value; recording the first value when the rising edge of the pulse frequency modulation signal comes, as the second value value; compare the second value with the trough number of the previous period, and generate the target trough number according to the comparison result; and compare the first value with the target trough number, and when the first value is greater than or equal to the target trough number, at the output end Provides valley enable signal. In the specification, relative terms such as first, second, etc. may only be used to distinguish one entity or action from another entity or action and do not necessarily or imply any such relationship between these entities or actions. Or order. Numerical sequences such as "first," "second," "third," etc., refer only to different individuals within a plurality and do not imply any order or sequence unless specifically limited by the language of the claim. The order of text in any request does not imply that the processing steps must proceed in a provisional or logical sequence consistent with that order, unless the request language specifically provides otherwise. These processing steps may be interchanged in any order without departing from the scope of the invention, as long as such interchange does not contradict the language of the claim and does not appear to be logically absurd. The above description and embodiments are merely exemplary and are not intended to limit the scope of the present invention. Variations and modifications are possible to the disclosed embodiments, and other feasible alternative embodiments and equivalent changes to elements in the embodiments will be apparent to those of ordinary skill in the art. Other changes and modifications to the embodiments disclosed in the present invention do not exceed the spirit and scope of the present invention.

200:隔離式開關變換器 201:波谷檢測電路 202:脈衝頻率調變電路 203:初級開通致能電路 204:初級關斷檢測電路 205:過零檢測電路 206:次級邏輯電路 207:隔離電路 208:初級邏輯電路 300:隔離式開關變換器 301:波谷檢測電路 302:脈衝頻率調變電路 303:初級開通信號產生電路 304:初級關斷檢測電路 305:過零檢測電路 306:次級邏輯電路 307:隔離電路 308:初級邏輯電路 309:第二比較電路 310:閾值產生電路 400:隔離式開關變換器 401:波谷檢測電路 402:脈衝頻率調變電路 403:初級開通致能電路 404:初級關斷檢測電路 405:過零檢測電路 406:次級邏輯電路 407:隔離電路 408:初級邏輯電路 409:第二比較電路 410:閾值產生電路 500:隔離式開關變換器 501:波谷檢測電路 502:脈衝頻率調變電路 503:初級開通致能電路 504:初級關斷檢測電路 505:過零檢測電路 506:次級邏輯電路 507:隔離電路 508:初級邏輯電路 509:第二比較電路 510:閾值產生電路 511:波谷選定電路 521:第一多路選擇器 522:第二多路選擇器 523:第二暫存器 524:減法器 3021:誤差放大電路 3022:調變信號產生電路 3023:第一比較電路 3024:限頻電路 4011:單脈衝產生電路 4021:誤差放大電路 4022:調變信號產生電路 4023:第一比較電路 4024:限頻電路 4031:D觸發器 5011:下降邊緣觸發電路 5012:單脈衝產生電路 5110:第一計數器 5111:第一暫存器 5112:目標波谷數產生器 5113:數位比較器 T1:變壓器 MP:初級開關管 MS:次級開關管 Vin:輸入電壓 Vo:輸出電壓 PFM:脈衝頻率調變信號 CCM:模式指示信號 Valley_Pulse:波谷脈衝信號 PRON:初級開通致能信號 ZCD:過零檢測信號 PROFF:初級關斷檢測信號 SYNC:同步信號 CTRLP:初級控制信號 FB:反饋信號 VREF:參考信號 VM:調變信號 COMP:補償信號 VTH1:第一閾值電壓 ISENP:初級電流取樣信號 CMPO2:第二比較信號 FLMT:限頻信號 COM1:比較器 VSRD:汲極電壓 VTH2:第二閾值電壓 EA:誤差放大器 C1:電容器 IS1:電流源 S1:開關管 ZD1:齊納二極體 COM2:比較器 OR1:或閘 AND1:及閘 COM3:比較器 COM4:比較器 ISENS:次級電流取樣信號 VTH4:第四閾值電壓 OR2:或閘 FF1:觸發器 FF2:觸發器 COM5:比較器 VTH3:第三閾值 VEN:波谷致能信號 COM5:波谷比較器 FF3:觸發器 AND2:及閘 AND3:及閘 OR3:或閘 AND4:及閘 VALLEY_CNT:第一數值 VALLEY_PFM:第二數值 200: Isolated switching converter 201: Valley detection circuit 202: Pulse frequency modulation circuit 203: Primary enable circuit 204: Primary shutdown detection circuit 205: Zero-crossing detection circuit 206: Secondary logic circuit 207:Isolation circuit 208: Primary logic circuit 300: Isolated switching converter 301: Valley detection circuit 302: Pulse frequency modulation circuit 303: Primary turn-on signal generation circuit 304: Primary shutdown detection circuit 305: Zero-crossing detection circuit 306: Secondary logic circuit 307:Isolation circuit 308: Primary logic circuit 309: Second comparison circuit 310: Threshold generation circuit 400: Isolated switching converter 401: Valley detection circuit 402: Pulse frequency modulation circuit 403: Primary enable circuit 404: Primary shutdown detection circuit 405: Zero-crossing detection circuit 406: Secondary logic circuit 407:Isolation circuit 408: Primary logic circuit 409: Second comparison circuit 410: Threshold generation circuit 500: Isolated switching converter 501: Valley detection circuit 502: Pulse frequency modulation circuit 503: Primary enable circuit 504: Primary shutdown detection circuit 505: Zero-crossing detection circuit 506: Secondary logic circuit 507:Isolation circuit 508: Primary logic circuit 509: Second comparison circuit 510: Threshold generation circuit 511: Wave valley selection circuit 521: First multiplexer 522: Second multiplexer 523: Second register 524:Subtractor 3021: Error amplifier circuit 3022: Modulation signal generation circuit 3023: First comparison circuit 3024: Frequency limiting circuit 4011:Single pulse generation circuit 4021: Error amplifier circuit 4022: Modulation signal generation circuit 4023: First comparison circuit 4024: Frequency limiting circuit 4031:D flip-flop 5011: Falling edge trigger circuit 5012:Single pulse generation circuit 5110: first counter 5111: First register 5112: Target trough number generator 5113:Digital comparator T1: Transformer MP: primary switch tube MS: secondary switch tube Vin: input voltage Vo: output voltage PFM: pulse frequency modulation signal CCM: mode indication signal Valley_Pulse: Valley pulse signal PRON: primary enable signal ZCD: Zero-crossing detection signal PROFF: primary shutdown detection signal SYNC: synchronization signal CTRLP: primary control signal FB: feedback signal VREF: reference signal VM: modulated signal COMP: compensation signal VTH1: first threshold voltage ISENP: primary current sampling signal CMPO2: second comparison signal FLMT: frequency limited signal COM1: Comparator VSRD: drain voltage VTH2: second threshold voltage EA: error amplifier C1: Capacitor IS1: current source S1: switch tube ZD1: Zener diode COM2: Comparator OR1: Or gate AND1: AND gate COM3: Comparator COM4: Comparator ISENS: secondary current sampling signal VTH4: fourth threshold voltage OR2: Or gate FF1: Trigger FF2: Trigger COM5: Comparator VTH3: third threshold VEN: Wave trough enabling signal COM5: Trough comparator FF3: Trigger AND2: AND gate AND3: AND gate OR3: OR gate AND4: AND gate VALLEY_CNT: first value VALLEY_PFM: second value

[圖1]為現有的同步整流技術的波形圖; [圖2]為根據本發明一實施例的隔離式開關變換器200的方塊圖; [圖3]為根據本發明一實施例的隔離式開關變換器300的方塊圖; [圖4]為根據本發明一實施例的隔離式開關變換器400的電路原理圖; [圖5]為根據本發明實施例的圖4所示隔離式開關變換器400的操作波形圖; [圖6]為根據本發明一實施例的隔離式開關變換器500的電路原理圖; [圖7]為根據本發明一實施例的圖6所示波谷檢測電路501的操作波形圖; [圖8]為根據本發明一實施例的圖6所示波谷選定電路511的電路原理圖; [圖9]為根據本發明一實施例的圖6所示隔離式開關變換器500的操作波形圖; [圖10]為根據本發明一實施例的準諧振控制的隔離式開關變換器的控制方法900的方法流程圖。 [Figure 1] is a waveform diagram of existing synchronous rectification technology; [Fig. 2] is a block diagram of an isolated switching converter 200 according to an embodiment of the present invention; [Fig. 3] is a block diagram of an isolated switching converter 300 according to an embodiment of the present invention; [Fig. 4] is a circuit schematic diagram of an isolated switching converter 400 according to an embodiment of the present invention; [Fig. 5] is an operation waveform diagram of the isolated switching converter 400 shown in Fig. 4 according to an embodiment of the present invention; [Fig. 6] is a circuit schematic diagram of an isolated switching converter 500 according to an embodiment of the present invention; [Fig. 7] is an operation waveform diagram of the valley detection circuit 501 shown in Fig. 6 according to an embodiment of the present invention; [Fig. 8] is a circuit schematic diagram of the valley selection circuit 511 shown in Fig. 6 according to an embodiment of the present invention; [Fig. 9] is an operating waveform diagram of the isolated switching converter 500 shown in Fig. 6 according to an embodiment of the present invention; [Fig. 10] is a method flow chart of a control method 900 for a quasi-resonant controlled isolated switching converter according to an embodiment of the present invention.

200:隔離式開關變換器 200: Isolated switching converter

201:波谷檢測電路 201: Valley detection circuit

202:脈衝頻率調變電路 202: Pulse frequency modulation circuit

203:初級開通致能電路 203: Primary enable circuit

204:初級關斷檢測電路 204: Primary shutdown detection circuit

205:過零檢測電路 205: Zero-crossing detection circuit

206:次級邏輯電路 206: Secondary logic circuit

207:隔離電路 207:Isolation circuit

208:初級邏輯電路 208: Primary logic circuit

Claims (20)

一種用於隔離式開關變換器的控制器,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至該初級繞組的初級開關管以及耦接至該次級繞組的次級開關管,該控制器包括:波谷檢測電路,耦接至該次級開關管以檢測該開關變換器諧振電壓的波形,並輸出表示該諧振電壓波谷的波谷脈衝信號;脈衝頻率調變電路,接收代表該開關變換器輸出信號的反饋信號,產生脈衝頻率調變信號;初級開通致能電路,其中,當該開關變換器操作在準諧振模式時,該初級開通致能電路基於該脈衝頻率調變信號和該波谷脈衝信號,在輸出端輸出初級開通致能信號,當該開關變換器操作在電流連續模式時,該初級開通致能電路將該脈衝頻率調變信號作為該初級開通致能信號在該輸出端輸出;初級關斷檢測電路,檢測該初級開關管是否關斷,產生初級關斷檢測信號;過零檢測電路,檢測流過該次級開關管的電流是否過零,並產生過零檢測信號;以及次級邏輯電路,耦接至該初級關斷檢測電路、該過零檢測電路和該初級開通致能電路以接收該初級關斷檢測信號、該過零檢測信號和該初級開通致能信號,產生次級控制信號以控制該次級開關管; 隔離電路,具有接收該初級開通致能信號的輸入端,在輸出端產生與該初級開通致能信號電隔離的同步信號;以及初級邏輯電路,耦接至該隔離電路的該輸出端以接收該同步信號,並基於該同步信號產生初級控制信號以控制該初級開關管。 A controller for an isolated switching converter, which includes a transformer with a primary winding and a secondary winding, a primary switching tube coupled to the primary winding, and a secondary switching tube coupled to the secondary winding. , the controller includes: a valley detection circuit, coupled to the secondary switch tube to detect the waveform of the resonant voltage of the switching converter, and output a valley pulse signal representing the valley of the resonant voltage; a pulse frequency modulation circuit, receiving a representative The feedback signal of the output signal of the switching converter generates a pulse frequency modulation signal; a primary turn-on enabling circuit, wherein when the switching converter operates in a quasi-resonant mode, the primary turn-on enabling circuit is based on the pulse frequency modulation signal and the valley pulse signal, and outputs a primary turn-on enable signal at the output end. When the switching converter operates in the current continuous mode, the primary turn-on enable circuit uses the pulse frequency modulation signal as the primary turn-on enable signal at the Output terminal output; primary turn-off detection circuit, detects whether the primary switch tube is turned off, and generates a primary turn-off detection signal; zero-crossing detection circuit, detects whether the current flowing through the secondary switch tube crosses zero, and generates zero-crossing detection signal; and a secondary logic circuit coupled to the primary turn-off detection circuit, the zero-crossing detection circuit and the primary turn-on enable circuit to receive the primary turn-off detection signal, the zero-crossing detection signal and the primary turn-on enable signal to generate a secondary control signal to control the secondary switch; An isolation circuit has an input end that receives the primary turn-on enable signal and generates a synchronization signal electrically isolated from the primary turn-on enable signal at an output end; and a primary logic circuit coupled to the output end of the isolation circuit to receive the A synchronization signal is generated, and a primary control signal is generated based on the synchronization signal to control the primary switch tube. 如請求項1所述的控制器,其中,該脈衝頻率調變電路包括:誤差放大電路,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端接收該反饋信號,該第二輸入端接收參考信號,該誤差放大電路基於該反饋信號和該參考信號之差,在該輸出端產生補償信號;調變信號產生電路,產生調變信號;以及第一比較電路,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端耦接至該誤差放大電路的該輸出端以接收該補償信號,該第二輸入端耦接至該調變信號產生電路以接收該調變信號,該第一比較電路將該補償信號與該調變信號進行比較,在該輸出端產生該脈衝頻率調變信號。 The controller of claim 1, wherein the pulse frequency modulation circuit includes: an error amplification circuit having a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the feedback signal , the second input terminal receives the reference signal, the error amplification circuit generates a compensation signal at the output terminal based on the difference between the feedback signal and the reference signal; the modulation signal generation circuit generates a modulation signal; and the first comparison circuit, Having a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the error amplifier circuit to receive the compensation signal, and the second input terminal is coupled to the modulation signal The generating circuit receives the modulation signal, the first comparison circuit compares the compensation signal with the modulation signal, and generates the pulse frequency modulation signal at the output end. 如請求項1所述的控制器,該初級開通致能電路包括:D觸發器,具有輸入端、時鐘端和輸出端,其中,該輸入端接收該波谷脈衝信號,該時鐘端接收該脈衝頻率調變信號; 第一或閘,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端耦接至該D觸發器的該輸出端,該第二輸入端接收代表該開關變換器操作模式的模式指示信號;以及第一及閘,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端耦接至該第一或閘的該輸出端,該第二輸入端接收該脈衝頻率調變信號,該第一及閘在該輸出端提供該初級開通致能信號。 As in the controller of claim 1, the primary turn-on enabling circuit includes: a D flip-flop having an input terminal, a clock terminal and an output terminal, wherein the input terminal receives the valley pulse signal, and the clock terminal receives the pulse frequency. Modulation signal; A first OR gate has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the D flip-flop, and the second input terminal receives a signal representing the operation of the switching converter. a mode indication signal of the mode; and a first AND gate having a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the first OR gate, and the second input terminal The terminal receives the pulse frequency modulation signal, and the first AND gate provides the primary turn-on enable signal at the output terminal. 如請求項1所述的控制器,還包括:第二比較電路,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端接收代表流過該初級開關管電流的初級電流取樣信號,該第二輸入端接收第一閾值電壓,該第二比較電路將該初級電流取樣信號與該第一閾值電壓進行比較,在該輸出端產生第二比較信號;以及其中,該初級邏輯電路還耦接至該第二比較電路的該輸出端以接收該第二比較信號,並基於該第二比較信號和該同步信號產生該初級控制信號。 The controller according to claim 1, further comprising: a second comparison circuit having a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives a primary signal representing the current flowing through the primary switch tube. The current sampling signal, the second input terminal receives the first threshold voltage, the second comparison circuit compares the primary current sampling signal with the first threshold voltage, and generates a second comparison signal at the output terminal; and wherein, the primary The logic circuit is further coupled to the output end of the second comparison circuit to receive the second comparison signal and generate the primary control signal based on the second comparison signal and the synchronization signal. 如請求項1所述的控制器,其中,該波谷檢測電路包括:波谷比較器,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端耦接至該次級開關管以接收該次級開關管的汲極電壓,該第二輸入端接收該開關變換器的輸出電壓,該波谷比較器將該次級開關管的該汲極電壓與該輸出電壓進行比較,在該輸出端產生波谷比較信號; 觸發器,具有設定端、重定端和反向輸出端,其中,該設定端接收該初級開通致能信號,該重定端經下降邊緣觸發電路接收該次級控制信號;第二及閘,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端接收該波谷比較信號,該第二輸入端耦接至該觸發器的該反向輸出端;以及單脈衝產生電路,具有輸入端和輸出端,其中,該輸入端耦接至該第二及閘的該輸出端,在該輸出端提供該波谷脈衝信號。 The controller of claim 1, wherein the valley detection circuit includes: a valley comparator having a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the secondary switch The second input terminal receives the drain voltage of the secondary switch tube, and the second input terminal receives the output voltage of the switching converter. The valley comparator compares the drain voltage of the secondary switch tube with the output voltage. This output generates a valley comparison signal; The flip-flop has a setting end, a resetting end and a reverse output end, wherein the setting end receives the primary turn-on enable signal, and the resetting end receives the secondary control signal through the falling edge trigger circuit; the second AND gate has a An input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the valley comparison signal, the second input terminal is coupled to the reverse output terminal of the flip-flop; and a single pulse generation circuit having An input terminal and an output terminal, wherein the input terminal is coupled to the output terminal of the second AND gate, and the valley pulse signal is provided at the output terminal. 如請求項1所述的控制器,還包括:波谷選定電路,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端接收該脈衝頻率調變信號,該第二輸入端接收該波谷脈衝信號,該波谷選定電路基於該脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並在該輸出端提供對應於該目標波谷數的波谷致能信號;以及該初級開通致能電路還包括接收該波谷致能信號的第三輸入端,基於該脈衝頻率調變信號、該波谷脈衝信號以及該波谷致能信號,在該輸出端產生該初級開通致能信號。 The controller according to claim 1, further comprising: a valley selection circuit having a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the pulse frequency modulation signal, and the second input terminal The terminal receives the trough pulse signal, the trough selection circuit generates a target trough number based on the pulse frequency modulation signal and the trough number of the previous cycle, and provides a trough enable signal corresponding to the target trough number at the output end; and The primary turn-on enable circuit also includes a third input terminal that receives the valley enable signal, and generates the primary turn-on enable signal at the output terminal based on the pulse frequency modulation signal, the valley pulse signal and the valley enable signal. . 如請求項6所述的控制器,其中,當該目標波谷數為0時,該開關變換器進入該電流連續模式。 The controller as claimed in claim 6, wherein when the target valley number is 0, the switching converter enters the current continuous mode. 如請求項6所述的控制器,其中,該波谷選定電路將該脈衝頻率調變信號上升邊緣來臨時所累計的 波谷數與該上一週期的波谷數相比較,根據比較結果選擇繼續保持或切換至另一合適的波谷,並在目前波谷數達到該目標波谷數時提供該波谷致能信號。 The controller as claimed in claim 6, wherein the valley selection circuit calculates the accumulated value when the rising edge of the pulse frequency modulation signal comes. The trough number is compared with the trough number of the previous cycle, and the trough enable signal is provided when the current trough number reaches the target trough number. 如請求項8所述的控制器,其中,該波谷選定電路包括:計數器,具有時鐘端,重定端和輸出端,其中,該時鐘端接收該波谷脈衝信號,該重定端接收該初級開通致能信號,該計數器對一週期內該波谷脈衝信號的脈衝個數進行計數,在該輸出端提供第一數值;暫存器,具有輸入端,時鐘端和輸出端,其中,該輸入端接收該第一數值,該時鐘端接收該脈衝頻率調變信號,在該輸出端產生第二數值;目標波谷數產生器,將該第二數值與該上一週期的波谷數進行比較,在該輸出端產生該目標波谷數;以及數位比較器,將該第一數值與該目標波谷數進行比較,當該第一數值大於或等於該目標波谷數時,在該輸出端提供該波谷致能信號。 The controller of claim 8, wherein the valley selection circuit includes: a counter having a clock terminal, a reset terminal and an output terminal, wherein the clock terminal receives the valley pulse signal, and the reset terminal receives the primary turn-on enable signal, the counter counts the number of pulses of the valley pulse signal in one cycle, and provides a first value at the output terminal; the temporary register has an input terminal, a clock terminal and an output terminal, wherein the input terminal receives the first value A value, the clock terminal receives the pulse frequency modulation signal, and generates a second value at the output terminal; the target trough number generator compares the second value with the trough number of the previous cycle, and generates a value at the output terminal. the target trough number; and a digital comparator that compares the first value with the target trough number, and when the first value is greater than or equal to the target trough number, provides the trough enable signal at the output end. 如請求項9所述的控制器,其中:當該第二數值大於該上一週期的波谷數時,該目標波谷數等於該上一週期的波谷數加1;當該上一週期波谷數大於3且比該第二數值大2時,該目標波谷數等於該上一週期波谷數減1;以及當該上一週期波谷數為2或1,且該脈衝頻率調變信號的上升邊緣來臨時刻比第一波谷提早一預設時長到達時, 該目標波谷數等於該上一週期波谷數減1。 The controller as described in request item 9, wherein: when the second value is greater than the number of troughs in the previous period, the target number of troughs is equal to the number of troughs in the previous period plus 1; when the number of troughs in the previous period is greater than 3 and is greater than the second value by 2, the target trough number is equal to the trough number of the previous period minus 1; and when the trough number of the previous period is 2 or 1, and the rising edge of the pulse frequency modulation signal arrives, When arriving a preset time earlier than the first wave trough, The target trough number is equal to the trough number of the previous period minus 1. 如請求項6所述的控制器,其中,當該波谷致能信號有效且該脈衝頻率調變信號的上升邊緣來臨時,該初級開通致能信號有效,控制該初級開關管導通。 The controller of claim 6, wherein when the valley enable signal is valid and the rising edge of the pulse frequency modulation signal comes, the primary turn-on enable signal is valid and controls the primary switch to be turned on. 一種用於隔離式開關變換器的控制器,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至該初級繞組的初級開關管、耦接至該次級繞組的次級開關管以及隔離電路,該控制器包括:波谷檢測電路,耦接至該次級開關管以檢測該開關變換器諧振電壓的波形,並輸出表示該諧振電壓波谷的波谷脈衝信號;脈衝頻率調變電路,接收代表該開關變換器輸出信號的反饋信號,產生脈衝頻率調變信號;波谷選定電路,具有第一輸入端、第二輸入端和輸出端,其中,該第一輸入端接收該脈衝頻率調變信號,該第二輸入端接收該波谷脈衝信號,該波谷選定電路基於該脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並在該輸出端提供回應於該目標波谷數的波谷致能信號;初級開通致能電路,具有第一輸入端、第二輸入端、第三輸入端和輸出端,其中,該第一輸入端接收該脈衝頻率調變信號,該第二輸入端接收該波谷脈衝信號,該第三輸入端接收該波谷致能信號,基於該頻率調變信號、該波谷脈衝信號以及該波谷致能信號,在該輸出端產生初級開通致能信號至該隔離電路的輸入端; 初級關斷檢測電路,檢測該初級開關管是否關斷,產生初級關斷檢測信號;過零檢測電路,檢測流過該次級開關管的電流是否過零,並產生過零檢測信號;次級邏輯電路,耦接至該初級關斷檢測電路和該過零檢測電路以接收該初級關斷檢測信號和該過零檢測信號,並基於該初級關斷檢測信號與該過零檢測信號產生次級控制信號以控制該次級開關管;以及初級邏輯電路,耦接至該隔離電路的輸出端以接收與該初級開通致能信號電隔離的同步信號,並基於該同步信號產生初級控制信號以控制該初級開關管。 A controller for an isolated switching converter, which includes a transformer with a primary winding and a secondary winding, a primary switching tube coupled to the primary winding, and a secondary switching tube coupled to the secondary winding. and an isolation circuit. The controller includes: a valley detection circuit coupled to the secondary switch tube to detect the waveform of the resonant voltage of the switching converter and output a valley pulse signal representing the valley of the resonant voltage; a pulse frequency modulation circuit , receiving a feedback signal representing the output signal of the switching converter to generate a pulse frequency modulation signal; the valley selection circuit has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the pulse frequency modulation signal. changing signal, the second input terminal receives the trough pulse signal, the trough selection circuit generates a target trough number based on the pulse frequency modulation signal and the trough number of the previous cycle, and provides a response to the target trough number at the output end The valley enabling signal; the primary turn-on enabling circuit has a first input terminal, a second input terminal, a third input terminal and an output terminal, wherein the first input terminal receives the pulse frequency modulation signal, and the second input terminal The terminal receives the valley pulse signal, and the third input terminal receives the valley enable signal. Based on the frequency modulation signal, the valley pulse signal and the valley enable signal, a primary turn-on enable signal is generated at the output terminal to the isolation The input terminal of the circuit; The primary turn-off detection circuit detects whether the primary switch tube is turned off and generates a primary turn-off detection signal; the zero-crossing detection circuit detects whether the current flowing through the secondary switch tube crosses zero and generates a zero-crossing detection signal; the secondary a logic circuit coupled to the primary turn-off detection circuit and the zero-crossing detection circuit to receive the primary turn-off detection signal and the zero-crossing detection signal, and generate a secondary based on the primary turn-off detection signal and the zero-crossing detection signal a control signal to control the secondary switch; and a primary logic circuit coupled to the output end of the isolation circuit to receive a synchronization signal electrically isolated from the primary turn-on enable signal, and generate a primary control signal based on the synchronization signal to control the primary switch tube. 如請求項12所述的控制器,其中,該波谷選定電路將該脈衝頻率調變信號上升邊緣來臨時所累計的波谷數與該上一週期的波谷數相比較,根據比較結果選擇繼續保持或切換至另一合適的波谷,並在目前波谷數達到該目標波谷數時提供該波谷致能信號。 The controller as described in claim 12, wherein the valley selection circuit compares the number of valleys accumulated when the rising edge of the pulse frequency modulation signal comes with the number of valleys in the previous cycle, and selects to continue to maintain or maintain based on the comparison result. Switch to another appropriate trough, and provide the trough enabling signal when the current trough number reaches the target trough number. 一種隔離式開關變換器,包括如請求項1至13中任一項所述的控制器。 An isolated switching converter includes the controller described in any one of claims 1 to 13. 一種隔離式開關變換器的控制方法,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至該初級繞組的初級開關管、耦接至該次級繞組的次級開關管以及隔離電路,該控制方法包括:接收代表該開關變換器輸出信號的反饋信號,產生與該反饋信號有關的脈衝頻率調變信號; 耦接至該次級開關管以檢測該開關變換器的諧振電壓波形,產生表示該諧振電壓波谷的波谷脈衝信號;基於該脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並提供回應於該目標波谷數的波谷致能信號;基於該波谷致能信號、該脈衝頻率調變信號和該波谷脈衝信號,產生初級開通致能信號;將該初級開通致能信號送入該隔離電路,產生與該初級開通致能信號電隔離的同步信號;以及基於該同步信號,產生初級控制信號以控制該初級開關管。 A control method for an isolated switching converter, which includes a transformer with a primary winding and a secondary winding, a primary switch tube coupled to the primary winding, a secondary switch tube coupled to the secondary winding, and isolation Circuit, the control method includes: receiving a feedback signal representing the output signal of the switching converter, and generating a pulse frequency modulation signal related to the feedback signal; Coupled to the secondary switch transistor to detect the resonant voltage waveform of the switching converter, and generate a valley pulse signal representing the valley of the resonant voltage; based on the pulse frequency modulation signal and the number of valleys in the previous cycle, generate a target number of valleys, And provide a trough enable signal in response to the target trough number; generate a primary turn-on enable signal based on the trough enable signal, the pulse frequency modulation signal and the trough pulse signal; send the primary turn-on enable signal into the The isolation circuit generates a synchronization signal that is electrically isolated from the primary turn-on enable signal; and based on the synchronization signal, generates a primary control signal to control the primary switch tube. 如請求項15所述的控制方法,還包括:檢測該初級開關管是否關斷,產生初級關斷檢測信號;檢測流過該次級開關管的電流是否過零,產生過零檢測信號;以及基於該初級關斷檢測信號和該過零檢測信號,產生次級控制信號以控制該次級開關管。 The control method as described in claim 15, further includes: detecting whether the primary switch tube is turned off, and generating a primary turn-off detection signal; detecting whether the current flowing through the secondary switch tube crosses zero, and generating a zero-crossing detection signal; and Based on the primary turn-off detection signal and the zero-crossing detection signal, a secondary control signal is generated to control the secondary switch tube. 如請求項15所述的控制方法,產生該目標波谷數的方法包括:將該脈衝頻率調變信號上升邊緣來臨時所累計的波谷數與該上一週期的波谷數相比較,選擇保持或切換至另一合適的波谷數。 According to the control method described in claim 15, the method for generating the target trough number includes: comparing the accumulated trough number when the rising edge of the pulse frequency modulation signal comes with the trough number of the previous cycle, and selecting to maintain or switch. to another appropriate trough number. 如請求項15所述的控制方法,其中,提 供該波谷致能信號的方法包括:接收該波谷脈衝信號,對一週期內該波谷脈衝信號的脈衝進行計數,提供第一數值;記錄該脈衝頻率調變信號上升邊緣來臨時的該第一數值,作為第二數值;將該第二數值與該上一週期波谷數進行比較,根據比較結果產生目標波谷數;以及將該第一數值與該目標波谷數進行比較,當該第一數值大於或等於該目標波谷數時,在輸出端提供該波谷致能信號。 The control method as described in claim 15, wherein it is provided The method of providing the valley enable signal includes: receiving the valley pulse signal, counting the pulses of the valley pulse signal within one cycle, and providing a first value; and recording the first value when the rising edge of the pulse frequency modulation signal comes. , as the second value; compare the second value with the trough number of the previous period, and generate a target trough number according to the comparison result; and compare the first value with the target trough number, when the first value is greater than or When equal to the target trough number, the trough enable signal is provided at the output end. 如請求項18所述的控制方法,其中:當該第二數值大於該上一週期的波谷數時,該目標波谷數等於該上一週期的波谷數加1;當該上一週期波谷數大於3且比該第二數值大2時,該目標波谷數等於該上一週期波谷數減1;以及當該上一週期波谷數為2或1,且該脈衝頻率調變信號的上升邊緣來臨時刻比第一波谷提早一預設時長到達時,該目標波谷數等於該上一週期波谷數減1。 The control method as described in claim 18, wherein: when the second value is greater than the number of troughs in the previous period, the target number of troughs is equal to the number of troughs in the previous period plus 1; when the number of troughs in the previous period is greater than 3 and is greater than the second value by 2, the target trough number is equal to the trough number of the previous period minus 1; and when the trough number of the previous period is 2 or 1, and the rising edge of the pulse frequency modulation signal arrives, When the target trough is reached a preset time earlier than the first trough, the target trough number is equal to the trough number of the previous period minus 1. 如請求項15所述的控制方法,其中,當該目標波谷數為0時,該開關變換器進入電流連續模式。 The control method as described in claim 15, wherein when the target valley number is 0, the switching converter enters the current continuous mode.
TW110148198A 2020-12-31 2021-12-22 Isolated switching converter with secondary side modulation and control method TWI811910B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011622595.6A CN112803722B (en) 2020-12-31 2020-12-31 Isolated switch converter and controller and control method thereof
CN202011622595.6 2020-12-31

Publications (2)

Publication Number Publication Date
TW202230952A TW202230952A (en) 2022-08-01
TWI811910B true TWI811910B (en) 2023-08-11

Family

ID=75807513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110148198A TWI811910B (en) 2020-12-31 2021-12-22 Isolated switching converter with secondary side modulation and control method

Country Status (3)

Country Link
US (1) US11722068B2 (en)
CN (1) CN112803722B (en)
TW (1) TWI811910B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778852B (en) * 2021-04-08 2022-09-21 通嘉科技股份有限公司 Control method of a flyback power converter
CN113780295B (en) * 2021-09-13 2024-02-20 东北大学 Time sequence segmentation method based on LAC-FLOS algorithm and IER algorithm
US20230155516A1 (en) * 2021-11-18 2023-05-18 Microchip Technology Incorporated Secondary-side flyback converter controller
CN114244131B (en) * 2021-12-10 2024-09-20 杭州茂力半导体技术有限公司 Switching converter, control circuit and control method thereof
CN114204821B (en) * 2021-12-10 2024-09-20 杭州茂力半导体技术有限公司 Switching converter, controller and control method thereof
CN114696626B (en) * 2022-04-11 2024-06-25 上海南芯半导体科技股份有限公司 Control circuit of flyback converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280576A1 (en) * 2014-03-26 2015-10-01 Infineon Technologies Austria Ag System and Method for a Switched Mode Power Supply
TW201624902A (en) * 2014-12-31 2016-07-01 力林科技股份有限公司 Power conversion apparatus with power saving and high conversion efficiency mechanisms

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1397599B1 (en) * 2009-12-21 2013-01-16 St Microelectronics Srl FLYBACK DUAL MODE CONVERTER AND METHOD OF MONITORING THE OPERATING MODE.
CN102664525B (en) 2012-05-08 2014-08-27 成都芯源系统有限公司 Switching power supply circuit
CN102655378B (en) 2012-05-08 2014-06-04 成都芯源系统有限公司 Isolated voltage converter circuit and control method thereof
CN102655373B (en) 2012-05-08 2015-06-03 成都芯源系统有限公司 Isolated voltage conversion circuit and control method thereof
CN103490605B (en) 2013-10-12 2015-12-23 成都芯源系统有限公司 Isolated switch converter and controller and control method thereof
US10868473B2 (en) * 2015-11-30 2020-12-15 Semiconductor Components Industries, Llc Secondary side controlled control circuit for power converter with synchronous rectifier
US20170346405A1 (en) * 2016-05-26 2017-11-30 Inno-Tech Co., Ltd. Dual-mode operation controller for flyback converter with primary-side regulation
US9991812B2 (en) * 2016-07-12 2018-06-05 Semiconductor Components Industries, Llc Variable blanking frequency for resonant converters
CN106655834B (en) * 2016-10-08 2019-01-25 成都启臣微电子股份有限公司 Quasi-resonance primary side constant-current control circuit and AC/DC changeover switch with the circuit
CN107248817B (en) 2017-06-28 2019-06-18 成都芯源系统有限公司 Quasi-resonance control switching circuit and method
US11228240B2 (en) * 2019-03-08 2022-01-18 Diodes Incorporated Input voltage adaptive jitter for quasi-resonant control
US10804806B1 (en) * 2019-08-14 2020-10-13 Semiconductor Components Industries, Llc Method and system of a switching power converter
CN112217379B (en) * 2020-09-28 2021-11-23 杭州茂力半导体技术有限公司 Staggered switching power supply and control circuit and control method thereof
CN113162372B (en) * 2020-12-31 2022-03-22 成都芯源系统有限公司 Quasi-resonance controlled switch converter, controller and control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280576A1 (en) * 2014-03-26 2015-10-01 Infineon Technologies Austria Ag System and Method for a Switched Mode Power Supply
TW201624902A (en) * 2014-12-31 2016-07-01 力林科技股份有限公司 Power conversion apparatus with power saving and high conversion efficiency mechanisms

Also Published As

Publication number Publication date
US20220209676A1 (en) 2022-06-30
TW202230952A (en) 2022-08-01
CN112803722B (en) 2022-06-14
US11722068B2 (en) 2023-08-08
CN112803722A (en) 2021-05-14

Similar Documents

Publication Publication Date Title
TWI811910B (en) Isolated switching converter with secondary side modulation and control method
TWI521852B (en) Isolated switching converters, and switching controllers and controlling methods thereof
TWI821832B (en) Switching converter with quasi-resonant control and control method thereof
US11664720B2 (en) Zero-voltage-switching control circuit, control method and switching power supply
US11929684B2 (en) Isolated power supply control circuits, isolated power supply and control method thereof
US20220416644A1 (en) Asymmetric half-bridge flyback converter and control method thereof
US11283343B2 (en) Extremum locator with measurement enable circuit
TWI707527B (en) Flyback powr converter and secondary side controller circuit and control method thereof
Hsieh et al. A primary-side-control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching
US20160013714A1 (en) A method of control for synchronous rectifiers
JP6938854B2 (en) Switching power supply
TW202427931A (en) Switching power supply and controller and control method thereof
TWI841989B (en) Asymmetric half-bridge flyback converter power supply and control chip and control method thereof
TWI783365B (en) Flyback converter and switching controller circuit and control method thereof
Wu et al. Quasi-resonant flyback converter with new valley voltage detection mechanism
CN115473415A (en) Isolated switch converter and controller and control method thereof
CN112713778B (en) Switching control circuit and method for controlling flyback power supply circuit
CN113852218A (en) Object detection apparatus and method for wireless power transfer system
TWI842520B (en) Asymmetric half-bridge flyback converter power supply and its control circuit
US20240204678A1 (en) Enable circuit with winding signal detection
US20240171058A1 (en) Controller and controlling method for quasi-resonant controlled switching converter
US20240039417A1 (en) Isolated switching converter with soft switching and control method thereof
CN114079381B (en) Flyback power conversion circuit and active clamping buffer thereof
TW202437657A (en) Asymmetric half-bridge flyback converter power supply and its control circuit
TW202406284A (en) Isolated switching converter and the control circuit and method thereof