TWI811910B - Isolated switching converter with secondary side modulation and control method - Google Patents
Isolated switching converter with secondary side modulation and control method Download PDFInfo
- Publication number
- TWI811910B TWI811910B TW110148198A TW110148198A TWI811910B TW I811910 B TWI811910 B TW I811910B TW 110148198 A TW110148198 A TW 110148198A TW 110148198 A TW110148198 A TW 110148198A TW I811910 B TWI811910 B TW I811910B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- primary
- valley
- circuit
- input terminal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004804 winding Methods 0.000 claims abstract description 48
- 238000002955 isolation Methods 0.000 claims abstract description 42
- 238000001514 detection method Methods 0.000 claims description 110
- 230000000630 rising effect Effects 0.000 claims description 19
- 238000005070 sampling Methods 0.000 claims description 13
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 10
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 abstract description 5
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 18
- 101100102849 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) VTH1 gene Proteins 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 8
- 102100029469 WD repeat and HMG-box DNA-binding protein 1 Human genes 0.000 description 4
- 101710097421 WD repeat and HMG-box DNA-binding protein 1 Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 101000746134 Homo sapiens DNA endonuclease RBBP8 Proteins 0.000 description 3
- 101000969031 Homo sapiens Nuclear protein 1 Proteins 0.000 description 3
- 102100021133 Nuclear protein 1 Human genes 0.000 description 3
- 101150088150 VTH2 gene Proteins 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dc-Dc Converters (AREA)
- Stereo-Broadcasting Methods (AREA)
Abstract
Description
本發明係有關電子電路,尤其有關準諧振控制的隔離式開關變換器及其控制器和控制方法。The present invention relates to electronic circuits, and in particular to a quasi-resonance controlled isolated switching converter and its controller and control method.
隔離式開關電源通常包括具有初級繞組和次級繞組的變壓器,以提供隔離。初級開關管耦接至初級繞組,控制儲存在初級繞組的能量向次級繞組傳遞。次級開關管耦接至次級繞組,作為同步整流管取代傳統的整流二極體來降低損耗,提高隔離式開關電源的效率。圖1為現有的同步整流技術的波形圖,其中,Vds為次級開關管的汲極源極電壓,Isec為流過次級繞組的電流,DRVS為次級開關管的控制信號。Vds被用作分別與兩個閾值電壓,例如-70 mV和-500mV進行比較。 如圖1所示,當次級開關管的體二極體導通,使得Vds小於-500mV時,次級開關管被導通;當初級開關管導通,使得Vds大於-70mV時,次級開關管一被關斷。然而,這樣容易導致初級開關管和次級開關管同時導通(直通,Shoot through),降低開關電源的效率甚至造成開關電源損壞。此外,在高頻應用中,開關管的開關動作會產生開關損耗和電磁干擾,從而進一步影響隔離式開關電源的效率。 Isolated switching power supplies typically include a transformer with a primary and secondary winding to provide isolation. The primary switch tube is coupled to the primary winding and controls the energy stored in the primary winding to be transferred to the secondary winding. The secondary switch tube is coupled to the secondary winding and serves as a synchronous rectifier tube to replace the traditional rectifier diode to reduce losses and improve the efficiency of the isolated switching power supply. Figure 1 is a waveform diagram of the existing synchronous rectification technology, in which Vds is the drain-source voltage of the secondary switch tube, Isec is the current flowing through the secondary winding, and DRVS is the control signal of the secondary switch tube. Vds is compared to two threshold voltages, such as -70 mV and -500mV respectively. As shown in Figure 1, when the body diode of the secondary switch tube is turned on so that Vds is less than -500mV, the secondary switch tube is turned on; when the primary switch tube is turned on so that Vds is greater than -70mV, the secondary switch tube is turned on. is turned off. However, this can easily cause the primary switch tube and the secondary switch tube to be turned on at the same time (shoot through), reducing the efficiency of the switching power supply and even causing damage to the switching power supply. In addition, in high-frequency applications, the switching action of the switching tube will produce switching losses and electromagnetic interference, which further affects the efficiency of the isolated switching power supply.
針對現有技術中存在的一個或多個問題,本發明的目的在於提供能夠有效避免直通和/或能提高效率且避免電磁干擾的隔離式開關變換器及其控制器和控制方法。 根據本發明實施例的一種用於隔離式開關變換器的控制器,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至初級繞組的初級開關管以及耦接至次級繞組的次級開關管,該控制器包括:波谷檢測電路,耦接至次級開關管以檢測開關變換器諧振電壓的波形,並輸出表示諧振電壓波谷的波谷脈衝信號;脈衝頻率調變電路,接收代表開關變換器輸出信號的反饋信號,產生脈衝頻率調變信號;初級開通致能電路,其中,當變換器操作在準諧振模式時,初級開通致能電路基於脈衝頻率調變信號和波谷脈衝信號,在輸出端輸出初級開通致能信號,當開關變換器操作在電流連續模式時,初級開通致能電路將脈衝頻率調變信號作為初級開通致能信號在輸出端輸出;初級關斷檢測電路,檢測初級開關管是否關斷,產生初級關斷檢測信號;過零檢測電路,檢測流過次級開關管的電流是否過零,並產生過零檢測信號;以及次級邏輯電路,耦接至初級關斷檢測電路、過零檢測電路和初級開通致能電路以接收初級關斷檢測信號、過零檢測信號和初級開通致能信號,產生次級控制信號以控制次級開關管;隔離電路,具有接收初級開通致能信號的輸入端,在輸出端產生與初級開通致能信號電隔離的同步信號;以及初級邏輯電路,耦接至隔離電路的輸出端以接收同步信號,並基於同步信號產生初級控制信號以控制初級開關管。 根據本發明實施例的一種用於隔離式開關變換器的控制器,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至初級繞組的初級開關管、耦接至次級繞組的次級開關管以及隔離電路,該控制器包括:波谷檢測電路,耦接至次級開關管以檢測開關變換器諧振電壓的波形,並輸出表示諧振電壓波谷的波谷脈衝信號;脈衝頻率調變電路,接收代表開關變換器輸出信號的反饋信號,產生脈衝頻率調變信號;波谷選定電路,具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收脈衝頻率調變信號,第二輸入端接收波谷脈衝信號,波谷選定電路基於脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並在輸出端提供回應於目標波谷數的波谷致能信號;初級開通致能電路,具有第一輸入端、第二輸入端、第三輸入端和輸出端,其中,第一輸入端接收脈衝頻率調變信號,第二輸入端接收波谷脈衝信號,第三輸入端接收波谷致能信號,基於頻率調變信號、波谷脈衝信號以及波谷致能信號,在輸出端產生初級開通致能信號至隔離電路的輸入端;初級關斷檢測電路,檢測初級開關管是否關斷,產生初級關斷檢測信號;過零檢測電路,檢測流過次級開關管的電流是否過零,並產生過零檢測信號;次級邏輯電路,耦接至初級關斷檢測電路和過零檢測電路以接收初級關斷檢測信號和過零檢測信號,並基於初級關斷檢測信號與過零檢測信號產生次級控制信號以控制次級開關管;以及初級邏輯電路,耦接至隔離電路的輸出端以接收與初級開通致能信號電隔離的同步信號,並基於同步信號產生初級控制信號以控制初級開關管。 根據本發明實施例的一種隔離式開關變換器,包括如前所述的控制器。 根據本發明實施例的一種隔離式開關變換器的控制方法,該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至初級繞組的初級開關管、耦接至次級繞組的次級開關管以及隔離電路,該控制方法包括:接收代表開關變換器輸出信號的反饋信號,產生與反饋信號有關的脈衝頻率調變信號;耦接至次級開關管以檢測開關變換器的諧振電壓波形,產生表示諧振電壓波谷的波谷脈衝信號;基於脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並提供回應於目標波谷數的波谷致能信號;基於波谷致能信號、脈衝頻率調變信號和波谷脈衝信號,產生初級開通致能信號;將初級開通致能信號送入隔離電路,產生與初級開通致能信號電隔離的同步信號;以及基於同步信號,產生初級控制信號以控制初級開關管。 在本發明的實施例中,引入準諧振控制,基於脈衝頻率調變信號和波谷脈衝信號產生初級開通致能信號,並透過與初級開通致能信號電隔離的同步信號控制初級開關管谷底導通,大大減小了開關損耗和電磁干擾。同時,基於該初級開通致能信號和初級關斷檢測電路來控制次級開關管,並基於與初級開通致能信號電隔離的同步信號控制初級開關管,可以準確控制初級開關管和次級開關管的導通與關斷,無需在初級開關管導通後才關斷次級開關管,有效地避免了直通。 In view of one or more problems existing in the prior art, the purpose of the present invention is to provide an isolated switching converter and its controller and control method that can effectively avoid shoot-through and/or improve efficiency and avoid electromagnetic interference. According to an embodiment of the present invention, a controller is used for an isolated switching converter. The switching converter includes a transformer with a primary winding and a secondary winding, a primary switching tube coupled to the primary winding, and a switching transistor coupled to the secondary winding. The secondary switch tube, the controller includes: a valley detection circuit, coupled to the secondary switch tube to detect the waveform of the resonant voltage of the switching converter, and output a valley pulse signal indicating the valley of the resonant voltage; a pulse frequency modulation circuit, receiving a feedback signal representing the output signal of the switching converter, generating a pulse frequency modulation signal; a primary turn-on enable circuit, wherein when the converter operates in a quasi-resonant mode, the primary turn-on enable circuit is based on the pulse frequency modulation signal and the valley pulse signal , the primary turn-on enable signal is output at the output end. When the switching converter operates in the current continuous mode, the primary turn-on enable circuit outputs the pulse frequency modulation signal as the primary turn-on enable signal at the output end; the primary turn-off detection circuit, Detect whether the primary switch tube is turned off and generate a primary turn-off detection signal; a zero-crossing detection circuit detects whether the current flowing through the secondary switch tube crosses zero and generate a zero-crossing detection signal; and a secondary logic circuit is coupled to the primary The shutdown detection circuit, the zero-crossing detection circuit and the primary turn-on enable circuit receive the primary turn-off detection signal, the zero-crossing detection signal and the primary turn-on enable signal, and generate a secondary control signal to control the secondary switch tube; the isolation circuit has An input terminal that receives the primary turn-on enable signal and generates a synchronization signal electrically isolated from the primary turn-on enable signal at the output terminal; and a primary logic circuit coupled to the output terminal of the isolation circuit to receive the synchronization signal and generate a primary primary logic circuit based on the synchronization signal. Control signal to control the primary switching tube. A controller for an isolated switching converter according to an embodiment of the present invention. The switching converter includes a transformer with a primary winding and a secondary winding, a primary switching tube coupled to the primary winding, and a switching transistor coupled to the secondary winding. The secondary switch tube and isolation circuit, the controller includes: a valley detection circuit, coupled to the secondary switch tube to detect the waveform of the resonant voltage of the switching converter, and output a valley pulse signal indicating the valley of the resonant voltage; the pulse frequency modulation power supply circuit, which receives a feedback signal representing the output signal of the switching converter and generates a pulse frequency modulation signal; the valley selection circuit has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives the pulse frequency modulation signal. , the second input terminal receives the trough pulse signal, the trough selection circuit generates the target trough number based on the pulse frequency modulation signal and the trough number of the previous cycle, and provides a trough enable signal in response to the target trough number at the output end; the primary is turned on The enabling circuit has a first input terminal, a second input terminal, a third input terminal and an output terminal, wherein the first input terminal receives the pulse frequency modulation signal, the second input terminal receives the valley pulse signal, and the third input terminal receives The valley enable signal, based on the frequency modulation signal, the valley pulse signal and the valley enable signal, generates a primary turn-on enable signal at the output end and sends it to the input end of the isolation circuit; the primary turn-off detection circuit detects whether the primary switch tube is turned off. Generate a primary turn-off detection signal; a zero-crossing detection circuit detects whether the current flowing through the secondary switch tube crosses zero and generate a zero-crossing detection signal; a secondary logic circuit coupled to the primary turn-off detection circuit and the zero-crossing detection circuit to receive the primary turn-off detection signal and the zero-crossing detection signal, and generate a secondary control signal based on the primary turn-off detection signal and the zero-crossing detection signal to control the secondary switch; and a primary logic circuit coupled to the output end of the isolation circuit To receive a synchronization signal that is electrically isolated from the primary turn-on enable signal, and generate a primary control signal based on the synchronization signal to control the primary switch tube. An isolated switching converter according to an embodiment of the present invention includes the controller as described above. According to a control method of an isolated switching converter according to an embodiment of the present invention, the switching converter includes a transformer with a primary winding and a secondary winding, a primary switching tube coupled to the primary winding, and a secondary switching tube coupled to the secondary winding. Switch tube and isolation circuit, the control method includes: receiving a feedback signal representing the output signal of the switching converter, generating a pulse frequency modulation signal related to the feedback signal; coupling to the secondary switch tube to detect the resonant voltage waveform of the switching converter , generate a trough pulse signal representing the resonant voltage trough; generate a target trough number based on the pulse frequency modulation signal and the trough number of the previous cycle, and provide a trough enable signal in response to the target trough number; based on the trough enable signal, pulse The frequency modulation signal and the valley pulse signal generate a primary turn-on enable signal; the primary turn-on enable signal is sent to the isolation circuit to generate a synchronization signal electrically isolated from the primary turn-on enable signal; and based on the synchronization signal, a primary control signal is generated to Control the primary switching tube. In the embodiment of the present invention, quasi-resonant control is introduced, the primary turn-on enable signal is generated based on the pulse frequency modulation signal and the valley pulse signal, and the valley conduction of the primary switch tube is controlled through a synchronization signal electrically isolated from the primary turn-on enable signal. Switching losses and electromagnetic interference are greatly reduced. At the same time, the secondary switch tube is controlled based on the primary turn-on enable signal and the primary turn-off detection circuit, and the primary switch tube is controlled based on the synchronization signal electrically isolated from the primary turn-on enable signal, which can accurately control the primary switch tube and the secondary switch. There is no need to turn off the secondary switch tube after the primary switch tube is turned on to turn on and off the tube, effectively avoiding shoot-through.
下面將詳細描述本發明的具體實施例,應當注意,這裡描述的實施例只用於舉例說明,並不用於限制本發明。在以下描述中,為了提供對本發明的透徹理解,闡述了大量特定細節。然而,對於本領域普通技術人員顯而易見的是,不必採用這些特定細節來實行本發明。在其他實例中,為了避免混淆本發明,未具體描述公知的電路、材料或方法。
在整個說明書中,對“一個實施例”、“實施例”、“一個示例”或“示例”的提及意味著:結合該實施例或示例描述的特定特徵、結構或特性被包含在本發明至少一個實施例中。因此,在整個說明書的各個地方出現的短語“在一個實施例中”、“在實施例中”、“一個示例”或“示例”不一定都指同一個實施例或示例。此外,可以以任何適當的組合和/或子組合將特定的特徵、結構或特性組合在一個或多個實施例或示例中。此外,本領域普通技術人員應當理解,在此提供的圖式都是為了說明的目的,並且圖式不一定是按比例繪製的。應當理解,當稱“元件”“連接到”或“耦接”到另一元件時,它可以是直接連接或耦接到另一元件或者可以存在中間元件。相反,當稱元件“直接連接到”或“直接耦接到”另一元件時,不存在中間元件。相同的圖式標記指示相同的元件。這裡使用的術語“和/或”包括一個或多個相關列出的專案的任何和所有組合。
本發明可以被應用於任何隔離式變換器。在接下來的詳細描述中,為了簡潔起見,僅以反激變換器(flyback converter)為例來解釋本發明的具體操作原理。
圖2為根據本發明一實施例的隔離式開關變換器200的方塊圖。如圖2所示,隔離式開關變換器200包括變壓器T1、初級開關管MP、次級開關管MS以及控制器。變壓器T1具有初級繞組和次級繞組,其中,初級繞組和次級繞組均具有第一端和第二端,初級繞組的第一端接收輸入電壓Vin,次級繞組的第一端提供直流輸出電壓Vo,第二端耦接至次級參考地。初級開關管MP耦接在初級繞組的第二端與初級參考地之間。次級開關管MS耦接在次級繞組的第二端與負載之間。然而,本領域技術人員可知,次級開關管MS也可耦接在次級繞組的第一端與負載之間。
在圖2所示的實施例中,隔離式開關變換器200的控制器引入了準諧振控制。在準諧振控制中,開關變換器操作在非電流連續模式,當流過儲能元件(變壓器T1)的電流下降至零後,儲能元件與初級開關管MP的寄生電容器開始諧振,諧振電壓波形隨之產生。當初級開關管MP兩端的諧振電壓在其最小值時,初級開關管MP被導通(通常被成為谷底導通),從而減小開關變換器200的開關損耗和電磁干擾。
控制器包括波谷檢測電路201、脈衝頻率調變電路202、初級開通致能電路203、初級關斷檢測電路204、過零檢測電路205、次級邏輯電路206、隔離電路207以及初級邏輯電路208。在一些實施例中,控制器與次級開關管MS整合在同一個晶片內。
在圖2所示的隔離開關變換器200中,由位於變壓器次級側的波谷檢測電路201來檢測諧振電壓的波形。在一個實施例中,波谷檢測電路201耦接至次級開關管MS以檢測諧振電壓的波形,並輸出表示諧振電壓波谷的波谷脈衝信號Valley_Pulse。脈衝頻率調變電路202基於代表開關變換器200輸出電壓Vo的反饋信號,產生脈衝頻率調變信號PFM。初級開通致能電路203接收模式指示信號CCM、波谷脈衝信號Valley_Pulse和脈衝頻率控制信號PFM,在輸出端提供初級開通致能信號PRON。當模式指示信號CCM有效,開關變換器200操作在電流連續模式,初級開通致能電路203允許脈衝頻率調變信號PFM通過,作為初級開通致能信號PRON在輸出端輸出。當模式指示信號CCM無效,開關變換器200操作在準諧振模式時,初級開通致能電路203基於脈衝頻率調變信號PFM和波谷脈衝信號Valley_Pulse,在輸出端輸出初級開通致能信號PRON。
初級關斷檢測電路204檢測初級開關管MP是否關斷,產生初級關斷檢測信號PROFF。初級關斷檢測電路204可以基於次級開關管MS的汲極源極電壓、流過次級開關管MS的電流、次級繞組兩端的電壓等電參數來判斷初級開關管MP是否關斷。初級關斷檢測電路204也可以透過其他方式從初級側獲取指示初級開關管MP是否關斷的信號。
過零檢測電路205檢測流過次級開關管MS的電流是否過零,並產生過零檢測信號ZCD。次級邏輯電路206具有第一輸入端、第二輸入端、第三輸入端和輸出端,其中,第一輸入端耦接至初級關斷檢測電路204以接收初級關斷檢測信號PROFF,第二輸入端耦接至過零檢測電路205的輸出端以接收過零檢測信號ZCD,第三輸入端耦接至初級開通致能電路203以接收初級開通致能信號PRON。次級邏輯電路206基於初級關斷檢測信號PROFF、過零檢測信號ZCD以及初級開通致能信號PRON,在輸出端產生次級控制信號CTRLS以控制次級開關管MS。
隔離電路207具有輸入端和輸出端,其中,輸入端耦接至初級開通致能電路203的輸出端以接收初級開通致能信號PRON。隔離電路207基於初級開通致能信號PRON,在輸出端產生與初級開通致能信號PRON電隔離的同步信號SYNC。隔離電路207可以包括光電耦合器、變壓器、容性隔離裝置或任何其他合適的電隔離裝置。在其他的實施例中,隔離電路202可以設置在控制器積體電路的外部。
初級邏輯電路208具有輸入端和輸出端,其中,輸入端耦接至隔離電路207的輸出端以接收同步信號SYNC。初級邏輯電路208基於同步信號SYNC,在輸出端產生初級控制信號CTRLP以控制初級開關管MP。
在準諧振控制下,次級邏輯電路206在過零檢測電路205檢測到流過次級開關管MS的電流過零時,將次級開關管MS關斷。在電流連續模式下,次級邏輯電路206基於初級開通致能信號PRON的上升邊緣,將次級開關管MS關斷。同時,次級開關管MP基於初級開通致能信號PRON導通。
無論在非電流連續模式下的準諧振控制還是電流連續模式下,圖2所示的隔離式開關變換器200均無需在初級開關管MP導通後才關斷次級開關管MS,從原理上避免了直通。
在一些實施例中,為了確保初級開關管MP在次級開關管MS關斷後才被導通,延時電路被耦接在初級開通致能電路203和隔離電路207之間,或隔離電路207和初級邏輯電路208之間。
圖3為根據本發明一實施例的隔離式開關變換器300的方塊圖。與圖2所示的開關變換器200類似地,開關變換器300包括變壓器T1、初級開關管MP、次級開關管MS、波谷檢測電路301、脈衝頻率調變電路302、初級開通致能電路303、初級關斷檢測電路304、過零檢測電路305、次級邏輯電路306、隔離電路307以及初級邏輯電路308。
其中,脈衝頻率調變電路302包括誤差放大電路3021、調變信號產生電路3022和第一比較電路3023。誤差放大電路3021具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收代表開關變換器輸出信號(例如,輸出電壓、輸出電流、輸出功率)的反饋信號FB,第二輸入端接收參考信號VREF。誤差放大電路3021基於反饋信號FB和參考信號VREF之差,在輸出端產生補償信號COMP。調變信號產生電路3022產生調變信號VM,該調變信號VM可以為鋸齒波信號、三角波信號或其他合適的信號。第一比較電路3023具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端耦接至誤差放大電路3021的輸出端以接收補償信號COMP,第二輸入端耦接至調變信號產生電路3022以接收調變信號VM。第一比較電路3023將補償信號COMP與調變信號VM進行比較,在輸出端產生脈衝頻率調變信號PFM。
此外,開關變換器300還包括第二比較電路309。第二比較電路309具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收代表流過初級開關管MP電流的初級電流取樣信號ISENP,第二輸入端接收第一閾值電壓VTH1。第二比較電路309將初級電流取樣信號ISENP與第一閾值電壓VTH1進行比較,在輸出端產生第二比較信號CMPO2。初級邏輯電路308耦接至第二比較電路309的輸出端以接收第二比較信號CMPO2,並基於第二比較信號CMPO2和同步信號SYNC,產生初級控制信號CTRLP以控制初級開關管MP。第一閾值電壓VTH1可以為恆定值,也可隨隔離信號SYNC變化而變化。在一個實施例中,開關變換器300還包括閾值產生電路310。閾值產生電路310具有輸入端和輸出端,其中,輸入端耦接至隔離電路307的輸出端以接收同步信號SYNC,輸出端耦接至第二比較電路309的第二輸入端。閾值產生電路310基於同步信號SYNC在輸出端產生第一閾值電壓VTH1。
在一些實施例中,為了限制開關變換器300的開關頻率,限頻電路3024被耦接在第一比較電路3023的輸出端與調變信號產生電路3022之間。限頻電路3024具有輸入端和輸出端,其中,輸入端耦接至第一比較電路3023的輸出端以接收脈衝頻率調變信號PFM,輸出端耦接至調變信號產生電路3022以提供限頻信號FLMT。限頻電路3024透過限頻信號FLMT對調變信號VM的頻率和脈衝調變信號PFM的頻率進行限制,從而進一步限制初級開關管MP切換的最大頻率。
圖4為根據本發明一實施例的隔離式開關變換器400的電路原理圖。如圖4所示,波谷檢測電路401包括比較器COM1和單脈衝產生電路4011。比較器COM1的同相輸入端接收次級開關管MS的汲極電壓VSRD,反相輸入端接收第二閾值電壓VTH2,輸出端耦接至單脈衝產生電路4011的輸入端,在單脈衝產生電路4011的輸出端提供波谷脈衝信號Valley_Pulse。
脈衝頻率調變電路402包括誤差放大電路4021、調變信號產生電路4022、第一比較電路4023以及限頻電路4024。其中,誤差放大電路4021包括誤差放大器EA。誤差放大器EA的反相輸入端接收代表輸出電壓Vo的反饋信號FB,同相輸入端接收參考信號VREF,輸出端耦接至第一比較電路4023以提供補償信號COMP。調變信號產生電路4022包括電容器C1、開關管S1和電流源IS1。電容器C1具有第一端和第二端,其中,第一端耦接至第一比較電路4023以提供調變信號VM,第二端耦接至次級參考地。開關管S1具有第一端、第二端和控制端,其中,第一端耦接至電容器C1的第一端,第二端耦接至次級參考地,控制端透過限頻電路4024耦接至第一比較電路4023的輸出端。電流源Is1具有輸入端和輸出端,其中,輸入端耦接至次級參考地,輸出端耦接至電容器C1的第一端。在一個實施例中,調變信號產生電路4023還包括齊納二極體ZD1。齊納二極體ZD1的陰極耦接至電容器C1的第一端,陽極耦接至次級參考地。第一比較電路4023包括比較器COM2。比較器COM2的同相輸入端耦接至調變信號產生電路4022以接收調變信號VM,反相輸入端耦接至誤差放大電路4021以接收補償信號COMP,輸出端耦接至初級開通致能電路403以提供脈衝頻率調變信號PFM。
初級開通致能電路403包括D觸發器4031、或閘OR1以及及閘AND1。D觸發器4031具有輸入端、時鐘端和輸出端,其中,輸入端耦接至波谷檢測電路401的輸出端以接收波谷脈衝信號Valley_Pulse,時鐘端耦接至脈衝頻率調變電路402的輸出端以接收脈衝頻率調變信號PFM,輸出端耦接至或閘OR1的第一輸入端。或閘OR1的第二輸入端接收模式指示信號CCM,或閘OR1的輸出端耦接至及閘AND1的第一輸入端。及閘AND1的第二輸入端接收脈衝頻率調變信號PFM,輸出端耦接至隔離電路407和次級邏輯電路406以提供初級開通致能信號PRON。
初級關斷檢測電路404包括比較器COM3。比較器COM3的同相輸入端接收次級開關管MS的汲極電壓VSRD,反相輸入端接收第三閾值電壓VTH3,輸出端耦接至次級邏輯電路406以提供初級關斷檢測信號PROFF。過零檢測電路405包括比較器COM4。比較器COM4的同相輸入端耦接收第四閾值電壓VTH4,反相輸入端接收代表流過次級開關管MS電流的次級電流取樣信號ISENS,輸出端耦接至次級邏輯電路406以提供過零檢測信號ZCD。在其他實施例中,過零檢測電路405檢測到次級開關管MS的汲極電壓VSRD由負電壓變為正電壓時,產生的過零檢測信號ZCD由低電平變為高電平時,以關斷次級開關管。
次級邏輯電路406包括或閘OR2以及觸發器FF2。或閘OR2具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端耦接至過零檢測電路405以接收過零檢測信號ZCD,第二輸入端耦接至初級開通致能電路403以接收初級開通致能信號PRON。觸發器FF2具有設定端、重定端和輸出端,其中,設定端耦接至初級關斷檢測電路404的輸出端以接收初級關斷檢測信號PROFF,重定端耦接至或閘OR2的輸出端,輸出端耦接至次級開關管MS的閘極以提供次級控制信號CTRLS。
初級邏輯電路408包括觸發器FF1。觸發器FF1具有設定端、重定端和輸出端,其中,設定端耦接至隔離電路407的輸出端以接收同步信號SYNC,重定端耦接至第二比較電路409的輸出端以接收第二比較信號CMPO2,輸出端耦接至初級開關管MP的閘極以提供初級控制信號CTRLP。第二比較電路409包括比較器COM5。比較器COM5的同相輸入端接收初級電流取樣信號ISENP,反相輸入端耦接至閾值產生電路410以接收第一閾值電壓VTH1,輸出端耦接至初級邏輯電路408以提供第二比較信號CMPO2。
圖5為根據本發明實施例的圖4所示隔離式開關變換器400的操作波形圖。如圖5所示,在次級開關管MS的關斷期間,當汲級電壓VSRD大於第二閾值VTH2時,波谷檢測電路401提供波谷脈衝信號Valley_Pulse,該波谷脈衝信號Valley_Pulse的脈衝數取決於諧振電壓波形的波谷數。
當模式指示信號CCM為低電平,開關變換器400操作在準諧振模式,在脈衝頻率調變信號PFM的上升邊緣來臨後的下個波谷脈衝來臨時,初級開通致能信號PRON有效,初級開通致能信號PRON由低電平變為高電平。幾乎與此同時,隔離電路407輸出的同步信號SYNC也由低電平變為高電平,觸發器FF1被設定,初級控制信號CTRLP由低電平變為高電平,初級開關管MP被導通。流過初級開關管MP的電流增大,初級電流取樣信號ISENP也增大。當初級電流取樣信號ISENP增大至第一閾值電壓VTH1時,觸發器FF1被重定,初級控制信號CTRLP由高電平變為低電平,初級開關管MP被關斷。在初級開關管MP被關斷後,次級開關管MS的汲極電壓VSRD由正電壓變為負電壓,汲級電壓VSRD減小到第三閾值VTH3,觸發器FF2被設定,次級控制信號CTRLS由低電平變為高電平,次級開關管MS被導通。變壓器電流從初級傳遞到次級,流過次級開關管MS的電流開始減小,次級電流取樣信號ISENS也減小。一旦檢測到次級電流取樣信號ISENS減小至第四閾值電壓VTH4時,例如過零時,觸發器FF2被重定,次級控制信號CTRLS由高電平變為低電平,次級開關管MS被關斷。當流過初級和次級的電流都為零時,儲能元件與開關管的寄生電容器開始諧振,產生諧振電壓,該諧振電壓的波形由位於次級側波谷檢測電路401檢測到,產生波谷脈衝信號Valley_Pulse。以上步驟不斷重複,直到模式指示信號CCM變為高電平為止。
當模式指示信號CCM由低電平變為高電平,開關變換器400進入電流連續模式,初級開通致能電路403允許脈衝頻率調變信號PFM作為初級開通致能信號PRON輸出。次級開關管MS也在初級開通致能信號PRON的上升邊緣被關斷。當初級開通致能信號PRON的上升邊緣來臨,幾乎與此同時,隔離電路407輸出的同步信號SYNC也由低電平變為高電平,初級控制信號CTRLP由低電平變為高電平,初級開關管MP被導通。當初級電流取樣信號ISENP增大至第一閾值電壓VTH1時,初級開關管MP被關斷。在初級開關管MP被關斷後,次級開關管MS的汲極電壓VSRD由正電壓變為負電壓,次級開關管MS被導通。以上步驟不斷重複,直到模式指示信號CCM由高電平變為低電平為止。
圖6為根據本發明一實施例的隔離式開關變換器500的電路原理圖。與圖4所示的開關變換器400類似地,開關變換器500包括變壓器T1、初級開關管MP、次級開關管MS、波谷檢測電路501、脈衝頻率調變電路502、初級開通致能電路503、初級關斷檢測電路504、過零檢測電路505、次級邏輯電路506、隔離電路507、初級邏輯電路508、第二比較電路509以及閾值產生電路510。此外,開關變換器500還包括波谷選定電路511。波谷選定電路511具有第一輸入端、第二輸入端和第一輸出端,其中,第一輸入端接收波谷脈衝信號Valley_Pulse,第二輸入端接收脈衝頻率調變信號PFM,波谷選定電路511基於脈衝頻率調變信號PFM與上一週期的波谷數VALLEY_LOCK(n-1),產生目標波谷數VALLEY_LOCK(n),並在輸出端提供對應於目標波谷數的波谷致能信號VEN。在一個實施例中,波谷選定電路511將脈衝頻率調變信號PFM上升邊緣來臨時所累計的波谷數與上一週期的波谷數VALLEY_LOCK(n-1)進行比較,根據比較結果選擇繼續保持或切換至另一合適的波谷數。在另一個實施例中,波谷選定電路511還具有第二輸出端,基於目標波谷數的數值,產生模式指示信號CCM。其中,當目標波谷數的數值為0時,模式指示信號CCM為高電平,指示電流連續模式。
在圖6所示的實施例中,波谷檢測電路501包括波谷比較器COM5、下降邊緣觸發電路5011、觸發器FF3、及閘AND2以及單脈衝產生電路5012。其中,波谷比較器COM5的同相輸入端耦接至次級開關管MS以接收次級開關管的汲極電壓VSRD,反相輸入端接收開關變換器的輸出電壓Vo,波谷比較器COM5將次級開關管的汲極電壓VSRD與輸出電壓Vo進行比較,在輸出端產生波谷比較信號。觸發器FF3具有設定端、重定端和反向輸出端,其中,設定端接收初級開通致能信號PRON,重定端經下降邊緣觸發電路5011接收次級控制信號CTRLS。及閘AND2具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端耦接至波谷比較器COM5的輸出端以接收波谷比較信號,第二輸入端耦接至觸發器FF3的反向輸出端。單脈衝產生電路5012具有輸入端和輸出端,其中,輸入端耦接至及閘AND2的輸出端,在輸出端提供波谷脈衝信號Valley_Pulse。
圖7為根據本發明一實施例的圖6所示波谷檢測電路501的操作波形圖。如圖7所示,當初級開通致能信號PRON有效,初級控制信號CTRL由低電平變為高電平,觸發器FF3被設定,其反向輸出端輸出低電平,波谷比較信號被遮罩或禁止。當次級控制信號CTRLS的下降邊緣來臨時,即次級控制信號CTRLS由高電平變為低電平,次級開關管MS被關斷,觸發器FF3被重定,其反向輸出端輸出高電平,允許波谷比較信號透過及閘AND2傳輸到單脈衝產生電路5012。並由單脈衝產生電路5012在波谷比較信號的上升邊緣產生具有預定脈衝寬度的波谷脈衝信號Valley_Pulse。在一些實施例中,為了確保初級開關管MP在波谷處導通,一延時電路被耦接在及閘AND2與單脈衝產生電路5012之間。
圖8為根據本發明一實施例的波谷選定電路511的電路原理圖。在圖8所示的實施例中,波谷選定電路511包括第一計數器5110、第一暫存器5111、目標波谷數產生器5112以及數位比較器5113。第一計數器5110具有時鐘端,重定端和輸出端,其中,時鐘端接收波谷脈衝信號Valley_Pulse,重定端接收初級開通致能信號PRON,第一計數器5110對一週期內波谷脈衝信號Valley_Pulse的脈衝個數進行計數,在輸出端提供第一數值VALLEY_CNT。第一暫存器5111具有輸入端,時鐘端和輸出端,其中,輸入端接收第一數值VALLEY_CNT,時鐘端接收脈衝頻率調變信號PFM,在輸出端產生第二數值VALLEY_PFM。目標波谷數產生器5112將第二數值VALLEY_PFM與上一週期的波谷數VALLEY_LOCK(n-1)進行比較,根據比較結果在輸出端產生目標波谷數VALLEY_LOCK(n)。數位比較器5113將第一數值VALLEY_CNT與目標波谷數VALLEY_LOCK(n)進行比較,當第一數值VALLEY_CNT大於或等於目標波谷數VALLEY_LOCK(n)時,在輸出端提供波谷致能信號VEN。
當目標波谷數VALLEY_LOCK(n)=0時,波谷選定電路511提供的模式識別信號CCM由低電平變為高電平,表示開關變換器進入電流連續模式。
在圖8所示的實施例中,目標波谷數產生器5112包括第一多路選擇器521、第二多路選擇器522、第二暫存器523和減法器524。在其他實施例中,目標波谷產生器5112採用其他形式的數位電路來實現。
在初級開關管MP關斷時,或者每一個初級關斷檢測信號PROFF的上升邊緣來臨時,目標波谷產生器5112產生目標波谷數VALLEY_LOCK(n),並暫存在第二暫存器523中。
當第二數值VALLEY_PFM大於上一週期波谷數VALLEY_LOCK(n-1)時,VALLEY_LOCK(n)=VALLEY_ LOCK(n-1)+1。在一個實施例中,當上一週期的波谷數VALLEY_LOCK(n-1)大於3且比第二數值VALLEY_PFM大2時,VALLEY_LOCK(n)=VALLEY_LOCK(n-1)-1。此外,當上一週期的波谷數VALLEY_LOCK(n-1)為2或1,同時脈衝頻率調變信號PFM的上升邊緣來臨時刻比第一波谷脈衝提早一預設時長到達時,目標波谷數VALLEY_LOCK(n) =VALLEY_LOCK(n-1)-1。在其他情形下,目標波谷數VALLEY_LOCK(n)保持上一週期的波谷數VALLEY_LOCK (n-1)不變。
繼續如圖6所示,初級開通致能電路503包括及閘AND3、或閘OR3和及閘AND4。其中,及閘AND3具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收波谷脈衝信號Valley_Pulse,第二輸入端耦接至波谷選定電路511的第一輸出端以接收波谷致能信號VEN。或閘OR3具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端耦接至及閘AND3的輸出端、第二輸入端耦接至波谷選定電路511的第二輸出端以接收模式指示信號CCM。及閘AND4具有第一輸入端、第二輸入端和輸出端,其中,第一輸入端接收脈衝頻率調變信號PFM,第二輸入端耦接至或閘OR3的輸出端,在輸出端提供初級開通致能信號PRON。
在電流連續模式下,初級開通致能電路503允許脈衝頻率調變信號PFM通過,作為初級開通致能信號PRON在輸出端輸出。在準諧振模式下,初級開通致能電路503在波谷致能信號VEN有效且脈衝頻率調變信號PFM的上升邊緣來臨時,輸出有效的初級開通致能信號PRON,控制初級開關管MP導通。
圖9為根據本發明一實施例的圖6所示隔離式開關變換器500的操作波形圖。
當模式指示信號CCM為低電平,在次級開關管MS的每個關斷期間內,波谷檢測電路501基於次級開關管的汲級電壓VSRD與輸出電壓Vo的比較結果,產生波谷脈衝信號Valley_Pulse。第一計數器5110對每個週期內的波谷脈衝進行計數,作為第一數值VALLEY_CNT。第一暫存器5111記錄脈衝頻率調變信號PFM上升邊緣來臨時的第一數值VALLEY_CNT,提供第二數值VALLEY_PFM。根據目標波谷數產生器5112的控制原理,產生目標波谷數VALLEY_LOCK。初級開關管MP根據對應於目標波谷數的初級開通致能信號PRON導通。
當模式指示信號CCM變高,脈衝頻率調變信號PFM作為初級開通致能信號PRON來控制初級開關管MP導通。
上述實施例均有關既可操作在電流連續模式又可在非電流連續模式下準諧振操作的隔離式開關變換器。本發明的實施例僅需要稍作改變就可以用於僅採用準諧振控制的隔離式開關變換器。僅採用準諧振控制的隔離式反激變換器同樣滿足本發明的精神和保護範圍。
圖10為根據本發明一實施例的準諧振控制的隔離式開關變換器的控制方法900的方法流程圖。該開關變換器包括具有初級繞組和次級繞組的變壓器、耦接至初級繞組的初級開關管、耦接至次級繞組的次級開關管以及隔離電路,該控制方法包括步驟901至906。
在步驟901,接收代表開關變換器輸出信號的反饋信號,產生與反饋信號有關的脈衝頻率調變信號。
在步驟902,耦接至次級開關管以檢測開關變換器的諧振電壓波形,產生表示諧振電壓波谷的波谷脈衝信號。
在步驟903,基於脈衝頻率調變信號與上一週期的波谷數,產生目標波谷數,並提供回應於目標波谷數的波谷致能信號。在一個實施例中,將脈衝頻率調變信號上升邊緣來臨時所累計的波谷數與上一週期的波谷數相比較,選擇繼續保持或切換至另一合適的波谷數。
在步驟904,基於波谷致能信號、脈衝頻率調變信號和波谷脈衝信號,產生初級開通致能信號。
在步驟905,將初級開通致能信號送入隔離電路,產生與初級開通致能信號電隔離的同步信號。
在步驟906,基於同步信號,產生初級控制信號以控制初級開關管。
控制方法900進一步包括:檢測初級開關管是否關斷,產生初級關斷檢測信號;檢測流過次級開關管的電流是否過零,產生過零檢測信號;以及基於初級關斷檢測信號和過零檢測信號,產生次級控制信號以控制次級開關管。
在一個實施例中,步驟903包括:接收波谷脈衝信號,對一週期內波谷脈衝信號的脈衝進行計數,提供第一數值;記錄脈衝頻率調變信號上升邊緣來臨時的第一數值,作為第二數值;將第二數值與上一週期波谷數進行比較,根據比較結果產生目標波谷數;以及將第一數值與目標波谷數進行比較,當第一數值大於或等於目標波谷數時,在輸出端提供波谷致能信號。
在說明書中,相關術語例如第一和第二等可以只是用於將一個實體或動作與另一個實體或動作區分開,而不必或不意味著在這些實體或動作之間的任意實體這種關係或者順序。數字順序例如“第一”、“第二”、“第三”等僅僅指的是多個中的不同個體,並不意味著任何順序或序列,除非請求項語言有具體限定。在任何一個請求項中的文本的順序並不意問這處理步驟必須以根據這種順序的臨時或邏輯順序進行,除非請求項語言有具體規定。在不脫離本發明範圍的情況下,這些處理步驟可以按照任意順序互換,只要這種互換不會是的請求項語言矛盾並且不會出現邏輯上荒謬。
上述說明書和實施方式僅僅是示例性的,並不用於限定本發明的範圍。對於揭示的實施例進行變化和修改都是可能的,其他可行的選擇性實施例和對實施例中元件的等同變化可以被本技術領域的普通技術人員所瞭解。本發明所揭示的實施例的其他變化和修改並不超出本發明的精神和保護範圍。
Specific embodiments of the present invention will be described in detail below. It should be noted that the embodiments described here are only for illustration and are not intended to limit the present invention. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that these specific details need not be employed in order to practice the invention. In other instances, well-known circuits, materials or methods have not been described in detail in order to avoid obscuring the present invention. Throughout this specification, reference to "one embodiment," "an embodiment," "an example," or "an example" means that a particular feature, structure, or characteristic described in connection with the embodiment or example is included in the invention. In at least one embodiment. Thus, appearances of the phrases "in one embodiment," "in an embodiment," "one example," or "example" in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, particular features, structures, or characteristics may be combined in one or more embodiments or examples in any suitable combination and/or subcombination. Furthermore, those of ordinary skill in the art will appreciate that the drawings provided herein are for illustrative purposes and that the drawings are not necessarily drawn to scale. It will be understood that when an "element" is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present. Identical drawing numbers indicate identical elements. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. The invention can be applied to any isolated converter. In the following detailed description, for the sake of simplicity, only a flyback converter is taken as an example to explain the specific operating principle of the present invention. FIG. 2 is a block diagram of an
200:隔離式開關變換器 201:波谷檢測電路 202:脈衝頻率調變電路 203:初級開通致能電路 204:初級關斷檢測電路 205:過零檢測電路 206:次級邏輯電路 207:隔離電路 208:初級邏輯電路 300:隔離式開關變換器 301:波谷檢測電路 302:脈衝頻率調變電路 303:初級開通信號產生電路 304:初級關斷檢測電路 305:過零檢測電路 306:次級邏輯電路 307:隔離電路 308:初級邏輯電路 309:第二比較電路 310:閾值產生電路 400:隔離式開關變換器 401:波谷檢測電路 402:脈衝頻率調變電路 403:初級開通致能電路 404:初級關斷檢測電路 405:過零檢測電路 406:次級邏輯電路 407:隔離電路 408:初級邏輯電路 409:第二比較電路 410:閾值產生電路 500:隔離式開關變換器 501:波谷檢測電路 502:脈衝頻率調變電路 503:初級開通致能電路 504:初級關斷檢測電路 505:過零檢測電路 506:次級邏輯電路 507:隔離電路 508:初級邏輯電路 509:第二比較電路 510:閾值產生電路 511:波谷選定電路 521:第一多路選擇器 522:第二多路選擇器 523:第二暫存器 524:減法器 3021:誤差放大電路 3022:調變信號產生電路 3023:第一比較電路 3024:限頻電路 4011:單脈衝產生電路 4021:誤差放大電路 4022:調變信號產生電路 4023:第一比較電路 4024:限頻電路 4031:D觸發器 5011:下降邊緣觸發電路 5012:單脈衝產生電路 5110:第一計數器 5111:第一暫存器 5112:目標波谷數產生器 5113:數位比較器 T1:變壓器 MP:初級開關管 MS:次級開關管 Vin:輸入電壓 Vo:輸出電壓 PFM:脈衝頻率調變信號 CCM:模式指示信號 Valley_Pulse:波谷脈衝信號 PRON:初級開通致能信號 ZCD:過零檢測信號 PROFF:初級關斷檢測信號 SYNC:同步信號 CTRLP:初級控制信號 FB:反饋信號 VREF:參考信號 VM:調變信號 COMP:補償信號 VTH1:第一閾值電壓 ISENP:初級電流取樣信號 CMPO2:第二比較信號 FLMT:限頻信號 COM1:比較器 VSRD:汲極電壓 VTH2:第二閾值電壓 EA:誤差放大器 C1:電容器 IS1:電流源 S1:開關管 ZD1:齊納二極體 COM2:比較器 OR1:或閘 AND1:及閘 COM3:比較器 COM4:比較器 ISENS:次級電流取樣信號 VTH4:第四閾值電壓 OR2:或閘 FF1:觸發器 FF2:觸發器 COM5:比較器 VTH3:第三閾值 VEN:波谷致能信號 COM5:波谷比較器 FF3:觸發器 AND2:及閘 AND3:及閘 OR3:或閘 AND4:及閘 VALLEY_CNT:第一數值 VALLEY_PFM:第二數值 200: Isolated switching converter 201: Valley detection circuit 202: Pulse frequency modulation circuit 203: Primary enable circuit 204: Primary shutdown detection circuit 205: Zero-crossing detection circuit 206: Secondary logic circuit 207:Isolation circuit 208: Primary logic circuit 300: Isolated switching converter 301: Valley detection circuit 302: Pulse frequency modulation circuit 303: Primary turn-on signal generation circuit 304: Primary shutdown detection circuit 305: Zero-crossing detection circuit 306: Secondary logic circuit 307:Isolation circuit 308: Primary logic circuit 309: Second comparison circuit 310: Threshold generation circuit 400: Isolated switching converter 401: Valley detection circuit 402: Pulse frequency modulation circuit 403: Primary enable circuit 404: Primary shutdown detection circuit 405: Zero-crossing detection circuit 406: Secondary logic circuit 407:Isolation circuit 408: Primary logic circuit 409: Second comparison circuit 410: Threshold generation circuit 500: Isolated switching converter 501: Valley detection circuit 502: Pulse frequency modulation circuit 503: Primary enable circuit 504: Primary shutdown detection circuit 505: Zero-crossing detection circuit 506: Secondary logic circuit 507:Isolation circuit 508: Primary logic circuit 509: Second comparison circuit 510: Threshold generation circuit 511: Wave valley selection circuit 521: First multiplexer 522: Second multiplexer 523: Second register 524:Subtractor 3021: Error amplifier circuit 3022: Modulation signal generation circuit 3023: First comparison circuit 3024: Frequency limiting circuit 4011:Single pulse generation circuit 4021: Error amplifier circuit 4022: Modulation signal generation circuit 4023: First comparison circuit 4024: Frequency limiting circuit 4031:D flip-flop 5011: Falling edge trigger circuit 5012:Single pulse generation circuit 5110: first counter 5111: First register 5112: Target trough number generator 5113:Digital comparator T1: Transformer MP: primary switch tube MS: secondary switch tube Vin: input voltage Vo: output voltage PFM: pulse frequency modulation signal CCM: mode indication signal Valley_Pulse: Valley pulse signal PRON: primary enable signal ZCD: Zero-crossing detection signal PROFF: primary shutdown detection signal SYNC: synchronization signal CTRLP: primary control signal FB: feedback signal VREF: reference signal VM: modulated signal COMP: compensation signal VTH1: first threshold voltage ISENP: primary current sampling signal CMPO2: second comparison signal FLMT: frequency limited signal COM1: Comparator VSRD: drain voltage VTH2: second threshold voltage EA: error amplifier C1: Capacitor IS1: current source S1: switch tube ZD1: Zener diode COM2: Comparator OR1: Or gate AND1: AND gate COM3: Comparator COM4: Comparator ISENS: secondary current sampling signal VTH4: fourth threshold voltage OR2: Or gate FF1: Trigger FF2: Trigger COM5: Comparator VTH3: third threshold VEN: Wave trough enabling signal COM5: Trough comparator FF3: Trigger AND2: AND gate AND3: AND gate OR3: OR gate AND4: AND gate VALLEY_CNT: first value VALLEY_PFM: second value
[圖1]為現有的同步整流技術的波形圖;
[圖2]為根據本發明一實施例的隔離式開關變換器200的方塊圖;
[圖3]為根據本發明一實施例的隔離式開關變換器300的方塊圖;
[圖4]為根據本發明一實施例的隔離式開關變換器400的電路原理圖;
[圖5]為根據本發明實施例的圖4所示隔離式開關變換器400的操作波形圖;
[圖6]為根據本發明一實施例的隔離式開關變換器500的電路原理圖;
[圖7]為根據本發明一實施例的圖6所示波谷檢測電路501的操作波形圖;
[圖8]為根據本發明一實施例的圖6所示波谷選定電路511的電路原理圖;
[圖9]為根據本發明一實施例的圖6所示隔離式開關變換器500的操作波形圖;
[圖10]為根據本發明一實施例的準諧振控制的隔離式開關變換器的控制方法900的方法流程圖。
[Figure 1] is a waveform diagram of existing synchronous rectification technology;
[Fig. 2] is a block diagram of an
200:隔離式開關變換器 200: Isolated switching converter
201:波谷檢測電路 201: Valley detection circuit
202:脈衝頻率調變電路 202: Pulse frequency modulation circuit
203:初級開通致能電路 203: Primary enable circuit
204:初級關斷檢測電路 204: Primary shutdown detection circuit
205:過零檢測電路 205: Zero-crossing detection circuit
206:次級邏輯電路 206: Secondary logic circuit
207:隔離電路 207:Isolation circuit
208:初級邏輯電路 208: Primary logic circuit
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011622595.6A CN112803722B (en) | 2020-12-31 | 2020-12-31 | Isolated switch converter and controller and control method thereof |
CN202011622595.6 | 2020-12-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202230952A TW202230952A (en) | 2022-08-01 |
TWI811910B true TWI811910B (en) | 2023-08-11 |
Family
ID=75807513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110148198A TWI811910B (en) | 2020-12-31 | 2021-12-22 | Isolated switching converter with secondary side modulation and control method |
Country Status (3)
Country | Link |
---|---|
US (1) | US11722068B2 (en) |
CN (1) | CN112803722B (en) |
TW (1) | TWI811910B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI778852B (en) * | 2021-04-08 | 2022-09-21 | 通嘉科技股份有限公司 | Control method of a flyback power converter |
CN113780295B (en) * | 2021-09-13 | 2024-02-20 | 东北大学 | Time sequence segmentation method based on LAC-FLOS algorithm and IER algorithm |
US20230155516A1 (en) * | 2021-11-18 | 2023-05-18 | Microchip Technology Incorporated | Secondary-side flyback converter controller |
CN114244131B (en) * | 2021-12-10 | 2024-09-20 | 杭州茂力半导体技术有限公司 | Switching converter, control circuit and control method thereof |
CN114204821B (en) * | 2021-12-10 | 2024-09-20 | 杭州茂力半导体技术有限公司 | Switching converter, controller and control method thereof |
CN114696626B (en) * | 2022-04-11 | 2024-06-25 | 上海南芯半导体科技股份有限公司 | Control circuit of flyback converter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150280576A1 (en) * | 2014-03-26 | 2015-10-01 | Infineon Technologies Austria Ag | System and Method for a Switched Mode Power Supply |
TW201624902A (en) * | 2014-12-31 | 2016-07-01 | 力林科技股份有限公司 | Power conversion apparatus with power saving and high conversion efficiency mechanisms |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1397599B1 (en) * | 2009-12-21 | 2013-01-16 | St Microelectronics Srl | FLYBACK DUAL MODE CONVERTER AND METHOD OF MONITORING THE OPERATING MODE. |
CN102664525B (en) | 2012-05-08 | 2014-08-27 | 成都芯源系统有限公司 | Switching power supply circuit |
CN102655378B (en) | 2012-05-08 | 2014-06-04 | 成都芯源系统有限公司 | Isolated voltage converter circuit and control method thereof |
CN102655373B (en) | 2012-05-08 | 2015-06-03 | 成都芯源系统有限公司 | Isolated voltage conversion circuit and control method thereof |
CN103490605B (en) | 2013-10-12 | 2015-12-23 | 成都芯源系统有限公司 | Isolated switch converter and controller and control method thereof |
US10868473B2 (en) * | 2015-11-30 | 2020-12-15 | Semiconductor Components Industries, Llc | Secondary side controlled control circuit for power converter with synchronous rectifier |
US20170346405A1 (en) * | 2016-05-26 | 2017-11-30 | Inno-Tech Co., Ltd. | Dual-mode operation controller for flyback converter with primary-side regulation |
US9991812B2 (en) * | 2016-07-12 | 2018-06-05 | Semiconductor Components Industries, Llc | Variable blanking frequency for resonant converters |
CN106655834B (en) * | 2016-10-08 | 2019-01-25 | 成都启臣微电子股份有限公司 | Quasi-resonance primary side constant-current control circuit and AC/DC changeover switch with the circuit |
CN107248817B (en) | 2017-06-28 | 2019-06-18 | 成都芯源系统有限公司 | Quasi-resonance control switching circuit and method |
US11228240B2 (en) * | 2019-03-08 | 2022-01-18 | Diodes Incorporated | Input voltage adaptive jitter for quasi-resonant control |
US10804806B1 (en) * | 2019-08-14 | 2020-10-13 | Semiconductor Components Industries, Llc | Method and system of a switching power converter |
CN112217379B (en) * | 2020-09-28 | 2021-11-23 | 杭州茂力半导体技术有限公司 | Staggered switching power supply and control circuit and control method thereof |
CN113162372B (en) * | 2020-12-31 | 2022-03-22 | 成都芯源系统有限公司 | Quasi-resonance controlled switch converter, controller and control method thereof |
-
2020
- 2020-12-31 CN CN202011622595.6A patent/CN112803722B/en active Active
-
2021
- 2021-12-09 US US17/546,805 patent/US11722068B2/en active Active
- 2021-12-22 TW TW110148198A patent/TWI811910B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150280576A1 (en) * | 2014-03-26 | 2015-10-01 | Infineon Technologies Austria Ag | System and Method for a Switched Mode Power Supply |
TW201624902A (en) * | 2014-12-31 | 2016-07-01 | 力林科技股份有限公司 | Power conversion apparatus with power saving and high conversion efficiency mechanisms |
Also Published As
Publication number | Publication date |
---|---|
US20220209676A1 (en) | 2022-06-30 |
TW202230952A (en) | 2022-08-01 |
CN112803722B (en) | 2022-06-14 |
US11722068B2 (en) | 2023-08-08 |
CN112803722A (en) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI811910B (en) | Isolated switching converter with secondary side modulation and control method | |
TWI521852B (en) | Isolated switching converters, and switching controllers and controlling methods thereof | |
TWI821832B (en) | Switching converter with quasi-resonant control and control method thereof | |
US11664720B2 (en) | Zero-voltage-switching control circuit, control method and switching power supply | |
US11929684B2 (en) | Isolated power supply control circuits, isolated power supply and control method thereof | |
US20220416644A1 (en) | Asymmetric half-bridge flyback converter and control method thereof | |
US11283343B2 (en) | Extremum locator with measurement enable circuit | |
TWI707527B (en) | Flyback powr converter and secondary side controller circuit and control method thereof | |
Hsieh et al. | A primary-side-control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching | |
US20160013714A1 (en) | A method of control for synchronous rectifiers | |
JP6938854B2 (en) | Switching power supply | |
TW202427931A (en) | Switching power supply and controller and control method thereof | |
TWI841989B (en) | Asymmetric half-bridge flyback converter power supply and control chip and control method thereof | |
TWI783365B (en) | Flyback converter and switching controller circuit and control method thereof | |
Wu et al. | Quasi-resonant flyback converter with new valley voltage detection mechanism | |
CN115473415A (en) | Isolated switch converter and controller and control method thereof | |
CN112713778B (en) | Switching control circuit and method for controlling flyback power supply circuit | |
CN113852218A (en) | Object detection apparatus and method for wireless power transfer system | |
TWI842520B (en) | Asymmetric half-bridge flyback converter power supply and its control circuit | |
US20240204678A1 (en) | Enable circuit with winding signal detection | |
US20240171058A1 (en) | Controller and controlling method for quasi-resonant controlled switching converter | |
US20240039417A1 (en) | Isolated switching converter with soft switching and control method thereof | |
CN114079381B (en) | Flyback power conversion circuit and active clamping buffer thereof | |
TW202437657A (en) | Asymmetric half-bridge flyback converter power supply and its control circuit | |
TW202406284A (en) | Isolated switching converter and the control circuit and method thereof |