TWI733033B - Photomask blank and method of manufacturing photomask blank, method of manufacturing photomask, and method of manufacturing display device - Google Patents
Photomask blank and method of manufacturing photomask blank, method of manufacturing photomask, and method of manufacturing display device Download PDFInfo
- Publication number
- TWI733033B TWI733033B TW107121660A TW107121660A TWI733033B TW I733033 B TWI733033 B TW I733033B TW 107121660 A TW107121660 A TW 107121660A TW 107121660 A TW107121660 A TW 107121660A TW I733033 B TWI733033 B TW I733033B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- layer
- reflection suppression
- film
- photomask
- Prior art date
Links
Images
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Physical Vapour Deposition (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本發明提供一種於藉由蝕刻而製作光罩時可獲得高精度之遮罩圖案、且滿足如於使用光罩製作顯示裝置時可抑制顯示不均之光學特性的光罩基底。 本發明之光罩基底之特徵在於:其係於製作顯示裝置製造用之光罩時使用之光罩基底,且具有:透明基板,其由相對於曝光光實質上透明之材料而構成;遮光膜,其設置於透明基板上,且由相對於曝光光實質上不透明之材料而構成;遮光膜係自透明基板側起具備第1反射抑制層、遮光層及第2反射抑制層,第1反射抑制層係含有鉻、氧及氮之鉻系材料,且具有鉻之含有率為25~75原子%、氧之含有率為15~45原子%、氮之含有率為10~30原子%之組成,遮光層係含有鉻與氮之鉻系材料,且具有鉻之含有率為70~95原子%、氮之含有率為5~30原子%之組成,第2反射抑制層係含有鉻、氧及氮之鉻系材料,且具有鉻之含有率為30~75原子%、氧之含有率為20~50原子%、氮之含有率為5~20原子%之組成,以使遮光膜之正面及背面之相對於上述曝光光之曝光波長之反射率分別為10%以下,且光學濃度成為3.0以上之方式,設定第1反射抑制層、遮光層、及第2反射抑制層之膜厚。The present invention provides a photomask substrate that can obtain a high-precision mask pattern when fabricating a photomask by etching, and meets the optical characteristics that can suppress display unevenness when the photomask is used to fabricate a display device. The photomask substrate of the present invention is characterized in that it is a photomask substrate used when manufacturing a photomask for display device manufacturing, and has: a transparent substrate, which is composed of a material that is substantially transparent to exposure light; and a light-shielding film , Which is provided on a transparent substrate and is composed of a material that is substantially opaque to exposure light; the light-shielding film is equipped with a first reflection suppression layer, a light-shielding layer, and a second reflection suppression layer from the transparent substrate side, and the first reflection suppression The layer is a chromium-based material containing chromium, oxygen and nitrogen, and has a composition with a chromium content of 25 to 75 atomic %, an oxygen content of 15 to 45 atomic %, and a nitrogen content of 10 to 30 atomic %. The light-shielding layer contains a chromium-based material containing chromium and nitrogen, and has a composition with a chromium content of 70 to 95 atomic% and a nitrogen content of 5 to 30 atomic %. The second reflection suppression layer contains chromium, oxygen and nitrogen. The chromium-based material has a composition with a chromium content of 30 to 75 atomic%, an oxygen content of 20 to 50 atomic%, and a nitrogen content of 5 to 20 atomic% to make the front and back of the light-shielding film The thickness of the first reflection suppression layer, the light shielding layer, and the second reflection suppression layer are set so that the reflectance with respect to the exposure wavelength of the exposure light is 10% or less, and the optical density is 3.0 or more.
Description
本發明係關於一種光罩基底及其製造方法、光罩之製造方法、以及顯示裝置製造方法。The present invention relates to a photomask substrate and a manufacturing method thereof, a manufacturing method of a photomask, and a manufacturing method of a display device.
於以LCD(Liquid Crystal Display,液晶顯示器)為代表之FPD(Flat Panel Display,平板顯示器)等顯示裝置中,隨著大畫面化、廣視角化,高精細化、高速顯示化正急速發展。為了該高精細化、高速顯示化而需要之要素之一為製作微細且尺寸精度較高之元件或配線等電子電路圖案。該顯示裝置用電子電路之圖案化多使用光微影。因此,需要形成有微細且高精度之圖案的顯示裝置製造用之光罩。In display devices such as FPD (Flat Panel Display) represented by LCD (Liquid Crystal Display), as large screens and wide viewing angles, high-definition and high-speed displays are rapidly developing. One of the elements required for this high-definition and high-speed display is the production of electronic circuit patterns such as components or wirings with fine and high dimensional accuracy. The patterning of the electronic circuit for the display device mostly uses photolithography. Therefore, there is a need for a mask for manufacturing a display device formed with a fine and high-precision pattern.
顯示裝置製造用之光罩係由光罩基底製作。光罩基底係於由合成石英玻璃等構成之透明基板上設置由相對於曝光光不透明之材料構成之遮光膜而構成。於光罩基底或光罩中,為了抑制曝光時之光之反射,而於遮光膜之正背兩面側設置有反射抑制層,光罩基底例如成為自透明基板側依次使第1反射抑制層、遮光層及第2反射抑制層積層而成之膜構成。光罩係藉由將光罩基底之遮光膜利用濕式蝕刻等進行圖案化並形成特定之遮罩圖案而製作。The photomask used in the manufacture of the display device is made of the photomask substrate. The mask base is formed by setting a light-shielding film made of a material that is opaque to exposure light on a transparent substrate made of synthetic quartz glass or the like. In the photomask base or the photomask, in order to suppress the reflection of light during exposure, reflection suppression layers are provided on the front and back sides of the light shielding film. For example, the photomask base is made of, for example, the first reflection suppression layer, The light-shielding layer and the second reflection suppression layer are laminated. The photomask is made by patterning the light-shielding film of the photomask base by wet etching or the like and forming a specific mask pattern.
與此種顯示裝置製造用之光罩、成為其原版之光罩基底、以及兩者之製造方法相關聯之技術揭示於專利文獻1。 [先前技術文獻] [專利文獻]The technology associated with the photomask used for manufacturing such a display device, the photomask substrate that becomes the original version, and the manufacturing methods of both are disclosed in
[專利文獻1]韓國註冊專利第10-1473163號公報[Patent Document 1] Korean Registered Patent No. 10-1473163
[發明所欲解決之問題][The problem to be solved by the invention]
於顯示裝置(例如TV(TeleVision,電視)用之顯示面板)之製造中,例如,使用光罩,對顯示裝置用基板轉印特定圖案之後,使顯示裝置用基板滑動,轉印特定圖案,藉此,重複進行圖案轉印。於該轉印中,因自曝光裝置之光源而曝光光入射至光罩時之光罩之背面側之反射光、或曝光光通過光罩後來自被轉印體之反射光返回至光罩正面側之反射光之影響,有時於顯示裝置之重疊附近,照射假定以上之曝光光。其結果,有時以相鄰之圖案彼此一部分重疊之方式曝光,而於所製造之顯示裝置中產生顯示不均。In the manufacture of display devices (such as display panels for TV (TeleVision, television)), for example, a photomask is used to transfer a specific pattern to the substrate for the display device, and then the substrate for the display device is slid to transfer the specific pattern. Thus, pattern transfer is repeated. In this transfer, the reflected light from the back side of the photomask when the exposure light from the light source of the exposure device is incident on the photomask, or the reflected light from the transferred body after the exposure light passes through the photomask, returns to the front side of the photomask The influence of the reflected light on the side is sometimes in the vicinity of the overlap of the display device, and the exposure light above the assumption is irradiated. As a result, it is sometimes exposed in such a way that adjacent patterns partially overlap each other, which may cause display unevenness in the manufactured display device.
因此,於光罩基底中,為了抑制顯示不均而要求使遮光膜之正背面之反射率為10%以下(例如,波長365 nm~436 nm),進而較佳為5%以下(例如,400 nm~436 nm)。進而,自提高光罩之CD均勻性之觀點而言,若考慮雷射描畫光中之遮光膜之正面反射,則要求使遮光膜正面之反射率為5%以下(例如,波長413 nm),進而較佳為3%以下(例如,波長413 nm)。Therefore, in the mask substrate, in order to suppress display unevenness, it is required that the reflectance of the front and back surfaces of the light-shielding film is 10% or less (for example, the wavelength of 365 nm to 436 nm), and more preferably 5% or less (for example, 400 nm~436 nm). Furthermore, from the viewpoint of improving the CD uniformity of the mask, if the front reflection of the light-shielding film in the laser drawing light is considered, it is required that the reflectivity of the front side of the light-shielding film is 5% or less (for example, a wavelength of 413 nm). More preferably, it is 3% or less (for example, a wavelength of 413 nm).
又,顯示裝置製造用之光罩係除了顯示裝置之高精細化、高速顯示化之要求以外,基板尺寸趨於大型化,近年來,將使用短邊之長度為850 mm以上之矩形狀基板之超大型之光罩使用於顯示裝置之製造。再者,作為上述短邊之長度為850 mm以上之大型光罩,有G7用之850 mm×1200 mm尺寸、G8用之1220 mm×1400 mm尺寸、G10用之1620 mm×1780 mm尺寸,尤其作為此種大型之光罩中之遮罩圖案之CD均勻性(CD Uniformity)要求100 nm以下之高精度之遮罩圖案。In addition, in addition to the requirements for high-definition and high-speed display of display devices, photomasks used in the manufacture of display devices have tended to be larger in size. In recent years, rectangular substrates with shorter sides of 850 mm or more will be used. The super-large mask is used in the manufacture of display devices. In addition, as the above-mentioned large-scale photomask with a short side length of 850 mm or more, there are 850 mm×1200 mm size for G7, 1220 mm×1400 mm size for G8, and 1620 mm×1780 mm size for G10, especially The CD Uniformity, which is the mask pattern in this large mask, requires a high-precision mask pattern below 100 nm.
於先前提出之專利文獻1之光罩基底中,於使基板之短邊之長度為850 mm以上之情形時,無法滿足使遮光膜之正背面之反射率相對於曝光波長為10%以下、且使用光罩基底製作出之光罩中之遮罩圖案之CD均勻性為100 nm以下的要求。In the previously proposed photomask base of
本發明之目的在於提供一種於藉由蝕刻而製作光罩時獲得高精度之遮罩圖案、且滿足如於使用光罩製作顯示裝置時可抑制顯示不均之光學特性的光罩基底。 [解決問題之技術手段]The object of the present invention is to provide a mask substrate that obtains a high-precision mask pattern when the mask is manufactured by etching, and satisfies the optical characteristics of suppressing uneven display when the mask is used to manufacture a display device. [Technical means to solve the problem]
(構成1) 一種光罩基底,其特徵在於:其係於製作顯示裝置製造用之光罩時使用之光罩基底,且具有: 透明基板,其由相對於曝光光實質上透明之材料而構成; 遮光膜,其設置於上述透明基板上,且由相對於上述曝光光實質上不透明之材料而構成; 上述遮光膜係自上述透明基板側起具備第1反射抑制層、遮光層及第2反射抑制層, 上述第1反射抑制層係含有鉻、氧及氮之鉻系材料,且具有鉻之含有率為25~75原子%、氧之含有率為15~45原子%、氮之含有率為10~30原子%之組成, 上述遮光層係含有鉻與氮之鉻系材料,且具有鉻之含有率為70~95原子%、氮之含有率為5~30原子%之組成, 上述第2反射抑制層係含有鉻、氧及氮之鉻系材料,且具有鉻之含有率為30~75原子%、氧之含有率為20~50原子%、氮之含有率為5~20原子%之組成, 以使上述遮光膜之正面及背面之相對於上述曝光光之曝光波長之反射率分別為10%以下,且光學濃度成為3.0以上之方式,設定上述第1反射抑制層、上述遮光層、及上述第2反射抑制層之膜厚。(Constitution 1) A photomask base, characterized in that it is a photomask base used when manufacturing a display device manufacturing photomask, and has: a transparent substrate, which is composed of a material that is substantially transparent to exposure light ; A light-shielding film, which is provided on the transparent substrate and is composed of a material that is substantially opaque to the exposure light; The light-shielding film includes a first reflection suppression layer, a light-shielding layer, and a second reflection from the transparent substrate side The suppression layer, the first reflection suppression layer is a chromium-based material containing chromium, oxygen and nitrogen, and has a chromium content of 25 to 75 atomic %, an oxygen content of 15 to 45 atomic %, and a nitrogen content of The light-shielding layer is composed of a chromium-based material containing chromium and nitrogen, and has a composition with a chromium content of 70 to 95 atomic% and a nitrogen content of 5-30 atomic%. The second The reflection suppression layer is a chromium-based material containing chromium, oxygen and nitrogen, and has a chromium content of 30 to 75 atomic %, an oxygen content of 20 to 50 atomic %, and a nitrogen content of 5 to 20 atomic% The composition is such that the reflectance of the front and back surfaces of the light-shielding film with respect to the exposure wavelength of the exposure light is 10% or less, and the optical density is 3.0 or more, and the first reflection suppression layer, the light-shielding layer, And the film thickness of the above-mentioned second reflection suppression layer.
(構成2) 如構成1之光罩基底,其特徵在於:上述第1反射抑制層係鉻之含有率為50~75原子%,氧之含有率為15~35原子%,氮之含有率為10~25原子%, 上述第2反射抑制層係鉻之含有率為50~75原子%,氧之含有率為20~40原子%,氮之含有率為5~20原子%。(Constitution 2) The mask substrate of the
(構成3) 如構成1或2之光罩基底,其特徵在於:上述第1反射抑制層及上述第2反射抑制層分別具有氧及氮中至少任一個元素之含有率沿著膜厚方向而連續地或階段性地發生組成變化之區域。(Configuration 3) The mask substrate of
(構成4) 如構成1至3中任一項之光罩基底,其特徵在於:上述第2反射抑制層具有朝向膜厚方向之上述遮光層側而氧之含有率增加之區域。(Configuration 4) The mask base of any one of the
(構成5) 如構成1至4中任一項之光罩基底,其特徵在於:上述第2反射抑制層具有朝向膜厚方向之上述遮光層側而氮之含有率降低之區域。(Configuration 5) The mask base of any one of the
(構成6) 如構成1至5中任一項之光罩基底,其特徵在於:上述第1反射抑制層具有朝向膜厚方向之上述透明基板而氧之含有率增加並且氮之含有率降低之區域。(Configuration 6) The mask base of any one of
(構成7) 如構成1至6中任一項之光罩基底,其特徵在於:上述第2反射抑制層係以氧之含有率較上述第1反射抑制層變高之方式構成。(Configuration 7) The mask base of any one of the
(構成8) 如構成1至7中任一項之光罩基底,其特徵在於:上述第1反射抑制層係以氮之含有率較上述第2反射抑制層變高之方式構成。(Configuration 8) The mask base of any one of the
(構成9) 如構成1至8中任一項之光罩基底,其特徵在於:上述遮光層包含鉻(Cr)與氮化二鉻(Cr2
N)。(Configuration 9) The mask substrate of any one of the
(構成10) 如構成1至9中任一項之光罩基底,其中上述第1反射抑制層及上述第2反射抑制層包含氮化鉻(CrN)、氧化鉻(III)(Cr2
O3
)及氧化鉻(VI)(CrO3
)。(Configuration 10) As the mask base of any one of the
(構成11) 如構成1至10中任一項之光罩基底,其特徵在於:上述透明基板係矩形狀之基板,該基板之短邊之長度為850 mm以上且1620 mm以下。(Configuration 11) The mask base of any one of
(構成12) 如構成1至11中任一項之光罩基底,其特徵在於:於上述透明基板與上述遮光膜之間,進而具備具有較上述遮光膜之光學濃度低之光學濃度的半透光膜。(Configuration 12) The mask base of any one of
(構成13) 如構成1至11中任一項之光罩基底,其特徵在於:於上述透明基板與上述遮光膜之間進而具備相位偏移膜。(Configuration 13) The mask base of any one of
(構成14) 一種光罩基底之製造方法,其特徵在於:其係於製作顯示裝置製造用之光罩時使用的光罩基底之製造方法,該光罩係於由相對於曝光光實質上透明之材料而構成之透明基板上藉由濺鍍法而形成由相對於曝光光實質上不透明之材料而構成之遮光膜者,且具有如下步驟: 於上述透明基板上,藉由使用包含鉻之濺鍍靶、與包含含有氧系氣體、氮系氣體之反應性氣體與稀有氣體之濺鍍氣體之反應性濺鍍,而形成第1反射抑制層,該第1反射抑制層係含有鉻、氧及氮之鉻系材料且具有鉻之含有率為25~75原子%、氧之含有率為15~45原子%、氮之含有率為10~30原子%之組成; 於上述第1反射抑制層上,藉由使用包含鉻之濺鍍靶、與包含含有氮系氣體之反應性氣體與稀有氣體之濺鍍氣體的反應濺鍍,而形成遮光層,該遮光層係含有鉻與氮之鉻系材料且具有鉻之含有率為70~95原子%、氮之含有率為5~30原子%之組成;及 於上述遮光層上,藉由使用包含鉻之濺鍍靶、與包含含有氧系氣體、氮系氣體之反應性氣體與稀有氣體之濺鍍氣體之反應性濺鍍,而形成第2反射抑制層,該第2反射抑制層係含有鉻、氧及氮之鉻系材料且具有鉻含有率為30~75原子%、氧之含有率為20~50原子%、氮之含有率為5~20原子%之組成; 上述反應性濺鍍中,濺鍍氣體中所包含之反應性氣體之流量係選擇成為金屬模式之流量,以上述遮光膜之正面及背面之相對於上述曝光光之曝光波長之反射率分別為10%以下,且光學濃度成為3.0以上之方式,形成上述第1反射抑制層、上述遮光層、及上述第2反射抑制層之膜厚。(Constitution 14) A method for manufacturing a photomask substrate, characterized in that it is a method for manufacturing a photomask substrate used when manufacturing a photomask for manufacturing a display device, and the photomask is substantially transparent to exposure light. A light-shielding film made of a material that is substantially opaque with respect to exposure light is formed by sputtering on a transparent substrate made of the material, and has the following steps: On the above-mentioned transparent substrate, by using sputtering containing chromium Reactive sputtering of a plating target, a reactive gas containing oxygen-based gas, nitrogen-based gas, and a sputtering gas containing rare gas to form a first reflection suppression layer, which contains chromium, oxygen and Nitrogen chromium-based material with a chromium content of 25 to 75 atomic %, an oxygen content of 15 to 45 atomic %, and a nitrogen content of 10 to 30 atomic %; on the above-mentioned first reflection suppression layer , By using a sputtering target containing chromium, reactive gas containing a nitrogen-based gas and a sputtering gas containing a rare gas to form a light-shielding layer, the light-shielding layer is a chromium-based material containing chromium and nitrogen And it has a composition with a chromium content of 70 to 95 atomic% and a nitrogen content of 5 to 30 atomic%; and on the light-shielding layer, by using a sputtering target containing chromium, and containing oxygen-containing gas, The reactive sputtering of the reactive gas of nitrogen gas and the sputtering gas of rare gas forms a second reflection suppression layer, which is a chromium-based material containing chromium, oxygen and nitrogen and has a chromium content rate The composition is 30 to 75 atomic %, the oxygen content is 20 to 50 atomic %, and the nitrogen content is 5 to 20 atomic %; in the above reactive sputtering, the flow rate of the reactive gas contained in the sputtering gas The flow rate of the metal mode is selected, and the first reflection suppression layer is formed so that the reflectance of the front and back of the light-shielding film with respect to the exposure wavelength of the exposure light is 10% or less, and the optical density is 3.0 or more The film thickness of the light-shielding layer and the second reflection suppression layer.
(構成15) 如構成14之光罩基底之製造方法,其特徵在於:上述氧系氣體為氧(O2
)氣體。(Composition 15) The method for manufacturing the mask substrate of the
(構成16) 如構成14或15之光罩基底之製造方法,其特徵在於:上述第1反射抑制層、上述遮光層及上述第2反射抑制層係使用一面使上述透明基板相對於上述濺鍍靶而相對性地移動一面成膜上述遮光膜之線內型濺鍍裝置而形成。(Configuration 16) The manufacturing method of the mask base of the
(構成17) 如構成14至16中任一項之光罩基底之製造方法,其特徵在於:於上述透明基板與上述遮光膜之間,形成具有較上述遮光膜之光學濃度低之光學濃度的半透光膜。(Configuration 17) The manufacturing method of the mask base of any one of the
(構成18) 如構成14至16中任一項之光罩基底之製造方法,其特徵在於:於上述透明基板與上述遮光膜之間形成相位偏移膜。(Configuration 18) The manufacturing method of the mask base of any one of the
(構成19) 一種光罩之製造方法,其特徵在於具有如下步驟: 準備如構成1至11中任一項之上述光罩基底;及 於上述遮光膜上形成抗蝕劑膜,將自上述抗蝕劑膜形成之抗蝕劑圖案作為遮罩對上述遮光膜進行蝕刻而於上述透明基板上形成遮光膜圖案。(Constitution 19) A method for manufacturing a photomask, characterized by having the following steps: preparing the aforementioned photomask base as in any one of
(構成20) 一種光罩之製造方法,其特徵在於具有如下步驟: 準備如構成12之上述光罩基底; 於上述遮光膜上形成抗蝕劑膜,將自上述抗蝕劑膜形成之抗蝕劑圖案作為遮罩對上述遮光膜進行蝕刻而於上述透明基板上形成遮光膜圖案;及 將上述遮光膜圖案作為遮罩對上述半透光膜進行蝕刻而於上述透明基板上形成半透光膜圖案。(Composition 20) A method for manufacturing a photomask, characterized by having the following steps: preparing the above-mentioned photomask base as in
(構成21) 一種光罩之製造方法,其特徵在於具有如下步驟: 準備如構成13之上述光罩基底; 於上述遮光膜上形成抗蝕劑膜,將自上述抗蝕劑膜形成之抗蝕劑圖案作為遮罩對上述遮光膜進行蝕刻而於上述透明基板上形成遮光膜圖案;及 將上述遮光膜圖案作為遮罩對上述相位偏移膜進行蝕刻而於上述透明基板上形成相位偏移膜圖案。(Configuration 21) A method for manufacturing a photomask, characterized by having the following steps: preparing the above-mentioned photomask base as in
(構成22) 一種顯示裝置之製造方法,其特徵在於具有曝光步驟,該曝光步驟係將藉由如構成19至21中任一項之光罩之製造方法而獲得之光罩載置於曝光裝置之遮罩載台,將形成於上述光罩上之上述遮光膜圖案、上述半透光膜圖案、上述相位偏移膜圖案之至少一個遮罩圖案曝光轉印至形成於顯示裝置基板上之抗蝕劑。 [發明之效果](Configuration 22) A method of manufacturing a display device, characterized by having an exposure step, which is to place the photomask obtained by the manufacturing method of the photomask of any one of configurations 19 to 21 on the exposure device The mask stage is used to expose and transfer at least one mask pattern of the light-shielding film pattern, the semi-transparent film pattern, and the phase shift film pattern formed on the mask to the resist formed on the substrate of the display device. Corrosion agent. [Effects of Invention]
根據本發明,獲得一種可製造出圖案精度優異、且具有如於顯示裝置之製造時可抑制顯示不均之光學特性之光罩的光罩基底。According to the present invention, it is possible to obtain a photomask substrate capable of manufacturing a photomask having excellent pattern accuracy and optical characteristics that can suppress display unevenness during the manufacture of a display device.
以下,一面參照圖式一面對本發明之實施形態具體地進行說明。再者,以下之實施形態係使本發明具體化時之一形態,並不將本發明限定於其範圍內。再者,有時於圖中對相同或相當之部分標註相同之符號而將其說明簡化或省略。Hereinafter, the embodiments of the present invention will be specifically described with reference to the drawings. In addition, the following embodiment is an aspect when the present invention is embodied, and the present invention is not limited to the scope thereof. In addition, the same or equivalent parts may be denoted by the same reference numerals in the drawings, and the description thereof may be simplified or omitted.
<光罩基底> 對本發明之一實施形態之光罩基底進行說明。本實施形態之光罩基底係於製作使自例如300 nm~550 nm之波長區域選擇之單波長之光曝光、或使包含複數個波長之光(例如,j射線(波長313 nm)、i射線(波長365 nm)、h射線(405 nm)、g射線(波長436 nm))之複合光曝光的顯示裝置製造用光罩時使用。再者,於本說明書中使用「~」表示之數值範圍係指包含「~」之前後所記載之數值作為下限值及上限值之範圍。<Photomask base> The photomask base of one embodiment of the present invention will be described. The mask substrate of this embodiment is made to expose light of a single wavelength selected from a wavelength region of, for example, 300 nm to 550 nm, or to expose light of multiple wavelengths (for example, j-ray (wavelength: 313 nm), i-ray (Wavelength 365 nm), h-ray (405 nm), g-ray (wavelength 436 nm)) combined light exposure used for display device manufacturing masks. In addition, the numerical range indicated by "~" in this manual refers to the range that includes the numerical value described before and after "~" as the lower limit and the upper limit.
圖1係表示本發明之一實施形態之光罩基底之概略構成之剖視圖。光罩基底1係具備透明基板11及遮光膜12而構成。以下,作為本發明之一實施形態之光罩基底,對光罩之遮罩圖案(轉印圖案)為遮光膜圖案之二元型之光罩基底進行說明。Fig. 1 is a cross-sectional view showing a schematic configuration of a photomask substrate according to an embodiment of the present invention. The
(透明基板) 透明基板11係由相對於曝光光實質上透明之材料而形成,只要為具有透光性之基板則並不特別限定。使用相對於曝光波長之透過率為85%以上,較佳為90%以上之基板材料。作為形成透明基板11之材料,例如,可列舉合成石英玻璃、鈉鈣玻璃、無鹼玻璃、低熱膨脹玻璃。(Transparent substrate) The
透明基板11之大小可根據顯示裝置製造用之光罩所要求之大小而適當變更。例如,作為透明基板11,可使用矩形狀之基板,且其短邊之長度為330 mm以上且1620 mm以下之大小之透明基板11。作為透明基板11,例如,可使用大小為330 mm×450 mm、390 mm×610 mm、500 mm×750 mm、520 mm×610 mm、520 mm×800 mm、800×920 mm、850 mm×1200 mm、850 mm×1400 mm、1220 mm×1400 mm、1620 mm×1780 mm等基板。尤其,較佳為基板之短邊之長度為850 mm以上且1620 mm以下。藉由使用此種透明基板11,而獲得G7~G10之顯示裝置製造用之光罩。The size of the
(遮光膜) 遮光膜12係自透明基板11側依次積層有第1反射抑制層13、遮光層14及第2反射抑制層15而構成。再者,以下,將光罩基底1之透明基板11側設為背面側,將遮光膜12側設為正面側而進行說明。(Light-shielding film) The light-shielding
第1反射抑制層13係於遮光膜12中,設置於遮光層14之接近透明基板11之側之面,於使用利用光罩基底1製作出之光罩進行圖案轉印之情形時,配置於接近曝光光源之側。於使用光罩進行曝光處理之情形時,自光罩之透明基板11側(背面側)照射曝光光,將圖案轉印像轉印至形成於作為被轉印體之顯示裝置用基板上之抗蝕劑膜。此時,若曝光光由遮光膜圖案之背面側反射,則有時成為作為遮光膜圖案之遮罩圖案之雜散光,而產生重影像之形成或眩光量之增加等轉印像之劣化,或於顯示裝置用基板之重疊附近,照射假定以上之曝光光,而產生顯示不均。第1反射抑制層13於使用光罩進行圖案轉印時,由於可抑制遮光膜12之背面側之曝光光之反射,故而可抑制轉印像之劣化而有助於轉印特性之提高,並且於顯示裝置用基板之重疊附近,可抑制由照射假定以上之曝光光所致之顯示不均之產生。The first
遮光層14係於遮光膜12中設置於第1反射抑制層13與第2反射抑制層15之間。遮光層14具有以遮光膜12具有用以相對於曝光光實質上不透明之光學濃度之方式調整的功能。此處,所謂相對於曝光光實質上不透明,係指以光學濃度計為3.0以上之遮光性,自轉印特性之觀點而言,較佳為光學濃度為4.0以上,進而較佳為4.5以上較佳。The light-
第2反射抑制層15係於遮光膜12中,設置於遮光層14之遠離透明基板11之側之面。第2反射抑制層15係於在其上形成抗蝕劑膜並對該抗蝕劑膜藉由描畫裝置(例如雷射描畫裝置)之描畫光(雷射光)而描畫特定圖案時,可抑制遮光膜12之正面側之反射,故而可提高抗蝕劑圖案以及基於其形成之遮罩圖案之CD均勻性(CD Uniformity)。又,第2反射抑制層15於用作光罩之情形時,配置於作為被轉印體之顯示裝置用基板側,可抑制由被轉印體反射之光由光罩之遮光膜12之正面側再次反射後返回至被轉印體,抑制轉印像之劣化而有助於轉印特性之提高,並且可於顯示裝置用基板之重疊附近,抑制由照射假定以上之曝光光所致之顯示不均之產生。The second
(遮光膜之材料) 繼而,對遮光膜12中之各層之材料進行說明。 第1反射抑制層13係由含有鉻、氧及氮之鉻系材料而構成。第1反射抑制層13中之氧發揮降低來自背面側之曝光光之反射率之效果。又,第1反射抑制層13中之氮除了發揮降低來自背面側之曝光光之反射率之效果以外,還發揮令使用光罩基底藉由蝕刻(尤其濕式蝕刻)而形成之遮光膜圖案之剖面接近垂直,並且提高CD均勻性之效果。再者,自控制蝕刻特性之視點而言,亦可進而含有碳或氟。 遮光層14由含有鉻及氮之鉻系材料而構成。遮光層14中之氮發揮如下效果,使與第1反射抑制層13、第2反射抑制層15之蝕刻速率差變小且令使用光罩基底藉由蝕刻(尤其濕式蝕刻)而形成之遮光膜圖案之剖面接近垂直,並且使遮光膜12(整體)中之蝕刻時間縮短,提高CD均勻性。再者,自控制蝕刻特性之視點而言,亦可進而含有氧、碳、氟。 第2反射抑制層15係由含有鉻、氧及氮之鉻系材料而構成。第2反射抑制層15中之氧發揮降低來自正面側之描畫裝置之描畫光之反射率或來自正面側之曝光光之反射率的效果。又,發揮提高與抗蝕劑膜之密接性,由來自抗蝕劑膜與遮光膜12之界面之蝕刻劑之滲透所致之側蝕刻抑制的效果。又,第2反射抑制層15中之氮除了發揮降低來自正面側之描畫光之反射率、來自正面側之曝光光之反射率之效果以外,還發揮令使用光罩基底藉由蝕刻(尤其濕式蝕刻)而形成之遮光膜圖案之剖面接近垂直,並且提高CD均勻性之效果。再者,自控制蝕刻特性之視點而言,亦可進而含有碳或氟。(Material of the light-shielding film) Next, the material of each layer in the light-shielding
(遮光膜之組成) 繼而,對遮光膜12中之各層之組成進行說明。再者,下述各元素之含有率設為藉由X射線光電分光法(XPS)而測定出之值。(Composition of light-shielding film) Next, the composition of each layer in the light-shielding
遮光膜12係以如下方式構成,即,第1反射抑制層13以含有率計分別包含25~75原子%之鉻(Cr)、15~45原子%之氧(O)、10~30原子%之氮(N),遮光層14以含有率計分別包含70~95原子%之鉻(Cr)、5~30原子%之氮(N),第2反射抑制層15以含有率計分別包含30~75原子%之鉻(Cr)、20~50原子%之氧(O)、5~20原子%之氮(N)。較佳為,第1反射抑制層13以含有率計分別包含50~75原子%之Cr、15~35原子%之O、10~25原子%之N,第2反射抑制層15以含有率計分別包含50~75原子%之Cr,20~40原子%之O、5~20原子%之N。The light-shielding
較佳為,第1反射抑制層13及第2反射抑制層15分別具有O及N中至少任一個元素之含有率沿著膜厚方向而連續地或階段性地發生組成變化之區域。Preferably, the first
較佳為,第2反射抑制層15具有朝向膜厚方向之遮光層14側而O含有率(氧之含有率)增加之區域。Preferably, the second
又,較佳為,第2反射抑制層15具有朝向膜厚方向之遮光層14側而N含有率(氮之含有率)降低之區域。Furthermore, it is preferable that the second
又,較佳為,第1反射抑制層13具有朝向膜厚方向之透明基板11而O含有率增加並且N含有率降低之區域。Furthermore, it is preferable that the first
又,於光罩基底1及由其製作之光罩中,自進一步降低遮光膜12或遮光膜圖案之正背面之反射率,使該等之反射率之差變小之觀點而言,較佳為,以第2反射抑制層15較第1反射抑制層13而言O含有率變高之方式構成,較佳為,以第1反射抑制層13較第2反射抑制層15而言N含有率變高之方式構成。具體而言,較佳為,使第2反射抑制層15之O含有率較第1反射抑制層13大5原子%以上,進而較佳為大10原子%以上較佳。進而,較佳為,使第1反射抑制層13之N含有率較第2反射抑制層15大5原子%以上,進而較佳為大10原子%以上較佳。再者,若於第1反射抑制層13或第2反射抑制層15具有組成傾斜區域之情形時,則其O含有率或N含有率表示膜厚方向上之平均的濃度。Moreover, in the
又,於第1反射抑制層13、遮光層14及第2反射抑制層15中,各元素之含有率之變化可為連續性或階段性,但較佳為連續性。In addition, in the first
(關於鍵結狀態(化學狀態)) 較佳為,遮光層14包含鉻(Cr)與氮化二鉻(Cr2
N)。 較佳為,第1反射抑制層13、第2反射抑制層15包含氮化鉻(CrN)、氧化鉻(III)(Cr2
O3
)及氧化鉻(VI)(CrO3
)。(Regarding the bonding state (chemical state)) Preferably, the
(關於膜厚) 於遮光膜12中,第1反射抑制層13、遮光層14及第2反射抑制層15之各自之厚度並不特別限定,可根據遮光膜12所要求之光學濃度或反射率而適當調整。第1反射抑制層13之厚度只要為如相對於來自遮光膜12之背面側之光,發揮由第1反射抑制層13之正面之反射與第1反射抑制層13及遮光層14之界面之反射所致之光干涉效果的厚度即可。另一方面,第2反射抑制層15之厚度只要為如相對於來自遮光膜12之正面側之光,發揮由第2反射抑制層15之正面之反射與第2反射抑制層15及遮光層14之界面之反射所致之光干涉效果的厚度即可。遮光層14之厚度只要為如遮光膜12之光學濃度成為3以上之厚度即可。具體而言,自於遮光膜12中使正背面之相對於曝光波長之反射率為10%以下,且使光學濃度為3.0以上之觀點而言,例如,可使第1反射抑制層13之膜厚為15 nm~60 nm,使遮光層14之膜厚為50 nm~120 nm,使第2反射抑制層15之膜厚為10 nm~60 nm。(Regarding film thickness) In the light-shielding
<光罩基底之製造方法> 繼而,對上述光罩基底1之製造方法進行說明。<The manufacturing method of the photomask base> Next, the manufacturing method of the above-mentioned
(準備步驟) 準備相對於曝光光實質上透明之透明基板11。再者,可根據需要而實施研削步驟、研磨步驟等任意之加工步驟,以使透明基板11成為平坦且平滑之主表面。於研磨後,可進行洗淨而將透明基板11之正面之異物或污染去除。作為洗淨,例如,可使用硫酸、硫酸過氧化氫混合物(SPM)、氨、氨水過氧化氫混合物(APM)、OH自由基洗淨水、臭氧水、溫水等。(Preparation step) A
(第1反射抑制層之形成步驟) 繼而,於透明基板11上形成第1反射抑制層13。該形成係藉由使用含有Cr之濺鍍靶、以及包含氧系氣體、氮系氣體之反應性氣體及包含稀有氣體之濺鍍氣體之反應性濺鍍而進行成膜。此時,作為成膜條件,濺鍍氣體中所包含之反應性氣體之流量係選擇成為金屬模式之流量。(Step of forming the first reflection suppression layer) Next, the first
此處,使用圖5對金屬模式進行說明。圖5係用以說明利用反應性濺鍍形成薄膜之情形時之成膜模式之模式圖,橫軸表示稀有氣體與反應性氣體之混合氣體中之反應性氣體之分壓(流量)比率,縱軸表示施加至靶之電壓。於反應性濺鍍中,於一面導入氧系氣體或氮系氣體等反應性氣體一面使靶放電時,放電電漿之狀態根據反應性氣體之流量而變化,隨之,成膜速度變化。根據該成膜速度之差異有3個模式。具體而言,如圖5所示,有使反應性氣體之供給量(比率)大於某閾值之反應模式、使反應性氣體之供給量(比率)少於反應模式之金屬模式、以及使反應性氣體之供給量(比率)設定於反應模式與金屬模式之間的過渡模式。於金屬模式中,藉由使反應性氣體之比率變少,而使反應性氣體向靶表面之附著變少,可使成膜速度變快。而且,於金屬模式中,由於反應性氣體之供給量較少,故而,例如,可形成較具有化學計量組成之膜而O濃度(氧濃度)或N濃度(氮濃度)之至少任一者之濃度變低的膜。即,可形成Cr之含有率相對性地多,O含有率或N含有率較低之膜。Here, the metal mode will be described using FIG. 5. Fig. 5 is a schematic diagram for explaining the film formation mode in the case of forming a thin film by reactive sputtering. The horizontal axis represents the partial pressure (flow rate) ratio of the reactive gas in the mixed gas of the rare gas and the reactive gas, vertical The axis represents the voltage applied to the target. In reactive sputtering, when a target is discharged while introducing a reactive gas such as an oxygen-based gas or a nitrogen-based gas, the state of the discharge plasma changes according to the flow rate of the reactive gas, and accordingly, the film formation rate changes. There are 3 modes based on the difference in film formation speed. Specifically, as shown in FIG. 5, there are a reaction mode in which the supply amount (ratio) of the reactive gas is greater than a certain threshold, a metal mode in which the supply amount (ratio) of the reactive gas is less than the reaction mode, and a metal mode that makes the reactive gas The gas supply amount (ratio) is set in the transition mode between the reaction mode and the metal mode. In the metal mode, by reducing the ratio of the reactive gas, the adhesion of the reactive gas to the target surface is reduced, and the film formation speed can be increased. Moreover, in the metal mode, since the supply amount of the reactive gas is small, for example, a film having a relatively stoichiometric composition can be formed and at least one of O concentration (oxygen concentration) or N concentration (nitrogen concentration) can be formed. Film with lower concentration. That is, it is possible to form a film having a relatively high Cr content and a low O content or N content.
作為用以成膜第1反射抑制層13之金屬模式之條件,例如,可使氧系氣體之流量為5~45 sccm,使氮系氣體之流量為30~60 sccm,使稀有氣體之流量為60~150 sccm。又,可將靶施加電力設為2.0~6.0 kW,將靶之施加電壓設為420~430 V。As the conditions of the metal mode for forming the first
作為濺鍍靶,只要含有Cr即可,例如,除了鉻金屬以外,可使用氧化鉻、氮化鉻、氮氧化鉻等鉻系材料。作為氧系氣體,例如,可使用氧(O2 )、二氧化碳(CO2 )、氮氧化物氣體(N2 O、NO、NO2 )等。其中,自氧化力較高之情況而言,較佳為使用氧(O2 )氣體。又,作為氮系氣體,可使用氮(N2 )等。作為稀有氣體,例如,亦可使用氦氣、氖氣、氬氣、氪氣及氙氣等。再者,除了上述反應性氣體以外,亦可供給烴系氣體,例如可使用甲烷氣體或丁烷氣體等。As the sputtering target, it is sufficient to contain Cr. For example, in addition to chromium metal, chromium-based materials such as chromium oxide, chromium nitride, and chromium oxynitride can be used. As the oxygen-based gas, for example, oxygen (O 2 ), carbon dioxide (CO 2 ), nitrogen oxide gas (N 2 O, NO, NO 2 ), or the like can be used. Among them, when the self-oxidizing power is high, it is preferable to use oxygen (O 2 ) gas. In addition, as the nitrogen-based gas, nitrogen (N 2 ) or the like can be used. As the rare gas, for example, helium, neon, argon, krypton, xenon, etc. may also be used. Furthermore, in addition to the above-mentioned reactive gas, a hydrocarbon-based gas may be supplied. For example, methane gas or butane gas may be used.
於本實施形態中,將反應性氣體之流量及濺鍍靶施加電力設定為如成為金屬模式之條件,使用含有Cr之濺鍍靶,藉由反應性濺鍍而進行成膜處理,藉此,於透明基板11上形成以含有率計包含25~75原子%之Cr、15~45原子%之O、10~30原子%之N之第1反射抑制層13。In this embodiment, the flow rate of the reactive gas and the power applied to the sputtering target are set to the conditions such as the metal mode, and the sputtering target containing Cr is used to perform the film forming process by reactive sputtering, thereby, A first
再者,於將第1反射抑制層13形成為於膜厚方向上組成均勻之單一膜之情形時,只要不改變反應性氣體之種類或流量地成膜即可,但於以在膜厚方向上O含有率或N含有率變化之方式發生組成傾斜之情形時,可適當變更反應性氣體之種類或流量、反應性氣體中之氧系氣體或氮系氣體之比率等。又,亦可變更氣體供給口之配置或氣體供給方法等。Furthermore, when the first
(遮光層之形成步驟) 繼而,於第1反射抑制層13上形成遮光層14。該形成係藉由使用含有之濺鍍靶、及包含氮系氣體與稀有氣體之濺鍍氣體之反應性濺鍍而進行成膜。此時,作為成膜條件,濺鍍氣體中所包含之反應性氣體之流量係選擇成為金屬模式之流量。 作為靶,只要含有即可,例如,除了鉻金屬以外,可使用氧化鉻、氮化鉻、氮氧化鉻等鉻系材料。作為氮系氣體,可使用氮(N2
)等。作為稀有氣體,例如,亦可使用氦氣、氖氣、氬氣、氪氣及氙氣等。再者,除了上述反應性氣體以外,亦可供給上述所說明之氧系氣體、烴系氣體。 於本實施形態中,將反應性氣體之流量及濺鍍靶施加電力設定為如成為金屬模式之條件設定,使用含有之濺鍍靶進行反應性濺鍍,藉此,於第1反射抑制層13上,形成以含有率計包含70~95原子%之Cr、5~30原子%之N之遮光層14。(Step of forming a light-shielding layer) Next, a light-
再者,作為遮光層14之成膜條件,例如,可使氮系氣體之流量為1~60 sccm,使稀有氣體之流量為60~200 sccm。又,可將靶施加電力設為3.0~7.0 kW,將靶之施加電壓設為370~380 V。Furthermore, as the film formation conditions of the
(第2反射抑制層之形成步驟) 繼而,於遮光層14上形成第2反射抑制層15。該形成係與第1反射抑制層13相同地,將反應性氣體之流量及靶施加電力設定為如成為金屬模式之條件,使用含有之濺鍍靶,藉由反應性濺鍍進行成膜。藉此,於遮光層14上,形成以含有率計包含30~75原子%之Cr、20~50原子%之O、5~20原子%之N之第2反射抑制層15。(Step of forming the second reflection suppression layer) Next, the second
作為用以成膜第2反射抑制層15之金屬模式之條件,例如,可使氧系氣體之流量為8~45 sccm,使氮系氣體之流量為30~60 sccm,使稀有氣體之流量為60~150 sccm。又,可將靶施加電力設為2.0~6.0 kW,將靶之施加電壓設為420~430 V。As the conditions for the metal mode for forming the second
再者,於使第2反射抑制層發生組成傾斜之情形時,如上所述,可適當變更反應性氣體之種類或流量、反應性氣體中之氧系氣體或氮系氣體之比率等。Furthermore, when the composition of the second reflection suppression layer is inclined, as described above, the type or flow rate of the reactive gas, the ratio of the oxygen-based gas or the nitrogen-based gas in the reactive gas, and the like can be appropriately changed.
根據以上,獲得本實施形態之光罩基底1。Based on the above, the
再者,遮光膜12中之各層之成膜可使用線內型濺鍍裝置利用in-situ進行。於並非線內型濺鍍裝置之情形時,有時於各層之成膜後,必須將透明基板11取出至裝置外,使透明基板11曝露於大氣,各層被表面氧化或表面碳化。其結果,有時使遮光膜12之相對於曝光光之反射率或蝕刻速率變化。因此,若為線內型濺鍍裝置,則不將透明基板11取出至裝置外而曝露於大氣,可連續地成膜各層,故而可抑制未意圖之元素向遮光膜12之取入。Furthermore, the film formation of each layer in the light-shielding
又,於使用線內型濺鍍裝置成膜遮光膜12之情形時,由於第1反射抑制層13、遮光層14、第2反射抑制層15之各層之間具有連續地發生組成傾斜之組成傾斜區域(過渡層),故而使用光罩基底藉由蝕刻(尤其濕式蝕刻)而形成之遮光膜圖案之剖面光滑,且可接近垂直,故而較佳。In addition, when the light-shielding
<光罩之製造方法> 繼而,對使用上述光罩基底1製造光罩之方法進行說明。<The manufacturing method of a photomask> Next, the method of manufacturing a photomask using the said
(抗蝕劑膜之形成步驟) 首先,於光罩基底1之遮光膜12中之第2反射抑制層15上塗佈抗蝕劑,乾燥後形成抗蝕劑膜。作為抗蝕劑,必須根據所使用之描畫裝置選擇適當者,可使用正型或負型抗蝕劑。(Formation step of resist film) First, a resist is coated on the second
(抗蝕劑圖案之形成步驟) 繼而,使用描畫裝置於抗蝕劑膜描畫特定圖案。通常,於製作顯示裝置製造用之光罩時,使用雷射描畫裝置。於描畫後,藉由對抗蝕劑膜實施顯影及沖洗,而形成特定之抗蝕劑圖案。(Formation step of resist pattern) Next, a specific pattern is drawn on the resist film using a drawing device. Generally, a laser drawing device is used when manufacturing a mask for manufacturing a display device. After drawing, the resist film is developed and rinsed to form a specific resist pattern.
於本實施形態中,由於以使第2反射抑制層15之反射率變低之方式構成,故而於在抗蝕劑膜描畫圖案時,可使描畫光(雷射光)之反射變少。藉此,可形成圖案精度較高之抗蝕劑圖案,隨之,可形成尺寸精度較高之遮罩圖案。In this embodiment, since the reflectance of the second
(遮罩圖案之形成步驟) 繼而,藉由將抗蝕劑圖案作為遮罩對遮光膜12進行蝕刻,而形成由遮光膜圖案構成之遮罩圖案。蝕刻既可為濕式蝕刻亦可為乾式蝕刻。通常,於顯示裝置製造用之光罩中,進行濕式蝕刻,作為濕式蝕刻中所使用之蝕刻液(蝕刻劑),例如,可使用包含硝酸鈰銨與過氯酸之鉻蝕刻液。(Mask pattern formation step) Next, the light-shielding
於本實施形態中,由於在遮光膜12之厚度方向,以第1反射抑制層13、遮光層14及第2反射抑制層15之蝕刻速率一致之方式調整各層之組成,故而可使濕式蝕刻後之剖面形狀即遮光膜圖案(遮罩圖案)之剖面形狀相對於透明基板11接近垂直,可獲得較高之CD均勻性(CD Uniformity)。In this embodiment, the composition of each layer is adjusted so that the etching rates of the first
(剝離步驟) 繼而,將抗蝕劑圖案剝離,獲得於透明基板11上形成有遮光膜圖案(遮罩圖案)之光罩。(Peeling step) Next, the resist pattern is peeled off, and a photomask having a light-shielding film pattern (mask pattern) formed on the
根據以上,獲得本實施形態之光罩。Based on the above, the photomask of this embodiment is obtained.
<顯示裝置之製造方法> 繼而,對使用上述光罩製造顯示裝置之方法進行說明。<Method of Manufacturing Display Device> Next, a method of manufacturing a display device using the above-mentioned photomask will be described.
(準備步驟) 首先,對在顯示裝置之基板上形成有抗蝕劑膜之帶抗蝕劑膜之基板,將藉由上述光罩之製造方法而獲得之光罩以與介隔曝光裝置之投影光學系統而形成於基板上之抗蝕劑膜對向之配置方式,載置於曝光裝置之遮罩載台上。(Preparation steps) First, for the substrate with a resist film on which a resist film is formed on the substrate of the display device, the photomask obtained by the above-mentioned photomask manufacturing method is separated from the projection of the exposure device The optical system is placed on the mask stage of the exposure device in an arrangement in which the resist film formed on the substrate is opposed to each other.
(曝光步驟(圖案轉印步驟)) 其次,進行抗蝕劑曝光步驟,即,將曝光光照射至光罩,將圖案轉印至形成於顯示裝置之基板上之抗蝕劑膜。 曝光光例如使用自300 nm~550 nm之波長區域選擇之單波長之光(j射線(波長313 nm)、i射線(波長365 nm)、h射線(波長405 nm)、g射線(波長436 nm)等)、或包含複數個波長之光(例如,j射線(波長313 nm)、i射線(波長365 nm)、h射線(405 nm)、g射線(波長436 nm))之複合光。於本實施形態中,由於使用遮光膜圖案(遮罩圖案)之正背面之反射率降低之光罩製造顯示裝置(顯示面板),故而可獲得無顯示不均之顯示裝置(顯示面板)。(Exposure step (pattern transfer step)) Next, a resist exposure step is performed, that is, exposure light is irradiated to the photomask, and the pattern is transferred to the resist film formed on the substrate of the display device. The exposure light uses, for example, single-wavelength light (j-ray (wavelength 313 nm), i-ray (wavelength 365 nm), h-ray (wavelength 405 nm), g-ray (wavelength 436 nm) selected from the wavelength region of 300 nm to 550 nm. ), etc.), or composite light containing multiple wavelengths of light (for example, j-ray (wavelength 313 nm), i-ray (wavelength 365 nm), h-ray (405 nm), g-ray (wavelength 436 nm)). In the present embodiment, since the light-shielding film pattern (mask pattern) is used to manufacture a display device (display panel) with a reduced reflectivity on the front and back surfaces, a display device (display panel) without display unevenness can be obtained.
<本實施形態之效果> 根據本實施形態,發揮以下所示之1個或複數個效果。<Effects of this embodiment> According to this embodiment, one or more effects shown below are exhibited.
(a)本實施形態之光罩基底1係以如下方式構成,即,使第1反射抑制層13、遮光層14及第2反射抑制層15積層而形成遮光膜12,第1反射抑制層13係含有鉻、氧及氮之鉻系材料,且具有Cr含有率為25~75原子%、O含有率為15~45原子%、N含有率為10~30原子%之組成,遮光層14係含有鉻及氮之鉻系材料,且具有Cr含有率為70~95原子%、N含有率為5~30原子%之組成,第2反射抑制層15係含有鉻、氧及氮之鉻系材料,且具有Cr含有率為30~75原子%、O含有率為20~50原子%、N含有率為5~20原子%之組成。而且,使第1反射抑制層13及第2反射抑制層15之厚度為如最大限或接近最大限地獲得光干涉效果之厚度。藉此,可使光罩基底1之正背面之相對於曝光波長之反射率降低,分別設為10%以下。具體而言,於正背面之反射率光譜中,可使反射率極小之底部峰值之波長為相對高波長側之380 nm~480 nm,使波長380 nm~480 nm之光之反射率為10%以下,較佳為7.5%以下。另一方面,藉由使遮光層14為特定厚度,可使遮光膜12中之光學濃度為3.0以上。(a) The
(b)又,於本實施形態中,藉由使第1反射抑制層13及第2反射抑制層15之組成於上述範圍內適當變更,可分別調整光罩基底1之背面側(透明基板11側)之反射率、及正面側(遮光膜12側)之反射率。例如,可將光罩基底1之反射率以正面側較背面側高之方式、以正面側與背面側相同之方式、或者以背面側較正面側高之方式分別調整。再者,於使用已製作之光罩對被轉印體進行曝光處理時,自抑制由曝光光自光罩向光源側之反射所致之影響(重影之產生等)之觀點而言,較佳為,使背面側之反射率較正面側高。換言之,較佳為,使光罩基底1之正面側(遮光膜12側)之反射率較背面側(透明基板11側)之反射率低。具體而言,於將TFT(thin-film transistor,薄膜電晶體)陣列中之閘極電極或源極電極/汲極電極之配線圖案轉印至形成於作為被轉印體之顯示裝置之基板上之抗蝕劑膜時,光罩之遮光膜圖案之開口率成為50%以上,故而通過光罩之曝光光量變高,故而容易因來自被轉印體側之曝光光之返回光而產生眩光。因此,藉由使光罩基底1之遮光膜12之正面及背面之相對於曝光波長之反射率分別為10%以下,且使遮光膜12之正面側之反射率較背面側之反射率低,可降低眩光之影響,可防止使用光罩製作顯示裝置時之CD誤差。(b) In this embodiment, by appropriately changing the composition of the first
(c)又,於本實施形態中,藉由使構成遮光膜12之第1反射抑制層13、遮光層14、第2反射抑制層15之各層為上述組成範圍,可降低使蝕刻速率降低之O或使蝕刻速率增加之N之濃度,抑制各層之蝕刻速率之差。藉此,可使蝕刻光罩基底1之遮光膜12時之剖面形狀即遮罩圖案之剖面形狀相對於透明基板11接近垂直。具體而言,於遮罩圖案之剖面形狀中,於將藉由蝕刻而形成之側面與透明基板11所成之角設為Θ時,可使Θ為90°±30°之範圍內。又,可使遮罩圖案之剖面形狀接近垂直,並且可抑制第1反射抑制層13之蝕刻殘留,或第1反射抑制層13及第2反射抑制層15之被侵蝕(所謂底切)、側蝕刻等。其結果,可提高遮罩圖案(遮光膜圖案)中之CD均勻性,可形成100 nm以下之高精度之遮罩圖案。(c) In this embodiment, the first
(d)又,於本實施形態中,遮光膜12係藉由使構成遮光膜12之第1反射抑制層13、遮光層14、第2反射抑制層15之各層之蝕刻速率一致,而無論蝕刻時間之長短或蝕刻液之濃淡、蝕刻液之溫度如何,均可穩定地確保剖面形狀之垂直性。例如,於將遮光膜12之恰蝕刻時間設為T時,即便於使蝕刻時間為1.5×T而進行過蝕刻之情形時,亦可獲得與使蝕刻時間為T之情形時同等之垂直性。具體而言,可將使蝕刻時間為T時之遮光膜圖案之剖面所成之角度Θ1與使蝕刻時間為1.5×T而進行過蝕刻後之剖面所成之角度Θ2的差設為10°以下。又,同樣地,於使蝕刻液之濃度變高之情形時與使蝕刻液之濃度變低之情形時,可將遮光膜圖案之剖面所成之角之差設為10°以下。又,同樣地,於使蝕刻液之溫度變高之情形時(例如42℃)與使蝕刻液之溫度變低之情形時(例如室溫23℃),蝕刻液之溫度越高則蝕刻速率越高,但可將遮光膜圖案之剖面所成之角之差設為10°以下。再者,所謂恰蝕刻時間,表示對遮光膜12於膜厚方向蝕刻而使透明基板11之正面開始露出為止之蝕刻時間。(d) In this embodiment, the light-shielding
(e)較佳為,於遮光膜12中,第1反射抑制層13及第2反射抑制層15係含有鉻、氧及氮之鉻系材料,第1反射抑制層13以含有率計分別包含50~75原子%之Cr、15~35原子%之O、10~25原子%之N,第2反射抑制層15以含有率計分別包含50~75原子%之Cr、20~40原子%之O、5~20原子%之N。(e) Preferably, in the light-shielding
於第1反射抑制層13及第2反射抑制層15中,藉由使O含有率進一步降低,可抑制由含有該等之層中之O所致的蝕刻速率之過度增加。因此,以使構成遮光膜12之第1反射抑制層13、遮光層14、第2反射抑制層15之各層之蝕刻速率一致之目的可降低調配於遮光層14之碳(C)之含有率,或者使用遮光層14不含有C而為非含有碳。其結果,可提高遮光層14中之Cr之含有率,將光學濃度(OD)維持得較高。In the first
另一方面,於第1反射抑制層13及第2反射抑制層15中,藉由使N含有率進一步降低,可抑制由含有該等之層中之N所致的蝕刻速率之過度增加。因此,以使構成遮光膜12之第1反射抑制層13、遮光層14、第2反射抑制層15之各層之蝕刻速率一致之目的可降低遮光層14中含有之N之含有率。其結果,可提高遮光層14中之Cr之含有率,將光學濃度(OD)維持得較高。On the other hand, in the first
(f)較佳為,第1反射抑制層13及第2反射抑制層15分別具有O及N中至少任一個元素之含有率沿著膜厚方向連續地或階段性地發生組成變化之區域。藉由使第1反射抑制層13及第2反射抑制層15之各層發生組成變化,可一面對各層局部地導入O或N成為較高之含有率之區域,一面將各層中之O或N之平均的含有率維持得較低。藉此,可將光罩基底1之正面側及背面側之反射率維持得較低。(f) It is preferable that the first
又,於構成遮光膜12之第1反射抑制層13、遮光層14、第2反射抑制層15之各層中,若O含有率變高則蝕刻速率過度地增加,或者若N含有率變高則蝕刻速率過度地增加,藉由使O或N之含有率變低,可抑制由含有該等之元素所致的各層之蝕刻速率之差。即,可抑制第1反射抑制層13及第2反射抑制層15與遮光層14之間之蝕刻速率之背離。其結果,以使構成遮光膜12之第1反射抑制層13、遮光層14、第2反射抑制層15之各層之蝕刻速率一致之目的可使遮光層14中含有之N或碳減少,或者使遮光層14不含有碳而為非含有碳。其結果,可提高遮光層14中之Cr之含有率,將光學濃度(OD)維持得較高。In addition, in each of the first
(g)較佳為,第2反射抑制層15具有朝向膜厚方向之遮光層14側而O含有率增加之區域。藉此,於第2反射抑制層15中,使與遮光層14之界面部分之O含有率局部地變高,使膜厚方向上之平均的O含有率變低。其結果,可於遮光膜12之正面側(第2反射抑制層15)獲得所期望之反射率,並且可抑制由界面之過度的蝕刻所致之被侵蝕。(g) It is preferable that the second
(h)較佳為,第2反射抑制層15具有朝向膜厚方向之遮光層14側而N含有率降低之區域。藉此,於第2反射抑制層15中,將膜厚方向上之平均的N含有率維持為某程度,且使與遮光層14之界面部分之N含有率局部地變低。其結果,可抑制由第2反射抑制層15與遮光層14之界面之過度蝕刻所致的被侵蝕。(h) Preferably, the second
(i)較佳為,第1反射抑制層13具有朝向膜厚方向之透明基板11而O含有率增加並且N含有率降低之區域。於第1反射抑制層13中,藉由使朝向膜厚方向之透明基板11而O含有率增加並且N含有率降低,可使蝕刻速率朝向透明基板11逐漸變低。藉此,可抑制第1反射抑制層13與透明基板11之界面之被侵蝕,並進一步提高遮罩圖案之CD均勻性。(i) Preferably, the first
(j)較佳為,第2反射抑制層15係以較第1反射抑制層13而O含有率變高之方式構成。具體而言,較佳為,第2反射抑制層15之O含有率較第1反射抑制層13大5原子%以上,進而較佳為大10原子%以上較佳。又,第1反射抑制層13係以較第2反射抑制層15而N含有率變高之方式構成。具體而言,較佳為,第1反射抑制層13之N含有率較第2反射抑制層15大5原子%以上,進而較佳為大10原子%以上較佳。根據本發明者們之研究,可知於使第1反射抑制層13及第2反射抑制層15由相同材料形成之情形時,儘管組成相同,但存在正面側之反射率較背面側變高之傾向。因此,對第1反射抑制層13、第2反射抑制層15之各層之組成比(O含有率、N含有率)進行進一步研究,結果發現藉由使第1反射抑制層13及第2反射抑制層15之組成比(O含有率、N含有率)如上所述,可使背面側之反射率與正面側為相同程度,或較正面側降低。藉由如此使各層之組成比(O含有率、N含有率)變更,可控制正背面之反射率。(j) Preferably, the second
(k)又,根據本實施形態,較佳為,使遮光層14為包含鉻(Cr)與氮化二鉻(Cr2
N)之鍵結狀態(化學狀態)之鉻系材料。藉由使遮光層14為含有與Cr2
N之鍵結狀態(化學狀態)之鉻系材料,可抑制遮光層14含有特定量之N之情形時之蝕刻速率的過度發展,可使遮光膜圖案之剖面形狀接近垂直。(k) According to this embodiment, the
(l)又,根據本實施形態,較佳為,使第1反射抑制層13及第2反射抑制層15為包含氮化鉻(CrN)、氧化鉻(III)(Cr2
O3
)及氧化鉻(VI)(CrO3
)之鍵結狀態(化學狀態)之鉻系材料。藉由使第1反射抑制層13及第2反射抑制層15含有Cr2
O3
、CrO3
之複數個氧化鉻,可有效地降低遮光膜12之正背面之反射率。又,藉由第1反射抑制層13及第2反射抑制層15含有CrN之氮化鉻,可抑制由上述氧化鉻所致的蝕刻速率之過度降低,故而可使遮光膜圖案之剖面形狀接近垂直。(l) According to this embodiment, it is preferable that the first
(m)又,根據本實施形態,將第1反射抑制層13及第2反射抑制層15藉由使用含有Cr之濺鍍靶與包含氧系氣體、氮系氣體及稀有氣體之濺鍍氣體之反應性濺鍍進行成膜,將遮光層14藉由使用含有Cr之濺鍍靶與包含氮系氣體及稀有氣體之濺鍍氣體之反應性濺鍍進行成膜。而且,作為該等之反應性濺鍍之成膜條件,濺鍍氣體中所包含之反應性氣體之流量係選擇成為金屬模式之流量。藉此,容易將構成遮光膜12之第1反射抑制層13、遮光層14、第2反射抑制層15之各層調整為上述組成範圍,又,可有效地降低遮光膜12之正背面之反射率,且可使將遮光膜12圖案化後之遮光膜圖案之剖面形狀接近垂直。(m) According to this embodiment, the first
(n)於將第1反射抑制層13及第2反射抑制層15之各層藉由反應性濺鍍而成膜時,較佳為使用氧(O2
氣體)作為氧系氣體。根據O2
氣體,由於與其他氧系氣體相比氧化力較高,故而即便於選擇金屬模式成膜之情形時,亦可將各層更確實地調整為上述組成範圍。藉此,可有效地降低遮光膜12之正背面之反射率,且可使將遮光膜12圖案化後之遮光膜圖案之剖面形狀接近垂直。(n) When forming the respective layers of the first
(o)根據本實施形態之光罩基底1,由於正面側之反射率較低,故而於在遮光膜12上設置抗蝕劑膜,藉由描畫、顯影步驟而形成抗蝕劑圖案時,可降低描畫光之遮光膜12正面之反射。藉此,可提高抗蝕劑圖案之尺寸精度,並提高其後形成之光罩之遮光膜圖案之尺寸精度。(o) According to the
(p)由本實施形態之光罩基底1製造之光罩由於遮光膜圖案為高精度,且遮光膜圖案之正背面之反射率降低,故而於向被轉印體之圖案轉印時,可獲得較高之轉印特性。(p) The photomask made from the
(q)又,於本實施形態中,即便於使用矩形狀且短邊之長度為850 mm以上且1620 mm以下之基板作為透明基板11,使光罩基底1大型化之情形時,亦以使膜厚方向之蝕刻速率一致之方式構成遮光膜12,故而可將對遮光膜12進行蝕刻所獲得之遮罩圖案之CD均勻性維持得較高。(q) Also, in this embodiment, even when a rectangular substrate with a short side length of 850 mm or more and 1620 mm or less is used as the
(r)又,本實施形態之光罩由於可使遮光膜圖案之正背面之相對於自波長300 nm~550 nm之波長區域選擇之光的反射率均為10%以下,較佳為7.5%以下,進而較佳為5%以下,故而,例如即便於以使包含i射線、h射線及g射線之複合光曝光之方式使曝光光強度變高之情形時,亦可對於被轉印體形成較高之精度之轉印圖案。進而,於被轉印體(例如,顯示面板)之重疊附近,可防止由於照射假定以上之曝光光而產生之顯示不均。再者,作為曝光光,有包含自300 nm~550 nm之波長區域選擇之複數個波長之光之複合光,或自300 nm~550 nm之波長區域將某波長區域利用濾波器等切割而選擇之單色光,例如,有包含波長313 nm之j射線、波長365 nm之i射線、波長405 nm之h射線、及波長436 nm之g射線之複合光,或i射線之單色光等。(r) In addition, the photomask of this embodiment can make the reflectance of the front and back of the light-shielding film pattern with respect to the light selected from the wavelength range of 300 nm to 550 nm to be 10% or less, preferably 7.5% Hereinafter, it is more preferably 5% or less. Therefore, even when the exposure light intensity is increased by exposing a composite light including i-rays, h-rays, and g-rays, it can also be formed for the transferred body. Transfer patterns with higher precision. Furthermore, in the vicinity of the overlap of the transferred body (for example, a display panel), it is possible to prevent display unevenness due to exposure of the above-presumed exposure light. Furthermore, as the exposure light, there is a composite light including light of a plurality of wavelengths selected from the wavelength region of 300 nm to 550 nm, or a certain wavelength region is selected by cutting a certain wavelength region from the wavelength region of 300 nm to 550 nm using filters, etc. The monochromatic light includes, for example, composite light including j-ray with a wavelength of 313 nm, i-ray with a wavelength of 365 nm, h-ray with a wavelength of 405 nm, and g-ray with a wavelength of 436 nm, or monochromatic light of i-ray.
<其他實施形態> 以上,對本發明之一實施形態具體地進行了說明,但本發明並不限定於上述實施形態,能夠於不脫離其主旨之範圍內適當變更。<Other Embodiments> As mentioned above, one embodiment of the present invention has been specifically described, but the present invention is not limited to the above-mentioned embodiment, and can be appropriately changed without departing from the gist of the present invention.
於上述實施形態中,對於透明基板11之上直接設置遮光膜12之情形時進行了說明,但本發明並不限定於此。例如,亦可為將光學濃度較遮光膜12低之半透光膜設置於透明基板與遮光膜12之間的光罩基底。該光罩基底可用作具有將於製造顯示裝置時所使用之光罩之片數削減之效果的灰色調遮罩或階調遮罩之光罩基底。該灰色調遮罩或階調遮罩中之遮罩圖案成為半透光膜圖案及/或遮光膜圖案。 又,亦可為代替半透光膜而將使透過光之相位偏移之相位偏移膜設置於透明基板11與遮光膜12之間的光罩基底。該光罩基底可用作具有由相位偏移效果所帶來之較高之圖案解像性之效果的相位偏移遮罩。該相位偏移遮罩中之遮罩圖案成為相位偏移膜圖案、或相位偏移膜圖案及遮光膜圖案。 上述半透光膜及相位偏移膜係採用對於作為構成遮光膜12之材料之鉻系材料具有蝕刻選擇性之材料。作為此種材料,可使用含有鉬(Mo)、鋯(Zr)、鈦(Ti)、鉭(Ta)與矽(Si)之金屬矽化物系材料,進而採用包含氧、氮、碳、或氟之至少任一者之材料。例如,採用MoSi、ZrSi、TiSi、TaSi等金屬矽化物、金屬矽化物之氧化物、金屬矽化物之氮化物、金屬矽化物之氮氧化物、金屬矽化物之碳氮化物、金屬矽化物之碳氧化物、金屬矽化物之碳化氧化氮化物。再者,該等之半透光膜或相位偏移膜亦可為由作為功能膜而列舉之上述膜而構成之積層膜。 上述半透光膜及相位偏移膜相對於曝光光之曝光波長之透過率可於1~80%之範圍內適當調整。於本發明之遮光膜之組合中,上述半透光膜及相位偏移膜之相對於曝光光之曝光波長之透過率較佳為20~80%。藉由選擇相對於曝光光之曝光波長之透過率為20~80%之半透光膜及相位偏移膜,將本發明之遮光膜組合,可使形成有半透光膜與遮光膜之積層膜、或形成有相位偏移膜與遮光膜之積層膜中之背面之相對於曝光波長之反射率為40%以下,進而較佳為30%以下。In the above-mentioned embodiment, the case where the light-shielding
又,於上述實施形態中,對第1反射抑制層13及第2反射抑制層15均為各1層之情形時進行了說明,但本發明並不限定於此。例如,亦可使各層為2層以上之複數層。In addition, in the above-mentioned embodiment, the case where the first
又,於上述實施形態中,亦可於遮光膜12上形成由與遮光膜12具有蝕刻選擇性之材料而構成之蝕刻遮罩膜。In addition, in the above-mentioned embodiment, an etching mask film made of a material having an etching selectivity with the light-shielding
又,於上述實施形態中,亦可於透明基板11與遮光膜12之間,形成由與遮光膜具有蝕刻選擇性之材料而構成之蝕刻終止膜。上述蝕刻遮罩膜、蝕刻終止膜係由相對於作為構成遮光膜12之材料之鉻系材料具有蝕刻選擇性之材料而構成。作為此種材料,可列舉含有鉬(Mo)、鋯(Zr)、鈦(Ti)、鉭(Ta)與矽(Si)之金屬矽化物系材料、或Si、SiO、SiO2
、SiON、Si3
N4
等矽系材料。 [實施例]In addition, in the above-mentioned embodiment, an etching stop film made of a material having etching selectivity with the light-shielding film may also be formed between the
其次,基於實施例對本發明更詳細地進行說明,但本發明並不限定於該等之實施例。Next, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
<實施例1> (光罩基底之製作) 於本實施例中,使用線內型濺鍍裝置,根據上述實施形態所示之順序,製造如圖1所示之於基板尺寸為1220 mm×1400 mm之透明基板上使第1反射抑制層、遮光層及第2反射抑制層積層而具備遮光膜之光罩基底。<Example 1> (Fabrication of the photomask base) In this example, using an in-line sputtering device, according to the sequence shown in the above embodiment, the substrate size as shown in Figure 1 is 1220 mm×1400 The first reflection suppression layer, the light shielding layer, and the second reflection suppression layer are laminated on a transparent substrate of mm to form a mask base with a light shielding film.
第1反射抑制層之成膜條件係將濺鍍靶設為Cr濺鍍靶,反應性氣體之流量係以成為金屬模式之方式使氧(O2 )氣體之流量自5~45 sccm之範圍選擇,使氮(N2 )氣體之流量自30~60 sccm之範圍選擇,使氬(Ar)氣體之流量自60~150 sccm之範圍選擇,並且將靶施加電力設定為2.0~6.0 kW,將靶之施加電壓設定為420~430 V之範圍。再者,第1反射抑制層之成膜時之基板搬送速度設為350 mm/min。The film forming condition of the first reflection suppression layer is to set the sputtering target as the Cr sputtering target, and the flow rate of the reactive gas is to become the metal mode so that the flow rate of the oxygen (O 2 ) gas is selected from the range of 5 to 45 sccm , The flow rate of nitrogen (N 2 ) gas is selected from the range of 30-60 sccm, the flow rate of argon (Ar) gas is selected from the range of 60-150 sccm, and the target applied power is set to 2.0-6.0 kW, and the target The applied voltage is set to the range of 420~430 V. Furthermore, the substrate transport speed during the film formation of the first reflection suppression layer was set to 350 mm/min.
遮光層之成膜條件係將濺鍍靶設為Cr濺鍍靶,反應性氣體之流量係以成為金屬模式之方式使氮(N2 )氣體之流量自1~60 sccm之範圍選擇,使氬(Ar)氣體之流量自60~200 sccm之範圍選擇,並且將靶施加電力設定為3.0~7.0 kW,將施加電壓設定為370~380 V之範圍。再者,遮光層之成膜時之基板搬送速度設為200 mm/min。The film-forming conditions of the light-shielding layer are set as the sputtering target as the Cr sputtering target, and the flow rate of the reactive gas is changed to the metal mode so that the flow rate of the nitrogen (N 2 ) gas is selected from the range of 1 to 60 sccm, so that the argon The flow rate of (Ar) gas is selected from the range of 60 to 200 sccm, and the target applied power is set to 3.0 to 7.0 kW, and the applied voltage is set to the range of 370 to 380 V. Furthermore, the substrate conveying speed during the film formation of the light-shielding layer was set to 200 mm/min.
第2反射抑制層之成膜條件係將濺鍍靶設為Cr濺鍍靶,反應性氣體之流量係以成為金屬模式之方式使氧(O2 )氣體之流量自8~45 sccm之範圍選擇,使氮(N2 )氣體之流量自30~60 sccm之範圍選擇,使氬(Ar)氣體之流量自60~150 sccm之範圍選擇,並且將靶施加電力設定為2.0~6.0 kW,將靶施加電壓設定為420~430 V之範圍。再者,第2反射抑制層之成膜時之基板搬送速度設為300 mm/min。The film forming condition of the second reflection suppression layer is to set the sputtering target as the Cr sputtering target, and the flow rate of the reactive gas is to become the metal mode so that the flow rate of the oxygen (O 2 ) gas is selected from the range of 8 to 45 sccm , The flow rate of nitrogen (N 2 ) gas is selected from the range of 30-60 sccm, the flow rate of argon (Ar) gas is selected from the range of 60-150 sccm, and the target applied power is set to 2.0-6.0 kW, and the target The applied voltage is set in the range of 420 to 430 V. Furthermore, the substrate transport speed during the film formation of the second reflection suppression layer was set to 300 mm/min.
關於所獲得之光罩基底之遮光膜,藉由X射線光電子分光法(XPS)而測定膜厚方向之組成,結果確認到遮光膜中之各層具有圖2所示之組成分佈。圖2係表示實施例1之光罩基底中之膜厚方向之組成分析結果的圖,橫軸表示濺鍍時間,縱軸表示元素之含有率[原子%]。濺鍍時間表示距遮光膜之表面之深度。Regarding the obtained light-shielding film of the mask base, the composition in the film thickness direction was measured by X-ray photoelectron spectroscopy (XPS). As a result, it was confirmed that each layer in the light-shielding film had the composition distribution shown in FIG. 2. 2 is a graph showing the result of composition analysis in the film thickness direction of the mask substrate of Example 1. The horizontal axis represents the sputtering time, and the vertical axis represents the element content [atom %]. The sputtering time indicates the depth from the surface of the shading film.
於圖2中,自表面至深度約5 min(分鐘)為止之區域係表面自然氧化層,自深度約5 min(分鐘)至深度約16 min(分鐘)為止之區域係第2反射抑制層,自深度約16 min(分鐘)至深度約40 min(分鐘)為止之區域係過渡層,自深度約40 min(分鐘)至深度約97 min(分鐘)為止之區域係遮光層,自深度約97 min(分鐘)至深度約124 min(分鐘)為止之區域係過渡層,自深度約124 min(分鐘)至深度約132 min(分鐘)為止之區域係第1反射抑制層,距深度約132 min(分鐘)之區域係透明基板。 再者,藉由膜厚計而測定出之遮光膜之膜厚係198 nm,上述表面自然氧化層、第2反射抑制層、過渡層、遮光層、過渡層、第1反射抑制層之各膜厚係表面自然氧化層為約4 nm,第2反射抑制層為約21 nm,過渡層為約35 nm,遮光層為約88 nm,過渡層為約39 nm,第1反射抑制層為約11 nm。In Figure 2, the area from the surface to the depth of about 5 min (minutes) is the surface natural oxide layer, and the area from the depth of about 5 min (minutes) to the depth of about 16 min (minutes) is the second reflection suppression layer. The region from a depth of about 16 min (minutes) to a depth of about 40 min (minutes) is a transition layer, and the region from a depth of about 40 min (minutes) to a depth of about 97 min (minutes) is a light-shielding layer, from a depth of about 97 The area from min (minute) to the depth of about 124 min (minute) is the transition layer, and the area from the depth of about 124 min (minute) to the depth of about 132 min (minute) is the first reflection suppression layer, and the distance from the depth is about 132 min. The area in (minutes) is a transparent substrate. Furthermore, the film thickness of the light-shielding film measured by a film thickness meter is 198 nm, and the above-mentioned surface natural oxide layer, the second reflection suppression layer, the transition layer, the light-shielding layer, the transition layer, and the first reflection suppression layer are each film The thickness of the natural oxide layer on the thick surface is about 4 nm, the second reflection suppression layer is about 21 nm, the transition layer is about 35 nm, the light shielding layer is about 88 nm, the transition layer is about 39 nm, and the first reflection suppression layer is about 11 nm.
如圖2所示,第1反射抑制層係CrON膜,包含55.4原子%之Cr、20.8原子%之N、23.8原子%之O。該等元素之含有率係於第1反射抑制層中之N成為峰值之部分(濺鍍時間為123 min(分鐘)之區域)測定出者。第1反射抑制層具有如圖2所示之傾斜組成,且具有朝向膜厚方向之透明基板而O含有率增加並且N含有率降低之部分。再者,於第1反射抑制層中,各元素之膜厚方向上之平均含有率係Cr為57原子%,N為18原子%,O為25原子%。As shown in FIG. 2, the first reflection suppression layer is a CrON film, which contains 55.4 atomic% of Cr, 20.8 atomic% of N, and 23.8 atomic% of O. The content of these elements is measured in the part where N in the first reflection suppression layer becomes the peak (the area where the sputtering time is 123 min (minutes)). The first reflection suppression layer has an inclined composition as shown in FIG. 2 and has a transparent substrate facing the film thickness direction, where the O content increases and the N content decreases. Furthermore, in the first reflection suppression layer, the average content of each element in the film thickness direction is 57 atomic% for Cr, 18 atomic% for N, and 25 atomic% for O.
遮光層係CrN膜,包含92.0原子%之Cr、8.0原子%之N。該等元素之含有率係於遮光層之膜厚方向中之中心部分(濺鍍時間為69 min(分鐘)之區域)測定出者。再者,於遮光層中,各元素之膜厚方向上之平均含有率係Cr為91原子%,N為9原子%。The light-shielding layer is a CrN film, which contains 92.0 atomic% of Cr and 8.0 atomic% of N. The content of these elements is measured in the central part (the area where the sputtering time is 69 min (minutes)) in the film thickness direction of the light-shielding layer. Furthermore, in the light-shielding layer, the average content of each element in the film thickness direction is 91 atomic% for Cr and 9 atomic% for N.
第2反射抑制層係CrON膜,包含50.7原子%之Cr、12.2原子%之N、37.1原子%之O。該等元素之含有率係於第2反射抑制層中之O增加之區域之中心部分(濺鍍時間為16 min(分鐘)之區域)測定出者。第2反射抑制層具有如圖2所示之傾斜組成,且具有朝向膜厚方向之遮光層側而O含有率增加並且N含有率降低之部分。再者,於第2反射抑制層中,各元素之膜厚方向上之平均含有率係Cr為52原子%,N為17原子%,O為31原子%。又,認為,於第2反射抑制層之表面,藉由曝露於大氣而形成表面自然氧化層,由於該層氧化或者碳化,故而檢測出較高的O含有率及C含有率。The second reflection suppression layer is a CrON film, which contains 50.7 atomic% of Cr, 12.2 atomic% of N, and 37.1 atomic% of O. The content of these elements is measured in the central part of the area where O increases in the second reflection suppression layer (the area where the sputtering time is 16 min (minutes)). The second reflection suppression layer has a sloped composition as shown in FIG. 2 and has a portion where the O content increases and the N content decreases toward the light-shielding layer side in the film thickness direction. Furthermore, in the second reflection suppression layer, the average content of each element in the film thickness direction is 52 atomic% for Cr, 17 atomic% for N, and 31 atomic% for O. In addition, it is considered that a natural oxidation layer on the surface is formed by exposure to the atmosphere on the surface of the second reflection suppression layer, and because this layer is oxidized or carbonized, high O content and C content are detected.
又,基於XPS測定結果而對構成遮光膜之第1反射抑制層、遮光層、第2反射抑制層之各層之鍵結狀態(化學狀態)進行光譜解析。其結果,第1反射抑制層與第2反射抑制層係包含氮化鉻(CrN)、氧化鉻(III)(Cr2 O3 )及氧化鉻(VI)(CrO3 )且含有鉻、氧及氮之鉻系材料(鉻化合物)。又,遮光層係包含鉻(Cr)與氮化二鉻(Cr2 N)且含有鉻與氮之鉻系材料(鉻化合物)。Furthermore, based on the XPS measurement result, the bonding state (chemical state) of each layer of the first reflection suppression layer, the light shielding layer, and the second reflection suppression layer constituting the light-shielding film was analyzed by spectrum. As a result, the first reflection suppression layer and the second reflection suppression layer contain chromium nitride (CrN), chromium oxide (III) (Cr 2 O 3 ), and chromium oxide (VI) (CrO 3 ), and contain chromium, oxygen, and Nitrogen-based chromium materials (chromium compounds). In addition, the light-shielding layer is a chromium-based material (chromium compound) containing chromium (Cr) and chromium nitride (Cr 2 N), and containing chromium and nitrogen.
(光罩基底之評估) 關於實施例1之光罩基底,藉由以下所示之方法而對遮光膜之光學濃度、遮光膜之正背面之反射率進行評估。(Evaluation of the photomask substrate) Regarding the photomask substrate of Example 1, the optical density of the light-shielding film and the reflectivity of the front and back surfaces of the light-shielding film were evaluated by the method shown below.
關於實施例1之光罩基底,藉由分光光度計(島津製作所股份有限公司製造「SolidSpec-3700」)而對遮光膜之光學濃度進行測定,結果,於作為曝光光之波長區域之g射線(波長436 nm)中為5.0。又,藉由分光光度計(股份有限公司島津製作所製造「SolidSpec-3700」)而對遮光膜之正背面之反射率進行測定。具體而言,藉由分光光度計而分別對遮光膜之第2反射抑制層側之反射率(正面反射率)、與遮光膜之透明基板側之反射率(背面反射率)進行測定。其結果,獲得如圖3所示之反射率光譜。圖3係表示關於實施例1之光罩基底之正背面之反射率光譜,橫軸表示波長[nm],縱軸表示反射率[%]。如圖3所示,實施例1之光罩基底中,確認到可使正背面之反射率光譜之底部峰值波長為436 nm附近,又可相對於廣泛之波長之光使反射率大幅度降低。具體而言,於波長365 nm~436 nm中,遮光膜之正面反射率為10.0%以下(7.7%(波長365 nm)、1.8%(波長405 nm)、1.1%(波長413 nm)、0.3%(波長436 nm)),遮光膜之背面反射率為7.5%以下(6.2%(波長365 nm)、4.7%(波長405 nm)、4.8%(波長436 nm))。確認到於波長365 nm~436 nm中可使遮光膜之正背面之反射率降低至10%以下,尤其關於相對於波長436 nm之光之反射率,可使正面反射率為0.3%,使背面反射率為4.8%。Regarding the mask substrate of Example 1, the optical density of the light-shielding film was measured by a spectrophotometer ("SolidSpec-3700" manufactured by Shimadzu Corporation). As a result, the g-ray ( The wavelength is 436 nm) 5.0. In addition, the reflectance of the front and back of the light-shielding film was measured with a spectrophotometer ("SolidSpec-3700" manufactured by Shimadzu Corporation). Specifically, the reflectance on the second reflection suppression layer side of the light-shielding film (front reflectance) and the reflectance on the transparent substrate side of the light-shielding film (back reflectance) were measured with a spectrophotometer. As a result, the reflectance spectrum shown in Fig. 3 was obtained. Fig. 3 shows the reflectance spectrum of the front and back of the photomask substrate of Example 1. The horizontal axis represents the wavelength [nm], and the vertical axis represents the reflectance [%]. As shown in Fig. 3, in the photomask substrate of Example 1, it was confirmed that the bottom peak wavelength of the reflectance spectrum of the front and back sides can be around 436 nm, and the reflectance can be greatly reduced compared to light of a wide range of wavelengths. Specifically, in the wavelength of 365 nm ~ 436 nm, the front reflectance of the shading film is 10.0% or less (7.7% (wavelength 365 nm), 1.8% (wavelength 405 nm), 1.1% (wavelength 413 nm), 0.3% (Wavelength 436 nm)), the back surface reflectance of the shading film is below 7.5% (6.2% (wavelength 365 nm), 4.7% (wavelength 405 nm), 4.8% (wavelength 436 nm)). It has been confirmed that the reflectance of the front and back of the light shielding film can be reduced to less than 10% at a wavelength of 365 nm to 436 nm, especially with regard to the reflectance of light with a wavelength of 436 nm, the front reflectance can be 0.3%, and the back The reflectivity is 4.8%.
(遮光膜圖案之評估) 使用實施例1之光罩基底,於透明基板上形成遮光膜圖案。具體而言,於透明基板上之遮光膜上形成酚醛系之正型抗蝕劑膜之後,進行雷射描畫(波長413 nm)、顯影處理而形成抗蝕劑圖案。然後,使抗蝕劑圖案為遮罩並藉由鉻蝕刻液而進行濕式蝕刻,於透明基板上形成遮光膜圖案。遮光膜圖案之評估係藉由形成1.9 μm之線與間隙圖案並利用掃描電子顯微鏡(SEM)觀察遮光膜圖案之剖面形狀而進行。其結果,如圖4所示,確認到使剖面形狀接近垂直。圖4係用以說明關於實施例1之光罩基底,由濕式蝕刻而實現之遮光膜圖案之剖面形狀之垂直性之圖,且分別表示以恰蝕刻時間(JET)為基準(100%),使蝕刻時間為110%、130%、150%而進行過蝕刻後之剖面形狀。於圖4中,確認到於透明基板上積層有遮光膜圖案及抗蝕劑膜圖案,遮光膜圖案之側面係於JET 100%時,與透明基板所成之角為70°。確認到該所成之角即便於使蝕刻時間為JET之110%、130%及150%時,亦係60°~80°之範圍內,無論蝕刻時間如何,均可使遮光膜圖案之剖面形狀穩定地形成為垂直。(Evaluation of light-shielding film pattern) Using the mask base of Example 1, a light-shielding film pattern was formed on a transparent substrate. Specifically, after forming a phenolic-based positive resist film on the light-shielding film on the transparent substrate, laser drawing (wavelength 413 nm) and development are performed to form a resist pattern. Then, the resist pattern is used as a mask and wet etching is performed with a chromium etching solution to form a light-shielding film pattern on the transparent substrate. The evaluation of the light-shielding film pattern was performed by forming a 1.9 μm line and gap pattern and observing the cross-sectional shape of the light-shielding film pattern with a scanning electron microscope (SEM). As a result, as shown in FIG. 4, it was confirmed that the cross-sectional shape was made close to vertical. 4 is a diagram for explaining the verticality of the cross-sectional shape of the light-shielding film pattern realized by wet etching with respect to the photomask substrate of Example 1, and respectively shows that it is based on the just etching time (JET) (100%) , Make the
如以上之實施例1般,關於光罩基底之遮光膜,自透明基板側使第1反射抑制層、遮光層及第2反射抑制層積層,以使各層成為特定之組成之方式構成,藉此,可使正背面之反射率於廣泛之波長範圍降低,並且可將藉由濕式蝕刻而圖案化後之遮光膜圖案之剖面形狀形成為垂直。As in Example 1 above, regarding the light-shielding film of the mask base, the first reflection-inhibiting layer, the light-shielding layer, and the second reflection-inhibiting layer are laminated from the transparent substrate side so that each layer has a specific composition. , The reflectance of the front and back sides can be reduced in a wide range of wavelengths, and the cross-sectional shape of the light-shielding film pattern patterned by wet etching can be formed to be vertical.
(光罩之製作) 其次,使用實施例1之光罩基底,製作光罩。 首先,於光罩基底之遮光膜上形成酚醛系之正型抗蝕劑。然後,使用雷射描畫裝置,對該抗蝕劑膜描畫TFT面板用之電路圖案之圖案,進而藉由顯影、沖洗,而形成特定之抗蝕劑圖案(上述電路圖案之最小線寬為0.75 μm)。 然後,使抗蝕劑圖案為遮罩,使用鉻蝕刻液,利用濕式蝕刻使遮光膜圖案化,最後藉由抗蝕劑剝離液而將抗蝕劑圖案剝離,獲得於透明基板上形成有遮光膜圖案(遮罩圖案)之光罩。 藉由精工電子奈米科技股份有限公司製造「SIR8000」而測定該光罩之遮光膜圖案之CD均勻性。CD均勻性之測定係關於將基板之周緣區域除外之1100 mm×1300 mm之區域,於11×11之位置進行測定。 其結果,CD均勻性為100 nm,所獲得之光罩之CD均勻性良好。(Making of the photomask) Next, using the photomask substrate of Example 1 to manufacture a photomask. First, a phenolic-based positive resist is formed on the light-shielding film of the mask substrate. Then, use a laser drawing device to draw the pattern of the circuit pattern for the TFT panel on the resist film, and then develop and rinse to form a specific resist pattern (the minimum line width of the above circuit pattern is 0.75 μm ). Then, the resist pattern is used as a mask, and a chromium etching solution is used to pattern the light-shielding film by wet etching. Finally, the resist pattern is peeled off by the resist stripping liquid to obtain a light-shielding formed on the transparent substrate. The mask of the film pattern (mask pattern). The CD uniformity of the light-shielding film pattern of the mask was measured by "SIR8000" manufactured by Seiko Nano Technology Co., Ltd. The measurement of CD uniformity is about the area of 1100 mm×1300 mm excluding the peripheral area of the substrate, and the measurement is carried out at the position of 11×11. As a result, the CD uniformity was 100 nm, and the CD uniformity of the obtained photomask was good.
(LCD面板之製作) 將於該實施例1中製作出之光罩設置於曝光裝置之遮罩載台,對在顯示裝置(TFT)用之基板上形成有抗蝕劑膜之被轉印體進行圖案曝光而製作TFT陣列。作為曝光光,使用包含波長365 nm之i射線、波長405 nm之h射線、及波長436 nm之g射線之波長300 nm以上且550 nm以下之複合光。 將所製作出之TFT陣列與彩色濾光片、偏光板、背光組合而製作TFT-LCD面板。其結果,獲得無顯示不均之TFT-LCD面板。(Fabrication of LCD Panel) The photomask fabricated in Example 1 was set on the mask stage of the exposure device, and the resist film was formed on the substrate for the display device (TFT) to be transferred Pattern exposure is performed to fabricate a TFT array. As the exposure light, composite light with a wavelength of 300 nm or more and 550 nm or less including i-ray with a wavelength of 365 nm, h-ray with a wavelength of 405 nm, and g-ray with a wavelength of 436 nm is used. Combine the produced TFT array with color filters, polarizers, and backlight to produce a TFT-LCD panel. As a result, a TFT-LCD panel with no display unevenness was obtained.
<實施例2> (光罩基底之製作) 於本實施例中,除了於透明基板與遮光膜之間形成半透光膜以外,與實施例1相同地製造光罩基底。具體而言,於在1220 mm×1400 mm之透明基板上形成半透光膜之後,以與實施例1相同之條件使第1反射抑制層、遮光層及第2反射抑制層積層,藉此製造實施例2之光罩基底。 半透光膜之成膜係將濺鍍靶設為MoSi濺鍍靶,藉由利用氬(Ar)氣體與氮(N2 )氣體之混合氣體之反應性濺鍍,而形成鉬矽化物氮化膜(MoSiN)。該半透光膜係於i射線(波長365 nm)中,以透過率成為40%之方式,適當調整組成比與膜厚。 其次,與實施例1相同地,於上述半透光膜上形成由第1反射抑制層、遮光層及第2反射抑制層構成之遮光膜而製造實施例2之光罩基底。<Example 2> (Production of a photomask base) In this example, a photomask base was manufactured in the same manner as in Example 1, except that a semi-transparent film was formed between the transparent substrate and the light-shielding film. Specifically, after forming a translucent film on a transparent substrate of 1220 mm×1400 mm, the first reflection suppression layer, the light shielding layer, and the second reflection suppression layer were laminated under the same conditions as in Example 1, thereby manufacturing The mask substrate of Example 2. The semi-transparent film is formed by using the sputtering target as the MoSi sputtering target, and the molybdenum silicide nitriding is formed by reactive sputtering using a mixed gas of argon (Ar) gas and nitrogen (N 2) gas Film (MoSiN). The semi-transmissive film is in i-ray (wavelength 365 nm), and the composition ratio and film thickness are appropriately adjusted so that the transmittance becomes 40%. Next, in the same manner as in Example 1, a light shielding film composed of a first reflection suppressing layer, a light shielding layer, and a second reflection suppressing layer was formed on the above-mentioned semi-transparent film to manufacture a mask base of Example 2.
(光罩基底之評估) 關於實施例2之光罩基底,藉由與上述實施例1相同之方法而評估由半透光膜與遮光膜而構成之積層膜之光學濃度與正背面之反射率。其結果,作為曝光光之波長區域之g射線(波長436 nm)中之積層膜之光學濃度為5.0以上。又,於波長365 nm~436 nm中,積層膜之遮光膜側之反射率(正面反射率)為10.0%以下(7.7%(波長365 nm)、1.8%(波長405 nm)、1.1%(波長413 nm)、0.3%(波長436 nm)),半透光膜側之反射率(背面反射率)為30.0%以下(27.4%(波長365 nm)、22.5%(波長405 nm)、20.1%(波長436 nm))。(Evaluation of photomask substrate) Regarding the photomask substrate of Example 2, the optical density of the laminated film composed of the semi-transmissive film and the light-shielding film and the reflectivity of the front and back surfaces were evaluated by the same method as the above-mentioned Example 1 . As a result, the optical density of the laminated film in the g-ray (wavelength 436 nm) which is the wavelength region of the exposure light is 5.0 or more. In addition, in the wavelength of 365 nm to 436 nm, the reflectance (frontal reflectance) of the light-shielding film side of the laminated film is 10.0% or less (7.7% (wavelength 365 nm), 1.8% (wavelength 405 nm), 1.1% (wavelength 413 nm), 0.3% (wavelength 436 nm)), the reflectance of the semi-transmissive film side (back surface reflectance) is 30.0% or less (27.4% (wavelength 365 nm), 22.5% (wavelength 405 nm), 20.1% ( Wavelength 436 nm)).
(光罩之製作) 其次,使用實施例2之光罩基底,製作光罩。該光罩係於透明基板上形成有半透光膜圖案,於該半透光膜圖案上形成有遮光膜圖案,且具備包含透光部、遮光部、半透光部之轉印圖案。實施例2之光罩係藉由專利第4934236號中所記載之灰色調遮罩之製造方法而製造。該所獲得之光罩之半透光膜圖案及遮光膜圖案之CD均勻性良好。(Making of the photomask) Next, using the photomask substrate of Example 2 to manufacture a photomask. The photomask is formed with a semi-transmissive film pattern on a transparent substrate, a light-shielding film pattern is formed on the semi-transparent film pattern, and is provided with a transfer pattern including a light-transmitting part, a light-shielding part, and a semi-light-transmitting part. The mask of Example 2 is manufactured by the manufacturing method of the gray tone mask described in Patent No. 4934236. The CD uniformity of the semi-transmissive film pattern and the light-shielding film pattern of the obtained mask is good.
(LCD面板之製作) 使用該實施例2中製作出之光罩,與實施例1相同地製作LCD面板。其結果,獲得無顯示不均之TFT-LCD面板。再者,作為實施例2之光罩之製造方法,可藉由專利第5605917號中所記載之光罩之製造方法而製作,藉由該方法而獲得之光罩之半透光膜圖案及遮光膜圖案之CD均勻性亦良好。而且,獲得顯示不均較少之TFT-LCD面板。(Production of LCD panel) Using the photomask produced in this Example 2, an LCD panel was produced in the same manner as in Example 1. As a result, a TFT-LCD panel with no display unevenness was obtained. Furthermore, as the manufacturing method of the photomask of Example 2, it can be manufactured by the manufacturing method of the photomask described in Patent No. 5605917, and the semi-transparent film pattern and light-shielding film of the photomask obtained by this method The CD uniformity of the film pattern is also good. Moreover, a TFT-LCD panel with less display unevenness is obtained.
<比較例1> 作為比較例,製造於基板尺寸為1220 mm×1400 mm之透明基板上,使第1反射抑制層、遮光層及第2反射抑制層積層而具備遮光膜之光罩基底。<Comparative Example 1> As a comparative example, a mask base provided with a light-shielding film was fabricated on a transparent substrate with a substrate size of 1220 mm×1400 mm. The first reflection suppression layer, the light shielding layer, and the second reflection suppression layer were laminated.
第1反射抑制層之成膜條件係將濺鍍靶設為Cr濺鍍靶,反應性氣體之流量係以成為反應模式之方式使氧(O2 )氣體之流量自150~300 sccm之範圍選擇,使氮(N2 )氣體之流量自150~300 sccm之範圍選擇,使甲烷(CH4 )氣體之流量自5~15 sccm之範圍選擇,使氬(Ar)氣體之流量自100~150 sccm之範圍選擇,並且將靶施加電力設定為2.0~7.0 kW之範圍。再者,第1反射抑制層之成膜時之基板搬送速度設為200 mm/min,進行3次成膜。The film forming condition of the first reflection suppression layer is to set the sputtering target as the Cr sputtering target, and the flow rate of the reactive gas is to become the reaction mode so that the flow rate of the oxygen (O 2 ) gas is selected from the range of 150 to 300 sccm , The flow rate of nitrogen (N 2 ) gas is selected from the range of 150 to 300 sccm, the flow rate of methane (CH 4 ) gas is selected from the range of 5 to 15 sccm, and the flow rate of argon (Ar) gas is selected from 100 to 150 sccm Select the range, and set the target applied power to the range of 2.0 to 7.0 kW. In addition, the substrate transport speed during the film formation of the first reflection suppression layer was set to 200 mm/min, and the film formation was performed three times.
遮光層之成膜條件係將濺鍍靶設為Cr濺鍍靶,反應性氣體之流量係以成為金屬模式之方式使氮(N2 )氣體之流量自1~60 sccm之範圍選擇,使氬(Ar)氣體之流量自60~200 sccm之範圍選擇,並且將靶施加電力設定為5.0~8.0 kW之範圍。再者,遮光層之成膜時之基板搬送速度設為200 mm/min。The film-forming conditions of the light-shielding layer are set as the sputtering target as the Cr sputtering target, and the flow rate of the reactive gas is changed to the metal mode so that the flow rate of the nitrogen (N 2 ) gas is selected from the range of 1 to 60 sccm, so that the argon The flow rate of (Ar) gas is selected from the range of 60 to 200 sccm, and the target applied power is set to the range of 5.0 to 8.0 kW. Furthermore, the substrate conveying speed during the film formation of the light-shielding layer was set to 200 mm/min.
第2反射抑制層之成膜條件係將濺鍍靶設為Cr濺鍍靶,反應性氣體之流量係以成為反應模式之方式使氧(O2 )氣體之流量自150~300之範圍選擇,使氮(N2 )氣體之流量自150~300 sccm之範圍選擇,使甲烷(CH4 )氣體之流量自5~15 sccm之範圍選擇,使氬(Ar)氣體之流量自100~150 sccm之範圍選擇,並且將靶施加電力設定為2.0~7.0 kW之範圍。再者,第2反射抑制層之成膜時之基板搬送速度設為200 mm/min,進行3次成膜。 藉由膜厚計而測定出之遮光膜之膜厚為206 nm。再者,表面自然氧化層、第2反射抑制層、遮光層、第1反射抑制層之各膜厚為約3 nm,第2反射抑制層為約51 nm,遮光層為約101 nm,第1反射抑制層為約51 nm。又,於第2反射抑制層與遮光層之間、遮光層與第1反射抑制層之間,形成有各元素之組成連續地傾斜之過渡層。The film forming condition of the second reflection suppression layer is to set the sputtering target as the Cr sputtering target, and the flow rate of the reactive gas is such that the flow rate of the oxygen (O 2 ) gas is selected from the range of 150 to 300 so that it becomes the reaction mode. The flow rate of nitrogen (N 2 ) gas is selected from the range of 150 to 300 sccm, the flow rate of methane (CH 4 ) gas is selected from the range of 5 to 15 sccm, and the flow rate of argon (Ar) gas is selected from 100 to 150 sccm. Select the range, and set the target applied power to the range of 2.0 to 7.0 kW. In addition, the substrate transport speed during the film formation of the second reflection suppression layer was set to 200 mm/min, and the film formation was performed three times. The thickness of the light-shielding film measured by a film thickness meter was 206 nm. Furthermore, the thickness of each of the surface natural oxide layer, the second reflection suppression layer, the light shielding layer, and the first reflection suppression layer is about 3 nm, the second reflection suppression layer is about 51 nm, and the light shielding layer is about 101 nm. The reflection suppression layer is about 51 nm. Furthermore, between the second reflection suppression layer and the light-shielding layer, and between the light-shielding layer and the first reflection suppression layer, a transition layer in which the composition of each element is continuously inclined is formed.
關於比較例1之光罩基底之遮光膜,對各層中所包含之元素之含有率進行測定,結果如以下所述。再者,以下所示之各層之含有率表示各元素之膜厚方向上之平均含有率。 第1反射抑制層係CrON膜,包含45原子%之Cr、3原子%之N、52原子%之O。 遮光層係CrN膜,包含78原子%之Cr、22原子%之N。 第2反射抑制層係CrON膜,包含45原子%之Cr、3原子%之N、52原子%之O。Regarding the light-shielding film of the mask base of Comparative Example 1, the content rate of the elements contained in each layer was measured, and the results are as follows. In addition, the content rate of each layer shown below represents the average content rate of each element in the film thickness direction. The first reflection suppression layer is a CrON film, containing 45 atomic% of Cr, 3 atomic% of N, and 52 atomic% of O. The light-shielding layer is a CrN film, containing 78 atomic% of Cr and 22 atomic% of N. The second reflection suppression layer is a CrON film, containing 45 atomic% of Cr, 3 atomic% of N, and 52 atomic% of O.
與上述實施例1相同地,關於比較例1之光罩基底,對遮光膜之光學濃度、遮光膜之正背面之反射率進行測定。其結果,遮光膜之光學濃度係於作為曝光光之波長區域之g射線(波長436 nm)中為3.5%,於i射線(波長365 nm)中為4.5%。又,於波長365 nm~436 nm中,遮光膜之正面反射率為5.0%以下(4.5%(波長365 nm)、4.0%(波長405 nm)、3.5%(波長436 nm)),遮光膜之背面反射率為7.5%以下(5.5%(波長365 nm)、6.5%(波長405 nm)、7.5%(波長436 nm))。 進而,與實施例1相同地進行遮光膜圖案之評估。其結果,遮光膜圖案之側面係於透明基板附近成為錐形狀,於抗蝕劑膜附近成為倒錐形狀,剖面形狀成為非常差之結果。再者,確認到JET 100%時之與透明基板所成之角為150°。In the same manner as in Example 1, regarding the mask substrate of Comparative Example 1, the optical density of the light-shielding film and the reflectance of the front and back surfaces of the light-shielding film were measured. As a result, the optical density of the light-shielding film is 3.5% in the g-ray (wavelength of 436 nm) as the wavelength region of the exposure light, and 4.5% in the i-ray (wavelength of 365 nm). In addition, in the wavelength of 365 nm~436 nm, the frontal reflectance of the light-shielding film is 5.0% or less (4.5% (wavelength 365 nm), 4.0% (wavelength 405 nm), 3.5% (wavelength 436 nm)). The back reflectance is 7.5% or less (5.5% (wavelength 365 nm), 6.5% (wavelength 405 nm), 7.5% (wavelength 436 nm)). Furthermore, the evaluation of the light-shielding film pattern was performed in the same manner as in Example 1. As a result, the side surface of the light-shielding film pattern becomes a tapered shape near the transparent substrate and an inverted tapered shape near the resist film, resulting in a very poor cross-sectional shape. Furthermore, it was confirmed that the angle between JET and the transparent substrate is 150° when JET is 100%.
其次,使用比較例1之光罩基底,與實施例1相同地製作光罩。對所獲得之光罩之遮光膜圖案之CD均勻性進行測定,結果較差,為200 nm。如此,於比較例1之遮罩基底中,可降低正背面之反射率,但無法形成高精度之遮罩圖案。Next, using the photomask substrate of Comparative Example 1, a photomask was produced in the same manner as in Example 1. The CD uniformity of the light-shielding film pattern of the obtained mask was measured, and the result was poor, which was 200 nm. In this way, in the mask base of Comparative Example 1, the reflectivity of the front and back surfaces can be reduced, but a high-precision mask pattern cannot be formed.
如以上般,於光罩基底之遮光膜中,第1反射抑制層、遮光層及第2反射抑制層之各者由具有特定組成之材料而形成,並且以使遮光膜之正背面各自之反射率為10%以下,且光學濃度成為3.0以上之方式設定各層之膜厚,而構成光罩基底,藉此,於藉由蝕刻而製作光罩時,可獲得CD均勻性良好且高精度之遮罩圖案。根據此種光罩,可製作顯示不均較少之顯示裝置。As above, in the light-shielding film of the mask base, each of the first reflection-inhibiting layer, the light-shielding layer, and the second reflection-inhibiting layer is formed of a material with a specific composition, and the front and back sides of the light-shielding film are reflected respectively The film thickness of each layer is set in such a way that the rate is 10% or less and the optical density becomes 3.0 or more to form the mask base. By this, when the mask is produced by etching, a CD uniformity and high-precision mask can be obtained. Hood pattern. According to this type of photomask, a display device with less display unevenness can be manufactured.
1‧‧‧光罩基底11‧‧‧透明基板12‧‧‧遮光膜13‧‧‧第1反射抑制層14‧‧‧遮光層15‧‧‧第2反射抑制層1‧‧‧
圖1係表示本發明之一實施形態之光罩基底之概略構成之剖視圖。 圖2係表示實施例1之光罩基底中之膜厚方向之組成分析結果之圖。 圖3係針對實施例1之光罩基底表示正背面之反射率光譜之圖。 圖4係用以說明使用實施例1之光罩基底製作出之光罩之遮光膜圖案之剖面形狀之特性的圖。 圖5係用以說明利用反應性濺鍍形成遮光膜之情形時之成膜模式之模式圖。Fig. 1 is a cross-sectional view showing a schematic configuration of a photomask substrate according to an embodiment of the present invention. FIG. 2 is a diagram showing the composition analysis result of the film thickness direction in the mask substrate of Example 1. FIG. FIG. 3 is a graph showing the reflectance spectrum of the front and back of the mask substrate of Example 1. FIG. 4 is a diagram for explaining the characteristics of the cross-sectional shape of the light-shielding film pattern of the photomask fabricated using the photomask substrate of Example 1. FIG. FIG. 5 is a schematic diagram for explaining the film forming mode when the light shielding film is formed by reactive sputtering.
1‧‧‧光罩基底 1‧‧‧Mask base
11‧‧‧透明基板 11‧‧‧Transparent substrate
12‧‧‧遮光膜 12‧‧‧Shading film
13‧‧‧第1反射抑制層 13‧‧‧The first reflection suppression layer
14‧‧‧遮光層 14‧‧‧Shading layer
15‧‧‧第2反射抑制層 15‧‧‧Second reflection suppression layer
Claims (22)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017138064 | 2017-07-14 | ||
JP2017-138064 | 2017-07-14 | ||
JP2018-105981 | 2018-06-01 | ||
JP2018105981A JP6625692B2 (en) | 2017-07-14 | 2018-06-01 | Photomask blank and method for manufacturing the same, photomask manufacturing method, and display device manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201908125A TW201908125A (en) | 2019-03-01 |
TWI733033B true TWI733033B (en) | 2021-07-11 |
Family
ID=65355633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107121660A TWI733033B (en) | 2017-07-14 | 2018-06-25 | Photomask blank and method of manufacturing photomask blank, method of manufacturing photomask, and method of manufacturing display device |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6625692B2 (en) |
TW (1) | TWI733033B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6625692B2 (en) * | 2017-07-14 | 2019-12-25 | Hoya株式会社 | Photomask blank and method for manufacturing the same, photomask manufacturing method, and display device manufacturing method |
TWI755337B (en) * | 2017-07-14 | 2022-02-11 | 日商Hoya股份有限公司 | Photomask blank, method of manufacturing photomask, and method of manufacturing display device |
JP7113724B2 (en) * | 2017-12-26 | 2022-08-05 | Hoya株式会社 | Method for manufacturing photomask blank and photomask, and method for manufacturing display device |
CN111624848B (en) * | 2019-02-28 | 2024-07-16 | Hoya株式会社 | Photomask blank, method for manufacturing photomask, and method for manufacturing display device |
JP2021004920A (en) * | 2019-06-25 | 2021-01-14 | Hoya株式会社 | Mask blank, method for manufacturing transfer mask and method for manufacturing semiconductor device |
JP7463183B2 (en) * | 2019-06-26 | 2024-04-08 | Hoya株式会社 | Mask blank, transfer mask, method for manufacturing a transfer mask, and method for manufacturing a semiconductor device |
KR20220024004A (en) * | 2019-06-27 | 2022-03-03 | 호야 가부시키가이샤 | A substrate with a thin film, a substrate with a multilayer reflective film, a reflective mask blank, a reflective mask, and a method for manufacturing a semiconductor device |
JP7356857B2 (en) * | 2019-09-30 | 2023-10-05 | アルバック成膜株式会社 | Mask blanks and photomasks |
JP7422579B2 (en) * | 2020-03-24 | 2024-01-26 | Hoya株式会社 | Method for manufacturing a photomask blank and photomask, and method for manufacturing a display device |
US20220317554A1 (en) * | 2021-04-06 | 2022-10-06 | Shin-Etsu Chemical Co., Ltd. | Photomask blank, method for producing photomask, and photomask |
JP2023050611A (en) * | 2021-09-30 | 2023-04-11 | 株式会社エスケーエレクトロニクス | Photomask and manufacturing method of photomask |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200809393A (en) * | 2006-05-15 | 2008-02-16 | Hoya Corp | Mask blank and photomask |
US20080041716A1 (en) * | 2006-08-18 | 2008-02-21 | Schott Lithotec Usa Corporation | Methods for producing photomask blanks, cluster tool apparatus for producing photomask blanks and the resulting photomask blanks from such methods and apparatus |
TW200949431A (en) * | 2008-03-31 | 2009-12-01 | Hoya Corp | Photo mask blank, photo mask and manufacturing method for photo mask blank |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4933753B2 (en) * | 2005-07-21 | 2012-05-16 | 信越化学工業株式会社 | Phase shift mask blank, phase shift mask, and manufacturing method thereof |
JP6544943B2 (en) * | 2014-03-28 | 2019-07-17 | Hoya株式会社 | Mask blank, method of manufacturing phase shift mask, phase shift mask, and method of manufacturing semiconductor device |
JP6594742B2 (en) * | 2014-11-20 | 2019-10-23 | Hoya株式会社 | Photomask blank, photomask manufacturing method using the same, and display device manufacturing method |
JP6301383B2 (en) * | 2015-03-27 | 2018-03-28 | Hoya株式会社 | Photomask blank, photomask manufacturing method using the same, and display device manufacturing method |
JP6625692B2 (en) * | 2017-07-14 | 2019-12-25 | Hoya株式会社 | Photomask blank and method for manufacturing the same, photomask manufacturing method, and display device manufacturing method |
-
2018
- 2018-06-01 JP JP2018105981A patent/JP6625692B2/en active Active
- 2018-06-25 TW TW107121660A patent/TWI733033B/en active
-
2019
- 2019-11-27 JP JP2019214087A patent/JP6823703B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200809393A (en) * | 2006-05-15 | 2008-02-16 | Hoya Corp | Mask blank and photomask |
US20080041716A1 (en) * | 2006-08-18 | 2008-02-21 | Schott Lithotec Usa Corporation | Methods for producing photomask blanks, cluster tool apparatus for producing photomask blanks and the resulting photomask blanks from such methods and apparatus |
TW200949431A (en) * | 2008-03-31 | 2009-12-01 | Hoya Corp | Photo mask blank, photo mask and manufacturing method for photo mask blank |
Also Published As
Publication number | Publication date |
---|---|
JP2020064304A (en) | 2020-04-23 |
JP6823703B2 (en) | 2021-02-03 |
JP2019020712A (en) | 2019-02-07 |
JP6625692B2 (en) | 2019-12-25 |
TW201908125A (en) | 2019-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI733033B (en) | Photomask blank and method of manufacturing photomask blank, method of manufacturing photomask, and method of manufacturing display device | |
TWI755337B (en) | Photomask blank, method of manufacturing photomask, and method of manufacturing display device | |
KR101824291B1 (en) | Phase shift mask blank and manufacturing method therefor, phase shift mask and manufacturing method therefor, and display device manufacturing method | |
TWI453531B (en) | Phase shift mask blank and phase shift mask | |
TWI467316B (en) | Method of manufacturing a photomask | |
TWI676078B (en) | Photomask blank, method of manufacturing photomask using same, and method of manufacturing display device | |
KR101780068B1 (en) | Mask blank and method for manufacturing transfer mask | |
TWI514067B (en) | Mask blank, transfer mask, methods of manufacturing the same and method of manufacturing a semiconductor device | |
KR20140114797A (en) | Phase-shift mask blank and its manufacturing method, method for manufacturing phase-shift mask, and method for manufacturing display device | |
KR20180032196A (en) | Photomask blank, method for manufacturing photomask blank, and method for manufacturing photomask using them, and method for manufacturing display device | |
TW201735161A (en) | Phase shift mask blank, phase shift mask and method of manufacturing a display device | |
JP7335400B2 (en) | Photomask blank, photomask manufacturing method, and display device manufacturing method | |
TWI851845B (en) | Mask blank, transfer mask, and method for manufacturing a semiconductor device | |
US8709683B2 (en) | Photomask blank, photomask blank manufacturing method, and photomask manufacturing method | |
TWI788304B (en) | Halftone phase shift type blank photomask, manufacturing method thereof, and halftone phase shift type photomask | |
TWI785160B (en) | Photomask blank and method of manufacturing photomask, and method of manufacturing display device | |
JP2012003152A (en) | Multi-tone photomask, blank for multi-tone photomask, and pattern transfer method | |
JP4831368B2 (en) | Gray tone mask blank and gray tone mask | |
JP7422579B2 (en) | Method for manufacturing a photomask blank and photomask, and method for manufacturing a display device | |
TW202235996A (en) | Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device | |
JP2012027508A (en) | Mask blank and photomask |