TWI680579B - Transistor device - Google Patents
Transistor device Download PDFInfo
- Publication number
- TWI680579B TWI680579B TW108101981A TW108101981A TWI680579B TW I680579 B TWI680579 B TW I680579B TW 108101981 A TW108101981 A TW 108101981A TW 108101981 A TW108101981 A TW 108101981A TW I680579 B TWI680579 B TW I680579B
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- conductivity type
- transistor
- buried layer
- type
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 79
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000000926 separation method Methods 0.000 claims abstract description 25
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 230000002093 peripheral effect Effects 0.000 claims abstract description 14
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910001922 gold oxide Inorganic materials 0.000 claims abstract description 11
- 239000002344 surface layer Substances 0.000 claims abstract description 6
- 238000009792 diffusion process Methods 0.000 claims description 17
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 125000000623 heterocyclic group Chemical group 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000002513 implantation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Element Separation (AREA)
Abstract
一種半導體元件包括一基底,該基底是第一導電型。第二導電型的埋入層形成在該基底中的表層區域。該第二導電型的該埋入層包含中心區域,多個分離區域由該中心區域向外分佈,及外圍區域在該多個分離區域的外圍。磊晶層形成在該基底上。該第一導電型的高電壓井區形成在該磊晶層中。該第一導電型的金氧半導體電晶體形成在該高電壓井區上。該第二導電型的該埋入層的該中心區域是在該金氧半導體電晶體的汲極區域的下方。A semiconductor device includes a substrate, the substrate being of a first conductivity type. A buried layer of the second conductivity type is formed in a surface layer region in the substrate. The buried layer of the second conductivity type includes a center region, a plurality of separation regions are distributed outward from the center region, and a peripheral region is on the periphery of the plurality of separation regions. An epitaxial layer is formed on the substrate. The high-voltage well region of the first conductivity type is formed in the epitaxial layer. The first conductivity type gold-oxide semiconductor transistor is formed on the high-voltage well region. The center region of the buried layer of the second conductivity type is below a drain region of the gold-oxide semiconductor transistor.
Description
本發明是有關於一種半導體製造技術,且特別是有關於電晶體元件的結構。 The present invention relates to a semiconductor manufacturing technology, and more particularly to a structure of a transistor element.
提高能源效率越來越被重視。在因應市場變化,具有更高性能且符合經濟效益的高電壓積體電路(high-voltage integrated circuit,HVIC)晶片已逐漸被採用。半導體的積體電路會包含操作在高電壓的高電壓電晶體。 Increasing emphasis on energy efficiency. In response to market changes, high-voltage integrated circuit (HVIC) chips with higher performance and economic benefits have been gradually adopted. Semiconductor integrated circuits will include high voltage transistors operating at high voltages.
高電壓電晶體會操作於高電壓,但是如果高電壓電晶體的崩潰電壓(breakdown voltage)不足夠高時,其例如低於120v的崩潰電壓,則此高電壓電晶體仍無法有效操作在更大的高電壓電範圍。高電壓電晶體一般例如會以P導電型的金氧半導體(metal-oxide-semiconductor,MOS)電晶體來設計。 The high voltage transistor will operate at high voltage, but if the breakdown voltage of the high voltage transistor is not high enough, for example, it is lower than the breakdown voltage of 120v, then the high voltage transistor cannot effectively operate at a larger voltage. High voltage electric range. High-voltage transistors are typically designed, for example, with P-conductive metal-oxide-semiconductor (MOS) transistors.
如何增加高電壓電晶體的崩潰電壓是設計電晶體結構所需要考慮的議題之一。 How to increase the breakdown voltage of high-voltage transistors is one of the issues to be considered when designing transistor structures.
本發明提供一種電晶體元件的結構,可以提升電晶體的崩潰電壓,電晶體元件可以有效操作在高電壓範圍,例如高於120V或是更高的電壓範圍。 The invention provides a structure of a transistor element, which can increase the breakdown voltage of the transistor. The transistor element can effectively operate in a high voltage range, such as a voltage range higher than 120V or higher.
於一實施例,本發明的一種電晶體元件,包括一基底,該基底是第一導電型。第二導電型的埋入層設置在該基底中的表層區域。該第二導電型的該埋入層包含:中心區域;多個分離區域,由該中心區域向外分佈;以及外圍區域,在該多個分離區域的外圍。一磊晶層形成在該基底上。該第一導電型的一高電壓井區設置在該磊晶層中。該第一導電型的一金氧半導體電晶體形成在該高電壓井區上。該第二導電型的該埋入層的該中心區域是在該金氧半導體電晶體的汲極區域的下方。 In one embodiment, a transistor device of the present invention includes a substrate, and the substrate is of a first conductivity type. The buried layer of the second conductivity type is disposed in a surface layer region in the substrate. The buried layer of the second conductivity type includes: a center region; a plurality of separation regions distributed outward from the center region; and a peripheral region on the periphery of the plurality of separation regions. An epitaxial layer is formed on the substrate. A high-voltage well region of the first conductivity type is disposed in the epitaxial layer. The gold-oxide semiconductor transistor of the first conductivity type is formed on the high-voltage well region. The center region of the buried layer of the second conductivity type is below a drain region of the gold-oxide semiconductor transistor.
於一實施例,在所述的電晶體元件中,該多個分離區域是分離區塊或是分離環狀區塊。 In an embodiment, in the transistor device, the plurality of separated regions are separated blocks or separated annular blocks.
於一實施例,在所述的電晶體元件中,該第二導電型的該埋入層的該多個分離區域的寬度,在由該中心區域向該金氧半導體電晶體的源極區域的延伸方向上是相同。 In an embodiment, in the transistor element, the widths of the plurality of separated regions of the buried layer of the second conductivity type extend from the central region toward the source region of the gold-oxide semiconductor transistor. The extension direction is the same.
於一實施例,在所述的電晶體元件中,其中該第二導電型埋入層的該多個分離區域的寬度,在由該中心區域向該金氧半導體電晶體的源極區域的延伸方向上是逐漸增大。 In an embodiment, in the transistor device, wherein the widths of the plurality of separated regions of the second conductive type buried layer extend from the center region to the source region of the gold-oxide semiconductor transistor. The direction is gradually increasing.
於一實施例,在所述的電晶體元件中,該第二導電型的該埋入層的該多個分離區域是圓環狀。 In an embodiment, in the transistor device, the plurality of separated regions of the buried layer of the second conductivity type are annular.
於一實施例,在所述的電晶體元件中,該第二導電型的 該埋入層的該外圍區域是在該金氧半導體電晶體的源極區域的下方。 In an embodiment, in the transistor device, the second conductive type The peripheral region of the buried layer is below a source region of the gold-oxide semiconductor transistor.
於一實施例,在所述的電晶體元件中,該第二導電型的該埋入層在該基底構成摻雜擴散區域,該摻雜擴散區域依照摻雜量對應該多個分離區域構成多個摻雜環或是多個摻雜區塊,該多個摻雜環或是該多個摻雜區塊的相鄰二個的連接區域的摻雜量相對該相鄰二個的該摻雜環或是該摻雜區塊的中間區域的摻雜量為低。 In an embodiment, in the transistor element, the buried layer of the second conductivity type forms a doped diffusion region on the substrate, and the doped diffusion region constitutes a plurality of separate regions according to a doping amount. Doped rings or multiple doped blocks, the doped rings or the two adjacent doped regions of the multiple doped blocks have a doping amount relative to the doping of the adjacent two The doping amount of the ring or the middle region of the doped block is low.
於一實施例,在所述的電晶體元件中,其更包含絕緣層,在該磊晶層表面且在該高電壓井區上方,閘極結構在該磊晶層及該絕緣層上以及源極區域在該磊晶層的表層,在該第二導電型的該埋入層的該外圍區域的上方,相對該汲極區域與該源極區域是在該閘極結構的兩邊。 In one embodiment, the transistor element further includes an insulating layer. On the surface of the epitaxial layer and above the high-voltage well region, a gate structure is on the epitaxial layer and the insulating layer and the source. The electrode region is on the surface layer of the epitaxial layer, above the peripheral region of the buried layer of the second conductivity type, and opposite to the drain region and the source region are on both sides of the gate structure.
於一實施例,在所述的電晶體元件中,該多個分離區域的寬度小於或等於相鄰二個該分離區域之間的間距。 In an embodiment, in the transistor device, a width of the plurality of separation regions is less than or equal to a distance between two adjacent separation regions.
於一實施例,在所述的電晶體元件中,該多個分離區域的寬度是相鄰二個該分離區域之間的間距的0.4倍到1.0倍之間。 In an embodiment, in the transistor device, a width of the plurality of separation regions is between 0.4 times and 1.0 times a distance between two adjacent separation regions.
於一實施例,在所述的電晶體元件中,其中該第二導電型的該埋入層在該外圍區域的平均摻雜量大於在該多個分離區域的平均摻雜量。 In an embodiment, in the transistor device, an average doping amount of the buried layer of the second conductivity type in the peripheral region is larger than an average doping amount of the plurality of separation regions.
於一實施例,在所述的電晶體元件中,該第一導電型為P型,該第二導電型為N型 In an embodiment, in the transistor device, the first conductivity type is a P type, and the second conductivity type is an N type.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
50‧‧‧高電壓MOS電晶體 50‧‧‧High Voltage MOS Transistor
60‧‧‧高電壓MOS電晶體 60‧‧‧High Voltage MOS Transistor
100‧‧‧基底 100‧‧‧ substrate
102‧‧‧埋入氧化層 102‧‧‧Buried oxide layer
104‧‧‧N型井區 104‧‧‧N Well Area
106‧‧‧N型埋入區域 106‧‧‧N-type buried area
108‧‧‧P型井區 108‧‧‧P well area
110‧‧‧源極結構 110‧‧‧Source structure
112‧‧‧汲極結構 112‧‧‧ Drain Structure
114‧‧‧閘極結構 114‧‧‧Gate structure
116‧‧‧絕緣結構 116‧‧‧Insulation structure
200‧‧‧基底 200‧‧‧ substrate
202‧‧‧N型埋入區域 202‧‧‧N-type buried area
202a‧‧‧中心區域 202a‧‧‧ central area
202b、202c、202d、202d’‧‧‧分離區域 202b, 202c, 202d, 202d’‧‧‧ separation area
202e‧‧‧外圍區域 202e‧‧‧ Outer area
204‧‧‧高電壓P型井區 204‧‧‧High-voltage P-type well area
206‧‧‧磊晶層 206‧‧‧Epitaxial layer
207、208、210、212、213‧‧‧摻雜區域 207, 208, 210, 212, 213‧‧‧ doped regions
214‧‧‧氧化層 214‧‧‧oxide
216‧‧‧源極結構 216‧‧‧Source Structure
218‧‧‧汲極結構 218‧‧‧Drain structure
220‧‧‧閘極結構 220‧‧‧Gate structure
224‧‧‧場板結構 224‧‧‧field board structure
300、304‧‧‧N型埋入層 300, 304‧‧‧N-type buried layer
302、306‧‧‧摻雜擴散區域 302, 306‧‧‧‧doped diffusion regions
圖1是一般的一種高電壓電晶體的剖面結構示意圖。 FIG. 1 is a schematic cross-sectional structure diagram of a general high-voltage transistor.
圖2是依照本發明一實施例,一種高電壓電晶體的剖面結構示意圖。 FIG. 2 is a schematic cross-sectional structure of a high-voltage transistor according to an embodiment of the present invention.
圖3是依照本發明一實施例,一種高電壓電晶體的N型埋入層在基底中的上視結構示意圖。 FIG. 3 is a schematic diagram of a top-view structure of an N-type buried layer of a high-voltage transistor in a substrate according to an embodiment of the present invention.
圖4是依照本發明一實施例,一種高電壓電晶體的N型埋入層以及其摻雜量擴散分佈結構在基底中的剖面結構示意圖。 4 is a schematic cross-sectional structure diagram of an N-type buried layer of a high-voltage transistor and a doped amount diffusion distribution structure thereof in a substrate according to an embodiment of the present invention.
本發明是關於第一導電型的高電壓金氧半導體(HVMOS)電晶體的結構,而其崩潰電壓可以藉由第二導電型的埋入層的設計而有效提升,能夠適用於較高電壓的操作範圍。於一實施施例,第一導電型是P型,則第二導電型是N型。又或是於另一實施施例,第一導電型是N型,則第二導電型是P型。 The invention relates to the structure of a high-voltage metal-oxide-semiconductor (HVMOS) transistor of the first conductivity type, and its breakdown voltage can be effectively increased by the design of the buried layer of the second conductivity type, which can be applied to higher voltage Operating range. In an embodiment, the first conductivity type is a P type, and the second conductivity type is an N type. Or in another embodiment, the first conductivity type is an N type, and the second conductivity type is a P type.
以下舉一些實施例以及用來探究與比較的傳統P導電型的高電壓金氧半導體(HVMOS)電晶體,但是本發明不限於所舉的多個實施例。 Some examples and conventional high-voltage metal-oxide-semiconductor (HVMOS) transistors of the P conductivity type used for exploration and comparison are listed below, but the present invention is not limited to the many examples.
以下描述本發明對傳統高電壓電晶體的探究。圖1是一般的一種高電壓電晶體的剖面結構示意圖。參閱圖1,其可以利用矽在絕緣體上(silicon on insulator,SOI)的基底來製造高電壓電晶體。以P導電型的基底100而言,埋入氧化層102形成在基底100上。對於SOI基底的結構,矽材料的磊晶層會形成在埋入氧化層102上,即是SOI基底的結構。高電壓MOS電晶體50所需要的多種摻雜區域可以形成在磊晶層中,其例如包括N型井區104在埋入氧化層102上。N型井區104包含延伸的N型埋入區域106,形成在埋入氧化層102上。 The following describes the investigation of the conventional high voltage transistor of the present invention. FIG. 1 is a schematic cross-sectional structure diagram of a general high-voltage transistor. Referring to FIG. 1, a high-voltage transistor can be manufactured by using a substrate of silicon on insulator (SOI). For the P-conducting substrate 100, a buried oxide layer 102 is formed on the substrate 100. For the structure of the SOI substrate, an epitaxial layer of silicon material is formed on the buried oxide layer 102, which is the structure of the SOI substrate. Various doped regions required for the high-voltage MOS transistor 50 may be formed in the epitaxial layer, which includes, for example, an N-type well region 104 on the buried oxide layer 102. The N-type well region 104 includes an extended N-type buried region 106 formed on the buried oxide layer 102.
於此,從製造的製程來看,P型井區108會在N型井區104中通過植入製程而形成。在P型井區108下的N形區域,就構成N型埋入區域106。 Here, from the perspective of the manufacturing process, the P-type well region 108 is formed in the N-type well region 104 by an implantation process. The N-shaped region under the P-type well region 108 constitutes an N-type buried region 106.
接著在N型井區104與P型井區108中還會形成更深濃度的表層摻雜區域,以供施加操作電壓,另外有會在N型井區104與P型井區108上更形成閘極結構(G)114、源極結構(S)110、汲極結構(D)112,以及絕緣結構116等等。 Next, deeper surface doped regions will be formed in the N-type well region 104 and the P-type well region 108 to apply an operating voltage. In addition, a gate will be formed on the N-type well region 104 and the P-type well region 108 The electrode structure (G) 114, the source structure (S) 110, the drain structure (D) 112, and the insulation structure 116, and so on.
對於高電壓MOS電晶體的結構,其如一般所知的製造技術來完成,本發明不特別限制,其製造流程於此也省略。然而,本發明在探究此一般的高電壓MOS電晶體的結構,經過性能與對應結構的詳細研究,本發明指出其N型埋入區域106是單塊的結構,其崩潰電壓受N型埋入區域106影響,可能無法有效提升。另外其是SOI的基底,在製造成本上相對也較高。 As for the structure of the high-voltage MOS transistor, it is completed according to generally known manufacturing techniques. The present invention is not particularly limited, and the manufacturing process is also omitted here. However, the present invention is exploring the structure of this general high-voltage MOS transistor. After a detailed study of the performance and corresponding structure, the present invention indicates that the N-type buried region 106 is a monolithic structure, and its breakdown voltage is affected by the N-type buried. Area 106 affects and may not be effectively promoted. In addition, it is the base of SOI and is relatively high in manufacturing cost.
以下列舉一些實施例,來說明本發明提出的半導體元件的結構,例如在P導電型的高電壓MOS電晶體的應用,可以有效提升崩潰電壓值,而提升電晶體電壓操作範圍。 Some examples are given below to illustrate the structure of the semiconductor device provided by the present invention. For example, the application in a P-conductive high-voltage MOS transistor can effectively increase the breakdown voltage value and increase the operating range of the transistor voltage.
圖2是依照本發明一實施例,一種高電壓電晶體的剖面結構示意圖。參閱圖2,以P導電型的高電壓MOS電晶體60為例,對於P型基底200,本發明在基底200中的表層,利用植入製程,會形成N型埋入區域202。其後,矽的磊晶層206會形成在基底200上,供後續形成所需要的摻雜區域,例如是高電壓P型井區204。磊晶層206例如是N型,可以提供N型的井區。從另一個觀點,以N型的磊晶層206,高電壓P型井區204是在磊晶層206中利用植入製程來完成。於此實施例,本發明的P型與N型是指半導體特性的不同導電型。就結構上,P型是第一導電型的實施例,N型是第二導電型的實施例。在以下描述,第一導電型是以P型為例,第二導電型是以N型為例。就摻雜的結構,其二者也可以互換。本發明不限於實施例所舉的P型與N型。 FIG. 2 is a schematic cross-sectional structure of a high-voltage transistor according to an embodiment of the present invention. Referring to FIG. 2, taking a P-conductive high-voltage MOS transistor 60 as an example, for a P-type substrate 200, the surface layer in the substrate 200 of the present invention uses an implantation process to form an N-type buried region 202. Thereafter, an epitaxial layer 206 of silicon is formed on the substrate 200 for subsequent formation of a required doped region, such as a high-voltage P-type well region 204. The epitaxial layer 206 is, for example, N-type, and can provide an N-type well region. From another point of view, with the N-type epitaxial layer 206, the high-voltage P-type well region 204 is completed in the epitaxial layer 206 using an implantation process. In this embodiment, the P-type and N-type of the present invention refer to different conductivity types of semiconductor characteristics. Structurally, the P-type is an embodiment of the first conductivity type, and the N-type is an embodiment of the second conductivity type. In the following description, the first conductivity type is an example of a P type, and the second conductivity type is an example of an N type. As for the doped structure, the two can also be interchanged. The present invention is not limited to the P-type and N-type described in the embodiments.
在基底200中完成N型埋入區域202的結構後,會先形成磊晶層206。磊晶層206當作MOS電晶體的半導體基底,以完成MOS電晶體的製造。磊晶層206可以先摻雜成N型的磊晶層206。其後在磊晶層206再摻雜形成高電壓P型井區204。此摻雜形成高電壓P型井區204的深度可以延伸到基底200,在N型埋入區域202上。其後可以繼續因應P導電型的高電壓MOS電晶體60的結構,完成各種摻雜區域207、208、210、212、213,其中 摻雜區域213是源極區域的一部分,包含P型與N型的重摻雜區域,以P+與N+表示,可以與外部的源極結構(S/B)216連接。摻雜區域210當作汲極區域的一部份,與外部的汲極結構(D)218連接。另外,在高電壓P型井區204上會形成氧化層214,而閘極結構(G)220會形成在磊晶層206且延伸到氧化層214上。因應高電壓的結構,閘極結構(G)220上也可以再形成場板(field plate)結構224。 After the structure of the N-type buried region 202 is completed in the substrate 200, an epitaxial layer 206 is formed first. The epitaxial layer 206 is used as a semiconductor substrate of the MOS transistor to complete the manufacture of the MOS transistor. The epitaxial layer 206 may be doped into an N-type epitaxial layer 206 first. Thereafter, the epitaxial layer 206 is re-doped to form a high-voltage P-type well region 204. The depth of this doping to form the high-voltage P-type well region 204 may extend to the substrate 200 on the N-type buried region 202. After that, various doped regions 207, 208, 210, 212, and 213 can be completed according to the structure of the P-conducting high-voltage MOS transistor 60, of which, The doped region 213 is a part of the source region, and includes P-type and N-type heavily doped regions, represented by P + and N +, and can be connected to an external source structure (S / B) 216. The doped region 210 is regarded as a part of the drain region and is connected to the external drain structure (D) 218. In addition, an oxide layer 214 is formed on the high-voltage P-type well region 204, and a gate structure (G) 220 is formed on the epitaxial layer 206 and extends to the oxide layer 214. In response to the high-voltage structure, a field plate structure 224 may be further formed on the gate structure (G) 220.
前述的P導電型的高電壓MOS電晶體60僅是一個實施例,本發明不限於所述結構,可以有不同的變化。高電壓MOS電晶體60的詳細描述以及其它的變化,於此省略。本發明因應高電壓MOS電晶體60的結構,提出N型埋入區域202的結構,以提升高電壓MOS電晶體60的崩潰電壓。 The aforementioned high-voltage MOS transistor 60 of the P-conduction type is only one embodiment, and the present invention is not limited to the structure, and may have different variations. The detailed description of the high-voltage MOS transistor 60 and other changes are omitted here. In accordance with the structure of the high-voltage MOS transistor 60, the present invention proposes a structure of the N-type buried region 202 to increase the breakdown voltage of the high-voltage MOS transistor 60.
以下更詳細描述N型埋入區域202的結構。本發明的N型埋入區域202在摻雜擴散的處理之前可為塊狀或環狀的摻雜結構。圖3是依照本發明一實施例,一種高電壓電晶體的N型埋入層在基底中的上視結構示意圖。同時參閱圖3,N型埋入區域202包含中心區域202a,也以D標示,代表汲極的位置。中心區域202a例如是圓碟狀,對應電晶體的汲極結構的下方。多個分離區域202b、202c、202d、202d’、...,由中心區域202a向外分佈。外圍區域202e,在多個分離區域202b、202c、202d、202d’的外圍。分離區域202b、202c、202d、202d’的數量依實際需要而定。 The structure of the N-type buried region 202 is described in more detail below. The N-type buried region 202 of the present invention may be a bulk or ring-shaped doped structure before the doping diffusion process. FIG. 3 is a schematic diagram of a top-view structure of an N-type buried layer of a high-voltage transistor in a substrate according to an embodiment of the present invention. At the same time, referring to FIG. 3, the N-type buried region 202 includes a central region 202a, which is also denoted by D and represents the position of the drain electrode. The central region 202a is, for example, a disk shape, and corresponds to the lower side of the drain structure of the transistor. The plurality of separated regions 202b, 202c, 202d, 202d ', ... are distributed outward from the central region 202a. The peripheral region 202e is on the periphery of the plurality of separated regions 202b, 202c, 202d, and 202d '. The number of separation regions 202b, 202c, 202d, 202d 'depends on actual needs.
於一實施例,這些多個分離區域202b、202c、202d例如 是分離區塊或是分離環狀區塊。圖3是以分離環狀區塊為例,其中更例如是分離的圓環狀區塊。然而,本發明的不限於所舉的實施例。 In one embodiment, the plurality of separated regions 202b, 202c, 202d are, for example, Is it a separate block or a separate circular block. FIG. 3 is an example of separating circular blocks, and more specifically, it is a separated circular block. However, the present invention is not limited to the illustrated embodiments.
就多個分離區域202b、202c、202d的尺寸,這些分離區域的寬度是相同。於此,寬度是指在剖面結構上,沿著分佈方向上的長度。分佈方向是由汲極到源極的延伸方向。於一實施例,N型埋入層202的多個分離區域202b、202c、202d、202d’的寬度,由中心區域202a向外逐漸增大。 Regarding the sizes of the plurality of separation regions 202b, 202c, 202d, the widths of these separation regions are the same. Here, the width refers to the length along the distribution direction in the cross-sectional structure. The distribution direction is the direction from the drain to the source. In one embodiment, the widths of the plurality of separated regions 202b, 202c, 202d, 202d 'of the N-type buried layer 202 gradually increase outward from the central region 202a.
於一實施例,N型埋入層202的多個分離區域202b、202c、202d、202d’是圓環狀,環繞中心區域202a。在於一實施例,N型埋入層202的外圍區域202e是在該P型金氧半導體電晶體的摻雜區域213(源極區域)的下方。於一實施例多個分離區域202b、202c、202d、202d’的寬度小於或等於相鄰二個該分離區域之間的間距。於一實施例,分離區域202b、202c、202d、202d’的寬度例如是相鄰二個該分離區域之間的間距的0.4倍到1.0倍之間,但是本發明不限於此範圍。 In one embodiment, the plurality of separated regions 202b, 202c, 202d, 202d 'of the N-type buried layer 202 are annular and surround the central region 202a. In one embodiment, the peripheral region 202e of the N-type buried layer 202 is below the doped region 213 (source region) of the P-type metal-oxide semiconductor transistor. In one embodiment, the widths of the plurality of separation regions 202b, 202c, 202d, 202d 'are less than or equal to the distance between two adjacent separation regions. In one embodiment, the width of the separation regions 202b, 202c, 202d, 202d 'is, for example, 0.4 times to 1.0 times the distance between two adjacent separation regions, but the present invention is not limited to this range.
N型埋入層202在基底200中,經由植入製程形成後,其在後續實際完成電晶體前會有擴散的過程,N型埋入層202中分離區域會連接成一體,但是摻雜量會降低。圖4是依照本發明一實施例,一種高電壓電晶體的N型埋入層以及其摻雜量擴散分佈結構在基底中的剖面結構示意圖。 After the N-type buried layer 202 is formed in the substrate 200 through the implantation process, there will be a diffusion process before the transistor is actually completed subsequently. The separated regions in the N-type buried layer 202 will be connected into one, but the doping amount Will decrease. 4 is a schematic cross-sectional structure diagram of an N-type buried layer of a high-voltage transistor and a doped amount diffusion distribution structure thereof in a substrate according to an embodiment of the present invention.
參閱圖4,於一實施例,N型埋入層300是在基底200的 剖面結構,其經過擴散處理後構成摻雜擴散區域302的剖面結構。於本實施例,分離區域202b、202c、202d、202d’的寬度是以相同為例,其摻雜擴散區域依照摻雜量對應該多個分離區域構成多個摻雜環或是多個摻雜區塊。多個摻雜環或是多個摻雜區塊的相鄰二個的連接區域的摻雜量相對該相鄰二個的該摻雜環或是該多個摻雜區塊的中間區域的摻雜量為低。也就是,摻雜量區域經過擴散後連接,但是整體的平均摻雜量是降低。 Referring to FIG. 4, in an embodiment, the N-type buried layer 300 is on the substrate 200. The cross-sectional structure constitutes the cross-sectional structure of the doped diffusion region 302 after the diffusion process. In this embodiment, the widths of the separation regions 202b, 202c, 202d, and 202d 'are the same as an example. The doped diffusion region corresponding to the doping amount forms a plurality of doped rings or a plurality of doped regions corresponding to the plurality of separated regions. Block. The doping amount of a plurality of doped rings or the adjacent two connecting regions of the plurality of doped blocks is relative to the doping of the adjacent two doped rings or the intermediate regions of the plurality of doped blocks. Miscellaneous is low. That is, the doped amount regions are connected after diffusion, but the overall average doped amount is reduced.
在另一個實施例,N型埋入層304對應圖3的N型埋入層202的分佈,對應分離區域的寬度,由汲極區域D的中心區域向外逐漸增大。如此,經過擴散後,N型埋入層304產生的摻雜擴散區域306,雖然是連接成一體,但是摻雜量分佈更是向汲極區域D逐漸減小。 In another embodiment, the N-type buried layer 304 corresponds to the distribution of the N-type buried layer 202 in FIG. 3, and the width of the separation region is gradually increased outward from the center region of the drain region D. In this way, after the diffusion, the doped diffusion regions 306 generated by the N-type buried layer 304 are connected as a whole, but the doping amount distribution gradually decreases toward the drain region D.
本發明的N型埋入層202由中心區202a到外圍區域202e是分離的結構。經過擴散後,其整體平均摻雜量會下降,因此可以有效提升電晶體的崩潰電壓。N型埋入層202可以直接形成於基底200中,不需要採用SOI的基底。 The N-type buried layer 202 of the present invention has a separated structure from the central region 202a to the peripheral region 202e. After diffusion, the overall average doping amount will decrease, so the breakdown voltage of the transistor can be effectively increased. The N-type buried layer 202 can be directly formed in the substrate 200, and no SOI substrate is needed.
本發明採用分離式的N型埋入層202,經過模擬驗證後,例如崩潰電壓相比對於N型埋入層整體層狀的結構的情形,其可以由大約100V(整體層狀的結構)提升到大約140V(分離結構)以上。 The present invention adopts a separate N-type buried layer 202. After simulation verification, for example, the collapse voltage can be improved by about 100V (the overall layered structure) compared to the case of an overall layered structure of the N-type embedded layer To about 140V (separated structure) or more.
綜上所述,本發明對於P型高電壓MOS電晶體,其所需要的N型埋入層是分離式的結構,而使得在擴散後的摻雜量降低。 In summary, for the P-type high-voltage MOS transistor, the N-type buried layer required by the present invention has a separate structure, so that the doping amount after diffusion is reduced.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope defined by the scope of patent application.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108101981A TWI680579B (en) | 2019-01-18 | 2019-01-18 | Transistor device |
CN201910831252.1A CN111463258A (en) | 2019-01-18 | 2019-09-04 | Transistor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108101981A TWI680579B (en) | 2019-01-18 | 2019-01-18 | Transistor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI680579B true TWI680579B (en) | 2019-12-21 |
TW202029499A TW202029499A (en) | 2020-08-01 |
Family
ID=69582449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108101981A TWI680579B (en) | 2019-01-18 | 2019-01-18 | Transistor device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111463258A (en) |
TW (1) | TWI680579B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113782609B (en) * | 2021-09-09 | 2022-12-09 | 东南大学 | Substrate charge-coupled 1200V bulk silicon LDMOS (laterally diffused metal oxide semiconductor) and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI472035B (en) * | 2012-07-30 | 2015-02-01 | Macronix Int Co Ltd | Field device |
US20170133505A1 (en) * | 2014-06-30 | 2017-05-11 | Csmc Technologies Fab1 Co., Ltd. | Junction field effect transistor and manufacturing method therefor |
TWI615965B (en) * | 2016-11-28 | 2018-02-21 | 新唐科技股份有限公司 | Semiconductor device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0745517A (en) * | 1993-06-29 | 1995-02-14 | Toyota Autom Loom Works Ltd | Semiconductor device and its manufacture |
CN1866542B (en) * | 2005-05-18 | 2010-04-28 | 崇贸科技股份有限公司 | MOS field effect transistor with isolating structure and making method thereof |
US8766357B2 (en) * | 2012-03-01 | 2014-07-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and method for high voltage MOS transistor |
US20160056285A1 (en) * | 2014-08-25 | 2016-02-25 | Mediatek Inc. | High-voltage metal-oxide-semiconductor transistor device with increased cutoff frequency |
CN204179089U (en) * | 2014-10-22 | 2015-02-25 | 桂林电子科技大学 | Equidistant fixed charge district SOI pressure-resistance structure and SOI power device |
CN105185834B (en) * | 2015-10-19 | 2018-01-26 | 杭州士兰微电子股份有限公司 | Composite high pressure semiconductor devices |
CN107919385B (en) * | 2017-11-06 | 2020-08-11 | 上海华虹宏力半导体制造有限公司 | High-voltage isolating ring and manufacturing method thereof |
-
2019
- 2019-01-18 TW TW108101981A patent/TWI680579B/en active
- 2019-09-04 CN CN201910831252.1A patent/CN111463258A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI472035B (en) * | 2012-07-30 | 2015-02-01 | Macronix Int Co Ltd | Field device |
US20170133505A1 (en) * | 2014-06-30 | 2017-05-11 | Csmc Technologies Fab1 Co., Ltd. | Junction field effect transistor and manufacturing method therefor |
TWI615965B (en) * | 2016-11-28 | 2018-02-21 | 新唐科技股份有限公司 | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN111463258A (en) | 2020-07-28 |
TW202029499A (en) | 2020-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI672815B (en) | Metal-oxide-semiconductor transistor and method of forming gate layout | |
JP5991383B2 (en) | Manufacturing method of semiconductor device | |
KR101480601B1 (en) | Integrated circuit devices with well regions and methods for forming the same | |
CN107180869B (en) | Semiconductor device and method of forming the same | |
TWI721140B (en) | Semiconductor device and semiconductor device manufacturing method | |
TWI784064B (en) | Gate-controlled bipolar junction transistor and operation method thereof | |
TWI565065B (en) | High voltage semiconductor device and fabricating method thereof | |
TWI387012B (en) | Lateral diffused metal oxide semiconductor transistor and method for increasing break down voltage of lateral diffused metal oxide semiconductor transistor | |
JP2006237224A (en) | Semiconductor device | |
TWI680579B (en) | Transistor device | |
TWI536562B (en) | High Voltage Semiconductor Device And Method For Manufacturing The Same | |
TWI634660B (en) | High voltage semiconductor device and method for manufacturing the same | |
US9035386B2 (en) | Semiconductor structure and method for manufacturing the same | |
TWI697092B (en) | Semiconductor electrostatic discharge protection circuit, esd protection semiconductor device, and layout structure of esd protection semiconductor device | |
TWI587402B (en) | High voltage semiconductor device and method for manufacturing the same | |
TWI652768B (en) | Layout structure of esd protection device with high esd tolerance | |
TWI531042B (en) | Semiconductor element and manufacturing method and operating method of the same | |
US20150123241A1 (en) | Semiconductor device | |
US9299806B2 (en) | High voltage drain-extended MOSFET having extra drain-OD addition | |
US20150123200A1 (en) | Semiconductor device | |
TW201505157A (en) | Semiconductor device and manufacturing method for the same | |
JP6707917B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI678790B (en) | Electrostatic discharge protection device | |
TWI472035B (en) | Field device | |
TWI655746B (en) | Diode and diode string circuit |