TWI664727B - Semiconductor devices and methods for fabricating the same - Google Patents

Semiconductor devices and methods for fabricating the same Download PDF

Info

Publication number
TWI664727B
TWI664727B TW107121298A TW107121298A TWI664727B TW I664727 B TWI664727 B TW I664727B TW 107121298 A TW107121298 A TW 107121298A TW 107121298 A TW107121298 A TW 107121298A TW I664727 B TWI664727 B TW I664727B
Authority
TW
Taiwan
Prior art keywords
layer
protective layer
compound semiconductor
recess
semiconductor device
Prior art date
Application number
TW107121298A
Other languages
Chinese (zh)
Other versions
TW202002289A (en
Inventor
李家豪
洪章响
馬洛宜 庫馬
廖志成
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW107121298A priority Critical patent/TWI664727B/en
Application granted granted Critical
Publication of TWI664727B publication Critical patent/TWI664727B/en
Publication of TW202002289A publication Critical patent/TW202002289A/en

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

一種半導體裝置,包含設置於基底上的化合物半導體層,以及設置於化合物半導體層上保護層。源極電極、汲極電極和閘極電極穿過保護層且設置於化合物半導體層上。此半導體裝置還包含閘極場板,其連接閘極電極且設置於保護層介於閘極電極與汲極電極之間的部分上。閘極場板具有延伸至保護層中的延伸部。 A semiconductor device includes a compound semiconductor layer provided on a substrate and a protective layer provided on the compound semiconductor layer. The source electrode, the drain electrode, and the gate electrode pass through the protective layer and are disposed on the compound semiconductor layer. The semiconductor device further includes a gate field plate, which is connected to the gate electrode and is disposed on a portion of the protective layer between the gate electrode and the drain electrode. The gate field plate has an extension that extends into the protective layer.

Description

半導體裝置及其製造方法 Semiconductor device and manufacturing method thereof

本發明實施例是有關於半導體裝置,且特別是有關於具有場板的半導體裝置及其製造方法。 Embodiments of the present invention relate to a semiconductor device, and more particularly, to a semiconductor device having a field plate and a manufacturing method thereof.

氮化鎵系(GaN-based)半導體材料具有許多優秀的材料特性,例如高抗熱性、寬能隙(band-gap)、高電子飽和速率。因此,氮化鎵系半導體材料適合應用於高速與高溫的操作環境。近年來,氮化鎵系半導體材料已廣泛地應用於發光二極體(light emitting diode,LED)元件、高頻率元件,例如具有異質界面結構的高電子遷移率電晶體(high electron mobility transistor,HEMT)。 GaN-based semiconductor materials have many excellent material properties, such as high thermal resistance, wide band-gap, and high electron saturation rate. Therefore, gallium nitride-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, gallium nitride-based semiconductor materials have been widely used in light emitting diode (LED) devices and high-frequency devices, such as high electron mobility transistors (HEMTs) with heterogeneous interface structures. ).

場板通常設置於半導體裝置的高電場區,其用於降低高電場區的峰值電場(peak electric field),其中一種場板是電性連接至閘極的場板(即閘極場板),其可降低閘極在汲極側上的電場強度。因此,閘極場板可提升半導體裝置的崩潰電壓(breakdown voltage),以容許半導體裝置應用於高電壓操作。 The field plate is usually disposed in a high electric field region of a semiconductor device, and is used to reduce the peak electric field in the high electric field region. One of the field plates is a field plate electrically connected to a gate (ie, a gate field plate). It reduces the electric field strength of the gate on the drain side. Therefore, the gate field plate can increase the breakdown voltage of the semiconductor device to allow the semiconductor device to be applied to high-voltage operation.

隨著氮化鎵系半導體材料的發展,這些使用氮化鎵系半導體材料的半導體裝置應用於更嚴苛工作環境中,例如更高頻、更高溫或更高電壓。因此,具有氮化鎵系半導體材料的半導體裝置之製程條件也面臨許多新的挑戰。 With the development of gallium nitride-based semiconductor materials, these semiconductor devices using gallium nitride-based semiconductor materials are used in more severe working environments, such as higher frequencies, higher temperatures, or higher voltages. Therefore, the processing conditions of semiconductor devices with gallium nitride-based semiconductor materials also face many new challenges.

本發明的一些實施例提供半導體裝置,此半導體裝置化合物半導體層設置於基底之上,保護層設置於化合物半導體層之上,以及源極電極、汲極電極和閘極電極穿過保護層且設置於化合物半導體層之上。此半導體裝置還包含閘極場板,其連接閘極電極且設置於保護層介於閘極電極與汲極電極之間的部分之上。閘極場板具有延伸至保護層中的延伸部。 Some embodiments of the present invention provide a semiconductor device in which a compound semiconductor layer is disposed on a substrate, a protective layer is disposed on the compound semiconductor layer, and a source electrode, a drain electrode, and a gate electrode pass through the protective layer and are disposed. On the compound semiconductor layer. The semiconductor device further includes a gate field plate, which is connected to the gate electrode and is disposed on a portion of the protective layer between the gate electrode and the drain electrode. The gate field plate has an extension that extends into the protective layer.

本發明的一些實施例提供半導體裝置的製造方法,此方法包含在基底之上形成化合物半導體層,在化合物半導體層之上形成第一保護層,穿過保護層形成源極電極、汲極電極和閘極電極於化合物半導體層之上,以及在保護層介於閘極電極與汲極電極之間的部分之上形成閘極場板,以連接閘極電極,其中閘極場板具有延伸至保護層中的延伸部。 Some embodiments of the present invention provide a method for manufacturing a semiconductor device. The method includes forming a compound semiconductor layer on a substrate, forming a first protective layer on the compound semiconductor layer, forming a source electrode, a drain electrode, and A gate electrode is formed on the compound semiconductor layer, and a gate field plate is formed on a portion of the protective layer between the gate electrode and the drain electrode to connect the gate electrode, wherein the gate field plate has an extension to the protection. Extensions in layers.

100、200‧‧‧半導體裝置 100, 200‧‧‧ semiconductor devices

102‧‧‧基底 102‧‧‧ substrate

104‧‧‧緩衝層 104‧‧‧Buffer layer

106‧‧‧氮化鎵半導體層 106‧‧‧GaN semiconductor layer

108‧‧‧氮化鎵鋁半導體層 108‧‧‧AlGaN semiconductor layer

109‧‧‧摻雜的化合物半導體區塊 109‧‧‧ doped compound semiconductor block

110‧‧‧第一保護層 110‧‧‧first protective layer

112‧‧‧第二保護層 112‧‧‧Second protective layer

114‧‧‧源極電極 114‧‧‧Source electrode

116‧‧‧汲極電極 116‧‧‧Drain electrode

118‧‧‧第一凹陷 118‧‧‧The first depression

120‧‧‧第二凹陷 120‧‧‧Second depression

122‧‧‧第三凹陷 122‧‧‧ Third depression

124‧‧‧閘極電極 124‧‧‧Gate electrode

126‧‧‧閘極場板 126‧‧‧Gate field plate

128‧‧‧連接部 128‧‧‧ Connection Department

130‧‧‧第一延伸部 130‧‧‧First extension

132‧‧‧第二延伸部 132‧‧‧second extension

134‧‧‧層間介電層 134‧‧‧Interlayer dielectric layer

136‧‧‧源極接觸件 136‧‧‧Source contact

138‧‧‧汲極接觸件 138‧‧‧ Drain contact

140‧‧‧閘極接觸件 140‧‧‧Gate contact

150‧‧‧第一圖案化遮罩層 150‧‧‧ the first patterned mask layer

152‧‧‧第一開口 152‧‧‧First opening

160‧‧‧第二圖案化遮罩層 160‧‧‧Second patterned mask layer

162‧‧‧第二開口 162‧‧‧Second opening

164‧‧‧第三開口 164‧‧‧Third opening

170‧‧‧第三圖案化遮罩層 170‧‧‧ the third patterned mask layer

172‧‧‧第四開口 172‧‧‧ Fourth opening

174‧‧‧第五開口 174‧‧‧Fifth opening

176‧‧‧第六開口 176‧‧‧ sixth opening

藉由以下詳細描述和範例配合所附圖式,可以更加理解本發明實施例。為了使圖式清楚顯示,圖式中各個不同的元件可能未依照比例繪製,其中: Through the following detailed description and examples in conjunction with the accompanying drawings, the embodiments of the present invention can be better understood. In order to make the drawings clear, the different elements in the drawings may not be drawn to scale, where:

第1A至1H圖是根據本發明的一些實施例,說明形成半導體裝置在各個不同階段的剖面示意圖。 1A to 1H are schematic cross-sectional views illustrating various steps of forming a semiconductor device according to some embodiments of the present invention.

第2A至2H圖是根據本發明的另一些實施例,說明形成半導體裝置在各個不同階段的剖面示意圖。 2A to 2H are schematic cross-sectional views illustrating various steps of forming a semiconductor device according to other embodiments of the present invention.

以下揭露提供了許多的實施例或範例,用於實施所提供的半導體裝置之不同元件。各元件和其配置的具體範例 描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。 The following disclosure provides many embodiments or examples for implementing different elements of the provided semiconductor device. Specific examples of components and their configurations The description is as follows to simplify the description of the embodiments of the present invention. Of course, these are merely examples and are not intended to limit the embodiments of the present invention. For example, if the description mentions that the first element is formed on the second element, it may include an embodiment where the first and second elements are in direct contact, or it may include an additional element formed between the first and second elements. So that they are not in direct contact with the embodiment. In addition, embodiments of the present invention may repeat reference numbers and / or letters in different examples. This repetition is for brevity and clarity and is not intended to represent the relationship between the different embodiments discussed.

以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的元件符號被用來標明相似的元件。可以理解的是,在方法的前、中、後可以提供額外的步驟,且一些敘述的步驟可為了該方法的其他實施例被取代或刪除。 Some variations of the embodiments are described below. In different illustrated and illustrated embodiments, similar component symbols are used to identify similar components. It can be understood that additional steps can be provided before, during, and after the method, and some of the described steps can be replaced or deleted for other embodiments of the method.

本發明實施例提供了半導體裝置及其製造方法,特別適用於高電子遷移率電晶體(HEMT)。由於閘極電極與汲極電極之間的高電場強度,可能導致位於閘極電極之汲極側附近的材料層被擊穿(punch through)。為了減緩閘極電極在靠近汲極電極之側邊的電場梯度,本發明實施例利用形成閘極場板具有延伸至保護層中的延伸部,其可減緩閘極電極在靠近汲極電極之側邊的電場梯度,以提升半導體裝置的崩潰電壓(breakdown voltage),進而提升半導體裝置的效能。 Embodiments of the present invention provide a semiconductor device and a manufacturing method thereof, and are particularly suitable for a high electron mobility transistor (HEMT). Due to the high electric field strength between the gate electrode and the drain electrode, a material layer located near the drain side of the gate electrode may be punched through. In order to slow down the electric field gradient of the gate electrode near the side of the drain electrode, the embodiment of the present invention utilizes the formation of a gate field plate with an extension extending into the protective layer, which can slow the gate electrode on the side close to the drain electrode. The electric field gradient at the edge can increase the breakdown voltage of the semiconductor device, thereby improving the performance of the semiconductor device.

第1A至1H圖是根據本發明的一些實施例,說明形成第1H圖所示的半導體裝置100在各個不同階段的剖面示意圖。請參考第1A圖,提供基底102。接著,在基底102之上形成緩衝層104,在緩衝層104上形成氮化鎵(GaN)半導體層106,並且在氮化鎵半導體層106上形成氮化鎵鋁(AlxGa1-xN,其中 0<x<1)半導體層108。在一些實施例中,在基底102與緩衝層104之間可形成晶種層(未顯示)。 1A to 1H are schematic cross-sectional views illustrating various steps of forming the semiconductor device 100 shown in FIG. 1H according to some embodiments of the present invention. Referring to FIG. 1A, a substrate 102 is provided. Next, a buffer layer 104 is formed on the substrate 102, a gallium nitride (GaN) semiconductor layer 106 is formed on the buffer layer 104, and an aluminum gallium nitride (Al x Ga 1-x N) is formed on the gallium nitride semiconductor layer 106. , Where 0 <x <1) of the semiconductor layer 108. In some embodiments, a seed layer (not shown) may be formed between the substrate 102 and the buffer layer 104.

在一些實施例中,基底102可以是摻雜的(例如以p型或n型摻雜物進行摻雜)或未摻雜的半導體基底,例如矽基底、矽鍺基底、砷化鎵基底或類似半導體基底。在一些實施例中,基底102可以是半導體位於絕緣體之上的基底,例如絕緣層上覆矽(silicon on insulator,SOI)基底。在一些實施例中,基底102可以是玻璃基底或陶瓷基底,例如碳化矽(SiC)基底、氮化鋁(AlN)基底或藍寶石(Sapphire)基底。 In some embodiments, the substrate 102 may be a doped (eg, doped with a p-type or n-type dopant) or an undoped semiconductor substrate, such as a silicon substrate, a silicon germanium substrate, a gallium arsenide substrate, or the like Semiconductor substrate. In some embodiments, the substrate 102 may be a substrate on which a semiconductor is located on an insulator, such as a silicon on insulator (SOI) substrate. In some embodiments, the substrate 102 may be a glass substrate or a ceramic substrate, such as a silicon carbide (SiC) substrate, an aluminum nitride (AlN) substrate, or a sapphire substrate.

晶種層的材料可以是氮化鋁(AlN)、氧化鋁(Al2O3)、氮化鋁鎵(AlGaN)、碳化矽(SiC)、鋁(Al)或前述之組合所形成,且晶種層可為單一或多層結構。晶種層可由磊晶成長製程形成,例如金屬有機化學氣相沉積(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、分子束磊晶法(molecular beam epitaxy,MBE)、前述之組合或類似方法。 The material of the seed layer may be formed of aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), aluminum gallium nitride (AlGaN), silicon carbide (SiC), aluminum (Al), or a combination thereof, and the crystal The seed layer may be a single or multilayer structure. The seed layer can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), and molecular beam epitaxy (molecular beam epitaxy (MBE), a combination of the foregoing, or similar methods.

緩衝層104可減緩後續形成於緩衝層104上方的氮化鎵半導體層106的應變(strain),以防止缺陷形成於上方的氮化鎵半導體層106中,應變是由氮化鎵半導體層106與基底102之間的不匹配造成。在一些實施例中,緩衝層104的材料可以是AlN、GaN、AlxGa1-xN(其中0<x<1)、前述之組合或類似材料。緩衝層104可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合或類似方法。儘管在如第1A圖所示的實施 例中,緩衝層104為單層結構,然而緩衝層104也可以是多層結構。此外,在一些實施例中,緩衝層104的材料是由晶種層的材料和磊晶製程時通入的氣體所決定。 The buffer layer 104 can slow down the strain of the gallium nitride semiconductor layer 106 formed subsequently on the buffer layer 104 to prevent defects from being formed in the gallium nitride semiconductor layer 106 above. The mismatch between the substrates 102 is caused. In some embodiments, the material of the buffer layer 104 may be AlN, GaN, Al x Ga 1-x N (where 0 <x <1), a combination of the foregoing, or similar materials. The buffer layer 104 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor epitaxy (HVPE), molecular beam epitaxy (MBE), a combination of the foregoing, or a similar method. Although in the embodiment shown in FIG. 1A, the buffer layer 104 has a single-layer structure, the buffer layer 104 may have a multi-layer structure. In addition, in some embodiments, the material of the buffer layer 104 is determined by the material of the seed layer and the gas introduced during the epitaxial process.

二維電子氣(two-dimensional electron gas,2DEG)(未顯示)形成於氮化鎵半導體層106與氮化鎵鋁半導體層108之間的異質界面上。如第1H圖所示的半導體裝置100是利用二維電子氣(2DEG)作為導電載子的高電子遷移率電晶體(high electron mobility transistor,HEMT)。在一些實施例中,氮化鎵半導體層106和氮化鎵鋁半導體層108中沒有摻雜物。在一些其他實施例中,氮化鎵半導體層106和氮化鎵鋁半導體層108可具有摻雜物,例如n型摻雜物或p型摻雜物。氮化鎵半導體層104和氮化鎵鋁半導體層106可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合或類似方法。 A two-dimensional electron gas (2DEG) (not shown) is formed on the hetero interface between the gallium nitride semiconductor layer 106 and the gallium aluminum nitride semiconductor layer 108. The semiconductor device 100 shown in FIG. 1H is a high electron mobility transistor (HEMT) using two-dimensional electron gas (2DEG) as a conductive carrier. In some embodiments, the gallium nitride semiconductor layer 106 and the gallium aluminum nitride semiconductor layer 108 are free of dopants. In some other embodiments, the gallium nitride semiconductor layer 106 and the gallium aluminum nitride semiconductor layer 108 may have a dopant, such as an n-type dopant or a p-type dopant. The gallium nitride semiconductor layer 104 and the gallium aluminum nitride semiconductor layer 106 can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE) ), A combination of the foregoing, or similar methods.

繼續參考第1A圖,在氮化鎵鋁半導體層108之上形成第一保護層110。在第一保護層110之上形成第二保護層112。在一些實施例中,第一保護層110和第二保護層112的材料可以是絕緣材料或介電材料,例如氧化矽(SiO2)、氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al2O3)、氮化鋁(AlN)、氧化鎂(MgO)、氮化鎂(Mg3N2),氧化鋅(ZnO)、氧化鈦(TiO2)或前述之組合。第一保護層110和第二保護層112用以防止下方的氮化鎵鋁半導體層108產生漏電流至後續形成的源極電極114、汲極電極116和閘極電極124(顯示於第1G圖)。可透過化學氣相沉積(CVD)、電漿輔助化學氣相沉積(plasma enhanced CVD,PECVD)、原 子層沉積(atomic layer deposition,ALD)或類似方法形成第一保護層110和第二保護層112。 With continued reference to FIG. 1A, a first protection layer 110 is formed on the gallium aluminum nitride semiconductor layer 108. A second protective layer 112 is formed on the first protective layer 110. In some embodiments, the material of the first protective layer 110 and the second protective layer 112 may be an insulating material or a dielectric material, such as silicon oxide (SiO 2 ), silicon nitride (SiN), silicon oxynitride (SiON), Alumina (Al 2 O 3 ), aluminum nitride (AlN), magnesium oxide (MgO), magnesium nitride (Mg 3 N 2 ), zinc oxide (ZnO), titanium oxide (TiO 2 ), or a combination thereof. The first protective layer 110 and the second protective layer 112 are used to prevent a leakage current from the underlying GaN aluminum semiconductor layer 108 to the source electrode 114, the drain electrode 116, and the gate electrode 124 (shown in FIG. ). The first protective layer 110 and the second protective layer 112 may be formed by chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), or the like. .

在一些實施例中,第二保護層112的材料不同於第一保護層110的材料。舉例而言,下方的第一保護層110可選用例如透過熱成長的高品質氧化物膜,例如氧化矽膜,上方的第二保護層112可選用相對於第一保護層110具有高蝕刻選擇性的介電材料,例如氮化矽。 In some embodiments, the material of the second protective layer 112 is different from the material of the first protective layer 110. For example, a high-quality oxide film, such as a silicon oxide film, can be used for the first protective layer 110 below, and a high etch selectivity relative to the first protective layer 110 can be used for the second protective layer 112 above. Dielectric materials, such as silicon nitride.

儘管在第1A圖所示的實施例中,在氮化鎵鋁半導體層108之上形成了兩層保護層110和112,然而在其他實施例中,也可形成一層或大於兩層的保護層於氮化鎵鋁半導體層108之上。 Although in the embodiment shown in FIG. 1A, two protective layers 110 and 112 are formed on the aluminum gallium nitride semiconductor layer 108, in other embodiments, one or more protective layers may be formed. Over the gallium aluminum nitride semiconductor layer 108.

請參考第1B圖,在氮化鎵鋁半導體層108之上形成源極電極114和汲極電極116,源極電極114和汲極電極116穿過第二保護層112和第一保護層110,以接觸氮化鎵鋁半導體層108。在一些實施例中,源極電極114和汲極電極116的材料可以是導電材料,例如金屬材料或半導體材料。金屬材料可以是金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、類似材料、前述之組合或前述之多層。半導體材料可以是摻雜的多晶矽、多晶鍺或類似材料。形成源極電極114和汲極電極116的步驟可包含透過蝕刻製程形成用於源極電極114和汲極電極116的開口(未顯示),這些開口穿過第二保護層112和第一保護層110,且暴露出氮化鎵鋁半導體層108的上表面,沉積導電材料層(未顯示)於第二保護層112之上且填入這些開口中,以及對導電材料層執行圖案化製程,以形 成源極電極114和汲極電極116。形成源極電極114和汲極電極116的沉積製程可以是原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition,PVD)、濺鍍或類似製程。 Referring to FIG. 1B, a source electrode 114 and a drain electrode 116 are formed on the gallium nitride semiconductor layer 108. The source electrode 114 and the drain electrode 116 pass through the second protective layer 112 and the first protective layer 110. To contact the gallium aluminum nitride semiconductor layer 108. In some embodiments, the material of the source electrode 114 and the drain electrode 116 may be a conductive material, such as a metal material or a semiconductor material. The metal material can be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper (Cu), a similar material, a combination of the foregoing, or a plurality of the foregoing. The semiconductor material may be doped polycrystalline silicon, polycrystalline germanium, or a similar material. The step of forming the source electrode 114 and the drain electrode 116 may include forming openings (not shown) for the source electrode 114 and the drain electrode 116 through an etching process, and the openings pass through the second protective layer 112 and the first protective layer. 110, and the upper surface of the gallium aluminum nitride semiconductor layer 108 is exposed, a conductive material layer (not shown) is deposited on the second protective layer 112 and filled in these openings, and a patterning process is performed on the conductive material layer to shape As a source electrode 114 and a drain electrode 116. The deposition process for forming the source electrode 114 and the drain electrode 116 may be an atomic layer deposition (ALD), a chemical vapor deposition (CVD), a physical vapor deposition (PVD), sputtering, or a similar process.

請參考第1C圖,在第二保護層112之上形成第一圖案化遮罩層150。第一圖案化遮罩層150具有第一開口152,第一開口152暴露出第二保護層112之上表面之預定形成閘極電極124(顯示於第1G圖)的區域。在一些實施例中,第一圖案化遮罩層150可以是圖案化光阻層或圖案化硬遮罩(hard mask)層。 Referring to FIG. 1C, a first patterned masking layer 150 is formed on the second protective layer 112. The first patterned masking layer 150 has a first opening 152, and the first opening 152 exposes a region on the upper surface of the second protective layer 112 where the gate electrode 124 (shown in FIG. 1G) is formed. In some embodiments, the first patterned mask layer 150 may be a patterned photoresist layer or a patterned hard mask layer.

接著,通過第一圖案化遮罩層150的第一開口152對第二保護層112和第一保護層110執行蝕刻製程。如第1D圖所示,在蝕刻製程之後,在第二保護層112和第一保護層110中形成第一凹陷118。第一凹陷118穿過第二保護層112和第一保護層110,以暴露出氮化鎵鋁半導體層108的上表面。在一些實施例中,蝕刻製程可以是乾式蝕刻製程、濕式蝕刻製程或前述之組合。乾式蝕刻製程可以是,例如反應性離子蝕刻(reactive ion etch,RIE)、電子迴旋共振式(electron cyclotron resonance,ERC)蝕刻、感應耦合式電漿(inductively-coupled plasma,ICP)蝕刻或類似乾式蝕刻製程。蝕刻製程可以針對第二保護層112和第一保護層110的材料選用適當的蝕刻劑。舉例而言,在第二保護層112是氮化矽且第一保護層110是氧化矽實施例中,可先以熱磷酸(phosphoric acid)移除第二保護層112被開口152暴露出來的部分,直到第一保護層110的上表面暴露出來,接著以稀 釋的氫氟酸(dilute hydrofliuric,dHf)移除第一保護層110被開口152暴露出來的部分。 Then, an etching process is performed on the second protective layer 112 and the first protective layer 110 through the first opening 152 of the first patterned mask layer 150. As shown in FIG. 1D, after the etching process, a first recess 118 is formed in the second protective layer 112 and the first protective layer 110. The first recess 118 passes through the second protective layer 112 and the first protective layer 110 to expose the upper surface of the gallium aluminum nitride semiconductor layer 108. In some embodiments, the etching process may be a dry etching process, a wet etching process, or a combination thereof. The dry etching process may be, for example, reactive ion etch (RIE), electron cyclotron resonance (ERC) etching, inductively-coupled plasma (ICP) etching, or similar dry etching Process. The etching process may select a suitable etchant for the materials of the second protective layer 112 and the first protective layer 110. For example, in an embodiment in which the second protection layer 112 is silicon nitride and the first protection layer 110 is silicon oxide, a portion of the second protection layer 112 exposed by the opening 152 may be removed with phosphoric acid first. Until the upper surface of the first protective layer 110 is exposed, and The released hydrofluoric acid (dHf) removes the part of the first protective layer 110 exposed by the opening 152.

接著,移除在第二保護層112之上的第一圖案化遮罩層150。在一些實施例中,可使用灰化(ash)製程或剝離製程移除第一圖案化遮罩層150。 Then, the first patterned masking layer 150 on the second protective layer 112 is removed. In some embodiments, the first patterned masking layer 150 may be removed using an ash process or a lift-off process.

請參考第1E圖,在第二保護層112之上形成第二圖案化遮罩層160。第二圖案化遮罩層160具有第二開口162和第三開口164暴露出第二保護層112之上表面的一些區域,這些區域預定形成閘極場板126的延伸部130和132(顯示於第1G圖)。在一些實施例中,第二圖案化遮罩層160可以是圖案化光阻層或圖案化硬遮罩(hard mask)層。 Referring to FIG. 1E, a second patterned masking layer 160 is formed on the second protective layer 112. The second patterned masking layer 160 has second openings 162 and third openings 164 that expose areas on the upper surface of the second protective layer 112. These areas are intended to form extensions 130 and 132 of the gate field plate 126 (shown in FIG. Figure 1G). In some embodiments, the second patterned mask layer 160 may be a patterned photoresist layer or a patterned hard mask layer.

接著,通過第二圖案化遮罩層160的第二開口162和第三開口164對第二保護層112和第一保護層110執行蝕刻製程。如第1F圖所示,在蝕刻製程之後,在第二保護層112和第一保護層110中形成第二凹陷120和第三凹陷122。第二凹陷120和第三凹陷122穿過第二保護層112,且延伸至第一保護層110中。第二凹陷120和第三凹陷122並未穿過第一保護層110,所以第一保護層110在第二凹陷120和第三凹陷122正下方的部分仍留在氮化鎵鋁半導體層108上。在一些實施例中,蝕刻製程可包含針對第二保護層112的主蝕刻步驟,以形成第二凹陷120和第三凹陷122於第二保護層112中,並且包含過蝕刻步驟,以將第二凹陷120和第三凹陷122延伸至第一保護層110中。舉例而言,在對第二保護層112的主蝕刻結束之後,可不將基底102移除蝕刻設備,而接續執行對第一保護層的過蝕刻持續一段時間,例如,約主蝕刻時間10%至約30%。在一些實施例中,形成第二凹陷120和第三凹陷122的蝕刻製程可以是乾式蝕刻製程、乾式蝕刻製程或前述之組合,並且可以相同、相似或不同於前述形成第一凹陷118的蝕刻製程。 Then, an etching process is performed on the second protective layer 112 and the first protective layer 110 through the second opening 162 and the third opening 164 of the second patterned mask layer 160. As shown in FIG. 1F, after the etching process, a second depression 120 and a third depression 122 are formed in the second protection layer 112 and the first protection layer 110. The second recess 120 and the third recess 122 pass through the second protective layer 112 and extend into the first protective layer 110. The second recess 120 and the third recess 122 do not pass through the first protection layer 110, so the portions of the first protection layer 110 directly under the second recess 120 and the third recess 122 remain on the gallium nitride semiconductor layer 108. . In some embodiments, the etching process may include a main etching step for the second protective layer 112 to form a second recess 120 and a third recess 122 in the second protective layer 112, and include an over-etching step to convert the second The recess 120 and the third recess 122 extend into the first protective layer 110. For example, after the main etching of the second protective layer 112 is ended, the substrate 102 may not be removed from the etching equipment, and the over-etching of the first protective layer may be continuously performed for a period of time, for example, about 10% to About 30%. In some embodiments, the etching process for forming the second recess 120 and the third recess 122 may be a dry etching process, a dry etching process, or a combination thereof, and may be the same, similar, or different from the aforementioned etching process for forming the first recess 118. .

接著,移除在第二保護層112上的第二圖案化遮罩層160。在一些實施例中,可使用灰化(ash)製程或剝離製程移除第二圖案化遮罩層160。 Then, the second patterned masking layer 160 on the second protective layer 112 is removed. In some embodiments, the second patterned masking layer 160 may be removed using an ash process or a lift-off process.

請參考第1G圖,在第二保護層112之上形成閘極電極124以及與閘極電極124連接的閘極場板126。閘極電極124填入第一凹陷118中,並且接觸氮化鎵鋁半導體層108。閘極場板126具有連接閘極電極124的連接部128,以及分別填入第二凹陷120與第三凹陷122中的第一延伸部130和第二延伸部132。連接部128位於第二保護層112之上表面介於閘極電極124與汲極電極116之間的區域之上。 Referring to FIG. 1G, a gate electrode 124 and a gate field plate 126 connected to the gate electrode 124 are formed on the second protection layer 112. The gate electrode 124 is filled in the first recess 118 and contacts the gallium aluminum nitride semiconductor layer 108. The gate field plate 126 has a connection portion 128 to which the gate electrode 124 is connected, and a first extension portion 130 and a second extension portion 132 which are respectively filled in the second depression 120 and the third depression 122. The connection portion 128 is located on a region on the upper surface of the second protective layer 112 between the gate electrode 124 and the drain electrode 116.

在一些實施例中,形成閘極電極124和與閘極場板126的步驟可以包含沉積導電材料層(未顯示)於第二保護層112之上,且填充第一凹陷118、第二凹陷120和第三凹陷122,以及將導電材料層圖案化。導電材料層的圖案化可包含透過光微影製程於導電材料層上形成圖案化遮罩層(未顯示),對導電材料層執行蝕刻製程例如乾蝕刻或濕蝕刻,以移除導電材料層未被圖案化遮罩層覆蓋的部分,之後移除導電材料層之剩餘部分上的圖案化遮罩層。導電材料層可以是金屬或半導體材料。金屬可以是金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、類似材料、前述之組合或前述 之多層。半導體材料可以是摻雜的多晶矽、多晶鍺或類似材料。導電材料層可由原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)、濺鍍(sputter)或類似製程形成。 In some embodiments, the steps of forming the gate electrode 124 and the gate field plate 126 may include depositing a conductive material layer (not shown) on the second protective layer 112 and filling the first recess 118 and the second recess 120. And a third recess 122, and patterning the conductive material layer. The patterning of the conductive material layer may include forming a patterned mask layer (not shown) on the conductive material layer through a photolithography process, and performing an etching process such as dry etching or wet etching on the conductive material layer to remove the conductive material layer. The portion covered by the patterned masking layer is then removed from the remaining portion of the conductive material layer. The conductive material layer may be a metal or a semiconductor material. The metal can be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper ( Cu), similar materials, a combination of the foregoing, or the foregoing Of multiple layers. The semiconductor material may be doped polycrystalline silicon, polycrystalline germanium, or a similar material. The conductive material layer may be formed by atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), sputtering, or similar processes.

請參考第1H圖,在第二保護層112之上形成層間介電層(inter layer dielectric layer,ILD layer)134,層間介電層134覆蓋閘極電極124、閘極場板126、源極電極114和汲極電極116。接著,在層間介電層134中形成與源極電極114連接的源極接觸件136、與汲極電極116連接的汲極接觸件138和與閘極電極124連接閘極接觸件140。在形成包含層間介電層134、源極接觸件136、汲極接觸件138和閘極接觸件140的內連線結構之後,形成了半導體裝置100。 Referring to FIG. 1H, an inter-layer dielectric layer (ILD layer) 134 is formed on the second protective layer 112. The inter-layer dielectric layer 134 covers the gate electrode 124, the gate field plate 126, and the source electrode. 114 and drain electrode 116. Next, a source contact 136 connected to the source electrode 114, a drain contact 138 connected to the drain electrode 116, and a gate contact 140 connected to the gate electrode 124 are formed in the interlayer dielectric layer 134. After forming an interconnect structure including the interlayer dielectric layer 134, the source contact 136, the drain contact 138, and the gate contact 140, the semiconductor device 100 is formed.

在一些實施例中,層間介電層134的材料可以是氧化矽、氮化矽、氮氧化矽或氧化鋁、類似材料、前述之組合或前述之多層。可透過化學氣相沉積(CVD)、電漿輔助化學氣相沉積(PECVD)、原子層沉積(ALD)或類似方法形成層間介電層134。 In some embodiments, the material of the interlayer dielectric layer 134 may be silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide, a similar material, a combination of the foregoing, or a plurality of the foregoing. The interlayer dielectric layer 134 may be formed by chemical vapor deposition (CVD), plasma-assisted chemical vapor deposition (PECVD), atomic layer deposition (ALD), or the like.

在一些實施例中,源極接觸件136、汲極接觸件138和閘極接觸件140的材料可以是金屬材料,例如金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、前述之組合或前述之多層。形成源極接觸件136、汲極接觸件138和閘極接觸件140的步驟可包含透過圖案化製程形成各自對應於源極電極114、汲極電極116和閘極電極124的開口(未顯示),其穿過層間介電層134且各自暴露出源極電極114、汲極電極116和閘極電極124,沉積金屬材料(未顯示)於層 間介電層134上且填入開口,以及執行例如化學機械研磨(chemical rmechanical polish,CMP)的平坦化製程,移除金屬材料在層間介電層130上方的部分。 In some embodiments, the material of the source contact 136, the drain contact 138, and the gate contact 140 may be a metal material, such as gold (Au), nickel (Ni), platinum (Pt), palladium (Pd) , Iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper (Cu), a combination of the foregoing or a plurality of the foregoing. The step of forming the source contact 136, the drain contact 138, and the gate contact 140 may include forming openings (not shown) corresponding to the source electrode 114, the drain electrode 116, and the gate electrode 124 through a patterning process. It passes through the interlayer dielectric layer 134 and exposes the source electrode 114, the drain electrode 116, and the gate electrode 124, respectively, and a metal material (not shown) is deposited on the layer The interlayer dielectric layer 134 is filled with openings, and a planarization process such as chemical mechanical polishing (CMP) is performed to remove a portion of the metal material above the interlayer dielectric layer 130.

在第1H圖所示的實施例中,半導體裝置100包含基底102和依序堆疊於基底102之上的緩衝層104、氮化鎵半導體層106和氮化鎵鋁半導體層108。半導體裝置100還包含第一保護層110設置於氮化鎵鋁半導體層108之上,第二保護層112設置於第一保護層110之上,以及源極電極114、汲極電極116和閘極電極124穿過第二保護層112和第一保護層110,並且接觸氮化鎵鋁半導體層108。 In the embodiment shown in FIG. 1H, the semiconductor device 100 includes a substrate 102 and a buffer layer 104, a gallium nitride semiconductor layer 106, and a gallium aluminum nitride semiconductor layer 108 sequentially stacked on the substrate 102. The semiconductor device 100 further includes a first protection layer 110 disposed on the gallium aluminum semiconductor layer 108, a second protection layer 112 disposed on the first protection layer 110, and a source electrode 114, a drain electrode 116, and a gate electrode. The electrode 124 passes through the second protective layer 112 and the first protective layer 110 and contacts the gallium aluminum nitride semiconductor layer 108.

半導體裝置100還包含連接閘極電極124的閘極場板126,閘極場板126具有連接部128連接閘極電極124,以及第一延伸部130和第二延伸部132延伸至第二保護層112和第一保護層110中。連接部128位於第二保護層112之上,且從閘極電極124朝向汲極電極116延伸。第一延伸部130和第二延伸部132介於閘極電極124與汲極電極116之間,並且第一延伸部130和第二延伸部132與氮化鎵鋁半導體層108的上表面被第一保護層110所隔開。 The semiconductor device 100 further includes a gate field plate 126 connected to the gate electrode 124. The gate field plate 126 has a connection portion 128 connected to the gate electrode 124, and the first extension portion 130 and the second extension portion 132 extend to the second protective layer. 112 and the first protective layer 110. The connection portion 128 is located on the second protection layer 112 and extends from the gate electrode 124 toward the drain electrode 116. The first extension 130 and the second extension 132 are interposed between the gate electrode 124 and the drain electrode 116, and the upper surfaces of the first extension 130 and the second extension 132 and the gallium aluminum semiconductor layer 108 are A protective layer 110 is separated.

一般而言,當施加操作電壓於閘極電極與汲極電極時,由於閘極電極與汲極電極之間的高電場強度,可能導致位於閘極電極之汲極側附近的材料層被擊穿(punch through),尤其在閘極電極的角落處。值得注意的是,在本發明實施例中,閘極電極124與汲極電極116之間具有與閘極電極124連接閘極場板126,其可以減緩閘極電極124在靠近汲極電極116之側 邊的電場梯度。再者,由於閘極場板126具有第一延伸部130和第二延伸部132延伸至第二保護層112和第一保護層110中,所以在連接部128下方的電場分布會集中至延伸部130和132,這可進一步減緩閘極電極124在靠近汲極電極116之側邊的電場梯度。因此,本發明實施例利用閘極場板,其具有延伸至保護層中的延伸部,以提升半導體裝置的崩潰電壓(breakdown voltage),進而提升半導體裝置100的效能。 In general, when an operating voltage is applied to the gate electrode and the drain electrode, the material layer located near the drain side of the gate electrode may be broken due to the high electric field strength between the gate electrode and the drain electrode. (punch through), especially at the corner of the gate electrode. It is worth noting that, in the embodiment of the present invention, the gate electrode 124 and the drain electrode 116 have a gate field plate 126 connected to the gate electrode 124, which can slow the gate electrode 124 close to the drain electrode 116. side The electric field gradient of the edge. Furthermore, since the gate field plate 126 has a first extension portion 130 and a second extension portion 132 extending into the second protection layer 112 and the first protection layer 110, the electric field distribution under the connection portion 128 is concentrated to the extension portion. 130 and 132, which can further reduce the electric field gradient of the gate electrode 124 on the side close to the drain electrode 116. Therefore, in the embodiment of the present invention, a gate field plate is used, which has an extension portion extending into the protective layer, so as to improve the breakdown voltage of the semiconductor device, thereby improving the efficiency of the semiconductor device 100.

儘管在第1H圖所示的實施例中,閘極場板126具有兩個延伸部130和132介於閘極電極124與汲極電極116之間,然而,在其他實施例中,閘極場板126可具有一個或二個以上的延伸部介於閘極電極124與汲極電極116之間,以減緩閘極電極124在靠近汲極電極116之側邊的電場梯度。此外,第一延伸部130和第二延伸部132的寬度以及第一延伸部130和第二延伸部132之間的間距可取決於設計需求,未侷限於第1H圖的實施例。 Although in the embodiment shown in FIG. 1H, the gate field plate 126 has two extensions 130 and 132 between the gate electrode 124 and the drain electrode 116, however, in other embodiments, the gate field The plate 126 may have one or more extensions between the gate electrode 124 and the drain electrode 116 to reduce the electric field gradient of the gate electrode 124 near the side of the drain electrode 116. In addition, the widths of the first extending portion 130 and the second extending portion 132 and the distance between the first extending portion 130 and the second extending portion 132 may depend on design requirements, and are not limited to the embodiment in FIG. 1H.

此外,由於閘極場板126的第一延伸部130和第二延伸部132穿過第二保護層112且延伸至第一保護層110中,所以靠近氮化鎵鋁半導體層108的第一延伸部130和第二延伸部132有助於半導體裝置100傳導操作期間產生的熱能,以提升半導體裝置100的效能。 In addition, since the first extension portion 130 and the second extension portion 132 of the gate field plate 126 pass through the second protective layer 112 and extend into the first protective layer 110, they are close to the first extension of the gallium aluminum nitride semiconductor layer 108. The portion 130 and the second extension portion 132 help the semiconductor device 100 to conduct thermal energy generated during operation, so as to improve the performance of the semiconductor device 100.

第2A-2H圖是根據本發明的另一些實施例,顯示第2H圖所示的半導體裝置200在各個不同階段的剖面示意圖,其中相同於前述第1A-1H圖的實施例的部件係使用相同的標號並省略其說明。第2A-2H圖所示之實施例與前述第1A-1H圖之實 施例的差別在於第2A-2H圖的半導體裝置200還包含摻雜的化合物半導體區塊109介於氮化鎵綠半導體層108與閘極電極124之間。 2A-2H are schematic cross-sectional views of the semiconductor device 200 shown in FIG. 2H at various stages according to other embodiments of the present invention. The same components as those in the embodiment shown in FIGS. 1A-1H are used. And their descriptions are omitted. The embodiment shown in Figs. 2A-2H is the same as the embodiment shown in Figs. 1A-1H. The difference between the embodiments is that the semiconductor device 200 in FIGS. 2A-2H further includes a doped compound semiconductor block 109 interposed between the gallium nitride green semiconductor layer 108 and the gate electrode 124.

請參考第2A圖,提供基底102。接著,在基底102之上依序形成緩衝層104、氮化鎵半導體層106以及氮化鎵鋁半導體層108。接著,在氮化鎵鋁半導體層108之上形成摻雜的化合物半導體區塊109。摻雜的化合物半導體區塊109可以是如圖所示的長方形,也可以是其他形狀,例如梯形。此外,摻雜的化合物半導體區塊109的上表面也可以不是平坦的。 Referring to FIG. 2A, a substrate 102 is provided. Next, a buffer layer 104, a gallium nitride semiconductor layer 106, and a gallium aluminum nitride semiconductor layer 108 are sequentially formed on the substrate 102. Next, a doped compound semiconductor block 109 is formed on the gallium aluminum nitride semiconductor layer 108. The doped compound semiconductor block 109 may be rectangular as shown in the figure, or other shapes, such as trapezoidal. In addition, the upper surface of the doped compound semiconductor block 109 may not be flat.

在後續製程中,閘極電極124(顯示於第2G圖)將形成於摻雜的化合物半導體區塊109上。藉由設置摻雜的化合物半導體區塊109於閘極電極124與氮化鎵鋁半導體層108之間可抑制閘極電極124下方的二維電子氣(2DEG)產生,以達成半導體裝置的常關狀態。在一些實施例中,摻雜的化合物半導體區塊109的材料可以是以p型摻雜或n型摻雜的GaN。形成摻雜的化合物半導體區塊109的步驟可包含透過磊晶成長製程在氮化鎵鋁半導體層108上沉積摻雜的化合物半導體層(未顯示),對摻雜的化合物半導體層執行圖案化製程,以形成摻雜的化合物半導體區塊109對應於預定形成閘極電極124的位置。 In a subsequent process, a gate electrode 124 (shown in FIG. 2G) will be formed on the doped compound semiconductor block 109. By setting the doped compound semiconductor block 109 between the gate electrode 124 and the gallium aluminum semiconductor layer 108, the generation of two-dimensional electron gas (2DEG) under the gate electrode 124 can be suppressed to achieve the normally off of the semiconductor device. status. In some embodiments, the material of the doped compound semiconductor block 109 may be GaN doped with p-type or n-type. The step of forming the doped compound semiconductor block 109 may include depositing a doped compound semiconductor layer (not shown) on the gallium aluminum semiconductor layer 108 through an epitaxial growth process, and performing a patterning process on the doped compound semiconductor layer. To form the doped compound semiconductor block 109 corresponds to a position where the gate electrode 124 is to be formed.

繼續參考第2A圖,在氮化鎵鋁半導體層108之上形成第一保護層110,第一保護層110順應性地(conformally)延伸於摻雜的化合物半導體區塊109的側壁和上表面。接著,在第一保護層110之上形成第二保護層112。第一保護層110和第二保護層112順應摻雜的化合物半導體區塊109的側壁和頂面形 成,使得第一保護層110和第二保護層112各自具有在摻雜的化合物半導體區塊109的正上方的水平部分。在一些實施例中,第二保護層112的材料不同於第一保護層110的材料。 With continued reference to FIG. 2A, a first protective layer 110 is formed on the gallium aluminum nitride semiconductor layer 108. The first protective layer 110 conformally extends on the sidewall and the upper surface of the doped compound semiconductor block 109. Next, a second protective layer 112 is formed on the first protective layer 110. The first protective layer 110 and the second protective layer 112 conform to the sidewall and top surface shapes of the doped compound semiconductor block 109. So that the first protective layer 110 and the second protective layer 112 each have a horizontal portion directly above the doped compound semiconductor block 109. In some embodiments, the material of the second protective layer 112 is different from the material of the first protective layer 110.

請參考第2B圖,在氮化鎵鋁半導體層108之上形成源極電極114和汲極電極116,源極電極114和汲極電極116穿過第二保護層112和第一保護層110,以接觸氮化鎵鋁半導體層108。 Referring to FIG. 2B, a source electrode 114 and a drain electrode 116 are formed on the gallium nitride semiconductor layer 108. The source electrode 114 and the drain electrode 116 pass through the second protective layer 112 and the first protective layer 110. To contact the gallium aluminum nitride semiconductor layer 108.

接著,對第二保護層112執行平坦化製程,例如化學機械研磨(CMP)。如第2C圖所示,在平坦化製程之後,移除了第二保護層112在摻雜的化合物半導體區塊109正上方的水平部分。第一保護層110在摻雜的化合物半導體區塊109的正上方的水平部分從第二保護層112暴露出來,並且第一保護層110之暴露出的水平部分的上表面與第二保護層112的上表面共平面。 Next, a planarization process is performed on the second protective layer 112, such as chemical mechanical polishing (CMP). As shown in FIG. 2C, after the planarization process, the horizontal portion of the second protective layer 112 directly above the doped compound semiconductor block 109 is removed. A horizontal portion of the first protective layer 110 directly above the doped compound semiconductor block 109 is exposed from the second protective layer 112, and an upper surface of the exposed horizontal portion of the first protective layer 110 and the second protective layer 112 are exposed. The upper surfaces are coplanar.

請參考第2D圖,在第二保護層112和第一保護層之暴露出的水平部分之上形成第三圖案化遮罩層170。第三圖案化遮罩層170具有第三開口172、第四開口174和第五開口176,第三開口172對應於第一保護層110之暴露出的水平部分。第四開口174和第五開口176暴露出第二保護層112之上表面的一些區域,這些區域預定形成閘極場板126的延伸部130和132(顯示於第2G圖)。在一些實施例中,第三圖案化遮罩層170的材料與形成方法可與前述第1C圖的第一圖案化遮罩層150相同或相似。 Referring to FIG. 2D, a third patterned masking layer 170 is formed on the second protective layer 112 and the exposed horizontal portions of the first protective layer. The third patterned masking layer 170 has a third opening 172, a fourth opening 174, and a fifth opening 176. The third opening 172 corresponds to an exposed horizontal portion of the first protective layer 110. The fourth opening 174 and the fifth opening 176 expose areas on the upper surface of the second protective layer 112, which are intended to form the extensions 130 and 132 of the gate field plate 126 (shown in FIG. 2G). In some embodiments, the material and forming method of the third patterned masking layer 170 may be the same as or similar to the first patterned masking layer 150 in FIG. 1C described above.

接著,通過第三圖案化遮罩層170的第三開口172 對第一保護層110執行蝕刻製程。詳細而言,在此實施例中,蝕刻製程可使用蝕刻劑,其相較於第二保護層112,對第一保護層110具有高蝕刻速率。由於第二保護層112相對於第一保護層110具有高蝕刻選擇性,所以蝕刻劑幾乎不會蝕刻第二保護層112從第三圖案化遮罩層170之第四開口174和第五開口176暴露出來的部分。 Next, through the third opening 172 of the third patterned masking layer 170 An etching process is performed on the first protective layer 110. In detail, in this embodiment, the etching process may use an etchant, which has a higher etching rate for the first protective layer 110 than the second protective layer 112. Since the second protective layer 112 has a high etching selectivity with respect to the first protective layer 110, the etchant hardly etches the fourth opening 174 and the fifth opening 176 of the second protective layer 112 from the third patterned masking layer 170. Exposed part.

如第2E圖所示,在蝕刻製程之後,在第一保護層110中形成第一凹陷118,且第一凹陷118暴露出摻雜的化合物半導體區塊109的上表面。由於第三圖案化遮罩層170的第三開口172對應於第一保護層110的水平部分,所以第一凹陷118僅穿過第一保護層110,而未穿過第二保護層112。 As shown in FIG. 2E, after the etching process, a first recess 118 is formed in the first protective layer 110, and the first recess 118 exposes the upper surface of the doped compound semiconductor block 109. Since the third opening 172 of the third patterned masking layer 170 corresponds to the horizontal portion of the first protective layer 110, the first recess 118 passes only through the first protective layer 110 and does not pass through the second protective layer 112.

接著,通過第三圖案化遮罩層170的第四開口174和第五開口176對第二保護層112和第一保護層110執行蝕刻製程。詳細而言,在此實施例中,摻雜的化合物半導體區塊109相對於第二保護層112和第一保護層110具有高蝕刻選擇性,所以蝕刻劑幾乎不會蝕刻摻雜的化合物半導體區塊109從第三圖案化遮罩層170之第三開口172暴露出來的部分。再者,在此實施例中,蝕刻製程可包含針對第二保護層112的主蝕刻步驟,以及對第一保護層110的過蝕刻步驟。 Next, an etching process is performed on the second protective layer 112 and the first protective layer 110 through the fourth opening 174 and the fifth opening 176 of the third patterned mask layer 170. In detail, in this embodiment, the doped compound semiconductor block 109 has high etch selectivity with respect to the second protective layer 112 and the first protective layer 110, so the etchant hardly etches the doped compound semiconductor region. The portion of the block 109 exposed from the third opening 172 of the third patterned masking layer 170. Furthermore, in this embodiment, the etching process may include a main etching step for the second protective layer 112 and an over-etching step for the first protective layer 110.

如第2F圖所示,在蝕刻製程之後,在第二保護層112和第一保護層110中形成第二凹陷120和第三凹陷122。第二凹陷120和第三凹陷122穿過第二保護層112,且延伸至第一保護層110中。第二凹陷120和第三凹陷122並未穿過第一保護層110,所以第一保護層110在第二凹陷120和第三凹陷122正下方 的部分仍留在氮化鎵鋁半導體層108上。 As shown in FIG. 2F, after the etching process, a second depression 120 and a third depression 122 are formed in the second protection layer 112 and the first protection layer 110. The second recess 120 and the third recess 122 pass through the second protective layer 112 and extend into the first protective layer 110. The second recess 120 and the third recess 122 do not pass through the first protection layer 110, so the first protection layer 110 is directly below the second recess 120 and the third recess 122 The portion remains on the GaN aluminum semiconductor layer 108.

接著,移除在第一保護層110和第二保護層112上的第三圖案化遮罩層170。 Next, the third patterned masking layer 170 on the first protective layer 110 and the second protective layer 112 is removed.

請參考第2G圖,在第一保護層110和第二保護層112之上形成閘極電極124以及與閘極電極124連接的閘極場板126。閘極電極124填入第一凹陷118中,並且接觸摻雜的化合物半導體區塊109。閘極場板126具有連接閘極電極124的連接部128,以及分別填入第二凹陷120與第三凹陷122中的第一延伸部130和第二延伸部132。連接部128位於第二保護層112之上表面介於閘極電極124與汲極電極116之間的區域之上。 Referring to FIG. 2G, a gate electrode 124 and a gate field plate 126 connected to the gate electrode 124 are formed on the first protection layer 110 and the second protection layer 112. The gate electrode 124 is filled in the first recess 118 and contacts the doped compound semiconductor block 109. The gate field plate 126 has a connection portion 128 to which the gate electrode 124 is connected, and a first extension portion 130 and a second extension portion 132 which are respectively filled in the second depression 120 and the third depression 122. The connection portion 128 is located on a region on the upper surface of the second protective layer 112 between the gate electrode 124 and the drain electrode 116.

請參考第2H圖,在第一保護層110和第二保護層112之上形成層間介電層134,層間介電層134覆蓋閘極電極124、閘極場板126、源極電極114和汲極電極116。接著,在層間介電層134中形成與源極電極114連接的源極接觸件136、與汲極電極116連接的汲極接觸件138和與閘極電極124連接閘極接觸件140。在形成包含層間介電層134、源極接觸件136、汲極接觸件138和閘極接觸件140的內連線結構之後,形成了半導體裝置200。 Referring to FIG. 2H, an interlayer dielectric layer 134 is formed on the first protection layer 110 and the second protection layer 112. The interlayer dielectric layer 134 covers the gate electrode 124, the gate field plate 126, the source electrode 114, and the drain electrode.极 electrode 116. Next, a source contact 136 connected to the source electrode 114, a drain contact 138 connected to the drain electrode 116, and a gate contact 140 connected to the gate electrode 124 are formed in the interlayer dielectric layer 134. After forming an interconnect structure including the interlayer dielectric layer 134, the source contact 136, the drain contact 138, and the gate contact 140, a semiconductor device 200 is formed.

在第2H圖所示的實施例中,半導體裝置200包含基底102和依序堆疊於基底102之上的緩衝層104、氮化鎵半導體層106、氮化鎵鋁半導體層108和摻雜的化合物半導體區塊109。半導體裝置200還包含第一保護層110設置於氮化鎵鋁半導體層108之上且圍繞摻雜的化合物半導體區塊109的側壁,以及第二保護層112設置於第一保護層110之上,其中第二保護層112 不位於摻雜的化合物半導體區塊109的正上方。半導體裝置200還包含源極電極114以及汲極電極116穿過第二保護層112和第一保護層110,並且接觸氮化鎵鋁半導體層108。 In the embodiment shown in FIG. 2H, the semiconductor device 200 includes a substrate 102 and a buffer layer 104, a gallium nitride semiconductor layer 106, a gallium nitride semiconductor layer 108, and a doped compound sequentially stacked on the substrate 102. Semiconductor block 109. The semiconductor device 200 further includes a first protection layer 110 disposed on the gallium aluminum nitride semiconductor layer 108 and surrounding a sidewall of the doped compound semiconductor block 109, and a second protection layer 112 disposed on the first protection layer 110. Wherein the second protective layer 112 It is not directly above the doped compound semiconductor block 109. The semiconductor device 200 further includes a source electrode 114 and a drain electrode 116 passing through the second protective layer 112 and the first protective layer 110 and contacting the gallium nitride semiconductor layer 108.

半導體裝置200還包含穿過第一保護層110且接觸摻雜的化合物半導體區塊109的閘極電極124,以及連接閘極電極124的閘極場板126。閘極場板126具有連接部128連接閘極電極124,以及第一延伸部130和第二延伸部132延伸至第二保護層112和第一保護層110中。連接部128位於第二保護層112之上,從閘極電極124朝向汲極電極116延伸。第一延伸部130和第二延伸部132介於閘極電極124與汲極電極116之間,並且第一延伸部130和第二延伸部132與氮化鎵鋁半導體層108的上表面被第一保護層110所隔開。 The semiconductor device 200 further includes a gate electrode 124 passing through the first protective layer 110 and contacting the doped compound semiconductor block 109, and a gate field plate 126 connected to the gate electrode 124. The gate field plate 126 has a connection portion 128 connected to the gate electrode 124, and the first extension portion 130 and the second extension portion 132 extend into the second protection layer 112 and the first protection layer 110. The connection portion 128 is located on the second protection layer 112 and extends from the gate electrode 124 toward the drain electrode 116. The first extension 130 and the second extension 132 are interposed between the gate electrode 124 and the drain electrode 116, and the upper surfaces of the first extension 130 and the second extension 132 and the gallium aluminum semiconductor layer 108 are A protective layer 110 is separated.

在第2A-2H圖所示的實施例中,用於形成閘極電極124和閘極場板126的第一凹陷118、第二凹陷120和第三凹陷122係藉由相同圖案化遮罩層170形成,所以可節省一次形成凹陷的圖案化製程,使得半導體裝置的製造效率得以提升。 In the embodiment shown in FIGS. 2A-2H, the first recess 118, the second recess 120, and the third recess 122 for forming the gate electrode 124 and the gate field plate 126 are formed by the same patterned mask layer. 170 is formed, so a patterning process for forming a depression can be saved, so that the manufacturing efficiency of the semiconductor device can be improved.

綜上所述,本發明實施例利用閘極場板具有延伸至保護層中的延伸部,其可減緩閘極電極在靠近汲極電極之側邊的電場梯度,以提升半導體裝置的崩潰電壓(breakdown voltage),進而提升半導體裝置的效能。 In summary, in the embodiment of the present invention, the gate field plate has an extension portion extending into the protective layer, which can reduce the electric field gradient of the gate electrode near the side of the drain electrode to increase the breakdown voltage of the semiconductor device ( breakdown voltage), thereby improving the performance of the semiconductor device.

以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介 紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。 The foregoing summarizes several embodiments so that those having ordinary knowledge in the technical field to which the present invention pertains can better understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs should understand that they can design or modify other processes and structures based on the embodiments of the present invention to achieve the same results as described herein. This embodiment has the same purpose and / or advantages. Those with ordinary knowledge in the technical field to which the present invention belongs should also understand that such equivalent processes and structures do not depart from the spirit and scope of the present invention, and they can do so without departing from the spirit and scope of the present invention. Make all kinds of changes, substitutions and replacements.

Claims (19)

一種半導體裝置,包括:一化合物半導體層,設置於一基底之上;一保護層,設置於該化合物半導體層之上;一源極電極、一汲極電極和一閘極電極,穿過該保護層且設置於該化合物半導體層之上;以及一閘極場板,連接該閘極電極且設置於該保護層介於該閘極電極與該汲極電極之間的一部分之上,其中該閘極場板具有延伸至該保護層中的一延伸部,其中該延伸部與該閘極電極被該保護層隔開。A semiconductor device includes: a compound semiconductor layer disposed on a substrate; a protective layer disposed on the compound semiconductor layer; a source electrode, a drain electrode, and a gate electrode passing through the protection; And a gate field plate connected to the gate electrode and disposed on a portion of the protective layer between the gate electrode and the drain electrode, wherein the gate The polar field plate has an extension portion extending into the protection layer, wherein the extension portion and the gate electrode are separated by the protection layer. 如申請專利範圍第1項所述之半導體裝置,其中該閘極場板的該延伸部與該化合物半導體層隔開。The semiconductor device according to item 1 of the scope of patent application, wherein the extension of the gate field plate is separated from the compound semiconductor layer. 如申請專利範圍第1項所述之半導體裝置,其中該保護層包括:一第一保護層,設置於該化合物半導體層上;以及一第二保護層,設置於該第一保護層上,該第一保護層的材料不同於該第二保護層的材料。The semiconductor device according to item 1 of the scope of patent application, wherein the protective layer comprises: a first protective layer provided on the compound semiconductor layer; and a second protective layer provided on the first protective layer, the The material of the first protective layer is different from that of the second protective layer. 如申請專利範圍第3項所述之半導體裝置,其中該閘極場板的該延伸部穿過該第一保護層且延伸至該第二保護層中。The semiconductor device according to item 3 of the scope of patent application, wherein the extension of the gate field plate passes through the first protective layer and extends into the second protective layer. 如申請專利範圍第1項所述之半導體裝置,更包括:一摻雜的化合物半導體區塊,設置於該化合物半導體層與該閘極電極之間。The semiconductor device according to item 1 of the patent application scope further includes: a doped compound semiconductor block disposed between the compound semiconductor layer and the gate electrode. 如申請專利範圍第5項所述之半導體裝置,其中該保護層包括:一第一保護層,圍繞該摻雜的化合物半導體區塊的側壁;以及一第二保護層,設置於該第一保護層上,該第二保護層不位於該摻雜的化合物半導體區塊的正上方,其中該第一保護層的材料不同於該第二保護層的材料。The semiconductor device according to item 5 of the patent application scope, wherein the protective layer includes: a first protective layer surrounding a sidewall of the doped compound semiconductor block; and a second protective layer disposed on the first protective layer On the layer, the second protective layer is not directly above the doped compound semiconductor block, and the material of the first protective layer is different from that of the second protective layer. 如申請專利範圍第6項所述之半導體裝置,其中該第一保護層具有在該摻雜的化合物半導體區塊上方的一水平部分,該第一保護層的該水平部分的上表面與第二保護層的上表面共平面。The semiconductor device according to item 6 of the scope of patent application, wherein the first protective layer has a horizontal portion above the doped compound semiconductor block, and an upper surface of the horizontal portion of the first protective layer and a second portion The upper surface of the protective layer is coplanar. 如申請專利範圍第1項所述之半導體裝置,其中該半導體裝置為高電子遷移率電晶體(HEMT)。The semiconductor device according to item 1 of the scope of patent application, wherein the semiconductor device is a high electron mobility transistor (HEMT). 如申請專利範圍第1項所述之半導體裝置,其中該閘極場板具有另一延伸部介於該延伸部與該汲極電極之間且延伸至該保護層中。The semiconductor device according to item 1 of the scope of patent application, wherein the gate field plate has another extension portion between the extension portion and the drain electrode and extends into the protective layer. 一種半導體裝置的製造方法,包括:在一基底之上形成一化合物半導體層;在該化合物半導體層之上形成一保護層;穿過該保護層形成一源極電極、一汲極電極和一閘極電極於該化合物半導體層之上;以及在該保護層介於該閘極電極與該汲極電極之間的一部分之上形成一閘極場板,以連接該閘極電極,其中該閘極場板具有延伸至該保護層中的一延伸部,其中該延伸部與該閘極電極被該保護層隔開。A method for manufacturing a semiconductor device includes: forming a compound semiconductor layer on a substrate; forming a protective layer on the compound semiconductor layer; forming a source electrode, a drain electrode, and a gate through the protective layer; A gate electrode is formed on the compound semiconductor layer; and a gate field plate is formed on a portion of the protective layer between the gate electrode and the drain electrode to connect the gate electrode, wherein the gate electrode The field plate has an extension portion extending into the protection layer, wherein the extension portion and the gate electrode are separated by the protection layer. 如申請專利範圍第10項所述之半導體裝置的製造方法,其中形成該閘極電極和該閘極場板的步驟包括:在該保護層中形成一第一凹陷和一第二凹陷,其中該第二凹陷介於該第一凹陷與該汲極電極之間;在該保護層之上形成一導電材料層填充該第一凹陷和該第二凹陷;以及將該導電材料層圖案化,以形成該閘極電極填充該第一凹陷和該閘極場板連接閘極電極且填充該第二凹陷。The method for manufacturing a semiconductor device according to item 10 of the application, wherein the step of forming the gate electrode and the gate field plate comprises: forming a first recess and a second recess in the protective layer, wherein the A second recess is interposed between the first recess and the drain electrode; forming a conductive material layer on the protective layer to fill the first recess and the second recess; and patterning the conductive material layer to form The gate electrode fills the first recess and the gate field plate connects the gate electrode and fills the second recess. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該第一凹陷暴露出該化合物半導體層,而該第二凹陷未暴露出該化合物半導體層。The method for manufacturing a semiconductor device according to item 11 of the application, wherein the compound semiconductor layer is exposed by the first depression, and the compound semiconductor layer is not exposed by the second depression. 如申請專利範圍第12項所述之半導體裝置的製造方法,其中該保護層的形成包括:在該化合物半導體層上沉積一第一保護層;以及在該第一保護層上沉積一第二保護層,其中該第一保護層的材料不同於該第二保護層的材料。The method for manufacturing a semiconductor device according to item 12 of the application, wherein the forming of the protective layer includes: depositing a first protective layer on the compound semiconductor layer; and depositing a second protective layer on the first protective layer. Layer, wherein the material of the first protective layer is different from the material of the second protective layer. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中形成該第一凹陷和該第二凹陷的步驟包括:在該保護層之上形成一第一圖案化遮罩層;通過該第一圖案化遮罩層的一第一開口蝕刻該保護層,以形成該第一凹陷暴露出該化合物半導體層;移除該第一圖案化遮罩層;在該保護層之上形成一第二圖案化遮罩層;通過該第二圖案化遮罩層的一第二開口蝕刻該保護層,以形成該第二凹陷於該保護層中,且未暴露出該化合物半導體層;以及移除該第二圖案化遮罩層。The method for manufacturing a semiconductor device according to item 11 of the scope of patent application, wherein the step of forming the first recess and the second recess includes: forming a first patterned masking layer on the protective layer; A first opening of a patterned masking layer etches the protection layer to form the first recess to expose the compound semiconductor layer; remove the first patterned masking layer; and form a second layer on the protection layer Patterning the mask layer; etching the protective layer through a second opening of the second patterned mask layer to form the second recess in the protective layer without exposing the compound semiconductor layer; and removing the compound semiconductor layer; and A second patterned masking layer. 如申請專利範圍第11項所述之半導體裝置的製造方法,更包括:在形成該化合物半導體層之後,且在形成該保護層之前,形成一摻雜的化合物半導體區塊,其中該閘極電極形成於該摻雜的化合物半導體區塊之上。The method for manufacturing a semiconductor device according to item 11 of the scope of patent application, further comprising: after forming the compound semiconductor layer and before forming the protective layer, forming a doped compound semiconductor block, wherein the gate electrode Formed on the doped compound semiconductor block. 如申請專利範圍第15項所述之半導體裝置的製造方法,其中該保護層的形成包括:在該化合物半導體層上沉積一第一保護層,以順應性地覆蓋該摻雜的化合物半導體區塊的側壁和上表面;以及在該第一保護層上沉積一第二保護層,其中該第一保護層的材料不同於該第二保護層的材料。The method for manufacturing a semiconductor device according to item 15 of the scope of patent application, wherein the forming of the protective layer includes: depositing a first protective layer on the compound semiconductor layer to conformably cover the doped compound semiconductor block. A sidewall and an upper surface; and depositing a second protective layer on the first protective layer, wherein a material of the first protective layer is different from a material of the second protective layer. 如申請專利範圍第16項所述之半導體裝置的製造方法,更包括:在形成該第二保護層之後,執行一平坦化製程,移除該第二保護層位於該摻雜的化合物半導體區塊正上方的一部分,使得該第一保護層位於該摻雜的化合物半導體區塊正上方的的一水平部分暴露出來。The method for manufacturing a semiconductor device according to item 16 of the scope of patent application, further comprising: after forming the second protective layer, performing a planarization process to remove the second protective layer located in the doped compound semiconductor block A portion directly above, so that a horizontal portion of the first protective layer directly above the doped compound semiconductor block is exposed. 如申請專利範圍第17項所述之半導體裝置的製造方法,其中形成該第一凹陷和該第二凹陷的步驟包括:在該平坦化製程之後,在該第一保護層和該第二保護層之上形成一第三圖案化遮罩層;通過該第三圖案化遮罩層的一第三開口蝕刻該第一保護層之該水平部分,以形成該第一凹陷暴露出該摻雜的化合物半導體區塊;通過該第三圖案化遮罩層的一第四開口蝕刻該第二保護層和該第一保護層,以形成該第二凹陷於該第一保護層和該第二保護層中,且未暴露出該化合物半導體層;以及移除該第三圖案化遮罩層。The method for manufacturing a semiconductor device according to item 17 of the patent application, wherein the step of forming the first recess and the second recess includes: after the planarization process, after the first protective layer and the second protective layer A third patterned masking layer is formed thereon; the horizontal portion of the first protective layer is etched through a third opening of the third patterned masking layer to form the first recess to expose the doped compound Semiconductor block; etching the second protective layer and the first protective layer through a fourth opening of the third patterned masking layer to form the second recess in the first protective layer and the second protective layer And the compound semiconductor layer is not exposed; and the third patterned mask layer is removed. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中形成該第一凹陷和該第二凹陷的步驟更包括形成一第三凹陷於該第二凹陷與該汲極電極之間;其中該導電材料層更填充該第三凹陷;其中在蝕刻該導電材料層之後,該閘極場板具有另一延伸部填充該第三凹陷。The method for manufacturing a semiconductor device according to item 11 of the application, wherein the step of forming the first recess and the second recess further includes forming a third recess between the second recess and the drain electrode; wherein The conductive material layer further fills the third depression; after the conductive material layer is etched, the gate field plate has another extension to fill the third depression.
TW107121298A 2018-06-21 2018-06-21 Semiconductor devices and methods for fabricating the same TWI664727B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107121298A TWI664727B (en) 2018-06-21 2018-06-21 Semiconductor devices and methods for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107121298A TWI664727B (en) 2018-06-21 2018-06-21 Semiconductor devices and methods for fabricating the same

Publications (2)

Publication Number Publication Date
TWI664727B true TWI664727B (en) 2019-07-01
TW202002289A TW202002289A (en) 2020-01-01

Family

ID=68049469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107121298A TWI664727B (en) 2018-06-21 2018-06-21 Semiconductor devices and methods for fabricating the same

Country Status (1)

Country Link
TW (1) TWI664727B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI849920B (en) * 2023-05-22 2024-07-21 世界先進積體電路股份有限公司 High electron mobility transistor and fabrication method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201511261A (en) * 2013-06-09 2015-03-16 Cree Inc Recessed field plate transistor structures
US20150179782A1 (en) * 2013-12-20 2015-06-25 Kabushiki Kaisha Toshiba Field effect transistor
TW201633538A (en) * 2015-03-09 2016-09-16 Toshiba Kk Semiconductor device
TW201703260A (en) * 2015-07-03 2017-01-16 台達電子工業股份有限公司 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201511261A (en) * 2013-06-09 2015-03-16 Cree Inc Recessed field plate transistor structures
US20150179782A1 (en) * 2013-12-20 2015-06-25 Kabushiki Kaisha Toshiba Field effect transistor
TW201633538A (en) * 2015-03-09 2016-09-16 Toshiba Kk Semiconductor device
TW201703260A (en) * 2015-07-03 2017-01-16 台達電子工業股份有限公司 Semiconductor device

Also Published As

Publication number Publication date
TW202002289A (en) 2020-01-01

Similar Documents

Publication Publication Date Title
US11127847B2 (en) Semiconductor devices having a gate field plate including an extension portion and methods for fabricating the semiconductor device
KR101716049B1 (en) Semiconductor device and method for fabricating the same
US11398546B2 (en) Semiconductor devices and methods for fabricating the same
US8507920B2 (en) Semiconductor structure and method of forming the same
US10971579B2 (en) Semiconductor device and fabrication method thereof
US10707322B2 (en) Semiconductor devices and methods for fabricating the same
CN111312808B (en) Semiconductor device and method for manufacturing the same
TWI676216B (en) Semiconductor devices and methods for fabricating the same
CN110690275B (en) Semiconductor device and method for manufacturing the same
CN111199883A (en) HEMT transistor with adjusted gate-source distance and method of fabricating the same
US11688800B2 (en) High electron mobility transistor and method for fabricating the same
TWI673868B (en) Semiconductor devices and methods for fabricating the same
TWI693716B (en) Semiconductor devices and methods for fabricating the same
TWI768270B (en) Semiconductor structures and the method for forming the same
TWI664727B (en) Semiconductor devices and methods for fabricating the same
US10644128B1 (en) Semiconductor devices with reduced channel resistance and methods for fabricating the same
US11127846B2 (en) High electron mobility transistor devices and methods for forming the same
TWI686873B (en) Semiconductor devices and methods for fabricating the same
TWI726316B (en) High electron mobility transistor devices and methods for forming the same
TWI747048B (en) Semiconductor structure and methods for manufacturing the same
US11049799B1 (en) Semiconductor structure and method for forming the same
CN111987155A (en) High electron mobility transistor device and method of manufacturing the same
CN111987141A (en) Semiconductor device and method for manufacturing the same
CN110581163B (en) Semiconductor device and method for manufacturing the same
CN111276538B (en) Semiconductor device and method for manufacturing the same