TWI617198B - Imaging systems with clear filter pixels - Google Patents

Imaging systems with clear filter pixels Download PDF

Info

Publication number
TWI617198B
TWI617198B TW106125422A TW106125422A TWI617198B TW I617198 B TWI617198 B TW I617198B TW 106125422 A TW106125422 A TW 106125422A TW 106125422 A TW106125422 A TW 106125422A TW I617198 B TWI617198 B TW I617198B
Authority
TW
Taiwan
Prior art keywords
image
image signal
processing circuit
signal
signals
Prior art date
Application number
TW106125422A
Other languages
Chinese (zh)
Other versions
TW201737703A (en
Inventor
米林納馬可
奇倫布萊恩
Original Assignee
開曼群島商普廷數碼影像控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 開曼群島商普廷數碼影像控股公司 filed Critical 開曼群島商普廷數碼影像控股公司
Priority to TW106125422A priority Critical patent/TWI617198B/en
Publication of TW201737703A publication Critical patent/TW201737703A/en
Application granted granted Critical
Publication of TWI617198B publication Critical patent/TWI617198B/en

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

一種影像感測器可具有佈置在彩色濾波器單位單元中之影像感測器像素之一陣列,每一單元具有產生紅影像信號之一個紅影像像素、產生藍影像信號之一個藍影像像素,及產生白影像信號之兩個透明影像感測器像素。該影像感測器可耦合至處理電路,該處理電路對該等紅影像信號、該等藍影像信號及該等白影像信號執行濾波操作以增加該等影像信號中的雜訊相關,此減少將一彩色校正矩陣應用於該等影像信號時的雜訊放大。該處理電路可自該白影像信號提取一綠影像信號。該處理電路可計算包括該等紅影像信號、該等藍影像信號、該等白影像信號及該等綠影像信號一之線性組合之一定標值。該定標值可應用於該等紅影像信號、該等藍影像信號及該等綠影像信號以產生具有改良之影像品質之經校正的影像信號。An image sensor may have an array of image sensor pixels arranged in a unit unit of a color filter, each unit having a red image pixel for generating a red image signal, a blue image pixel for generating a blue image signal, and Two transparent image sensor pixels that produce a white image signal. The image sensor can be coupled to a processing circuit that performs filtering operations on the red image signals, the blue image signals, and the white image signals to increase noise correlation in the image signals. A color correction matrix is applied to the noise amplification of the image signals. The processing circuit can extract a green image signal from the white image signal. The processing circuit can calculate a certain value including a linear combination of the red image signals, the blue image signals, the white image signals, and the green image signals. The scaling value can be applied to the red image signals, the blue image signals, and the green image signals to produce a corrected image signal having improved image quality.

Description

具有透明濾波器像素之成像系統Imaging system with transparent filter pixels

本發明大體係關於成像裝置,且更特定而言係關於具有透明影像像素之成像裝置。The present invention is directed to imaging devices, and more particularly to imaging devices having transparent image pixels.

影像感測器普遍用於諸如蜂巢式電話、相機及電腦之電子裝置中來俘獲影像。在典型佈置中,電子裝置具備佈置成像素列及像素行之影像像素陣列。電路通常耦合至每一像素行用於自影像像素讀出影像信號。 習知成像系統採用單一影像感測器,其中可見光譜藉由佈置成拜耳馬賽克圖案(Bayer mosaic pattern)之紅、綠及藍(RGB)影像像素取樣。拜耳馬賽克圖案由二乘二影像像素之重複單元組成,其中兩個綠像素彼此對角相對,且其他隅角為紅及藍。然而,拜耳圖案不能經由較小影像像素大小容易地實現影像感測器之進一步小型化,此係因為自影像像素俘獲之影像信號中之信雜比(SNR)具有侷限性。 一種改良SNR之手段係藉由增加低光級下之曝光來增加可用影像信號,其中SNR限制了影像品質。一種習知方法係使用相減濾波器,其中,舉例而言,紅、綠及藍影像像素被青、洋紅及黃影像像素代替。然而,此等信號通常必須轉換為RGB或某一等效輸出影像信號顏色以能夠驅動大多數習知影像顯示器。此變換通常涉及使用彩色校正矩陣(CCM)修改所俘獲之影像信號,此可放大雜訊,使得曝光增加之效應受到損害。 因此,將需要能夠提供具有俘獲及處理影像信號之改良之手段的成像裝置。Image sensors are commonly used in electronic devices such as cellular phones, cameras, and computers to capture images. In a typical arrangement, the electronic device has an array of image pixels arranged in a column of pixels and rows of pixels. A circuit is typically coupled to each pixel row for reading image signals from the image pixels. Conventional imaging systems employ a single image sensor in which the visible spectrum is sampled by red, green, and blue (RGB) image pixels arranged in a Bayer mosaic pattern. The Bayer mosaic pattern consists of repeating units of two by two image pixels, two of which are diagonally opposite each other, and the other corners are red and blue. However, the Bayer pattern cannot easily achieve further miniaturization of the image sensor via a smaller image pixel size because of the limitations in the signal-to-noise ratio (SNR) in the image signal captured from the image pixels. One way to improve SNR is to increase the available image signal by increasing the exposure at low light levels, where SNR limits image quality. One conventional method uses a subtraction filter in which, for example, red, green, and blue image pixels are replaced by cyan, magenta, and yellow image pixels. However, such signals typically must be converted to RGB or some equivalent output image signal color to be capable of driving most conventional image displays. This transformation typically involves the use of a color correction matrix (CCM) to modify the captured image signal, which amplifies the noise so that the effects of increased exposure are compromised. Accordingly, there will be a need for an imaging device that provides improved means of capturing and processing image signals.

本申請案主張2013年1月8日申請之美國專利申請案第13/736,768號及2012年3月19日申請之美國臨時專利申請案第61/612,819號之權利,該等專利申請案之全文特此以引用之方式併入本文中。 諸如數位相機、電腦、蜂巢式電話及其他電子裝置之電子裝置包括聚集入射光以俘獲影像之影像感測器。該影像感測器可包括影像像素之陣列。影像感測器中之像素可包括將入射光轉換為影像信號之諸如光電二極體之光敏元件。影像感測器可具有任何數目個像素(例如,數百或數千或更多)。典型影像感測器可例如具有數百或數千或數百萬像素(例如,兆像素)。影像感測器可包括控制電路,諸如用於操作影像像素之電路,及用於讀出對應於光敏元件產生之電荷的影像信號之讀出電路。讀出電路可包括耦合至像素之每一行之可選擇讀出電路,其可經啟用或停用以減少裝置中之功率消耗並改良像素讀出操作。 圖1為使用影像感測器來俘獲影像之說明性電子裝置之圖。圖1之電子裝置10可為諸如相機、蜂巢式電話、攝像機或俘獲數位影像資料之其他成像裝置之攜帶型電子裝置。相機模組12可用於將入射光轉換為數位影像資料。相機模組12可包括一或多個透鏡14,及一或多個對應之影像感測器16。在影像俘獲操作期間,來自場景之光可藉由透鏡14聚焦至影像感測器16上。影像感測器16可包括用於將類比像素資料轉換為待提供至處理電路18之對應數位影像資料之電路。視需要,相機模組12可具備透鏡14之陣列及對應之影像感測器16之陣列。 處理電路18可包括一或多個積體電路(例如,影像處理電路、微處理器、諸如隨機存取記憶體及非揮發性記憶體之儲存裝置,等等),且可使用與相機模組12分離之組件及/或形成相機模組12之一部分之組件(例如,形成包括影像感測器16之積體電路或模組12內之與影像感測器16相關聯的積體電路之一部分之電路)來實施。已由相機模組12俘獲之影像資料可使用處理電路18來處理及儲存。經處理之影像資料可視需要使用耦合至處理電路18之有線及/或無線通信路徑提供至外部設備(例如,電腦或其他裝置)。 如圖2所示,影像感測器16可包括含有影像感測器像素190(有時稱為影像像素190)之像素陣列200及控制及處理電路122。陣列200可含有例如數百或數千列及行之影像感測器像素190。控制電路122可耦合至列解碼器電路124及行解碼器電路126。列解碼器電路124可接收來自控制電路122之列地址,且將諸如重設、列選擇、轉移及讀取控制信號之對應列控制信號經由控制路徑128供應至像素190。諸如行線40之一或多個導電線可耦合至陣列200中之像素190之每一行。行線40可用於自像素190讀出影像信號,且用於將偏壓信號(例如,偏壓電流或偏電壓)供應至像素190。在像素讀出操作期間,陣列200中之像素列可使用列解碼器電路124來選擇,且與該像素列中之影像像素190相關聯之影像資料可沿著行線40讀出。 行解碼器電路126可包括取樣與保持電路、放大器電路、類比/數位轉換電路、偏壓電路、行記憶體、用於選擇性地啟用或停用行電路之鎖存器電路,或耦合至陣列200中之像素之一行或一行以上用於操作像素190且用於自像素190讀出影像信號之其他電路。行解碼器電路126可用於選擇性地在行線40之選定子集上將功率提供至行電路。諸如與行解碼器電路126相關聯之信號處理電路(例如,取樣與保持電路,及類比/數位轉換電路)的讀出電路可用於針對選定像素行中之像素在路徑210上將數位影像資料供應至處理器18(圖1)。 諸如影像像素190之影像感測器像素習知地具備彩色濾波器陣列,其允許單一影像感測器使用佈置成拜耳馬賽克圖案之對應的紅、綠及藍影像感測器像素對紅、綠及藍(RGB)光進行取樣。拜耳馬賽克圖案由二乘二影像像素之重複單位單元組成,其中兩個綠影像像素彼此對角相對且鄰近於同藍影像像素對角相對之紅影像像素。然而,與拜耳馬賽克圖案相關聯之信雜比(SNR)之侷限性使得難以減小諸如影像感測器16之影像感測器的大小。因此,可能需要能夠提供具有俘獲影像之改良手段的影像感測器。 在本文中有時作為實例論述之一個適宜實例中,拜耳圖案中之綠像素由透明影像像素代替,如圖3所示。如圖3所示,影像像素190之單位單元192可由兩個透明影像像素(本文中有時稱為白(W)影像像素)形成,該兩個透明影像像素彼此對角相對且鄰近於同藍(B)影像像素對角相對之紅(R)影像像素。單位單元192中之白影像像素190可利用視覺上透明之彩色濾波器形成,該視覺上透明之彩色濾波器發射可見光譜上之光(例如,白像素190可俘獲白光)。透明影像像素190可具有由形成透明彩色濾波器之材料及/或形成影像感測器像素之材料(例如,矽)界定的自然敏感度。透明影像像素190之敏感度可視需要經調整以藉由使用諸如顏料之光吸收劑實現較好之顏色再現及/或雜訊特性。單位單元192可在影像像素陣列200上重複以形成紅、白及藍影像像素190之馬賽克。以此方式,紅影像像素可回應於紅光而產生紅影像信號,藍影像像素可回應於藍光而產生藍影像信號,且白影像像素可回應於白光而產生白影像信號。白影像信號亦可由白影像像素回應於紅、藍及/或綠光之任何適宜之組合而產生。 圖3之單位單元192僅為說明性的。視需要,可形成鄰近於單位單元192中之對角相對的白影像像素之任何顏色之影像像素。舉例而言,單位單元194可由兩個白影像像素190界定,該兩個白影像像素190形成為彼此對角相對且鄰近於同綠(G)影像像素對角相對之紅影像像素,如圖4所示。在又一適宜佈置中,單位單元196可由兩個白影像像素190界定,該兩個白影像像素190形成為彼此對角相對且鄰近於同綠影像像素對角相對之藍影像像素,如圖5所示。 白影像像素W可有助於藉由與具有較窄彩色濾波器(例如,發射可見光譜之子集上的光之濾波器)之影像像素(諸如,綠影像像素)相比聚集額外光來增加影像像素190俘獲之影像信號之信雜比(SNR)。白影像像素W可尤其改良低光條件下之SNR,在低光條件下SNR有時可能會限制影像之影像品質。自具有白影像像素(例如,如圖3至圖5所示)之影像像素陣列200聚集之影像信號可轉換為待與用於驅動大多數影像顯示器(例如,顯示屏、監視器等)之電路及軟體相容之紅、綠及藍影像信號。此轉換通常涉及使用彩色校正矩陣(CCM)修改所俘獲之影像信號。若不注意,則彩色校正操作可能不合需要地放大雜訊。 在一個適宜佈置中,CCM產生之雜訊可藉由在將CCM應用於所聚集之影像信號之前實施強去雜訊(例如,色度去雜訊)來減少。色度去雜訊可由處理電路18(圖1)藉由將色度濾波器應用於影像像素190所聚集之影像信號來執行。色度濾波器可用以增加來自不同顏色之影像像素之影像信號(例如,紅、白及藍影像信號)之間的雜訊相關。增加來自不同顏色之影像像素之影像信號之間的雜訊相關可減少CCM進行之雜訊放大,從而產生改良之最終影像品質。在另一佈置中,由CCM放大之雜訊可藉由將所謂之「點濾波器」應用於所俘獲之影像信號來補償。點濾波器可使用高保真白影像信號來增強使用CCM產生之紅、綠及藍影像信號之品質。視需要,影像感測器16可實施色度去雜訊及點濾波器兩者來減少CCM進行之雜訊放大以產生最終影像中之改良之亮度效能。 圖6展示可由諸如圖1之處理電路18的處理電路執行以處理由諸如像素陣列200之經濾波像素陣列(例如,無綠影像像素之像素陣列)聚集之影像信號的說明性步驟之流程圖。圖6之步驟可例如由處理電路18執行以減少使用具有諸如圖3至圖5所示之白影像像素之單位單元俘獲的影像信號中之雜訊。 在步驟100處,影像感測器16可自場景俘獲影像信號。影像感測器16俘獲之影像信號可包括回應於隨白像素聚集之光而產生之白影像信號。視需要,影像信號亦可包括紅影像信號、藍影像信號或綠影像信號中之一或多者,此取決於所使用之影像像素之組態(例如,若使用圖3之單位單元192,則影像信號可包括紅、白及藍影像信號;若使用圖4之單位單元194,則影像信號可包括紅、白及綠影像信號,等等)。在圖6之實例中,可俘獲紅(R')、白(W')及藍(B')影像信號。紅影像信號可具有第一光譜回應值(作為紅影像感測器像素接收之光之頻率之函數之整合信號功率位準)、藍影像信號可具有第二光譜回應值,且白影像信號可具有例如大於第一光譜回應值與第二光譜回應值之和的百分之七十五之第三光譜回應值(例如,在標準CIE發光體E之情況下,白影像信號具有可見光譜上之針對相等能量輻射體之廣敏感度)。影像信號可具有對應於每一影像像素190俘獲之光的影像值(例如,紅影像信號可包括紅影像值、藍影像信號可包括藍影像值,等等)。所俘獲之影像信號可傳達至處理電路18以進行影像處理。 在步驟102處,可對所俘獲之影像信號執行白平衡操作。在圖6之實例中,可產生白平衡紅影像信號(R)、白平衡白影像信號(W)及白平衡藍影像信號(B)。 在步驟104處,處理電路18可對白平衡影像信號去馬賽克,且應用色度濾波器以自白平衡影像信號提取紅、白及藍影像資料。可應用色度濾波器以對白平衡影像信號進行色度去雜訊。處理電路18可(例如)對影像信號去馬賽克,且同時、循序地或以散置方式應用色度濾波器。此對影像信號應用色度濾波器及去馬賽克的過程可在本文中稱為「色度去馬賽克」。色度濾波器可增加每一顏色之影像信號之間的雜訊相關(例如,紅、白及藍通道中之雜訊波動可以相關方式一起增加或減小)。舉例而言,處理電路18可將紅、白及綠影像信號之間的相關雜訊增加至達與紅、白及綠影像信號相關聯之所有雜訊的70%或更多。 藉由增加雜訊相關,處理電路18可減少應用CCM於影像信號時產生之雜訊放大的量。對影像信號進行色度去馬賽克可允許自可用彩色影像信號判定遺失的彩色影像信號(例如,未由影像像素產生之顏色的影像信號)。在此實例中,可能自所聚集之影像信號遺失綠影像信號,此係因為單位單元192中不使用綠彩色濾波器(圖3)。可使用白、紅及藍影像信號(例如,藉由執行減法運算)來判定綠影像信號。一般而言,可使用可用彩色影像信號來判定原色加色(例如,紅、綠及藍)之任一者。可能需要產生紅、綠及藍影像信號,而不管影像像素陣列200上使用之彩色濾波器如何,此係因為顯示器系統通常使用紅、綠及藍像素來顯示影像。 在步驟106處,處理電路18可將彩色校正矩陣(CCM)應用於紅影像資料、白影像資料及藍影像資料。CCM可(例如)自白影像資料提取綠影像資料以產生紅、綠及藍影像資料。舉例而言,CCM可將影像資料轉換為標準紅、標準綠及標準藍影像資料(有時統稱為線性sRGB影像資料或簡稱為sRGB影像資料)。在另一適宜佈置中,CCM可自紅及/或藍影像資料提取綠影像資料。視需要,可對線性sRGB影像資料執行伽馬校正過程。在伽馬校正之後,sRGB影像資料可用於使用影像顯示裝置來顯示。在一些情況下,可能需要提供額外雜訊減小(例如,藉由將點濾波器應用於sRGB影像資料)以進一步緩解由於將CCM應用於紅、白及藍影像資料而產生的雜訊放大。處理電路18可保存白影像資料,用於可選步驟108期間sRGB影像資料之進一步處理。 在可選步驟108處,處理電路18可將點濾波器應用於影像資料(例如,應用於在將CCM應用於紅、白及藍影像資料之後產生之sRGB影像資料)。點濾波器可對sRGB影像資料操作以產生經校正之sRGB資料。點濾波器可用以進一步減少由於將CCM應用於紅、白及藍影像資料而引起之雜訊放大。當使用顯示系統顯示時,經校正之sRGB資料藉此提供與在應用點濾波器之前的sRGB資料相比更佳之影像品質(例如,更佳之亮度效能)。 圖7展示可由處理電路18執行以對自影像像素陣列200接收之影像信號去馬賽克及濾波的說明性步驟之流程圖。圖7之步驟可例如由處理電路18執行以對影像像素190聚集之紅、白及藍影像信號執行色度去馬賽克,從而產生紅、白及藍影像資料中之充分雜訊相關。圖7之步驟可例如作為圖6之步驟104之一部分執行。 在步驟110處,處理電路18可對白影像信號去馬賽克以產生白影像資料(例如,每一影像像素之白影像值)。在另一適宜佈置中,可針對可用影像像素190之組合產生白影像值。白影像值可用於計算使用紅及藍影像信號之不同值以增加紅、白及藍影像信號之間的雜訊相關。 在步驟112處,處理電路18可藉由針對每一像素自紅影像值減去白影像值來產生紅差值。處理電路18可藉由自藍影像值減去白影像值來產生藍差值。紅差值可例如針對每一紅影像像素計算,且藍差值可針對影像像素陣列200之每一藍影像像素計算。 在步驟114處,處理電路18可使用色度濾波器對紅差值及藍差值濾波。可例如藉由執行影像像素190之核上計算之差值之加權平均(例如,藉由執行步驟112計算之差值之群組之加權平均)而將色度濾波器應用於紅及藍差值。影像像素之核可界定為上面正執行色度濾波之影像像素陣列200中的影像像素之子集(例如,核可包括影像像素陣列200中之影像像素中之一些或全部)。舉例而言,當使用5像素乘5像素核時,在執行色度濾波時針對影像像素陣列200中之影像像素190的5像素乘5像素子集計算差值之加權平均(例如,使用影像像素陣列200中之25個環繞影像像素處之差值針對給定影像像素190計算差值之加權平均)。一般而言,可使用具有任何所要大小之核。 在步驟116處,可將白影像值加上經色度濾波之紅差值及經色度濾波之藍差值以分別產生經色度濾波之紅影像值及經色度濾波之藍影像值。 在步驟118處,處理電路18可對經色度濾波之紅影像值及經色度濾波之藍影像值去馬賽克以產生具有增加之相關雜訊的紅影像資料及藍影像資料(例如,已進行色度去馬賽克之紅及藍影像資料)。經去馬賽克之白影像資料及經色度去馬賽克之紅及藍影像資料可接著使用CCM操作以產生如上文結合圖6之步驟106描述的標準紅、標準綠及標準藍(sRGB)影像資料。 圖7僅為說明性的。視需要,處理電路18可在產生紅及藍差值之前對經色度濾波之紅及藍影像值去馬賽克(例如,處理電路18可在步驟112之前執行步驟118)。 若在影像像素190之足夠大之核上執行差值之色度濾波,則來自紅及藍影像信號之最小雜訊可在色度濾波之後(例如,執行步驟114之後)保留在紅及藍差值中。舉例而言,若核具有15像素乘15像素或更大之大小,則色度濾波可將紅及藍經色度濾波之差值中之雜訊減小至可忽略之位準。視需要,影像像素190之核可包括位於多個影像像素陣列200中之影像像素、位於多個影像感測器16中之影像像素,及/或多個時間框期間使用(例如,以允許時間去雜訊)之影像像素。當將白影像值加上經色度濾波之差值時,白影像值中之雜訊可支配差值中之雜訊。以此方式,步驟116處產生之紅及藍影像資料中之雜訊可大體等於白影像資料中之雜訊。紅及藍影像資料中之雜訊可藉此高度相關,從而產生CCM引起之減小之雜訊放大。當針對影像像素陣列200使用拜耳圖案時,此過程可產生CCM引起之較少雜訊放大。 在步驟106(圖6)處,CCM可對紅、白及藍影像資料操作以產生線性sRGB資料。舉例而言,CCM可自白影像資料提取資訊以產生標準綠資料。白影像資料(例如,步驟104處產生之經去馬賽克之白影像資料)可在利用CCM對影像資料操作之後保留。sRGB影像資料可在諸如亮度-色度-色調(LCH)空間之三維空間中表示。在LCH空間中,亮度通道(L)可與影像感測器16俘獲之影像之亮度相關,且色度通道(C)可與影像之顏色飽和度相關,且色調通道可與影像之特定顏色(例如,紅、紫、黃、綠等)相關。所顯示影像中之雜訊及清晰度之感知可受亮度通道中之雜訊及信號變化影響。影像資料中之SNR可藉由將sRGB資料變換為LCH資料,用白影像值(其歸因於白影像信號之廣頻譜而與總體影像亮度較好地相關)代替亮度通道中之亮度值,及將LCH資料變換回至sRGB資料來改良。以此方式,CCM引起之雜訊放大可在亮度通道中被抑制,其中當觀察所顯示影像時雜訊特別可被觀察者注意到。 如上文結合圖6之可選步驟108所描述,點濾波器可應用於線性sRGB資料以使用白影像資料產生經校正之sRGB資料。點濾波器可在無來自鄰近影像像素190之資訊之情況下對單一影像像素190操作,而色度去馬賽克當應用於單一影像像素190處之影像信號時可需要來自多個影像像素(例如,影像像素之核)之影像信號(例如,差值)。舉例而言,點濾波器可針對每一影像像素對標準紅值、標準綠值及標準藍值操作。為對sRGB資料執行點濾波器操作,處理電路18可使用紅影像資料、白影像資料及藍影像資料(例如,在應用CCM之前之影像資料)來計算原始(原本)亮度信號。原始亮度信號可為白影像資料、紅影像資料及藍影像資料之線性組合(例如,加權和)。視需要,白影像資料可在線性組合中比紅及藍影像資料更重程度地加權。處理電路18可計算作為標準紅、標準綠及標準藍影像資料之線性組合的所暗示亮度信號(例如,在將CCM應用於影像資料之後)。視需要,用於計算所暗示亮度信號之線性組合中之權重可大體類似於用於計算原始亮度信號之權重。該等權重可經調整以修改點濾波器之「強度」(例如,點濾波器變換或校正sRGB資料之程度)。 處理電路18可在最簡單情況下藉由將原始亮度信號除以所暗示亮度信號來產生定標值(例如,待應用於經彩色校正之影像值之定標因子)。視需要,定標因子可包括分子及分母。定標值之分子及/或分母可包括原始亮度信號及所暗示亮度信號之加權和。定標值可包括可變化以調整點濾波器之強度的可調整加權參數(例如,該等加權參數可持續變化以將點濾波器之強度自零調整為完全強度)。為將點濾波器應用於sRGB資料(例如,應用於標準紅、綠及藍影像資料),處理電路18可將sRGB資料乘以定標值以產生經校正之sRGB資料。舉例而言,處理電路18可將標準紅影像資料乘以定標值,將標準綠影像資料乘以定標值,等等。視需要,經校正之sRGB資料可具有自應用點濾波器之前(例如,在將經校正之sRGB資料轉換至LCH空間後)近似保留之色調及色度通道。經校正之sRGB資料可具有歸因於白影像信號之繼承之保真度之改良的雜訊及/或清晰度。 在最簡單情況下,原始亮度信號可藉由白影像資料來近似。圖8展示可由處理電路18執行以在將CCM應用於紅、白及藍影像資料之後將點濾波器(在最簡單情況下)應用於sRGB資料的說明性步驟之流程圖(作為一實例)。處理電路18可例如針對影像像素陣列200中之每一影像像素190將點濾波器應用於sRGB資料。圖8之步驟可例如作為圖6之步驟108之一部分執行。 在步驟130處,處理電路18可藉由組合紅、綠、藍影像資料(例如,在應用CCM之後)針對給定影像像素190產生所暗示之亮度值(例如,LCH空間中之亮度值)。所暗示之亮度值可例如計算作為紅、綠及藍影像資料之線性組合。 在步驟132處,處理電路18可藉由將白影像值除以所暗示之亮度值來產生定標值。視需要,可藉由將白影像值除以所暗示之亮度值與白影像值之加權和來產生定標因子。定標因子可包括可變化以調整點濾波器之強度的可調整加權參數(例如,該等加權參數可持續變化以將點濾波器之強度自零調整為完全強度)。定標值可例如為對sRGB資料操作之運算子。 在步驟134處,處理電路18可將sRGB資料乘以定標值以產生經校正之sRGB資料(例如,經校正之標準紅、綠及藍影像資料)。舉例而言,處理電路18可將標準紅影像資料乘以定標值,將標準綠影像資料乘以定標值,等等。經校正之sRGB資料可視需要提供至影像顯示器。經校正之sRGB資料可具有與應用點濾波器之前的sRGB資料相比改良之雜訊及/或清晰度。 圖6至圖8之實例僅為說明性的。任何所要彩色濾波器可結合圖3至圖5所示之白色濾波器使用以獲得彩色影像信號。可使用所要彩色濾波器之任何組合(例如,紅色濾波器、綠色濾波器、青色濾波器、紅外濾波器、紫外濾波器、藍色濾波器、黃色濾波器、洋紅濾波器、紫色濾波器等之任何組合)。視需要,任何其他適宜之三維空間可用於執行點濾波器操作。 視需要,可使用形成在任何數目個影像感測器16上之任何數目個影像像素陣列200來俘獲影像。所使用之每一影像像素陣列可例如用於不同顏色之影像信號。舉例而言,第一影像像素陣列可具有用於產生白影像信號之透明濾波器,第二影像像素陣列可具有用於產生紅影像信號之紅色濾波器,且第三影像像素陣列可具有用於產生藍影像信號之藍色濾波器。來自此等陣列之每一者之影像信號可進行色度去馬賽克及/或使用點濾波器操作。每一影像像素陣列可視需要形成在裝置10中之諸如影像感測器16之等不同影像感測器上(例如,多個影像感測器16可形成在裝置10中)。此實施例可例如允許較短相機焦距及較薄相機模組。 圖9以簡化形式展示典型處理器系統300,諸如數位相機,其包括成像裝置2000(例如,諸如圖1至圖8之採用透明彩色濾波器及用於上文描述之操作之技術之成像感測器16的成像裝置2000)。處理器系統300為具有可包括成像裝置2000之數位電路的例示性系統。在不限定之情況下,此系統可包括電腦系統、靜態或視訊攝影機系統、掃描儀、機器視覺、車輛導航、視訊電話、監督系統、自動聚焦系統、星象跟蹤儀系統、運動偵測系統、影像穩定系統,及採用成像裝置之其他系統。 處理器系統300通常包括:透鏡396,其用於當按壓快門釋放按鈕397時將影像聚焦在裝置2000之像素陣列200上;中央處理單元(CPU) 395,例如微處理器,其控制相機及一或多個影像流功能,其經由匯流排393與一或多個輸入/輸出(I/O)裝置391通信。成像裝置2000亦經由匯流排393與CPU 395通信。系統300亦包括隨機存取記憶體(RAM) 392,且可包括可移除式記憶體394,諸如快閃記憶體,其亦經由匯流排393與CPU 395通信。成像裝置2000可在具有或不具有單一積體電路上或不同晶片上之記憶體儲存之情況下與CPU組合。儘管匯流排393說明為單一匯流排,但其可為用於將系統組件互連之一或多個匯流排或橋接器或其他通信路徑。 已描述各種實施例,其說明具有透明影像像素濾波器及用於減少影像信號產生之影像信號中的雜訊之影像處理技術(例如,色度去馬賽克、應用點濾波器等)之影像感測器。 一種影像感測器可具有影像感測器像素之陣列,該等影像感測器像素包括回應於紅光而產生紅影像信號之紅影像像素、回應於藍光而產生藍影像信號之藍影像像素,及回應於至少紅光、綠光及藍光(例如,白光)而產生白影像信號之透明影像感測器像素。影像像素可佈置在像素單位單元之陣列中,每一像素單位單元包括若干不同顏色之影像像素。影像感測器可耦合至處理電路,該處理電路對紅、藍及白影像信號執行濾波操作以增加與紅、藍及白影像信號相關聯之雜訊相關。該處理電路可針對給定影像像素例如藉由產生由影像像素陣列中之至少25個影像像素產生之影像信號之加權和來執行濾波操作。加權和可包括可調整權重(例如,基於觀察至之影像特徵調整之權重)。可針對在多個時間框期間或自多個影像感測器俘獲之影像信號產生加權和。藉由產生多個時間框之加權和,處理電路可減小影像像素之核之大小,同時成功減少影像信號雜訊。 此實例僅為例示性的。一般而言,影像感測器像素之陣列可包括任何所要顏色之影像感測器像素(例如,回應於任何顏色之光之影像感測器像素)。舉例而言,影像感測器像素之陣列可包括回應於第一顏色之光之影像感測器像素之第一群組、回應於第二顏色之光之影像感測器像素之第二群組,及回應於第三顏色之光(例如,紅、藍及白光)之影像感測器像素之第三群組。第一影像信號可具有第一光譜回應水準(例如,作為影像感測器像素之第一群組所接收之光之頻率之函數的整合信號功率位準),第二影像信號可具有第二光譜回應水準(例如,作為影像感測器像素之第二群組所接收之光之頻率之函數的整合信號功率位準),且第三影像信號可具有第三光譜回應水準(例如,作為影像感測器像素之第三群組所接收之光之頻率之函數的整合信號功率位準)。第三影像信號可具有大於第一光譜回應水準與第二光譜回應水準的光譜回應水準(例如,第三光譜回應水準可大於第一光譜回應水準與第二光譜回應水準之和的百分之75)。換言之,可回應於比第一影像信號及第二影像信號廣之範圍的光頻率而俘獲第三影像信號。 處理電路可視需要使用第一影像信號、第二影像信號及第三影像信號來產生估計之亮度值(例如,LCH空間中之亮度值)。處理電路可藉由將第一影像信號、第二影像信號及第三影像信號變換為導出之三色空間(例如,線性sRGB空間、CIE空間、XYZ空間、拜耳空間等)來產生經變換之第一影像信號、第二影像信號及第三影像信號。處理電路可(例如)藉由對第一影像信號、第二影像信號及第三影像信號執行線性組合來產生經變換之第一影像信號、第二影像信號及第三影像信號。處理電路可藉由組合經變換之第一影像信號、經變換之第二影像信號及經變換之第三影像信號來產生導出之亮度值(例如,LCH空間中之亮度值)。處理電路可比較導出之亮度值與所估計之亮度值,且修改經變換之第一影像信號、經變換之第二影像信號及經變換之第三影像信號,使得導出之亮度值接近所估計之亮度值(例如,使得導出之亮度值與所估計之亮度值充分匹配)。 處理電路可視需要使用具有處理電路之影像感測器來處理包括第一顏色之第一影像信號、不同於第一顏色之第二顏色之第二影像信號及白影像信號之影像資料。處理電路可使用白影像信號來產生不同於第一顏色及第二顏色之第三顏色的第三影像信號。處理電路可將第一影像信號、第二影像信號及第三影像信號組合以形成導出之亮度值,且可自第一顏色影像信號、第二顏色影像信號及白影像信號計算所估計之亮度值。處理電路可藉由將白影像信號與第一影像信號、第二影像信號及第三影像信號組合來形成導出之亮度值。 處理電路可使用導出之亮度值及所估計之亮度值來修改第一影像信號、第二影像信號及第三影像信號。舉例而言,處理電路可基於導出之亮度值及所估計之亮度值來計算定標值,且可將第一影像信號、第二影像信號及第三影像信號與所產生之定標值相乘。處理電路可組合第一影像信號、第二影像信號及第三影像信號以藉由使用加權因子來計算第一影像信號、第二影像信號及第三影像信號之線性組合以形成導出之亮度值。 處理電路可視需要對所俘獲之影像信號執行無限脈衝回應(IIR)濾波。處理電路可藉由基於影像像素190俘獲之影像信號之特性調整應用於所俘獲之影像信號的濾波器(例如,如結合圖6至圖8描述之濾波器)來執行IIR濾波。執行IIR濾波可增加處理電路處理所俘獲之影像信號之效率。 處理電路可視需要對紅、藍及白影像信號執行白平衡操作。處理電路可將彩色校正矩陣應用於白影像信號以自每一白影像信號提取諸如綠影像信號之不同顏色之影像信號。處理電路可組合紅影像信號、藍影像信號、綠影像信號及白影像信號以形成亮度值(例如,藉由計算紅、藍、綠及白影像信號之線性組合或加權和)。處理電路可將白影像信號除以亮度值以產生定標值。處理電路可藉由將紅、綠及藍影像信號乘以定標值來修改紅、綠及藍影像信號。定標值可充當在對紅、綠及藍影像信號操作時之點濾波器。視需要,可使用任何顏色之影像像素與白影像信號組合。視需要,處理電路可對來自多個影像像素陣列、多個影像感測器上之影像像素陣列及/或多個時間框期間俘獲之影像信號之影像信號執行此等操作。 可在一系統中實施透明影像像素及相關聯之濾波技術,該系統亦包括中央處理單元、記憶體、輸入-輸出電路,及成像裝置,該成像裝置進一步包括像素陣列、用於將光聚焦至像素陣列上之透鏡,及資料轉換電路。 根據一實施例,提供一種成像系統,其包括:具有影像感測器像素陣列之影像感測器,其中該影像感測器像素陣列包括經組態以回應於紅光產生紅影像信號之紅影像感測器像素、經組態以回應於藍光產生藍影像信號之藍影像感測器像素,及經組態以回應於至少紅光、綠光及藍光產生白影像信號之透明影像感測器像素;及處理電路,其經組態以對紅影像信號、藍影像信號及白影像信號執行濾波操作,此增加與紅影像信號、藍影像信號及白影像信號相關聯之雜訊相關。 根據另一實施例,處理電路經組態以將與紅影像信號、藍影像信號及白影像信號相關聯之雜訊相關增加至大於與紅影像信號、藍影像信號及白影像信號相關聯之所有雜訊的百分之70。 根據另一實施例,處理電路經組態以藉由針對給定顏色之每一影像感測器像素產生由至少25個影像感測器像素產生之影像信號之加權和來執行濾波操作。 根據另一實施例,處理電路經組態以對紅影像信號、藍影像信號及白影像信號執行白平衡操作。 根據另一實施例,處理電路經組態以將彩色校正矩陣應用於白影像信號,其中該彩色校正矩陣自每一白影像信號提取綠影像信號。 根據另一實施例,影像感測器進一步包括額外影像感測器像素陣列。 根據另一實施例,成像系統進一步包括具有至少一個影像感測器像素陣列之額外影像感測器。 根據一實施例,提供一種使用具有處理電路之影像感測器處理影像資料的方法,該影像資料包括第一顏色之第一影像信號、不同於第一顏色之第二顏色之第二影像信號,及白影像信號,該方法包括:利用處理電路,使用白影像信號產生不同於第一顏色及第二顏色之第三顏色的第三影像信號;利用處理電路,組合第一影像信號、第二影像信號及第三影像信號以形成導出之亮度值;利用處理電路,基於第一影像信號、第二影像信號及白影像信號計算所估計之亮度值;及利用處理電路,使用導出之亮度值及所估計之亮度值修改第一影像信號、第二影像信號及第三影像信號。 根據另一實施例,該方法進一步包括利用處理電路,基於導出之亮度值及所估計之亮度值計算定標值,其中修改第一影像信號、第二影像信號及第三影像信號包括將第一影像信號、第二影像信號及第三影像信號乘以所產生之定標值。 根據另一實施例,組合第一影像信號、第二影像信號及第三影像信號以形成導出之亮度值包括使用加權因子計算第一影像信號、第二影像信號及第三影像信號之線性組合。 根據另一實施例,組合第一影像信號、第二影像信號及第三影像信號以形成導出之亮度值進一步包括將白影像信號與第一影像信號、第二影像信號及第三影像信號組合以形成導出之亮度值。 根據另一實施例,使用白影像信號產生第三顏色之第三影像信號包括使用彩色校正矩陣自白影像信號提取第三影像信號。 根據另一實施例,第一影像信號包括紅影像信號,第二影像信號包括藍影像信號,且第三影像信號包括綠影像信號。 根據另一實施例,第一影像信號包括紅影像信號,第二影像信號包括綠影像信號,且第三影像信號包括藍影像信號。 根據另一實施例,第一影像信號包括藍影像信號,第二影像信號包括綠影像信號,且第三影像信號包括紅影像信號。 根據一實施例,提供一種系統,其包括:中央處理單元、記憶體、輸入-輸出電路及成像裝置,其中該成像裝置包括:像素陣列;將影像聚焦在像素陣列上之透鏡;具有影像像素陣列之影像感測器,其中該影像像素陣列包括經組態以回應於紅光產生紅影像信號之紅影像像素、經組態以回應於藍光產生藍影像信號之藍影像像素,及經組態以回應於至少紅光、綠光及藍光產生白影像信號之透明影像像素;及處理電路,其經組態以產生作為白影像信號與至少紅影像信號、藍影像信號及綠影像信號之線性組合之比率之定標值,且使用所產生之定標值修改紅影像信號、藍影像信號及綠影像信號。 根據另一實施例,該影像像素陣列包括若干像素單位單元,每一像素單位單元包括紅影像像素之一者、藍影像像素之一者,及透明影像像素之兩者。 根據另一實施例,處理電路進一步經組態以對紅影像信號、藍影像信號及白影像信號執行濾波操作以增加與紅影像信號、藍影像信號及白影像信號相關聯之雜訊相關。 根據另一實施例,處理電路進一步經組態以產生白影像信號與紅影像信號之間及白影像信號與藍影像信號之間的差值。 根據另一實施例,處理電路進一步經組態以使用所產生之差值對紅影像信號、藍影像信號及白影像信號執行濾波操作。 根據一實施例,提供一種使用影像感測器處理影像信號之方法,其中該影像感測器包括影像感測器像素陣列及處理電路,且其中影像感測器像素包括紅影像感測器像素、藍影像感測器像素及透明影像感測器像素,且該方法包括:利用紅影像感測器像素,回應於紅光而產生紅影像信號;利用藍影像感測器像素,回應於藍光而產生藍影像信號;利用透明影像感測器像素,回應於至少紅光、綠光及藍光而產生白影像信號;及利用處理電路,對紅影像信號、藍影像信號及白影像信號執行濾波操作,此增加與紅影像信號、藍影像信號及白影像信號相關聯之雜訊相關。 根據另一實施例,執行濾波操作包括將與紅影像信號、藍影像信號及白影像信號相關聯之雜訊相關增加至大於與紅影像信號、藍影像信號及白影像信號相關聯之所有雜訊的百分之70。 根據另一實施例,執行濾波操作包括針對給定顏色之每一影像感測器像素產生由至少25個影像感測器像素產生之影像信號之加權和。 根據一實施例,提供一種使用影像感測器處理影像信號之方法,其中該影像感測器包括影像感測器像素陣列及處理電路,且其中影像感測器像素陣列包括回應於第一顏色之光之影像感測器像素之第一群組、回應於第二顏色之光之影像感測器像素之第二群組,及回應於第三顏色之光之影像感測器像素之第三群組,且該方法包括:利用影像感測器像素之第一群組,回應於第一顏色之光而產生第一影像信號;利用影像感測器像素之第二群組,回應於第二顏色之光而產生第二影像信號;利用影像感測器像素之第三群組,回應於至少第一及第二顏色之光而產生第三影像信號;及利用處理電路,對第一影像信號、第二影像信號及第三影像信號執行濾波操作,此增加與第一影像信號、第二影像信號及第三影像信號相關聯之雜訊相關。 根據另一實施例,第一影像信號具有第一光譜回應水準,第二影像信號具有第二光譜回應水準,且回應於至少第一及第二顏色之光產生第三影像信號包括產生具有大於第一信號回應水準與第二信號回應水準之和的百分之75之第三光譜回應水準之第三影像信號。 根據另一實施例,產生第一影像信號包括回應於紅光產生紅影像信號,產生第二影像信號包括回應於藍光產生藍影像信號,且產生第三影像信號包括回應於至少紅光及藍光產生白影像信號。 根據另一實施例,紅影像信號具有第一光譜回應水準,藍影像信號具有第二光譜回應水準,且產生白影像信號包括產生具有大於第一光譜回應水準與第二光譜回應水準之和的百分之75之第三光譜回應水準之白影像信號。 根據另一實施例,對第一影像信號、第二影像信號及白影像信號執行濾波操作包括對第一影像信號、第二影像信號及第三影像信號執行無限脈衝回應濾波器。 根據一實施例,提供一種使用影像感測器處理影像信號之方法,其中該影像感測器包括處理電路、回應於第一顏色之光而產生第一影像信號之影像感測器像素之第一群組、回應於第二顏色之光而產生第二影像信號之影像感測器像素之第二群組,及回應於第三顏色之光而產生第三影像信號之影像感測器像素之第三群組,其中第一影像信號具有第一光譜回應,其中第二影像信號具有第二光譜回應,且其中第三影像信號具有大於第一光譜回應及第二光譜回應之第三光譜回應,且該方法包括:利用處理電路,使用第一影像信號、第二影像信號及第三影像信號產生所估計之亮度值;利用處理電路,藉由將第一影像信號、第二影像信號及第三影像信號變換至導出之三色空間中來產生經變換之第一影像信號、經變換之第二影像信號及經變換之第三影像信號;利用處理電路,藉由組合經變換之第一影像信號、第二影像信號及第三影像信號產生導出之亮度值;及利用處理電路,修改經變換之第一影像信號、第二影像信號及第三影像信號使得導出之亮度值接近所估計之亮度值。 根據另一實施例,將第一影像信號、第二影像信號及第三影像信號變換至導出之三色空間中包括將第一影像信號、第二影像信號及第三影像信號變換至標準紅-綠-藍空間中。 根據另一實施例,產生經變換之第一影像信號、第二影像信號及第三影像信號包括產生第一影像信號、第二影像信號及第三影像信號之線性組合。 根據另一實施例,第一影像信號包括由影像感測器像素之第一群組回應於紅光而俘獲之紅影像信號,第二影像信號包括由影像感測器像素之第二群組回應於藍光而俘獲之藍影像信號,第三影像感測器信號包括由影像感測器像素之第三群組回應於至少藍光及紅光而俘獲之白影像信號,且產生第一影像信號、第二影像信號及第三影像信號之線性組合包括使用紅、藍及白影像信號產生線性組合。 根據一實施例,提供一種成像系統,其包括具有影像感測器像素陣列之影像感測器,其中該影像感測器像素陣列包括經組態以回應於第一顏色之光而產生第一影像信號之影像感測器像素之第一群組、經組態以回應於第二顏色之光而產生第二影像信號之影像感測器像素之第二群組,及經組態以回應於至少第一顏色及第二顏色之光而產生第三影像信號之影像感測器像素之第三群組;及處理電路,其經組態以對第一影像信號、第二影像信號及第三影像信號執行濾波操作,此增加與第一影像信號、第二影像信號及第三影像信號相關聯之雜訊相關。 根據另一實施例,第一影像信號具有第一光譜回應水準,第二影像信號具有第二光譜回應水準,且第三影像信號具有大於第一光譜回應水準與第二光譜回應水準之和的百分之75之第三光譜回應水準。 根據另一實施例,影像感測器像素之第一群組包括經組態以回應於紅光而產生紅影像信號之紅影像感測器像素,影像感測器像素之第二群組包括經組態以回應於藍光而產生藍影像信號之藍影像感測器像素,且影像感測器像素之第三群組包括經組態以回應於至少紅光及藍光而產生白影像信號之透明影像感測器像素。 根據另一實施例,影像感測器像素之第一群組包括經組態以回應於紅光而產生紅影像信號之紅影像感測器像素,影像感測器像素之第二群組包括經組態以回應於綠光而產生綠影像信號之綠影像感測器像素,且影像感測器像素之第三群組包括經組態以回應於至少紅光及綠光而產生白影像信號之透明影像感測器像素。 以上僅說明可在其他實施例中實踐之本發明之原理。This application claims US Patent Application Serial No. 13/736, filed on Jan. 8, 2013. U.S. Provisional Patent Application No. 768/612, filed on March 19, 2012, Right 819, The entire contents of these patent applications are hereby incorporated herein by reference.  Such as a digital camera, computer, Electronic devices for cellular phones and other electronic devices include image sensors that collect incident light to capture images. The image sensor can include an array of image pixels. The pixels in the image sensor may include photosensitive elements such as photodiodes that convert incident light into image signals. The image sensor can have any number of pixels (eg, Hundreds or thousands or more). A typical image sensor can have, for example, hundreds or thousands or millions of pixels (eg, Megapixel). The image sensor can include a control circuit, Such as a circuit for operating image pixels, And a readout circuit for reading an image signal corresponding to the charge generated by the photosensitive element. The readout circuitry can include selectable readout circuitry coupled to each row of pixels, It can be enabled or disabled to reduce power consumption in the device and improve pixel readout operations.  1 is a diagram of an illustrative electronic device that captures an image using an image sensor. The electronic device 10 of FIG. 1 can be, for example, a camera. Honeycomb phone, A portable electronic device that is a camera or other imaging device that captures digital image data. The camera module 12 can be used to convert incident light into digital image data. Camera module 12 can include one or more lenses 14 And one or more corresponding image sensors 16. During the image capture operation, Light from the scene can be focused by lens 14 onto image sensor 16. Image sensor 16 may include circuitry for converting analog pixel data into corresponding digital image data to be provided to processing circuitry 18. As needed, The camera module 12 can be provided with an array of lenses 14 and an array of corresponding image sensors 16.  Processing circuitry 18 may include one or more integrated circuitry (eg, Image processing circuit, microprocessor, Storage devices such as random access memory and non-volatile memory, and many more), And components that are separate from the camera module 12 and/or components that form part of the camera module 12 (eg, The implementation is performed by forming a circuit including an integral circuit of the image sensor 16 or a portion of the integrated circuit associated with the image sensor 16 in the module 12. Image data that has been captured by camera module 12 can be processed and stored using processing circuitry 18. The processed image data may optionally be provided to an external device using a wired and/or wireless communication path coupled to processing circuitry 18 (eg, Computer or other device).  as shown in picture 2, Image sensor 16 may include a pixel array 200 including image sensor pixels 190 (sometimes referred to as image pixels 190) and control and processing circuitry 122. Array 200 can contain, for example, hundreds or thousands of columns and rows of image sensor pixels 190. Control circuit 122 can be coupled to column decoder circuit 124 and row decoder circuit 126. Column decoder circuit 124 can receive the column address from control circuit 122, And will be reset, Column selection, A corresponding column control signal for the transfer and read control signals is supplied to pixel 190 via control path 128. One or more conductive lines, such as row line 40, may be coupled to each of pixels 190 in array 200. The line 40 can be used to read an image signal from the pixel 190. And used to bias the signal (for example, A bias current or a bias voltage is supplied to the pixel 190. During the pixel readout operation, The column of pixels in array 200 can be selected using column decoder circuit 124, Image data associated with image pixels 190 in the pixel column can be read along row line 40.  Row decoder circuit 126 can include a sample and hold circuit, Amplifier circuit, Analog/digital conversion circuit, Bias circuit Line memory, a latch circuit for selectively enabling or disabling a row circuit, Or one or more rows of pixels coupled to array 200 for operating pixel 190 and for reading other signals from pixel 190. Row decoder circuit 126 can be used to selectively provide power to the row circuitry on a selected subset of row lines 40. Signal processing circuitry such as associated with row decoder circuit 126 (eg, Sampling and holding circuit, The readout circuitry of the analog/digital conversion circuitry can be used to supply digital image data to processor 18 (FIG. 1) on path 210 for pixels in the selected pixel row.  Image sensor pixels, such as image pixels 190, are conventionally provided with a color filter array. It allows a single image sensor to use the corresponding red, arranged in a Bayer mosaic pattern, Green and blue image sensor pixels are red, Green and blue (RGB) light is sampled. The Bayer mosaic pattern consists of repeating unit cells of two by two image pixels. Two of the green image pixels are diagonally opposite each other and adjacent to the red image pixels diagonally opposite to the blue image pixels. however, The limitations of the signal-to-noise ratio (SNR) associated with the Bayer mosaic pattern make it difficult to reduce the size of image sensors such as image sensor 16. therefore, Image sensors capable of providing improved means of capturing images may be required.  In a suitable example of this article sometimes discussed as an example, The green pixels in the Bayer pattern are replaced by transparent image pixels. As shown in Figure 3. As shown in Figure 3, The unit cell 192 of the image pixel 190 can be formed by two transparent image pixels (sometimes referred to herein as white (W) image pixels). The two transparent image pixels are diagonally opposite each other and adjacent to the red (R) image pixels diagonally opposite to the blue (B) image pixels. The white image pixels 190 in the unit cell 192 can be formed using a visually transparent color filter. The visually transparent color filter emits light in the visible spectrum (eg, White pixels 190 can capture white light). The transparent image pixel 190 can have a material that forms a transparent color filter and/or a material that forms an image sensor pixel (eg, 矽) Define the natural sensitivity. The sensitivity of the transparent image pixels 190 can optionally be adjusted to achieve better color reproduction and/or noise characteristics by using a light absorber such as a pigment. Unit unit 192 can be repeated on image pixel array 200 to form red, Mosaic of white and blue image pixels 190. In this way, The red image pixel can generate a red image signal in response to the red light. The blue image pixel can generate a blue image signal in response to the blue light. And the white image pixel can generate a white image signal in response to the white light. The white image signal can also be echoed by the white image pixel, Produced by any suitable combination of blue and/or green light.  Unit unit 192 of Figure 3 is merely illustrative. As needed, Image pixels of any color adjacent to diagonally opposite white image pixels in unit cell 192 can be formed. For example, Unit unit 194 can be defined by two white image pixels 190. The two white image pixels 190 are formed opposite to each other and adjacent to the red image pixels diagonally opposite to the green (G) image pixels. As shown in Figure 4. In yet another suitable arrangement, Unit unit 196 can be defined by two white image pixels 190. The two white image pixels 190 are formed opposite to each other and adjacent to the blue image pixels diagonally opposite to the green image pixels. As shown in Figure 5.  White image pixels W can be facilitated by having a narrower color filter (eg, An image pixel that emits a filter of light on a subset of the visible spectrum (eg, The green image pixels) increase the signal-to-noise ratio (SNR) of the image signal captured by the image pixels 190 compared to the additional light. The white image pixel W can especially improve the SNR under low light conditions. SNR can sometimes limit the image quality of an image in low light conditions. Since it has white image pixels (for example, The image signals collected by the image pixel array 200 as shown in FIGS. 3 to 5 can be converted to be used for driving most image displays (for example, Display screen, Circuits and software compatible with monitors, etc. Green and blue image signals. This conversion typically involves modifying the captured image signal using a color correction matrix (CCM). If you don’t pay attention, The color correction operation may undesirably amplify the noise.  In a suitable arrangement, The noise generated by the CCM can be implemented by applying strong de-noise before applying the CCM to the aggregated image signal (eg, Chromaticity goes to noise) to reduce. The chrominance denoising can be performed by processing circuitry 18 (Fig. 1) by applying a chrominance filter to the image signals that are gathered by image pixels 190. Chroma filters can be used to increase image signals from image pixels of different colors (for example, red, Correlation between white and blue image signals). Increasing the noise correlation between image signals from image pixels of different colors can reduce the noise amplification performed by the CCM. This results in improved final image quality. In another arrangement, The noise amplified by the CCM can be compensated by applying a so-called "dot filter" to the captured image signal. Point filters can use high fidelity white image signals to enhance the red color produced by CCM, The quality of green and blue image signals. As needed, Image sensor 16 may implement both chroma denoising and point filters to reduce the noise amplification by the CCM to produce improved brightness performance in the final image.  6 is shown that may be performed by a processing circuit, such as processing circuit 18 of FIG. 1, to process a filtered pixel array, such as by pixel array 200 (eg, Flowchart of illustrative steps for aggregating image signals for a pixel array without green image pixels. The steps of FIG. 6 can be performed, for example, by processing circuitry 18 to reduce noise in image signals captured using unit cells having white image pixels such as those shown in FIGS. 3 through 5.  At step 100, Image sensor 16 can capture image signals from the scene. The image signal captured by image sensor 16 may include a white image signal that is generated in response to light that is collected by the white pixels. As needed, The image signal may also include a red image signal, One or more of a blue image signal or a green image signal, This depends on the configuration of the image pixels used (for example, If the unit unit 192 of Figure 3 is used, The image signal may include red, White and blue image signals; If the unit unit 194 of Figure 4 is used, The image signal may include red, White and green image signals, and many more). In the example of Figure 6, Capturing red (R'), White (W') and blue (B') image signals. The red image signal may have a first spectral response value (integrated signal power level as a function of the frequency of the light received by the red image sensor pixel), The blue image signal can have a second spectral response value. And the white image signal can have, for example, a third spectral response value that is greater than seventy-five percent of the sum of the first spectral response value and the second spectral response value (eg, In the case of the standard CIE illuminant E, The white image signal has a broad sensitivity to the equal energy radiator in the visible spectrum). The image signal may have an image value corresponding to the light captured by each image pixel 190 (eg, The red image signal may include a red image value, The blue image signal may include a blue image value. and many more). The captured image signal can be communicated to processing circuitry 18 for image processing.  At step 102, A white balance operation can be performed on the captured image signal. In the example of Figure 6, Can generate white balance red image signal (R), White balance white image signal (W) and white balance blue image signal (B).  At step 104, The processing circuit 18 can demosaize the white balance image signal. And applying a chroma filter to extract red from the white balance image signal, White and blue image data. A chroma filter can be applied to perform chrominance denoising on the white balance image signal. Processing circuitry 18 may, for example, demosaize the image signal, At the same time, The chroma filter is applied sequentially or in an interlaced manner. The process of applying chroma filters and demosaicing to image signals can be referred to herein as "chroma demosaicing." A chroma filter increases the noise correlation between image signals of each color (for example, red, The noise fluctuations in the white and blue channels can be increased or decreased together in a related manner). For example, Processing circuit 18 can be red, The associated noise between the white and green image signals increases to red and 70% or more of all noise associated with white and green image signals.  By adding noise correlation, The processing circuit 18 reduces the amount of noise amplification that occurs when the CCM is applied to the image signal. Chromatically demosaicing the image signal allows for the determination of the missing color image signal from the available color image signal (eg, An image signal of a color that is not produced by an image pixel). In this example, It is possible that the green image signal is lost from the collected image signal. This is because the green color filter is not used in the unit cell 192 (Fig. 3). Can use white, Red and blue image signals (for example, The green image signal is determined by performing a subtraction operation. In general, The available color image signals can be used to determine the primary color additive (for example, red, Any of green and blue). May need to produce red, Green and blue image signals, Regardless of the color filter used on the image pixel array 200, This is because the display system usually uses red, Green and blue pixels to display images.  At step 106, The processing circuit 18 can apply a color correction matrix (CCM) to the red image data, White image data and blue image data. The CCM may, for example, extract green image data from confession image data to generate red, Green and blue imagery. For example, CCM converts image data to standard red, Standard green and standard blue image data (sometimes collectively referred to as linear sRGB image data or simply sRGB image data). In another suitable arrangement, CCM can extract green image data from red and/or blue image data. As needed, A gamma correction process can be performed on the linear sRGB image data. After gamma correction, The sRGB image data can be used to display using an image display device. In some cases, Additional noise reduction may be required (for example, Further mitigating the application of CCM to red by applying a point filter to the sRGB image data) Noise amplification caused by white and blue image data. The processing circuit 18 can store white image data. For further processing of the sRGB image data during optional step 108.  At optional step 108, The processing circuit 18 can apply a point filter to the image data (for example, Applied to apply CCM to red, sRGB image data generated after white and blue image data). The point filter operates on the sRGB image data to produce corrected sRGB data. Point filters can be used to further reduce the application of CCM to red, Noise amplification caused by white and blue image data. When using the display system display, The corrected sRGB data thereby provides better image quality than the sRGB data prior to applying the dot filter (eg, Better brightness performance).  7 shows a flow chart of illustrative steps that may be performed by processing circuitry 18 to demosaic and filter image signals received from image pixel array 200. The steps of FIG. 7 may be performed, for example, by processing circuitry 18 to focus the image pixels 190, White and blue image signals perform chroma de-mosaic, Producing red, Full noise related in white and blue image data. The steps of FIG. 7 can be performed, for example, as part of step 104 of FIG.  At step 110, Processing circuitry 18 may demomic the white image signal to produce white image data (eg, White image value for each image pixel). In another suitable arrangement, White image values can be generated for combinations of available image pixels 190. White image values can be used to calculate different values for red and blue image signals to increase red, Correlation between white and blue image signals.  At step 112, Processing circuitry 18 may generate a red delta value by subtracting the white image value from the red image value for each pixel. Processing circuitry 18 may generate a blue delta value by subtracting the white image value from the blue image value. The red difference value can be calculated, for example, for each red image pixel. And the blue delta value can be calculated for each blue image pixel of the image pixel array 200.  At step 114, Processing circuit 18 may filter the red and blue values using a chrominance filter. A weighted average of the differences calculated on the kernel of image pixels 190 can be performed, for example (eg, The chrominance filter is applied to the red and blue differences by performing a weighted average of the group of differences calculated in step 112. The core of the image pixel may be defined as a subset of the image pixels in the image pixel array 200 on which the chroma filtering is being performed (eg, The core may include some or all of the image pixels in the image pixel array 200. For example, When using a 5 pixel by 5 pixel core, A weighted average of the differences is calculated for a 5 pixel by 5 pixel subset of image pixels 190 in image pixel array 200 when chroma filtering is performed (eg, A weighted average of the differences is calculated for a given image pixel 190 using the difference at the 25 surrounding image pixels in image pixel array 200. In general, A core having any desired size can be used.  At step 116, The white image value may be added to the chroma-filtered red difference value and the chroma-filtered blue difference value to respectively generate the chroma-filtered red image value and the chroma-filtered blue image value.  At step 118, The processing circuit 18 may demosamate the chroma filtered red image values and the chroma filtered blue image values to generate red image data and blue image data with increased correlated noise (eg, Chromatographic demosaicing red and blue image data has been performed). The de-mosaic white image data and the chroma-de-mosaic red and blue image data can then be manipulated using CCM to produce a standard red, as described above in connection with step 106 of FIG. Standard green and standard blue (sRGB) image data.  Figure 7 is merely illustrative. As needed, Processing circuitry 18 may demosaze chroma-filtered red and blue image values before generating red and blue differences (eg, Processing circuit 18 may perform step 118) prior to step 112.  If the chrominance filtering of the difference is performed on a sufficiently large core of the image pixels 190, The minimum noise from the red and blue image signals can be after chroma filtering (for example, After performing step 114), it remains in the red and blue difference values. For example, If the core has a size of 15 pixels by 15 pixels or more, The chrominance filter reduces the noise in the difference between the red and blue chrominance filters to a negligible level. As needed, The core of the image pixel 190 may include image pixels located in the plurality of image pixel arrays 200, Image pixels located in the plurality of image sensors 16 And/or use during multiple timeframes (for example, Image pixels that allow time to go to noise. When the white image value is added to the chroma filtered difference, The noise in the white image value can dominate the noise in the difference. In this way, The noise in the red and blue image data generated at step 116 can be substantially equal to the noise in the white image data. The noise in the red and blue image data can be highly correlated. This produces a reduced noise amplification caused by CCM. When a Bayer pattern is used for the image pixel array 200, This process produces less noise amplification caused by CCM.  At step 106 (Fig. 6), CCM can be red, White and blue image data are manipulated to produce linear sRGB data. For example, CCM can extract information from white image data to generate standard green data. White image data (for example, The demosaiced white image data generated at step 104 can be retained after manipulation of the image data using CCM. The sRGB image data can be represented in a three-dimensional space such as a luminance-chroma-hue (LCH) space. In the LCH space, The brightness channel (L) can be related to the brightness of the image captured by the image sensor 16. And the chroma channel (C) can be related to the color saturation of the image. And the hue channel can be associated with a particular color of the image (for example, red, purple, yellow, Green, etc.) related. The perception of noise and sharpness in the displayed image can be affected by noise and signal changes in the luminance channel. The SNR in the image data can be converted into LCH data by converting the sRGB data. Instead of the luminance value in the luminance channel, the white image value, which is better correlated with the overall image brightness due to the wide spectrum of the white image signal, And improve the LCH data back to sRGB data. In this way, The noise amplification caused by CCM can be suppressed in the luminance channel. Among them, the noise is particularly noticeable to the observer when observing the displayed image.  As described above in connection with optional step 108 of FIG. 6, A point filter can be applied to the linear sRGB data to produce corrected sRGB data using white image data. The dot filter can operate on a single image pixel 190 without information from neighboring image pixels 190. While chroma de-mosaic can be applied to multiple image pixels when applied to image signals at a single image pixel 190 (eg, Image signal of the image pixel (for example, Difference). For example, A point filter can be used for each image pixel versus standard red value, Standard green value and standard blue value operation. To perform a point filter operation on the sRGB data, The processing circuit 18 can use red image data, White image data and blue image data (for example, The original (original) luminance signal is calculated by applying the image data before the CCM. The original brightness signal can be white image data, A linear combination of red image data and blue image data (for example, Weighted sum). As needed, White image data can be weighted more heavily in linear combinations than red and blue image data. Processing circuit 18 can be calculated as standard red, The implied luminance signal of a linear combination of standard green and standard blue image data (for example, After applying CCM to the image data). As needed, The weights used in calculating the linear combination of the implied luminance signals can be substantially similar to the weights used to calculate the original luminance signals. These weights can be adjusted to modify the "strength" of the point filter (for example, The degree to which the point filter transforms or corrects the sRGB data).  Processing circuit 18 may, in the simplest case, generate a scaling value by dividing the original luminance signal by the implied luminance signal (eg, The scaling factor to be applied to the color corrected image values). As needed, The scaling factor can include the numerator and the denominator. The numerator and/or denominator of the scaled value may comprise a weighted sum of the original luminance signal and the implied luminance signal. The scaling value can include an adjustable weighting parameter that can be varied to adjust the strength of the point filter (eg, These weighting parameters can be varied to adjust the intensity of the point filter from zero to full intensity). To apply a point filter to sRGB data (for example, Applied to standard red, Green and blue image data), Processing circuitry 18 may multiply the sRGB data by a scaling value to produce corrected sRGB data. For example, The processing circuit 18 can multiply the standard red image data by a calibration value. Multiply the standard green image data by the calibration value. and many more. As needed, The corrected sRGB data can have a self-application point filter (for example, Approximate preserved hue and chroma channels after converting the corrected sRGB data to the LCH space. The corrected sRGB data may have improved noise and/or sharpness due to the fidelity of the inheritance of the white image signal.  In the simplest case, The original luminance signal can be approximated by white image data. 8 shows that it can be performed by processing circuit 18 to apply CCM to red, A flow chart (as an example) of an illustrative step of applying a point filter (in the simplest case) to the sRGB data after the white and blue image data. Processing circuitry 18 may apply a point filter to the sRGB data, for example, for each image pixel 190 in image pixel array 200. The steps of FIG. 8 may be performed, for example, as part of step 108 of FIG.  At step 130, Processing circuit 18 can be combined by red, green, Blue image data (for example, The applied luminance value is generated for a given image pixel 190 after application of the CCM (eg, The brightness value in the LCH space). The suggested brightness value can be calculated, for example, as red, A linear combination of green and blue imagery.  At step 132, Processing circuitry 18 may generate the scaling value by dividing the white image value by the implied luminance value. As needed, The scaling factor can be generated by dividing the white image value by the weighted sum of the implied luminance value and the white image value. The scaling factor can include an adjustable weighting parameter that can be varied to adjust the strength of the point filter (eg, These weighting parameters can be varied to adjust the intensity of the point filter from zero to full intensity). The scaling value can be, for example, an operator that operates on sRGB data.  At step 134, Processing circuitry 18 may multiply the sRGB data by a scaling value to produce corrected sRGB data (eg, Corrected standard red, Green and blue image data). For example, The processing circuit 18 can multiply the standard red image data by a calibration value. Multiply the standard green image data by the calibration value. and many more. The corrected sRGB data can be provided to the image display as needed. The corrected sRGB data may have improved noise and/or sharpness compared to the sRGB data prior to applying the point filter.  The examples of Figures 6 through 8 are merely illustrative. Any desired color filter can be used in conjunction with the white filter shown in Figures 3 through 5 to obtain a color image signal. Any combination of desired color filters can be used (for example, Red filter, Green filter, Cyan filter, Infrared filter, UV filter, Blue filter, Yellow filter, Magenta filter, Any combination of purple filters, etc.). As needed, Any other suitable three-dimensional space can be used to perform the point filter operation.  As needed, Any number of image pixel arrays 200 formed on any number of image sensors 16 can be used to capture images. Each image pixel array used can be used, for example, for image signals of different colors. For example, The first image pixel array may have a transparent filter for generating a white image signal. The second image pixel array can have a red filter for generating a red image signal. And the third image pixel array can have a blue filter for generating a blue image signal. Image signals from each of these arrays may be chroma-de-mosaic and/or operated using dot filters. Each image pixel array can be formed on a different image sensor such as image sensor 16 in device 10 as desired (eg, A plurality of image sensors 16 may be formed in device 10. This embodiment may, for example, allow for shorter camera focal lengths and thinner camera modules.  Figure 9 shows a typical processor system 300 in a simplified form, Such as a digital camera, It includes an imaging device 2000 (for example, An imaging device 2000 such as the imaging sensor 16 of Figures 1 through 8 employing a transparent color filter and techniques for the operations described above. Processor system 300 is an illustrative system having digital circuitry that can include imaging device 2000. Without limitation, This system can include a computer system, Static or video camera system, scanner, Machine vision, Vehicle navigation, Video call, Supervision system, Autofocus system, Star tracker system, Motion detection system, Image stabilization system, And other systems that use imaging devices.  Processor system 300 typically includes: Lens 396, It is used to focus an image on the pixel array 200 of the device 2000 when the shutter release button 397 is pressed; Central Processing Unit (CPU) 395, Such as a microprocessor, It controls the camera and one or more image streaming functions, It communicates with one or more input/output (I/O) devices 391 via bus 393. Imaging device 2000 also communicates with CPU 395 via bus 393. System 300 also includes random access memory (RAM) 392, And may include removable memory 394, Such as flash memory, It also communicates with the CPU 395 via the bus 393. Imaging device 2000 can be combined with a CPU with or without a single integrated circuit or memory storage on a different wafer. Although bus 393 is illustrated as a single bus, But it can be used to interconnect system components with one or more bus bars or bridges or other communication paths.  Various embodiments have been described, It describes an image processing technique having a transparent image pixel filter and noise for reducing image signals generated by the image signal (for example, Chroma de-mosaic, Image sensor using point filter, etc.).  An image sensor can have an array of image sensor pixels. The image sensor pixels include red image pixels that generate red image signals in response to red light, a blue image pixel that produces a blue image signal in response to blue light, And responding to at least red light, Green and blue light (for example, White light) A transparent image sensor pixel that produces a white image signal. Image pixels may be arranged in an array of pixel unit cells. Each pixel unit includes a plurality of image pixels of different colors. An image sensor can be coupled to the processing circuit, The processing circuit is red, Blue and white image signals perform filtering operations to increase red, The blue and white image signals are associated with noise. The processing circuit can perform a filtering operation for a given image pixel, for example, by generating a weighted sum of image signals produced by at least 25 image pixels in the image pixel array. The weighted sum can include adjustable weights (eg, Based on the weight of the observed image feature adjustment). A weighted sum can be generated for image signals captured during multiple time frames or captured from multiple image sensors. By generating a weighted sum of multiple time frames, The processing circuit can reduce the size of the core of the image pixel, At the same time, the image signal noise is successfully reduced.  This example is merely illustrative. In general, The array of image sensor pixels can include image sensor pixels of any desired color (eg, Respond to image sensor pixels of any color of light). For example, The array of image sensor pixels can include a first group of image sensor pixels responsive to light of the first color, Responding to a second group of image sensor pixels of the second color of light, And responding to the light of the third color (for example, red, The third group of image sensor pixels for blue and white light. The first image signal can have a first spectral response level (eg, Integrated signal power level as a function of the frequency of the light received by the first group of image sensor pixels, The second image signal can have a second spectral response level (eg, Integrated signal power level as a function of the frequency of light received by the second group of image sensor pixels, And the third image signal can have a third spectral response level (eg, Integrated signal power level as a function of the frequency of the light received by the third group of image sensor pixels. The third image signal can have a spectral response level that is greater than the first spectral response level and the second spectral response level (eg, The third spectral response level may be greater than 75 percent of the sum of the first spectral response level and the second spectral response level. In other words, The third image signal can be captured in response to an optical frequency that is wider than the first image signal and the second image signal.  The processing circuit can use the first image signal as needed, The second image signal and the third image signal to generate an estimated brightness value (eg, The brightness value in the LCH space). The processing circuit can be configured by Converting the second image signal and the third image signal into the derived three color space (for example, Linear sRGB space, CIE space, XYZ space, Bayer space, etc.) to generate a transformed first image signal, a second image signal and a third image signal. The processing circuit can be, for example, by the first image signal, Performing a linear combination of the second image signal and the third image signal to generate the transformed first image signal, a second image signal and a third image signal. The processing circuit can combine the transformed first image signal, The transformed second image signal and the transformed third image signal are used to generate derived luminance values (eg, The brightness value in the LCH space). The processing circuit can compare the derived luminance value with the estimated luminance value, And modifying the transformed first image signal, The transformed second image signal and the transformed third image signal, Having the derived luminance value close to the estimated luminance value (eg, The derived luminance value is sufficiently matched to the estimated luminance value).  The processing circuit may use an image sensor having a processing circuit to process the first image signal including the first color, The image data of the second image signal and the white image signal of the second color of the first color. The processing circuit can use the white image signal to produce a third image signal that is different from the first color and the third color of the second color. The processing circuit can transmit the first image signal, Combining the second image signal and the third image signal to form a derived brightness value, And can be from the first color image signal, The second color image signal and the white image signal calculate the estimated brightness value. The processing circuit can be configured by using a white image signal and a first image signal, The second image signal and the third image signal are combined to form a derived luminance value.  The processing circuit can use the derived luminance value and the estimated luminance value to modify the first image signal, a second image signal and a third image signal. For example, The processing circuit can calculate the calibration value based on the derived luminance value and the estimated luminance value. And the first image signal, The second image signal and the third image signal are multiplied by the generated calibration value. The processing circuit can combine the first image signal, The second image signal and the third image signal are used to calculate the first image signal by using a weighting factor, A linear combination of the second image signal and the third image signal to form a derived luminance value.  The processing circuitry may perform infinite impulse response (IIR) filtering on the captured image signal as needed. The processing circuit can adjust the filter applied to the captured image signal by the characteristics of the image signal captured based on the image pixel 190 (eg, The IIR filtering is performed as described in connection with Figures 6-8. Performing IIR filtering increases the efficiency with which the processing circuitry processes the captured image signals.  The processing circuit can be red, The blue and white image signals perform a white balance operation. The processing circuitry can apply a color correction matrix to the white image signal to extract image signals of different colors, such as green image signals, from each of the white image signals. The processing circuit can combine the red image signal, Blue image signal, a green image signal and a white image signal to form a brightness value (eg, By calculating red, blue, Linear combination or weighted sum of green and white image signals). The processing circuit divides the white image signal by the luminance value to produce a scaling value. Processing circuitry can be done by red, The green and blue image signals are multiplied by the calibration value to modify the red, Green and blue image signals. The scaling value can act as a pair of red, Point filter for green and blue image signal operation. As needed, Image pixels of any color can be combined with white image signals. As needed, Processing circuitry can be used to array from multiple image pixels, The image signal array on the plurality of image sensors and/or the image signals of the image signals captured during the plurality of time frames perform such operations.  Transparent image pixels and associated filtering techniques can be implemented in a system. The system also includes a central processing unit, Memory, Input-output circuit, And imaging device, The imaging device further includes a pixel array, a lens for focusing light onto a pixel array, And data conversion circuit.  According to an embodiment, Providing an imaging system, It includes: Image sensor with image sensor pixel array, Wherein the image sensor pixel array includes red image sensor pixels configured to generate a red image signal in response to red light, Blue image sensor pixels configured to respond to blue light to produce a blue image signal, And configured to respond to at least red light, Transparent image sensor pixels that generate white image signals in green and blue light; And processing circuitry, It is configured to align red image signals, The blue image signal and the white image signal perform a filtering operation, This increase with the red image signal, The blue image signal is associated with the noise associated with the white image signal.  According to another embodiment, The processing circuit is configured to communicate with the red image signal, The noise correlation associated with the blue image signal and the white image signal is increased to be greater than the red image signal, 70% of all noise associated with blue image signals and white image signals.  According to another embodiment, The processing circuit is configured to perform a filtering operation by generating a weighted sum of image signals produced by at least 25 image sensor pixels for each image sensor pixel of a given color.  According to another embodiment, The processing circuit is configured to align the red image signal, The blue image signal and the white image signal perform a white balance operation.  According to another embodiment, The processing circuit is configured to apply a color correction matrix to the white image signal, The color correction matrix extracts a green image signal from each white image signal.  According to another embodiment, The image sensor further includes an additional image sensor pixel array.  According to another embodiment, The imaging system further includes an additional image sensor having at least one image sensor pixel array.  According to an embodiment, Providing a method of processing image data using an image sensor having a processing circuit, The image data includes a first image signal of a first color, a second image signal different from the second color of the first color, And white image signals, The method includes: Using processing circuitry, Generating, by the white image signal, a third image signal different from the first color and the third color of the second color; Using processing circuitry, Combining the first image signal, a second image signal and a third image signal to form a derived brightness value; Using processing circuitry, Based on the first image signal, Calculating the estimated brightness value by the second image signal and the white image signal; And using the processing circuit, Modifying the first image signal using the derived luminance value and the estimated luminance value, a second image signal and a third image signal.  According to another embodiment, The method further includes utilizing a processing circuit, Calculating the calibration value based on the derived luminance value and the estimated luminance value, Wherein the first image signal is modified, The second image signal and the third image signal include a first image signal, The second image signal and the third image signal are multiplied by the generated calibration value.  According to another embodiment, Combining the first image signal, The second image signal and the third image signal to form the derived luminance value include calculating a first image signal using a weighting factor, A linear combination of the second image signal and the third image signal.  According to another embodiment, Combining the first image signal, The second image signal and the third image signal to form the derived brightness value further includes a white image signal and the first image signal, The second image signal and the third image signal are combined to form a derived luminance value.  According to another embodiment, The use of the white image signal to generate the third image signal of the third color comprises extracting the third image signal from the white image signal using the color correction matrix.  According to another embodiment, The first image signal includes a red image signal, The second image signal includes a blue image signal, And the third image signal includes a green image signal.  According to another embodiment, The first image signal includes a red image signal, The second image signal includes a green image signal, And the third image signal includes a blue image signal.  According to another embodiment, The first image signal includes a blue image signal, The second image signal includes a green image signal, And the third image signal includes a red image signal.  According to an embodiment, Providing a system, It includes: Central processing unit, Memory, Input-output circuits and imaging devices, Wherein the imaging device comprises: Pixel array a lens that focuses an image on a pixel array; Image sensor with image pixel array, Wherein the image pixel array includes red image pixels configured to generate a red image signal in response to red light, Blue image pixels configured to respond to blue light to produce a blue image signal, And configured to respond to at least red light, Green and blue light produce transparent image pixels of white image signals; And processing circuitry, It is configured to generate a white image signal and at least a red image signal, The scaling value of the ratio of the linear combination of the blue image signal and the green image signal, And modifying the red image signal using the generated calibration value, Blue image signal and green image signal.  According to another embodiment, The image pixel array includes a plurality of pixel unit cells. Each pixel unit includes one of the red image pixels, One of the blue image pixels, And transparent image pixels.  According to another embodiment, The processing circuit is further configured to align the red image signal, The blue image signal and the white image signal perform a filtering operation to increase the red image signal, The blue image signal is associated with the noise associated with the white image signal.  According to another embodiment, The processing circuit is further configured to produce a difference between the white image signal and the red image signal and between the white image signal and the blue image signal.  According to another embodiment, The processing circuit is further configured to use the generated difference to the red image signal, The blue image signal and the white image signal perform a filtering operation.  According to an embodiment, Providing a method of processing an image signal using an image sensor, The image sensor includes an image sensor pixel array and a processing circuit. Wherein the image sensor pixels include red image sensor pixels, Blue image sensor pixels and transparent image sensor pixels, And the method includes: Using red image sensor pixels, Producing a red image signal in response to red light; Using blue image sensor pixels, Producing a blue image signal in response to blue light; Using transparent image sensor pixels, Responding to at least red light, Green light and blue light produce white image signals; And using the processing circuit, For red image signals, The blue image signal and the white image signal perform a filtering operation, This increase with the red image signal, The blue image signal is associated with the noise associated with the white image signal.  According to another embodiment, Performing filtering operations includes combining red image signals, The noise correlation associated with the blue image signal and the white image signal is increased to be greater than the red image signal, 70% of all noise associated with blue image signals and white image signals.  According to another embodiment, Performing the filtering operation includes generating a weighted sum of image signals produced by at least 25 image sensor pixels for each image sensor pixel of a given color.  According to an embodiment, Providing a method of processing an image signal using an image sensor, The image sensor includes an image sensor pixel array and a processing circuit. Wherein the image sensor pixel array includes a first group of image sensor pixels responsive to light of the first color, Responding to a second group of image sensor pixels of the second color of light, And a third group of image sensor pixels responsive to the third color of light, And the method includes: Using the first group of image sensor pixels, Generating a first image signal in response to light of the first color; Using the second group of image sensor pixels, Generating a second image signal in response to the light of the second color; Using a third group of image sensor pixels, Generating a third image signal in response to at least the first and second colors of light; And using the processing circuit, For the first image signal, The second image signal and the third image signal perform a filtering operation, This increase is related to the first image signal, The second image signal and the third image signal are associated with the noise.  According to another embodiment, The first image signal has a first spectral response level. The second image signal has a second spectral response level. And generating, in response to the at least first and second colors of light, the third image signal comprises generating a third image signal having a third spectral response level greater than 75 percent of the sum of the first signal response level and the second signal response level .  According to another embodiment, Generating the first image signal includes generating a red image signal in response to the red light, Generating a second image signal includes generating a blue image signal in response to the blue light, And generating the third image signal includes generating a white image signal in response to at least red light and blue light.  According to another embodiment, The red image signal has a first spectral response level. The blue image signal has a second spectral response level. And generating the white image signal includes generating a white image signal having a third spectral response level of 75 percent greater than the sum of the first spectral response level and the second spectral response level.  According to another embodiment, For the first image signal, Performing a filtering operation on the second image signal and the white image signal includes: The second image signal and the third image signal perform an infinite impulse response filter.  According to an embodiment, Providing a method of processing an image signal using an image sensor, Wherein the image sensor comprises a processing circuit, a first group of image sensor pixels that generate a first image signal in response to light of the first color, Generating a second group of image sensor pixels of the second image signal in response to the light of the second color, And a third group of image sensor pixels that generate a third image signal in response to the light of the third color, Wherein the first image signal has a first spectral response, Wherein the second image signal has a second spectral response, And wherein the third image signal has a third spectral response greater than the first spectral response and the second spectral response, And the method includes: Using processing circuitry, Using the first image signal, The second image signal and the third image signal generate the estimated brightness value; Using processing circuitry, By using the first image signal, Converting the second image signal and the third image signal into the derived three color space to generate the transformed first image signal, The transformed second image signal and the transformed third image signal; Using processing circuitry, By combining the transformed first image signal, The second image signal and the third image signal generate a derived brightness value; And using the processing circuit, Modifying the transformed first image signal, The second image signal and the third image signal cause the derived luminance value to be close to the estimated luminance value.  According to another embodiment, The first image signal, Converting the second image signal and the third image signal into the derived three color space includes including the first image signal, The second image signal and the third image signal are transformed into a standard red-green-blue space.  According to another embodiment, Generating a transformed first image signal, The second image signal and the third image signal include generating a first image signal, A linear combination of the second image signal and the third image signal.  According to another embodiment, The first image signal includes a red image signal captured by the first group of image sensor pixels in response to the red light. The second image signal includes a blue image signal captured by the second group of image sensor pixels in response to the blue light. The third image sensor signal includes a white image signal captured by a third group of image sensor pixels in response to at least blue light and red light. And generating a first image signal, The linear combination of the second image signal and the third image signal includes using red, The blue and white image signals produce a linear combination.  According to an embodiment, Providing an imaging system, It includes an image sensor having an image sensor pixel array. Wherein the image sensor pixel array includes a first group of image sensor pixels configured to generate a first image signal in response to light of the first color, Generating a second group of image sensor pixels of the second image signal in response to the light of the second color, And a third group of image sensor pixels configured to generate a third image signal in response to the light of at least the first color and the second color; And processing circuitry, It is configured to operate on the first image signal, The second image signal and the third image signal perform a filtering operation, This increase is related to the first image signal, The second image signal and the third image signal are associated with the noise.  According to another embodiment, The first image signal has a first spectral response level. The second image signal has a second spectral response level. And the third image signal has a third spectral response level that is greater than 75 percent of the sum of the first spectral response level and the second spectral response level.  According to another embodiment, The first group of image sensor pixels includes red image sensor pixels configured to generate a red image signal in response to red light. A second group of image sensor pixels includes blue image sensor pixels configured to generate blue image signals in response to blue light, And the third group of image sensor pixels includes transparent image sensor pixels configured to generate white image signals in response to at least red and blue light.  According to another embodiment, The first group of image sensor pixels includes red image sensor pixels configured to generate a red image signal in response to red light. A second group of image sensor pixels includes green image sensor pixels configured to generate a green image signal in response to green light. And the third group of image sensor pixels includes transparent image sensor pixels configured to generate white image signals in response to at least red and green light.  The foregoing merely illustrates the principles of the invention that may be practiced in other embodiments.

10‧‧‧電子裝置10‧‧‧Electronic devices

12‧‧‧相機模組12‧‧‧ camera module

14‧‧‧透鏡14‧‧‧ lens

16‧‧‧影像感測器16‧‧‧Image Sensor

18‧‧‧處理電路18‧‧‧Processing Circuit

40‧‧‧行線40‧‧‧Line

122‧‧‧控制及處理電路122‧‧‧Control and processing circuits

124‧‧‧列解碼器電路124‧‧‧ column decoder circuit

126‧‧‧行解碼器電路126‧‧‧ row decoder circuit

128‧‧‧控制路徑128‧‧‧Control path

190‧‧‧影像感測器像素/影像像素190‧‧•Image Sensor Pixels/Image Pixels

192‧‧‧單位單元192‧‧‧unit unit

194‧‧‧單位單元194‧‧‧Unit unit

196‧‧‧單位單元196‧‧‧unit unit

200‧‧‧像素陣列200‧‧‧pixel array

300‧‧‧處理器系統300‧‧‧ processor system

391‧‧‧輸入/輸出(I/O)裝置391‧‧‧Input/Output (I/O) devices

392‧‧‧隨機存取記憶體392‧‧‧ Random access memory

393‧‧‧匯流排393‧‧‧ Busbar

394‧‧‧可移除式記憶體394‧‧‧Removable memory

395‧‧‧中央處理單元395‧‧‧Central Processing Unit

396‧‧‧透鏡396‧‧‧ lens

397‧‧‧快門釋放按鈕397‧‧‧Shutter release button

2000‧‧‧成像裝置2000‧‧‧ imaging device

圖1為根據本發明之一實施例之具有成像系統的說明性電子電路之圖。 圖2為根據本發明之一實施例之說明性像素陣列及用於自沿著影像感測器中之行線之影像像素讀出像素資料的相關聯控制電路之圖。 圖3至圖5為根據本發明之實施例之具有透明濾波器像素的說明性像素單位單元之圖。 圖6為根據本發明之一實施例之可由成像系統中之處理電路執行以處理自經濾波像素陣列接收的影像信號之說明性步驟之流程圖。 圖7為根據本發明之一實施例之可由成像系統中之處理電路執行以對自經濾波像素陣列接收之影像信號進行去馬賽克及濾波的說明性步驟之流程圖。 圖8為根據本發明之一實施例之可由成像系統中之處理電路執行以將點濾波器應用於自經濾波像素陣列接收之影像信號的說明性步驟之流程圖。 圖9為根據本發明之一實施例之採用圖1之實施例的處理器系統之方塊圖。1 is a diagram of an illustrative electronic circuit having an imaging system in accordance with an embodiment of the present invention. 2 is a diagram of an illustrative pixel array and associated control circuitry for reading pixel data from image pixels along a row line in an image sensor, in accordance with an embodiment of the present invention. 3 through 5 are diagrams of illustrative pixel unit cells having transparent filter pixels in accordance with an embodiment of the present invention. 6 is a flow diagram of illustrative steps that may be performed by processing circuitry in an imaging system to process image signals received from a filtered pixel array, in accordance with an embodiment of the present invention. 7 is a flow diagram of illustrative steps that may be performed by processing circuitry in an imaging system to demosaize and filter image signals received from a filtered pixel array, in accordance with an embodiment of the present invention. 8 is a flow diagram of illustrative steps that may be performed by processing circuitry in an imaging system to apply a point filter to an image signal received from a filtered pixel array, in accordance with an embodiment of the present invention. 9 is a block diagram of a processor system employing the embodiment of FIG. 1 in accordance with an embodiment of the present invention.

Claims (20)

一種成像系統,其包括: 一影像感測器像素陣列,其中該影像感測器像素陣列包含經組態以產生一第一顏色之第一影像信號的第一影像感測器像素、經組態以產生一第二顏色之第二影像信號的第二影像感測器像素及經組態以產生一第三顏色之第三影像信號的第三影像感測器像素;及 處理電路,其中該處理電路經組態以藉由基於該等第一影像信號及該等第三影像信號產生一第一差值、基於該等第二影像信號及該等第三影像信號產生一第二差值、將一色度濾波器應用至該第一差值及該第二差值以產生經濾波差值以及將該等第三影像信號加至該等經濾波差值,而在該等第一影像信號、該等第二影像信號及該等第三影像信號上執行濾波操作。An imaging system comprising: an image sensor pixel array, wherein the image sensor pixel array comprises a first image sensor pixel configured to generate a first color first image signal, configured a second image sensor pixel for generating a second image signal of a second color and a third image sensor pixel configured to generate a third image signal of a third color; and a processing circuit, wherein the processing The circuit is configured to generate a first difference based on the first image signal and the third image signal, generate a second difference based on the second image signal and the third image signal, Applying a chrominance filter to the first difference and the second difference to generate a filtered difference and adding the third image signal to the filtered difference, and in the first image signal, And performing a filtering operation on the second image signal and the third image signals. 如請求項1之成像系統,其中該處理電路經組態以藉由針對一給定顏色之每一影像感測器像素產生由至少25個影像感測器像素產生之影像信號之一加權總和,而執行該等濾波操作。The imaging system of claim 1, wherein the processing circuit is configured to generate a weighted sum of one of the image signals produced by the at least 25 image sensor pixels for each image sensor pixel of a given color, These filtering operations are performed. 如請求項1之成像系統,其中該處理電路經組態以在產生該第一差值及該第二差值之前在該等第一影像信號、該等第二影像信號及該等第三影像信號上執行白平衡操作。The imaging system of claim 1, wherein the processing circuit is configured to be in the first image signal, the second image signal, and the third image before generating the first difference and the second difference A white balance operation is performed on the signal. 如請求項3之成像系統,其中該處理電路經組態以在產生該等經濾波差值之後將一顏色校正矩陣應用至該等第三影像信號,其中該顏色校正矩陣自該等第三影像信號提取一第四顏色之一第四影像信號。The imaging system of claim 3, wherein the processing circuit is configured to apply a color correction matrix to the third image signal after generating the filtered difference values, wherein the color correction matrix is from the third image The signal extracts a fourth image signal of one of the fourth colors. 如請求項1之成像系統,其中該等第三影像感測器像素具有較該等第一影像感測器像素及該等第二影像感測器像素更大的一光譜回應。The imaging system of claim 1, wherein the third image sensor pixels have a larger spectral response than the first image sensor pixels and the second image sensor pixels. 如請求項1之成像系統,其中該等濾波操作增加該等第一影像信號、該等第二影像信號及該等第三影像信號之間之雜訊相關性。The imaging system of claim 1, wherein the filtering operations increase noise correlation between the first image signals, the second image signals, and the third image signals. 如請求項6之成像系統,其中該等濾波操作以一相關聯方式一起增加或減小該等第一影像信號、該等第二影像信號及該等第三影像信號中之雜訊波動。The imaging system of claim 6, wherein the filtering operations together increase or decrease noise fluctuations in the first image signal, the second image signals, and the third image signals in an associated manner. 一種使用具有處理電路之一成像系統處理影像資料之方法,該影像資料包含一第一顏色之第一影像信號、一第二顏色之第二影像信號及一第三顏色之第三影像信號,該方法包括: 利用該處理電路接收該等第一影像信號、該等第二影像信號及該等第三影像信號,該等第一影像信號、該等第二影像信號及該等第三影像信號係藉由一影像感測器像素陣列所產生; 利用該處理電路基於該等第一影像信號及該等第三影像信號產生第一差值; 利用該處理電路基於該等第二影像信號及該等第三影像信號產生第二差值; 利用該處理電路將一色度濾波器應用至該等第一差值及該等第二差值,以產生經濾波差值;及 利用該處理電路將該等第三影像信號加至該等經濾波差值,以產生第一經濾波值及第二經濾波值。A method for processing image data using an imaging system having a processing circuit, the image data comprising a first image signal of a first color, a second image signal of a second color, and a third image signal of a third color, The method includes: receiving, by the processing circuit, the first image signal, the second image signal, and the third image signal, the first image signal, the second image signal, and the third image signal system And generating, by the processing circuit, a first difference value based on the first image signal and the third image signals; using the processing circuit based on the second image signals and the The third image signal generates a second difference; the processing circuit applies a chroma component to the first difference and the second difference to generate a filtered difference; and using the processing circuit to perform the same A third image signal is added to the filtered difference values to generate a first filtered value and a second filtered value. 如請求項8之方法,其進一步包括: 利用該處理電路,對該等第一經濾波值及該等第二經濾波值去馬賽克以產生第一色度去馬賽克值及第二色度去馬賽克值。The method of claim 8, further comprising: using the processing circuit, demosaicing the first filtered values and the second filtered values to generate a first chroma de-mosaic value and a second chroma de-mosaic value. 如請求項9之方法,其中該等第一色度去馬賽克值及該等第二色度去馬賽克值具有較該等第一影像信號及該等第二影像信號更大的雜訊相關性之量。The method of claim 9, wherein the first chrominance demosaicing values and the second chrominance demosaicing values have greater noise correlation than the first image signals and the second image signals. the amount. 如請求項9之方法,其進一步包括: 利用該處理電路對該等第三影像信號去馬賽克以產生去馬賽克之第三影像信號。The method of claim 9, further comprising: demosaicing the third image signals with the processing circuit to generate a demosaiced third image signal. 如請求項11之方法,其進一步包括: 利用該處理電路,將一顏色校正矩陣應用至該等第一色度去馬賽克值、該等第二色度去馬賽克值及該去馬賽克之第三影像信號,以產生標準紅、標準綠及標準藍(sRGB)影像資料。The method of claim 11, further comprising: applying, by the processing circuit, a color correction matrix to the first chrominance demosaicing values, the second chrominance demosaicing values, and the demosaiced third image Signals to produce standard red, standard green, and standard blue (sRGB) image data. 如請求項11之方法,其進一步包括: 利用該處理電路,基於該等第一色度去馬賽克值、該等第二色度去馬賽克值及該去馬賽克之第三影像信號產生亮度-色度-色調(LCH)影像資料。The method of claim 11, further comprising: generating, by the processing circuit, luminance-chrominance based on the first chrominance demosaicing value, the second chrominance demosaicing value, and the demosaiced third image signal - Hue (LCH) image data. 如請求項第12之方法,其進一步包括: 利用該處理電路,將該(sRGB)資料轉換至具有一亮度值之亮度-色度-色調(LCH)資料; 利用該處理電路,將該LCH資料中之該亮度值替換為該等第三影像信號;及 利用該處理電路,在將該LCH資料中之該亮度值替換為該等第三影像信號後,將該LCH資料變換回sRGB資料。The method of claim 12, further comprising: converting, by the processing circuit, the (sRGB) data to luminance-chrominance-tone (LCH) data having a luminance value; using the processing circuit, the LCH data The brightness value is replaced with the third image signal; and the processing circuit is used to convert the LCH data back to the sRGB data after replacing the brightness value in the LCH data with the third image signal. 如請求項8之方法,其中將該色度濾波器應用至該等第一差值及該等第二差值包括: 在該陣列中之該等影像感測器像素之一核上執行該等第一差值及該等第二差值之一加權平均。The method of claim 8, wherein applying the chrominance filter to the first difference and the second difference comprises: performing the nucleus on one of the image sensor pixels in the array The first difference and one of the second differences are weighted averaged. 如請求項15之方法,其中該核包含該陣列中之至少25個相鄰影像感測器像素。The method of claim 15, wherein the core comprises at least 25 adjacent image sensor pixels in the array. 一種成像系統,其包括: 第一影像感測器像素,其收集一第一顏色之第一影像信號; 第二影像感測器像素,其收集一第二顏色之第二影像信號; 第三影像感測器像素,其收集一第三顏色之第三影像信號; 處理電路,其中該處理電路經組態以使用該第三影像信號產生一第四顏色之第四影像信號,該處理電路經組態以將該等第一像信號、該等第二影像信號及該等第四影像信號組合以產生一導出亮度值,該處理電路經組態以基於該等第一影像信號、該等第二影像信及該等第三影像信號計算一估計亮度值,且該處理電路經組態以使用該導出亮度值及該估計亮度值修改該等第一影像信號、該等第二影像信號及該等第四影像信號。An imaging system includes: a first image sensor pixel that collects a first image signal of a first color; a second image sensor pixel that collects a second image signal of a second color; a sensor pixel that collects a third image signal of a third color; a processing circuit, wherein the processing circuit is configured to generate a fourth image signal of a fourth color using the third image signal, the processing circuit is grouped Combining the first image signals, the second image signals, and the fourth image signals to generate an derived luminance value, the processing circuit being configured to be based on the first image signals, the second The image signal and the third image signals calculate an estimated brightness value, and the processing circuit is configured to modify the first image signal, the second image signals, and the like using the derived brightness value and the estimated brightness value The fourth image signal. 如請求項17之成像系統,其中該處理電路經組態以基於該導出亮度值及該估計亮度值計算一定標值(scaling value),且該處理電路經組態以藉由將該等第一影像信號、該等第二影像信號及該等第四影像信號乘以經產生之該定標值而修改該等第一影像信號、該等第二影像信號及該等第四影像信號。The imaging system of claim 17, wherein the processing circuit is configured to calculate a scaling value based on the derived luminance value and the estimated luminance value, and the processing circuit is configured to The image signal, the second image signal, and the fourth image signal are multiplied by the generated calibration value to modify the first image signal, the second image signal, and the fourth image signal. 如請求項17之成像系統,其中該等第一影像感測器像素具有一第一光譜回應,該等第二影像感測器像素具有一第二光譜回應,且該等第三影像感測器像素具有一第三光譜回應,該第三光譜回應大於該第一光譜回應及該第二光譜回應之一總和之百分之75。The imaging system of claim 17, wherein the first image sensor pixels have a first spectral response, the second image sensor pixels have a second spectral response, and the third image sensors The pixel has a third spectral response that is greater than 75 percent of the sum of the first spectral response and the second spectral response. 如請求項17之成像系統,其中該處理電路經組態以藉由使用加權因子計算該等第一影像信號、該等第二影像信號及該等第四影像信號之一線性組合而將該等第一影像信號、該等第二影像信號及該等第四影像信號組合以形成該導出亮度值。The imaging system of claim 17, wherein the processing circuit is configured to calculate a linear combination of the first image signal, the second image signal, and the fourth image signal by using a weighting factor The first image signal, the second image signals, and the fourth image signals are combined to form the derived luminance value.
TW106125422A 2013-03-15 2013-03-15 Imaging systems with clear filter pixels TWI617198B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125422A TWI617198B (en) 2013-03-15 2013-03-15 Imaging systems with clear filter pixels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125422A TWI617198B (en) 2013-03-15 2013-03-15 Imaging systems with clear filter pixels

Publications (2)

Publication Number Publication Date
TW201737703A TW201737703A (en) 2017-10-16
TWI617198B true TWI617198B (en) 2018-03-01

Family

ID=61021581

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125422A TWI617198B (en) 2013-03-15 2013-03-15 Imaging systems with clear filter pixels

Country Status (1)

Country Link
TW (1) TWI617198B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050238225A1 (en) * 2004-04-21 2005-10-27 Young-Mi Jo Digital signal processing apparatus in image sensor
TWI328389B (en) * 2006-12-06 2010-08-01
TWI339061B (en) * 2006-02-28 2011-03-11 Samsung Electronics Co Ltd Image processing apparatus and method for reducing noise in image signal
EP2302900A2 (en) * 2009-08-31 2011-03-30 Sony Corporation Image processing device, image processing method, and program
US20120075511A1 (en) * 2010-09-26 2012-03-29 Hiok Nam Tay Color image sampling and reconstruction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050238225A1 (en) * 2004-04-21 2005-10-27 Young-Mi Jo Digital signal processing apparatus in image sensor
TWI339061B (en) * 2006-02-28 2011-03-11 Samsung Electronics Co Ltd Image processing apparatus and method for reducing noise in image signal
TWI328389B (en) * 2006-12-06 2010-08-01
EP2302900A2 (en) * 2009-08-31 2011-03-30 Sony Corporation Image processing device, image processing method, and program
US20120075511A1 (en) * 2010-09-26 2012-03-29 Hiok Nam Tay Color image sampling and reconstruction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Adaptive Loop Filtering of Luminance and Chrominance Samples Using Same Filtering Shape, Structure and Map",Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 6th Meeting: Torino, Italy, 14-22 July, 2011. *

Also Published As

Publication number Publication date
TW201737703A (en) 2017-10-16

Similar Documents

Publication Publication Date Title
US10070104B2 (en) Imaging systems with clear filter pixels
US10136107B2 (en) Imaging systems with visible light sensitive pixels and infrared light sensitive pixels
US9287316B2 (en) Systems and methods for mitigating image sensor pixel value clipping
US9793306B2 (en) Imaging systems with stacked photodiodes and chroma-luma de-noising
US7400332B2 (en) Hexagonal color pixel structure with white pixels
EP2323408A1 (en) Image processing device, image processing method, image capturing device, and computer program
US10616536B2 (en) Imaging systems having broadband monochromatic and chromatic image sensors
WO2016047240A1 (en) Image processing device, image pickup element, image pickup device, and image processing method
US9179110B2 (en) Imaging systems with modified clear image pixels
TWI536765B (en) Imaging systems with clear filter pixels
TWI617198B (en) Imaging systems with clear filter pixels
TWI601427B (en) Imaging systems with clear filter pixels

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees