TWI553926B - Resistive memory and method of fabricating the same - Google Patents
Resistive memory and method of fabricating the same Download PDFInfo
- Publication number
- TWI553926B TWI553926B TW104135537A TW104135537A TWI553926B TW I553926 B TWI553926 B TW I553926B TW 104135537 A TW104135537 A TW 104135537A TW 104135537 A TW104135537 A TW 104135537A TW I553926 B TWI553926 B TW I553926B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electrode
- oxygen exchange
- resistive memory
- variable resistance
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Description
本發明是有關於一種記憶體及其製造方法,且特別是有關於一種電阻式記憶體及其製造方法。The present invention relates to a memory and a method of fabricating the same, and more particularly to a resistive memory and a method of fabricating the same.
近年來電阻式記憶體(諸如電阻式隨機存取記憶體(Resistive Random Access Memory,RRAM))的發展極為快速,是目前最受矚目之未來記憶體的結構。由於電阻式記憶體具備低功耗、高速運作、高密度以及相容於互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)製程技術之潛在優勢,因此非常適合作為下一世代之非揮發性記憶體元件。In recent years, resistive memory (such as Resistive Random Access Memory (RRAM)) has developed extremely rapidly and is currently the most attractive structure of future memory. Resistive memory is ideal for low-power, high-speed operation, high density, and compatibility with Complementary Metal Oxide Semiconductor (CMOS) process technology, making it ideal for next generation non-volatile Memory component.
現行的電阻式記憶體通常包括相對配置的上電極與下電極以及位於上電極與下電極之間的介電層。當對現行的電阻式記憶體進行操作前,首先需進行形成(forming)的程序,對電阻式記憶體施加較高的正偏壓,使得介電層中產生氧空缺(oxygen vacancy)或氧離子(oxygen ion)而形成導電燈絲(filament)。在進行重置(reset)操作時,對電阻式記憶體施加負偏壓,使得導電燈絲斷開。此時,鄰近上電極處的氧空缺被重新填滿(或者氧離子脫離電流路徑),使得燈絲在鄰近上電極處斷開。另一方面,當對現行的電阻式記憶體進行設定(set)操作時,對電阻式記憶體施加正偏壓,使得介電層中再次產生氧空缺或氧離子以重新形成導電燈絲。Current resistive memories typically include opposing upper and lower electrodes and a dielectric layer between the upper and lower electrodes. Before the current resistive memory is operated, a forming process is first performed to apply a high positive bias to the resistive memory to cause oxygen vacancy or oxygen ions in the dielectric layer. (electrical ion) forms a conductive filament. When a reset operation is performed, a negative bias is applied to the resistive memory so that the conductive filament is broken. At this point, the oxygen vacancies adjacent to the upper electrode are refilled (or the oxygen ions are off the current path) such that the filament is disconnected adjacent the upper electrode. On the other hand, when a current set-up operation is performed on the resistive memory, a positive bias is applied to the resistive memory so that oxygen vacancies or oxygen ions are again generated in the dielectric layer to reform the conductive filament.
由於習知的RRAM的製程是藉由蝕刻製程來定義出記憶胞(cell),在蝕刻製程中的電漿步驟或是濕式清潔步驟中,容易在記憶胞的側壁上形成懸浮鍵(dangling bond)。在進行重置的過程中,上述懸浮鍵會與氧空缺或氧離子結合,進而導致重置失敗(reset failure)。因此,如何提供一種電阻式記憶體及其製造方法,其可保護記憶胞的側壁,以避免重置失敗,進而提升高溫數據保持能力(High-temperature data retention,HTDR)將成為重要的一門課題。Since the conventional RRAM process defines a memory cell by an etching process, it is easy to form a dangling bond on the sidewall of the memory cell during the plasma step or the wet cleaning step in the etching process. ). During the reset process, the above floating key will combine with oxygen vacancies or oxygen ions, resulting in a reset failure. Therefore, how to provide a resistive memory and a manufacturing method thereof, which can protect the sidewall of the memory cell to avoid reset failure, thereby improving high-temperature data retention (HTDR) will become an important issue.
本發明提供一種電阻式記憶體及其製造方法,其可保護記憶胞的側壁,以避免重置失敗,進而提升高溫數據保持能力。The invention provides a resistive memory and a manufacturing method thereof, which can protect sidewalls of a memory cell to avoid reset failure, thereby improving high temperature data retention capability.
本發明提供一種電阻式記憶體包括:第一電極、第二電極、可變電阻層、氧交換層、以及保護層。第一電極與第二電極相對設置。可變電阻層配置於第一電極與第二電極之間。氧交換層配置於可變電阻層與第二電極之間。保護層至少配置於氧交換層的側壁上。The invention provides a resistive memory comprising: a first electrode, a second electrode, a variable resistance layer, an oxygen exchange layer, and a protective layer. The first electrode is disposed opposite to the second electrode. The variable resistance layer is disposed between the first electrode and the second electrode. The oxygen exchange layer is disposed between the variable resistance layer and the second electrode. The protective layer is disposed at least on the sidewall of the oxygen exchange layer.
本發明提供一種電阻式記憶體的製造方法,其步驟如下。形成相對配置的第一電極與第二電極。形成可變電阻層於第一電極與第二電極之間。形成氧交換層於可變電阻層與第二電極之間。形成保護層,其至少覆蓋氧交換層的側壁。The present invention provides a method of manufacturing a resistive memory, the steps of which are as follows. A first electrode and a second electrode are formed in opposite configurations. A variable resistance layer is formed between the first electrode and the second electrode. An oxygen exchange layer is formed between the variable resistance layer and the second electrode. A protective layer is formed which covers at least the sidewalls of the oxygen exchange layer.
基於上述,本發明藉由將氧交換層填入第一介電層中的開口中,使得蝕刻製程中的電漿步驟或是濕式清潔步驟不會損害氧交換層的側壁,進而改善氧交換層的側壁的平整度。另外,本發明藉由具有高介電常數的保護層覆蓋氧交換層的側壁,其不僅能保護氧交換層的側壁,還能用以提供氧至氧交換層,並將燈絲侷限在氧交換層的中心,以增加電流密度,進而提升高溫數據保持能力。Based on the above, the present invention fills the opening in the first dielectric layer by the oxygen exchange layer, so that the plasma step or the wet cleaning step in the etching process does not damage the sidewall of the oxygen exchange layer, thereby improving oxygen exchange. The flatness of the side walls of the layer. In addition, the present invention covers the sidewall of the oxygen exchange layer by a protective layer having a high dielectric constant, which not only protects the sidewall of the oxygen exchange layer, but also serves to provide an oxygen to oxygen exchange layer and confines the filament to the oxygen exchange layer. The center to increase the current density, thereby increasing the high temperature data retention capability.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。The invention will be more fully described with reference to the drawings of the embodiments. However, the invention may be embodied in a variety of different forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar reference numbers indicate the same or similar elements, and the following paragraphs will not be repeated.
圖1A至圖1I是本發明之一實施例的電阻式記憶體之製造流程的剖面示意圖。1A to 1I are schematic cross-sectional views showing a manufacturing process of a resistive memory according to an embodiment of the present invention.
請參照圖1A,形成介層窗104於介電層102中。詳細地說,介層窗104的形成方法可例如是先在介電層102中形成介層窗開口(未繪示)。然後,共形形成阻障層104b於介層窗開口中。再將插塞104a填入該介層窗開口中,使得阻障層104b配置於介電層102與插塞104a之間。在一實施例中,插塞104a與阻障層104b可視為介層窗104。雖然圖1A中僅繪示一個介層窗,但本發明不限於此,在其他實施例中,介層窗的數量可依照需求來進行調整。在一實施例中,插塞104a的材料包括金屬材料,金屬材料可例如是鎢,其形成方法可例如是化學氣相沈積法。阻障層104b的材料可例如是氮化鎢、氮化鈦、氮化鉭或其組合,其形成方法例如是化學氣相沈積法。介電層102的材料可包括氧化矽、氮化矽或其組合,其形成方法可例如是化學氣相沈積法。Referring to FIG. 1A, a via 104 is formed in the dielectric layer 102. In detail, the method of forming the via 104 may be, for example, first forming a via opening (not shown) in the dielectric layer 102. Then, the barrier layer 104b is conformally formed in the via opening. The plug 104a is then filled into the via opening such that the barrier layer 104b is disposed between the dielectric layer 102 and the plug 104a. In an embodiment, the plug 104a and the barrier layer 104b may be considered as a via 104. Although only one via window is illustrated in FIG. 1A, the present invention is not limited thereto, and in other embodiments, the number of vias may be adjusted as needed. In an embodiment, the material of the plug 104a includes a metal material, and the metal material may be, for example, tungsten, and the forming method thereof may be, for example, a chemical vapor deposition method. The material of the barrier layer 104b may be, for example, tungsten nitride, titanium nitride, tantalum nitride or a combination thereof, and the formation method thereof is, for example, a chemical vapor deposition method. The material of the dielectric layer 102 may include ruthenium oxide, tantalum nitride or a combination thereof, and the formation method thereof may be, for example, a chemical vapor deposition method.
然後,依序形成第一電極106、可變電阻層108以及第一介電層110於介電層102上。第一電極106的材料可包括氮化鈦(TiN)、鉑(Pt)、銥(Ir)、釕(Ru)、鈦(Ti)、鎢(W)、鉭(Ta)、鋁(Al)、鋯(Zr)、鉿(Hf)、鎳(Ni)、銅(Cu)、鈷(Co)、鐵(Fe)、釓(Y)、錳(Mo)或其組合,其形成方法可例如是物理氣相沈積法或化學氣相沈積法。可變電阻層108的材料可包括氧化鉿(可例如是HfO或HfO 2等)、氧化鑭、氧化釓、氧化釔、氧化鋯、氧化鈦、氧化鉭、氧化鎳、氧化鎢、氧化銅、氧化鈷、氧化鐵、氧化鋁或其組合,其形成方法例如是化學氣相沈積法。第一介電層110的材料可包括氧化矽、氮化矽或其組合,其形成方法可例如是原子層沉積法(Atomic Layer Deposition,ALD)或化學氣相沈積法。 Then, the first electrode 106, the variable resistance layer 108, and the first dielectric layer 110 are sequentially formed on the dielectric layer 102. The material of the first electrode 106 may include titanium nitride (TiN), platinum (Pt), iridium (Ir), ruthenium (Ru), titanium (Ti), tungsten (W), tantalum (Ta), aluminum (Al), Zirconium (Zr), hafnium (Hf), nickel (Ni), copper (Cu), cobalt (Co), iron (Fe), yttrium (Y), manganese (Mo) or a combination thereof, which may be formed, for example, by physical means. Vapor deposition or chemical vapor deposition. The material of the variable resistance layer 108 may include cerium oxide (which may be, for example, HfO or HfO 2 , etc.), cerium oxide, cerium oxide, cerium oxide, zirconium oxide, titanium oxide, cerium oxide, nickel oxide, tungsten oxide, copper oxide, oxidation. Cobalt, iron oxide, aluminum oxide or a combination thereof is formed, for example, by chemical vapor deposition. The material of the first dielectric layer 110 may include ruthenium oxide, tantalum nitride or a combination thereof, and the formation method thereof may be, for example, Atomic Layer Deposition (ALD) or chemical vapor deposition.
請參照圖1B,形成開口10於第一介電層110中,其中開口10暴露可變電阻層108的頂面。開口10對應於介層窗104,其可用以定義後續記憶胞120的區域(如圖1I所示)。Referring to FIG. 1B, an opening 10 is formed in the first dielectric layer 110, wherein the opening 10 exposes the top surface of the variable resistance layer 108. The opening 10 corresponds to the via 104, which can be used to define the region of the subsequent memory cell 120 (as shown in FIG. 1I).
請參照圖1C,共形形成保護層112於介電層102上。保護層112覆蓋第一介電層110a的頂面以及開口10的表面。在一實施例中,保護層112的材料包括高介電常數材料。高介電常數材料可包括金屬氧化物,所述金屬氧化物可例如是氧化鉿、氧化鑭、氧化釓、氧化釔、氧化鋯、氧化鈦、氧化鉭、氧化鎳、氧化鎢、氧化銅、氧化鈷、氧化鐵、氧化鋁 或其組合。保護層112的形成方法可例如是原子層沈積法或化學氣相沈積法,其厚度可介於0.3 nm至2 nm之間。Referring to FIG. 1C, a protective layer 112 is formed on the dielectric layer 102 in a conformal manner. The protective layer 112 covers the top surface of the first dielectric layer 110a and the surface of the opening 10. In an embodiment, the material of the protective layer 112 comprises a high dielectric constant material. The high dielectric constant material may include a metal oxide, which may be, for example, cerium oxide, cerium oxide, cerium oxide, cerium oxide, zirconium oxide, titanium oxide, cerium oxide, nickel oxide, tungsten oxide, copper oxide, oxidation. Cobalt, iron oxide, aluminum oxide or a combination thereof. The formation method of the protective layer 112 may be, for example, an atomic layer deposition method or a chemical vapor deposition method, and the thickness thereof may be between 0.3 nm and 2 nm.
請參照圖1D,形成氧交換層114於保護層112上。氧交換層114填入開口10且覆蓋保護層112的表面,使得保護層112位於氧交換層114與第一介電層110a之間。氧交換層114的材料可包括鈦(Ti)、鉭(Ta)、鉿(Hf)、鋯(Zr)、鉑(Pt)、鋁(Al)或其組合,其形成方法可例如是物理氣相沈積法或化學氣相沈積法。值得注意的是,本實施例可藉由將氧交換層114填入開口10,以避免蝕刻製程中的電漿步驟或是濕式清潔步驟損害氧交換層114的側壁,進而改善氧交換層114的側壁的平整度,避免懸浮鍵的產生。因此,本實施例可避免重置失敗並提升高溫數據保持能力。Referring to FIG. 1D, an oxygen exchange layer 114 is formed on the protective layer 112. The oxygen exchange layer 114 fills the opening 10 and covers the surface of the protective layer 112 such that the protective layer 112 is located between the oxygen exchange layer 114 and the first dielectric layer 110a. The material of the oxygen exchange layer 114 may include titanium (Ti), tantalum (Ta), hafnium (Hf), zirconium (Zr), platinum (Pt), aluminum (Al) or a combination thereof, and the formation method thereof may be, for example, a physical gas phase. Deposition or chemical vapor deposition. It should be noted that this embodiment can improve the oxygen exchange layer 114 by filling the oxygen exchange layer 114 into the opening 10 to prevent the plasma step or the wet cleaning step in the etching process from damaging the sidewall of the oxygen exchange layer 114. The flatness of the side walls avoids the generation of floating keys. Therefore, the present embodiment can avoid reset failure and improve high temperature data retention capability.
請參照圖1E,進行平坦化製程,移除部分氧交換層114,以暴露保護層112的頂面。在一實施例中,平坦化製程可例如是回蝕刻製程(Etch back)或化學機械硏磨製程(CMP)。Referring to FIG. 1E, a planarization process is performed to remove a portion of the oxygen exchange layer 114 to expose the top surface of the protective layer 112. In an embodiment, the planarization process can be, for example, an etchback process or a chemical mechanical honing process (CMP).
請參照圖1F,形成阻障層116於氧交換層114a上。在一實施例中,阻障層116的材料包括金屬氧化物。在另一實施例中,阻障層116的材料可包括氮氧化鈦、氧化鋁、氧化鉿、氧化鋯或其組合。以氮氧化鈦為例,可進行氮化處理,使得氮氧化鈦僅形成於氧交換層114a的頂面上。另一方面,以氧化鋁為例,可進行沈積處理,使得氧化鋁不僅覆蓋氧交換層114a的頂面,還可覆蓋保護層112的頂面(未繪示)。值得注意的是,在進行設定或重置時,阻障層116可防止較大電流流經氧交換層114a時所導致燈絲不均勻的現象。Referring to FIG. 1F, a barrier layer 116 is formed on the oxygen exchange layer 114a. In an embodiment, the material of the barrier layer 116 comprises a metal oxide. In another embodiment, the material of the barrier layer 116 may include titanium oxynitride, aluminum oxide, cerium oxide, zirconium oxide, or a combination thereof. Taking titanium oxynitride as an example, nitriding treatment may be performed so that titanium oxynitride is formed only on the top surface of the oxygen exchange layer 114a. On the other hand, in the case of alumina, a deposition treatment may be performed such that the alumina covers not only the top surface of the oxygen exchange layer 114a but also the top surface of the protective layer 112 (not shown). It is worth noting that the barrier layer 116 prevents the filament from being uneven when a large current flows through the oxygen exchange layer 114a during setting or resetting.
請參照圖1G,形成第二電極118於保護層112與阻障層116上。第二電極118的材料可包括氮化鈦(TiN)、鉑(Pt)、銥(Ir)、釕(Ru)、鈦(Ti)、鎢(W)、鉭(Ta)、鋁(Al)、鋯(Zr)、鉿(Hf)、鎳(Ni)、銅(Cu)、鈷(Co)、鐵(Fe)、釓(Y)、錳(Mo)或其組合,其形成方法可例如是物理氣相沈積法或化學氣相沈積法。Referring to FIG. 1G, a second electrode 118 is formed on the protective layer 112 and the barrier layer 116. The material of the second electrode 118 may include titanium nitride (TiN), platinum (Pt), iridium (Ir), ruthenium (Ru), titanium (Ti), tungsten (W), tantalum (Ta), aluminum (Al), Zirconium (Zr), hafnium (Hf), nickel (Ni), copper (Cu), cobalt (Co), iron (Fe), yttrium (Y), manganese (Mo) or a combination thereof, which may be formed, for example, by physical means. Vapor deposition or chemical vapor deposition.
請參照圖1H,進行圖案化製程,移除部分第二電極118、部分保護層112、部分第一介電層110a、部分可變電阻層108以及部分第一電極106,以暴露介電層102的頂面,進而形成記憶胞120。Referring to FIG. 1H, a patterning process is performed to remove a portion of the second electrode 118, a portion of the protective layer 112, a portion of the first dielectric layer 110a, a portion of the variable resistance layer 108, and a portion of the first electrode 106 to expose the dielectric layer 102. The top surface, in turn, forms a memory cell 120.
請參照圖1I,共形形成金屬氧化層122於記憶胞120的頂面與側壁以及介電層102的頂面(未繪示)。接著,毯覆性的形成介電層124於金屬氧化層122上(未繪示)。然後,再以第二電極118a為停止層進行一平坦化製程以移除部分金屬氧化層122與部分介電層124,以露出第二電極118a的頂面。在一實施例中,金屬氧化層122的材料可包括氧化鉿、氧化鑭、氧化釓、氧化釔、氧化鋯、氧化鈦、氧化鉭、氧化鎳、氧化鎢、氧化銅、氧化鈷、氧化鐵、氧化鋁或其組合,其形成方法可例如是原子層沈積法或化學氣相沈積法。介電層124的材料可包括氧化矽、氮化矽或其組合,其形成方法可例如是化學氣相沈積法。Referring to FIG. 1I, a metal oxide layer 122 is formed on the top surface and sidewalls of the memory cell 120 and a top surface (not shown) of the dielectric layer 102. Next, a dielectric layer 124 is formed on the metal oxide layer 122 (not shown). Then, a planarization process is performed with the second electrode 118a as a stop layer to remove a portion of the metal oxide layer 122 and a portion of the dielectric layer 124 to expose the top surface of the second electrode 118a. In an embodiment, the material of the metal oxide layer 122 may include cerium oxide, cerium oxide, cerium oxide, cerium oxide, zirconium oxide, titanium oxide, cerium oxide, nickel oxide, tungsten oxide, copper oxide, cobalt oxide, iron oxide, Alumina or a combination thereof may be formed by, for example, atomic layer deposition or chemical vapor deposition. The material of the dielectric layer 124 may include ruthenium oxide, tantalum nitride or a combination thereof, and the formation method thereof may be, for example, a chemical vapor deposition method.
請繼續參照圖1I,本實施例提供一種電阻式記憶體100包括介電層102、介層窗104、金屬氧化層122、介電層124以及記憶胞120。介層窗104配置在介電層102中。記憶胞120配置在介層窗104上。介電層124配置在記憶胞120旁。金屬氧化層122配置在介電層124與記憶胞120以及介電層124與介電層102之間。Referring to FIG. 1I , the resistive memory 100 includes a dielectric layer 102 , a via 104 , a metal oxide layer 122 , a dielectric layer 124 , and a memory cell 120 . The via window 104 is disposed in the dielectric layer 102. The memory cell 120 is disposed on the via 104. Dielectric layer 124 is disposed adjacent to memory cell 120. The metal oxide layer 122 is disposed between the dielectric layer 124 and the memory cell 120 and between the dielectric layer 124 and the dielectric layer 102.
記憶胞120包括:第一電極106a、第二電極118a、可變電阻層108a、第一介電層110b、氧交換層114a、阻障層116以及保護層112a。第一電極106a與第二電極118a相對設置。可變電阻層108a配置於第一電極106a與第二電極118a之間。氧交換層114a配置於可變電阻層108a與第二電極118a之間。第一介電層110b配置於氧交換層114a旁,且配置於可變電阻層108a上。阻障層116配置於氧交換層114a與第二電極118a之間。在本實施例中,保護層112a不僅配置於氧交換層114a的側壁上,還延伸至氧交換層114a與可變電阻層108a之間以及第一介電層110b的頂面。從另一方面來看,保護層112a亦配置於第一介電層110b與氧交換層114a之間。The memory cell 120 includes a first electrode 106a, a second electrode 118a, a variable resistance layer 108a, a first dielectric layer 110b, an oxygen exchange layer 114a, a barrier layer 116, and a protective layer 112a. The first electrode 106a is disposed opposite to the second electrode 118a. The variable resistance layer 108a is disposed between the first electrode 106a and the second electrode 118a. The oxygen exchange layer 114a is disposed between the variable resistance layer 108a and the second electrode 118a. The first dielectric layer 110b is disposed beside the oxygen exchange layer 114a and disposed on the variable resistance layer 108a. The barrier layer 116 is disposed between the oxygen exchange layer 114a and the second electrode 118a. In the present embodiment, the protective layer 112a is disposed not only on the sidewall of the oxygen exchange layer 114a but also between the oxygen exchange layer 114a and the variable resistance layer 108a and the top surface of the first dielectric layer 110b. On the other hand, the protective layer 112a is also disposed between the first dielectric layer 110b and the oxygen exchange layer 114a.
值得一提的是,由於本實施例是藉由將氧交換層114填入開口10,故不會受蝕刻製程中的電漿步驟或是濕式清潔步驟損害氧交換層114的側壁,可避免氧交換層114a的側壁形成懸浮鍵,進而減少重置失敗的機率。另一方面,本實施例之保護層112a可用以提供氧至氧交換層114a。換言之,在進行設定時,氧空缺或氧離子的密度將更容易控制在氧交換層114a的中心(亦即將燈絲侷限在氧交換層114a的中心),因此,其可增加電流密度,進而提升高溫數據保持能力。It is worth mentioning that, since the present embodiment is filled with the oxygen exchange layer 114 into the opening 10, the side wall of the oxygen exchange layer 114 is not damaged by the plasma step or the wet cleaning step in the etching process. The sidewalls of the oxygen exchange layer 114a form a floating bond, thereby reducing the chance of reset failure. On the other hand, the protective layer 112a of the present embodiment can be used to provide an oxygen to oxygen exchange layer 114a. In other words, at the time of setting, the density of oxygen vacancies or oxygen ions will be more easily controlled at the center of the oxygen exchange layer 114a (i.e., the filament is confined to the center of the oxygen exchange layer 114a), thereby increasing the current density and thereby increasing the temperature. Data retention capabilities.
此外,本實施例之第一介電層110b亦配置於氧交換層114a旁,其可將電場更集中在氧交換層114a的中心,藉此產生較集中的燈絲,進而提升高溫數據保持能力。In addition, the first dielectric layer 110b of the present embodiment is also disposed adjacent to the oxygen exchange layer 114a, which can concentrate the electric field more at the center of the oxygen exchange layer 114a, thereby generating a concentrated filament, thereby improving the high temperature data retention capability.
綜上所述,本發明藉由將氧交換層填入第一介電層中的開口中,使得蝕刻製程中的電漿步驟或是濕式清潔步驟不會損害氧交換層的側壁,進而改善氧交換層的側壁的平整度。另外,本發明藉由具有高介電常數的保護層覆蓋氧交換層的側壁,其不僅能保護氧交換層的側壁,還能用以提供氧至氧交換層,並將燈絲侷限在氧交換層的中心,以增加電流密度,進而提升高溫數據保持能力。In summary, the present invention fills the opening in the first dielectric layer by the oxygen exchange layer, so that the plasma step or the wet cleaning step in the etching process does not damage the sidewall of the oxygen exchange layer, thereby improving The flatness of the side walls of the oxygen exchange layer. In addition, the present invention covers the sidewall of the oxygen exchange layer by a protective layer having a high dielectric constant, which not only protects the sidewall of the oxygen exchange layer, but also serves to provide an oxygen to oxygen exchange layer and confines the filament to the oxygen exchange layer. The center to increase the current density, thereby increasing the high temperature data retention capability.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
10‧‧‧開口
100‧‧‧電阻式記憶體
102、124‧‧‧介電層
104‧‧‧介層窗
104a‧‧‧插塞
104b‧‧‧阻障層
106、106a‧‧‧第一電極
108、108a‧‧‧可變電阻層
110、110a、110b‧‧‧第一介電層
112、112a‧‧‧保護層
114、114a‧‧‧氧交換層
116‧‧‧阻障層
118、118a‧‧‧第二電極
120‧‧‧記憶胞
122‧‧‧金屬氧化層10‧‧‧ openings
100‧‧‧Resistive memory
102, 124‧‧‧ dielectric layer
104‧‧‧layer window
104a‧‧‧ Plug
104b‧‧‧Barrier layer
106, 106a‧‧‧ first electrode
108, 108a‧‧‧variable resistance layer
110, 110a, 110b‧‧‧ first dielectric layer
112, 112a‧‧‧ protective layer
114, 114a‧‧‧ oxygen exchange layer
116‧‧‧Barrier layer
118, 118a‧‧‧ second electrode
120‧‧‧ memory cells
122‧‧‧metal oxide layer
圖1A至圖1I是本發明之一實施例的電阻式記憶體之製造流程的剖面示意圖。1A to 1I are schematic cross-sectional views showing a manufacturing process of a resistive memory according to an embodiment of the present invention.
100‧‧‧電阻式記憶體 100‧‧‧Resistive memory
102、124‧‧‧介電層 102, 124‧‧‧ dielectric layer
104‧‧‧介層窗 104‧‧‧layer window
106a‧‧‧第一電極 106a‧‧‧First electrode
108a‧‧‧可變電阻層 108a‧‧‧Variable Resistance Layer
110b‧‧‧第一介電層 110b‧‧‧First dielectric layer
112a‧‧‧保護層 112a‧‧‧Protective layer
114a‧‧‧氧交換層 114a‧‧‧Oxygen exchange layer
116‧‧‧阻障層 116‧‧‧Barrier layer
118a‧‧‧第二電極 118a‧‧‧second electrode
120‧‧‧記憶胞 120‧‧‧ memory cells
122‧‧‧金屬氧化層 122‧‧‧metal oxide layer
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104135537A TWI553926B (en) | 2015-10-29 | 2015-10-29 | Resistive memory and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104135537A TWI553926B (en) | 2015-10-29 | 2015-10-29 | Resistive memory and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI553926B true TWI553926B (en) | 2016-10-11 |
TW201715763A TW201715763A (en) | 2017-05-01 |
Family
ID=57848292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104135537A TWI553926B (en) | 2015-10-29 | 2015-10-29 | Resistive memory and method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI553926B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI744165B (en) * | 2021-01-06 | 2021-10-21 | 華邦電子股份有限公司 | Resistive random access memory and method of fabricating the same |
US11770985B2 (en) | 2020-09-21 | 2023-09-26 | Winbond Electronics Corp. | Resistive random access memory and method of fabricating the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110473961B (en) * | 2018-05-10 | 2023-04-14 | 华邦电子股份有限公司 | Resistive random access memory structure and manufacturing method thereof |
TWI747366B (en) * | 2020-07-08 | 2021-11-21 | 華邦電子股份有限公司 | Resistive random access memory and method of fabricating the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2560171A2 (en) * | 2011-08-19 | 2013-02-20 | Samsung Electronics Co., Ltd. | Nonvolatile resistive memory elements and memory devices including the same |
US8445882B2 (en) * | 2010-07-23 | 2013-05-21 | Samsung Electronics Co., Ltd. | Non-volatile memory element and memory device including the same |
US20150017780A1 (en) * | 2012-02-29 | 2015-01-15 | Intermolecular Inc. | Nonvolatile Resistive Memory Element With an Integrated Oxygen Isolation Structure |
US9048421B2 (en) * | 2012-09-14 | 2015-06-02 | Samsung Electronics Co., Ltd. | Variable resistance memory device and methods of forming the same |
US9093369B2 (en) * | 2012-06-07 | 2015-07-28 | Samsung Electronics Co., Ltd. | Three-dimensional resistive random access memory devices, methods of operating the same, and methods of fabricating the same |
-
2015
- 2015-10-29 TW TW104135537A patent/TWI553926B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8445882B2 (en) * | 2010-07-23 | 2013-05-21 | Samsung Electronics Co., Ltd. | Non-volatile memory element and memory device including the same |
EP2560171A2 (en) * | 2011-08-19 | 2013-02-20 | Samsung Electronics Co., Ltd. | Nonvolatile resistive memory elements and memory devices including the same |
US20150017780A1 (en) * | 2012-02-29 | 2015-01-15 | Intermolecular Inc. | Nonvolatile Resistive Memory Element With an Integrated Oxygen Isolation Structure |
US9093369B2 (en) * | 2012-06-07 | 2015-07-28 | Samsung Electronics Co., Ltd. | Three-dimensional resistive random access memory devices, methods of operating the same, and methods of fabricating the same |
US9048421B2 (en) * | 2012-09-14 | 2015-06-02 | Samsung Electronics Co., Ltd. | Variable resistance memory device and methods of forming the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11770985B2 (en) | 2020-09-21 | 2023-09-26 | Winbond Electronics Corp. | Resistive random access memory and method of fabricating the same |
TWI744165B (en) * | 2021-01-06 | 2021-10-21 | 華邦電子股份有限公司 | Resistive random access memory and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
TW201715763A (en) | 2017-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11024802B2 (en) | Method of fabricating resistive memory | |
TWI665674B (en) | Resistive random-access memory (rram) cell with recessed bottom electrode sidewalls and forming method thereof | |
CN106252505B (en) | RRAM device and method | |
TWI575789B (en) | Resistive randon access memory (rram) cell and method of making the same | |
CN106159086A (en) | RRAM device | |
US9130167B2 (en) | Method of manufacturing a nonvolatile memory device having a variable resistance element whose resistance value changes reversibly upon application of an electric pulse | |
TW201740552A (en) | Semiconductor structure and manufacturing method thereof | |
JP2017092471A (en) | Lower electrode of RRAM structure | |
TW201725682A (en) | Integrated circuits | |
JP2014049765A (en) | Semiconductor device and manufacturing method of the same | |
TWI553926B (en) | Resistive memory and method of fabricating the same | |
JP2005217189A (en) | Capacitive element and its manufacturing method | |
US20110024874A1 (en) | Semiconductor device having a 3d capacitor and method for manufacturing the same | |
US9960349B2 (en) | Resistive random-access memory structure and method for fabricating the same | |
US12087619B2 (en) | Semiconductor device and method of fabricating the same | |
TWI521579B (en) | Resistive memory and fabricating method thereof | |
US9099646B2 (en) | Manufacturing method of non-volatile storage device, and non-volatile storage device | |
TWI761193B (en) | Resistive random access memory cell and method of fabricating the same | |
TWI744165B (en) | Resistive random access memory and method of fabricating the same | |
TWI521576B (en) | Resistive random-access memory and method for fabricating the same | |
TW202114161A (en) | Non-volatile memory and method of fabricating the same | |
TWI752377B (en) | Semiconductor device and method of fabricating the same | |
US20170186947A1 (en) | Semiconductor device and method for manufacturing same | |
CN112951986A (en) | Semiconductor device and method for manufacturing the same | |
JP2007214377A (en) | Semiconductor device and its manufacturing method |