TWI527045B - Shift register circuit - Google Patents
Shift register circuit Download PDFInfo
- Publication number
- TWI527045B TWI527045B TW104102921A TW104102921A TWI527045B TW I527045 B TWI527045 B TW I527045B TW 104102921 A TW104102921 A TW 104102921A TW 104102921 A TW104102921 A TW 104102921A TW I527045 B TWI527045 B TW I527045B
- Authority
- TW
- Taiwan
- Prior art keywords
- control signal
- control
- transistor
- pull
- signal
- Prior art date
Links
Landscapes
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Shift Register Type Memory (AREA)
Description
本發明是有關於一種移位暫存器電路,尤其是有關於一種具有較佳驅動能力的移位暫存器電路。 The present invention relates to a shift register circuit, and more particularly to a shift register circuit having better drive capability.
移位暫存器係依據其內部之一控制訊號來決定是否輸出一閘極驅動訊號,且在移位暫存器不需要輸出閘極驅動訊號的時段中,將閘極驅動訊號以及控制訊號穩定在低電位,以避免移位暫存器在錯誤的時間輸出閘極驅動訊號驅動錯誤的閘極線。然習知之控制訊號易因為外部訊號的干擾或是漏電等問題而無法正確的驅動閘極驅動訊號,造成移位暫存器無法正常操作。 The shift register determines whether to output a gate driving signal according to one of the internal control signals, and stabilizes the gate driving signal and the control signal in a period in which the shift register does not need to output the gate driving signal. At low potential, to avoid shifting the register at the wrong time, the gate drive signal drives the wrong gate line. However, the control signal of the conventional control is not able to correctly drive the gate drive signal due to interference of external signals or leakage, which causes the shift register to fail to operate normally.
為了解決上述之缺憾,本發明提出了一種移位暫存器電路實施例,其包括一第一上拉電路、一第二上拉電路、一第一下拉控制電路、一第一下拉電路、一第二下拉控制電路、一第二下拉電路、一主下拉電路、以及一第一電容。 In order to solve the above drawbacks, the present invention provides a shift register circuit embodiment including a first pull-up circuit, a second pull-up circuit, a first pull-down control circuit, and a first pull-down circuit. a second pull-down control circuit, a second pull-down circuit, a main pull-down circuit, and a first capacitor.
第一上拉電路係用以接收一高頻時脈訊號,並根據一第n級控制訊號決定是否輸出一第n級閘極控制訊號;第二上拉電路與第一上拉電路電性耦接,係用以輸出一第 n+m級控制訊號;第一下拉控制電路係用以接收一時脈訊號,並根據該時脈訊號與第n級控制訊號輸出一第一下拉控制訊號;第一下拉電路係用以根據第一下拉控制訊號決定是否將第n級控制訊號及第n級閘極控制訊號穩定於一低電壓準位;一第二下拉控制電路係用以接收另一時脈訊號,並根據該時脈訊號與第n級控制訊號輸出一第二下拉控制訊號;第二下拉電路係用以根據第二下拉控制訊號決定是否將第n級控制訊號及第n級閘極控制訊號穩定於低電壓準位;主下拉電路係用以根據一第n+4級閘極控制訊號來決定是否將第n級控制訊號及第n級閘極控制訊號穩定於低電壓準位;第一電容具有第一端及第二端,其第一端係用以接收一第n-p級控制訊號,其第二端係用以與第n級控制訊號電性耦接,其中,m、n以及p為正整數。 The first pull-up circuit is configured to receive a high frequency clock signal, and determine whether to output an nth gate control signal according to an nth level control signal; the second pull-up circuit is electrically coupled to the first pull-up circuit Connected, used to output a The n+m level control signal; the first pull-down control circuit is configured to receive a clock signal, and output a first pull-down control signal according to the clock signal and the n-th control signal; the first pull-down circuit is used to Determining whether to stabilize the nth control signal and the nth gate control signal to a low voltage level according to the first pulldown control signal; a second pulldown control circuit is configured to receive another clock signal, and according to the time The pulse signal and the nth control signal output a second pulldown control signal; the second pulldown circuit is configured to determine whether to stabilize the nth control signal and the nth gate control signal to a low voltage level according to the second pulldown control signal The main pull-down circuit is configured to determine whether to stabilize the nth control signal and the nth gate control signal to a low voltage level according to an n+4th gate control signal; the first capacitor has a first end And the second end is configured to receive an nth-level control signal, and the second end is configured to be electrically coupled to the nth-level control signal, where m, n, and p are positive integers.
綜以上所述,由於本發明之移位暫存器電路實施例是利用電容電性耦接了第n-p級移位暫存器電路之控制訊號以及第n+m級移位暫存器電路之控制訊號,使得本級之控制訊號可以被第n-p級控制訊號以及第n+m級控制訊號所補償,因此本級控制訊號可有效避免因外部訊號干擾或者漏電等問題造成本級控制訊號驅動能力低落或者驅動錯誤等情況,進而大幅減少移位暫存器無法正常使用之狀況發生。 In view of the above, the embodiment of the shift register circuit of the present invention electrically couples the control signal of the nth-stage shift register circuit and the n+m-stage shift register circuit by using a capacitor. The control signal enables the control signal of this level to be compensated by the np-level control signal and the n+m-level control signal. Therefore, the control signal of the current level can effectively avoid the control signal driving capability of the current level due to external signal interference or leakage. Low or drive errors, etc., and thus greatly reduce the situation in which the shift register is not working properly.
10‧‧‧第一上拉電路 10‧‧‧First pull-up circuit
20‧‧‧第二上拉電路 20‧‧‧Second pull-up circuit
30‧‧‧第一下拉控制電路 30‧‧‧First pull-down control circuit
40‧‧‧第一下拉電路 40‧‧‧First pull-down circuit
50‧‧‧第二下拉控制電路 50‧‧‧Second pull-down control circuit
60‧‧‧第二下拉電路 60‧‧‧Second pull-down circuit
70‧‧‧主下拉電路 70‧‧‧Main pull-down circuit
T11,T21,T22,T23,T31,T32,T33,T34,T41,T42,T51,T52,T53,T54,T61,T62,T71,T72‧‧‧電晶體 T11, T21, T22, T23, T31, T32, T33, T34, T41, T42, T51, T52, T53, T54, T61, T62, T71, T72‧‧
C1‧‧‧第一電容 C1‧‧‧first capacitor
C2‧‧‧第二電容 C2‧‧‧second capacitor
LC1‧‧‧第一時脈訊號 LC1‧‧‧ first clock signal
LC2‧‧‧第二時脈訊號 LC2‧‧‧ second clock signal
HC(n-4)‧‧‧第n-4級高頻時脈訊號 HC(n-4)‧‧‧n-4th high frequency clock signal
HC(n-3)‧‧‧第n-3級高頻時脈訊號 HC(n-3)‧‧‧n-3th high frequency clock signal
HC(n-2)‧‧‧第n-2級高頻時脈訊號 HC(n-2)‧‧‧n-2th high frequency clock signal
HC(n-1)‧‧‧第n-1級高頻時脈訊號 HC(n-1)‧‧‧n-1th high frequency clock signal
HC(n)‧‧‧第n級高頻時脈訊號 HC(n)‧‧‧n-level high frequency clock signal
HC(n+1)‧‧‧第n+1級高頻時脈訊號 HC(n+1)‧‧‧n+1th high frequency clock signal
HC(n+2)‧‧‧第n+2級高頻時脈訊號 HC(n+2)‧‧‧n+2 high frequency clock signal
HC(n+3)‧‧‧第n+3級高頻時脈訊號 HC(n+3)‧‧‧n+3 high frequency clock signal
Q(n-2)‧‧‧第n-2級控制訊號 Q(n-2)‧‧‧n-2 level control signal
Q(n-1)‧‧‧第n-1級控制訊號 Q(n-1)‧‧‧n-1th level control signal
Q(n)‧‧‧第n級控制訊號 Q(n)‧‧‧n level control signal
Q(n+2)‧‧‧第n+2級控制訊號 Q(n+2)‧‧‧n+2 control signals
Q(n+4)‧‧‧第n+4級控制訊號 Q(n+4)‧‧‧n+4 control signals
G(n)‧‧‧第n級閘極控制訊號 G(n)‧‧‧n-th gate control signal
G(n+2)‧‧‧第n+2級閘極控制訊號 G(n+2)‧‧‧n+2 level gate control signal
G(n+4)‧‧‧第n+4級閘極控制訊號 G(n+4)‧‧‧th n+4 gate control signal
VSS1‧‧‧低電壓準位 VSS1‧‧‧low voltage level
P(n)‧‧‧第一下拉控制訊號 P(n)‧‧‧first pulldown control signal
K(n)‧‧‧第二下拉控制訊號 K(n)‧‧‧Second pull-down control signal
圖1A為本發明實施例一示意圖。 FIG. 1A is a schematic diagram of an embodiment of the present invention.
圖1B為本發明實施例二示意圖。 FIG. 1B is a schematic diagram of Embodiment 2 of the present invention.
圖1C為本發明實施例三示意圖。 FIG. 1C is a schematic diagram of Embodiment 3 of the present invention.
圖2A為本發明實施例一2D顯示之高頻時脈訊號示意圖。 2A is a schematic diagram of a high frequency clock signal of a 2D display according to an embodiment of the present invention.
圖2B為本發明實施例一2D顯示之控制訊號補償示意圖。 2B is a schematic diagram of control signal compensation in a 2D display according to an embodiment of the present invention.
圖3A為本發明實施例一3D顯示之高頻時脈訊號示意圖。 FIG. 3A is a schematic diagram of a high frequency clock signal of a 3D display according to an embodiment of the present invention.
圖3B為本發明實施例一3D顯示之控制訊號補償示意圖。 FIG. 3B is a schematic diagram of control signal compensation in a 3D display according to an embodiment of the present invention.
圖4A為本發明實施例四示意圖。 4A is a schematic view of Embodiment 4 of the present invention.
圖4B為本發明實施例五示意圖。 4B is a schematic diagram of Embodiment 5 of the present invention.
圖4C為本發明實施例六示意圖。 4C is a schematic view of Embodiment 6 of the present invention.
圖5為本發明實施例四以點反轉方式驅動之高頻時脈訊號及控制訊號補償示意圖。 FIG. 5 is a schematic diagram of the high frequency clock signal and control signal compensation driven by the dot inversion method according to the fourth embodiment of the present invention.
圖6為本發明實施例四以行反轉方式驅動之高頻時脈訊號及控制訊號補償示意圖。 FIG. 6 is a schematic diagram of the high frequency clock signal and control signal compensation driven by the line inversion method according to the fourth embodiment of the present invention.
為了更明確的說明本發明內容,以下將配合圖式進行說明。 In order to explain the present invention more clearly, the following description will be made in conjunction with the drawings.
請參閱圖1A,圖1A為本發明移位暫存器電路實施例一,其包括一第一上拉電路10、一第二上拉電路20、一第一下拉控制電路30、一第一下拉電路40、一第二下拉控制電路50、一第二下拉電路60、一主下拉電路70、以及一第一電容C1,本實施例並可同時應用於2D顯示方式或者3D顯示方式。 Referring to FIG. 1A, FIG. 1A shows a first embodiment of a shift register circuit of the present invention, which includes a first pull-up circuit 10, a second pull-up circuit 20, a first pull-down control circuit 30, and a first The pull-down circuit 40, a second pull-down control circuit 50, a second pull-down circuit 60, a main pull-down circuit 70, and a first capacitor C1 can be applied to the 2D display mode or the 3D display mode at the same time.
第一上拉電路10包括一電晶體T11,其具有第一端、第二端以及控制端,其第一端係用以接收一第n級高頻時脈訊號HC(n),其控制端係用以接收一第n級控制訊號Q(n),其第二端則是根據控制端所接收之第n級控制訊號Q(n)來決定是否輸出一第n級閘極控制訊號G(n)。此外,第一上 拉電路10更包括一第二電容C2,第二電容C2之第一端與電晶體T11之第二端電性耦接,第二電容C2之第二端則與電晶體T11之控制端電性耦接,因此當電晶體T11之第二端輸出第n級閘極控制訊號G(n)時,第二電容C2可將第n級閘極控制訊號G(n)補償至第n級控制訊號Q(n),以增加第n級控制訊號Q(n)的驅動能力。 The first pull-up circuit 10 includes a transistor T11 having a first end, a second end, and a control end, the first end of which is configured to receive an n-th high frequency clock signal HC(n), and the control end thereof The system is configured to receive an nth level control signal Q(n), and the second end is to determine whether to output an nth level gate control signal G according to the nth level control signal Q(n) received by the control end ( n). In addition, the first one The pull-up circuit 10 further includes a second capacitor C2. The first end of the second capacitor C2 is electrically coupled to the second end of the transistor T11, and the second end of the second capacitor C2 is electrically connected to the control terminal of the transistor T11. Coupling, when the second terminal of the transistor T11 outputs the nth gate control signal G(n), the second capacitor C2 can compensate the nth gate control signal G(n) to the nth control signal. Q(n) to increase the driving capability of the nth stage control signal Q(n).
第二上拉電路20包括一電晶體T21以及一電晶體T22,電晶體T21以及電晶體T22皆具有第一端、第二端以及控制端,電晶體T21之第一端係用以接收前述之第n級高頻時脈訊號HC(n),電晶體T21之控制端係用以接收第n級控制訊號Q(n),電晶體T21之第二端係用以與電晶體T22之控制端電性耦接,電晶體T22之第一端係用以接收第n級閘極控制訊號G(n),電晶體T22之第二端係用以輸出一第n+4級控制訊號Q(n+4)。因此,當電晶體T21因第n級控制訊號Q(n)而開啟,並將第n級高頻時脈訊號HC(n)傳送至電晶體T22之控制端時,電晶體T22即將其第一端所接收之第n級閘極控制訊號G(n)傳送至第二端並輸出為第n+4級控制訊號Q(n+4),也就是說本實施例為1傳5之移位暫存器電路,同理可知,前述之第n級控制訊號Q(n)係由第n-4級移位暫存器電路所提供。 The second pull-up circuit 20 includes a transistor T21 and a transistor T22. The transistor T21 and the transistor T22 have a first end, a second end, and a control end. The first end of the transistor T21 is configured to receive the foregoing The n-th high frequency clock signal HC(n), the control end of the transistor T21 is for receiving the nth stage control signal Q(n), and the second end of the transistor T21 is used for the control end of the transistor T22 Electrically coupled, the first end of the transistor T22 is for receiving the nth gate control signal G(n), and the second end of the transistor T22 is for outputting an n+4th control signal Q(n +4). Therefore, when the transistor T21 is turned on by the nth stage control signal Q(n) and the nth stage high frequency clock signal HC(n) is transmitted to the control terminal of the transistor T22, the transistor T22 is about to be the first The nth gate control signal G(n) received by the terminal is transmitted to the second terminal and output as the n+4th control signal Q(n+4), that is, the shift of 1 transmission 5 is used in this embodiment. Similarly, the nth stage control signal Q(n) is provided by the n-4th stage shift register circuit.
第一下拉控制電路30包括一電晶體T31、一電晶體T32、一電晶體T33以及一電晶體T34。電晶體T31包括第一端、第二端以及控制端,其第一端與控制端電性耦接,係用以接收一第一時脈訊號LC1;電晶體T32包括第一端、第二端以及控制端,其第一端與電晶體T31之第一端電性耦接,其控制端與電晶體T31的第二端電性耦接,其第二端則 是用以輸出一第一下拉控制訊號P(n);電晶體T33包括第一端、第二端以及控制端,其第一端與電晶體T31之第二端電性耦接,其控制端係用以接收第n級控制訊號Q(n),其第二端與一低電壓準位VSS1電性耦接;電晶體T34包括第一端、第二端以及控制端,其第一端係用以接收第一下拉控制訊號P(n),其控制端係用以接收第n級控制訊號Q(n),其第二端係用以與前述之低電壓準位VSS1電性耦接。因此,當不需要輸出第n級閘極控制訊號G(n)時,電晶體T33以及電晶體T34為關閉,因此電晶體T31以及電晶體T32可根據所接收之第一時脈訊號LC1輸出前述之第一下拉控制訊號P(n),而當要輸出第n級閘極控制訊號G(n)時,此時電晶體T33以及電晶體T34會因為第n級控制訊號Q(n)為開啟,因此與電晶體T33電性耦接之電晶體T31的第二端以及與電晶體T34電性耦接之第一下拉控制訊號P(n)將會被電晶體T33以及電晶體T34下拉至低電壓準位VSS1,以避免第一下拉電路40在錯誤的時間被開啟。 The first pull-down control circuit 30 includes a transistor T31, a transistor T32, a transistor T33, and a transistor T34. The transistor T31 includes a first end, a second end, and a control end. The first end is electrically coupled to the control end to receive a first clock signal LC1. The transistor T32 includes a first end and a second end. And a control end, the first end is electrically coupled to the first end of the transistor T31, the control end is electrically coupled to the second end of the transistor T31, and the second end is electrically coupled Is used to output a first pull-down control signal P(n); the transistor T33 includes a first end, a second end, and a control end, and the first end thereof is electrically coupled to the second end of the transistor T31, and the control thereof is controlled. The end is configured to receive the nth stage control signal Q(n), the second end of which is electrically coupled to a low voltage level VSS1; the transistor T34 includes a first end, a second end, and a control end, the first end thereof The system is configured to receive the first pull-down control signal P(n), the control end is configured to receive the n-th control signal Q(n), and the second end is configured to be electrically coupled to the low voltage level VSS1. Pick up. Therefore, when it is not necessary to output the nth gate control signal G(n), the transistor T33 and the transistor T34 are turned off, so the transistor T31 and the transistor T32 can output the foregoing according to the received first clock signal LC1. The first pull-down control signal P(n), and when the n-th gate control signal G(n) is to be output, the transistor T33 and the transistor T34 are at the n-th level control signal Q(n) Turning on, the second end of the transistor T31 electrically coupled to the transistor T33 and the first pull-down control signal P(n) electrically coupled to the transistor T34 are pulled down by the transistor T33 and the transistor T34. To the low voltage level VSS1, to prevent the first pull-down circuit 40 from being turned on at the wrong time.
第一下拉電路40包括一電晶體T41以及一電晶體T42,電晶體T41包括第一端、第二端以及控制端,其第一端係用以與第n級控制訊號Q(n)電性耦接,其控制端係用以接收第一下拉控制訊號P(n),其第二端係用以與低電壓準位VSS1電性耦接;電晶體T42包括第一端、第二端以及控制端,其第一端係用以與第n級閘極控制訊號G(n)電性耦接,其控制端係用以接收第一下拉控制訊號P(n),其第二端係用以與低電壓準位VSS1電性耦接,因此第一下拉電路40係用以根據第一下拉控制訊號P(n)來決定是否開啟電晶體T41以及電晶體T42,以將第n級控制訊號Q(n)以及第n級 閘極控制訊號G(n)下拉至低電壓準位VSS1。 The first pull-down circuit 40 includes a transistor T41 and a transistor T42. The transistor T41 includes a first end, a second end, and a control end. The first end is configured to be electrically connected to the nth stage control signal Q(n). The control terminal is configured to receive the first pull-down control signal P(n), the second end of the second pull-down control signal is coupled to the low voltage level VSS1; the transistor T42 includes the first end and the second end. The first end of the terminal and the control end are electrically coupled to the nth gate control signal G(n), and the control end is configured to receive the first pulldown control signal P(n), the second The terminal is configured to be electrically coupled to the low voltage level VSS1. Therefore, the first pull-down circuit 40 is configured to determine whether to turn on the transistor T41 and the transistor T42 according to the first pull-down control signal P(n). The nth level control signal Q(n) and the nth stage The gate control signal G(n) is pulled down to the low voltage level VSS1.
第二下拉控制電路50包括一電晶體T51、一電晶體T52、一電晶體T53以及一電晶體T54。電晶體T51包括第一端、第二端以及控制端,其第一端與控制端電性耦接,係用以接收一第二時脈訊號LC2;電晶體T52包括第一端、第二端以及控制端,其第一端與電晶體T51之第一端電性耦接,其控制端與電晶體T51的第二端電性耦接,其第二端則是用以輸出一第二下拉控制訊號K(n);電晶體T53包括第一端、第二端以及控制端,其第一端與電晶體T51之第二端電性耦接,其控制端係用以接收第n級控制訊號Q(n),其第二端與一低電壓準位VSS1電性耦接;電晶體T54包括第一端、第二端以及控制端,其第一端係用以接收第二下拉控制訊號K(n),其控制端係用以接收第n級控制訊號Q(n),其第二端係用以與前述之低電壓準位VSS1電性耦接。因此,當不需要輸出第n級閘極控制訊號G(n)時,電晶體T53以及電晶體T54為關閉,因此電晶體T51以及電晶體T52可根據所接收之第二時脈訊號LC2使第二下拉控制訊號K(n)為工作電壓準位,而當要輸出第n級閘極控制訊號G(n)時,此時電晶體T33以及電晶體T34為開啟,因此與電晶體T33電性耦接之電晶體T31的第二端以及與電晶體T34電性耦接之第二下拉控制訊號K(n)將會被下拉至低電壓準位VSS1,以避免第二下拉電路60在錯誤的時間被開啟。 The second pull-down control circuit 50 includes a transistor T51, a transistor T52, a transistor T53, and a transistor T54. The transistor T51 includes a first end, a second end, and a control end. The first end is electrically coupled to the control end to receive a second clock signal LC2. The transistor T52 includes a first end and a second end. And a control end, the first end is electrically coupled to the first end of the transistor T51, the control end is electrically coupled to the second end of the transistor T51, and the second end is configured to output a second pulldown The control signal K(n) includes a first end, a second end, and a control end. The first end is electrically coupled to the second end of the transistor T51, and the control end is configured to receive the nth stage control. The second end of the signal Q(n) is electrically coupled to a low voltage level VSS1; the transistor T54 includes a first end, a second end, and a control end, and the first end is configured to receive the second pulldown control signal K(n), whose control terminal is used to receive the nth stage control signal Q(n), and the second end thereof is used to be electrically coupled to the aforementioned low voltage level VSS1. Therefore, when it is not necessary to output the nth gate control signal G(n), the transistor T53 and the transistor T54 are turned off, so the transistor T51 and the transistor T52 can be made according to the received second clock signal LC2. The second pull-down control signal K(n) is the operating voltage level, and when the n-th gate control signal G(n) is to be output, the transistor T33 and the transistor T34 are turned on, and thus the transistor T33 is electrically connected. The second end of the coupled transistor T31 and the second pull-down control signal K(n) electrically coupled to the transistor T34 are pulled down to the low voltage level VSS1 to prevent the second pull-down circuit 60 from being in error. Time is turned on.
第二下拉電路60包括一電晶體T61以及一電晶體T62,電晶體T61包括第一端、第二端以及控制端,其第一端係用以與第n級控制訊號Q(n)電性耦接,其控制端係用以接收第二下拉控制訊號K(n),其第二端係用以與低電壓準 位VSS1電性耦接;電晶體T62包括第一端、第二端以及控制端,其第一端係用以與第n級閘極控制訊號G(n)電性耦接,其控制端係用以接收第二下拉控制訊號K(n),其第二端係用以與低電壓準位VSS1電性耦接,因此第二下拉電路60係用以根據第二下拉控制訊號K(n)來決定是否開啟電晶體T61以及電晶體T62,以將第n級控制訊號Q(n)以及第n級閘極控制訊號G(n)下拉至低電壓準位VSS1。 The second pull-down circuit 60 includes a transistor T61 and a transistor T62. The transistor T61 includes a first end, a second end, and a control end, and the first end is used for electrical connection with the nth stage control signal Q(n). Coupling, the control end is for receiving the second pull-down control signal K(n), and the second end is used for low voltage The bit VSS1 is electrically coupled; the transistor T62 includes a first end, a second end, and a control end, and the first end is electrically coupled to the nth gate control signal G(n), and the control end is The second pull-down circuit 60 is configured to receive the second pull-down control signal K(n), and the second pull-down circuit 60 is configured to be coupled to the second pull-down control signal K(n) according to the second pull-down control signal K(n). The transistor T61 and the transistor T62 are turned on to pull down the nth control signal Q(n) and the nth gate control signal G(n) to the low voltage level VSS1.
主下拉電路70包括一電晶體T71以及一電晶體T72,電晶體T71包括第一端、第二端以及控制端,其第一端係用以與第n級控制訊號Q(n)電性耦接,其控制端係用以接收第n+4級閘極控制訊號G(n+4),其第二端係用以與低電壓準位VSS1電性耦接;電晶體T72包括第一端、第二端以及控制端,其第一端係用以與第n級閘極控制訊號G(n)電性耦接,其控制端係用以接收第n+4級閘極控制訊號G(n+4),其第二端係用以與低電壓準位VSS1電性耦接,因此,當電晶體T71以及電晶體T72開啟時,與電晶體T71電性耦接之第n級控制訊號Q(n)以及與電晶體T72電性耦接之第n級閘極控制訊號G(n)將會被下拉至低電壓準位VSS1。 The main pull-down circuit 70 includes a transistor T71 and a transistor T72. The transistor T71 includes a first end, a second end, and a control end. The first end is electrically coupled to the nth control signal Q(n). The control terminal is configured to receive the n+4th gate control signal G(n+4), the second end thereof is electrically coupled to the low voltage level VSS1, and the transistor T72 includes the first end. The second end and the control end are respectively configured to be electrically coupled to the nth gate control signal G(n), and the control end is configured to receive the n+4th gate control signal G ( n+4), the second end is used to be electrically coupled to the low voltage level VSS1. Therefore, when the transistor T71 and the transistor T72 are turned on, the nth level control signal electrically coupled to the transistor T71 is connected. Q(n) and the nth gate control signal G(n) electrically coupled to the transistor T72 will be pulled down to the low voltage level VSS1.
電容C1具有第一端以及第二端,其第一端係用以接收第n-2級控制訊號Q(n-2),其第二端則與第n級控制訊號Q(n)電性耦接,因此可以第n-2級控制訊號Q(n-2)來補償第n級控制訊號Q(n),也可以本級之第n級控制訊號Q(n)來補償第n-2級控制訊號Q(n-2),同理可知,本級之第n級控制訊號Q(n)也可透過第n+2級之移位暫存器電路之電容來補償第n+2級控制訊號Q(n+2)或藉由第n+2級控制訊號Q(n+2)補償第n級控制訊號Q(n),詳細之補償方式將會配合 圖式於圖2B及圖3B進一步說明。 The capacitor C1 has a first end and a second end, the first end of which is configured to receive the n-2th control signal Q(n-2), and the second end is electrically connected to the nth stage control signal Q(n) Coupling, so the nth-level control signal Q(n-2) can be used to compensate the n-th control signal Q(n), or the n-th control signal Q(n) of the current stage can be used to compensate the n-2 The level control signal Q(n-2), similarly, the nth stage control signal Q(n) of the stage can also compensate the n+2 level through the capacitance of the n+2 stage shift register circuit. The control signal Q(n+2) or the nth-level control signal Q(n+2) compensates the n-th control signal Q(n), and the detailed compensation mode will cooperate. The drawings are further illustrated in Figures 2B and 3B.
請參考圖1B,圖1B為本發明移位暫存器電路之實施例二,圖1B與圖1A之差別在於,第二上拉電路20之電晶體T22之第一端可與電晶體T22之控制端電性耦接,也就是當電晶體T21開啟時,電晶體T22將根據控制端所接收之第n級高頻時脈訊號HC(n),將電晶體T22第一端所接收之第n級高頻時脈訊號HC(n)輸出為第n+4級控制訊號Q(n+4)。 Please refer to FIG. 1B. FIG. 1B is a second embodiment of the shift register circuit of the present invention. The difference between FIG. 1B and FIG. 1A is that the first end of the transistor T22 of the second pull-up circuit 20 can be connected to the transistor T22. The control terminal is electrically coupled, that is, when the transistor T21 is turned on, the transistor T22 receives the first end of the transistor T22 according to the nth high frequency clock signal HC(n) received by the control terminal. The n-stage high frequency clock signal HC(n) output is the n+4th level control signal Q(n+4).
請參考圖1C,圖1C為本發明移位暫存器電路之實施例三,圖1C與圖1A之差別在於,第二上拉電路20可包括一電晶體T23,電晶體T23包括第一端、第二端以及控制端,其第一端以及控制端電性耦接,皆係用以接收第n級閘極控制訊號G(n),因此電晶體T23係根據第n級閘極控制訊號G(n)來將第一端所接收之第n級閘極控制訊號G(n)輸出為第n+4級控制訊號Q(n+4)。 Please refer to FIG. 1C. FIG. 1C is a third embodiment of the shift register circuit of the present invention. FIG. 1C differs from FIG. 1A in that the second pull-up circuit 20 can include a transistor T23, and the transistor T23 includes a first end. The second end and the control end are electrically coupled to the first end and the control end for receiving the nth gate control signal G(n), so the transistor T23 is based on the nth gate control signal G(n) outputs the nth gate control signal G(n) received by the first terminal as the n+4th control signal Q(n+4).
圖2A為實施例一之移位暫存器電路使用於2D顯示方式之高頻時脈訊號實施例,其包括第n-4級高頻時脈訊號HC(n-4)、第n-3級高頻時脈訊號HC(n-3)、第n-2級高頻時脈訊號HC(n-2)、第n-1級高頻時脈訊號HC(n-1)、第n級高頻時脈訊號HC(n)、第n+1級高頻時脈訊號HC(n+1)、第n+2級高頻時脈訊號HC(n+2)以及第n+3級高頻時脈訊號HC(n+3),且第n-4級高頻時脈訊號HC(n-4)、第n-3級高頻時脈訊號HC(n-3)、第n-2級高頻時脈訊號HC(n-2)、第n-1級高頻時脈訊號HC(n-1)、第n級高頻時脈訊號HC(n)、第n+1級高頻時脈訊號HC(n+1)、第n+2級高頻時脈訊號HC(n+2)以及第n+3級高頻時脈訊號HC(n+3)具有相同的致 能時間,第n+3級高頻時脈訊號HC(n+3)並落後第n+2級高頻時脈訊號HC(n+2)一預設時間、第n+2級高頻時脈訊號HC(n+2)並落後第n+1級高頻時脈訊號HC(n+1)一預設時間、第n+1級高頻時脈訊號HC(n+1)並落後第n級高頻時脈訊號HC(n)一預設時間、第n級高頻時脈訊號HC(n)並落後第n-1級高頻時脈訊號HC(n-1)一預設時間、第n-1級高頻時脈訊號HC(n-1)並落後第n-2級高頻時脈訊號HC(n-2)一預設時間、第n-2級高頻時脈訊號HC(n-2)並落後第n-3級高頻時脈訊號HC(n-3)一預設時間、第n-3級高頻時脈訊號HC(n-3)並落後第n-4級高頻時脈訊號HC(n-4)一預設時間。 2A is a high frequency clock signal embodiment of the shift register circuit of the first embodiment for use in the 2D display mode, which includes the n-4th high frequency clock signal HC(n-4), the n-3th. High-frequency clock signal HC(n-3), n-2th high-frequency clock signal HC(n-2), n-1th high-frequency clock signal HC(n-1), nth stage High frequency clock signal HC(n), n+1th high frequency clock signal HC(n+1), n+2 high frequency clock signal HC(n+2) and n+3 level high Frequency clock signal HC(n+3), and n-4th high frequency clock signal HC(n-4), n-3th high frequency clock signal HC(n-3), n-2 High frequency clock signal HC(n-2), n-1th high frequency clock signal HC(n-1), nth high frequency clock signal HC(n), n+1th high frequency The clock signal HC(n+1), the n+2th high frequency clock signal HC(n+2), and the n+3th high frequency clock signal HC(n+3) have the same Energy time, the n+3th high frequency clock signal HC(n+3) is behind the n+2th high frequency clock signal HC(n+2) for a preset time and the n+2th high frequency The pulse signal HC(n+2) is behind the n+1th high frequency clock signal HC(n+1) for a preset time, and the n+1th high frequency clock signal HC(n+1) is behind the first The n-level high-frequency clock signal HC(n) is a preset time, the n-th high-frequency clock signal HC(n) is behind the n-1th high-frequency clock signal HC(n-1) for a preset time The n-1th high frequency clock signal HC(n-1) is behind the n-2th high frequency clock signal HC(n-2) for a preset time, the n-2th high frequency clock signal HC(n-2) is behind the n-3th high frequency clock signal HC(n-3) for a preset time, the n-3th high frequency clock signal HC(n-3) and is behind the n-th The 4-level high-frequency clock signal HC (n-4) is a preset time.
接著請參考圖2B,並配合圖2A以第n級控制訊號Q(n)為主來說明其補償方式。第n-2級控制訊號Q(n-2)、第n級控制訊號Q(n)以及第n+2級控制訊號Q(n+2)皆包括第一工作電壓準位I、第二工作電壓準位Ⅱ、第三工作電壓準位Ⅲ以及第四工作電壓準位Ⅳ。而根據圖1A所示,第n級移位暫存器電路會輸出第n+4級控制訊號Q(n+4),同理可知,第n-4級移位暫存器電路則會輸出第n級控制訊號Q(n),因此當第n-4級移位暫存器電路之本級高頻訊號,也就是第n-4級高頻時脈訊號HC(n-4)為高電壓準位時,此時第n級控制訊號Q(n)會相應抬升至第一工作電壓準位I;接著,在第n級控制訊號Q(n)的本級高頻時脈訊號,也就是第n級高頻時脈訊號HC(n)尚未為高電壓準位時,由於此時第n-2級控制訊號Q(n-2)被抬升至第三工作電壓準位Ⅲ,第n+2級控制訊號Q(n+2)被抬升至第一工作電壓準位I,因此第n-2級控制訊號Q(n-2)可藉由圖1A中所述之第一電容C1、第n+2級控制訊號Q(n+2)可藉由第n+2級移位暫存器電 路中之電容個別補償至第n級控制訊號Q(n),因此此時的第n級控制訊號Q(n)被第n-2級控制訊號Q(n-2)以及第n+2級控制訊號Q(n+2)抬升至第二工作電壓準位Ⅱ;當第n級高頻時脈訊號HC(n)為高電壓準位時,由於第n級閘極控制訊號G(n)可藉由圖1A之第二電容C2補償至第n級控制訊號Q(n),因此將第n級控制訊號Q(n)抬升至第三工作電壓準位Ⅲ,雖然此時之第n-2級控制訊號Q(n-2)為較低之第四工作電壓準位Ⅳ,會稍微下拉第n級控制訊號Q(n),但由於在前一階段第n級控制訊號Q(n)已提升至較高之第二工作電壓準位Ⅱ,因此第n級控制訊號Q(n)之第三工作電壓準位Ⅲ仍高於習知之第n級控制訊號Q(n)之電壓準位;而當第n-2級控制訊號Q(n-2)回復至低電壓準位、且第n+2級控制訊號Q(n+2)為第三工作電壓準位Ⅲ時,雖然第n-2級控制訊號Q(n-2)已回復至低電壓準位,然第n+2級控制訊號Q(n+2)之第三工作電壓準位Ⅲ大於第n-2級控制訊號Q(n-2)之低電壓準位,因此第n+2級控制訊號Q(n+2)仍可補償第n級控制訊號Q(n)之電壓準位,使第n級控制訊號Q(n)維持較高之第四工作電壓準位Ⅳ。 Next, please refer to FIG. 2B, and the compensation mode of the n-th control signal Q(n) is mainly described with reference to FIG. 2A. The n-2th control signal Q(n-2), the nth control signal Q(n), and the n+2th control signal Q(n+2) all include a first working voltage level I and a second operation. The voltage level II, the third working voltage level III and the fourth working voltage level IV. According to FIG. 1A, the nth stage shift register circuit outputs the n+4th control signal Q(n+4). Similarly, the n-4th stage shift register circuit outputs. The nth stage controls the signal Q(n), so when the n-4th stage shift register circuit of the present stage high frequency signal, that is, the n-4th stage high frequency clock signal HC(n-4) is high At the voltage level, the nth control signal Q(n) is raised to the first operating voltage level I; then, the high frequency clock signal of the current level of the nth control signal Q(n) is also When the nth high frequency clock signal HC(n) is not at the high voltage level, since the n-2th control signal Q(n-2) is raised to the third working voltage level III, the nth The +2 level control signal Q(n+2) is raised to the first working voltage level I, so the n-2th level control signal Q(n-2) can be obtained by the first capacitor C1 described in FIG. 1A. The n+2th level control signal Q(n+2) can be powered by the n+2th stage shift register The capacitor in the circuit is individually compensated to the nth stage control signal Q(n), so the nth stage control signal Q(n) at this time is controlled by the n-2th level control signal Q(n-2) and the n+2 stage. The control signal Q(n+2) is raised to the second working voltage level II; when the nth high frequency clock signal HC(n) is at the high voltage level, the nth stage gate control signal G(n) The second capacitor C2 can be compensated to the nth control signal Q(n), so that the nth control signal Q(n) is raised to the third operating voltage level III, although the nth- The level 2 control signal Q(n-2) is the lower fourth operating voltage level IV, and the nth level control signal Q(n) is pulled down slightly, but since the nth stage control signal Q(n) in the previous stage The second operating voltage level II of the nth stage control signal Q(n) is still higher than the voltage level of the nth stage control signal Q(n). When the n-2th control signal Q(n-2) returns to the low voltage level, and the n+2th control signal Q(n+2) is the third operating voltage level III, although the nth - Level 2 control signal Q(n-2) has returned to the low voltage level, but the third operation of the n+2 level control signal Q(n+2) The voltage level III is greater than the low voltage level of the n-2th control signal Q(n-2), so the n+2th control signal Q(n+2) can still compensate the nth level control signal Q(n). The voltage level is such that the nth control signal Q(n) maintains a higher fourth operating voltage level IV.
由於本發明之移位暫存器實施例可藉由第n-2級控制訊號Q(n-2)以及第n+2級控制訊號Q(n+2)來對第n級控制訊號Q(n)進行補償,因此在第n級控制訊號Q(n)抬升為第一工作電壓準位I後且在第n級高頻時脈訊號HC(n)為高電壓準位前的浮動(floating)階段時,第n級控制訊號Q(n)可藉由第n-2級控制訊號Q(n-2)以及第n+2級控制訊號Q(n+2)的補償抬升為第二工作電壓準位Ⅱ,可有效降低漏電以及雜訊對第n級控制訊號Q(n)的影響,此外,又因為第n+2級控 制訊號Q(n+2)可在第n級高頻時脈訊號HC(n)回復為低電壓準位後補償第n級控制訊號Q(n),使第n級控制訊號Q(n)在第n級高頻時脈訊號HC(n)回復為低電壓準位後可維持在較高的第四工作電壓準位Ⅳ,使第n級控制訊號Q(n)仍可保有較佳的驅動能力,因此第n級閘極控制訊號G(n)可透過電晶體T11快速下拉至低電壓準位。 Since the shift register embodiment of the present invention can control the nth level control signal Q by the n-2th level control signal Q(n-2) and the n+2 level control signal Q(n+2) ( n) compensation, so after the nth stage control signal Q(n) is raised to the first working voltage level I and before the nth high frequency clock signal HC(n) is high voltage level floating (floating In the phase, the nth control signal Q(n) can be raised to the second operation by the compensation of the n-2th control signal Q(n-2) and the n+2 control signal Q(n+2) Voltage level II can effectively reduce the impact of leakage and noise on the nth control signal Q(n). In addition, because of the n+2 level control The signal signal Q(n+2) can compensate the nth stage control signal Q(n) after the nth stage high frequency clock signal HC(n) returns to the low voltage level, so that the nth stage control signal Q(n) After the nth high frequency clock signal HC(n) returns to the low voltage level, it can be maintained at a higher fourth operating voltage level IV, so that the nth stage control signal Q(n) can still maintain better. The driving capability, so the nth gate control signal G(n) can be quickly pulled down to the low voltage level through the transistor T11.
而圖3A為實施例一之移位暫存器電路使用於3D顯示方式之高頻時脈訊號實施例,其包括第n-4級高頻時脈訊號HC(n-4)、第n-3級高頻時脈訊號HC(n-3)、第n-2級高頻時脈訊號HC(n-2)、第n-1級高頻時脈訊號HC(n-1)、第n級高頻時脈訊號HC(n)、第n+1級高頻時脈訊號HC(n+1)、第n+2級高頻時脈訊號HC(n+2)以及第n+3級高頻時脈訊號HC(n+3),且第n-4級高頻時脈訊號HC(n-4)、第n-3級高頻時脈訊號HC(n-3)、第n-2級高頻時脈訊號HC(n-2)、第n-1級高頻時脈訊號HC(n-1)、第n級高頻時脈訊號HC(n)、第n+1級高頻時脈訊號HC(n+1)、第n+2級高頻時脈訊號HC(n+2)以及第n+3級高頻時脈訊號HC(n+3)具有相同的致能時間,第n+3級高頻時脈訊號HC(n+3)與第n+2級高頻時脈訊號HC(n+2)相同並落後第n+1級高頻時脈訊號HC(n+1)與第n級高頻時脈訊號HC(n)一預設時間、第n+1級高頻時脈訊號HC(n+1)與第n級高頻時脈訊號HC(n)相同並落後第n-1級高頻時脈訊號HC(n-1)與第n-2級高頻時脈訊號HC(n-2)一預設時間、第n-1級高頻時脈訊號HC(n-1)與第n-2級高頻時脈訊號HC(n-2)相同並落後第n-3級高頻時脈訊號HC(n-3)與第n-4級高頻時脈訊號HC(n-4)一預設時間。 3A is a high frequency clock signal embodiment used in the 3D display mode of the shift register circuit of the first embodiment, which includes the n-4th high frequency clock signal HC(n-4), the n-th Level 3 high frequency clock signal HC(n-3), n-2th high frequency clock signal HC(n-2), n-1th high frequency clock signal HC(n-1), nth Level high frequency clock signal HC(n), n+1th high frequency clock signal HC(n+1), n+2 high frequency clock signal HC(n+2) and n+3 level High frequency clock signal HC(n+3), and n-4th high frequency clock signal HC(n-4), n-3th high frequency clock signal HC(n-3), n-th Level 2 high frequency clock signal HC(n-2), n-1th high frequency clock signal HC(n-1), nth stage high frequency clock signal HC(n), n+1th high The frequency pulse signal HC(n+1), the n+2 high frequency clock signal HC(n+2), and the n+3 high frequency clock signal HC(n+3) have the same enabling time. The n+3th high frequency clock signal HC(n+3) is the same as the n+2th high frequency clock signal HC(n+2) and is behind the n+1th high frequency clock signal HC(n). +1) with the nth high frequency clock signal HC(n) for a preset time, the n+1th high frequency clock signal HC(n+1) and the nth high frequency clock signal HC(n) Same and behind the n-1th high frequency Clock signal HC(n-1) and n-2th high frequency clock signal HC(n-2) for a preset time, n-1th high frequency clock signal HC(n-1) and nth - Level 2 high frequency clock signal HC(n-2) is the same and behind the n-3th high frequency clock signal HC(n-3) and the n-4th high frequency clock signal HC(n-4) A preset time.
接著請參考圖3B,並配合圖3A說明第n級控 制訊號Q(n)之補償方式。第n-2級控制訊號Q(n-2)、第n級控制訊號Q(n)以及第n+2級控制訊號Q(n+2)皆包括第一工作電壓準位I、第二工作電壓準位Ⅱ、第三工作電壓準位Ⅲ以及第四工作電壓準位Ⅳ。當第n-4級移位暫存器電路之本級高頻訊號,也就是第n-4級高頻時脈訊號HC(n-4)為高電壓準位時,此時第n級控制訊號Q(n)會相應抬升至第一工作電壓準位I;接著,在第n級控制訊號Q(n)的本級高頻時脈訊號,也就是第n級高頻時脈訊號HC(n)尚未為高電壓準位時,由於此時第n-2級控制訊號Q(n-2)被抬升至第三工作電壓準位Ⅲ,第n+2級控制訊號Q(n+2)被抬升至第一工作電壓準位I,因此第n-2級控制訊號Q(n-2)可藉由圖1中所述之電容C1、第n+2級控制訊號Q(n+2)可藉由第n+2級移位暫存器電路中之電容個別補償至第n級控制訊號Q(n),因此此時的第n級控制訊號Q(n)被第n-2級控制訊號Q(n-2)以及第n+2級控制訊號Q(n+2)抬升至更高之第二工作電壓準位Ⅱ;當第n級高頻時脈訊號HC(n)為高電壓準位時,由於第n級閘極控制訊號G(n)可藉由圖1A之第二電容C2補償至第n級控制訊號Q(n),因此將第n級控制訊號Q(n)抬升至第三工作電壓準位Ⅲ,而此時之第n-2級控制訊號Q(n-2)為由第三工作電壓準位Ⅲ下降至較低之第四工作電壓準位Ⅳ的階段,第n+2級控制訊號Q(n+2)為由第二工作電壓準位Ⅱ上升至第三工作電壓準位Ⅲ的階段,因此此時第n級控制訊號Q(n)之第三工作電壓準位Ⅲ只會受到第n-2級控制訊號Q(n-2)以及第n+2級控制訊號Q(n+2)微小的影響,且由於第n級控制訊號Q(n)先前已抬升至較高之第二工作電壓準位Ⅱ,故第n級控制訊號Q(n)之第三工作電壓準位Ⅲ仍高於習知之第n級控制訊 號Q(n)之第三工作電壓準位Ⅲ;而第n級控制訊號Q(n)於第四工作電壓準位Ⅳ的階段時,由於第n級控制訊號Q(n)會因第n+4級閘極控制訊號G(n+4)而快速下拉至低電壓準位,因此不受第n-2級控制訊號Q(n-2)以及第n+2級控制訊號Q(n+2)的影響。 Next, please refer to FIG. 3B, and the n-th level control is illustrated with FIG. 3A. Compensation method for signal Q(n). The n-2th control signal Q(n-2), the nth control signal Q(n), and the n+2th control signal Q(n+2) all include a first working voltage level I and a second operation. The voltage level II, the third working voltage level III and the fourth working voltage level IV. When the high-frequency signal of the n-4th stage shift register circuit, that is, the n-4th high-frequency clock signal HC(n-4) is a high voltage level, the nth stage control The signal Q(n) will be raised to the first working voltage level I; then, the high-frequency clock signal of the n-th level control signal Q(n), that is, the n-th high-frequency clock signal HC ( n) When the high voltage level is not yet established, since the n-2th control signal Q(n-2) is raised to the third working voltage level III, the n+2th control signal Q(n+2) Raised to the first operating voltage level I, so the n-2th control signal Q(n-2) can be controlled by the capacitor C1 and the n+2th level control signal Q(n+2) as shown in FIG. The capacitor in the n+2th stage shift register circuit can be individually compensated to the nth stage control signal Q(n), so the nth stage control signal Q(n) at this time is controlled by the n-2th stage. The signal Q(n-2) and the n+2th control signal Q(n+2) are raised to a higher second operating voltage level II; when the nth high frequency clock signal HC(n) is a high voltage At the level, since the nth gate control signal G(n) can be compensated to the nth control signal Q(n) by the second capacitor C2 of FIG. 1A, the nth stage control The number Q(n) is raised to the third working voltage level III, and the n-2th control signal Q(n-2) at this time is the fourth working voltage which is lowered to the lower by the third working voltage level III. In the stage of the level IV, the n+2th control signal Q(n+2) is in the stage of rising from the second working voltage level II to the third working voltage level III, so the nth stage control signal Q ( n) The third operating voltage level III is only slightly affected by the n-2th control signal Q(n-2) and the n+2th control signal Q(n+2), and due to the nth level control The signal Q(n) has been previously raised to the higher second operating voltage level II, so the third operating voltage level III of the nth control signal Q(n) is still higher than the conventional nth level control signal. The third operating voltage level III of the number Q(n); and the nth stage control signal Q(n) is at the stage of the fourth operating voltage level IV, since the nth stage control signal Q(n) is due to the nth +4 level gate control signal G(n+4) and fast pull-down to low voltage level, so it is not affected by the n-2th level control signal Q(n-2) and the n+2 level control signal Q(n+ 2) The impact.
在3D顯示方式時,由於本發明之移位暫存器實施例可藉由第n-2級控制訊號Q(n-2)以及第n+2級控制訊號Q(n+2)來對第n級控制訊號Q(n)進行補償,因此在第n級控制訊號Q(n)抬升為第一工作電壓準位I後且在第n級高頻時脈訊號HC(n)為高電壓準位前的浮動階段,第n級控制訊號Q(n)可藉由第n-2級控制訊號Q(n-2)以及第n+2級控制訊號Q(n+2)的補償抬升為較高的第二工作電壓準位Ⅱ,因此能提升整體第n級控制訊號Q(n)的驅動能力,有效降低漏電以及雜訊對第n級控制訊號Q(n)的影響。 In the 3D display mode, the shift register embodiment of the present invention can be used by the n-2th control signal Q(n-2) and the n+2th control signal Q(n+2). The n-level control signal Q(n) is compensated, so after the n-th control signal Q(n) is raised to the first working voltage level I and the n-th high-frequency clock signal HC(n) is high voltage In the floating phase before the bit, the nth control signal Q(n) can be raised by the compensation of the n-2th control signal Q(n-2) and the n+2th control signal Q(n+2). The high second operating voltage level II can improve the driving capability of the overall n-th control signal Q(n), effectively reducing the leakage and the influence of noise on the n-th control signal Q(n).
請參考圖4A,圖4A為本發明之實施例四,本實施例可應用於2D顯示方式,圖4A與圖1之差別在於,圖4A之第二上拉電路20係用以輸出第n+2級控制訊號Q(n+2),也就是本實施例為1傳3之移位暫存器電路。此外,本實施例之主下拉電路70之電晶體T71以及電晶體T72之控制端係用以接收第n+2級閘極控制訊號G(n+2),以根據第n+2級閘極控制訊號G(n+2)來將第n級控制訊號Q(n)以及第n級閘極控制訊號G(n)下拉至低電壓準位。又,本實施例之電容C1之第一端係用以接收第n-1級控制訊號Q(n-1),也就是本實施例可以第n-1級控制訊號Q(n-1)來補償本級之第n級控制訊號Q(n),也可以第n級控制訊號Q(n)來補償第n-1級控制訊號Q(n-1),同理可知,本級之第n級控制訊號Q(n) 也可透過第n+1級之移位暫存器電路之電容來補償第n+1級控制訊號Q(n+1)或藉由第n+1級控制訊號Q(n+1)補償第n級控制訊號Q(n),詳細之補償方式將會配合圖式進一步說明。 Please refer to FIG. 4A. FIG. 4A shows a fourth embodiment of the present invention. The present embodiment can be applied to a 2D display mode. The difference between FIG. 4A and FIG. 1 is that the second pull-up circuit 20 of FIG. 4A is used to output the n+th. The level 2 control signal Q(n+2), that is, the shift register circuit of the first transmission 3 in this embodiment. In addition, the control terminals of the transistor T71 and the transistor T72 of the main pull-down circuit 70 of the embodiment are configured to receive the n+2th gate control signal G(n+2) to be based on the n+2th gate. The control signal G(n+2) is used to pull the nth control signal Q(n) and the nth gate control signal G(n) to a low voltage level. Moreover, the first end of the capacitor C1 of the embodiment is configured to receive the n-1th level control signal Q(n-1), that is, the n-1th level control signal Q(n-1) can be used in this embodiment. Compensating the nth level control signal Q(n) of this stage, the nth level control signal Q(n) can also be compensated for the n-1th level control signal Q(n-1). Similarly, the nth level of the level is known. Level control signal Q(n) The n+1th control signal Q(n+1) or the n+1th control signal Q(n+1) may be compensated by the capacitance of the n+1th stage shift register circuit. The n-level control signal Q(n), the detailed compensation method will be further explained with the drawing.
請參考圖4B,圖4B為本發明移位暫存器電路之實施例五,圖4B與圖4A之差別在於,第二上拉電路20之電晶體T22之第一端可與電晶體T22之控制端電性耦接,也就是當電晶體T21開啟時,電晶體T22將根據控制端所接收之第n級高頻時脈訊號HC(n),將電晶體T22第一端所接收之第n級高頻時脈訊號HC(n)輸出為第n+2級控制訊號Q(n+2)。 Please refer to FIG. 4B. FIG. 4B is a fifth embodiment of the shift register circuit of the present invention. FIG. 4B is different from FIG. 4A in that the first end of the transistor T22 of the second pull-up circuit 20 can be connected to the transistor T22. The control terminal is electrically coupled, that is, when the transistor T21 is turned on, the transistor T22 receives the first end of the transistor T22 according to the nth high frequency clock signal HC(n) received by the control terminal. The n-stage high frequency clock signal HC(n) is output as the n+2th control signal Q(n+2).
請參考圖4C,圖4C為本發明移位暫存器電路之實施例六,圖4C與圖4A之差別在於,第二上拉電路20可包括電晶體T23,電晶體T23包括第一端、第二端以及控制端,其第一端以及控制端電性耦接,皆係用以接收第n級閘極控制訊號G(n),因此電晶體T23係根據第n級閘極控制訊號G(n)來將第一端所接收之第n級閘極控制訊號G(n)輸出為第n+2級控制訊號Q(n+2)。 Please refer to FIG. 4C. FIG. 4C is a sixth embodiment of the shift register circuit of the present invention. FIG. 4C is different from FIG. 4A in that the second pull-up circuit 20 can include a transistor T23, and the transistor T23 includes a first end. The second end and the control end are electrically coupled to the first end and the control end for receiving the nth gate control signal G(n). Therefore, the transistor T23 is based on the nth gate control signal G. (n) outputting the nth gate control signal G(n) received by the first terminal as the n+2th control signal Q(n+2).
圖5為實施例四之移位暫存器電路以點反轉方式來驅動液晶顯示器之高頻時脈訊號實施例,其包括第n-2級高頻時脈訊號HC(n-2)、第n-1級高頻時脈訊號HC(n-1)、第n級高頻時脈訊號HC(n)、第n+1級高頻時脈訊號HC(n+1),且第n-2級高頻時脈訊號HC(n-2)、第n-1級高頻時脈訊號HC(n-1)、第n級高頻時脈訊號HC(n)以及第n+1級高頻時脈訊號HC(n+1)具有相同的致能時間,第n+1級高頻時脈訊號HC(n+1)並落後第n級高頻時脈訊號HC(n)一預設時間、第n級高頻時脈訊號HC(n)並落後第n-1級高頻時 脈訊號HC(n-1)一預設時間、第n-1級高頻時脈訊號HC(n-1)並落後第n-2級高頻時脈訊號HC(n-2)一預設時間。 5 is a high frequency clock signal embodiment of a shift register circuit of the fourth embodiment for driving a liquid crystal display in a dot inversion manner, which includes an n-2th high frequency clock signal HC(n-2), The n-1th high frequency clock signal HC(n-1), the nth high frequency clock signal HC(n), the n+1th high frequency clock signal HC(n+1), and the nth -2 high frequency clock signal HC(n-2), n-1th high frequency clock signal HC(n-1), nth high frequency clock signal HC(n) and n+1th stage The high frequency clock signal HC(n+1) has the same enabling time, and the n+1th high frequency clock signal HC(n+1) is behind the nth stage high frequency clock signal HC(n). Set the time, the nth high frequency clock signal HC(n) and the n-1th high frequency The pulse signal HC(n-1) is a preset time, the n-1th high frequency clock signal HC(n-1) is behind the n-2th high frequency clock signal HC(n-2). time.
接著將以第n級控制訊號Q(n)為主來說明其補償方式。第n-1級控制訊號Q(n-1)、第n級控制訊號Q(n)以及第n+1級控制訊號Q(n+1)皆包括第一工作電壓準位I、第二工作電壓準位Ⅱ、第三工作電壓準位Ⅲ以及第四工作電壓準位Ⅳ。而根據圖4A所示,第n級移位暫存器電路會輸出第n+2級控制訊號Q(n+2),同理可知,第n-2級移位暫存器電路則會輸出第n級控制訊號Q(n),因此當第n-2級移位暫存器電路之本級高頻訊號,也就是第n-2級高頻時脈訊號HC(n-2)為高電壓準位時,此時第n級控制訊號Q(n)會相應抬升至第一工作電壓準位I;接著,在第n級控制訊號Q(n)的本級高頻時脈訊號,也就是第n級高頻時脈訊號HC(n)尚未為高電壓準位時,由於此時第n-1級控制訊號Q(n-1)被抬升至第三工作電壓準位Ⅲ,第n+1級控制訊號Q(n+1)被抬升至第一工作電壓準位I,因此第n-1級控制訊號Q(n-1)可藉由圖4A中所述之第一電容C1、第n+1級控制訊號Q(n+1)可藉由第n+1級移位暫存器電路中之電容個別補償至第n級控制訊號Q(n),因此此時的第n級控制訊號Q(n)被第n-1級控制訊號Q(n-1)以及第n+1級控制訊號Q(n+1)抬升至第二工作電壓準位Ⅱ;當第n級高頻時脈訊號HC(n)為高電壓準位時,由於第n級閘極控制訊號G(n)可藉由圖4A之第二電容C2補償至第n級控制訊號Q(n),因此將第n級控制訊號Q(n)抬升至第三工作電壓準位Ⅲ,雖然此時之第n-1級控制訊號Q(n-1)為較低之第四工作電壓準位Ⅳ,會稍微下拉第n級控制訊號Q(n),但由於在前一階段第n級控制訊號Q(n)已提升 至較高之第二工作電壓準位Ⅱ,因此第n級控制訊號Q(n)之第三工作電壓準位Ⅲ仍高於習知之第n級控制訊號Q(n)之電壓準位;而當第n-1級控制訊號Q(n-1)回復至低電壓準位、且第n+1級控制訊號Q(n+1)為第三工作電壓準位Ⅲ時,雖然第n-1級控制訊號Q(n-1)已回復至低電壓準位,然第n+1級控制訊號Q(n+1)之第三工作電壓準位Ⅲ大於第n-1級控制訊號Q(n-1)之低電壓準位,因此第n+1級控制訊號Q(n+1)仍可補償第n級控制訊號Q(n)之電壓準位,使第n級控制訊號Q(n)維持較高之第四工作電壓準位Ⅳ。 Next, the n-th control signal Q(n) will be mainly used to explain the compensation mode. The n-1th control signal Q(n-1), the nth control signal Q(n), and the n+1th control signal Q(n+1) all include the first working voltage level I and the second operation. The voltage level II, the third working voltage level III and the fourth working voltage level IV. According to FIG. 4A, the nth stage shift register circuit outputs the n+2th control signal Q(n+2). Similarly, the n-2th stage shift register circuit outputs. The nth stage controls the signal Q(n), so when the nth stage shift register circuit has the high frequency signal of the current stage, that is, the n-2th high frequency clock signal HC(n-2) is high. At the voltage level, the nth control signal Q(n) is raised to the first operating voltage level I; then, the high frequency clock signal of the current level of the nth control signal Q(n) is also When the nth high frequency clock signal HC(n) is not at the high voltage level, since the n-1th control signal Q(n-1) is raised to the third working voltage level III, the nth The +1 level control signal Q(n+1) is raised to the first working voltage level I, so the n-1th level control signal Q(n-1) can be passed through the first capacitor C1 described in FIG. 4A. The n+1th control signal Q(n+1) can be individually compensated to the nth stage control signal Q(n) by the capacitance in the n+1th stage shift register circuit, so the nth stage at this time The control signal Q(n) is raised to the second working voltage level II by the n-1th control signal Q(n-1) and the n+1th control signal Q(n+1); When the n-stage high frequency clock signal HC(n) is at a high voltage level, the nth gate control signal G(n) can be compensated to the nth level control signal Q(n) by the second capacitor C2 of FIG. 4A. Therefore, the nth control signal Q(n) is raised to the third operating voltage level III, although the n-1th control signal Q(n-1) at this time is the lower fourth operating voltage level. IV, the n-th control signal Q(n) will be pulled down slightly, but the n-th control signal Q(n) has been boosted in the previous stage. Up to the second operating voltage level II, so that the third operating voltage level III of the nth control signal Q(n) is still higher than the voltage level of the conventional nth control signal Q(n); When the n-1th control signal Q(n-1) returns to the low voltage level, and the n+1th control signal Q(n+1) is the third operating voltage level III, although the n-1th The level control signal Q(n-1) has returned to the low voltage level, but the third operating voltage level III of the n+1th control signal Q(n+1) is greater than the n-1th level control signal Q(n -1) low voltage level, so the n+1th control signal Q(n+1) can still compensate the voltage level of the nth stage control signal Q(n), so that the nth stage control signal Q(n) Maintain a higher fourth operating voltage level IV.
據以上所述,在以點反轉方式驅動液晶顯示器時,由於本實施例可藉由第n-1級控制訊號Q(n-1)以及第n+1級控制訊號Q(n+1)來對第n級控制訊號Q(n)進行補償,因此在第n級控制訊號Q(n)抬升為第一工作電壓準位I後且在第n級高頻時脈訊號HC(n)為高電壓準位前之浮動狀態,第n級控制訊號Q(n)可藉由第n-1級控制訊號Q(n-1)以及第n+1級控制訊號Q(n+1)的補償而抬升為第二工作電壓準位Ⅱ,有效降低漏電以及雜訊對第n級控制訊號Q(n)的影響,此外,又因為第n+1級控制訊號Q(n+1)可在第n級高頻時脈訊號HC(n)回復為低電壓準位後補償第n級控制訊號Q(n),使第n級控制訊號Q(n)在第n級高頻時脈訊號HC(n)回復為低電壓準位後可維持在第四工作電壓準位Ⅳ,使第n級控制訊號Q(n)保持較佳的驅動能力,因此第n級閘極控制訊號G(n)可透過電晶體T11快速下拉至低電壓準位。 According to the above, when the liquid crystal display is driven in a dot inversion manner, since the n-1th stage control signal Q(n-1) and the n+1th level control signal Q(n+1) can be used in this embodiment. The n-th control signal Q(n) is compensated, so after the n-th control signal Q(n) is raised to the first working voltage level I and the n-th high-frequency clock signal HC(n) is In the floating state before the high voltage level, the nth control signal Q(n) can be compensated by the n-1th control signal Q(n-1) and the n+1th control signal Q(n+1) And raised to the second working voltage level II, effectively reducing the impact of leakage and noise on the nth control signal Q(n), and, in addition, because the n+1th control signal Q(n+1) can be in the first After the n-level high-frequency clock signal HC(n) returns to the low voltage level, the n-th control signal Q(n) is compensated, so that the n-th control signal Q(n) is in the n-th high-frequency clock signal HC ( n) After returning to the low voltage level, the fourth operating voltage level IV can be maintained, so that the nth stage control signal Q(n) maintains a better driving capability, so the nth stage gate control signal G(n) can be Quickly pull down to the low voltage level through transistor T11.
圖6為實施例四之移位暫存器電路以行反轉方式來驅動液晶顯示器之高頻時脈訊號,其包括第n-2級高頻時脈訊號HC(n-2)、第n-1級高頻時脈訊號HC(n-1)、第n級 高頻時脈訊號HC(n)以及第n+1級高頻時脈訊號HC(n+1),且第n-2級高頻時脈訊號HC(n-2)、第n-1級高頻時脈訊號HC(n-1)、第n級高頻時脈訊號HC(n)以及第n+1級高頻時脈訊號HC(n+1)具有相同的致能時間,第n+1級高頻時脈訊號HC(n+1)落後第n級高頻時脈訊號HC(n)一預設時間、第n級高頻時脈訊號HC(n)落後第n-1級高頻時脈訊號HC(n-1)一預設時間、第n-1級高頻時脈訊號HC(n-1)落後第n-2級高頻時脈訊號HC(n-2)一預設時間。 6 is a high frequency clock signal of the fourth embodiment of the shift register circuit for driving the liquid crystal display in a line inversion manner, which includes the n-2th high frequency clock signal HC(n-2), nth -1 high frequency clock signal HC(n-1), nth level The high frequency clock signal HC(n) and the n+1th high frequency clock signal HC(n+1), and the n-2th high frequency clock signal HC(n-2), the n-1th stage The high frequency clock signal HC(n-1), the nth high frequency clock signal HC(n), and the n+1th high frequency clock signal HC(n+1) have the same enabling time, nth The +1 level high frequency clock signal HC(n+1) lags behind the nth stage high frequency clock signal HC(n) for a preset time, and the nth stage high frequency clock signal HC(n) falls behind the n-1th stage. The high frequency clock signal HC(n-1) is a preset time, and the n-1th high frequency clock signal HC(n-1) lags behind the n-2th high frequency clock signal HC(n-2) Preset time.
接著說明第n級控制訊號Q(n)之補償方式。第n-1級控制訊號Q(n-1)、第n級控制訊號Q(n)以及第n+1級控制訊號Q(n+1)皆包括第一工作電壓準位I、第二工作電壓準位Ⅱ、第三工作電壓準位Ⅲ以及第四工作電壓準位Ⅳ。當第n-2級移位暫存器電路之本級高頻訊號,也就是第n-2級高頻時脈訊號HC(n-2)為高電壓準位時,此時第n級控制訊號Q(n)會相應抬升至第一工作電壓準位I;接著,在第n級控制訊號Q(n)的本級高頻時脈訊號,也就是第n級高頻時脈訊號HC(n)尚未為高電壓準位時,由於此時第n-1級控制訊號Q(n-1)被抬升至第三工作電壓準位Ⅲ,第n+1級控制訊號Q(n+1)被抬升至第一工作電壓準位I,因此第n-1級控制訊號Q(n-1)可藉由圖4A中所述之第一電容C1、第n+1級控制訊號Q(n+1)可藉由第n+1級移位暫存器電路中之第一電容個別補償至第n級控制訊號Q(n),因此此時的第n級控制訊號Q(n)被第n-1級控制訊號Q(n-1)以及第n+1級控制訊號Q(n+1)抬升至更高之第二工作電壓準位Ⅱ;當第n級高頻時脈訊號HC(n)為高電壓準位時,由於第n級閘極控制訊號G(n)可藉由圖4A之第二電容C2補償至第n級控制訊號Q(n),因此將 第n級控制訊號Q(n)抬升至第三工作電壓準位Ⅲ,而此時之第n-1級控制訊號Q(n-1)會由第三工作電壓準位Ⅲ下降至較低之第四工作電壓準位Ⅳ,第n+1級控制訊號Q(n+2)會由第二工作電壓準位Ⅱ上升至第三工作電壓準位Ⅲ,因此此時第n級控制訊號Q(n)之第三工作電壓準位Ⅲ只會受到第n-1級控制訊號Q(n-1)以及第n+1級控制訊號Q(n+1)微小的影響,且由於第n級控制訊號Q(n)先前已抬升至較高之第二工作電壓準位Ⅱ,故第n級控制訊號Q(n)之第三工作電壓準位Ⅲ仍為高於習知之第n級控制訊號Q(n)之第三工作電壓準位Ⅲ;而第n級控制訊號Q(n)於第四工作電壓準位Ⅳ的階段時,由於第n級控制訊號Q(n)會因第n+2級閘極控制訊號G(n+2)而快速下拉至低電壓準位,因此不受第n-1級控制訊號Q(n-1)以及第n+1級控制訊號Q(n+1)的影響。 Next, the compensation method of the nth stage control signal Q(n) will be described. The n-1th control signal Q(n-1), the nth control signal Q(n), and the n+1th control signal Q(n+1) all include the first working voltage level I and the second operation. The voltage level II, the third working voltage level III and the fourth working voltage level IV. When the high-frequency signal of the n-2th stage shift register circuit, that is, the n-2th high-frequency clock signal HC(n-2) is a high voltage level, the nth stage control The signal Q(n) will be raised to the first working voltage level I; then, the high-frequency clock signal of the n-th level control signal Q(n), that is, the n-th high-frequency clock signal HC ( n) When the high voltage level is not yet established, since the n-1th control signal Q(n-1) is raised to the third working voltage level III, the n+1th control signal Q(n+1) It is raised to the first working voltage level I, so the n-1th level control signal Q(n-1) can be controlled by the first capacitor C1 and the n+1th level control signal Q(n+) as shown in FIG. 4A. 1) The first capacitor in the n+1th shift register circuit can be individually compensated to the nth control signal Q(n), so the nth control signal Q(n) at this time is nth -1 level control signal Q(n-1) and n+1th level control signal Q(n+1) are raised to a higher second working voltage level II; when the nth stage high frequency clock signal HC(n When the voltage is at a high voltage level, since the nth gate control signal G(n) can be compensated to the nth control signal Q(n) by the second capacitor C2 of FIG. 4A, The nth control signal Q(n) is raised to the third working voltage level III, and the n-1th control signal Q(n-1) at this time is lowered to the lower by the third working voltage level III. The fourth operating voltage level IV, the n+1th control signal Q(n+2) will rise from the second working voltage level II to the third working voltage level III, so the nth stage control signal Q ( The third operating voltage level III of n) is only slightly affected by the n-1th control signal Q(n-1) and the n+1th control signal Q(n+1), and due to the nth stage control The signal Q(n) has been previously raised to the higher second operating voltage level II, so the third operating voltage level III of the nth control signal Q(n) is still higher than the conventional nth level control signal Q. (n) the third working voltage level III; and the nth stage control signal Q(n) is in the stage of the fourth working voltage level IV, since the nth stage control signal Q(n) is due to the n+2 The gate control signal G(n+2) is quickly pulled down to the low voltage level, so it is not affected by the n-1th control signal Q(n-1) and the n+1th control signal Q(n+1) Impact.
在以行反轉方式驅動液晶顯示器時,由於本實施例可藉由第n-1級控制訊號Q(n-1)以及第n+1級控制訊號Q(n+1)來對第n級控制訊號Q(n)進行補償,因此在第n級控制訊號Q(n)抬升為第一工作電壓準位I後且在第n級高頻時脈訊號HC(n)為高電壓準位前,第n級控制訊號Q(n)可藉由第n-1級控制訊號Q(n-1)以及第n+1級控制訊號Q(n+1)的補償抬升為較高的第二工作電壓準位Ⅱ,因此能提升整體第n級控制訊號Q(n)的驅動能力,有效降低漏電以及雜訊對第n級控制訊號Q(n)的影響。 When the liquid crystal display is driven in a row inversion manner, since the nth stage control signal Q(n-1) and the n+1th level control signal Q(n+1) can be used for the nth stage. The control signal Q(n) is compensated, so after the nth stage control signal Q(n) is raised to the first working voltage level I and before the nth stage high frequency clock signal HC(n) is at the high voltage level The nth-level control signal Q(n) can be raised to a higher second operation by the compensation of the n-1th control signal Q(n-1) and the n+1th control signal Q(n+1). The voltage level II can improve the driving capability of the overall n-th control signal Q(n), effectively reducing the influence of leakage and noise on the n-th control signal Q(n).
綜以上所述,由於本發明之移位暫存器電路實施例可利用電容電性耦接了第n-p級移位暫存器電路之控制訊號以及第n+m級移位暫存器電路之控制訊號,使得本級之控制訊號不管是在2D顯示方式或者3D顯示方式的情況下, 皆可以被第n-p級控制訊號以及第n+m級控制訊號所補償,提高本級控制訊號之驅動能力,更可有效避免因外部訊號干擾或者漏電等因素造成本級控制訊號驅動能力低落或者驅動錯誤等情況,進而大幅減少移位暫存器無法正常使用之狀況發生。 In summary, the embodiment of the shift register circuit of the present invention can electrically couple the control signal of the nth-stage shift register circuit and the n+m-level shift register circuit by using a capacitor. Control the signal so that the control signal of this level is in the case of 2D display mode or 3D display mode. It can be compensated by the np-level control signal and the n+m-level control signal to improve the driving ability of the control signal of this level, and it can effectively avoid the driving ability of the control signal of this level is low or driven due to external signal interference or leakage. In the case of errors, etc., the situation in which the shift register is not normally used is greatly reduced.
然上述之內容僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,凡依本發明申請專利範圍及說明書內容所做之等效變化或修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above description is only the preferred embodiment of the present invention, and the equivalent changes or modifications made by the scope of the present invention and the contents of the specification are still in the present invention. Within the scope of the patent.
10‧‧‧第一上拉電路 10‧‧‧First pull-up circuit
20‧‧‧第二上拉電路 20‧‧‧Second pull-up circuit
30‧‧‧第一下拉控制電路 30‧‧‧First pull-down control circuit
40‧‧‧第一下拉電路 40‧‧‧First pull-down circuit
50‧‧‧第二下拉控制電路 50‧‧‧Second pull-down control circuit
60‧‧‧第二下拉電路 60‧‧‧Second pull-down circuit
70‧‧‧主下拉電路 70‧‧‧Main pull-down circuit
T11,T21,T22,T31,T32,T33,T34,T41,T42,T51,T52,T53,T54,T61,T62,T71,T72‧‧‧電晶體 T11, T21, T22, T31, T32, T33, T34, T41, T42, T51, T52, T53, T54, T61, T62, T71, T72‧‧
C1‧‧‧第一電容 C1‧‧‧first capacitor
C2‧‧‧第二電容 C2‧‧‧second capacitor
LC1‧‧‧第一時脈訊號 LC1‧‧‧ first clock signal
LC2‧‧‧第二時脈訊號 LC2‧‧‧ second clock signal
HC(n)‧‧‧第n級高頻時脈訊號 HC(n)‧‧‧n-level high frequency clock signal
Q(n)‧‧‧第n級控制訊號 Q(n)‧‧‧n level control signal
Q(n-2)‧‧‧第n-2級控制訊號 Q(n-2)‧‧‧n-2 level control signal
Q(n+4)‧‧‧第n+4級控制訊號 Q(n+4)‧‧‧n+4 control signals
G(n)‧‧‧第n級閘極控制訊號 G(n)‧‧‧n-th gate control signal
G(n+4)‧‧‧第n+4級閘極控制訊號 G(n+4)‧‧‧th n+4 gate control signal
VSS1‧‧‧低電壓準位 VSS1‧‧‧low voltage level
P(n)‧‧‧第一下拉控制訊號 P(n)‧‧‧first pulldown control signal
K(n)‧‧‧第二下拉控制訊號 K(n)‧‧‧Second pull-down control signal
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104102921A TWI527045B (en) | 2015-01-28 | 2015-01-28 | Shift register circuit |
CN201510156291.8A CN104700899B (en) | 2015-01-28 | 2015-04-03 | Shift register circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104102921A TWI527045B (en) | 2015-01-28 | 2015-01-28 | Shift register circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI527045B true TWI527045B (en) | 2016-03-21 |
TW201628011A TW201628011A (en) | 2016-08-01 |
Family
ID=53347934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104102921A TWI527045B (en) | 2015-01-28 | 2015-01-28 | Shift register circuit |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104700899B (en) |
TW (1) | TWI527045B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI571057B (en) * | 2016-03-23 | 2017-02-11 | 友達光電股份有限公司 | Shift register circuit |
CN106057152B (en) * | 2016-07-19 | 2018-11-09 | 深圳市华星光电技术有限公司 | A kind of GOA circuits and liquid crystal display panel |
TWI614757B (en) * | 2017-07-06 | 2018-02-11 | 友達光電股份有限公司 | Shift register |
TWI632539B (en) * | 2017-11-28 | 2018-08-11 | 友達光電股份有限公司 | Scan circuit |
CN107978290A (en) * | 2017-12-26 | 2018-05-01 | 深圳市华星光电技术有限公司 | A kind of gate drivers and drive circuit |
CN110335572B (en) | 2019-06-27 | 2021-10-01 | 重庆惠科金渝光电科技有限公司 | Array substrate row driving circuit unit, driving circuit thereof and liquid crystal display panel |
TWI690932B (en) * | 2019-09-05 | 2020-04-11 | 友達光電股份有限公司 | Shift register |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI400686B (en) * | 2009-04-08 | 2013-07-01 | Au Optronics Corp | Shift register of lcd devices |
TWI505245B (en) * | 2012-10-12 | 2015-10-21 | Au Optronics Corp | Shift register |
TWI463460B (en) * | 2013-05-10 | 2014-12-01 | Au Optronics Corp | Pull-up circuit, shift register and gate driving module |
TWI509592B (en) * | 2013-07-05 | 2015-11-21 | Au Optronics Corp | Gate driving circuit |
CN103559913A (en) * | 2013-11-14 | 2014-02-05 | 友达光电股份有限公司 | Shifting register |
TWI527044B (en) * | 2014-05-05 | 2016-03-21 | 友達光電股份有限公司 | Shift register |
-
2015
- 2015-01-28 TW TW104102921A patent/TWI527045B/en not_active IP Right Cessation
- 2015-04-03 CN CN201510156291.8A patent/CN104700899B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104700899B (en) | 2018-02-13 |
TW201628011A (en) | 2016-08-01 |
CN104700899A (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI527045B (en) | Shift register circuit | |
US9881689B2 (en) | Emission driver and display device including the same | |
KR101937963B1 (en) | Scan driving circuit | |
TWI463460B (en) | Pull-up circuit, shift register and gate driving module | |
US8229058B2 (en) | Shift register of LCD devices | |
US10121442B2 (en) | Driving methods and driving devices of gate driver on array (GOA) circuit | |
WO2019015024A1 (en) | Gate driving circuit and driving method therefor | |
US9583065B2 (en) | Gate driver and display device having the same | |
TWI486959B (en) | Shift register circuit | |
CN110379349B (en) | Gate drive circuit | |
TWI514361B (en) | Gate driving circuit | |
US11443681B2 (en) | Gate driver and display apparatus including the same | |
TWI521490B (en) | Display panel and gate driver | |
TWI509592B (en) | Gate driving circuit | |
US10699659B2 (en) | Gate driver on array circuit and liquid crystal display with the same | |
CN104269151A (en) | Gate drive circuit capable of achieving signal bidirectional transmission | |
TWI484465B (en) | Gate driving circuit | |
CN114944123A (en) | GOA circuit and array substrate | |
TWI690931B (en) | Gate driving circuit and shift register controlling method | |
US9799292B2 (en) | Liquid crystal display driving circuit | |
US9711079B2 (en) | Shift register pulling control signals according to display mode | |
CN104751816A (en) | Shift register circuit | |
WO2020107643A1 (en) | Liquid crystal panel and gate driving circuit thereof | |
TW201735543A (en) | Shift register circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |