TWI416613B - Method of alignment mark protection and semiconductor device formed thereby - Google Patents
Method of alignment mark protection and semiconductor device formed thereby Download PDFInfo
- Publication number
- TWI416613B TWI416613B TW99116501A TW99116501A TWI416613B TW I416613 B TWI416613 B TW I416613B TW 99116501 A TW99116501 A TW 99116501A TW 99116501 A TW99116501 A TW 99116501A TW I416613 B TWI416613 B TW I416613B
- Authority
- TW
- Taiwan
- Prior art keywords
- dielectric layer
- substrate
- alignment mark
- layer
- region
- Prior art date
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
本發明一般是關於半導體的製造方法,特別是關於一種在平坦化製程中防止對準標記受損的方法以及以此方法形成的半導體元件。The present invention relates generally to a method of fabricating a semiconductor, and more particularly to a method of preventing damage to an alignment mark in a planarization process and a semiconductor device formed by the method.
製造積體電路(integrated circuit,IC)的重點之一是在半導體構件的製造中將多個層(layer)互相對準(align)。也就是,將每一層精確地對準,以使得形成於其中的電路與設計相符並能正常地運作。然而,隨著半導體元件的尺寸縮減,對準每一層的精確度是製程中相當重要的關鍵。One of the focuses of manufacturing an integrated circuit (IC) is to align a plurality of layers in the fabrication of a semiconductor component. That is, each layer is precisely aligned so that the circuitry formed therein conforms to the design and functions properly. However, as the size of semiconductor components shrinks, the accuracy of aligning each layer is a critically important key in the process.
層與層的對準通常會搭配使用被稱為步進器(stepper)的工具。藉由步進器,可自裝載於步進器的光罩(mask)或標線(reticle)將電路圖案投影至半導體晶圓上的膜層上。通常,已被圖案化的晶圓係相對於光罩來放置或對準。利用先前製程中已被界定於晶圓上的對準標記(alignment mark),可完成對準,且可執行隨後的步驟,例如投影圖案(pattern)至半導體晶圓上。Layer-to-layer alignment is often used in conjunction with a tool called a stepper. By means of a stepper, a circuit pattern can be projected onto a film layer on a semiconductor wafer from a mask or reticle loaded on the stepper. Typically, the wafers that have been patterned are placed or aligned relative to the reticle. Alignment can be accomplished using an alignment mark that has been defined on the wafer in a prior process, and subsequent steps, such as a projection pattern, onto the semiconductor wafer can be performed.
圖1繪示在基板10中的對準標記區域11的上視圖。主動區域13、對準標記區域11及多個對準標記溝渠(alignment mark trench)12可覆蓋在基板10上。對準標記溝渠12可以任選的十字(cross)圖案排列並形成於對準標記區域11中。此外,鄰近的對準標記溝渠12之間可界定出對準標記的平頂(flattop)14。FIG. 1 depicts a top view of the alignment mark region 11 in the substrate 10. The active region 13, the alignment mark region 11, and a plurality of alignment mark trenches 12 may be overlaid on the substrate 10. The alignment mark trenches 12 may be arranged in an optional cross pattern and formed in the alignment mark regions 11. Additionally, a flattop 14 of alignment marks can be defined between adjacent alignment mark trenches 12.
當晶圓上形成更多層時,為了在中段的製程中將晶圓的表面構形(topography)平坦化,可使用全面性(global)平坦化技術,例如化學機械研磨(chemical and mechanical polish,CMP),化學機械研磨包括將表面化學蝕刻及/或機械拋光/研磨。然而,化學機械研磨或其他平坦化製程,可能會損害晶圓上的對準標記,而造成負載效應(loading effect),其將於圖2a至2f討論。When more layers are formed on the wafer, in order to planarize the topography of the wafer in the middle process, a global planarization technique such as chemical and mechanical polish may be used. CMP), chemical mechanical polishing involves chemical etching and/or mechanical polishing/grinding of the surface. However, chemical mechanical polishing or other planarization processes may damage the alignment marks on the wafer and cause a loading effect, which will be discussed in Figures 2a through 2f.
請參照圖2a,提供基板200,基板200可為p型(p-type)或n型(n-type)。基板200可區分為主動區域(active area)210及預定義的(predefined)對準標記區域211。主動區域210上可用來形成電子元件特徵;預定義的對準標記區域211則具有對準標記溝渠207。對準標記溝渠207可利用電漿(plasma)蝕刻來形成。對準標記溝渠207具有一所需深度,其與對準輻射波長(alignment radiation wavelength)的函數,例如λ/4有關。Referring to FIG. 2a, a substrate 200 is provided. The substrate 200 may be p-type or n-type. The substrate 200 can be divided into an active area 210 and a predefined alignment mark area 211. The active area 210 can be used to form electronic component features; the predefined alignment mark area 211 has an alignment mark trench 207. The alignment mark trench 207 can be formed using plasma etching. The alignment mark trench 207 has a desired depth that is related to a function of the alignment radiation wavelength, such as λ/4.
然後,在基板200上長出薄氧化層201。接著,在氧化層201上形成氮化矽(Si3 N4 )層202。Then, a thin oxide layer 201 is grown on the substrate 200. Next, a tantalum nitride (Si 3 N 4 ) layer 202 is formed on the oxide layer 201.
請參照圖2b,藉由微影(photolithographic)圖案化及蝕刻,在主動區域210形成圖案化的氮化矽層208,以定義出淺溝渠隔離(shallow trench isolation,STI)區域220。Referring to FIG. 2b, a patterned tantalum nitride layer 208 is formed in the active region 210 by photolithographic patterning and etching to define a shallow trench isolation (STI) region 220.
請參照圖2c,將氧化層230沉積在氮化矽層202及208上,以填滿STI區域220,形成STI特徵221。Referring to FIG. 2c, an oxide layer 230 is deposited on the tantalum nitride layers 202 and 208 to fill the STI regions 220 to form the STI features 221.
請參照圖2d,以蝕刻製程將部份的氧化層230移除,留下對準標記溝渠207上的氧化層231,之後,再進行平坦化製程。平坦化可包括一殘留物移除製程,例如CMP製程,藉由鹼性溶劑(basic solvent)、研磨粒及懸浮液(suspension fluid)混合所形成的研磨液(slurry)濕潤研磨墊來研磨晶圓的表面,完成CMP製程。CMP製程可進行至到達終止層,例如氮化矽層202。Referring to FIG. 2d, a portion of the oxide layer 230 is removed by an etching process, leaving the oxide layer 231 on the alignment trench 207, and then a planarization process is performed. The planarization may include a residue removal process, such as a CMP process, which wets the wafer by wetting the polishing pad with a slurry formed by mixing a basic solvent, abrasive particles, and suspension fluid. The surface finishes the CMP process. The CMP process can proceed to reach a termination layer, such as tantalum nitride layer 202.
請參照圖2e,然後將殘留的氧化物231及氮化矽層202移除。接著,沉積多晶矽層(polysilicon layer)240。Referring to FIG. 2e, the residual oxide 231 and tantalum nitride layer 202 are removed. Next, a polysilicon layer 240 is deposited.
請參照圖2f,以STI氧化物221做為終止層,進行另一平坦化製程例如CMP時,由於氧化物221比多晶矽240堅硬很多,可能因而發生負載效應而損害對準標記。Referring to FIG. 2f, with STI oxide 221 as the termination layer, when another planarization process such as CMP is performed, since oxide 221 is much harder than polysilicon 240, load effects may occur thereby damaging the alignment marks.
本發明之實施例可提供一種在平坦化(planarization)製程中防止對準標記(alignment mark)受損的方法。此方法包括提供一基板(substrate),此基板包括第一區域及第二區域,在第二區域的基板中形成多個對準標記溝渠(alignment mark trench),在基板上形成第一介電層,在第一介電層上形成第二介電層,移除在對準標記溝渠上方的第二介電層,並在基板的第一區域中形成一圖案化的(patterned)區域,以形成一圖案化的第二介電層,其中對準標記溝渠及圖案化的第二介電層界定出多個開口,且圖案化的區域暴露出基板的多個部分,通過暴露的部分蝕刻基板,在圖案化的第二介電層上形成一第三介電層,以圖案化的第二介電層做為終止層(stop layer),平坦化第三介電層,以在第一區域形成多個隔離特徵(isolation feature),並在第二區域的開口中形成殘留的(residual)第三介電層。Embodiments of the present invention may provide a method of preventing alignment marks from being damaged during a planarization process. The method includes providing a substrate including a first region and a second region, forming a plurality of alignment mark trenches in the substrate of the second region, and forming a first dielectric layer on the substrate Forming a second dielectric layer on the first dielectric layer, removing a second dielectric layer over the alignment mark trench, and forming a patterned region in the first region of the substrate to form a patterned second dielectric layer, wherein the alignment mark trench and the patterned second dielectric layer define a plurality of openings, and the patterned regions expose portions of the substrate, and the substrate is etched through the exposed portions, Forming a third dielectric layer on the patterned second dielectric layer, using the patterned second dielectric layer as a stop layer, planarizing the third dielectric layer to form in the first region A plurality of isolation features and a residual third dielectric layer is formed in the openings of the second region.
本發明之實施例可提供一種在平坦化製程中防止對準標記受損的方法。此方法包括提供一基板,在基板中形成多個對準標記溝渠,在基板上形成一第一介電層,在第一介電層上形成一第二介電層,圖案化第二介電層,以暴露出相關於對準標記溝渠的第一介電層,以形成一圖案化的第二介電層,其中對準標記溝渠及圖案化的第二介電層界定出多個開口,在圖案化的第二介電層上形成一第三介電層,第三介電層填滿開口,以圖案化的第二介電層做為終止層,平坦化第三介電層,在開口中形成殘留的第三介電層。Embodiments of the present invention can provide a method of preventing damage to alignment marks during a planarization process. The method includes providing a substrate, forming a plurality of alignment mark trenches in the substrate, forming a first dielectric layer on the substrate, forming a second dielectric layer on the first dielectric layer, and patterning the second dielectric layer a layer to expose a first dielectric layer associated with the alignment mark trench to form a patterned second dielectric layer, wherein the alignment mark trench and the patterned second dielectric layer define a plurality of openings, Forming a third dielectric layer on the patterned second dielectric layer, the third dielectric layer filling the opening, and patterning the second dielectric layer as a termination layer to planarize the third dielectric layer A residual third dielectric layer is formed in the opening.
本發明之實施例可提供一種半導體元件。此半導體元件具有一結構。此結構用以在平坦化製程中保護對準標記,防止其受損。此半導體元件包括一基板、多個隔離特徵及多個對準標記。此基板包括一第一區域及一第二區域,第一區域及第二區域彼此分隔。隔離特徵位於第一區域上,以及多個對準標記位於第二區域上,其中對準標記及隔離特徵在基板之上彼此齊平。Embodiments of the present invention can provide a semiconductor component. This semiconductor element has a structure. This structure is used to protect the alignment marks from damage during the planarization process. The semiconductor component includes a substrate, a plurality of isolation features, and a plurality of alignment marks. The substrate includes a first region and a second region, the first region and the second region being separated from each other. The isolation feature is on the first region and the plurality of alignment marks are on the second region, wherein the alignment mark and the isolation feature are flush with each other over the substrate.
在隨後的說明書之一部分中,將闡明本發明之額外的特徵及優點,且說明書的此部分是很明顯的,或可從實現本發明而得。藉由隨後的申請專利範圍中所特別指出的元素或組合的方式,將可實現或得到本發明之額外的特徵及優點。Additional features and advantages of the invention will be set forth in the <RTIgt; Additional features and advantages of the invention will be realized or obtained in the <RTIgt;
可瞭解的是,上述的概略說明及下列的詳細說明僅為示範性及解釋性質,並不會對本發明之申請專利範圍有所限制。It is to be understood that the foregoing general description and the claims
下文特舉實施例,並配合所附圖式對本發明之實施例作詳細說明如下。在可能之處,圖式中相同的標號表示相同或類似的部件。The embodiments of the present invention are described in detail below with reference to the accompanying drawings. Wherever possible, the same reference numerals in the drawings
圖3a至3g繪示為本發明之實施例之保護對準標記的方法之剖面圖。請參照圖3a,提供基板300,基板300可為p型(p-type)或n型(n-type)。基板300可包括第一區域310及一個或多個第二區域311,第一區域310上有元件特徵(device feature),而第二區域311具有對準標記溝渠307。第一區域310及第二區域311可彼此分隔。此外,對準標記溝渠307可藉由圖案化及蝕刻製程或其他適用的製程來形成。在75-奈米(nanometer,nm)快閃記憶體(flash memory)製程之實施例中,每一溝渠307的深度約為1200埃(angstrom,)。3a through 3g are cross-sectional views showing a method of protecting alignment marks in accordance with an embodiment of the present invention. Referring to FIG. 3a, a substrate 300 is provided. The substrate 300 may be p-type or n-type. The substrate 300 can include a first region 310 and one or more second regions 311 having a device feature thereon, and a second region 311 having alignment mark trenches 307. The first region 310 and the second region 311 may be separated from each other. In addition, the alignment mark trench 307 can be formed by a patterning and etching process or other suitable process. In a 75-nanometer (nm) flash memory process embodiment, each trench 307 has a depth of about 1200 angstroms (angstrom, ).
然後,藉由例如是熱氧化(thermal oxidation)製程,在基板300上形成第一介電層301。在一實施例中,第一介電層301可包括氧化矽,例如二氧化矽(SiO2 )或氮氧化矽(SiON)。此外,在75-奈米製程之實施例中,第一介電層301的厚度可約為50至150埃。Then, a first dielectric layer 301 is formed on the substrate 300 by, for example, a thermal oxidation process. In an embodiment, the first dielectric layer 301 may include hafnium oxide, such as hafnium oxide (SiO 2 ) or hafnium oxynitride (SiON). Further, in the embodiment of the 75-nano process, the first dielectric layer 301 may have a thickness of about 50 to 150 angstroms.
接著,藉由沉積(deposition)製程,在第一介電層301上形成第二介電層302。在一實施例中,第二介電層302可包括氮化矽(Si3 N4 )並其厚度約為1400至1800埃。Next, a second dielectric layer 302 is formed on the first dielectric layer 301 by a deposition process. In an embodiment, the second dielectric layer 302 may include tantalum nitride (Si 3 N 4 ) and have a thickness of about 1400 to 1800 angstroms.
請參照圖3b,藉由微影(photolithographic)圖案化及蝕刻製程,可形成圖案化的第二介電層312。圖案化的第二介電層312可包括圖案化的區域308,圖案化的區域308位於第一區域310,其暴露出基板300的部分320。再者,在蝕刻製程中,對準標記溝渠307上方的第二介電層312可被移除,以暴露出對準標記溝渠307中的第一介電層301。因此,第二區域311上的圖案化的第二介電層312以及對準標記溝渠307可界定出開口309。Referring to FIG. 3b, a patterned second dielectric layer 312 can be formed by a photolithographic patterning and etching process. The patterned second dielectric layer 312 can include a patterned region 308 that is located in the first region 310 that exposes a portion 320 of the substrate 300. Moreover, in the etching process, the second dielectric layer 312 over the alignment mark trench 307 can be removed to expose the first dielectric layer 301 in the alignment mark trench 307. Thus, the patterned second dielectric layer 312 and the alignment mark trench 307 on the second region 311 can define an opening 309.
接著,通過暴露的部分320蝕刻基板300,來形成淺溝渠隔離(shallow trench isolation,STI)特徵。Next, the substrate 300 is etched through the exposed portion 320 to form a shallow trench isolation (STI) feature.
請參照圖3c,在圖案化的第二介電層312上形成第三介電層330,以在第一區域310形成STI特徵321。在本發明之一實施例中,第三介電層330可包括氧化矽或氮氧化矽,且其厚度約為3000至4000埃。Referring to FIG. 3c, a third dielectric layer 330 is formed on the patterned second dielectric layer 312 to form the STI features 321 in the first region 310. In one embodiment of the invention, the third dielectric layer 330 may comprise hafnium oxide or hafnium oxynitride and has a thickness of between about 3,000 and 4,000 angstroms.
請參照圖3d,以圖案化的第二介電層312為終止層,透過第一平坦化製程,例如化學機械研磨(CMP)製程,移除部分第三介電層330,保留開口309中的第三介電層332。Referring to FIG. 3d, the patterned second dielectric layer 312 is used as a termination layer, and a portion of the third dielectric layer 330 is removed through a first planarization process, such as a chemical mechanical polishing (CMP) process, to retain the opening 309. The third dielectric layer 332.
請參照圖3e,可移除圖3d中的圖案化的第二介電層312。殘留的第三介電層332可因此作為對準標記。Referring to FIG. 3e, the patterned second dielectric layer 312 of FIG. 3d can be removed. The remaining third dielectric layer 332 can thus serve as an alignment mark.
接著,請參照圖3f,藉由例如是沉積製程,在第一介電層301、STI特徵321及殘留的第三介電層332上形成導體層340,例如是多晶矽層。在一實施例中,導體層340的厚度約為3000至4000埃。Next, referring to FIG. 3f, a conductor layer 340, such as a polysilicon layer, is formed on the first dielectric layer 301, the STI features 321 and the remaining third dielectric layer 332 by, for example, a deposition process. In one embodiment, the conductor layer 340 has a thickness of between about 3,000 and 4,000 angstroms.
請參照圖3g,以STI特徵321或殘留的第三介電層332至少其中之一做為終止層,透過第二平坦化製程,例如CMP製程,來形成圖案化的導體層342。在第二平坦化製程之後,殘留的第三介電層332、STI特徵321及圖案化的導體層342在基板300上彼此齊平。此外,殘留的第三介電層332可包括第一部份3321及第二部份3322,其中第一部份3321在基板300之中,第二部份3322在基板300之上。Referring to FIG. 3g, at least one of the STI feature 321 or the remaining third dielectric layer 332 is used as a termination layer, and the patterned conductor layer 342 is formed through a second planarization process, such as a CMP process. After the second planarization process, the remaining third dielectric layer 332, STI features 321 and patterned conductor layer 342 are flush with each other on the substrate 300. In addition, the remaining third dielectric layer 332 can include a first portion 3321 and a second portion 3322, wherein the first portion 3321 is in the substrate 300 and the second portion 3322 is above the substrate 300.
所屬技術領域中具有通常知識者可瞭解的是,在不脫離本發明之廣泛且深入的概念內,當可對實施例作些許之改變。可瞭解的是,因此,本發明不限於在此揭露的特定實施例,本發明意旨涵蓋在不脫離隨後的申請專利範圍所界定的本發明之精神和範圍內的更動。It will be apparent to those skilled in the art that modifications may be made to the embodiments without departing from the scope of the invention. It is understood that the invention is not limited to the specific embodiments disclosed herein, and the invention is intended to cover the modifications and the scope of the invention as defined by the appended claims.
此外,在描述本發明之示範性實施例時,實施方式以特定的步驟次序來說明本發明之方法或製程。然而,該方法或製程無須依循在此闡明的特定的步驟次序,該方法或製程不應限於上述的特定的步驟次序。所屬技術領域中具有通常知識者可瞭解的是,其他步驟次序亦是合理的。因此,在實施例中所闡明的特定的步驟次序不應被解釋為申請專利範圍上的限制。此外,針對本發明之方法或製程的申請專利範圍不應限於上述的步驟次序所達成的效果,所屬技術領域中具有通常知識者能夠理解,在不脫離申請專本發明之精神和範圍內,此次序是可改變的。Furthermore, in describing the exemplary embodiments of the present invention, the embodiments are described in a particular order of steps to illustrate the method or process of the invention. However, the method or process is not required to follow the specific sequence of steps set forth herein, and the method or process should not be limited to the specific order of steps described above. It will be appreciated by those of ordinary skill in the art that other sequences of steps are also reasonable. Therefore, the specific order of steps set forth in the examples should not be construed as limiting the scope of the claims. In addition, the scope of the patent application of the method or process of the present invention should not be limited to the effect of the above-described sequence of steps, and those skilled in the art can understand that without departing from the spirit and scope of the invention. The order is changeable.
10、200、300...基板10, 200, 300. . . Substrate
11、211...對準標記區域11, 211. . . Alignment mark area
13、210...主動區域13, 210. . . Active area
12、207、307...對準標記溝渠12, 207, 307. . . Alignment mark trench
14...對準標記平頂14. . . Alignment mark flat top
201、230、231...氧化層201, 230, 231. . . Oxide layer
202、208...氮化矽層202, 208. . . Tantalum nitride layer
220...淺溝渠隔離區域220. . . Shallow trench isolation area
221...STI氧化物221. . . STI oxide
240...多晶矽層240. . . Polycrystalline layer
301...第一介電層301. . . First dielectric layer
302、312...第二介電層302, 312. . . Second dielectric layer
308...圖案化的區域308. . . Patterned area
309...開口309. . . Opening
310...第一區域310. . . First area
311...第二區域311. . . Second area
320...暴露部分320. . . Exposed part
321...STI特徵321. . . STI features
330、332、3321、3322...第三介電層330, 332, 3321, 3322. . . Third dielectric layer
340、342...導體層340, 342. . . Conductor layer
圖1繪示為在基板中的對準標記區域的上視圖。Figure 1 depicts a top view of an alignment mark area in a substrate.
圖2a至2f繪示為習知半導體製造方法的剖面圖,其中平坦化製程損害對準標記。2a through 2f are cross-sectional views showing a conventional semiconductor fabrication method in which a planarization process damages alignment marks.
圖3a至3g繪示為根據本發明之實施例之保護對準標記之方法的剖面圖。3a through 3g are cross-sectional views showing a method of protecting alignment marks in accordance with an embodiment of the present invention.
300...基板300. . . Substrate
301...第一介電層301. . . First dielectric layer
310...第一區域310. . . First area
311...第二區域311. . . Second area
321...STI特徵321. . . STI features
332...第三介電層332. . . Third dielectric layer
342...導體層342. . . Conductor layer
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99116501A TWI416613B (en) | 2010-05-24 | 2010-05-24 | Method of alignment mark protection and semiconductor device formed thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99116501A TWI416613B (en) | 2010-05-24 | 2010-05-24 | Method of alignment mark protection and semiconductor device formed thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201142931A TW201142931A (en) | 2011-12-01 |
TWI416613B true TWI416613B (en) | 2013-11-21 |
Family
ID=46765183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99116501A TWI416613B (en) | 2010-05-24 | 2010-05-24 | Method of alignment mark protection and semiconductor device formed thereby |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI416613B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW395015B (en) * | 1998-08-18 | 2000-06-21 | United Microelectronics Corp | Method for aligning shallow trench isolation |
TW418459B (en) * | 1998-06-30 | 2001-01-11 | Fujitsu Ltd | Semiconductor device manufacturing method |
TW466678B (en) * | 1999-04-27 | 2001-12-01 | United Microelectronics Corp | Manufacturing method of alignment mark structure |
US20020005594A1 (en) * | 1997-08-25 | 2002-01-17 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method for manufacturing the same |
US20050101107A1 (en) * | 2003-11-12 | 2005-05-12 | Renesas Technology Corp. | Method for manufacturing semiconductor device |
US20090146325A1 (en) * | 2007-12-06 | 2009-06-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Alignment for backside illumination sensor |
-
2010
- 2010-05-24 TW TW99116501A patent/TWI416613B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020005594A1 (en) * | 1997-08-25 | 2002-01-17 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method for manufacturing the same |
TW418459B (en) * | 1998-06-30 | 2001-01-11 | Fujitsu Ltd | Semiconductor device manufacturing method |
TW395015B (en) * | 1998-08-18 | 2000-06-21 | United Microelectronics Corp | Method for aligning shallow trench isolation |
TW466678B (en) * | 1999-04-27 | 2001-12-01 | United Microelectronics Corp | Manufacturing method of alignment mark structure |
US20050101107A1 (en) * | 2003-11-12 | 2005-05-12 | Renesas Technology Corp. | Method for manufacturing semiconductor device |
US20090146325A1 (en) * | 2007-12-06 | 2009-06-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Alignment for backside illumination sensor |
Also Published As
Publication number | Publication date |
---|---|
TW201142931A (en) | 2011-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7709275B2 (en) | Method of forming a pattern for a semiconductor device and method of forming the related MOS transistor | |
US6803291B1 (en) | Method to preserve alignment mark optical integrity | |
US5923996A (en) | Method to protect alignment mark in CMP process | |
JP2004529504A (en) | A method and structure for forming an integrated circuit device using dummy features. | |
US7307002B2 (en) | Non-critical complementary masking method for poly-1 definition in flash memory device fabrication | |
JP2009130242A (en) | Method for manufacturing semiconductor device | |
US20180240679A1 (en) | Hard Mask Removal Method | |
US6465897B1 (en) | Method for photo alignment after CMP planarization | |
TWI675401B (en) | Method for manufacturing a semiconductor structure | |
CN102280367B (en) | Method for protecting alignment mark and semiconductor element formed therewith | |
US9236240B2 (en) | Wafer edge protection | |
US9773682B1 (en) | Method of planarizing substrate surface | |
US20060148275A1 (en) | Method of forming an alignment mark and manufacturing a semiconductor device using the same | |
US6624039B1 (en) | Alignment mark having a protective oxide layer for use with shallow trench isolation | |
KR100579687B1 (en) | Semiconductor device and method of manufacturing the same | |
US8324743B2 (en) | Semiconductor device with a structure to protect alignment marks from damage in a planarization process | |
CN109461696B (en) | Manufacturing method of shallow trench isolation structure | |
CN109427546B (en) | Method for manufacturing semiconductor structure | |
TWI416613B (en) | Method of alignment mark protection and semiconductor device formed thereby | |
US10627720B2 (en) | Overlay mark structures | |
JP3589580B2 (en) | Method for manufacturing semiconductor device | |
US20060148202A1 (en) | Method for forming shallow trench isolation in semiconductor device | |
KR100517556B1 (en) | Method for fabricating a device isolation structure in a semiconductor device | |
US20240021470A1 (en) | Semiconductor device and manufacturing method therefor | |
KR100835420B1 (en) | Method for fabricating semiconductor device |