TW573328B - Bipolar junction transistor and manufacturing method thereof - Google Patents
Bipolar junction transistor and manufacturing method thereof Download PDFInfo
- Publication number
- TW573328B TW573328B TW91136313A TW91136313A TW573328B TW 573328 B TW573328 B TW 573328B TW 91136313 A TW91136313 A TW 91136313A TW 91136313 A TW91136313 A TW 91136313A TW 573328 B TW573328 B TW 573328B
- Authority
- TW
- Taiwan
- Prior art keywords
- base
- patent application
- ions
- bipolar junction
- layer
- Prior art date
Links
Landscapes
- Bipolar Transistors (AREA)
Abstract
Description
573328 五、發明說明(1) 發明所屬之技術領域: 一種雙載子連接電晶體(Bipolar Junction Transist〇r; BJT)之結構及其製造方法,特別是有關於利用摻雜離子之 浮層基極(Raised Base)與快速熱回火(Rapid Therinal Annealing; RTA)製程來形成淺接面(ShaU〇w Juncti〇n)之 延伸基極(External Base),但其應用不限於本領域。 先前技術: 雙載子連接電晶體是目前最重要的半導體元件之一。雙載 子連接電晶體之所以稱為「雙載子」,係因同時利用「電 子」和「電洞」這兩種載子來傳導電流的電子元件。雙載 子連接電晶體的優點是速度快,但消耗大量的能量,當元 件的積集度增加時,散熱問題就成為應用雙載子連接^晶 體=一大阻礙。鍺化矽(SiGe)技術的新應用及相關的無: 或高性能產品的推出,是近來半導體業界熱門的話題。在 過去的5到1 〇年中,無線與南性能有線的應用中已漸趨於石申 化錄(GaAs)與其它三五族化合物半導體技術。欲突破這種 技術躍進的主要瓶頸,可利用鍺化矽的能帶落差(Band Gap)小於石夕的事實,讓標準矽晶藉由鍺的摻雜而轉變為異 質接合(Hetero junction )的半導體材料,成為鍺化矽異質 接合雙極電晶體(Hetero junction Bipolar TransistQlS、 HBT)。且係於完成所有元件隔離製程後,才在矽晶圓上生 長鍺化矽磊晶層。另外,鍺化矽磊晶層中,更以成長硼摻 雜的基極(Base)npn電晶體來取代傳統的離子植入方式。這 有助於縮小基極寬度,並免除高斯分佈與植入通道效應573328 V. Description of the invention (1) The technical field to which the invention belongs: a structure of a bipolar junction transistor (BJT) and a method for manufacturing the same, in particular, it relates to a floating layer base using doped ions (Raised Base) and Rapid Thermal Tempering (Rapid Therinal Annealing; RTA) process to form the external base of the shallow junction (ShaUOw JunctiOn), but its application is not limited to this field. Prior art: Bipolar junction transistors are one of the most important semiconductor components today. The reason why a bipolar-connected transistor is called a "bipolar" is an electronic component that uses two types of carriers, an "electron" and a "hole," to conduct current. The advantage of a bipolar junction transistor is that it is fast, but consumes a lot of energy. When the accumulation of components increases, the problem of heat dissipation becomes a big obstacle for the application of bipolar junction ^ crystal. New applications of silicon germanium (SiGe) technology and related non-: or high-performance product launches are hot topics in the semiconductor industry these days. In the past 5 to 10 years, the application of wireless and southern performance wire has gradually become Shishenhualu (GaAs) and other Group III-V compound semiconductor technology. To break through the main bottleneck of this technological leap forward, you can take advantage of the fact that the band gap of silicon germanium is smaller than that of Shi Xi, so that standard silicon crystals can be converted into heterojunction semiconductors by doping germanium. The material becomes Hetero junction Bipolar Transistor (HBT). And after completing all the component isolation processes, the silicon germanium epitaxial layer is grown on the silicon wafer. In addition, in the silicon germanium epitaxial layer, a boron-doped base npn transistor is used instead of the traditional ion implantation method. This helps reduce the base width and eliminates Gaussian distribution and implant channel effects
第8頁 573328 五、發明說明(2) (Channeling)等元件設計上的限制。而這些優點將顯著地 改良元件性能。為了使npn元件的活性基極能限制在鍺化石夕 蠢晶層内£ ’蠢晶成長的溫度必得夠低(約5 0 0°c )。晶圓在 置入沉積室前,係先以氟化氣(H F )溶液浸泡,使其表面為 氫原子所包覆(Hydrogen - Terminated)。一旦置入沉積室 後,即立刻通入矽曱烷氣體(Si lane ; Si H4)進行蟲晶程 序。同時在磊晶過程中鍺元素及其他元素也可被精確地摻 入,以作為HBT的基極。 請參考第1圖至第6圖,係繪示習知技術製造雙載子連接電 晶體的製程剖面圖。首先提供基材丨,其材料為矽,且於基 材1中已具有蟲晶層5、埋入層(Buried Layer)ll、集極 (Col lector) 13、複數個淺溝渠隔離12以及複數個第一介電 層14,並且在基材上依序形成複數個第二介電層ι5、基極 16、複數個第三介電層17、複數個第四介電層18與射極多 晶矽(Emitter Poly-Si 1 icon)層19在磊晶層5與第一介電層 1 4上,如第1圖中所示之結構,其中基極丨6之材質為鍺化 石夕’而射極多晶矽層丨9中已摻有複數個第一電性之離子。 接著,進行第一定義步驟,係利用微影製程及非等向性蝕 刻法,去除部分之射極多晶矽層1 9、第四介電層丨8與第三 介電層17,藉以暴露出部分之基極ι6,而形成如第2圖所示 之結構。然後,以化學氣相沉積法與非等向性蝕刻法,形 成間隙壁20,即完成如第3圖所示之結構,其中間隙壁2〇之 材質係為二氧化矽(Siiicon Dioxide; Si02)。之後,進行 離子植入製程,以具有間隙壁20之射極多晶矽層丨9為罩Page 8 573328 5. Description of the invention (2) (Channeling) and other component design restrictions. These advantages will significantly improve component performance. In order for the active base of the npn element to be confined in the germanium fossil crystal layer, the temperature of the crystal growth must be sufficiently low (about 500 ° c). Before the wafer is placed in the deposition chamber, it is immersed in a fluorinated gas (H F) solution so that its surface is coated with hydrogen atoms (Hydrogen-Terminated). Once placed in the deposition chamber, a siane gas (Si lane; Si H4) was immediately passed through for the worm crystal sequence. At the same time, germanium and other elements can be accurately doped during the epitaxial process to serve as the base of HBT. Please refer to FIG. 1 to FIG. 6, which are cross-sectional views showing a process for manufacturing a bipolar junction transistor by a conventional technique. First, a substrate is provided. The material is silicon, and the substrate 1 already has a worm crystal layer 5, a buried layer 11, a collector 13, a plurality of shallow trench isolations 12, and a plurality of The first dielectric layer 14 forms a plurality of second dielectric layers ι5, a base electrode 16, a plurality of third dielectric layers 17, a plurality of fourth dielectric layers 18, and an emitter polycrystalline silicon ( Emitter Poly-Si 1 icon) The layer 19 is on the epitaxial layer 5 and the first dielectric layer 14 as shown in the first figure, in which the material of the base 丨 6 is germanium fossil, and the emitter is polycrystalline silicon. The layer 9 has been doped with a plurality of first electrical ions. Next, a first definition step is performed, which uses a lithography process and an anisotropic etching method to remove parts of the emitter polycrystalline silicon layer 19, the fourth dielectric layer 丨 8, and the third dielectric layer 17, thereby exposing a portion The base electrode ι6 forms a structure as shown in FIG. 2. Then, the spacer 20 is formed by chemical vapor deposition and anisotropic etching, and the structure shown in FIG. 3 is completed. The material of the spacer 20 is silicon dioxide (Siiicon Dioxide; Si02). . Then, an ion implantation process is performed, and an emitter polycrystalline silicon layer with a spacer 20 is used as a cover.
第9頁 573328 五、發明說明(3) 幕,利用複數個第二電性之離子2 1,對整個晶片進行重摻 雜(Heavy Doping)製程,而形成如第4圖所示之結構。 然後,請參考第5圖,進行第二定義步驟,係利用微影製程 及非等向性蝕刻法,藉以去除部分之基極1 6,並暴露出部 分之第二介電層15。接著,進行回火製程,使暴露出部分 之基極1 6轉變為延伸基極2 2,並使射極多晶矽層丨9中之複 數個第二電性之離子21,向下摻入基極16中而形成射極 23,如第6圖所示之結構。Page 9 573328 V. Description of the invention (3) The screen uses a plurality of second electrical ions 21 to perform a heavy doping process on the entire wafer to form the structure shown in FIG. 4. Then, referring to FIG. 5, the second definition step is performed by using a lithography process and an anisotropic etching method to remove a portion of the base electrode 16 and expose a portion of the second dielectric layer 15. Next, a tempering process is performed to convert the exposed base 16 to an extended base 22, and to make the plurality of second electrical ions 21 in the emitter polycrystalline silicon layer 9 into the base downward. 16 to form the emitter 23, as shown in FIG.
如上述習知之製程,當元件的臨界線寬(Critical D i m e n s i ο η ; C D )縮小到1 8 0奈米(n m )甚至於更小的時候,在 電晶體中摻雜的區域越來越淺,摻雜離子濃度必須提高,As in the conventional manufacturing process described above, when the critical line width (Critical Diimensi ο η; CD) of the device is reduced to 180 nanometers (nm) or even smaller, the doped region in the transistor becomes shallower and shallower. , The doping ion concentration must be increased,
而摻雜離子濃度分佈形狀會有更顯著的變化,因此嚴格控 制接面在水平方向的擴散’是降低穿透(Punch Through)和 短通道(S h 〇 r t C h a η n e 1 )效應的關鍵。雖然低能量的離子植 入製程以及快速的熱回火製程能夠形成淺接面,不過,離 子在植入基材時所產生的通道效應,對於離子植入的位置 仍會造成明顯的衝擊,也就是接面深度會受到影響。此 外’晶圓内摻雜元素的擴散,更受到許多製程參數與材質 特性的影響。除了摻雜元素種類,在離子植入鍺化矽的基 極中時’製程溫度或缺陷誘發的瞬間增強擴散(Transient Enhanced Diffusion; TED)效應,都會改變離子在基極中 的擴散行為。這些因素會影響在延伸基極22中接面變深, 電子的傳遞速度較慢,RC(Resistance-Capacitance)延遲 也較大,同時所形成的射極23也較淺。The shape of the dopant ion concentration distribution will change more significantly, so strictly controlling the horizontal diffusion of the junction is the key to reducing the effects of Punch Through and Short Channel (S h rt C ha η ne 1). . Although the low-energy ion implantation process and the rapid thermal tempering process can form a shallow junction, the channel effect of the ions when implanting the substrate will still cause a significant impact on the location of the ion implantation. That is, the depth of the joint will be affected. In addition, the diffusion of doped elements in the wafer is further affected by many process parameters and material characteristics. In addition to the types of doping elements, the process temperature or defect-induced transient enhanced diffusion (TED) effect of ion implantation in the base of silicon germanium will change the diffusion behavior of ions in the base. These factors affect the deepening of the junction in the extended base 22, the electron transfer speed is slower, the RC (Resistance-Capacitance) delay is larger, and the formed emitter 23 is also shallower.
第10頁 573328 五、發明說明(4) 雙載子連接電晶 必要開發出更佳 間增強擴散效應 極0 發明内容: 鑒於上述之發明 時’離子植入基 延伸基極中接面 大,同時所形成 本發明的主要目 造方法,係利用 Depos i t i on)法 中浮層基極中已 程,使浮層基極 習知技術直接以 本發明之另一目 法,其係利用絕 進行選擇性磊晶 離子集中於延伸 本發明之又一目 其係利用摻雜離 子摻入基極中, 擴散效應,並形 根據以上所述之 體在整個半導體製程中十 的製程,來降低離子植入 ’以提供淺接面的延伸基 背景中,在進行雙載子連 極時造成的瞬間增強擴散 變深’電子的傳遞速度較 的射極也較淺。 的之一為提供一種雙載子 選擇性磊晶沉積(Select 沉積浮層基極於暴露出; 摻有複數個離子,並且透 中的複數個離子摻入基極 離子植入基極所造成之衝 的為提供一種雙載子連接 緣層與間隙壁隔離射極多 沉積法與快速熱回火製程 基極内,藉此改善電子的 的為提供一種雙載子連接 子之浮層基極與快速熱回 結果可降低離子植入基極 成淺接面之延伸基極與較 目的,本發明提供一種雙 分重要,因此有 基極時造成的瞬 極與較深的射 接電晶體之製程 效應,會影響在 慢’ RC延遲也較 連接電晶體的製 ve Epitaxy P分之基極上,其 過快速熱回火製 中。結果可避免 擊。 電晶體的製造方 晶矽層,使後續 時,以將複數個 傳遞速度。 電晶體的結構, 火製程,來將離 造成的瞬間增強 深的射極。 載子連接電晶體 573328 五、發明說明(5) 之結構及其製造方法,此製造方法至少包括下列步驟:首 先提供基材,其中基材上依序堆疊基極、射極多晶矽層與 絕緣層,且暴露出部分之基極,其中射極多晶矽層中已摻 有複數個第一電性之離子;接著,在射極多晶矽層兩側形 成間隙壁;然後,利用選擇性磊晶沉積法,沉積浮層基極 於暴露出部分之基極上,其中浮層基極中摻有複數個第二 電性之離子;以及透過快速熱回火製程,以形成淺接面之 延伸基極與較深的射極。 實施方式: 本發明揭露一種雙載子連接電晶體之製造方法,其係選擇 性磊晶沉積法,沉積浮層基極於暴露出部分之基極上,其 中浮層基極中已摻有複數個離子,並且透過快^熱回火^ 程’以形成淺接面之延伸基極與較深的射極。為了使本發 明之敘述更加詳盡與完備,可參照下列描述並配合第7圖至 第1 2圖中,係繪示依據本發明之一較佳實施例進行雙載子 連接電晶體的製造剖面圖。 請參考第7圖,首先提供基材100,其材料為矽,且於基材 1〇0中已具有磊晶層105、埋入層1U、集極113、複數個淺 溝渠隔離11 2以及複數個第一介電層114,並且在基材上依 序$成複數個第一介電層115、基極116、複數個第三介電 層117、複數個第四介電層i丨8、射極多晶矽層i丨9以及絕緣 層1 2 0在基材1 〇 〇上,如第7圖中所示之結構,其中基極i i 6 之材質為鍺化石夕,而射極多晶石夕層119已摻有複數個第一電 性之離子。此外,在第7圖中係將絕緣層1 2〇覆蓋於射極多Page 10 573328 V. Description of the invention (4) It is necessary to develop a double carrier-connected transistor to develop a better enhanced diffusion effect. 0 Summary of content: In view of the above invention, the junction surface of the extended base of the ion implantation base is large, and at the same time The main objective method of the present invention is to use the process of the floating layer base in the Depos iti on method, so that the floating layer base knowing technology directly uses another method of the present invention, which uses absolute selectivity. The epitaxial ions are focused on extending another aspect of the present invention, which is to use doped ions to dope into the base, the diffusion effect, and to reduce the ion implantation according to the above-mentioned process in the entire semiconductor manufacturing process. In the background of the extended base providing a shallow junction, the instantaneous enhanced diffusion and deepening caused by the double-carrier concatenation is performed, and the electron transfer speed is also shallower than that of the emitter. One of them is to provide a dual-carrier selective epitaxial deposition (Select deposited floating layer base is exposed; doped with a plurality of ions, and a plurality of ions in the penetrating doped into the base caused by ion implantation of the base In order to provide a double carrier linking edge layer and the barrier wall, the emitter multiple deposition method and the rapid thermal tempering process are used to improve the electrons. The rapid thermal return result can reduce the extension of the base into a shallow junction of the ion implanted base and the purpose. The invention provides a dual-importance method, so the process of the instantaneous pole and the deeper radio-transistor caused by the base is provided. Effect, which will affect the slower RC delay than the base of the VE Epitaxy P connected to the transistor, which is too fast in thermal tempering. As a result, the impact can be avoided. The crystal silicon layer of the transistor makes subsequent In order to transfer a plurality of speeds. The structure of the transistor, the fire process, to enhance the deep emitter instantaneous. Carrier connection transistor 573328 5. The structure of the invention (5) and its manufacturing method, this manufacturing The method includes at least the following steps: first, a substrate is provided, in which a base, an emitter polycrystalline silicon layer, and an insulating layer are sequentially stacked on the substrate, and a part of the base is exposed, wherein the emitter polycrystalline silicon layer is doped with a plurality of first Electrical ions; Next, a barrier wall is formed on both sides of the emitter polycrystalline silicon layer; Then, a selective epitaxial deposition method is used to deposit a floating layer base on the exposed part of the base, wherein the floating layer base is doped with a plurality of A second electrical ion; and a rapid thermal tempering process to form an extended base and a deeper emitter with a shallow junction. Embodiments: The present invention discloses a method for manufacturing a bipolar junction transistor, which The selective epitaxial deposition method is used to deposit the floating layer base on the exposed part of the base. The floating layer base has been doped with a plurality of ions, and is formed by a rapid thermal annealing process to form a shallow junction. Extended base and deeper emitter. In order to make the description of the present invention more detailed and complete, you can refer to the following description and cooperate with Figures 7 to 12 to illustrate a preferred embodiment of the present invention. Double carrier A cross-sectional view of the manufacture of a transistor. Please refer to FIG. 7. First, a substrate 100 is provided, which is made of silicon and has an epitaxial layer 105, a buried layer 1U, a collector 113, and a plurality of substrates 100. Shallow trench isolation 11 2 and a plurality of first dielectric layers 114 are sequentially formed on the substrate into a plurality of first dielectric layers 115, a base 116, a plurality of third dielectric layers 117, and a plurality of fourths. The dielectric layer i 丨 8, the emitter polycrystalline silicon layer i 丨 9, and the insulating layer 120 are on the substrate 100, as shown in FIG. 7, wherein the material of the base electrode ii6 is germanium fossil, The emitter polycrystalline stone layer 119 has been doped with a plurality of first electrical ions. In addition, in FIG. 7, the insulating layer 12 is covered on the emitter.
第12頁 573328 五、發明說明(6) 晶碎層119’以便後續進行離子植人製程時1來隔離射極 多晶矽層11 9。 接著,進行第-定義步驟,係利用微影製程及非等向性蝕 刻法,去除部分之絕緣層12〇、射極多晶矽層119、 介 電層118與第三介電層117,藉以暴露出部分之基極116,而 形成如第8圖所不之結構。然後,以化學氣相沉積法盥非等 向性蝕刻法,形成間隙壁121,使射極多晶矽層119/第四 介電廣118與第三介電層117被絕緣層12〇與間隙壁i2i所包 住,以形成如第9圖所示之結構,其中間隙壁121之材質係 為二氧化矽。 、 之後’利用選擇性m積& ’沉積浮層基極122於暴露出 部分之基極116上,以形成如第1〇圖所示之結構其中浮層 基極122中摻有複數個第二電性之離子123,而複數個第二s 電性之離子1 23係P型離子’其材質為硼(B〇r〇n ; b)。 然後’請參考第11圖,進行第二定義步驟,係利用微影製 程及非等向性蝕刻法,藉以去除部分之浮層基極丨22與部分 之基極116’以暴露出部分之第二介電層lb。 — 快速熱回火製程,以熱擴散的方式,把浮層基極122中之C複 數個第二電性之離子123摻入基極11 6中,藉此使與浮層基 極122接觸之基極116轉變為延伸基極124, 而形成射極1 2 5,而如第1 2圖所示之結構。 根據本發明所提供之雙載子連接電晶體的製造方法,其特 徵至少包括係利用絕緣層120與間隙壁121隔離射極多^石夕Page 12 573328 V. Description of the invention (6) The crystal chip layer 119 'is used to isolate the emitter polycrystalline silicon layer 119 during the subsequent ion implantation process. Next, the first definition step is performed, which uses a lithography process and anisotropic etching to remove parts of the insulating layer 120, the emitter polycrystalline silicon layer 119, the dielectric layer 118, and the third dielectric layer 117, thereby exposing A part of the base electrode 116 is formed as shown in FIG. 8. Then, a spacer 121 is formed by chemical vapor deposition and anisotropic etching, so that the emitter polycrystalline silicon layer 119 / the fourth dielectric layer 118 and the third dielectric layer 117 are insulated by the insulating layer 12 and the spacer i2i It is enclosed to form a structure as shown in FIG. 9, wherein the material of the partition wall 121 is silicon dioxide. After that, 'use the selective m product &' to deposit the floating layer base 122 on the exposed portion of the base 116 to form a structure as shown in FIG. 10 in which a plurality of floating layer bases 122 are doped. The second electrical ion 123, and the plurality of second s electrical ions 1 23 are P-type ions' whose material is boron (B0ron; b). Then 'Please refer to FIG. 11 for the second definition step, which uses a lithography process and anisotropic etching to remove part of the floating layer base 22 and part of the base 116' to expose part of the first Two dielectric layers lb. — The rapid thermal tempering process, by thermal diffusion, C, a plurality of second electrical ions 123 in the floating layer base 122 are doped into the base 116, so as to contact the floating layer base 122 The base electrode 116 is transformed into an extended base electrode 124 to form an emitter electrode 12 5 and a structure as shown in FIG. 12. According to the manufacturing method of the dual-carrier connection transistor provided by the present invention, at least the characteristics include that the insulating layer 120 is used to separate the emitter and the spacer 121 from each other.
第13頁 573328 五、發明說明(7) 層1 1 9,以便進行選擇性磊晶沉積法與快速熱回火製程時 能將複數個第二電性之離子123集中於延伸基極124内,藉 此改善電子的傳遞速度。 根據本發明所提供之雙載子連接電晶體的製造方法,其特 徵亦包括係利用摻雜第二電性之離子1 2 3之浮層基極1 2 2與 快速熱回火製程,來取代習知技術直接以離子植入基極 1 1 6 ’因此降低第二電性之離子1 2 3植入基極1 1 6造成的瞬間 增強擴散效應。明參考第1 3圖’為本發明之一較佳實施例 於接面冰度、植入爛離子濃度與植入石申離子濃度之關係Page 13 573328 V. Description of the invention (7) Layer 1 1 9 so that a plurality of second electrical ions 123 can be concentrated in the extended base 124 during the selective epitaxial deposition method and the rapid thermal tempering process. This improves the electron transfer speed. According to the manufacturing method of the double-carrier connection transistor provided by the present invention, the method also includes using a floating layer base 1 2 2 doped with a second electrical ion 1 2 3 and a rapid thermal tempering process to replace it. The conventional technique directly implants the base 1 1 6 ′ with the ion, thus reducing the second electrical ion 1 2 3 by implanting the base 1 1 6 with a transient enhanced diffusion effect. Reference is made to Figure 13 for reference, which is a preferred embodiment of the present invention. The relationship between the ice level of the joint, the concentration of implanted ions and the concentration of implanted ions
圖。其中虛線126係表示習知技術製造之雙載子連接電晶體 於接面深度及植入砷離子濃度的結果,虛線i 2 7則表示習知 技術製造之雙載子連接電晶體於接面深度及植入硼離子濃 又的、.·〇果而實線1 2 8係表示本發明之一較佳實施例製造之 子連接電晶體於接面深度及植入砷離子濃度的結果, ::丄2:則表示本發明之一較佳實施例製造之雙載子連接電 面深度及植入棚離子濃度的結果。比較虛線126與 之#里/μ在砷離子濃度相同的情況下,兩者離子摻入深度 声;te π ^ Θ距l30。再比較虛線127與實線129,在硼離子濃 ==丄,兩者離子摻入深度之差異…131。其Illustration. The dashed line 126 indicates the depth of the junction and the implanted arsenic ion concentration of the double-junction transistor manufactured by the conventional technology, and the dashed line i 2 7 indicates the depth of the junction-connected transistor manufactured by the conventional technology. And the implanted boron ions are thick and solid. The solid line 1 2 8 shows the results of the connection depth of the sub-connected transistor and the concentration of arsenic ions implanted in a preferred embodiment of the present invention. 2: It shows the results of the electrical depth of the double-carrier connection and the ion concentration in the implantation shed manufactured in a preferred embodiment of the present invention. Comparing the dashed line 126 with # Li / μ in the case where the arsenic ion concentration is the same, the depth of the two ions is doped; te π ^ Θ is away from l30. Then compare the dashed line 127 and the solid line 129. At the concentration of boron ions == 深度, the difference in the depth of the two ions ... 131. its
入基極中所^赤、1 3 1,是因習知技術係將離子直接植 之+ 的瞬間增強擴散效應,使得習知技術製造 晶艘的離子植入較深。這導致在延伸基極 所形&的=权電子的傳遞速度較慢,rc延遲也較大,另外 成的射極也會較淺。反之,本發明之-較佳實施例製The red and 131 in the base are due to the instantaneous enhancement of the diffusion effect of the ions directly implanted by the conventional technology, which makes the ion implantation of the crystal boat by the conventional technology deeper. This leads to the slower transfer speed of the & weighted electrons formed in the extended base, the larger the rc delay, and the shallower the emitter. Conversely, the present invention-the preferred embodiment
573328 五、發明說明(8 造之雙載子 熱回火製程 傳遞速度較 間增強擴散 根據本發明 徵更包括係 回火製程, 第二電性之 本發明不限 離子種類, 因此,本發 製造方法, 露出部分之 並且透過快 入基極中。 成之衝擊。 本發明之另 法,其係利 進行選擇性 離子集中於 本發明之又 其係利用摻 子摻入基極 擴散效應, 連接電晶體 ,因此可形 快,而且大 效應,另外 所提供之雙 利用摻雜第 來將第二電 離子之材質 於此。一般 係依據製程 明之一優點 係利用選擇 基極上,其 速熱回火製 結果可避免 一優點為提 用絕緣層與 磊晶沉積法 延伸基極内 一優點為提 雜離子之浮 中,結果可 並形成淺接 係利用摻雜 成淺接面之 幅降低離子 所形成的射 載子連接電 二電性之離 性之離子摻 ,僅為本發 熟悉此技術 所需而定。 就是提供一 性蟲晶沉積 中浮層基極 程,使浮層 習知技術直 供一種雙載 間隙壁隔離 與快速熱回 ,藉此改善 供一種雙載 層基極與快 降低離子植 面之延伸基 離子之浮層 延伸基極, 植入基極時 極也會較深 晶體的製造 子之浮層基 入基極中。 明之一較佳 之人員可瞭 種雙載子連 法,沉積浮 中已摻有複 基極中的複 接以離子植 子連接電晶 射極多晶石夕 火製程時, 電子的傳遞 子連接電晶 速熱回火製 入基極造成 極與較深的 基極與快速 不僅電子的 所造成的瞬 〇 方法,其特 極與快速熱 因此上述之 實施例,但 解欲植入之 接電晶體的 層基極於暴 數個離子, 數個離子摻 入基極所造 體的製造方 層,使後續 以將複數個 速度。 體的結構, 程,來將離 的瞬間增強 射極。573328 V. Description of the invention (8) The dual-carrier thermal tempering process has a faster transfer rate than the enhanced diffusion process. According to the invention, the tempering process is included. The second electrical invention does not limit the ion species. Therefore, the invention The method exposes a part and penetrates quickly into the base. The impact of the formation. Another method of the present invention is to facilitate selective ion concentration in the base of the present invention, which uses a dopant to dope into the base diffusion effect to connect electricity. Crystal, so it can be shaped quickly, and has a large effect. In addition, the provided dual-doped material is used to place the material of the second ion here. Generally, it is based on one of the advantages of the manufacturing process. The result can be avoided. An advantage is that the insulating layer and the epitaxial deposition method are used to extend the inside of the base. An advantage is that the floating ions are lifted. As a result, a shallow junction can be formed. The ion-doped ion dopant to which the carrier is connected to the electric and electric charge is only required for the reader to be familiar with this technology. It is to provide the base layer of the floating layer in the monosexual crystal deposition so that The layer-knowledge technology directly provides a dual-load spacer wall isolation and rapid thermal return, thereby improving the floating-layer extension base for a dual-layer base and an extended base ion that rapidly reduces the ion implantation surface. Also, the floating layer of the deeper crystal substrate is incorporated into the base. One of the better people can use a double carrier connection method. The deposition connection has been doped with the complex base in the complex base, and the ion implanter is used to connect the electricity. In the process of crystal-ejecting polycrystalline spar fire, the electron transferor is connected to the electric crystal, and is rapidly tempered into the base to cause the pole and the deeper base and fast. Therefore, the above-mentioned embodiment is rapidly heated, but the base of the layer of the transistor to be implanted is exposed to several ions, and several ions are doped into the manufacturing layer of the base, so that the subsequent speed will be a plurality of speeds. The structure, the process, will enhance the emitter moment.
573328 五、發明說明(9) 如熟悉此技術之人員所瞭解的,以上所述僅為本發明之較 佳實施例而已,並非用以限定本發明之申請專利範圍;凡 其它未脫離本發明所揭示之精神下所完成之等效改變或修 飾,均應包括在下述之申請專利範圍内。573328 V. Description of the invention (9) As understood by those familiar with this technology, the above is only a preferred embodiment of the present invention and is not intended to limit the scope of patent application for the present invention; all others do not depart from the scope of the present invention Equivalent changes or modifications made under the spirit of disclosure should be included in the scope of patent application described below.
第16頁 573328 圖式簡單說明 本發明的較佳實施例已於前述之說明文字中輔以下列圖形 做更詳細的闡述,其中: 第1圖至第6圖係繪示習知技術進行雙載子連接電晶體的製 造剖面圖; 第7圖至第1 2圖係繪示依據本發明之一較佳實施例進行雙載 子連接電晶體的製造剖面圖;以及 第1 3圖係繪示接面深度、植入硼離子濃度與植入砷離子濃 度之關係圖。 圖號對照說明: 1 基材 5 蠢晶層 11 埋入層 12 淺溝渠隔離 13 集極 14 第一介電層 15 第二介電層 16 基極 17 第三介電層 18 第四介電層 19 射極多晶碎層 20 間隙壁 21 離子 22 延伸基極 23 射極 100 基材 105 蠢晶層 111 埋入層 112 淺溝渠隔離 113 集極 114 第一介電層 115 第二介電層 116 基極 117 第三介電層 118 第四介電層 119 射極多晶矽層 120 絕緣層 121 間隙壁Page 573328 Schematic illustration of the preferred embodiment of the present invention has been described in more detail in the preceding explanatory text with the following figures, of which: Figures 1 to 6 show the conventional technology for double loading Cross-sectional views of the fabrication of a sub-connected transistor; FIGS. 7 to 12 are cross-sectional views of the fabrication of a bi-connected transistor according to a preferred embodiment of the present invention; and FIG. Relationship between surface depth, implanted boron ion concentration, and implanted arsenic ion concentration. Comparative description of drawing numbers: 1 substrate 5 stupid layer 11 buried layer 12 shallow trench isolation 13 collector 14 first dielectric layer 15 second dielectric layer 16 base electrode 17 third dielectric layer 18 fourth dielectric layer 19 Emitter polycrystalline fragmented layer 20 Gap wall 21 Ion 22 Extended base 23 Emitter 100 Substrate 105 Stupid layer 111 Buried layer 112 Shallow trench isolation 113 Collector 114 First dielectric layer 115 Second dielectric layer 116 Base 117 Third dielectric layer 118 Fourth dielectric layer 119 Emitter polycrystalline silicon layer 120 Insulating layer 121 Gap wall
第17頁 573328 圖式簡單說明 1 2 2 浮層基極 123 離子 124 延伸基極 125 射極 126 虛線 127 虛線 128 實線 129 實線 130 差距 131 差距Page 17 573328 Simple illustration of the drawing 1 2 2 Floating layer base 123 Ion 124 Extended base 125 Emitter 126 Dotted line 127 Dotted line 128 Solid line 129 Solid line 130 Gap 131 Gap
(I 第18頁(I p. 18
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91136313A TW573328B (en) | 2002-12-16 | 2002-12-16 | Bipolar junction transistor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91136313A TW573328B (en) | 2002-12-16 | 2002-12-16 | Bipolar junction transistor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW573328B true TW573328B (en) | 2004-01-21 |
TW200411777A TW200411777A (en) | 2004-07-01 |
Family
ID=32734326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91136313A TW573328B (en) | 2002-12-16 | 2002-12-16 | Bipolar junction transistor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW573328B (en) |
-
2002
- 2002-12-16 TW TW91136313A patent/TW573328B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200411777A (en) | 2004-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10361306B2 (en) | High acceptor level doping in silicon germanium | |
TW200915436A (en) | Formation of shallow junctions by diffusion from a dielectric doped by cluster or molecular ion beams | |
US7714396B2 (en) | Metal-oxide semiconductor field effect transistor | |
US5089428A (en) | Method for forming a germanium layer and a heterojunction bipolar transistor | |
TWI587446B (en) | Soi substrate and fabrication method thereof | |
US7939854B2 (en) | Semiconductor device with a bipolar transistor and method of manufacturing such a device | |
JP5010589B2 (en) | Semiconductor device manufacturing method and semiconductor integrated circuit chip provided with semiconductor device manufactured by the method | |
US6404038B1 (en) | Complementary vertical bipolar junction transistors fabricated of silicon-on-sapphire utilizing wide base PNP transistors | |
US9209264B2 (en) | Heterojunction bipolar transistor having a germanium raised extrinsic base | |
US7572708B1 (en) | Utilization of doped glass on the sidewall of the emitter window in a bipolar transistor structure | |
KR100594324B1 (en) | Method for forming a dual polysilicon gate of semiconductor device | |
TW573328B (en) | Bipolar junction transistor and manufacturing method thereof | |
US6744080B2 (en) | Method of manufacturing a bipolar transistor of double-polysilicon, heterojunction-base type and corresponding transistor | |
US6806159B2 (en) | Method for manufacturing a semiconductor device with sinker contact region | |
US7235861B1 (en) | NPN transistor having reduced extrinsic base resistance and improved manufacturability | |
US7164186B2 (en) | Structure of semiconductor device with sinker contact region | |
US20080054406A1 (en) | Method to Improve Performance of a Bipolar Device Using an Amorphizing Implant | |
WO1981001911A1 (en) | Method for achieving ideal impurity base profile in a transistor | |
US7268376B2 (en) | Bipolar transistor for increasing signal transfer efficiency and method of manufacturing the same | |
JP3041886B2 (en) | Method for manufacturing semiconductor device | |
JPH0595000A (en) | Manufacture of semiconductor device | |
CN117877966A (en) | Self-aligned metal silicide forming process based on low-energy light ion implantation | |
CN117497608A (en) | Surrounding grid transistor based on silicon on diamond and preparation method thereof | |
CN113394101A (en) | NMOS device manufacturing method for improving stress film coverage uniformity and NMOS device | |
JP2006216922A (en) | Horizontal bipolar transistor and semiconductor device having the same, as well as manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |