TW554424B - Method of forming a gate structure and a self-aligned contact structure - Google Patents
Method of forming a gate structure and a self-aligned contact structure Download PDFInfo
- Publication number
- TW554424B TW554424B TW91121508A TW91121508A TW554424B TW 554424 B TW554424 B TW 554424B TW 91121508 A TW91121508 A TW 91121508A TW 91121508 A TW91121508 A TW 91121508A TW 554424 B TW554424 B TW 554424B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductive material
- forming
- material layer
- self
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
554424 A7 __B7 _ 五、發明説明(, ) 發明範疇 本發明一般而言係關於一種形成閘極結構及自我對準接 觸窗結構之方法;特定而言,本發明係為一種去除先前技 藝在半導體製程中所形成之閘極導體/位元線接觸窗(gate conductor/bitline contact,GC/CB)短路的缺點和增加較大的 製程容許範圍(process window)之方法。 發明背景 一般而言,金屬氧化物半導體(MOS)裝置係由金屬層、氧 化♦層及基板所構成。由於金屬與氧化物的黏著性不佳’ 常使用多晶矽取代金屬以形成MOS裝置的閘極結構之導電 層。然而,多晶矽之缺點係在於其電阻較金屬為高,雖然 其可藉由雜質摻雜以降低電阻,然而所產生的導電性仍無 法作為MOS裝置中良好的導電層。一種常見的解決方法是 在多晶碎層上增加一層金屬秒化物,例如碎化鶴(WSi)層, 以改良閘極結構之導電性。 在先前技藝中,形成接觸窗結構的方法包括下列步驟: 形成介電層、形成接觸窗(contact window)以及形成金屬 層。在形成金屬層與基板間的金屬接觸(metal contact)時, 最廣泛使用的方法是自我對準蝕刻方法。 圖1A至圖ic所示係為形成閘極結構之傳統方法,其過 程如下所述: 參考圖1A,首先準備一基板2;接著在基板2上形成複 數個分離之閘極結構,其中各個閘極結構包括一第一導電 材料層4、一第二導電材料層6、一絕緣層8以及一侧壁間 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 554424 A7 B7 五、發明説明(2 ) 隔層(spacer) 10。在閘極形成後,形成一介電層12覆蓋整個 基板2。 參考圖1B,接著在介電層12上實行微影及蝕刻步騾以在 閘極結構之間移除一選定的部分直至基板2之上表面暴露 出來。該蝕刻步騾亦對絕緣層8及側壁間隔層10有效,但 是其蝕刻率較慢,因此有部分的絕緣層8及侧壁間隔層10 亦被蝕刻。結果,在閘極結構之間形成接觸窗20,其可自 我對準至基板2上形成接觸區域之位置。如圖中所示,接 觸區域係形成於基板2的暴露表面處,其寬度為X。 參考圖1C,接著在整個晶圓的上表面沈積一特定厚度的 金屬層14以覆蓋介電層12之暴露表面、閘極結構之侧壁間 隔層10以及基板2。藉此在自我對準接觸窗20中於金屬層 14及基板2之間形成一寬度為X之金屬接觸。 前述自我對準接觸之接觸電阻(contact resistance)值係與 在金屬層14及基板2之間之接觸區域(也就是由寬度X所 標示的區域)成比例。在蝕刻過程中可藉由延長蝕刻時間之 方法以增大接觸區域。然而如果蝕刻時間控制不當,該方 法會造成絕緣層8及侧壁間隔層10被過度蝕刻,而使其下 方的第二導電材料層6被暴露出來。第二導電材料層6被 暴露出的部分會在點16與金屬層14接觸而造成短路。 為了改善上述之傳統製程,先前技藝美國專利第 5,989, 987號案提供一種形成自我對準接觸窗結構之改良方 法(請參考圖2A至2D所示),該方法如下所示: 參考圖2A,首先準備一基板2,其上依序為一第一導電 -5- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) ;· 裝 訂554424 A7 __B7 _ V. Description of the invention (,) Field of invention The invention generally relates to a method for forming a gate structure and a self-aligned contact window structure; in particular, the invention is a method for removing previous techniques in semiconductor manufacturing processes. The shortcomings of the gate conductor / bitline contact (GC / CB) short circuit formed in the method and the method of increasing a larger process window. BACKGROUND OF THE INVENTION Generally, a metal oxide semiconductor (MOS) device is composed of a metal layer, an oxide layer, and a substrate. Due to the poor adhesion between metal and oxide ’polycrystalline silicon is often used to replace the metal to form the conductive layer of the gate structure of the MOS device. However, the disadvantage of polycrystalline silicon is that its resistance is higher than that of metal. Although it can be doped by impurities to reduce the resistance, the resulting conductivity cannot be used as a good conductive layer in MOS devices. A common solution is to add a layer of metal sulfide on the polycrystalline fragment layer, such as a fragmented crane (WSi) layer, to improve the conductivity of the gate structure. In the prior art, a method of forming a contact window structure includes the following steps: forming a dielectric layer, forming a contact window, and forming a metal layer. When forming a metal contact between a metal layer and a substrate, the most widely used method is a self-aligned etching method. 1A to 1C show a conventional method for forming a gate structure. The process is as follows: Referring to FIG. 1A, a substrate 2 is first prepared; then, a plurality of separated gate structures are formed on the substrate 2, where each gate The pole structure includes a first conductive material layer 4, a second conductive material layer 6, an insulating layer 8 and a side wall. This paper size applies to the Chinese National Standard (CNS) A4 specification (210X 297 mm) 554424 A7 B7 V. Description of the invention (2) Spacer 10. After the gate is formed, a dielectric layer 12 is formed to cover the entire substrate 2. Referring to FIG. 1B, lithography and etching steps are then performed on the dielectric layer 12 to remove a selected portion between the gate structures until the upper surface of the substrate 2 is exposed. This etching step is also effective for the insulating layer 8 and the sidewall spacer 10, but its etching rate is slow, so a part of the insulating layer 8 and the sidewall spacer 10 is also etched. As a result, a contact window 20 is formed between the gate structures, which can be self-aligned to a position where a contact region is formed on the substrate 2. As shown in the figure, the contact area is formed at the exposed surface of the substrate 2 and its width is X. Referring to FIG. 1C, a metal layer 14 of a specific thickness is then deposited on the entire surface of the entire wafer to cover the exposed surface of the dielectric layer 12, the sidewall spacer 10 and the substrate 2 of the gate structure. Thereby, a metal contact having a width X is formed between the metal layer 14 and the substrate 2 in the self-aligned contact window 20. The contact resistance value of the aforementioned self-aligned contact is proportional to the contact area (that is, the area indicated by the width X) between the metal layer 14 and the substrate 2. During the etching process, the contact area can be increased by extending the etching time. However, if the etching time is not properly controlled, this method will cause the insulating layer 8 and the sidewall spacer layer 10 to be over-etched, and the second conductive material layer 6 below it will be exposed. The exposed portion of the second conductive material layer 6 will contact the metal layer 14 at the point 16 and cause a short circuit. In order to improve the above-mentioned traditional process, the prior art US Patent No. 5,989, 987 provides an improved method for forming a self-aligned contact window structure (refer to FIGS. 2A to 2D). The method is as follows: Reference Figure 2A, first prepare a substrate 2 on top of which is a first conductive -5- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm); binding
554424 A7 B7 五、發明説明(3 ) 材料層4、一第二導電材料層6以及一絕緣層8。藉由乾式 蚀刻(dry etching)蚀刻至基板2之表面以形成複數個分離之 閘極結構。 參考圖2B,接著以NH4OH,H202和H20混和的蝕刻劑 (etchant)蝕刻第二導電材料層6。雖然該蝕刻劑的目的係用 於蝕刻第二導電材料層6,但是也會以較慢速率蝕刻其下之 第一導電材料層4。蝕刻完成後,在各個閘極結構上形成一 侧壁間隔層10。 參考圖2C,接著在整個晶圓的上表面形成一介電層12, 以覆蓋所有閘極結構以及基板2之暴露表面。而後移除介 電層12在閘極結構之間的選定部分直至基板2的上表面被 暴露出。 參考圖2D,接著在整個晶圓的上表面沈積一特定厚度的 金屬層14以覆蓋介電層12之暴露表面、閘極結構之侧壁間 隔層10以及基板2。藉此在自我對準接觸窗20中於金屬層 14及基板2之間形成一金屬接觸。 上述先前技藝美國專利第5,989,987號案所提供方法之優 點在於多了一個針對第二導電材料層6之蝕刻步騾,藉由 此一蝕刻步驟造成第二導電材料層6之寬度較其上絕緣層8 為窄,藉此形成較大製程容許範圍(process window)以避免 第二導電材料層6在點16處與金屬層14短路。 然而,美國專利第5,989, 987號案所提供之形成自我對準 接觸窗結構之方法有下列缺點:(1)針對第二導電材料層6 之蝕刻步驟亦會以較慢之速率蝕刻第一導電材料層4,使其 -6 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) !· 裝 訂554424 A7 B7 V. Description of the invention (3) Material layer 4, a second conductive material layer 6, and an insulating layer 8. The surface of the substrate 2 is etched by dry etching to form a plurality of separated gate structures. Referring to FIG. 2B, the second conductive material layer 6 is then etched with an etchant mixed with NH4OH, H202, and H20. Although the purpose of the etchant is to etch the second conductive material layer 6, the first conductive material layer 4 thereunder is also etched at a slower rate. After the etching is completed, a sidewall spacer layer 10 is formed on each gate structure. Referring to FIG. 2C, a dielectric layer 12 is then formed on the entire surface of the entire wafer to cover all the gate structures and the exposed surface of the substrate 2. Selected portions of the dielectric layer 12 between the gate structures are then removed until the upper surface of the substrate 2 is exposed. Referring to FIG. 2D, a metal layer 14 of a specific thickness is then deposited on the entire surface of the entire wafer to cover the exposed surface of the dielectric layer 12, the sidewall spacer 10 and the substrate 2 of the gate structure. Thereby, a metal contact is formed between the metal layer 14 and the substrate 2 in the self-aligned contact window 20. The advantage of the method provided by the above-mentioned prior art U.S. Patent No. 5,989,987 is that there is an additional etching step for the second conductive material layer 6, by which an etching step causes the width of the second conductive material layer 6 to be wider than the insulating layer thereon. 8 is narrow, thereby forming a larger process window to prevent the second conductive material layer 6 from short-circuiting with the metal layer 14 at the point 16. However, the method for forming a self-aligned contact window structure provided by US Patent No. 5,989, 987 has the following disadvantages: (1) the etching step for the second conductive material layer 6 will also etch the first conductive material at a slower rate Material layer 4 to make it -6-This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm)!
554424554424
=界尺寸(e咖al dlmensiQn)減小、通道長度(eh_ei⑹州 減小及臨界電壓(ντ)減小;⑺由於第二導電材料層6之截 :積變小’造成間極導體之電阻值上升;(3)該㈣步驟會 造成第二導料制6與第—導電材料層4之接觸面積減 少,若接觸面積減少過多時,則會造成剝離(peeiing)現象。 發明概沭 本發明之主要目的係在純供_種形成閘極結構及自我 對準接觸窗結構之方法,該方法所形成之自我對準接觸窗 結構可形成較大製程容許範圍、維持第—導電材料層之臨 界尺寸、通道長度、臨界電壓、矽化鎢層之截面積、電阻 值並避免第二導電材料層與第一導電材料層之間之剝離現 象,該方法包括: (1) 在一基板的整個上表面上沈積一第一導電材料層; (2) 在該第一導電材料層的整個上表面上沈積一第二導電材 料層; (3) 在該第二導電材料層的整個上表面上沈積一絕緣層; (4) 執行微影及蝕刻製程以移除該絕緣層之選定部分; (5) 使用對第二導電材料層之蝕刻率高於對該絕緣層之蝕刻 率的一蝕刻劑以蝕刻該第二導電材料層,且尚未蝕刻至 第二導電材料層之下表面即停止蝕刻; (6) 對該第二導電材料層及該第一導電材料層實行蝕刻製程 至基板即停止蝕刻,以形成複數個閘極結構; (7) 在各個閘極結構的側壁上形成一侧壁間隔層; (8) 形成覆蓋所有閘極結構之一介電層; -7 - 本纸張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 裝 訂= The boundary size (ecaal dlmensiQn) decreases, the channel length (eh_ei⑹ 州 decreases, and the critical voltage (ντ) decreases; ⑺ due to the section of the second conductive material layer 6: the product becomes smaller, which causes the resistance of the interpolar conductor (3) This step will reduce the contact area between the second conductive material 6 and the first conductive material layer 4. If the contact area is reduced too much, it will cause peeling. Summary of the Invention The main purpose is to provide a method for forming gate structure and self-aligned contact window structure. The self-aligned contact window structure formed by this method can form a larger process tolerance and maintain the critical size of the first conductive material layer. , Channel length, critical voltage, cross-sectional area of tungsten silicide layer, resistance value and avoiding the peeling phenomenon between the second conductive material layer and the first conductive material layer, the method includes: (1) on the entire upper surface of a substrate Depositing a first conductive material layer; (2) depositing a second conductive material layer on the entire upper surface of the first conductive material layer; (3) depositing an insulating layer on the entire upper surface of the second conductive material layer ; ( 4) performing lithography and etching processes to remove selected portions of the insulating layer; (5) using an etchant having an etching rate higher than that of the insulating layer to etch the second conductive material Stop the etching before the material layer is etched to the lower surface of the second conductive material layer; (6) perform an etching process on the second conductive material layer and the first conductive material layer until the substrate stops etching to form a plurality of gates Electrode structure; (7) forming a sidewall spacer layer on the side walls of each gate structure; (8) forming a dielectric layer covering all gate structures; -7-This paper standard applies to Chinese National Standard (CNS) A4 size (210X297 mm) binding
k 554424 12介電層 14金屬層 16點 20自我對準接觸窗 A7 B7 五、發明説明(5 ) (9) 移除在閘極結構之間介電層之選定部分直至基板之表面 被暴露出以形成自我對準窗口;以及 (10) 形成覆蓋介電層的被暴露出之表面、閘極結構之侧壁間 隔層的一金屬層,並在該金屬層和該基板之間被暴露出 之基板表面形成自我對準接觸。 圖式簡單說明 本發明係藉由實施例與其圖式而描述,以使本發明之技 術内容、特徵與功效易於瞭解,其中 圖1A至圖1C係為形成自我對準接觸窗結構之傳統方 法; 圖2A至圖2D係為先前技藝美國專利第5,989,987號案形 成自我對準接觸窗結構之方法; 圖3A至圖3F係為根據本發明實施閘極結構及自我對準 接觸窗結構方法之各步驟後所得之結構;以及 圖4係為根據本發明形成閘極結構及自我對準接觸窗結 構的方法之流程圖 圖式元件符號說明 2 基板 4 第一導電材料層 6 第二導電材料層 8 絕緣層 10侧壁間隔層 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂k 554424 12 dielectric layer 14 metal layer 16 point 20 self-aligned contact window A7 B7 V. Description of the invention (5) (9) Remove the selected part of the dielectric layer between the gate structures until the surface of the substrate is exposed To form a self-aligned window; and (10) forming a metal layer covering the exposed surface of the dielectric layer and the sidewall spacer of the gate structure, and exposed between the metal layer and the substrate The substrate surface forms a self-aligned contact. The drawings briefly illustrate the present invention through the embodiments and the drawings to make the technical content, features, and effects of the present invention easy to understand, wherein FIG. 1A to FIG. 1C are the traditional methods of forming a self-aligned contact window structure; FIGS. 2A to 2D are methods of forming a self-aligned contact window structure in the prior art US Patent No. 5,989,987; FIGS. 3A to 3F are steps of a method of implementing a gate structure and a self-aligned contact window structure according to the present invention; The structure obtained afterwards; and FIG. 4 is a flowchart of a method for forming a gate structure and a self-aligned contact window structure according to the present invention. Schematic element symbol description 2 Substrate 4 First conductive material layer 6 Second conductive material layer 8 Insulation Layer 10 sidewall spacer -8- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) binding
554424 A7 B7 五、發明説明(6 ) 發明詳述 本發明較佳實施例係由圖3A至圖3F所示之結構以及圖4 所示之方法所表示。 開始時準備一基板2,其上依序為一第一導電材料層4、 一第二導電材料層6以及一絕緣層8。如圖4所示,打開閘 極導體(GC)遮罩(步騾401)。與先前技藝美國專利第 5,989,987號案形成自我對準接觸之方法不同之處在於本發 明之方法並非藉由乾式蝕刻直接蝕刻至基板2之表面以形 成複數個分離之閘極結構,而是先蝕刻至絕緣層8下表面 即停止(步騾402),如圖3A所示。第一導電材料層4可為 多晶梦(polysilicon)或非晶梦(amorphous silicon)層,第二導 電材料層6可為金屬碎化物層,如碎化鎢(Wsi)而絕緣層可 為氮化矽(SiN)層。而蝕刻製程可為乾式蝕刻。 如圖3B及圖4所示,接著以一種蝕刻劑以蝕刻第二導電 材料層6之上表面(步騾403),其中該蝕刻劑對第二導電材 料層6之蚀刻率高於對絕緣層8之蝕刻率。請注意由於第 二導電材料層6並未被蝕刻至其下表面,因此第一導電材 料層4並未與蚀刻劑接觸而不會被蚀刻。該蚀刻劑較佳為 ΝΗ4ΟΗ,Η202*Η20混和之蝕刻劑,其溫度較佳為約攝氏55 度至85度,且蝕刻時間較佳為約5至30分鐘。而該蝕刻為 等向性(isotropic)蚀刻。 如圖3C及圖4所示,接著再實行蝕刻製程以蝕刻第二導 電材料層6及第一導電材料層4直到蝕刻至基板之上表面 (步驟404)。其中該蝕刻製程可為乾式蝕刻。 -9 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) m 裝 訂554424 A7 B7 V. Description of the invention (6) Detailed description of the invention The preferred embodiment of the present invention is represented by the structure shown in FIGS. 3A to 3F and the method shown in FIG. At first, a substrate 2 is prepared, and a first conductive material layer 4, a second conductive material layer 6, and an insulating layer 8 are sequentially formed thereon. As shown in Figure 4, open the gate conductor (GC) shield (step 401). This method differs from the method of forming self-aligned contacts in the prior art U.S. Patent No. 5,989,987 in that the method of the present invention does not directly etch to the surface of the substrate 2 by dry etching to form a plurality of separate gate structures, but first etches It stops at the lower surface of the insulating layer 8 (step 402), as shown in FIG. 3A. The first conductive material layer 4 may be a polysilicon or amorphous silicon layer, and the second conductive material layer 6 may be a metal fragmentation layer, such as tungsten tungsten (Wsi), and the insulating layer may be nitrogen. Siliconized (SiN) layer. The etching process may be dry etching. As shown in FIG. 3B and FIG. 4, an upper surface of the second conductive material layer 6 is then etched with an etchant (step 403). The etchant has a higher etching rate on the second conductive material layer 6 than on the insulating layer. Etching rate of 8. Note that since the second conductive material layer 6 is not etched to its lower surface, the first conductive material layer 4 is not in contact with the etchant and will not be etched. The etchant is preferably a mixed etchant of ΝΗ4ΟΗ, Η202 * Η20, its temperature is preferably about 55 ° C to 85 ° C, and the etching time is preferably about 5 to 30 minutes. The etching is isotropic etching. As shown in FIG. 3C and FIG. 4, an etching process is then performed to etch the second conductive material layer 6 and the first conductive material layer 4 until it is etched to the upper surface of the substrate (step 404). The etching process may be dry etching. -9-This paper size is applicable to Chinese National Standard (CNS) A4 (210X 297mm) m binding
線 554424 A7 _______B7 五、發明説明(7 ) 如圖3D及圖4所示,蝕刻完成後,接著在各個閘極結構 的侧壁上形成一侧壁間隔層1〇(步騾4〇5),此侧壁間隔層1〇 可為氮化矽(SiN)。 如圖3E及圖4所示,接著在整個晶圓的上表面形成一介 電層12’以覆蓋所有自我對準接觸窗結構以及基板2之暴 露表面。而後藉由微影及蝕刻移除在閘極結構之間的選定 部分之介電層12,直至基板2的上表面被暴露出而形成自 我對準接觸窗20(步驟406)。 如圖3F及圖4所示,接著在整個晶圓的上表面沈積一特 定厚度的金屬層14,以覆蓋介電層12之暴露表面、閘極結 構之侧壁間隔層1〇以及基板2。藉此在自我對準接觸窗20 中於金屬層14及基板2之間形成一金屬接觸(步驟407)。 根據本發明所提供之方法可解決形成自我對準接觸窗結 構之傳統方法以及先前技藝美國專利第5,989,987號案形成 自我對準接觸窗結構之方法之所有缺點,因為:(1)由於步 驟403針對第二導電材料層6之上半部蝕刻,因此與形成閘 極結構之傳統方法比較,可造成較大之接觸窗口而避免第 二導電材科層6在點16處與金屬層14短路;(2)使用蝕刻 劑蚀刻第二導電材料層6之上表面時,不會蝕刻至第一導 電材料層4而使其臨界尺寸(critical dimension)減小、通道 長度(channel length)減小及臨界電壓(VT)減小;(3)由於第 二導電材料層6與第一導電材料層4之接觸面積不變(因為 第二導電材料層6下半部與第一導電材料層4均未被蝕 刻),因此閘極導體之電阻值幾乎不變;(4)蝕刻時不會造成 -10 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) ;· 裝 訂Line 554424 A7 _______B7 V. Description of the invention (7) As shown in FIG. 3D and FIG. 4, after the etching is completed, a sidewall spacer layer 10 is then formed on the sidewall of each gate structure (step 405), The sidewall spacer 10 may be silicon nitride (SiN). As shown in FIGS. 3E and 4, a dielectric layer 12 ′ is formed on the entire surface of the entire wafer to cover all the self-aligned contact window structures and the exposed surface of the substrate 2. Then, the dielectric layer 12 in a selected portion between the gate structures is removed by lithography and etching until the upper surface of the substrate 2 is exposed to form a self-aligned contact window 20 (step 406). As shown in FIG. 3F and FIG. 4, a metal layer 14 of a specific thickness is then deposited on the entire surface of the entire wafer to cover the exposed surface of the dielectric layer 12, the sidewall spacer 10 of the gate structure, and the substrate 2. Thereby, a metal contact is formed between the metal layer 14 and the substrate 2 in the self-aligned contact window 20 (step 407). The method provided by the present invention can solve all the shortcomings of the traditional method of forming a self-aligned contact window structure and the method of forming a self-aligned contact window structure of the prior art US Pat. The upper half of the second conductive material layer 6 is etched, so that compared with the traditional method of forming the gate structure, a larger contact window can be caused to prevent the second conductive material layer 6 from shorting the metal layer 14 at point 16; 2) When the upper surface of the second conductive material layer 6 is etched with an etchant, the critical size is not reduced, the channel length is reduced, and the critical voltage is not etched to the first conductive material layer 4. (VT) decreases; (3) Because the contact area between the second conductive material layer 6 and the first conductive material layer 4 remains unchanged (because neither the lower half of the second conductive material layer 6 nor the first conductive material layer 4 is etched) ), So the resistance value of the gate conductor is almost unchanged; (4) It will not cause -10 when etching-this paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm); · binding
554424 A7 B7 五、 發明説明(8 ) 第二導電材料層6與第一導電材料層4之接觸面積減少, 因此不會造成剥離現象。 本發明之特點及技術内容已充分揭示如上,任何熟習本 項技藝之人可依據本發明之揭示及教示而作各種不背離本 發明精神之替換或修飾。因此,本發明之保護範圍不應僅 限於所揭示之實施例,而應涵蓋這些替換及修飾。 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)554424 A7 B7 V. Description of the invention (8) The contact area between the second conductive material layer 6 and the first conductive material layer 4 is reduced, so that it does not cause peeling. The features and technical contents of the present invention have been fully disclosed as above. Any person skilled in the art can make various substitutions or modifications based on the disclosure and teachings of the present invention without departing from the spirit of the present invention. Therefore, the protection scope of the present invention should not be limited to the disclosed embodiments, but should cover these substitutions and modifications. -11-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91121508A TW554424B (en) | 2002-09-19 | 2002-09-19 | Method of forming a gate structure and a self-aligned contact structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91121508A TW554424B (en) | 2002-09-19 | 2002-09-19 | Method of forming a gate structure and a self-aligned contact structure |
Publications (1)
Publication Number | Publication Date |
---|---|
TW554424B true TW554424B (en) | 2003-09-21 |
Family
ID=31974946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91121508A TW554424B (en) | 2002-09-19 | 2002-09-19 | Method of forming a gate structure and a self-aligned contact structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW554424B (en) |
-
2002
- 2002-09-19 TW TW91121508A patent/TW554424B/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4416843B2 (en) | Method for forming a trench isolation structure in an integrated circuit | |
TW526564B (en) | Method of fabricating semiconductor side wall fin | |
KR101159339B1 (en) | Process for forming dual metal gate structures | |
TW389947B (en) | Directionally deposited silicide on transistor electrodes and method for same | |
TW556273B (en) | Method for establishing ultra-thin gate insulator using anneal in ammonia | |
TWI521710B (en) | Semiconductor device structure and method for forming the same | |
WO2012071769A1 (en) | Mosfet device and manufacturing method thereof | |
US7459383B2 (en) | Fabricating method of gate structure | |
US7238601B2 (en) | Semiconductor device having conductive spacers in sidewall regions and method for forming | |
US9653600B2 (en) | Semiconductor device and method of fabricating same | |
US20170148665A1 (en) | Mechanism for forming metal gate structure | |
TW454300B (en) | Method for making a MOSFET with self-aligned source and drain contacts | |
JP2003197639A (en) | Semiconductor element and method of forming it | |
US20230223452A1 (en) | Semiconductor structure and forming method thereof | |
TW554424B (en) | Method of forming a gate structure and a self-aligned contact structure | |
TW550765B (en) | Manufacturing method of split-gate flash memory | |
JPH0127597B2 (en) | ||
TWI812241B (en) | Method of manufacturing semiconductor devices and semiconductor devices | |
TW381309B (en) | Manufacturing method for gates | |
JP3764452B2 (en) | Manufacturing method of semiconductor device | |
US7446027B2 (en) | Method for forming gate structure with local pulled-back conductive layer and its use | |
TWI220768B (en) | Method of forming a gate and method of forming a contact window | |
JP2000049340A (en) | Semiconductor device and fabrication thereof | |
JPH09232573A (en) | Contact hole forming method | |
TW425611B (en) | Manufacturing method of gate conduction structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |