TW494443B - Process and manufacturing tool architecture for use in the manufacture of one or more metallization levels on a workpiece - Google Patents
Process and manufacturing tool architecture for use in the manufacture of one or more metallization levels on a workpiece Download PDFInfo
- Publication number
- TW494443B TW494443B TW088107682A TW88107682A TW494443B TW 494443 B TW494443 B TW 494443B TW 088107682 A TW088107682 A TW 088107682A TW 88107682 A TW88107682 A TW 88107682A TW 494443 B TW494443 B TW 494443B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- metallization
- tool set
- copper
- workpiece
- Prior art date
Links
- 238000001465 metallisation Methods 0.000 title claims abstract description 156
- 238000000034 method Methods 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000010410 layer Substances 0.000 claims description 362
- 238000012545 processing Methods 0.000 claims description 190
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 112
- 229910052802 copper Inorganic materials 0.000 claims description 109
- 239000010949 copper Substances 0.000 claims description 109
- 230000004888 barrier function Effects 0.000 claims description 76
- 239000000463 material Substances 0.000 claims description 51
- 238000000427 thin-film deposition Methods 0.000 claims description 38
- 238000005530 etching Methods 0.000 claims description 32
- 239000010409 thin film Substances 0.000 claims description 32
- 238000000151 deposition Methods 0.000 claims description 22
- 238000004070 electrodeposition Methods 0.000 claims description 20
- 238000011049 filling Methods 0.000 claims description 19
- 238000007689 inspection Methods 0.000 claims description 19
- 239000011253 protective coating Substances 0.000 claims description 17
- 238000011282 treatment Methods 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 15
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 12
- 239000005751 Copper oxide Substances 0.000 claims description 12
- 229910000431 copper oxide Inorganic materials 0.000 claims description 12
- 230000008021 deposition Effects 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000009713 electroplating Methods 0.000 claims description 10
- 239000008151 electrolyte solution Substances 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000011241 protective layer Substances 0.000 claims description 5
- 238000009966 trimming Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 238000007747 plating Methods 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims description 2
- 238000004377 microelectronic Methods 0.000 claims 2
- 230000001681 protective effect Effects 0.000 claims 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000002023 wood Substances 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 51
- 238000012546 transfer Methods 0.000 abstract description 19
- 229920002120 photoresistant polymer Polymers 0.000 description 55
- 239000003989 dielectric material Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 17
- 230000002079 cooperative effect Effects 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 239000004020 conductor Substances 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 235000012431 wafers Nutrition 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000010408 film Substances 0.000 description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 239000011651 chromium Substances 0.000 description 9
- 238000005240 physical vapour deposition Methods 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 7
- -1 halide compounds Chemical class 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- 229910018487 Ni—Cr Inorganic materials 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910052770 Uranium Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000012993 chemical processing Methods 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 4
- 238000001259 photo etching Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 229910001080 W alloy Inorganic materials 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002736 metal compounds Chemical group 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229940074391 gallic acid Drugs 0.000 description 2
- 235000004515 gallic acid Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910000457 iridium oxide Inorganic materials 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 238000003631 wet chemical etching Methods 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- BEKIOVUSGKFJMC-UHFFFAOYSA-N [Cu+2].[O-2].[Ta+5] Chemical compound [Cu+2].[O-2].[Ta+5] BEKIOVUSGKFJMC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76885—By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/7685—Barrier, adhesion or liner layers the layer covering a conductive structure
- H01L21/76852—Barrier, adhesion or liner layers the layer covering a conductive structure the layer also covering the sidewalls of the conductive structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76825—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76826—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76886—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
- H01L21/76888—By rendering at least a portion of the conductor non conductive, e.g. oxidation
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Wire Bonding (AREA)
- Drying Of Semiconductors (AREA)
- Weting (AREA)
Abstract
Description
494443 A7 B7 五、發明説明( 發明背景: 積體電路是一種在半導體材料和在覆蓋於半導體材料 上之介電材料中形成的裝置之互連接的綜合體。可能在半 導體材料中形成的裝置包括MOS電晶體、雙極性電晶體、 二極體以及擴散電阻器。可能在介電材料中形成的裝置包 括薄膜電阻器以及電容器。典型上,在單一 8英吋直徑的 矽晶圓上係構成超過100個積體電路粒(1C晶片)。在各 晶粒中使用的裝置係藉由在介電質中形成的導體路徑而互 連接。典型上,二或更多層的導體路徑(連續的層係藉由 介電層分開)係被用作爲互連接件。在目前的實作上,典 型係分別使用鋁合金和矽氧化物作爲導體和介電質。 在單一晶體上的裝置之間電氣信號的傳播延遲係限制 了積體電路的性能。更明確而言,該等延遲限制了積體電 路可處理該等電氣信號的速度。較大的傳播延遲減低了積 體電路可處理電氣信號的速度,而較小的傳播延遲增加此 速度。因此,積體電路製造商係尋求減少傳播延遲的方式 (請先閱讀背面之注意事項再填寫本頁} -訂 經濟部智慧財產局員工消費合作社印製 對於各個互連接路徑而言,信號傳播延遲之特徵在於 時間延遲r。見E.H. Stevens之「互連接技術」,QMC公 司,丨993年7月。時間延遲τ (其係與積體電路上電晶體 之間信號的傳輸有關)的一個近似表示式係表示如以下等 式·· r =RC[1+(Vsat/RIsat)] 在此等式中,R和C係分別爲互連接路徑的等效電阻 張尺度適用中國國家標準(CNS ) A4規格(210X29^^7 494443 A7 B7 五、發明説明(7/ ) (請先閱讀背面之注意事項再填寫本頁) 和等效電容,而ISAT和VSAT則分別爲施加信號至互連接路 徑之電晶體的飽和(最大)電流和電流飽和開始(onset) 的汲極至源極電位。路徑電阻係正比於導體材料的電阻係 .數P。路徑電容係正比於介電材料的介電係數Ke。r的値 要小則需互連接線承載足夠大的電流密度以使Vsat/RIsat的 比値小。因此,跟著在高性能積體電路的製造中應使用可 承載高電流密度的低P導體伋低Ke介電質。 爲了符合前述標準,在低Ke介電質中之銅互連接線 適於取代氧化矽介電質中之鋁合金線以作爲最佳互連接結 構。見「銅成爲主流:依循低K」,國際半導體,1997年 11月,第67至70頁。銅薄膜的電阻係數係在1.7至2.0// Ώcm之軺圍中’而銘合金薄膜係較局是在3.0至3.5//Ωcm 之範圍。 不管銅的有利特性,在大規模的製造程序中,必須提 出對於銅互連接件而言,多個問題變得顯著。 經濟部智慧財產局員工消費合作社印製 銅的擴散即是一個此種問題。在電場的影響下,且僅 在適當地提升的溫度,銅迅速移動穿過矽氧化物。一般相 信銅亦迅速移動穿過低Ke介電質。此種銅擴散導致無法 在矽中形成裝置。 另一個問題是當銅浸入水溶液或曝露於含氧氣體中時 ,其傾向快速氧化。銅的氧化表面成爲非導電性,且因而 當相較同樣大小而未氧化的銅路徑時,限制了一給定導體 路徑的電流承載能力。 在積體電路中使用銅的另一個問題是難以在具有介電 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部智慧財產局員工消費合作社印製 494443 A7 B7 五、發明説明(、) 質材料的多層積體電路結構中使用銅。使用銅沈積之傳統 方法,銅僅是微弱地黏著於介電質材料。 最後,銅並不形成揮發性鹵化物化合物,則在以銅作 細線圖樣時,無法採用銅的直接電漿蝕刻。如此,銅係難 以用在進階之積體電路裝置所需的愈來愈小的幾何。 半導體工業已提述一些前述問題,並已採用用於銅互 連接件之一般標準互連接架構。爲此目的,業界已發現銅 的細線圖樣可藉由在介電質中蝕刻溝渠和通道、以銅沈積 塡塞溝渠和通道、以及藉由化學機械拋光(CMP)從介電 質的頂表面以上移除銅而達成。一種稱爲雙重波紋(dual damascene)的互連接架構可用以實行此種架構,從而在介 電質中形成銅線。第一圖顯示實行雙重波紋架構一般所需 之處理步驟。 本發明之發明人已發現對於半導體製造商而言,雙重 波紋架構經常難以實行於大規模的製造程序。其係難以沈 積薄的矽氧化物蝕刻擋止層而不損壞下層的低Ke材料。 電漿蝕刻介電質材料的技藝已建立良好,但是在低Ke介 電質中蝕刻次半微米特徵,同時維持對矽氧化物的選擇性 是很困難的。 在雙重波紋架構的構成中,至少有二個程序是特別麻 煩的。首先,將薄而均勻的障壁和種子層沈積入高縱橫比 (深度/直徑)之通道和高縱橫比(深度/寬度)之溝渠 是很困難的。在各別的溝渠及/或通道係完全塡塞或疊層 以所需材料之前,此種溝渠和通道的上部傾向爲剝除( 尺度 ^中 - (請先閲讀背面之注意事項再填寫本頁)494443 A7 B7 V. Description of the Invention (Background of the Invention: An integrated circuit is an interconnected complex of a semiconductor material and a device formed in a dielectric material overlying the semiconductor material. Devices that may be formed in a semiconductor material include MOS transistors, bipolar transistors, diodes, and diffusion resistors. Devices that may be formed in dielectric materials include thin film resistors and capacitors. Typically, a single 8-inch-diameter silicon wafer is composed of more than 100 integrated circuit chips (1C chip). The devices used in each die are interconnected by conductor paths formed in the dielectric. Typically, two or more layers of conductor paths (continuous layers) (Separated by a dielectric layer) is used as an interconnect. In current implementations, aluminum alloys and silicon oxides are typically used as conductors and dielectrics, respectively. Electrical signals between devices on a single crystal The propagation delay limits the performance of the integrated circuit. More specifically, these delays limit the speed at which the integrated circuit can process these electrical signals. Large propagation delay Reduces the speed at which integrated circuits can process electrical signals, and smaller propagation delays increase this speed. Therefore, manufacturers of integrated circuits are seeking ways to reduce propagation delays (please read the precautions on the back before filling out this page)- Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. For each interconnected path, the signal propagation delay is characterized by the time delay r. See "Interconnect Technology" by EH Stevens, QMC, July 993. Time delay An approximate expression for τ (which is related to the transmission of signals between transistors on integrated circuits) is as follows: r = RC [1+ (Vsat / RIsat)] In this equation, R And C series are the equivalent resistance scales of the interconnecting path, applicable to the Chinese National Standard (CNS) A4 specification (210X29 ^^ 7 494443 A7 B7) 5. Description of the invention (7 /) (Please read the precautions on the back before filling in this Page) and equivalent capacitance, while ISAT and VSAT are the saturation (maximum) current and the onset of the current-onset drain-to-source potential of the transistor that applies a signal to the interconnect path. The path resistance is directly proportional. The resistance coefficient of the conductor material. The number P. The path capacitance is proportional to the dielectric coefficient Ke of the dielectric material. If the 小 of r is small, the interconnect wiring must carry a sufficient current density to make the ratio of Vsat / RIsat smaller. Then, in the manufacture of high-performance integrated circuits, low-P conductors capable of carrying high current density and low-Ke dielectrics should be used. In order to meet the aforementioned standards, copper interconnects in low-Ke dielectrics are suitable to replace oxidation Aluminum alloy wires in silicon dielectrics are used as the best interconnection structure. See "Copper Goes Mainstream: Follow Low K", International Semiconductor, November 1997, pages 67 to 70. The resistivity of copper films is 1.7 To 2.0 // Ώcm, and Ming alloy film is in the range of 3.0 to 3.5 // cm. Regardless of the beneficial properties of copper, in large-scale manufacturing processes, it must be mentioned that for copper interconnects, multiple issues become significant. One such problem is the proliferation of copper printed by employees' cooperatives in the Intellectual Property Bureau of the Ministry of Economic Affairs. Under the influence of an electric field, and only at an appropriately elevated temperature, copper moves rapidly through silicon oxide. It is generally believed that copper also moves rapidly through low Ke dielectrics. This copper diffusion prevents devices from being formed in silicon. Another problem is that when copper is immersed in an aqueous solution or exposed to an oxygen-containing gas, it tends to oxidize quickly. The oxidized surface of copper becomes non-conductive, and thus limits the current carrying capacity of a given conductor path when compared to unoxidized copper paths of the same size. Another problem with using copper in integrated circuits is that it is difficult to apply the Chinese National Standard (CNS) A4 specification (210X297 mm) to paper standards with dielectrics. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives. 494443 A7 B7 V. Invention Note The use of copper in multilayer integrated circuit structures of (,) quality materials. With the traditional method of copper deposition, copper is only weakly adhered to the dielectric material. Finally, copper does not form volatile halide compounds, so when copper is used as a fine line pattern, direct plasma etching of copper cannot be used. As such, the copper system is difficult to use in increasingly smaller geometries required for advanced integrated circuit devices. The semiconductor industry has referred to some of the aforementioned issues and has adopted a general standard interconnect architecture for copper interconnects. To this end, the industry has found that fine line patterns of copper can be etched in trenches and channels in dielectrics, plugged trenches and channels with copper, and removed from above the top surface of the dielectric by chemical mechanical polishing (CMP). Achieved by removing copper. An interconnect architecture called dual damascene can be used to implement this architecture to form copper wires in the dielectric. The first figure shows the processing steps typically required to implement a dual ripple architecture. The inventors of the present invention have found that for semiconductor manufacturers, the dual corrugated architecture is often difficult to implement in large-scale manufacturing processes. It is a low Ke material that is difficult to deposit a thin silicon oxide etch stop layer without damaging the underlying layer. The technique of plasma etching dielectric materials is well established, but it is difficult to etch sub-micron features in low Ke dielectrics while maintaining selectivity to silicon oxide. There are at least two procedures that are particularly troublesome in the construction of the double ripple structure. First, it is difficult to deposit thin and uniform barriers and seed layers into high aspect ratio (depth / diameter) channels and high aspect ratio (depth / width) trenches. Until the respective trenches and / or channels are completely congested or stacked with the required material, the upper part of such trenches and channels tends to be stripped (size ^ medium-(Please read the precautions on the back before filling this page )
經濟部智慧財產局員工消費合作社印製 494443 A7 B7 五、發明説明(4) pinch-off)。甚且,CMP和相關的淸潔程序係尤其複雜而 難以實施。 除了其困難度和複雜性之外,雙重波紋架構在互連接 性能上有所限制。典型上包括矽氮化物的蝕刻檔止層具有 高的介電係數;因此,除非鈾刻擋止層相較於線厚度爲非 常薄,在相同互連接層的金屬線之間的電容係被經過蝕刻 擋止的耦合而抑制。已知障壁材料的導電係數相較於銅的 導電係數是可予以忽略的;因此,細的互連接線之導電性 係因爲必須插置在銅與介電質之間的障壁層而顯著減小。 適合用於實行第一圖中所示之雙重波紋處理步驟的一 種處理工具架構係顯示於第二圖。如第二圖所示,雙重波 紋架構可利用十個工具組實行。各互連接層的形成一般需 要二個光蝕刻(photolithographic)程序、二次精密蝕刻、 四次介電質沈積、障壁及種子層沈積、銅沈積、CMP以及 後CMP淸除。必須鈾刻小型通道和小型溝渠二者;因此, 一蝕刻工具需要在矽氮化物薄膜中界定通道特徵,而第二 飩刻工具需要在低Ke介電質中界定通道開口和溝渠特徵 。利用第二圖之傳統的處理工具,各金屬化層的形成需在 工具組之中至少13次工件移動。 用以形成雙重波紋互連接金屬化結構之晶圓移動的可 觀數目降低了製造過程的可靠度及產能。隨著晶圓移動的 數目增加,一或多個晶圓之誤操控的潛在性亦增加。甚且 ,實施用於應用雙重波紋互連接金屬化結構之製造設備需 要大筆支用以購買所需的工具組。本發明之至少一個特點 ---—----6- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 494443 A7 B7 V. Invention Description (4) pinch-off). Moreover, CMP and related cleaning procedures are particularly complex and difficult to implement. In addition to its difficulty and complexity, the dual corrugated architecture has limitations in interconnect performance. The etch stop layer, which typically includes silicon nitride, has a high dielectric constant; therefore, unless the uranium etch stop layer is very thin compared to the line thickness, the capacitance between the metal lines of the same interconnect layer is passed through. The coupling of the etch stop is suppressed. It is known that the conductivity of barrier materials is negligible compared to that of copper; therefore, the conductivity of thin interconnects is significantly reduced because of the barrier layer that must be interposed between copper and the dielectric. . A processing tool architecture suitable for implementing the double wave processing steps shown in the first figure is shown in the second figure. As shown in the second figure, the dual ripple architecture can be implemented using ten tool sets. The formation of each interconnecting layer generally requires two photolithographic processes, two precision etchings, four dielectric depositions, barrier and seed layer deposition, copper deposition, CMP, and post-CMP erasure. Both small channels and small trenches must be scribed by uranium; therefore, an etch tool needs to define channel features in the silicon nitride film, and a second engraving tool needs to define channel openings and trench features in low-Ke dielectrics. With the conventional processing tool of the second figure, the formation of each metallization layer requires at least 13 workpiece movements in the tool set. The considerable number of wafer movements used to form the double corrugated interconnect metallization structure reduces the reliability and productivity of the manufacturing process. As the number of wafer movements increases, the potential for mishandling of one or more wafers also increases. Furthermore, the implementation of manufacturing equipment for the application of double corrugated interconnect metallization structures requires large sums of money to purchase the required tool set. At least one feature of the present invention ----------- 6- This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page)
494443 Α7 Β7 五、發明説明(3 ) 係針對此種可靠度以及主要的設備支出課題。 ώ前述問題觀之’本發明之發明人亦已認知到銅金屬 化層需要有效的障壁材料以防止銅擴散,以及有效的保護 層覆蓋於銅金屬化層以防止銅氧化。現存用於製造此等金 屬化層之程序並不有效’且使用在大規模製造操作上並不 經濟實惠。 本發明之簡單槪要: 揭示一種以工具組間最少數目之工件轉移操作而將一 或更多金屬化層施加至半導體工件之大致平坦之介電質表 面的半導體製造工具結構。該工具結構包括薄膜沈積工具 組、圖樣處理工具組、溼處理工具組、以及介電質處理工 具組。薄膜沈積工具組係用於將導電障壁層沈積至半導體 工件的平坦介電質表面外部,並將導電種子層沈積至障壁 層外部。圖樣處理工具組係用於提供互連接線圖樣覆於種 子層’並提供柱圖樣覆於利用互連接線圖樣形成的互連接 線金屬化物。溼處理工具組係用於實行至少下列溼處理操 作:利用電化沈積程序施加銅金屬化物入藉由圖樣處理工 具組形成的互連接線圖樣和柱圖樣;移除藉由圖樣處理工 具組施加的材料以形成互連接線圖樣和柱圖樣;以及移除 種子層和障壁層未被互連接線金屬化物覆蓋的部份。介電 質處理工具組係用於沈積介電質層覆於互連接線金屬化物 和柱金屬化物,並且用於蝕刻所沈積的介電質層以曝露柱 金屬化物之上連接區域。 單一金屬化層可能利用複數次工具組間的工件移動而 η 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閱讀背面之注意事項再填寫本頁) 、1Τ 經濟部智慧財產局員工消費合作社印製 494443 A7 B7 五、發明説明u ) 形成。較佳而言,係使用工具組之間的工件移動不超過十 次,且更佳而言,係使用工具組之間的工件移動不超過五 次。 在某些情況下’可能需要使用硬光罩以作互連接金屬 化物之圖樣。爲達此目的,另一替代之工具結構包括薄膜 沈積工具組、硬光罩形成工具組、硬光罩蝕刻工具組、圖 樣處理工具組、溼處理工具組、以及介電質處理工具組。 薄膜沈積工具組係用於沈積導電障壁層於工件之平坦介電 質表面外部,並沈積導電種子層於障壁層外部。硬光罩形 成工具組係用於根據所揭示的程序之一將硬光罩介電質層 形成於種子層外部,並且在硬光罩介電質層外部形成另一 個硬光罩介電質層。根據第一個揭示的程序,圖樣處理工 具組係用於提供互連接線圖樣覆於硬光罩介電質層,並用 於提供柱圖樣覆於利用互連接線圖樣形成的互連接線金屬 化物。根據第二個揭示的程序,圖樣處理工具組係用於提 供柱圖樣覆於後來的硬光罩介電質層。根據第三個揭示的 程序,硬光罩飩刻工具組係用於在互連接線圖樣形成於其 上之後蝕刻硬光罩介電質層的曝露區域,在柱圖樣形成於 其上之後蝕刻後來的硬光罩介電質層的曝露部份。溼處理 工具組實行至少下列溼處理操作:1)利用電化沈積程序將 銅金屬化物沈積入藉由圖樣處理工具組形成的互連接線圖 樣和柱圖樣中,2)移除藉由圖樣處理工具組施加的材料以 形成互連接線圖樣和柱圖樣’ 3)移除硬光罩介電質層,且 如果需要的話,亦移除後來的硬光罩介電質層’以及4)移 本紙張尺度適用中國國家標準(CNS ) A4規格(2l〇x297公釐) (請先閱讀背面之注意事項再填寫本頁) # 訂 經濟部智慧財產局員工消費合作社印製 494443 Α7 Β7 五、發明説明(π ) 除未被互連接線金屬化物覆蓋的種子層和障壁層之部份。 介電質處理工具組係用於沈積介電質覆於互連接線金屬化 物和柱金屬化物,並且用於鈾刻沈積的介電質層以曝露柱 金屬化層的上連接區域。 根據工具組架構的特定實施例,亦可包括檢查工具組 。舉例而言,半導體工件係在金屬化程序之各個中間階段 轉移至檢查裝置以確保圖樣層與結果金屬化結構的正確配 準。在某些情況下,單一金屬化層可能利用工具組間不超 過十次工件移動而形成。當使用硬光罩工具架構時,較佳 係在採用檢查工具組時,使用不超過工具組間十四次工件 移動。而更佳而言,係使用不超過工具組間七次工件移動 0 係敘述一種用於在工件表面提供一或更多經保護之銅 元件的程序。根據此程序,障壁層係施加至工件。如果該 障壁層不適合作爲用於後續電鍍程序的種子層,則係施加 一分開的種子層覆於障壁層的表面。而後一或多個銅元件 係電鍍在種子層或障壁層(如果適合的話)之經選擇的部 份。如果有使用種子層,則而後將之實質上移除。至少障 壁層之表面的一部份係保留爲不可電鍍,同時留下適於電 鍍之銅元件。而後一保護層係電鍍在一或多個銅元件的表 面上。 用於實施前述程序的工具架構亦加以敘述。所揭示的 工具架構可用以使形成完整的金屬化層結構所需之工具組 間的晶圓移動數且爲最小。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂494443 Α7 Β7 V. Invention description (3) is aimed at such reliability and main equipment expenditure issues. The inventor of the foregoing problem has also recognized that the copper metallization layer needs an effective barrier material to prevent copper diffusion, and an effective protective layer covers the copper metallization layer to prevent copper oxidation. Existing procedures for manufacturing these metallization layers are not effective ' and their use in large-scale manufacturing operations is not economical. Brief summary of the present invention: A semiconductor manufacturing tool structure is disclosed in which one or more metallization layers are applied to a substantially flat dielectric surface of a semiconductor workpiece with a minimum number of workpiece transfer operations between tool sets. The tool structure includes a thin film deposition tool set, a pattern processing tool set, a wet processing tool set, and a dielectric processing tool set. The thin film deposition tool set is used to deposit a conductive barrier layer outside the flat dielectric surface of a semiconductor workpiece and a conductive seed layer to the outside of the barrier layer. The pattern processing tool set is used to provide an interconnection pattern to the seed layer 'and provide a column pattern to the interconnection metallization formed using the interconnection pattern. The wet processing tool set is used to perform at least the following wet processing operations: use of an electrodeposition process to apply copper metallization to interconnect wiring patterns and column patterns formed by the pattern processing tool set; remove material applied by the pattern processing tool set To form interconnection patterns and pillar patterns; and removing portions of the seed layer and the barrier layer that are not covered by the interconnection wiring metallization. The dielectric processing tool set is used to deposit a dielectric layer over the interconnection metallization and pillar metallization, and is used to etch the deposited dielectric layer to expose the connection area above the pillar metallization. A single metallization layer may use multiple workpiece movements between tool sets. Η This paper size applies to Chinese National Standard (CNS) A4 specifications (210 × 297 mm) (Please read the precautions on the back before filling this page), 1T Ministry of Economic Affairs Printed by the Intellectual Property Bureau Employee Cooperatives 494443 A7 B7 5. Invention Description u) Formation. Preferably, the workpiece movement between the used tool sets is not more than ten times, and more preferably, the workpiece movement between the used tool sets is not more than five times. In some cases' it may be necessary to use a hard mask to pattern the interconnect metallization. To this end, another alternative tool structure includes a thin film deposition tool set, a hard mask forming tool set, a hard mask etching tool set, a pattern processing tool set, a wet processing tool set, and a dielectric processing tool set. The thin film deposition tool set is used to deposit a conductive barrier layer on the outside of the flat dielectric surface of the workpiece, and a conductive seed layer on the outside of the barrier layer. The hard mask formation tool set is used to form a hard mask dielectric layer outside the seed layer and to form another hard mask dielectric layer outside the hard mask dielectric layer according to one of the disclosed procedures. . According to the first disclosed procedure, the pattern processing tool set is used to provide an interconnection pattern overlying the dielectric layer of the hard mask, and is used to provide a column pattern over the interconnection metallization formed using the interconnection pattern. According to the second disclosed procedure, the pattern processing tool set is used to provide a column pattern over a subsequent hard mask dielectric layer. According to the third disclosed procedure, the hard mask engraving tool set is used to etch the exposed area of the hard mask dielectric layer after the interconnect wiring pattern is formed thereon, and after the pillar pattern is formed thereon, it is etched later. Exposed portion of the hard mask dielectric layer. The wet processing tool set performs at least the following wet processing operations: 1) using a galvanic deposition process to deposit copper metallization into interconnect wiring patterns and column patterns formed by the pattern processing tool set, and 2) removing the pattern processing tool set Material applied to form interconnect patterns and pillar patterns '3) Remove hard mask dielectric layer and, if necessary, remove subsequent hard mask dielectric layer' and 4) Move to paper size Applicable to China National Standard (CNS) A4 (2l0x297mm) (Please read the notes on the back before filling out this page) # Order printed by the Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs 494443 Α7 Β7 V. Invention Description (π ) Except for the seed and barrier layers that are not covered by the interconnect wiring metallization. The dielectric processing tool set is used to deposit a dielectric overlying interconnect metallization and pillar metallization, and a dielectric layer for uranium etching to expose the upper connection area of the pillar metallization layer. Depending on the particular embodiment of the toolkit architecture, an inspection toolkit may also be included. For example, semiconductor workpieces are transferred to inspection devices at various intermediate stages of the metallization process to ensure the correct registration of the pattern layer and the resulting metallization structure. In some cases, a single metallization layer may be formed using no more than ten workpiece movements between tool sets. When using a hard mask tool structure, it is better to use no more than fourteen workpiece movements between the tool groups when using the inspection tool group. More preferably, it uses no more than seven workpiece movements between tool sets. 0 describes a procedure for providing one or more protected copper components on the surface of a workpiece. According to this procedure, a barrier layer is applied to the workpiece. If the barrier layer is not suitable as a seed layer for a subsequent plating process, a separate seed layer is applied to the surface of the barrier layer. The next copper component or components are then electroplated to selected parts of the seed or barrier layer (if applicable). If a seed layer is used, it is then substantially removed. At least a portion of the surface of the barrier layer is left unplatable while leaving copper components suitable for electroplating. The latter protective layer is then plated on the surface of one or more copper elements. The tool architecture for implementing the aforementioned procedures is also described. The disclosed tool architecture can be used to minimize and minimize the number of wafer movements between tool sets required to form a complete metallization layer structure. This paper size applies to Chinese National Standard (CNS) Α4 size (210X 297 mm) (Please read the precautions on the back before filling this page) Order
經濟部智慧財產局員工消費合作社印製 494443 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(1 ) 圖式多面視圖之簡單說明: 第一圖係顯示實施雙重波紋互連接架構之一種方式的 程序流程圖。 弟一圖係顯不用於實施第一圖所示之程序的工具組架 構以及對應的工件移動。 第三圖係顯示構成用於本發明之工具組架構之工具組 的一種方式。 第四圖係顯示實施使用第三圖的工具組間最小數目之 工件移動的互連接金屬化結構的一種方式之程序流程圖。 第五A至五K圖係顯示利用第四圖之程序形成的互連 接金屬化結構於各種階段的金屬化層發展。 第六圖係顯示用於實施第四圖中所示之程序的工具組 架構以及對應的工件移動。 第七圖係顯示用於實施第四圖中所示之程序的工具組 架構以及對應的工件移動,其中檢查工具組係用於檢查在 金屬化處理之中間階段的半導體工件。 第八圖係顯示構成用於實施本發明之另一處理架構之 工具組結構的一種方式,其中硬光罩係使用於作互連接圖 樣。 第九和十圖係顯市可用於第八圖之工具組結構的工具 組的特定實施例。 第十一圖係顯示使用第八圖中所示之工具組間最小數 目之工件移動而形成互連接金屬化結構的一種方式之程序 流程圖。 尺度適用中國國家標準(CNS ) A4規格(210 X 2押公釐了 (請先閱讀背面之注意事項再填寫本頁)Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 494443 Printed by the Consumers' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (1) Simple illustration of the multi-faceted view of the drawings: One way program flow chart. The first figure shows the tool set structure and the corresponding workpiece movement that are not used to implement the procedure shown in the first figure. The third figure shows one way of constructing a tool set for use in the tool set architecture of the present invention. The fourth diagram is a flow chart showing one way to implement an interconnected metallization structure using a minimum number of workpiece movements between the tool sets of the third diagram. The fifth A to K diagrams show the development of the metallization layer at various stages of the interconnection metallization structure formed by the procedure of the fourth diagram. The sixth diagram shows the structure of the tool set and the corresponding workpiece movements for implementing the procedures shown in the fourth diagram. The seventh diagram shows the tool set architecture and the corresponding workpiece movement for implementing the procedure shown in the fourth diagram, and the inspection tool set is used to inspect the semiconductor workpiece in the middle stage of the metallization process. The eighth figure shows one way of constructing a tool set structure for implementing another processing architecture of the present invention, in which a hard mask is used as an interconnection pattern. The ninth and tenth drawings are specific embodiments of the tool set for the tool set structure of the eighth display. The eleventh figure is a flow chart showing one way of forming an interconnected metallized structure using the minimum number of workpiece movements between the tool sets shown in the eighth figure. Standards are applicable to China National Standard (CNS) A4 specifications (210 X 2 mm) (Please read the precautions on the back before filling this page)
494443 A7 __ B7 五、發明説明(q ) 第十二至十四圖係顯示利用第十一圖之程序而形成的 互連接金屬化結構在金屬化層發展的經選擇之階段。 (請先閲讀背面之注意事項再填寫本頁) 第十五圖係顯示使用最小數目之工件移動和硬光罩作 圖樣之實施互連接金屬化結構的另一種方式的程序流程圖 〇 第十六圖係顯示用於實施第十五圖所示之程序的工具 組結構和對應的工件移動。 第十七和十八圖係顯示利用第十五圖之程序而形成的 互連接金屬化結構在金屬化層發展的經選擇之階段。 第十九和二十圖係顯示分別用於實施第十一圖和第十 五圖所示程序的工具組結構以及對應的工件移動,其中檢 查工具組係用於檢查在金屬化處理之中間階段的工件。 本發明之詳細說明: 對於在此使用之特定辭彙之基本瞭解將有助於讀者明 瞭所揭示之標的。爲此緣故,用於本揭示之特定辭彙的基 本定義係闡述如下。 經濟部智慧財產局員工消費合作社印製 第一金屬化層係定義爲某板外部之工件的合成層。此 合成層包括一或多條互連接線以及一或多個互連接柱,該 等互連接線和互連接柱係實質上被介電質層覆蓋,以便介 電質層將設計成不互相連接之選定的互連接線和互連接柱 隔離。 基板係定義爲材料的基底層,一或多個金屬化層係沈 積於其上。舉例而言’此基板可爲半導體晶圓、陶瓷塊等 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部智慧財產局員工消費合作社印製 494443 A7 ____ —_B7__ 五、發明説明(ί〇 1係定義爲至少包括基板的物體,且其可能包括材 料或製造組件的其他層(像是一或多個金屬化層)沈積於 基板上。 本發明採用一種新穎的方法以將銅金屬化物施加至工 件’像是半導體物件。該方法使得銅金屬化層係使用最小 數目之處理工具組以及最小數目之工具組間的工件移動而 輕易地加以製造。用於構成結果銅互連接層之製造程序步 驟係避免了與波紋互連接結構相關的許多本質上有問題的 處理步驟。舉例而言,種子層、銅金屬化層、以及障壁層 不再需要利用非保形(non-conformal)蒸氣沈積處理而沈 積入高縱橫比的溝渠和通道。反之,障壁層和金屬種子層 車父佳係在防護層沈積處理(blanket deposition process)中施 加至工件,該處理係遍於工件之平坦化表面。用於形成至 少該等線之銅金屬化物的後續沈積係利用電化沈積處理而 完成。其中銅係沈積開始於經作圖樣之硬光罩層中之開口 的底部’從而確保結果線完全形成,並且排除相關於波紋 處理中採用的溝渠及通道三維塡塞的剝除(pinch-off)問 題。同理,用於形成該等柱之銅金屬化物的沈積於利用電 化沈積處理達成,其中銅係沈積開始於經作圖樣之硬光罩 層或經作圖樣之光阻劑層中的開口底部。甚且,可免除化 學機械拋光處理而有利於電化平面化及/或蝕刻處理。 所揭示之互連接層架構之製造係以最小數目之工件處 理工具組和工具組間最小數目之工件移動而達成。以其本 身的情況,用於產生此等互連接結構之製造設施之設計中 -__;_12 _ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 、11 494443 A7 __ B7 五、發明説明() 主要設備的成本可最少化。甚且,藉由減少工具組間工件 移動的數目,可實質上減低工件損壞的危險。 用於實施根據本發明之一個實施例的工具架構的基本 工具組係顯示於第三圖。如所示,該工具組包括薄膜沈積 工具組20、圖樣處理工具組25、溼處理工具組30、以及 介電質處理工具組35。 在第三圖之所揭示的實施例中,薄膜沈積工具組20係 較佳爲真空沈積工具組。如由以下實行於半導體工件上之 處理操作的後續討論而更臻明瞭者,薄膜沈積工具組20沈 積一或多個薄膜於半導體工件之大致平坦的表面上。此種 薄膜沈積係較佳沈積薄膜於波紋處理中採用的微凹( micro-recessed)特徵中。依其本身之情況,可採用像是物 理蒸氣沈積(PVD)之低成本真空沈積技術。亦可採用化 學蒸氣沈積(CVD)處理。 第三圖中所示之薄膜沈積工具組20的特定實施例係包 括設置以收容半導體工件的輸入站40。輸入站40係構成 爲接受在多工件卡匣或多工件或單工件衛生囊中之半導體 工件。半導體工件係從輸入站40傳送至複數個處理站。較 佳而言,半導體工件係首先傳送至修整站45,在該處,設 置於半導體工件基板外部之大致平坦的介電質層之表面係 被處理以加強接續之薄膜層的黏著。此種介電質層之黏著 加強可利用任何一或多種已知的乾化學處理而達成。視介 電質層和後續之薄膜層的特性而定,黏著加強可能並不需 要。在此種情況下,修整站45不需包括在薄膜沈積工具組 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)494443 A7 __ B7 V. Description of the Invention (q) The twelfth to fourteenth diagrams show the selected stages of the development of the metallization layer of the interconnected metallization structure formed by the procedure of the eleventh diagram. (Please read the precautions on the back before filling out this page.) Figure 15 shows the flow chart of another way to implement the interconnection metallization structure using the minimum number of workpiece movements and hard mask patterns The figure shows the structure of the tool set and the corresponding workpiece movement for implementing the procedure shown in figure 15. Figures 17 and 18 show selected stages of the development of the metallization layer of the interconnected metallization structure formed using the procedure of Figure 15. Figures 19 and 20 show the tool set structure and corresponding workpiece movements for implementing the procedures shown in Figures 11 and 15 respectively. The inspection tool set is used to check the middle stage of the metallization process. Of artifacts. Detailed description of the invention: A basic understanding of the specific vocabulary used herein will help the reader understand the subject matter disclosed. For this reason, the basic definitions used for the specific vocabulary of this disclosure are set forth below. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs The first metallization layer is defined as the composite layer of workpieces outside a certain board. This composite layer includes one or more interconnecting wires and one or more interconnecting posts. These interconnecting wires and interconnecting posts are substantially covered by a dielectric layer, so that the dielectric layer will be designed not to be interconnected. The selected interconnections and interconnection posts are isolated. A substrate system is defined as a base layer of material on which one or more metallization layers are deposited. For example, 'This substrate can be a semiconductor wafer, ceramic block, etc. This paper is scaled to the Chinese National Standard (CNS) A4 (210X297 mm). It is printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 494443 A7 ____ —_B7__ V. Invention Explanation (ί〇1 is defined as an object that includes at least a substrate, and it may include materials or other layers (such as one or more metallized layers) from which components are fabricated. The invention employs a novel method to deposit The copper metallization is applied to the workpiece 'like a semiconductor object. This method allows the copper metallization layer to be easily manufactured using a minimum number of processing tool sets and a minimum number of workpiece movements between the tool sets. Used to form the resulting copper interconnects The manufacturing process steps of the layers avoid many of the inherently problematic processing steps associated with corrugated interconnect structures. For example, seed layers, copper metallization layers, and barrier layers no longer require the use of non-conformal ) Vapor deposition and deposition into trenches and channels with high aspect ratios. On the contrary, the barrier layer and metal seed layer The coating is applied to the workpiece in a blanket deposition process, which is spread over the flattened surface of the workpiece. Subsequent deposition of copper metallizations used to form at least these lines is done using an electrodeposition process. Copper The deposition starts at the bottom of the opening in the patterned hard mask layer to ensure that the resulting line is fully formed and eliminates problems related to the 3-dimensional pinch-off of trenches and channels used in the corrugation process. Similarly, the copper metallization used to form the pillars is achieved by using an electrodeposition process, where copper-based deposition begins at the bottom of the opening in the patterned hard mask layer or the patterned photoresist layer. Furthermore, chemical mechanical polishing treatments can be eliminated to facilitate electrochemical planarization and / or etching treatments. The fabrication of the disclosed interconnection layer structure is achieved with a minimum number of workpiece processing tool sets and a minimum number of workpiece movements between tool sets. . In its own case, in the design of manufacturing facilities used to produce these interconnected structures -__; _12 _ This paper standard applies to China Standard (CNS) A4 (210X 297 mm) (Please read the precautions on the back before filling out this page), 11 494443 A7 __ B7 V. Description of the invention () The cost of major equipment can be minimized. Moreover, borrowing The danger of workpiece damage can be substantially reduced by reducing the number of workpiece movements between tool sets. The basic tool set used to implement the tool architecture according to an embodiment of the present invention is shown in the third figure. As shown, the tool set It includes a thin film deposition tool set 20, a pattern processing tool set 25, a wet processing tool set 30, and a dielectric processing tool set 35. In the embodiment disclosed in the third figure, the thin film deposition tool set 20 is preferably a vacuum. Deposition Tool Set. As will become clearer from the following discussion of processing operations performed on semiconductor workpieces, the thin film deposition tool set 20 deposits one or more thin films on a substantially flat surface of the semiconductor work piece. This type of thin film deposition preferably deposits a thin film in a micro-recessed feature used in the corrugation process. On its own, a low-cost vacuum deposition technique such as physical vapor deposition (PVD) can be used. Chemical vapor deposition (CVD) processes can also be used. A particular embodiment of the thin film deposition tool set 20 shown in the third figure includes an input station 40 provided to receive a semiconductor workpiece. The input station 40 is configured to receive semiconductor workpieces in a multi-workpiece cassette or a multi-workpiece or a single-workpiece pouch. The semiconductor workpiece is transferred from the input station 40 to a plurality of processing stations. More preferably, the semiconductor workpiece is first transferred to a dressing station 45, where the surface of a substantially flat dielectric layer disposed outside the semiconductor workpiece substrate is treated to enhance the adhesion of successive thin film layers. Such adhesion enhancement of the dielectric layer can be achieved using any one or more known dry chemical treatments. Depending on the characteristics of the dielectric layer and subsequent thin film layers, adhesion enhancement may not be required. In this case, the finishing station 45 does not need to be included in the thin film deposition tool set. The paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page)
、1T 經濟部智慧財產局員工消費合作社印製 494443 A7 B7 五、發明説明(p) 20 ° 各半導體工件而後係提供至連結薄膜施加站5〇,在該 處一附選性的連結層係施加至介電質層之外部(較佳係直 接施加於其上)。適合用於連結層的材料包括鋁、鈦、以 及鉻。較佳而言,此等用於連結層之材料係利用諸如PVD 或CVD的蒸氣沈積技術而沈積。視相鄰薄膜層的特性而定 ,可能並不需要連結層,如果如此,則連結薄膜施加站50 就不需要包括在薄膜沈積工具組20。 障壁層施加站55係設置在薄膜沈積工具組20中以將 障壁層材料至半導體工件之介電質材料的外部。視在互連 接結構中共作用之其他材料的特性而定,障壁層可包括钽 、鉅氮化物、鈦氮化物、鈦氮氧化物、鈦鎢合金、或鎢氮 化物。尤其當互連接層接觸半導體裝置之端子時,最好係 採用包括二層的複合障壁,如Stevens之美國專利第 4,977,440號以及美國專利第5,070,036號中所揭示者。障壁 層可利用如PVD和CVD之真空沈積處理而形成。 爲了增大障壁層的導電係數,並且爲提供後續形成的 各層之良好黏著,薄膜沈積工具組20較佳係包括種子層施 加站60。種子層施加站60較佳係利用PVD或CVD處理來 沈積種子層。種子層係較佳爲銅,但種子層亦可由諸如鎳 、銥、鉛、鈀、鉻、釩等金屬或其他導電材料如銥氧化物 所組成。在種子層已施加之後,半導體工件係轉移至輸出 站62以用於後續轉移至其他半導體處理工具組。 圖樣處理工具組25包括複數個處理站,其係用於提供 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 、11 經濟部智慧財產局員工消費合作社印製 494443 A7 五、發明説明(…) 互連接線圖樣覆於藉由薄膜沈積處理工具組20所施加的種 子層。圖樣處理控制組25亦用於提供一柱圖樣覆於利用互 連接線圖樣形成的互連接金屬化物。如以下將進一步詳細 說明者,互連接線圖樣界定了提供有用於在半導體工件之 平面中之水平電氣互連接的主要導體路徑之區域,而柱圖 樣係界定了提供有用於半導體工件的相鄰平面間之垂直電 氣互連接的主要導體路徑之區域。 在第三圖所示之工具組實施例中,圖樣處理工具組25 係爲光蝕刻(photolithography)工具組。依其情況,圖樣 處理工具組25包括輸入站65,其收容在多工具卡匣、或 單工件或多工件衛生囊中之半導體工件。半導體工件分別 在處理站70、75和80經歷標準光蝕刻修整、塗覆、以及 烘烤處理。在光阻劑於站80被烘烤在半導體工件之後,工 件係轉移至光阻劑曝光裝置90之輸入站85。舉例而言, 光阻劑曝光裝置90可爲步進及重複裝置,其係將光阻劑曝 光於紫外光中,其方式爲選擇性地影響光阻劑層以致光阻 劑層之部分可後續移除以形成互連接線或柱圖樣。 在光阻劑曝光裝置90中處理之後,半導體工件係提供 至裝置90之輸出站95以轉移至其他處理站,其係選擇性 移除光阻劑層以在該層中形成與在光阻劑曝光裝置90中圖 樣曝光一致的圖樣。此等處理站包括光阻劑顯影站100和 電漿淸除(“去渣滓”)站105。在選擇性移除光阻劑層和 電漿淸除之後,半導體工件可轉移至輸出站110,或是附 選式地轉移至UV固化站107並從之傳至輸出站11〇用於 尺度適用中國國家標準(CNS ) A4規格(210X29^釐) (請先閲讀背面之注意事項再填寫本頁)Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, 1T, 494443 A7 B7 V. Description of the invention (p) 20 ° Each semiconductor workpiece is then provided to the connection film application station 50, where an optional connection layer is applied To the outside of the dielectric layer (preferably applied directly to it). Suitable materials for the tie layer include aluminum, titanium, and chromium. Preferably, such materials for the tie layer are deposited using a vapor deposition technique such as PVD or CVD. Depending on the characteristics of the adjacent thin film layers, a tie layer may not be required, and if so, the tie film application station 50 need not be included in the thin film deposition tool set 20. The barrier layer application station 55 is provided in the thin film deposition tool set 20 to transfer the barrier layer material to the outside of the dielectric material of the semiconductor workpiece. Depending on the characteristics of other materials interacting in the interconnect structure, the barrier layer may include tantalum, giant nitride, titanium nitride, titanium oxynitride, titanium tungsten alloy, or tungsten nitride. Especially when the interconnection layer contacts the terminals of the semiconductor device, it is preferable to use a composite barrier including two layers, as disclosed in Stevens U.S. Patent No. 4,977,440 and U.S. Patent No. 5,070,036. The barrier layer can be formed by a vacuum deposition process such as PVD and CVD. In order to increase the conductivity of the barrier layer and to provide good adhesion of the subsequent layers, the thin film deposition tool set 20 preferably includes a seed layer application station 60. The seed layer application station 60 preferably deposits the seed layer using a PVD or CVD process. The seed layer is preferably copper, but the seed layer may also be composed of a metal such as nickel, iridium, lead, palladium, chromium, vanadium, or other conductive materials such as iridium oxide. After the seed layer has been applied, the semiconductor workpiece is transferred to an output station 62 for subsequent transfer to another semiconductor processing tool set. The pattern processing tool group 25 includes a plurality of processing stations, which are used to provide the paper size applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling this page), 11 Ministry of Economic Affairs Printed by the Intellectual Property Bureau employee consumer cooperative 494443 A7 V. Description of the invention (...) The interconnection wiring pattern is overlaid on the seed layer applied by the thin film deposition processing tool set 20. The pattern processing control group 25 is also used to provide a column pattern over the interconnect metallization formed using the interconnect line pattern. As will be described in further detail below, the interconnect pattern defines the area provided with the main conductor path for horizontal electrical interconnection in the plane of the semiconductor workpiece, while the bar pattern defines the adjacent plane provided for the semiconductor workpiece The area of the main conductor path between which there is a vertical electrical interconnection. In the embodiment of the tool set shown in the third figure, the pattern processing tool set 25 is a photolithography tool set. Depending on the circumstances, the pattern processing tool set 25 includes an input station 65 which houses a semiconductor workpiece in a multi-tool cassette, or a single-workpiece or multi-workpiece pouch. Semiconductor workpieces undergo standard photoetching trimming, coating, and baking processes at processing stations 70, 75, and 80, respectively. After the photoresist is baked on the semiconductor workpiece at the station 80, the workpiece is transferred to the input station 85 of the photoresist exposure apparatus 90. For example, the photoresist exposure device 90 may be a stepping and repeating device that exposes the photoresist to ultraviolet light in a manner that selectively affects the photoresist layer so that a portion of the photoresist layer can be subsequently Remove to form interconnects or pillar patterns. After processing in the photoresist exposure device 90, the semiconductor workpiece is provided to the output station 95 of the device 90 for transfer to other processing stations, which selectively removes the photoresist layer to form in the layer and the photoresist The patterns in the exposure device 90 are uniformly exposed. These processing stations include a photoresist developing station 100 and a plasma removal ("slag removal") station 105. After selective removal of the photoresist layer and plasma eradication, the semiconductor workpiece can be transferred to the output station 110, or optionally transferred to the UV curing station 107 and transferred from it to the output station 11 for scale application. China National Standard (CNS) A4 Specification (210X29 ^ cent) (Please read the precautions on the back before filling this page)
、1T 經濟部智慧財產局員工消費合作社印製 494443 A7 B7 五、發明説明(a ) 提供至一或多個其他的工具組。 溼處理工具組30實行用以形成互連接線金屬化和柱金 屬化結構之廣泛範圍的處理。溼處理工具組30可實施於一 種由蒙大拿,卡里斯貝爾之Semitool公司所供銷的LT-210™牌銅電鍍工具。此種溼處理工具組較佳係包括輸入站 115及輸出站120,該輸入站係用於收容多工件卡匣、或是 單工件或多工件囊中之半導體工件,該輸出站係用於將囊 或卡匣中經處理的工件供應至一或多個後續的工具組。該 站115和120較佳係合倂成單一的輸入/輸出站。雙機械 臂125a和125b係設置以於箭號130之方向運行,且係用 於將半導體工件轉移於複數個處理站之間,並移至及移出 輸出站120以及輸入站115。 溼處理工具組30之處理站實行至少三個主要溼處理操 作。第一,溼處理工具組30包括處理站,其利用電化沈積 處理而將銅金屬化物施加入藉由圖樣處理工具組25形成的 互連接線圖樣和柱圖樣。爲此目的,係提供了電化沈積站 135和140。此外,修整站145可用於修整半導體工件欲電 化沈積以銅的表面。第二,溼處理工具組30包括處理站, 其係用於移除用於形成藉由圖樣處理工具組25施加之互連 接線圖樣和柱圖樣的材料。處理站150和淸洗/乾燥站 155及160係爲此目的而包括在內。最後,係採用一或多 個處理站以移除種子層及/或障壁層未被金屬化之互接線 覆蓋的部份,以及/或是使此等部份爲非導電。如之後將 進一步詳細說明者,氧化站165、蝕刻站170、以及電化移 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇><297公釐) (請先閲讀背面之注意事項再填寫本頁) 丁 經濟部智慧財產局員工消費合作社印製 494443 A7 ______B7 五^^ () 除站175可用於此種子層和障壁層處理。氧化站165和倉虫 刻站170可合倂成單一處理站。 爲附選性地,處理工具30可用於施加一保護性塗層覆 於互連接線金屬化物和柱金屬化物。在所示之實施例中, 電化沈積站180可爲此目的而使用。用於保護性塗層的材 料較佳爲阻止銅遷移進入介電質以及被塗覆之銅的氧化二 者的材料。可用於保護性塗層的材料包括如:鎳、鎳合金 和鉻。 介電質處理工具組35包括複數個處理站,其係用於沈 積介電質層覆於互連接線金屬化物和柱金屬化物。此外, 介電質處理工具組35包括一或多個處理站,其係用於蝕刻 所沈積的介電質層以暴露柱金屬化物之上連接區域。在所 述之實施例中,介電質處理工具組35包括輸入站185,其 係用於接收在多工件卡匣或在單工件或多工件衛生囊中的 半導體工件。半導體工件係從輸入站185提供至塗覆站 190,在該處各半導體工件之表面係塗覆以介電質先驅動( precursor)之類。在工件已被塗覆之後,其依序被供應至 烘烤站195以及固化站200以完成環繞互連接線金屬化物 和柱金屬化物的介電質材料之形成。半導體工件而後係供 應至回蝕站205,在該處介電質層的上表面被回蝕以曝露 柱金屬化物的上連接區域。 再度參照第三圖,用於工具組20之分離的輸入和輸出 站40和62可選擇合倂在單一輸入/輸出站。同理,工具 組25之分離的輸入和輸出站65和110可選擇合倂成單一 __ 17___ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) ' — (請先閱讀背面之注意事項再填寫本頁} -、一叮- 經濟部智慧財產局員工消費合作社印製 494443 A7 B7 五、發明説明(4 ) 輸入/輸出站,而用於工具組30之單一輸入/輸出站115 可選擇分成分離的輸入和輸出站。一或多個卡匣或囊可在 何時間留存於輸入/輸出站。用於工具組35之分離的輸入 .和輸出站185和210亦可選擇合倂成單一輸入/輸出站。 參照第六圖,連同第三圖所述的處理工具組可用於以 工具組間最小數目之工件移動而實施以下連同第四圖而敘 述的製造方法程序。第四圖之程序步驟215、225、237和 260可實施於薄膜沈積工具組20。程序步驟270和300可 實施於圖樣處理工具組25。程序步驟280、290和308至 380可實施於溼處理工具組30。程序步驟400至425係實 施於介電質處理工具組35。 作爲所使用之特定處理步驟和處理步驟在各種工具組 之中的分派的結果,可用不超過十次,較佳爲不超過五次 工具組的工件移動而形成單一互連接金屬化層,著實少於 上述雙重波紋處理所需的13次工件移動。爲此,由第六圖 之箭號500所指之單一工件移動係用來將工件轉移於薄膜 沈積工具組20與圖樣處理工具組25之間。由箭號505、 510和515所指之三個工件移動係用來將工件轉移於圖樣 處理工具組25與溼處理工具組30之間。由箭號520所指 之單一工件移動係用來將工件轉移於溼處理工具30與介電 質處理工具組35之間。如此,當相較於第一圖和第二圖之 傳統的雙重波紋處理和工具架構,工件移動的數目有顯著 的減少。 用於形成所揭示之金屬化結構以使工具組間之工件移 (請先閲讀背面之注意事項再填寫本頁) 、τ 經濟部智慧財產局員工消費合作社印製 尽、、'氏張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 494443 A7 ____B7________ 五、發明説明( Π ) 動爲最少的基本程序之一實施例係顯示於第四圖之流程圖 ,而在各種處理狀態之金屬化結構的一個實施例之對應形 成係顯示在第五Α至五Κ圖。如第四圖和第五Α圖所示, 介電質層210係提供覆於基板215,像是半導體晶圓。雖 然在第五A圖中並未特別揭示,介電質層210同樣包括接 點至塡塞金屬的通道,其係曝露於介電質層的頂部,其已 被平面化並提供介電質層之平面化表面以下之一或多個組 件之間的電氣連接。介電質層之平面化表面之下的一或多 個組件包括另一互連接金屬化層,其係直接連接至形成在 基板中之半導體組件等。介電質層210較佳係具有小於4 之相對電容率,且可藉由先驅物材料或跟隨著固化的先驅 物材料的旋轉施加或噴灑施加而形成,其係在厭氧性或含 氧性氣體,於低於450°C的溫度下。對於介電質材料的較 佳選擇是苯并環丁烯(BCB)。 較佳而言,介電質層210的表面係在步驟215被修整 以加強後續施加的層之黏著。介電質層210的表面可利用 溼或乾化學處理或是經由離子磨整處理加以修整。第五A 圖中的箭號220顯示介電質層210的上表面藉由如衝擊氬 或氮離子或加以修整。或者,該上表面可藉由在去離子水 中包括1%至2%氫氟酸的溶液中的短暫(1〇至30秒)蝕 刻而修整。 如在第五B圖和第四圖之步驟225所示,可施加一附 選性的連結層230至介電質210的表面。如上所述,連結 層230可包括鋁、鈦或鉻,其係利用像是pVE)之蒸氣沈積 度適财賴家轉(CNS) A4規格(21GX29H羡) " ' C請先閱讀背面之注意事項再填寫本頁}Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, 1T 494443 A7 B7 V. Invention Description (a) Provided to one or more other tool groups. The wet processing tool set 30 performs a wide range of processing to form interconnect wiring metallization and pillar metallization structures. The wet processing tool set 30 may be implemented in a LT-210 ™ brand copper electroplating tool supplied by Semitool Corporation, Carlisbur, Montana. Such a wet processing tool set preferably includes an input station 115 and an output station 120. The input station is used for accommodating multiple workpiece cassettes, or semiconductor workpieces in a single workpiece or multiple workpiece pockets. The output station is used for The processed workpieces in the bladder or cassette are supplied to one or more subsequent tool sets. The stations 115 and 120 are preferably combined into a single input / output station. The dual robot arms 125a and 125b are arranged to run in the direction of arrow 130, and are used to transfer semiconductor workpieces between a plurality of processing stations, and move to and from the output station 120 and the input station 115. The processing station of the wet processing tool set 30 performs at least three main wet processing operations. First, the wet processing tool set 30 includes a processing station that applies an electrodeposition process to apply copper metallization to the interconnection wiring patterns and column patterns formed by the pattern processing tool set 25. For this purpose, electrodeposition stations 135 and 140 are provided. In addition, the dressing station 145 may be used to dress a surface of a semiconductor workpiece to be electro-deposited with copper. Second, the wet processing tool set 30 includes a processing station for removing materials used to form the interconnect wiring patterns and the column patterns applied by the pattern processing tool set 25. Treatment stations 150 and washing / drying stations 155 and 160 are included for this purpose. Finally, one or more processing stations are used to remove portions of the seed layer and / or barrier layer that are not covered by the metallized interconnects, and / or to make these portions non-conductive. As will be explained in detail later, the oxidation station 165, etching station 170, and electrochemical paper size are applicable to China National Standard (CNS) A4 specifications (21〇 > < 297mm) (Please read the precautions on the back first (Fill in this page again) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 494443 A7 ______B7 Five ^^ () Except station 175 can be used for this seed layer and the barrier layer treatment. The oxidation station 165 and the Cangjie carving station 170 may be combined into a single processing station. Alternatively, the processing tool 30 may be used to apply a protective coating over the interconnect wiring metallization and the pillar metallization. In the embodiment shown, the electrodeposition station 180 may be used for this purpose. The material used for the protective coating is preferably a material that prevents copper from migrating into both the dielectric and the coated copper oxide. Materials that can be used for protective coatings include, for example, nickel, nickel alloys, and chromium. The dielectric processing tool set 35 includes a plurality of processing stations for depositing a dielectric layer overlying interconnect wiring metallization and pillar metallization. In addition, the dielectric processing tool set 35 includes one or more processing stations for etching the deposited dielectric layer to expose the connection area above the pillar metallization. In the described embodiment, the dielectric processing tool set 35 includes an input station 185 for receiving semiconductor workpieces in a multi-workpiece cassette or in a single-workpiece or multi-workpiece pouch. The semiconductor workpiece is supplied from the input station 185 to the coating station 190, where the surface of each semiconductor workpiece is coated with a dielectric precursor or the like. After the workpiece has been coated, it is sequentially supplied to the baking station 195 and the curing station 200 to complete the formation of the dielectric material surrounding the interconnect wiring metallization and the pillar metallization. The semiconductor workpiece is then supplied to an etch-back station 205, where the upper surface of the dielectric layer is etched back to expose the upper connection area of the pillar metallization. Referring again to the third figure, the separate input and output stations 40 and 62 for the tool set 20 can optionally be combined at a single input / output station. In the same way, the separate input and output stations 65 and 110 of the tool group 25 can be combined into a single __ 17___ This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) '— (Please read the back first Please pay attention to this page and fill in this page again}-, Yiding-Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 494443 A7 B7 V. Description of the invention (4) Input / output station, and a single input / output station for tool group 30 115 can be divided into separate input and output stations. When can one or more cassettes or capsules be kept in the input / output station. For separate input of tool set 35. And output stations 185 and 210 can also be selected A single input / output station. With reference to the sixth figure, the processing tool set described in conjunction with the third figure can be used to implement the manufacturing method procedure described below in conjunction with the fourth figure with a minimum number of workpiece movements between the tool sets. The program steps 215, 225, 237, and 260 of the figure can be implemented in the thin film deposition tool set 20. The program steps 270 and 300 can be implemented in the pattern processing tool set 25. The program steps 280, 290, and 308 to 380 can be implemented in the wet processing tool set. 30 Program steps 400 to 425 are implemented in the dielectric processing tool set 35. As a result of the specific processing steps used and the distribution of the processing steps among the various tool sets, it may be used no more than ten times, preferably no more than five times. The workpieces of the tool set move to form a single interconnected metallization layer, which is really less than the 13 workpiece movements required for the above double corrugation treatment. For this reason, the single workpiece movement indicated by the arrow 500 in the sixth figure is used to The workpiece is transferred between the thin film deposition tool set 20 and the pattern processing tool set 25. The three workpiece moving systems indicated by arrows 505, 510, and 515 are used to transfer the workpiece to the pattern processing tool set 25 and the wet processing tool set 30 Between. The single workpiece movement indicated by arrow 520 is used to transfer the workpiece between the wet processing tool 30 and the dielectric processing tool set 35. Thus, when compared to the traditional figures of the first and second figures The double corrugation processing and tool structure significantly reduce the number of workpiece movements. Used to form the disclosed metallized structure to move workpieces between tool sets (please read the precautions on the back before filling this page) , Τ Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, “The Zhang scale is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 494443 A7 ____B7________ V. Description of the Invention (Π) One of the basic procedures with the least movement is shown in the flowchart of the fourth figure, and the corresponding formation system of one embodiment of the metallized structure in various processing states is shown in the fifth A through 5K As shown in FIGS. 4 and 5A, the dielectric layer 210 is provided on the substrate 215, such as a semiconductor wafer. Although not specifically disclosed in the fifth A figure, the dielectric layer 210 also includes a channel from the contact to the plugging metal, which is exposed on top of the dielectric layer, which has been planarized and provided with a dielectric layer. The electrical connection between one or more components below its planar surface. One or more components below the planarized surface of the dielectric layer include another interconnected metallization layer that is directly connected to a semiconductor component or the like formed in a substrate. The dielectric layer 210 preferably has a relative permittivity of less than 4, and can be formed by applying or spraying the precursor material or the cured precursor material, which is anaerobic or oxygen-containing. Gases at temperatures below 450 ° C. A better choice for dielectric materials is benzocyclobutene (BCB). Preferably, the surface of the dielectric layer 210 is trimmed at step 215 to enhance the adhesion of the subsequently applied layers. The surface of the dielectric layer 210 can be trimmed by wet or dry chemical treatment or by ion polishing. The arrow 220 in the fifth A diagram shows that the upper surface of the dielectric layer 210 is trimmed by, for example, impacting argon or nitrogen ions. Alternatively, the upper surface can be trimmed by short (10 to 30 seconds) etching in a solution containing 1% to 2% hydrofluoric acid in deionized water. As shown in step 225 in Figures 5B and 4, an optional tie layer 230 may be applied to the surface of the dielectric 210. As mentioned above, the connecting layer 230 may include aluminum, titanium, or chromium, which uses a vapor deposition degree such as pVE, and is suitable for use with CNS A4 specifications (21GX29Hxian) " 'Please read the note on the back first Matters refill this page}
494443 A7 B7 五、發明説明() 技術而沈積。 在第四圖之步驟237,障壁層240係沈積覆於連結層 230 (如果有使用的話),或直接沈積在介電質210之表面 上。如所示,障壁層240係沈積覆於半導體工件之大致平 坦的表面上,從而排除將障壁層材料施加入高縱橫比之溝 渠和通道的需要。視其他倂用於互連接結構的材料之特性 而定,障壁層240可包括钽、鉅氮化物、鈦氮化物、鈦氮 氧化物、鈦鎢合金或鎢氮化物。如上所述,如由Stevens在 美國專利第4,977,440號和美國專利第5,070,036號中揭示 的包含二層的複合障壁可用於接觸半導體裝置接點。應注 意的是並不需要沈積的連結層以達成钽障壁層與介電質層 210的經適當修整的BCB表面之間可接受的黏著。 障壁層240可製成有足夠的導電性以促進後續用於沈 積互連接線和柱金屬化物的電化沈積處理。然而,如果障 壁層240的導電性不足,則可能需要一種子層。 經濟部智慧財產局員工消費合作社印製 第五B圖和第四圖之步驟260係顯示種子層265的施 加,其係在例如PVD或CVD處理中沈積。種子層265典 型爲銅,但亦可包括金屬如鎳、銥、鉑、鈀、鉻、釩或其 他導電材料如銥氧化物。種子層和障壁層的較佳厚度是在 於200至600 A的範圍。 再度參照第五B圖和第四圖之步驟270,可採用在光 蝕刻技藝中已建立良好的程序來沈積互連接線圖樣,舉例 而言,利用光阻劑272作爲光罩。在此種情況下,可包含 電漿處理作爲光蝕刻程序中的最後步驟,或在互連接線金 本紙張尺度適用中國國家標準(CNS) M規格(no、〆297公釐) )4443 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明説明(q) 屬化物之電化沈積之前的任何處理階段’以便從種子層表 面之曝露部份移除光阻劑殘渣。可採用在HMDS中的處理 以形成一層270,其係提升光阻劑與銅種子層265之間的 黏著。此外,或是取而代之,一層薄的(少於100 A )銅 氧化物可形成在種子層265的上表面以形成層270,且從 而提升種子層與光阻劑之間的黏著。 參照第五C圖和第四圖之步驟280,互連接線金屬化 物285係藉由將例如銅選擇性電化沈積入光阻劑互連接圖 樣而形成。較佳係採用酸性化學浴用於電化沈積。化學浴 可藉由將硫酸銅和硫酸加至去離子水而加以準備。如在金 屬電鍍技藝中所泛知者,在化學浴中可附加性地包括影響 金屬晶粒大小和薄膜一致性的小濃度之材料。 在互連接金屬化物285已沈積入光阻劑互連接圖樣之 後,便移除光阻劑。光阻劑的移除可藉由將光阻劑曝露於 溶劑或氧化劑(像是臭氧化的去離子水)而後在水中淸洗 而達成。此一步驟係顯示在第四圖的步驟290和295,且 應足以在選擇性金屬沈積之後移除光阻劑。結果的結構係 顯示於第五D圖。 如在第五E圖和第四圖之步驟300所示,另一個光阻 劑圖樣305係施加至半導體工件以形成開口,經由該開口 柱金屬化物307可電化沈積如步驟308所示。金屬化柱307 係顯示在第五F圖中。在柱金屬化物已沈積之後,係移除 光阻劑圖樣,由是留下第五G圖之互連接結構。 現在參照第五Η圖和第四圖之步驟315、320、以及 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閱讀背面之注意事項再填寫本頁)494443 A7 B7 V. Description of the invention () Technology and deposition. In step 237 of the fourth figure, the barrier layer 240 is deposited on the connecting layer 230 (if used), or directly on the surface of the dielectric 210. As shown, the barrier layer 240 is deposited over the substantially flat surface of the semiconductor workpiece, thereby eliminating the need to apply barrier material to high aspect ratio trenches and channels. The barrier layer 240 may include tantalum, giant nitride, titanium nitride, titanium oxynitride, titanium tungsten alloy, or tungsten nitride depending on the characteristics of other materials used for the interconnect structure. As described above, a two-layer composite barrier as disclosed by Stevens in U.S. Patent No. 4,977,440 and U.S. Patent No. 5,070,036 can be used to contact semiconductor device contacts. It should be noted that a tie layer that is deposited is not required to achieve acceptable adhesion between the tantalum barrier layer and the appropriately modified BCB surface of the dielectric layer 210. The barrier layer 240 may be made sufficiently conductive to facilitate subsequent electrodeposition processes for depositing interconnect wiring and pillar metallization. However, if the barrier layer 240 is not sufficiently conductive, a sub-layer may be required. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figures 5B and 4 of step 260 show the application of the seed layer 265, which is deposited in, for example, PVD or CVD. The seed layer 265 is typically copper, but may also include metals such as nickel, iridium, platinum, palladium, chromium, vanadium, or other conductive materials such as iridium oxide. The preferred thickness of the seed layer and the barrier layer is in the range of 200 to 600 A. Referring again to step 270 of FIG. 5B and FIG. 4, the interconnection pattern can be deposited using a well-established procedure in the photo-etching technique. For example, a photoresist 272 is used as a photomask. In this case, plasma treatment can be included as the last step in the photolithography process, or the Chinese National Standard (CNS) M specification (no, 〆297 mm) can be applied to the paper size of the interconnect wiring metal. 4444 Ministry of Economy Printed by Intellectual Property Bureau employee consumer cooperatives A7 B7 V. Description of the invention (q) Any processing stage prior to the electrodeposition of metal compounds' in order to remove photoresist residues from exposed portions of the seed layer surface. Treatment in HMDS can be used to form a layer 270, which enhances the adhesion between the photoresist and the copper seed layer 265. In addition, or instead, a thin (less than 100 A) copper oxide may be formed on the upper surface of the seed layer 265 to form the layer 270, and thereby improve the adhesion between the seed layer and the photoresist. Referring to step 280 of FIG. 5C and FIG. 4, the interconnection metallization 285 is formed by, for example, selective electrodeposition of copper into a photoresist interconnection pattern. Preferably, an acidic chemical bath is used for electrodeposition. The chemical bath can be prepared by adding copper sulfate and sulfuric acid to deionized water. As is generally known in the metal plating art, chemical baths can additionally include materials in small concentrations that affect the metal grain size and film consistency. After the interconnection metallization 285 has been deposited into the photoresist interconnection pattern, the photoresist is removed. Removal of the photoresist can be achieved by exposing the photoresist to a solvent or oxidant (such as ozonized deionized water) and then washing in water. This step is shown in steps 290 and 295 of the fourth figure and should be sufficient to remove the photoresist after selective metal deposition. The resulting structure is shown in the fifth D-graph. As shown in step 300 in the fifth E and fourth drawings, another photoresist pattern 305 is applied to the semiconductor workpiece to form an opening through which the pillar metallization 307 can be electrodeposited as shown in step 308. The metallization column 307 is shown in the fifth F diagram. After the pillar metallization has been deposited, the photoresist pattern is removed, leaving the interconnect structure of the fifth G pattern. Now refer to steps 315, 320 of the fifth and fourth drawings, and the paper size applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm) (Please read the precautions on the back before filling this page)
494443 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明説明(,) 325,種子層265係藉由如電化蝕刻處理而部份或完全移除 。電化触刻可藉由將種子層曝露於像是含有隣酸之溶液等 適當的電解溶液,同時種子層係相對於浸在電解溶液中之 電極保持在正電位而達成。 第五Η圖所示爲在部份移除曝露之種子層之後,接著 形成銅钽氧化物於障壁層的曝露表面上,並且形成銅氧化 物於線和柱的曝露表面上之後的代表性剖面圖。如上所詳 述者,種子層265可藉由浸在含有磷酸的電解溶液中,同 時種子層係保持爲相對於浸在相同電解溶液之電極的正電 位而加以部份移除。在電化蝕刻之後保留的種子層而後係 轉換成銅氧化物。或者,當種子層厚度小於最小線寬度的 大約10%時,可省略電化蝕刻,且種子層可完全轉換成銅 氧化物。 參照步驟320,銅結構285、307和265以及障壁層 240的曝露表面係藉由包括空氣、氧氣、水蒸汽、包含未 溶解之氧氣的水、或未溶解在水中之臭氧的溶液而被氧化 。或者,該等表面可藉由在含氧氣體中加熱而被氧化。如. 步驟325所示,結果的銅氧化物可藉由曝露於含有硫酸、 塩酸、或含硫酸及塩酸二者的溶液而移除。參照第三圖, 銅氧化物移除可在站145或工具組25達成。 保護塗層370較佳係提供覆於留下的互連接結構。此 種保護塗層較佳係在電化處理中形成,如在步驟375,其 係使得材料沈積在曝露的銅上但不會沈積在塗覆氧化物之 曝露的障壁材料上。用於保護塗層的材料較佳係包括阻止494443 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Α7 Β7 V. Description of the invention (,) 325, the seed layer 265 is partially or completely removed by, for example, electrochemical etching. Electrochemical contact can be achieved by exposing the seed layer to a suitable electrolytic solution such as a solution containing o-acid, while the seed layer is maintained at a positive potential relative to the electrode immersed in the electrolytic solution. Figure 5 shows a representative cross-section after partially removing the exposed seed layer, then forming copper tantalum oxide on the exposed surface of the barrier layer, and forming copper oxide on the exposed surfaces of the wires and pillars. Illustration. As detailed above, the seed layer 265 may be partially removed by immersion in an electrolytic solution containing phosphoric acid while the seed layer is maintained at a positive potential relative to an electrode immersed in the same electrolytic solution. The seed layer remaining after electrochemical etching is then converted into copper oxide. Alternatively, when the thickness of the seed layer is less than about 10% of the minimum line width, electrochemical etching may be omitted, and the seed layer may be completely converted into copper oxide. Referring to step 320, the exposed surfaces of the copper structures 285, 307, and 265 and the barrier layer 240 are oxidized by a solution including air, oxygen, water vapor, water containing undissolved oxygen, or ozone not dissolved in water. Alternatively, the surfaces may be oxidized by heating in an oxygen-containing gas. As shown in step 325, the resulting copper oxide can be removed by exposure to a solution containing sulfuric acid, gallic acid, or both sulfuric acid and gallic acid. Referring to the third figure, copper oxide removal can be achieved at the station 145 or the tool set 25. The protective coating 370 preferably provides an overlying interconnect structure. Such a protective coating is preferably formed in an electrochemical process, such as in step 375, which allows the material to be deposited on the exposed copper but not on the exposed barrier material coated with the oxide. The material used for the protective coating preferably includes a barrier
494443γ A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(v\ ) 銅遷移入介電質,且進而阻止所塗覆的銅之氧化的材料。 此等材料包括鎳、鎳合金和鉻。保護塗層的較佳厚度係在 50 A至500 A之範圍。結果的結構係顯示在第五I圖。 參照第四圖之步驟380,障壁層240及其覆蓋的氧化 物層可在未被覆蓋銅特徵覆蓋之處藉由溼化學蝕刻加以移 除。溼化學餓刻可包括在水中之1%至5%氫氟酸的溶液, 其係提供以便障壁移除程序不會過度地侵襲互連接結構 302的銅特徵或是位在障壁層240之下的介電質210。 如第五J圖和第四圖之步驟400和405所示,另一介 電質層410係形成至一足以覆蓋互連接結構之柱的上表面 的厚度。此另一介電質層410係較佳藉由先驅動材料或隨 後固化之先驅物材料的旋轉施加或噴灑施加而形成,其係 在厭氧或含氧氣體中,於低於450°C之溫度下。介電質層 410的組成可與介電質層210的組成不同或相同。 在另一介電質層410已被固化之後,該層410的上表 面係被回蝕以曝露柱結構307的上接觸區域420。舉例而 言,可採用防護電漿蝕刻(blanket plasma etch)以減小層. 410的厚度,直到所有柱結構307的上表面420曝露。舉例 而言,可在含有氧和氟離子的電漿中完成BCB的蝕刻。此 一步驟係顯示在第四圖的步驟425,而結果的結構係示於 第五K圖。 適合用於實施前述處理步驟的工具架構之另一實施例 係示於第七圖。第七圖所示之工具架構係類似倂用於第六 圖之工具架構的第三圖中所示之工具組的特定實施例(雖 (請先閲讀背面之注意事項再填寫本頁) β 、ν5 丁 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X2和公釐) 494443 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(π) 然將可認知第六圖之更一般性的處理工具組名稱同樣可用 在第七圖中而不用倂用第三圖中揭示的特定工具組實施) 。然而,第七圖的工具架構包括檢查工具組600,其係用 於檢查在單一金屬化層之施加之中間階段的半導體工件。 舉例而言,中間檢查係用於確保各種光阻劑圖樣和對應的 金屬化物之正確配準,並且進而確保正確的介電質回蝕。 如此,各半導體工件可在第四圖中所示的處理步驟270、 290、300、380和425之後提供至檢查工具組600。在所示 的實施例,係使用十次工件移動以在工具處理架構的各種 工具之間轉移半導體工件以形成單一互連接金屬化層。舉 例而言,檢查工具組600可用KLA-Tencor供銷的檢查裝置 實施。 利用硬光罩作圖樣之工具架構及程序: 揭示利用硬光罩作圖樣之用於製造金屬化層的程序至 少四個實施例。在第一實施例中,僅有互連接金屬化圖樣 係利用硬光罩介電質層而形成。在第二實施例中,互連接 金屬化圖樣和柱圖樣二者皆係利用硬光罩介電質層形成。. 第三和第四程序實施例係分別與第一和第二程序實施例類 似,除了中間檢查係在處理期間實行以確保互連接線和柱 圖樣之正確形成。將相關於各個程序實施例而敘述處理架 構、處理工具組、以及工件移動。 用於實施根據本發明之一實施例的處理架構的基本工 具組係頒不在第八圖。如所不,工具組包括薄膜沈積工具 組1020、硬光罩形成工具組1〇23、圖樣處理工具組1025、 ^紙張尺度適用中國國家標準(CNS ) A4規格(210X2財公釐) " 494443 A7 B7 五、發明説明(A ) 硬光罩蝕刻工具組1027、電化/溼處理工具組1030、以及 介電質處理工具組1035。 在第八圖所揭示的實施例中,薄膜沈積工具組1020較 佳係真空沈積工具組。如由在工件實行之處理操作的後續 討論將臻顯明者,薄膜沈積工具組1020沈積一或多個薄膜 在工件之大致平坦的表面上。此種薄膜沈積較佳係沈積薄 膜在微凹(micro-recessed)特徵,該特徵係爲波紋處理中 採用。如此,則可採用像是物理蒸氣沈積(PVD)等低成 本的真空沈積技術。亦可採用化學蒸氣沈積(CVD)處理 〇 第九圖中所示之薄膜沈積工具組1020之特定實施例係 包括複數個處理站用於修整工件之表面、沈積連結層、沈 積障壁層、以及沈積種子層於工件上。較佳而言,工件係 首先轉移至修整站,在該處係處理曝露在工件基板外部之 大致平坦的介電質層之表面以加強後續薄膜層之黏著。此 種介電質層之黏著加強可利用任何一或多種已知的電漿處 理而達成。視介電質層和後續薄膜層之特性而定,可能並 不需要黏著加強。在此種情況下,修整站就不需要包括在 薄膜沈積工具組20中。各工件而後係提供至連結薄膜施加 站,在該處附加性的連結層係施加至介電質層外部(較佳 係直接施加於其上)。適合用於連結層的材料包括銘、鈦 、以及鉻。視相鄰的薄膜層之性質而定,可能並不需要連 結層,且如此就不需要在薄膜沈積工具組1020中包括連結 薄膜施加站。障壁層施加站係用於施加障壁層材料於工件 本度適用中國國家標準(CNS ) A4規格(210X2巧公釐) --- (請先閲讀背面之注意事項再填寫本頁) 、11 線 經濟部智慧財產局員工消費合作社印製 494443 A7 五、發明説明(% ) 之介電質材料外部。視倂用於互連接結構之其他材料的性 質而定,障壁層可包括鉅、鉬氮化物、鈦氮化物、鈦氧化 物、鈦鎢合金、或鎢氮化物。尤其當互連接層觸半導體裝 .置之端子時,採用包括二層的複合障壁爲佳,如Stevens之 美國專利第4,977,440號和美國專利第5,070,036號中所揭 示者。 爲了增大障壁層的導電係數,以及爲了提供後續形成 之各層的良好黏著,薄膜沈積工具組1020較佳係包括種子 層施加站。種子層施加站較佳係利用PVD或CVD處理來 沈積種子層。種子層較佳爲銅。在種子層已施加之後,工 件係轉移至輸出站以便後續轉移至其他處理工具組。 經濟部智慧財產局員工消費合作社印製 硬光罩形成工具組1023包括複數個處理站,其係用於 提供硬光罩介電質層覆於藉由薄膜沈積處理工具組1020所 施加的種子層。此硬光罩介電質層係根據藉由圖樣處理工 具組1025施加的光阻劑圖樣而最終被作圖樣。係施加一或 多個硬光罩層以提供作圖樣的光罩用於沈積互連接線和柱 金屬化物其中之一或二者。如以下將進一步詳細述明者,. 互連接線圖樣係界定了區域,其中係提供主要導體路徑用 於工件之平面的水平電氣連接,而柱圖樣界定了區域,其 中係提供用於工件之相鄰平面間的垂直電氣連接的主要導 體路徑。 在第十圖所示之特定工具組實施例中,硬光罩形成工 具組1023包括輸入站1465,其較佳係接收在多工件卡匣或 是在單工件或多工件衛生囊中的工件。工件係從輸入站 '^紙張尺度適用中國國家標準(CNS ) A4規格(210X20公釐) 經濟部智慧財產局員工消費合作社印製 494443 A7 B7 五、發明説明(/) 1465提供至塗覆站1467,在該處工件係被塗覆以一或多種 先驅物材料。而後工件係被提供至烘烤站1470以(舉例而 言)烤掉溶劑。烘烤站1470典型爲一熱板。在於烘烤站 1470處理之後,工件被提供至固化站1473。視固化循環的 期間而定,固化站可爲一熱板或小窯爐。固化循環必須不 可選成工件損壞。在固化之後,工件係提供至輸出站1475 。雖然所述實施例係顯示分開的輸入和輸出站,其可合倂 成單一輸入/輸出站。 第八圖的圖樣處理工具組1025包括複數個處理站,其 係用於提供互連接線圖樣覆於藉由硬光罩形成工具組1023 所施加的硬光罩層。根據所揭示的過程其中之一,圖樣處 理工具組1025亦用於提供柱圖樣覆於利用互連接線圖樣形 成的互連接金屬化物。或者,如以下將述明者,圖樣處理 工具組1025係用於提供一柱圖樣覆於藉由硬光罩形成工具 組1023所沈積的另一硬光罩層,該硬光罩形成工具組接著 提供用於柱金屬化物之沈積的光罩。 在第九圖所示之工具組實施例中,圖樣處理工具組 1025係光蝕刻工具組。圖樣處理工具組1025其本身包括輸 入站接收在多工件卡匣或是在單工件或多工件衛生囊中之 工件,像是半導體晶圓。在工具組1025中,工件依序經歷 修整、塗覆、和烘烤等標準光蝕刻程序。在光阻劑被烘烤 於工件上之後,工件係轉移至光阻劑曝光裝置之輸入站, 該裝置係例如爲一步進及重複裝置,其係使光阻劑曝露於 紫外光,其方式爲選擇性地影響光阻劑層,以便光阻劑層 本紙張尺度適用中國國家標準(CNS ) A4規格(210X2只公釐)494443γ A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of Invention (v \) Copper migrates into the dielectric and further prevents the oxidation of the coated copper. These materials include nickel, nickel alloys, and chromium. The preferred thickness of the protective coating is in the range of 50 A to 500 A. The structure of the result is shown in the fifth I diagram. Referring to step 380 of the fourth figure, the barrier layer 240 and its covered oxide layer can be removed by wet chemical etching where it is not covered by the covered copper features. The wet chemistry may include a 1% to 5% solution of hydrofluoric acid in water, which is provided so that the barrier removal process does not excessively attack the copper features of the interconnect structure 302 or is located under the barrier layer 240. Dielectric 210. As shown in steps 400 and 405 of the fifth J diagram and the fourth diagram, another dielectric layer 410 is formed to a thickness sufficient to cover the upper surface of the pillar of the interconnect structure. This other dielectric layer 410 is preferably formed by spin application or spray application of a first-driven material or a subsequently cured precursor material, which is in an anaerobic or oxygen-containing gas at a temperature below 450 ° C. Under temperature. The composition of the dielectric layer 410 may be different from or the same as the composition of the dielectric layer 210. After the other dielectric layer 410 has been cured, the upper surface of this layer 410 is etched back to expose the upper contact area 420 of the pillar structure 307. For example, blanket plasma etch can be used to reduce the thickness of the layer 410 until the upper surface 420 of all the pillar structures 307 is exposed. For example, etching of BCB can be done in a plasma containing oxygen and fluoride ions. This step is shown in step 425 of the fourth diagram, and the structure of the result is shown in the fifth K diagram. Another embodiment of a tool architecture suitable for implementing the aforementioned processing steps is shown in FIG. The tool architecture shown in the seventh figure is similar to the specific embodiment of the tool set shown in the third figure used for the tool architecture of the sixth figure (although (please read the precautions on the back before filling this page) β, ν5 The size of the paper is applicable to the Chinese National Standard (CNS) Λ4 specification (210X2 and mm) 494443 A7 B7 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (π) Of course, the sixth picture is more general (Sexual processing tool group names can also be used in Figure 7 instead of implementing the specific tool group disclosed in Figure 3.) However, the tool architecture of the seventh figure includes an inspection tool set 600 for inspecting semiconductor workpieces in the middle stage of the application of a single metallization layer. For example, intermediate inspections are used to ensure the correct registration of various photoresist patterns and corresponding metallizations, and thus to ensure proper dielectric etchback. As such, each semiconductor workpiece may be provided to the inspection tool set 600 after the processing steps 270, 290, 300, 380, and 425 shown in the fourth figure. In the illustrated embodiment, ten workpiece movements are used to transfer a semiconductor workpiece between various tools of a tool processing architecture to form a single interconnect metallization layer. For example, the inspection tool set 600 may be implemented with an inspection device supplied and sold by KLA-Tencor. Tool architecture and procedures for patterning using a hard mask: Reveal at least four embodiments of a procedure for manufacturing a metallization layer using a pattern of a hard mask. In the first embodiment, only the interconnection metallization pattern is formed using a hard mask dielectric layer. In the second embodiment, both the interconnect metallization pattern and the pillar pattern are formed using a hard mask dielectric layer. The third and fourth program embodiments are similar to the first and second program embodiments, respectively, except that an intermediate inspection is performed during processing to ensure the correct formation of interconnections and column patterns. The processing architecture, processing tool set, and workpiece movement will be described in relation to each program embodiment. The basic tool set for implementing the processing architecture according to one embodiment of the present invention is not shown in the eighth figure. As mentioned, the tool set includes a thin film deposition tool set 1020, a hard mask forming tool set 1023, a pattern processing tool set 1025, and a paper size applicable to the Chinese National Standard (CNS) A4 specification (210X2 fiscal mm) " 494443 A7 B7 V. Description of the Invention (A) Hard mask etching tool set 1027, electrochemical / wet processing tool set 1030, and dielectric processing tool set 1035. In the embodiment disclosed in the eighth figure, the thin film deposition tool set 1020 is preferably a vacuum deposition tool set. As will be apparent from subsequent discussions of the processing operations performed on the workpiece, the thin film deposition tool set 1020 deposits one or more films on a substantially flat surface of the workpiece. Such thin film deposition is preferably a micro-recessed feature of the deposited film, which is used in the corrugation process. In this way, low cost vacuum deposition techniques such as physical vapor deposition (PVD) can be used. Chemical vapor deposition (CVD) processing can also be used. The specific embodiment of the thin film deposition tool set 1020 shown in the ninth figure includes a plurality of processing stations for trimming the surface of the workpiece, depositing a bonding layer, depositing a barrier layer, and deposition. The seed layer is on the workpiece. Preferably, the workpiece is first transferred to a dressing station where the surface of the substantially flat dielectric layer exposed on the outside of the substrate of the workpiece is processed to enhance adhesion of subsequent thin film layers. The adhesion enhancement of such a dielectric layer can be achieved by any one or more known plasma treatments. Depending on the characteristics of the dielectric layer and subsequent thin film layers, adhesion enhancement may not be required. In this case, the dressing station need not be included in the thin film deposition tool set 20. Each workpiece is then provided to a bonding film application station, where an additional bonding layer is applied to the outside of the dielectric layer (preferably directly onto it). Suitable materials for the tie layer include titanium, titanium, and chromium. Depending on the nature of the adjacent thin film layers, a tie layer may not be needed, and thus there is no need to include a tie film application station in the thin film deposition tool set 1020. The barrier layer application station is used to apply the barrier layer material to the workpiece. The Chinese National Standard (CNS) A4 specification (210X2 mm) is used. --- (Please read the precautions on the back before filling this page), 11-line economy Printed by the Ministry of Intellectual Property Bureau's Consumer Cooperatives 494443 A7 V. Description of Invention (%) of the dielectric material outside. Depending on the nature of the other materials used in the interconnect structure, the barrier layer may include macro, molybdenum nitride, titanium nitride, titanium oxide, titanium tungsten alloy, or tungsten nitride. Especially when the interconnection layer contacts the terminals of the semiconductor device, it is better to use a composite barrier including two layers, as disclosed in Stevens U.S. Patent No. 4,977,440 and U.S. Patent No. 5,070,036. In order to increase the conductivity of the barrier layer and to provide good adhesion of the subsequent layers, the thin film deposition tool set 1020 preferably includes a seed layer application station. The seed layer application station preferably uses PVD or CVD processing to deposit the seed layer. The seed layer is preferably copper. After the seed layer has been applied, the workpiece is transferred to the output station for subsequent transfer to other processing toolsets. Printed hard mask forming tool set 1023 by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs includes a plurality of processing stations for providing a hard mask dielectric layer over a seed layer applied by the thin film deposition processing tool set 1020 . This hard mask dielectric layer is finally patterned according to a photoresist pattern applied by the pattern processing tool set 1025. One or more hard mask layers are applied to provide a patterned mask for depositing one or both of interconnect wiring and pillar metallization. As will be described in further detail below, the interconnection pattern defines the area where the main conductor path is provided for the horizontal electrical connection of the plane of the workpiece, and the column pattern defines the area where the phase for the workpiece is provided. The main conductor path of a vertical electrical connection between adjacent planes. In the specific tool set embodiment shown in the tenth figure, the hard mask forming tool set 1023 includes an input station 1465, which is preferably a work piece received in a multi-workpiece cassette or in a single-workpiece or multi-workpiece pouch. Workpieces are imported from the input station '^ Paper size is applicable to Chinese National Standard (CNS) A4 specifications (210X20 mm) Printed by the Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs 494443 A7 B7 V. Description of the invention (/) 1465 Provided to the coating station 1467 At this point, the workpiece is coated with one or more precursor materials. The workpiece is then provided to a baking station 1470 to (for example) bake off the solvent. The baking station 1470 is typically a hot plate. After processing at the baking station 1470, the workpiece is provided to a curing station 1473. Depending on the duration of the curing cycle, the curing station can be a hot plate or a small kiln. The curing cycle must not be selected as a work piece damage. After curing, the workpiece is supplied to the output station 1475. Although the illustrated embodiment shows separate input and output stations, it can be combined into a single input / output station. The pattern processing tool set 1025 of FIG. 8 includes a plurality of processing stations for providing interconnection wiring patterns to cover the hard mask layer applied by the hard mask forming tool set 1023. According to one of the disclosed processes, the pattern processing tool set 1025 is also used to provide a column pattern over an interconnect metallization formed using an interconnect pattern. Alternatively, as will be described below, the pattern processing tool set 1025 is used to provide a column pattern over another hard mask layer deposited by the hard mask forming tool set 1023, which is then A photomask is provided for the deposition of pillar metallization. In the embodiment of the tool set shown in FIG. 9, the pattern processing tool set 1025 is a photo-etching tool set. The pattern processing tool set 1025 itself includes workpieces such as semiconductor wafers that are received in an input station in a multi-piece cassette or in a single-piece or multi-piece hygienic pouch. In tool set 1025, the workpieces are sequentially subjected to standard photo-etching procedures such as trimming, coating, and baking. After the photoresist is baked on the workpiece, the workpiece is transferred to the input station of the photoresist exposure device, which is, for example, a step and repeat device that exposes the photoresist to ultraviolet light in the following manner: Selectively affect the photoresist layer, so that the size of the photoresist layer is applicable to the Chinese National Standard (CNS) A4 specification (210X2 mm)
494443 A7 五、發明説明(冰) 的部份後續可被移除以形成互連接線或柱圖樣。在光阻劑 層曝光之後,工件係提供至輸出站,用於轉移至其他處理 站’其選擇性地移除光阻劑層以在該層中形成與在光阻劑 曝光裝置中曝光圖樣一致的圖樣。此等處理站包括光阻劑 顯影站,且可包括電漿淸除(“去殘渣”)站。在選擇性 移除光阻劑層在電漿淸除之後,工作係轉移至輸出站以提 供至一或更多其他的工具組。 如第九圖中所示,硬光罩蝕刻工具組1027包括輸入站 1480,其較佳係接收在多工件卡匣或在單工件或多工件衛 生囊中的工件。工件係從輸入站1480提供至蝕刻站1483, 在該處硬光罩層係經由藉由圖樣處理工具組1025施加的作 了圖樣的光阻劑層之開口區域而加以選擇性蝕刻。在硬光 罩層已被蝕刻以形成的光罩圖樣之後,工件係提供至輸出 站1485。雖然第十圖中所示的實施例顯示了分開的輸入和 輸出站,亦可使用單一輸入/輸出站。硬光罩蝕刻工具組 1027可爲電槳蝕刻裝置,例如由Tegal、Applied Materials 、或LAM Research所販售者。 第八圖之電化/溼處理工具組1030實施用於形成互連 接線金屬化和柱金屬化結構之廣泛範圍的程序。溼處理工 具組1030可實施於Equinox™牌工具或LT-210™牌工具, 其二者均由Montana、Kalispell之Semitool公司供銷。如第 九圖中所示,此種電化/溼處理工具組較佳係包括輸入和 輸出站以及用於實行電化和溼化學處理之複數個站。溼處 理工具組30的處理站實行至少三個主要的溼處理操作。第 本ϋ尺度適用中國國家標準(CNS )八4規格(210X2神公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 線 經濟部智慧財產局員工消費合作社印製 494443 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(4) 一,溼處理工具組30包括處理站用於利用電化沈積處理而 將銅金屬化物施加入利用圖案處理工具組25及/或硬光罩 蝕刻工具組1027形成的互連接線圖樣以及柱圖樣。此外, 可採用修整站以修整欲電化沈積以銅的工件之表面。第二 ,工具組30包括用於移除硬光罩材料的一或多個處理站, 該硬光罩材料係用於界定互連接線圖樣以及(在某些程序 實施例中)柱圖樣,其係由硬光罩形成工具組1023施加, 並係由硬化罩蝕刻工具組1027。同樣的,溼處理工具組30 包括用於移除光阻劑材料的一或多個處理站,該光阻劑材 料係用於在硬光罩層中界定互連接線圖樣,並且在某些處 理實施例中,光阻劑材料係用於界定柱圖樣。典型上,係 設置溶劑站以及淸洗/乾燥站以用於光阻劑移除。最後, 係採用一或多個處理站以移除種子層及/或障壁層未被互 連接線覆蓋的部份,且/或使得該等部份爲非導電。 附選性地,處理工具30可用於施加保護塗層覆於互連 接線金屬化物及柱金屬化物。在特定實施例中,電化沈積 站可用於此種目的。用於保護塗層的材料較佳係可阻止銅 遷移入介電質以及被塗覆之銅氧化的材料。舉例而言,可 用於保護塗層的材料包括鎳、鎳合金以及鉻。 介電質處理工具組1035包括用於形成介電質層覆於互 連接線金屬化物和柱金屬化物之複數個處理站。此外,介 電;質處理工具組1035包括一或多個處理站用於鈾刻沈積的 介電質層以曝露柱金屬化物之上連接區域。相關於第九圖 中所示之介電質處理工具組的特定實施例,工件係從輸入 請 先 閱 讀 背 意 事 項494443 A7 V. The part of the description of the invention (ice) can be subsequently removed to form interconnections or column patterns. After the photoresist layer is exposed, the workpiece is provided to an output station for transfer to another processing station. It selectively removes the photoresist layer to form a pattern in this layer consistent with the exposure pattern in the photoresist exposure device. Pattern. These processing stations include a photoresist developing station and may include a plasma removal ("residue removal") station. After the selective removal of the photoresist layer and plasma removal, the work is transferred to an output station to be provided to one or more other tool sets. As shown in the ninth figure, the hard mask etching tool set 1027 includes an input station 1480, which is preferably a workpiece received in a multi-workpiece cassette or in a single-workpiece or multi-workpiece capsule. The workpiece is supplied from the input station 1480 to the etching station 1483, where the hard mask layer is selectively etched through the opening area of the patterned photoresist layer applied by the pattern processing tool set 1025. After the hard mask layer has been etched to form a mask pattern, the workpiece is supplied to the output station 1485. Although the embodiment shown in the tenth figure shows separate input and output stations, a single input / output station may be used. The hard mask etching tool set 1027 may be an electric pad etching device, such as sold by Tegal, Applied Materials, or LAM Research. Electrochemical / wet processing tool set 1030 of FIG. 8 implements a wide range of procedures for forming interconnect metallization and pillar metallization structures. Wet treatment tool set 1030 can be implemented on Equinox ™ brand tools or LT-210 ™ brand tools, both of which are supplied and sold by Semitool Company of Montana and Kalispell. As shown in the ninth figure, such an electrochemical / wet processing tool set preferably includes input and output stations and a plurality of stations for performing electrochemical and wet chemical processing. The processing stations of the wet processing tool set 30 perform at least three main wet processing operations. The first standard is applicable to China National Standard (CNS) 8-4 specification (210X2 mm) (Please read the precautions on the back before filling out this page) Printed by the Ministry of Economic Affairs Intellectual Property Bureau Employee Consumer Cooperatives Printed 494443 A7 B7 Ministry of Economic Affairs Printed by the Intellectual Property Bureau employee consumer cooperative V. Description of the invention (4) 1. The wet processing tool set 30 includes a processing station for applying a copper metallization to the pattern processing tool set 25 and / or a hard mask using an electrodeposition process. The interconnection wiring pattern and the pillar pattern formed by the etching tool set 1027. In addition, a dressing station may be used to dress the surface of a workpiece to be electrochemically deposited with copper. Second, the tool set 30 includes one or more processing stations for removing a hard mask material, which is used to define an interconnect wiring pattern and (in some program embodiments) a pillar pattern, It is applied by the hard mask forming tool set 1023, and by the hardening mask etching tool set 1027. Similarly, the wet processing tool set 30 includes one or more processing stations for removing photoresist material, which is used to define interconnect wiring patterns in a hard mask layer, and in some processes In the embodiment, the photoresist material is used to define the column pattern. Typically, a solvent station and a washing / drying station are provided for photoresist removal. Finally, one or more processing stations are used to remove portions of the seed layer and / or the barrier layer that are not covered by the interconnect lines and / or make these portions non-conductive. Alternatively, the processing tool 30 may be used to apply a protective coating to the interconnection metallization and pillar metallization. In particular embodiments, an electrodeposition station may be used for this purpose. The material used for the protective coating is preferably a material that prevents copper migration into the dielectric and oxidation of the coated copper. Examples of materials that can be used for protective coatings include nickel, nickel alloys, and chromium. The dielectric processing tool set 1035 includes a plurality of processing stations for forming a dielectric layer overlying interconnect metallization and pillar metallization. In addition, the dielectric / mass processing tool set 1035 includes one or more processing stations for a dielectric layer deposited by uranium etching to expose the connection area above the pillar metallization. Regarding the specific embodiment of the dielectric processing tool set shown in the ninth figure, the workpiece is input from the Please read the memorandum
訂 線 本紙張尺度適财_家標準(CNS ) A4規格(21()><2的公釐) 494443 A7 ___B7 五、發明説明(J ) 站提供至塗覆站,在該處各工件之表面係塗覆以介電質先 驅物之類。在工件已被塗覆之後,其依序被供至烘烤站和 固化站以完成圍繞互連接線金屬化物和柱金屬化物之介電 .質材料的形成。工件而後係供至回蝕站,在該處介電質層 的上表面係被回蝕以曝露柱金屬化物的上連接區域。 參照第八圖,處理工具組可用於以最小數目之工具組 間的工件移動而實施以下將連同第十一圖說明的製造處理 程序。第十一圖的處理步驟1215、1225、1237和1260可 在薄膜沈積工具組1020中實施。處理步驟1270和1308可 在圖樣處理工具組1025中實施。處理步驟1277、1280和 1309至1380可在溼處理工具組1030中實施。處理步驟 1400至1425可在介電質處理工具組1035中實施。處理步 驟1261可在硬光罩形成工具組1023中實施,而處理步驟 1273可在硬光罩蝕刻工具組1027中實施。 經濟部智慧財產局員工消費合作社印製 作爲所使用之特定處理步驟以及處理步驟在各種工具 組之中的分派之結果,當硬光罩僅用於作互連接線之圖樣 時,可用不超過七次工具組間的工件移動而形成單一互連 接金屬化層。當硬光罩係用於作互連接線和柱二者的圖樣 ,如第十六圖所示,單一互連接金屬化層可用不超過九次 工件移動而形成。 爲此目的,係採用第八圖之箭號1500所表示的單一工 件移動以在薄膜沈積工具組1020與硬光罩形成工具組1〇23 之間轉移工件。箭號1505所指示的一個工件移動係被採用 以在硬光罩形成工具組1023與圖樣處理工具組1〇25之間 尺度適用中國國家標準(CNS ) A4規格(210Χ29^公釐) 一 ' — 494443 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(4 ) 轉移工件。二個工件移動1510和1512係用於在圖樣處理 工具組1025與溼處理工具組1030之間轉移工件。單一工 件移動1515係用於在圖樣處理工具組1025與硬光罩蝕刻 工具組1027之間轉移工件。同樣地,單一工件移動1517 係用於在硬光罩蝕刻工具組1027與溼處理工具組1030之 間轉移工件。最後,單一工件移動1520係用於在化學處理 工具組1030與介電質處理工具組1035之間轉移工件。如 此,當相較於第一圖和第二圖之傳統的雙重波紋處理架構 及工具結構時,在工具組間之工件移動的數目上有實質的 減少。 在第i^一圖之步驟1261,硬光罩介電質層1263係在 硬光罩形成工具組1023沈積覆於種子層1265。在第^一圖 之步驟1270中,可採用在光蝕刻技藝中已建立良好的程序 以利用例如光阻劑作爲中間光罩而沈積互連接線圖樣覆於 硬光罩介電質層1263。硬光罩介電質層1263而後經由光阻 劑層1272的開口部份而被選擇性蝕刻,如步驟1273所示 。步驟1273發生在硬光罩蝕刻站1027。參照第十一圖之步 驟1277,光阻劑層1272係在工具組1030中的溼化學處理 站移除,從而留下作了圖樣的硬光罩介電質層1263,其具 有實質上垂直的牆壁以用於界定互連接金屬化圖樣。 參照第十一圖之步驟1280,互連接線金屬化物1285 係藉由將例如銅選擇性電化沈積入硬光罩互連接圖樣而形 成。較佳係採用酸性化學浴用於電化沈積。化學浴可藉由 將硫酸銅以及硫酸加入去離子水而製備。如在金屬電鍍技 張尺度適用中國國家標準(CNS ) A4規格(hOX2^)公釐)Binding book paper size suitable for home _ home standard (CNS) A4 specification (21 () > < 2 mm) 494443 A7 ___B7 5. Description of the invention (J) station is provided to the coating station, where each workpiece The surface is coated with a dielectric precursor or the like. After the workpiece has been coated, it is sequentially supplied to a baking station and a curing station to complete the formation of a dielectric material surrounding the interconnect wiring metallization and the pillar metallization. The workpiece is then supplied to an etch-back station where the upper surface of the dielectric layer is etched back to expose the upper connection area of the pillar metallization. Referring to the eighth figure, the processing tool set can be used to implement the manufacturing process program described below in conjunction with the eleventh figure with a minimum number of workpiece movements between the tool sets. The processing steps 1215, 1225, 1237, and 1260 of the eleventh figure can be implemented in the thin film deposition tool set 1020. Processing steps 1270 and 1308 may be implemented in the pattern processing tool set 1025. Process steps 1277, 1280, and 1309 to 1380 may be implemented in wet processing tool set 1030. Process steps 1400 to 1425 can be implemented in the dielectric processing tool set 1035. The processing step 1261 may be performed in the hard mask forming tool set 1023, and the processing step 1273 may be performed in the hard mask etching tool set 1027. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs as a result of the specific processing steps used and the distribution of processing steps among various tool sets. When the hard mask is only used as a pattern for interconnection wiring, it can be used up to The workpieces between the secondary tool sets move to form a single interconnected metallization layer. When the hard mask is used for the pattern of both the interconnect wiring and the pillar, as shown in Figure 16, a single interconnect metallization layer can be formed with no more than nine workpiece movements. For this purpose, a single work piece indicated by arrow 1500 of the eighth figure is used to transfer the work piece between the thin film deposition tool set 1020 and the hard mask forming tool set 1023. A workpiece moving system indicated by the arrow 1505 is adopted to apply the Chinese National Standard (CNS) A4 specification (210 × 29 ^ mm) to a scale between the hard mask forming tool group 1023 and the pattern processing tool group 1025. 494443 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention (4) Transfer of workpieces. Two workpiece movements 1510 and 1512 are used to transfer the workpiece between the pattern processing tool set 1025 and the wet processing tool set 1030. The single workpiece movement 1515 is used to transfer a workpiece between the pattern processing tool set 1025 and the hard mask etching tool set 1027. Similarly, a single workpiece movement 1517 is used to transfer a workpiece between the hard mask etching tool set 1027 and the wet processing tool set 1030. Finally, the single workpiece movement 1520 is used to transfer the workpiece between the chemical processing tool set 1030 and the dielectric processing tool set 1035. In this way, when compared to the conventional double wave processing structure and tool structure of the first and second figures, the number of workpiece movements between the tool sets is substantially reduced. In step 1261 of the first figure, the hard mask dielectric layer 1263 is deposited on the hard mask forming tool set 1023 and overlies the seed layer 1265. In step 1270 of the first figure, a well-established procedure in the photolithography technique can be used to deposit the interconnection pattern over the hard mask dielectric layer 1263 using, for example, a photoresist as an intermediate mask. The hard mask dielectric layer 1263 is then selectively etched through the opening portion of the photoresist layer 1272, as shown in step 1273. Step 1273 occurs at hard mask etch station 1027. Referring to step 1277 of FIG. 11, the photoresist layer 1272 is removed from the wet chemical processing station in the tool set 1030, leaving a patterned hard mask dielectric layer 1263 having a substantially vertical Wall to define interconnected metallization patterns. Referring to step 1280 of the eleventh figure, the interconnection metallization 1285 is formed by selectively electro-depositing, for example, copper into a hard mask interconnection pattern. Preferably, an acidic chemical bath is used for electrodeposition. The chemical bath can be prepared by adding copper sulfate and sulfuric acid to deionized water. For example, in the metal plating technology, the Chinese National Standard (CNS) A4 specification (hOX2 ^) mm is applicable.
經濟部智慧財產局員工消費合作社印製 494443 A7 B7 五、發明説明(炉) 藝中所泛知者,影響金屬晶粒大小和薄膜均一度的小濃度 的物質可附選性地包括在化學浴中。 在銅的電化沈積之後造成的結構係顯示在第十二圖。 在第十二圖中,工件之大致平坦的表面係顯示於1210,工 件之修整過的部份係顯示於1230,障壁層係顯示於1240, 硬光罩層係顯示於1263,種子層係顯示於1265,而示範之 互連接金屬化線係顯示在於1285的截面。 在互連接金屬化物已沈積入作了圖樣的硬光罩介電質 層之後,工件可返回圖樣處理工具組1025,其中係利用例 如使用習用光阻劑作圖樣技術而施加及作圖樣的光阻劑來 形成用於柱金屬化物的圖樣。如在步驟1308,此另一個光 阻劑圖樣係施加至工件以便形成開口,可經由該開口而電 化沈積柱金屬化物。第十三圖係顯示在光阻劑層1305作圖 樣以及在第十一圖之步驟1309電化沈積柱金屬化物1307 之後造成的結構。 在柱金屬化已在步驟1309沈積之後,光阻劑圖樣係在 步驟1310中移除,而硬光罩介電質層係在步驟1313移除 。硬光罩介電質層之移除較佳係在工具組1030中進行,但 亦可在硬光罩蝕刻工具組1027進行而加上二個另外的晶圓 移動。 硬光罩介電質層1263可在作了圖樣的光阻劑層形成之 前加以移除。第十四圖顯示在光阻劑1305作圖樣以及柱金 屬化物1307電化沈積之後造成的結構。在此種情況下,可 採用在HMDS中之處理以形成提升光阻劑305與銅種子層 本尺度適用中麵家標準(CNS ) A4規格(21GX2奸公釐)~一~— (請先閱讀背面之注意事項再填寫本頁)Printed by the Employees' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 494443 A7 B7 V. Description of invention (furnace) As known in the art, small concentrations of substances that affect the metal grain size and thin film uniformity can be optionally included in the chemical bath in. The structural system created after the electrodeposition of copper is shown in Figure 12. In the twelfth figure, the roughly flat surface of the workpiece is shown at 1210, the finished part of the workpiece is shown at 1230, the barrier layer is shown at 1240, the hard mask layer is shown at 1263, and the seed layer is shown At 1265, and the demonstration interconnected metallization line is shown at a cross section of 1285. After the interconnect metallization has been deposited into the patterned hard mask dielectric layer, the workpiece can be returned to the pattern processing tool set 1025, where photoresist is applied and patterned using, for example, conventional photoresist patterning techniques Agent to form a pattern for pillar metallization. As in step 1308, another photoresist pattern is applied to the workpiece to form an opening through which the pillar metallization can be electrodeposited. The thirteenth figure shows the structure resulting from the patterning of the photoresist layer 1305 and the electrodeposition of the pillar metallization 1307 after step 1309 of the eleventh figure. After the pillar metallization has been deposited in step 1309, the photoresist pattern is removed in step 1310, and the hard mask dielectric layer is removed in step 1313. The removal of the hard mask dielectric layer is preferably performed in the tool set 1030, but it can also be performed in the hard mask etching tool set 1027 with two additional wafer movements. The hard mask dielectric layer 1263 can be removed before the patterned photoresist layer is formed. The fourteenth figure shows the structure after the photoresist 1305 is patterned and the pillar metal compound 1307 is electrodeposited. In this case, the treatment in HMDS can be adopted to form the lifting photoresist 305 and the copper seed layer. This standard is applicable to the Chinese Standard (CNS) A4 specification (21GX2 rape mm) ~~~ (Please read first (Notes on the back then fill out this page)
494443 A7 B7 五、發明説明(W )494443 A7 B7 V. Description of the invention (W)
濟 部 智 慧 財 產 局 S 消 費 合 社 印 製 1265之間黏著的一層。此外,或是取而代之,一薄的(小 於100 A )之銅氧化物層可形成在種子層1265之上表面上 以形成層1278,從而提升種子層與光阻劑之間的黏著。 現參照第十一圖之步驟1315、1320和1325,種子層 1265係藉由例如電化蝕刻處理而部份或完全移除。電化蝕 刻可藉由將種子層曝露至適當的電解溶液(像是包含磷酸 的溶液),同時種子層1265係保持在相對於浸入電解溶液 之電極爲正電位而達成。 在步驟1320,銅結構1285、1307、和1265以及障壁 層1240之曝露的表面係藉由曝露至包括未溶解的空氣、氧 氣或臭氧而被氧化。或者,其表面可藉由在含氧氣體中加 熱而氧化。如步驟1325所示,結果的銅氧化物可藉由曝露 於包含硫酸、塩酸、或硫酸和塩酸二者的溶液而被移除。 舉例而言,銅氧化物移除可在工具組30的蝕刻站完成。 較佳係提供一保護塗層遍於留下的互連接結構。此一 保護塗層較佳係在電化處理中形成,像是步驟Π75,其致 使材料沈積在曝露的銅上,而不沈積在被覆氧化物之曝露 的障壁材料上。用於保護塗層的材料較佳包括阻止銅遷移 入介電質且進而阻止被塗覆的銅氧化的材料。此等材料包 括鎳、鎳合金以及鉻。用於保護塗層的較佳厚度係在5〇人 至500 A之範圍中。 參照第十一圖的步驟1380,障壁層1240及其覆蓋的 氧化物層可在未覆蓋以覆蓋銅特徵之處,藉由溼化學蝕刻 加以移除。溼化學飩刻可包括稀酸,像是水中有丨%至5%The Ministry of Economic Affairs and Intellectual Property Bureau S Consumer Co., Ltd. printed an adhesive layer between 1265. In addition, or instead, a thin (less than 100 A) copper oxide layer may be formed on the surface of the seed layer 1265 to form a layer 1278, thereby improving the adhesion between the seed layer and the photoresist. Referring now to steps 1315, 1320, and 1325 of FIG. 11, the seed layer 1265 is partially or completely removed by, for example, an electrochemical etching process. Electrochemical etching can be achieved by exposing the seed layer to a suitable electrolytic solution (such as a solution containing phosphoric acid) while the seed layer 1265 is maintained at a positive potential relative to the electrode immersed in the electrolytic solution. At step 1320, the exposed surfaces of the copper structures 1285, 1307, and 1265 and the barrier layer 1240 are oxidized by exposure to undissolved air, oxygen, or ozone. Alternatively, the surface may be oxidized by heating in an oxygen-containing gas. As shown in step 1325, the resulting copper oxide can be removed by exposure to a solution containing sulfuric acid, osmic acid, or both sulfuric acid and osmic acid. For example, copper oxide removal may be done at an etching station of the tool set 30. Preferably, a protective coating is provided over the remaining interconnect structure. This protective coating is preferably formed in an electrochemical process, such as step Π75, which causes the material to be deposited on the exposed copper rather than on the exposed barrier material covered with oxide. The materials used for the protective coating preferably include materials that prevent copper from migrating into the dielectric and thereby prevent oxidation of the coated copper. These materials include nickel, nickel alloys, and chromium. The preferred thickness for the protective coating is in the range of 50 to 500 A. Referring to step 1380 of the eleventh figure, the barrier layer 1240 and its covered oxide layer can be removed by wet chemical etching where it is not covered to cover the copper features. Wet chemical engraving can include dilute acids, such as water with 5% to 5%
訂Order
494443 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(W) 氫氟酸之溶液,其係提供以便障壁移除程序不會過度衝擊 銅線和柱特徵1285和1307或是置於障壁層1240之下的介 電質1210。 在第十一圖的步驟1400,係形成另一介電質層至足以 覆蓋互連接結構之柱之上表面的厚度。此另一介電質層較 佳係藉由旋轉施加或噴灑施加先驅物質或先驅物質接著固 化而形成,其係在厭氧或含氧氣體中,於低於450°C的溫 度下。此介電質的組成可不同於介電質層1210或與之相同 〇 在另一介電質層已固化之後,該層之上表面係被回蝕 以曝露柱結構1307的上接觸區域。舉例而言,可採用防護 電漿蝕刻(blanket plasma etch)以減小層之厚度直到柱結 構1307的上表面曝露。舉例而言,BCB的蝕刻可在包有氧 氣和氟離子的電漿中完成。 在本實施例中,工件的處理係實質上相似於第十一圖 中所示的處理。以處理之觀點視之,主要的差異係發生在 電化沈積步驟1280之後。在此後來的實施例中,工件係從 溼處理工具組1030移除,並返回硬光罩形成工具組1023, 其中另一個硬光罩介電質層1422 (第十七圖)係配置覆於 工件之表面,如第十五圖之步驟1427所示。在另一硬光罩 介電質層1422形成之後,工件係轉移至圖樣形成工具組 1025 ’舉例而言,在該處另一光阻劑層1432係配置覆於另 一硬光罩介電質層1422,並且根據所需的柱金屬化圖樣作 圖樣’如步驟1429。硬光罩仲質層1422而後在步驟1443 冢紙張尺度適用中國_5"^準(CNS ) A4規格(210X 2押公釐) 一 ' (請先閱讀背面之注意事項再頁) -裝·494443 A7 B7 printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention (W) A solution of hydrofluoric acid, which is provided so that the barrier removal procedure does not excessively impact the copper wire and column features 1285 and 1307 or place A dielectric 1210 under the barrier layer 1240. In step 1400 of FIG. 11, another dielectric layer is formed to a thickness sufficient to cover the upper surface of the pillar of the interconnect structure. This other dielectric layer is preferably formed by spin-applying or spray-applying a precursor substance or precursor substance and then solidified, which is in an anaerobic or oxygen-containing gas at a temperature below 450 ° C. The composition of this dielectric may be different from or the same as the dielectric layer 1210. After another dielectric layer has been cured, the upper surface of this layer is etched back to expose the upper contact area of the pillar structure 1307. For example, blanket plasma etch can be used to reduce the thickness of the layer until the upper surface of the pillar structure 1307 is exposed. For example, the etching of BCB can be done in a plasma containing oxygen and fluoride ions. In this embodiment, the processing of the workpiece is substantially similar to the processing shown in the eleventh figure. From a processing point of view, the main difference occurs after the electrodeposition step 1280. In this later embodiment, the workpiece is removed from the wet processing tool set 1030 and returned to the hard mask forming tool set 1023, where the other hard mask dielectric layer 1422 (Figure 17) is disposed over The surface of the workpiece is shown in step 1427 in FIG. 15. After the formation of another hard mask dielectric layer 1422, the workpiece is transferred to the pattern forming tool set 1025 ', for example, where another photoresist layer 1432 is arranged to cover another hard mask dielectric Layer 1422, and pattern according to the desired pillar metallization pattern 'as in step 1429. The intermediate layer of the hard mask 1422, and then in step 1443, the paper size of the mound is applicable to China_5 " ^ 准 (CNS) A4 size (210X 2 mm) 1 '(Please read the precautions on the back first and then the page)-Installation ·
、1T 線 494443 A7 五、發明説明(V)) 根據此圖樣而被蝕刻以形成開口,柱結構將形成於該開口 中。工件而後係返回溼化學處理工具組1030,其中光阻劑 層1432係在步驟1310剝除,並且銅柱結構係在步驟1309 經由硬光罩介電質層1422被電化沈積。參照第十八圖,在 電化沈積柱金屬化物之後,硬光罩層係被移除,且處理以 連同第^^一圖之程序敘述之相同方式進行。如第十六圖所 示,整個金屬化層可用所示工具組間九個晶圓移動而形成 〇 經濟部智慧財產局員工消費合作社印製 各個前述程序和工具組/晶圓移動的進一步加強係顯 示於第十九圖和第二十圖。第十九和二十圖的工具結構各 包括檢查工具組600,其係用於檢查單一金屬化層施加之 中間階段的工件。舉例而言,中間檢查係用於確保各種光 阻劑及/或硬光罩圖樣和對應的金屬化物之正確配準,且 進而確保正確的介電質回蝕。如第十九圖所示,在第十一 圖中所示的處理步驟1270、1280、1308、1380和1425之後 ,各工件可提供至檢查工具組1600。同樣地,如第二十圖 所示,在第十六圖中所示的處理步驟1270、1280、1429、. 1380和1425之後,各工件可提供至檢查工具組1600。在 第十九圖所示的實施例中,係使用十二次工件移動以將工 件轉移於工具處理架構之各種工具之間以形成單一互連接 金屬化層。在第十五圖所示之實施例中,係使用十四次工 件移動以將工件轉移於工具處理架構之各種工具之間以形 成單一互連接金屬化層。舉例而言,檢查工具組600可用 由KLA-Tencor供銷的檢查裝置實施。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X2奶公釐) 494443 A7 B7 五、發明説明(叫) 前述系統可作多種修正而不悖離其基本揭示。雖然本 發明已參照一或多個特定實施例而大體上詳細說明,然而 熟知此項技藝者將可認知可對其作改變而不悖離在所附申 請專利範圍中敘述之本發明的範疇和精神。 (請先閱讀背面之注意事項再本貢) 裝· 訂 經濟部智慧財產局員工消費合作社印製 張 紙 本 \—/ Ns 6 /.V 準 國 國 中 用 適1T line 494443 A7 V. Description of the invention (V)) According to this pattern, an opening is formed by forming a pillar structure in the opening. The workpiece is then returned to the wet chemical processing tool set 1030, in which the photoresist layer 1432 is stripped in step 1310, and the copper pillar structure is electrodeposited in step 1309 via the hard mask dielectric layer 1422. Referring to FIG. 18, after electrodepositing the pillar metallization, the hard mask layer is removed, and processing is performed in the same manner as described in the procedure of FIG. As shown in the sixteenth figure, the entire metallization layer can be formed with nine wafers moved between the indicated tool groups. The Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs printed each of the aforementioned procedures and tool group / wafer movement to further strengthen the system. Shown in Figure 19 and Figure 20. The tool structures of the nineteenth and twentieth drawings each include an inspection tool set 600 for inspecting a workpiece in the middle stage of the application of a single metallization layer. For example, the intermediate inspection is used to ensure the correct registration of various photoresist and / or hard mask patterns and corresponding metal compounds, and thus to ensure the correct dielectric etchback. As shown in the nineteenth figure, after the processing steps 1270, 1280, 1308, 1380, and 1425 shown in the eleventh figure, each workpiece may be provided to the inspection tool set 1600. Similarly, as shown in the twentieth figure, after the processing steps 1270, 1280, 1429, .1380, and 1425 shown in the sixteenth figure, each workpiece may be provided to the inspection tool set 1600. In the embodiment shown in Figure 19, twelve workpiece movements are used to transfer the workpiece between various tools of the tool processing framework to form a single interconnected metallization layer. In the embodiment shown in Fig. 15, fourteen workpiece movements are used to transfer the workpiece between various tools of the tool processing framework to form a single interconnected metallization layer. For example, the inspection tool set 600 may be implemented with an inspection device supplied by KLA-Tencor. This paper size applies Chinese National Standard (CNS) A4 specification (210X2 milk mm) 494443 A7 B7 V. Description of the invention (called) The aforementioned system can be modified in various ways without departing from its basic disclosure. Although the invention has been described in detail with reference to one or more specific embodiments, those skilled in the art will recognize that changes can be made thereto without departing from the scope and scope of the invention described in the scope of the appended patents. spirit. (Please read the precautions on the back first, then this tribute.) Binding and binding Printed on paper by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs \ — / Ns 6 /.V
釐Centimeter
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/076,695 US6143126A (en) | 1998-05-12 | 1998-05-12 | Process and manufacturing tool architecture for use in the manufacture of one or more metallization levels on an integrated circuit |
US09/076,565 US6376374B1 (en) | 1998-05-12 | 1998-05-12 | Process and manufacturing tool architecture for use in the manufacturing of one or more protected metallization structures on a workpiece |
US09/128,238 US6120641A (en) | 1998-05-12 | 1998-08-03 | Process architecture and manufacturing tool sets employing hard mask patterning for use in the manufacture of one or more metallization levels on a workpiece |
Publications (1)
Publication Number | Publication Date |
---|---|
TW494443B true TW494443B (en) | 2002-07-11 |
Family
ID=27372911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW088107682A TW494443B (en) | 1998-05-12 | 1999-05-12 | Process and manufacturing tool architecture for use in the manufacture of one or more metallization levels on a workpiece |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1086485A2 (en) |
JP (1) | JP2002515645A (en) |
TW (1) | TW494443B (en) |
WO (1) | WO1999059190A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI579228B (en) * | 2011-05-18 | 2017-04-21 | 應用材料股份有限公司 | Electrochemical processor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7988398B2 (en) | 2002-07-22 | 2011-08-02 | Brooks Automation, Inc. | Linear substrate transport apparatus |
US7959395B2 (en) | 2002-07-22 | 2011-06-14 | Brooks Automation, Inc. | Substrate processing apparatus |
JP4712379B2 (en) | 2002-07-22 | 2011-06-29 | ブルックス オートメーション インコーポレイテッド | Substrate processing equipment |
US8960099B2 (en) | 2002-07-22 | 2015-02-24 | Brooks Automation, Inc | Substrate processing apparatus |
JP2011154380A (en) * | 2003-03-20 | 2011-08-11 | Toshiba Mobile Display Co Ltd | Method of forming display device |
US7215006B2 (en) * | 2005-10-07 | 2007-05-08 | International Business Machines Corporation | Plating seed layer including an oxygen/nitrogen transition region for barrier enhancement |
US20070117377A1 (en) * | 2005-11-23 | 2007-05-24 | Chih-Chao Yang | Conductor-dielectric structure and method for fabricating |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5178682A (en) * | 1988-06-21 | 1993-01-12 | Mitsubishi Denki Kabushiki Kaisha | Method for forming a thin layer on a semiconductor substrate and apparatus therefor |
US5316974A (en) * | 1988-12-19 | 1994-05-31 | Texas Instruments Incorporated | Integrated circuit copper metallization process using a lift-off seed layer and a thick-plated conductor layer |
US5256565A (en) * | 1989-05-08 | 1993-10-26 | The United States Of America As Represented By The United States Department Of Energy | Electrochemical planarization |
JPH0812846B2 (en) * | 1991-02-15 | 1996-02-07 | 株式会社半導体プロセス研究所 | Semiconductor manufacturing equipment |
US5563095A (en) * | 1994-12-01 | 1996-10-08 | Frey; Jeffrey | Method for manufacturing semiconductor devices |
US5994678A (en) * | 1997-02-12 | 1999-11-30 | Applied Materials, Inc. | Apparatus for ceramic pedestal and metal shaft assembly |
US5933758A (en) * | 1997-05-12 | 1999-08-03 | Motorola, Inc. | Method for preventing electroplating of copper on an exposed surface at the edge exclusion of a semiconductor wafer |
-
1999
- 1999-05-12 EP EP99922934A patent/EP1086485A2/en not_active Withdrawn
- 1999-05-12 JP JP2000548908A patent/JP2002515645A/en active Pending
- 1999-05-12 WO PCT/US1999/010331 patent/WO1999059190A2/en active Search and Examination
- 1999-05-12 TW TW088107682A patent/TW494443B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI579228B (en) * | 2011-05-18 | 2017-04-21 | 應用材料股份有限公司 | Electrochemical processor |
Also Published As
Publication number | Publication date |
---|---|
JP2002515645A (en) | 2002-05-28 |
EP1086485A2 (en) | 2001-03-28 |
WO1999059190A2 (en) | 1999-11-18 |
WO1999059190A3 (en) | 2000-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6120641A (en) | Process architecture and manufacturing tool sets employing hard mask patterning for use in the manufacture of one or more metallization levels on a workpiece | |
US6143126A (en) | Process and manufacturing tool architecture for use in the manufacture of one or more metallization levels on an integrated circuit | |
US6887789B2 (en) | Process and manufacturing tool architecture for use in the manufacture of one or more protected metallization structures on a workpiece | |
TW523556B (en) | Process for etching thin-film layers of a workpiece used to form microelectronic circuits or components | |
TW578195B (en) | A single step electroplating process for interconnect via fill and metal line patterning | |
JP2009516388A (en) | Method for forming a multilayer structure | |
CN107644834A (en) | For forming the photoengraving pattern of thin space feature | |
TW494443B (en) | Process and manufacturing tool architecture for use in the manufacture of one or more metallization levels on a workpiece | |
TWI270174B (en) | Method of reducing process steps in metal line protective structure formation | |
US20100252440A1 (en) | Electroplating on ultra-thin seed layers | |
US6638688B2 (en) | Selective electroplating method employing annular edge ring cathode electrode contact | |
CN105374701A (en) | Activation Treatments in Plating Processes | |
US7252750B2 (en) | Dual contact ring and method for metal ECP process | |
US7714354B2 (en) | Electroformed metal structure | |
US7041566B2 (en) | Method for forming inductor in semiconductor device | |
US7125803B2 (en) | Reverse tone mask method for post-CMP elimination of copper overburden | |
KR20040007878A (en) | Method of manufacturing a capacitor in a semiconductor device | |
US20070082479A1 (en) | Chemical mechanical polishing techniques for integrated circuit fabrication | |
WO2010133550A1 (en) | Method for coating a semiconductor substrate by electrodeposition | |
US7482282B2 (en) | Use of dilute hydrochloric acid in advanced interconnect contact clean in nickel semiconductor technologies | |
TWI221300B (en) | Method of building metal-insulator-metal capacitors in Cu inter-connects | |
JPH0684832A (en) | Electrical connection method between semiconductor chips | |
KR100676609B1 (en) | Method for forming copper metal line and semiconductor device including the same | |
KR20030058597A (en) | Method for manufacturing a semiconductor device | |
TW508376B (en) | Method of multi-steps electrochemical deposition to improve the copper gap filling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |