TW452921B - Method for forming etching stop layer in dual damascene processing - Google Patents
Method for forming etching stop layer in dual damascene processing Download PDFInfo
- Publication number
- TW452921B TW452921B TW89110432A TW89110432A TW452921B TW 452921 B TW452921 B TW 452921B TW 89110432 A TW89110432 A TW 89110432A TW 89110432 A TW89110432 A TW 89110432A TW 452921 B TW452921 B TW 452921B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- barrier layer
- dielectric constant
- dielectric layer
- low dielectric
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
452921 五、發明說明(1) 技術領域: 本發明係關於一種形成雙鑲喪製程(Dual Damascene) 之姓刻阻障層(etching stop layer)的方法,特別是關於 —種形成一層基於三甲基矽烧(trimethylsilane)之氮化 石夕層(trimethylsilane-based nitride),以做為雙鑲喪 製程之蝕刻阻障層的方法。 發明背景: 為了追求更快的運作速率以及更大的集積密度,積體 電路之研究單位及製造業者無不竭盡心力地設計及製造關 鍵尺寸(Critical Dimension; CD)更小的元件。根據實驗 顯示,當積體電路的製程進入0. 1 8微米甚至0. 1 3微米的技 術領域之後,影響元件運作速率的關鍵因素已從閘極的寬 度轉換至金属内連線(metal interconnection)的電阻-電 容遲滞(RC del ay)效應。 因導線的阻值與其截面積成反比,隨著積體電路之集 積密度的提高,金屬内連線的線寬和厚度都隨之縮小,因 此其阻值便隨之提高;尤有甚者,隨著積體電路之集積密 度的提高,亦使金屬内連線的線距隨之縮小,因而造成導 線之間的耦合電容升高。因此當積體電路的製程進入深次 微米領域之後,金屬内連線的電阻-電容遲滯大幅提高, 也因此影響積體電路的運算速率和存取速率。為了提高積 體電路的集積密度,在線寬和線距都不宜提高的條件之 下,更換金屬内連線和層間介電層的材質是最佳的選擇。452921 V. Description of the invention (1) Technical field: The present invention relates to a method for forming a etching stop layer of a dual damascene process, in particular to a method for forming a layer based on trimethyl Trimethylsilane-based nitride (trimethylsilane) is used as a method of etching a barrier layer in a dual damascene process. Background of the Invention: In order to pursue faster operating speed and greater accumulation density, research units and manufacturers of integrated circuits have devoted all their efforts to designing and manufacturing smaller critical dimension (CD) components. According to experiments, when the integrated circuit manufacturing process enters the technical field of 0.1 8 microns or even 1.3 microns, the key factors affecting the operating speed of components have been shifted from the width of the gate to the metal interconnection. RC del ay effect. Because the resistance of a wire is inversely proportional to its cross-sectional area, as the integrated density of the integrated circuit increases, the line width and thickness of the metal interconnects also decrease, so the resistance value increases accordingly; especially, With the increase of the integrated density of the integrated circuit, the line spacing of the metal interconnects is also reduced, thereby causing the coupling capacitance between the wires to increase. Therefore, after the manufacturing process of the integrated circuit enters the deep sub-micron field, the resistance-capacitance hysteresis of the metal interconnect is greatly improved, which also affects the operation rate and access rate of the integrated circuit. In order to improve the integration density of the integrated circuit, under the condition that the line width and line spacing should not be increased, it is the best choice to replace the material of the metal interconnects and interlayer dielectric layers.
452921 五、發明說明(2) 在金屬内連線方面’金屬材質由原先的鋁矽銅合金或鋁銅 合金換成銅金屬’除了具有低電阻的特性外,更具有良好 的抗電子遷移性和良好的抗應力性,除了可以提高元件的 操作速率外,同時可以提升元件的可靠度;在另一方面, 層間介電層則必須選揮低介電常數(D丨e丨e c t r i c Cons tan t)的材質以取代原有的二氧化矽,以降低金屬内, 連線之間的搞合電容。二氧化矽的介電常數約為3. 9,因 此必須選取介電常數小於3. 9的介電質做為層間介電層, 方可達到降低電阻 >電容遲滯的功效,例如:氟摻雜之二 氧化石夕(SiOF)、有機旋塗玻璃(HSQ)等等。另外一種有效 之低;丨電常數的材質為黑鑽石(black diamond),其係由 曱基石夕貌(methy 1 si lane)所形成,其成分為矽20%、氧 3 0%、碳9%、氫3 6%、及其他元素。因黑鑽石約有3 6%的體 積為孔洞’因此其介電常數僅約為2. 9,是一種很具潛力 的低介電常數材質。 在銅製程的技術中,因銅金屬無法如同鋁合金一般用 氣氣進行蝕刻,因此業界發展出一種雙鑲嵌 (Dua卜damascene)的製程方法《雙鑲嵌的製程技術可參考 Μ〇t〇rο 1 a公司Boeck; Bruce Alleη等人在美國專利第 5 8 8 0 0 1 8號所揭露之1’Method for manufacturing a low dielectric constant inter-level integrated circuit structure"。請參考圖一,在一已完成前段製程的半導體 基板10上連續形成第一氮化矽層1卜第一低介電常數介電 層12、第二氮化矽層13、和第二低介電常數介電層14’再452921 V. Description of the invention (2) In terms of metal interconnects, the metal material is replaced by the original aluminum-silicon-copper alloy or aluminum-copper alloy with copper metal. In addition to its low resistance, it also has good resistance to electron migration and Good stress resistance, in addition to increasing the operating speed of the device, can also improve the reliability of the device; on the other hand, the interlayer dielectric layer must choose a low dielectric constant (D 丨 e 丨 ectric Cons tan t) Material to replace the original silicon dioxide to reduce the capacitance between the metal and the connection. The dielectric constant of silicon dioxide is about 3.9, so a dielectric with a dielectric constant less than 3.9 must be selected as the interlayer dielectric layer in order to achieve the effect of reducing the resistance > capacitance hysteresis, such as: fluorine doped Miscellaneous silica (SiOF), organic spin-on glass (HSQ), etc. Another effective low; 丨 the material of the electrical constant is black diamond, which is formed by the methic si lane, its composition is 20% silicon, 30% oxygen, 9% carbon , Hydrogen 3 6%, and other elements. Because black diamond has about 3 6% of its volume as holes ’, its dielectric constant is only about 2.9, which is a promising low dielectric constant material. In the technology of copper process, because copper metal cannot be etched with gas like aluminum alloy, the industry has developed a dual damascene process method. "Dual damascene process technology can refer to 〇〇〇〇 1 a company Boeck; Bruce Alleη et al. disclosed in the US Patent No. 5 8 0 0 18 1'Method for manufacturing a low dielectric constant inter-level integrated circuit structure ". Please refer to FIG. 1, a first silicon nitride layer 1, a first low-k dielectric layer 12, a second silicon nitride layer 13, and a second low-dielectric layer are continuously formed on a semiconductor substrate 10 that has completed a previous process. Constant dielectric layer 14 '
452921 五、發明說明(3) 以連續兩道微影與姓刻技術形成如圖一 A之開口 1 5。其中 氮化矽層11,1 3係做為蝕刻阻障層,其製裡方法係以s丨H 4 和N Η為反應氣體,利用電漿增強式化學汽相沉積法 (PECVD)在Ν的環境之下沉積而形成約5〇〇埃(AngStrom) 的薄膜’所需RF的功率約為40 0瓦。依一般製程條件所形 成的氮化矽層有一 1 E 9達因/平方公分左右的壓縮應力 (compressive stress),可以用以抵銷低介電常數介電層 之較大的拉伸應力(tensile stress)。第一低介電常數> 電層1 2和第二低介電常數介電層1 4的沉積步輝,則以N 〇 和曱基矽烷(methyl si lane)為反應氣體,利用電衆增強1 化學汽相沉積法(PECVD)沉積而成,其中所需率" 約為70瓦,N20的流量約為370 seem,甲基矽燒的流量約為 6 8 s c c m,反應時間約為6 0秒以形成約5 0 0 0埃的署鑽石薄 膜。 接下來請參考圖一 B,以PVD、CVD、或電妙士、+⑸ %纖方法形成 一層銅薄膜1 6。最後如圖一 C所示,利用化學拖从 . 于機械研磨法 (Chemical Mechanical Polishing; CMP)對 j唧述銅薄骐i 6 進行研磨,以形成銅導線1 7。 惟,傳統的銅導線/低介電常數介電層的整人製矛。 中,做為蝕刻阻障層的第一氮化矽層和第二氣# a a Α 或化矽層的介 電常數較大,大約介於7. 0至8. 0之間,無法雄—止时y & ~步降低金 屬内連線之間的耦合電容。因此,發展出一種八 電常數輕 小的蝕刻阻障層,便成為半導體業界一項很重i ^ # 背的課題。 為此,應用材料(Applied Material)等公q β ‘ Α司發展出—452921 V. Description of the invention (3) The two lithography and surname engraving techniques are used to form the opening 1 in Figure 1A. The silicon nitride layer 11, 13 is used as an etching barrier layer, and the manufacturing method is based on s 丨 H 4 and N Η as reactive gases, and the plasma enhanced chemical vapor deposition (PECVD) method is used in N. The RF power required to form a thin film of about 500 Angstroms (AngStrom) deposited under the environment is about 400 Watts. The silicon nitride layer formed under the general process conditions has a compressive stress of about 1 E 9 dyne / cm 2, which can be used to offset the large tensile stress of the low dielectric constant dielectric layer. stress). The deposition steps of the first low dielectric constant > dielectric layer 12 and the second low dielectric constant dielectric layer 14 are based on N o and methyl si lane as reaction gases, which are enhanced by electricity. 1 Chemical vapor deposition (PECVD) deposition, where the required rate is about 70 watts, the flow rate of N20 is about 370 seem, the flow rate of methyl sintering is about 6 8 sccm, and the reaction time is about 60. Seconds to form a thin film of diamond of about 5000 angstroms. Next, please refer to FIG. 1B, and a layer of copper film 16 is formed by PVD, CVD, or electromagnetism, + ⑸% fiber method. Finally, as shown in FIG. 1C, the metal thin film i 6 was polished by chemical mechanical polishing (Chemical Mechanical Polishing; CMP) to form copper wires 17. However, the traditional copper wire / low-k dielectric layer is a one-man spear. In the dielectric constant of the first silicon nitride layer and the second gas #aa Α or siliconized layer as the etching barrier layer, the dielectric constant is relatively large, which is between 7.0 and 8. Y & ~ step to reduce the coupling capacitance between metal interconnects. Therefore, the development of an etch barrier layer with a small electric constant has become a very important issue in the semiconductor industry. To this end, companies such as Applied Material have developed β β ‘Α Division—
第6頁 4529 2 1 五、發明說明(4) 種新的製程以降低蝕刻阻障層的介電常數。此新製程係以 三甲基矽烷(trimethy lsi lane)加上氦氣或三甲基矽烷加 上1瑕做為反應乳體以形成餘刻阻障廣,其介電常數可降 至5.1左右,並具有一 5. δΕ 8達因/平方公分的壓縮應力, 確實具有降低介電常數的功效。然而,如將上述方法所形 成的蝕刻阻障層在空氣中放置丨至3天之後,會因氧化作用 變成一具有1Ε 9達因/平方公分之拉伸應力的薄膜,不僅無 法抵銷低介電常數介電層之較大的拉伸應力,更容易造成 蝕刻阻障層和低介電常數介電層的崩裂及剝離現象’嚴重 影響製程的良率。 發明概述: 本發明的主要目的為提供一種形成雙鑲嵌製程之蝕刻 阻障層的方法。 本發明的次要目的為提供一種形成蝕刻阻障層/低介 電常數介電層/姓刻阻障層/低介電常數介電層之複層結構 的方法。 本發明的再一目的為提供一種形成一層基於三甲基矽 烧之氮化梦廣(trimethylsilane-based nitride),以做 為雙鑲嵌製程之蝕刻阻障層的方法。 本發明揭露一種形成蝕刻阻障層//低介電常數介電層/ 蝕刻阻障層/低介電常數介電層之複層結構的方法,其製 程步驟包括有首先提供—已完成積體電路之前段製程的半 導體基板,接著以三甲基矽烷、氮氣和氨氣為反應氣體,Page 6 4529 2 1 V. Description of the invention (4) A new process to reduce the dielectric constant of the etch barrier layer. This new process uses trimethy lsi lane plus helium or trimethylsilane plus 1 defect as the reaction emulsion to form a wide range of barriers. Its dielectric constant can be reduced to about 5.1. And it has a δE 8 dyne / cm 2 compressive stress, which indeed has the effect of reducing the dielectric constant. However, if the etching barrier layer formed by the above method is left in the air for 3 days, it will become a thin film with a tensile stress of 1E 9 dyne / cm 2 due to oxidation, which cannot only offset the low dielectric The large tensile stress of the dielectric constant dielectric layer is more likely to cause the cracking and peeling of the etch barrier layer and the low dielectric constant dielectric layer, which seriously affects the yield of the process. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for forming an etch barrier layer in a dual damascene process. A secondary object of the present invention is to provide a method for forming a multilayer structure of an etch barrier layer / low-dielectric-constant dielectric layer / a lithographic barrier layer / low-dielectric-constant dielectric layer. Another object of the present invention is to provide a method for forming a layer of trimethylsilane-based nitride as a etch barrier layer in a dual damascene process. The invention discloses a method for forming a multilayer structure of an etch barrier layer // low dielectric constant dielectric layer / etch barrier layer / low dielectric constant dielectric layer. The manufacturing process includes the following steps: The semiconductor substrate in the previous stage of the circuit, followed by trimethylsilane, nitrogen and ammonia as reaction gases.
4 5 29 2 1 五、發明說明(5) 形成第一蝕刻阻障層。後續形成第一低介電常數介電層。 接下來以三曱基矽烷、氮氣和氨氣為反應氣體,形成第二 蝕刻阻障層,接著形成第二低介電常數介電層。其中所述 第一蝕刻阻障層、第一低介電常數介電層、第二蝕刻阻障 層、和第二低介電常數介電層皆使用電漿增強式化學汽相 沉積法在同一反應腔中連續進行沉積而成。 利用本發明方法所形成之氮化矽層/低介電常數介電 層/氮化矽層/低介電常數介電層之複層結構有下列的優 點: 1 .本發明所形成的蝕刻阻障層是一層基於三甲基矽烷 之氮化矽層,其具有較低的介電常數,可有效降低金屬内 連線之間的耦合電容;並且其壓縮應力不會隨時間而改 變,可用以抵銷低介電常數介電層的拉伸應力,並避免剝 離現象的發生。 2. 本發明中四道沉積製程皆在同一反應腔中連續進 行,可以大幅節省製程的時間,增加產量並降低製造成 本。 3. 本發明中四道沉積製程皆在同一反應腔中連續進 行,中途僅改變反應氣體而不將射頻RF關閉,如此可使每 一層與其上或下鄰接層之間的鍵結強度大幅提升,使各層 之間的黏著度更形強化。 圖號說明4 5 29 2 1 V. Description of the invention (5) Forming a first etch barrier layer. A first low-k dielectric layer is subsequently formed. Next, using a trifluorenylsilane, nitrogen and ammonia as reaction gases, a second etching barrier layer is formed, and then a second low-k dielectric layer is formed. The first etch barrier layer, the first low-k dielectric layer, the second low-k dielectric layer, and the second low-k dielectric layer are all formed on the same layer using a plasma enhanced chemical vapor deposition method. Deposited continuously in the reaction chamber. The multilayer structure of the silicon nitride layer / low dielectric constant dielectric layer / silicon nitride layer / low dielectric constant dielectric layer formed by the method of the present invention has the following advantages: 1. The etching resistance formed by the present invention The barrier layer is a silicon nitride layer based on trimethylsilane, which has a lower dielectric constant and can effectively reduce the coupling capacitance between metal interconnects; and its compressive stress does not change with time, and can be used to Cancel the tensile stress of the low dielectric constant dielectric layer and avoid the occurrence of peeling. 2. In the present invention, the four deposition processes are continuously performed in the same reaction chamber, which can greatly save the process time, increase the yield and reduce the manufacturing cost. 3. In the present invention, the four deposition processes are continuously performed in the same reaction chamber, and only the reaction gas is changed without turning off the RF RF in the middle, so that the bonding strength between each layer and its upper or lower adjacent layers can be greatly improved. Make the adhesion between the layers even stronger. Drawing number description
第8頁 11 -第一氮化矽層 13-第二氮化矽層 1 5 -開口 1 7 -銅導線 3 1 -第一姓刻阻障層 3 3 -第二蝕刻阻障層 3 5-開口 37-銅導線 法法型層 積法{障以下學為Page 8 11-First silicon nitride layer 13-Second silicon nitride layer 1 5-Opening 1 7-Copper wire 3 1-First etched barrier layer 3 3-Second etched barrier layer 3 5- Open 37-copper wire method
452921 玉、發明說明(6) 10-半導體基板 12-第一低介電常數介電層 14-第二低介電常數介電層 1 6 -銅薄膜 3 0 -半導禮基板 32-第一低介電常數介電層 34-第二低介電常數介電層 3 6 -銅薄膜 本發明係揭露一種形成雙鎮嵌製程之餘刻阻障層的方 ’特別是關於一種形成低介電常數之蝕刻阻障層的方 ,以適用於銅製程之雙鑲嵌製程。本發明可適用於各種 態之邏輯元件及記憶體元件的銅導線/低介電常數八 的整合製程。 ”電 本發明的製程流程圖請參閱圖二,首先提供一已完成 體電路之前段製程的半導體基板21,利用化學汽相=積 形成一層基於三甲基矽烷之氮化矽層 trimethylsilane-based nitride),以做為第一餘刻阻 層22。接下來在同一反應腔且不關閉射頻RF的情況下, N 2〇和甲基石夕院為反應氣艘形成第一黑鐵石薄膜23。接 來在同一反應腔且不關閉射頻RF的情況下,'再次利用化 汽相沉積法形成一層基於三甲基碎烧之氡化矽層,以做 第一姓刻阻障層24。最後在同一反應脸且不關閉射頻rf I麵::452921 Jade and invention description (6) 10-semiconductor substrate 12-first low dielectric constant dielectric layer 14-second low dielectric constant dielectric layer 1 6 -copper film 3 0 -semiconductor substrate 32-first The present invention relates to a method for forming a barrier layer formed by a double-ballasting process, especially a method for forming a low dielectric constant. The constant etch barrier layer is suitable for the dual damascene process of the copper process. The invention can be applied to the copper wire / low-dielectric constant eight integration process of logic elements and memory elements of various states. Please refer to FIG. 2 for the process flow chart of the present invention. First, a semiconductor substrate 21 that has completed the previous process of the bulk circuit is provided. A chemical vapor phase layer is used to form a trimethylsilane-based nitride. ) As the first remaining etching resist layer 22. Next, in the same reaction chamber and without closing the radio frequency RF, N 2 0 and methyl stone Xiyuan form the first ferrite film 23 for the reaction gas vessel. Then In the case of the same reaction chamber and without turning off the RF RF, 'a vapor deposition method was used to form a trimethyl sintered silicon oxide layer based on trimethyl sintering to form the first etched barrier layer 24. Finally in the same React to face without closing RF rf face ::
第9頁 452921 五、發明說明(7) ~~ 、------- 的情況下’再次以Ν2〇ί口甲其从α m ^ ^ U 诉甲基矽烷為反應氣體形成第二黑 鑽石溥膜Z 5,以完成勒到阻陪 M暗® /彳ft八Φ g 障層/低介電常數介電層/姓刻 阻障滑/低介電常齡介雷廢夕、 法一报電層複層結構的沉積。 真及廄翁許^圖三A,其中步驟22係以三甲基矽烷和NHa ;匕,?;利用電毁增強式化學汽相沉積法(麵) ”二V在半導體基板3〇上形成-層基於三甲基石夕 烷之亂化矽層,以做為第-蝕刻阻障層31,其厚度介於 3 0 0埃至1 0 0 〇埃之間。其中所述三甲基矽烷的流量介於3 〇 至15〇SCCm之間’最佳流量為7〇sccm; n妁流量介於1000 至350 0 sccm之間,最佳流量為25〇〇scC[n; NH釣流量介於 1 0至lOOsccm之間,致佳流量為3〇sccm;射頻的功率介 於20 0至80 0瓦之間。所形成薄膜的介電常數約為5_2,具 有大約1. 4 9 E 9達因/平方公分之壓縮應力。與習知應用材 料等公司之製程不同的是,本發明所形成基於三甲基矽烷 之氮化矽層的壓縮應力不會隨著時間而改變,在空氣中放 置3天以後其依然保有1. 4 8 2 E 9達因/平方公分之壓縮應 力。如此便不會發生如習知製程之蝕刻阻障層經過1至3天 以後會變成拉伸應力’而導致蝕刻阻障層和低介電常數介 電層的崩裂及剝離現象。 除了黑鑽石薄膜之外,其他種類的低介電常數介電層 (例如:氟摻雜之二氧化矽(Si〇F)、有機旋塗玻璃 等等)亦同樣具有極大的拉伸應力。在本發明的另一實施 例中’可以將上述形成具有壓縮應力及低介電常數之蝕刻 阻障層的製程應用在其他任何一種低介電常數介電層的製Page 9 452921 V. Description of the invention (7) ~~, -------- In the case of 'N2〇ί 口 甲' from α m ^ ^ U v. Methylsilane as the reaction gas to form the second black Diamond 溥 film Z 5 to complete the resistance to the M dark ® / 彳 ft eight Φ g barrier layer / low dielectric constant dielectric layer / engraved barrier slip / low dielectric constant age dielectric breakdown Deposition of the telegraph layer.真 和 廄 翁 许 ^ Figure 3A, in which step 22 is based on trimethylsilane and NHa; D, using the chemically enhanced enhanced chemical vapor deposition method (face) "V formed on the semiconductor substrate 30- The layer is based on a trimethylsiloxane scrambled silicon layer as the first etch barrier layer 31 and has a thickness between 300 angstroms and 100 angstroms. The flow rate of the trimethylsilane is Between 30 and 150 SCCm, the best flow is 70 sccm; n 妁 flow is between 1000 and 3500 sccm, and the best flow is 2500 scC [n; NH fishing flow is between 10 and Between lOOsccm, the best flow rate is 30sccm; the power of the radio frequency is between 200 and 80 0 watts. The dielectric constant of the formed film is about 5_2, with about 1. 4 9 E 9 dyne / cm 2 The compressive stress of the silicon nitride layer based on trimethylsilane formed by the present invention does not change with time, which is different from the processes of companies such as Applied Materials. The compressive stress of 1. 4 8 2 E 9 dyne / cm 2 is still maintained. In this way, the etching barrier layer as in the conventional process will not occur after 1 to 3 days. It becomes tensile stress', which causes the cracking and peeling of the etch barrier layer and the low dielectric constant dielectric layer. In addition to the black diamond film, other types of low dielectric constant dielectric layers (for example: fluorine doped two) Silicon oxide (SiOF, organic spin-on glass, etc.) also has great tensile stress. In another embodiment of the present invention, the above can be formed into an etching barrier with compressive stress and low dielectric constant. Layer process applied to any other low-k dielectric layer
第10頁 '1 _ 452921 五、發明說明(8) 程上’以平衡低介電常數介電層的拉伸應力,並降低金屬 内連線之間的耦合電容。 接下來如步驟2 3所示,在同一反應腔且不關閉射頻只卩 的情況下,以N 2物二曱基矽烷為反應氣體’利用電漿增 強式化學汽相沉積法以射頻RF進行黑鑽石薄膜的沉積,以 形成約50 0 0埃的第一黑鑽石薄膜32。其中所述n2〇的流量 介於3 5 0至40〇SCCm之間’最佳流量為37〇sccm;三甲基矽 烷的流量介於50至100sCcm之間,最佳流量為68sccin;反 應時間介於3 0秒至1 0 0秒之間’最佳反應時間約為6 〇秒。 特別重要的是,本步驟和上述形成第一蝕刻阻障層3〖的步 驟是在同一反應腔中連續完成的,不僅可以節省製程的時 間,更重要的是可以提高第一蝕刻阻障層3丨和第—黑鑽石 薄膜32之間的鍵結強度’以使兩層之間的黏著度更升彡強 化。 接下來在步驟24中,在同一反應腔且不關閉射頻0的 情況下,再次利用化學汽相沉積法形成一層基於三曱基石夕 烷之氮化矽層’以做為第二蝕刻阻障層3 3。本步领以一甲 基矽烷和NH為反應氣體’利用電漿增強式化學汽力 1曰沉積 法(PECVD)在N鉤環境之下,在第一黑鑽石薄膜32上# 成一層基於三甲基石夕烧之氮化石夕層,以做為第二麵岁彳阻障 層3 2 ’其厚度介於3 0 0埃至1 0 0 0埃之間其中所述J w # 〜二甲基 矽烷的流量介於3 0至1 5 0 s c c m之間,最佳流量為7 η , 1u s ccm - N2的流量介於1 0 0 0至3 5 0 0 sccfn之間,最佳流量為 2 5 0 0 s c c m ; N Η的流量介於1 0至1 0 0 s c c m之間,最隹$ fPage 10 '1 _ 452921 V. Description of the invention (8) above' to balance the tensile stress of the low dielectric constant dielectric layer and reduce the coupling capacitance between the metal interconnects. Next, as shown in step 23, in the case of the same reaction chamber without turning off the radio frequency, the N 2 substance difluorenyl silane is used as the reaction gas. The diamond film is deposited to form a first black diamond film 32 of about 500 angstroms. Wherein, the flow rate of n20 is between 350 and 40 SCCm, and the optimal flow rate is 37 ° sccm; the flow rate of trimethylsilane is between 50 and 100sCcm, and the optimal flow rate is 68sccin; The optimal response time between 30 seconds and 100 seconds is about 60 seconds. It is particularly important that this step and the above-mentioned step of forming the first etch barrier layer 3 are continuously completed in the same reaction chamber, which can not only save process time, but more importantly, can improve the first etch barrier layer 3 The bond strength between 丨 and the first black diamond film 32 is to increase the adhesion between the two layers and strengthen them. Next, in step 24, in the same reaction chamber without turning off the radio frequency 0, a chemical vapor deposition method is used to form a silicon nitride layer based on trifluorene based silane as the second etching barrier layer. 3 3. In this step, monomethylsilane and NH are used as the reaction gases. The plasma enhanced chemical vapor deposition method (PECVD) is used to form a layer based on trimethyllithium on the first black diamond film 32 under a N-hook environment. The layer of burnt nitride nitride is used as the second-side barrier layer 3 2 ′ whose thickness is between 300 angstroms and 100 angstroms, wherein the flow of J w # ~ dimethylsilane Between 30 to 150 sccm, the optimal flow is 7 η, 1u s ccm-N2 flows from 1 0 0 0 to 3 5 0 0 sccfn, the optimal flow is 2 5 0 0 sccm ; N Η flows between 10 and 1 0 0 sccm, up to $ f
第11頁 452921 五、發明說明(9) 為30sccm ;射頻RF的功率介於2 0 0至8 0 0瓦之間。所形成薄 膜的介電常數約為5.2,具有大約1.49E 9達因/平方公分之 壓縮應力,且同樣不會隨著時間而改變。特別重要的是, 本步驟和上述形成第一黑鑽石薄膜3 2的步驟是在同一反應 腔中連續完成的,不僅可以節省製程的時間,更重要的是 可以提高第一黑鑽石薄膜3 2和第二蝕刻阻障層3 3之間的鍵 結強度,以使兩層之間的黏著度更形強化。 接下來如步驟2 5所示,在同一反應腔且不關閉射頻RF 的情況下,以N 20和三甲基矽烷為反應氣體,利用電漿增 強式化學汽相沉積法以射頻RF進行黑鑽石薄膜的沉積,以 形成約5 0 0 0埃的第二黑鑽石薄膜34。其中所述N20的流量 介於35 0至400sccm之間,最佳流量為370sccm;三甲基石夕 烧的流量介於5 0至1 0 0 s c c m之間,最佳流量為6 8 s c c m ;反 應時間介於3 0秒至1 0 0秒之間,最佳反應時間約為6 0秒。 特別重要的是,本步驟和上述形成第二蝕刻阻障層3 3的步 驟是在同一反應腔中連續完成的,不僅可以節省製程的時 間,更重要的是可以提高第二蝕刻阻障層3 3和第二黑鑽石 薄膜3 4之間的鍵結強度,以使兩層之間的黏著度更形強 化。 接下來請參考圖三B,以連續兩道微影與蝕刻技術形 成開口 35。接下來請參考圖三C,以PVD、CVD、或電鍍方 法形成一層銅薄膜3 6。最後如圖三D所示,利用化學機械 研磨法對所述銅薄膜3 6進行研磨,以形成銅導線3 7。 利用本發明方法所形成之蝕刻阻障層/低介電常數介Page 11 452921 V. Description of the invention (9) is 30sccm; the power of radio frequency RF is between 200 and 800 watts. The dielectric constant of the formed film is about 5.2, and it has a compressive stress of about 1.49E 9 dyne / cm 2, and it also does not change over time. It is particularly important that this step and the above-mentioned step of forming the first black diamond film 32 are continuously completed in the same reaction chamber, which can not only save the process time, but more importantly can improve the first black diamond film 32 and The bonding strength between the second etch barrier layers 33 is to make the adhesion between the two layers stronger. Next, as shown in step 25, in the same reaction chamber without closing the RF RF, using N 20 and trimethyl silane as the reaction gas, using plasma enhanced chemical vapor deposition to perform black diamond with RF RF The film is deposited to form a second black diamond film 34 of about 5000 angstroms. Wherein, the flow rate of the N20 is between 350 and 400 sccm, and the optimal flow rate is 370 sccm; the flow rate of the trimethyl stone burner is between 50 and 100 sccm, and the optimal flow rate is 6 8 sccm; Between 30 seconds and 100 seconds, the optimal response time is about 60 seconds. It is particularly important that this step and the above-mentioned step of forming the second etch barrier layer 3 3 are continuously completed in the same reaction chamber, which can not only save the process time, but more importantly, can improve the second etch barrier layer 3 The bonding strength between 3 and the second black diamond film 3 4 makes the adhesion between the two layers stronger. Referring next to FIG. 3B, the opening 35 is formed by two successive lithography and etching techniques. Next, referring to FIG. 3C, a copper thin film 36 is formed by PVD, CVD, or electroplating. Finally, as shown in FIG. 3D, the copper thin film 36 is polished by a chemical mechanical polishing method to form a copper wire 37. Etch barrier layer / low dielectric constant dielectric formed by using the method of the present invention
第12頁 452921 五、發明說明(ίο) 電層/蝕刻阻障層/低介電常數介電層之複層結構有下列的 優點: 1. 本發明所形成的蝕刻阻障層是一層基於三甲基矽烷 之氮化矽層,其具有較低的介電常數,可有效降低金屬内 連線之間的耦合電容;並且其壓縮應力不會隨時間而改 變,可抵銷低介電常數介電層的拉伸應力,避免剝離現象 的發生。 2. 本發明中四道沉積製程皆在同一反應腔中連續進 行,可以大幅節省製程的時間,增加產量並降低製造成 本。 3. 本發明中四道沉積製程皆在同一反應腔中連續進 行,中途僅改變反應氣體而不將射頻RF關閉,如此可使每 一層與其上或下鄰接層之間的鍵結強度大幅提升,使各層 之間的黏著度更形強化。 以上所述係利用較佳實施例詳細說明本發明,而非限 制本發明的範圍,而且熟知此技藝的人士亦能明瞭,適當 而作些微的改變與調整,仍將不失本發明之要義所在,亦 不脫離本發明之精神和範圍。Page 12 452921 V. Description of the invention (ίο) The multilayer structure of the electrical layer / etch barrier layer / low dielectric constant dielectric layer has the following advantages: 1. The etch barrier layer formed by the present invention is a layer based on three The silicon nitride layer of methyl silane has a lower dielectric constant, which can effectively reduce the coupling capacitance between metal interconnects; and its compressive stress does not change with time, which can offset the low dielectric constant The tensile stress of the electrical layer prevents the occurrence of peeling. 2. In the present invention, the four deposition processes are continuously performed in the same reaction chamber, which can greatly save the process time, increase the yield and reduce the manufacturing cost. 3. In the present invention, the four deposition processes are continuously performed in the same reaction chamber, and only the reaction gas is changed without turning off the RF RF in the middle, so that the bonding strength between each layer and its upper or lower adjacent layers can be greatly improved. Make the adhesion between the layers even stronger. The above description uses the preferred embodiments to explain the present invention in detail, but not to limit the scope of the present invention, and those skilled in the art will also understand that making small changes and adjustments appropriately will still lose the essence of the present invention. Without departing from the spirit and scope of the invention.
第13頁 452921 圖式簡單說明 圖式的簡要說明: 圖一 A是習知雙鑲嵌製程中在一已完成前段製程的半導體 基板上連續形成第一氮化矽層、第一低介電常數介電層、 第二氮化矽層、和第二低介電常數介電層,再以連續兩道 微影與蝕刻技術形成開口之製程的剖面示意圖。 圖一 B是習知雙鑲嵌製程中形成一層銅薄膜之製程的剖面 示意圖。 圖一C是習知雙鑲嵌製程中利用化學機械研磨法對所述銅 薄膜進行研磨,以形成銅導線之製程的剖面示意圖。 圖二是本發明形成蝕刻阻障層/低介電常數介電層/蝕刻阻 障層低介電常數介電層之複層結構的製程流程圖。 圖三Α是本發明製程中在一已完成前段製程的半導體基板 上連續形成第一蝕刻阻障層、第一低介電常數介電層、第 二蝕刻阻障層、和第二低介電常數介電層之製程的剖面示 意圖。 圖三:B是本發明製程中以連續兩道微影與蝕刻技術形成開 口之製程的剖面示意圖。 圖三C是本發明製程中形成一層銅薄膜之製程的剖面示意 圖。 圖三D是本發明製程中利用化學機械研磨法對所述銅薄膜 進行研磨,以形成銅導線之製程的剖面示意圖。Page 13 452921 Brief description of the diagram Brief description of the diagram: Figure 1A is a conventional dual damascene process in which a first silicon nitride layer and a first low dielectric constant dielectric layer are continuously formed on a semiconductor substrate that has completed the previous process. A schematic cross-sectional view of a process of forming an electrical layer, a second silicon nitride layer, and a second low-k dielectric layer, and then using two successive lithography and etching techniques to form an opening. FIG. 1B is a schematic cross-sectional view of a process for forming a copper film in a conventional dual damascene process. FIG. 1C is a schematic cross-sectional view showing a process of grinding the copper thin film by a chemical mechanical polishing method to form a copper wire in a conventional dual damascene process. FIG. 2 is a flow chart of a process for forming a multi-layer structure of an etch barrier layer / low dielectric constant dielectric layer / etch barrier layer low dielectric constant dielectric layer according to the present invention. FIG. 3A is the first etch barrier layer, the first low-k dielectric layer, the second etch-barrier layer, and the second low-dielectric layer are continuously formed on a semiconductor substrate that has completed the previous process in the process of the present invention. A schematic cross-sectional view of a process for manufacturing a constant dielectric layer. Figure 3: B is a schematic cross-sectional view of a process of forming an opening by two successive lithography and etching techniques in the process of the present invention. Figure 3C is a schematic cross-sectional view of a process for forming a copper film in the process of the present invention. FIG. 3D is a schematic cross-sectional view of a process of polishing the copper thin film by a chemical mechanical polishing method in the process of the present invention to form a copper wire.
第14頁Page 14
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89110432A TW452921B (en) | 2000-05-30 | 2000-05-30 | Method for forming etching stop layer in dual damascene processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89110432A TW452921B (en) | 2000-05-30 | 2000-05-30 | Method for forming etching stop layer in dual damascene processing |
Publications (1)
Publication Number | Publication Date |
---|---|
TW452921B true TW452921B (en) | 2001-09-01 |
Family
ID=21659900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW89110432A TW452921B (en) | 2000-05-30 | 2000-05-30 | Method for forming etching stop layer in dual damascene processing |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW452921B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7256127B2 (en) | 2002-09-13 | 2007-08-14 | Shipley Company, L.L.C. | Air gap formation |
-
2000
- 2000-05-30 TW TW89110432A patent/TW452921B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7256127B2 (en) | 2002-09-13 | 2007-08-14 | Shipley Company, L.L.C. | Air gap formation |
US7723850B2 (en) | 2002-09-13 | 2010-05-25 | Rohm And Haas Electronic Materials Llc | Electronic devices having air gaps |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4288251B2 (en) | Method for forming a semiconductor interconnect structure | |
TWI222170B (en) | Interconnect structures containing stress adjustment cap layer | |
US6627539B1 (en) | Method of forming dual-damascene interconnect structures employing low-k dielectric materials | |
US6204200B1 (en) | Process scheme to form controlled airgaps between interconnect lines to reduce capacitance | |
US20040151844A1 (en) | Method to plasma deposit on organic polymer dielectric film | |
US7465676B2 (en) | Method for forming dielectric film to improve adhesion of low-k film | |
US7304386B2 (en) | Semiconductor device having a multilayer wiring structure | |
TW200401339A (en) | Bilayer HDP CVD/PE CVD cap in advanced BEOL interconnect structures and method thereof | |
US6764774B2 (en) | Structures with improved adhesion to Si and C containing dielectrics and method for preparing the same | |
JPH10223625A (en) | Insulation film, semiconductor device having the same and manufacture thereof | |
TW200302549A (en) | Semiconductor device and method of manufacturing the same | |
JP5325113B2 (en) | Semiconductor device having a double liner capping layer interconnection structure and method of manufacturing the same | |
TW587306B (en) | Manufacturing method of low-resistance dual damascene via | |
CN101533799A (en) | Semiconductor device and method for manufacturing the same | |
US6495448B1 (en) | Dual damascene process | |
JP2002217189A (en) | Dual plasma processing of silicon carbide film | |
JP2003258090A (en) | Method for manufacturing semiconductor device | |
JPH10340899A (en) | Silica insulation film and semiconductor device, and manufacturing method thereof | |
TWI229918B (en) | Method of forming an inter-metal dielectric layer in an interconnect structure | |
JP2002203899A (en) | Method for forming copper interconnection structure | |
TW540118B (en) | Method for increasing the surface wetability of low dielectric constant material | |
TW452921B (en) | Method for forming etching stop layer in dual damascene processing | |
JP2006024641A (en) | Semiconductor device and its manufacturing method | |
TW200527541A (en) | Semiconductor device and its manufacturing method | |
EP1249867A2 (en) | A metal barrier for copper interconnects that incorporates silicon in the metal barrier or at the copper/metal barrier interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |